xref: /freebsd/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/NoSanitizeList.h"
45 #include "clang/Basic/PartialDiagnostic.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77   return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81   SourceLocation Loc = this->Loc;
82   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83   if (Loc.isValid()) {
84     Loc.print(OS, Context.getSourceManager());
85     OS << ": ";
86   }
87   OS << Message;
88 
89   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90     OS << " '";
91     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92     OS << "'";
93   }
94 
95   OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100   return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104     : Decl(TranslationUnit, nullptr, SourceLocation()),
105       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored.  Only the innermost
116 // visibility attribute applies.  If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments.  But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility.  For example,
148 // the visibility of a specialization of either of these templates:
149 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 //   template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'.  That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160   return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167   Kind.IgnoreExplicitVisibility = true;
168   return Kind;
169 }
170 
171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                   LVComputationKind kind) {
173   assert(!kind.IgnoreExplicitVisibility &&
174          "asking for explicit visibility when we shouldn't be");
175   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181   return isa<TypeDecl>(D) ||
182          isa<ClassTemplateDecl>(D) ||
183          isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190 isExplicitMemberSpecialization(const T *D) {
191   if (const MemberSpecializationInfo *member =
192         D->getMemberSpecializationInfo()) {
193     return member->isExplicitSpecialization();
194   }
195   return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202   return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209   switch (attr->getVisibility()) {
210   case T::Default:
211     return DefaultVisibility;
212   case T::Hidden:
213     return HiddenVisibility;
214   case T::Protected:
215     return ProtectedVisibility;
216   }
217   llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                     NamedDecl::ExplicitVisibilityKind kind) {
223   // If we're ultimately computing the visibility of a type, look for
224   // a 'type_visibility' attribute before looking for 'visibility'.
225   if (kind == NamedDecl::VisibilityForType) {
226     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227       return getVisibilityFromAttr(A);
228     }
229   }
230 
231   // If this declaration has an explicit visibility attribute, use it.
232   if (const auto *A = D->getAttr<VisibilityAttr>()) {
233     return getVisibilityFromAttr(A);
234   }
235 
236   return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                           LVComputationKind computation) {
241   if (computation.IgnoreAllVisibility)
242     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243   return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list.  For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250     const TemplateParameterList *Params, LVComputationKind computation) {
251   LinkageInfo LV;
252   for (const NamedDecl *P : *Params) {
253     // Template type parameters are the most common and never
254     // contribute to visibility, pack or not.
255     if (isa<TemplateTypeParmDecl>(P))
256       continue;
257 
258     // Non-type template parameters can be restricted by the value type, e.g.
259     //   template <enum X> class A { ... };
260     // We have to be careful here, though, because we can be dealing with
261     // dependent types.
262     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263       // Handle the non-pack case first.
264       if (!NTTP->isExpandedParameterPack()) {
265         if (!NTTP->getType()->isDependentType()) {
266           LV.merge(getLVForType(*NTTP->getType(), computation));
267         }
268         continue;
269       }
270 
271       // Look at all the types in an expanded pack.
272       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273         QualType type = NTTP->getExpansionType(i);
274         if (!type->isDependentType())
275           LV.merge(getTypeLinkageAndVisibility(type));
276       }
277       continue;
278     }
279 
280     // Template template parameters can be restricted by their
281     // template parameters, recursively.
282     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284     // Handle the non-pack case first.
285     if (!TTP->isExpandedParameterPack()) {
286       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                              computation));
288       continue;
289     }
290 
291     // Look at all expansions in an expanded pack.
292     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293            i != n; ++i) {
294       LV.merge(getLVForTemplateParameterList(
295           TTP->getExpansionTemplateParameters(i), computation));
296     }
297   }
298 
299   return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303   const Decl *Ret = nullptr;
304   const DeclContext *DC = D->getDeclContext();
305   while (DC->getDeclKind() != Decl::TranslationUnit) {
306     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307       Ret = cast<Decl>(DC);
308     DC = DC->getParent();
309   }
310   return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                               LVComputationKind computation) {
321   LinkageInfo LV;
322 
323   for (const TemplateArgument &Arg : Args) {
324     switch (Arg.getKind()) {
325     case TemplateArgument::Null:
326     case TemplateArgument::Integral:
327     case TemplateArgument::Expression:
328       continue;
329 
330     case TemplateArgument::Type:
331       LV.merge(getLVForType(*Arg.getAsType(), computation));
332       continue;
333 
334     case TemplateArgument::Declaration: {
335       const NamedDecl *ND = Arg.getAsDecl();
336       assert(!usesTypeVisibility(ND));
337       LV.merge(getLVForDecl(ND, computation));
338       continue;
339     }
340 
341     case TemplateArgument::NullPtr:
342       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343       continue;
344 
345     case TemplateArgument::Template:
346     case TemplateArgument::TemplateExpansion:
347       if (TemplateDecl *Template =
348               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349         LV.merge(getLVForDecl(Template, computation));
350       continue;
351 
352     case TemplateArgument::Pack:
353       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354       continue;
355     }
356     llvm_unreachable("bad template argument kind");
357   }
358 
359   return LV;
360 }
361 
362 LinkageInfo
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                               LVComputationKind computation) {
365   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                         const FunctionTemplateSpecializationInfo *specInfo) {
370   // Include visibility from the template parameters and arguments
371   // only if this is not an explicit instantiation or specialization
372   // with direct explicit visibility.  (Implicit instantiations won't
373   // have a direct attribute.)
374   if (!specInfo->isExplicitInstantiationOrSpecialization())
375     return true;
376 
377   return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388     LinkageInfo &LV, const FunctionDecl *fn,
389     const FunctionTemplateSpecializationInfo *specInfo,
390     LVComputationKind computation) {
391   bool considerVisibility =
392     shouldConsiderTemplateVisibility(fn, specInfo);
393 
394   // Merge information from the template parameters.
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   LinkageInfo tempLV =
397     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400   // Merge information from the template arguments.
401   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                          LVComputationKind computation) {
410   if (computation.IgnoreAllVisibility)
411     return false;
412 
413   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414          D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
419 static bool shouldConsiderTemplateVisibility(
420                                  const ClassTemplateSpecializationDecl *spec,
421                                  LVComputationKind computation) {
422   // Include visibility from the template parameters and arguments
423   // only if this is not an explicit instantiation or specialization
424   // with direct explicit visibility (and note that implicit
425   // instantiations won't have a direct attribute).
426   //
427   // Furthermore, we want to ignore template parameters and arguments
428   // for an explicit specialization when computing the visibility of a
429   // member thereof with explicit visibility.
430   //
431   // This is a bit complex; let's unpack it.
432   //
433   // An explicit class specialization is an independent, top-level
434   // declaration.  As such, if it or any of its members has an
435   // explicit visibility attribute, that must directly express the
436   // user's intent, and we should honor it.  The same logic applies to
437   // an explicit instantiation of a member of such a thing.
438 
439   // Fast path: if this is not an explicit instantiation or
440   // specialization, we always want to consider template-related
441   // visibility restrictions.
442   if (!spec->isExplicitInstantiationOrSpecialization())
443     return true;
444 
445   // This is the 'member thereof' check.
446   if (spec->isExplicitSpecialization() &&
447       hasExplicitVisibilityAlready(computation))
448     return false;
449 
450   return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
456     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457     LVComputationKind computation) {
458   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460   // Merge information from the template parameters, but ignore
461   // visibility if we're only considering template arguments.
462 
463   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464   LinkageInfo tempLV =
465     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466   LV.mergeMaybeWithVisibility(tempLV,
467            considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469   // Merge information from the template arguments.  We ignore
470   // template-argument visibility if we've got an explicit
471   // instantiation with a visibility attribute.
472   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474   if (considerVisibility)
475     LV.mergeVisibility(argsLV);
476   LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
483 static bool shouldConsiderTemplateVisibility(
484                                  const VarTemplateSpecializationDecl *spec,
485                                  LVComputationKind computation) {
486   // Include visibility from the template parameters and arguments
487   // only if this is not an explicit instantiation or specialization
488   // with direct explicit visibility (and note that implicit
489   // instantiations won't have a direct attribute).
490   if (!spec->isExplicitInstantiationOrSpecialization())
491     return true;
492 
493   // An explicit variable specialization is an independent, top-level
494   // declaration.  As such, if it has an explicit visibility attribute,
495   // that must directly express the user's intent, and we should honor
496   // it.
497   if (spec->isExplicitSpecialization() &&
498       hasExplicitVisibilityAlready(computation))
499     return false;
500 
501   return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                       const VarTemplateSpecializationDecl *spec,
509                                       LVComputationKind computation) {
510   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512   // Merge information from the template parameters, but ignore
513   // visibility if we're only considering template arguments.
514 
515   VarTemplateDecl *temp = spec->getSpecializedTemplate();
516   LinkageInfo tempLV =
517     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518   LV.mergeMaybeWithVisibility(tempLV,
519            considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521   // Merge information from the template arguments.  We ignore
522   // template-argument visibility if we've got an explicit
523   // instantiation with a visibility attribute.
524   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526   if (considerVisibility)
527     LV.mergeVisibility(argsLV);
528   LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533   const LangOptions &Opts = D->getASTContext().getLangOpts();
534   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535     return false;
536 
537   const auto *FD = dyn_cast<FunctionDecl>(D);
538   if (!FD)
539     return false;
540 
541   TemplateSpecializationKind TSK = TSK_Undeclared;
542   if (FunctionTemplateSpecializationInfo *spec
543       = FD->getTemplateSpecializationInfo()) {
544     TSK = spec->getTemplateSpecializationKind();
545   } else if (MemberSpecializationInfo *MSI =
546              FD->getMemberSpecializationInfo()) {
547     TSK = MSI->getTemplateSpecializationKind();
548   }
549 
550   const FunctionDecl *Def = nullptr;
551   // InlineVisibilityHidden only applies to definitions, and
552   // isInlined() only gives meaningful answers on definitions
553   // anyway.
554   return TSK != TSK_ExplicitInstantiationDeclaration &&
555     TSK != TSK_ExplicitInstantiationDefinition &&
556     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560   const T *First = D->getFirstDecl();
561   return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566     if (!SD->hasBraces())
567       return true;
568   return false;
569 }
570 
571 /// Determine whether D is declared in the purview of a named module.
572 static bool isInModulePurview(const NamedDecl *D) {
573   if (auto *M = D->getOwningModule())
574     return M->isModulePurview();
575   return false;
576 }
577 
578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579   // FIXME: Handle isModulePrivate.
580   switch (D->getModuleOwnershipKind()) {
581   case Decl::ModuleOwnershipKind::Unowned:
582   case Decl::ModuleOwnershipKind::ModulePrivate:
583     return false;
584   case Decl::ModuleOwnershipKind::Visible:
585   case Decl::ModuleOwnershipKind::VisibleWhenImported:
586     return isInModulePurview(D);
587   }
588   llvm_unreachable("unexpected module ownership kind");
589 }
590 
591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592   // Internal linkage declarations within a module interface unit are modeled
593   // as "module-internal linkage", which means that they have internal linkage
594   // formally but can be indirectly accessed from outside the module via inline
595   // functions and templates defined within the module.
596   if (isInModulePurview(D))
597     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598 
599   return LinkageInfo::internal();
600 }
601 
602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603   // C++ Modules TS [basic.link]/6.8:
604   //   - A name declared at namespace scope that does not have internal linkage
605   //     by the previous rules and that is introduced by a non-exported
606   //     declaration has module linkage.
607   if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608                                   cast<NamedDecl>(D->getCanonicalDecl())))
609     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610 
611   return LinkageInfo::external();
612 }
613 
614 static StorageClass getStorageClass(const Decl *D) {
615   if (auto *TD = dyn_cast<TemplateDecl>(D))
616     D = TD->getTemplatedDecl();
617   if (D) {
618     if (auto *VD = dyn_cast<VarDecl>(D))
619       return VD->getStorageClass();
620     if (auto *FD = dyn_cast<FunctionDecl>(D))
621       return FD->getStorageClass();
622   }
623   return SC_None;
624 }
625 
626 LinkageInfo
627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628                                             LVComputationKind computation,
629                                             bool IgnoreVarTypeLinkage) {
630   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
631          "Not a name having namespace scope");
632   ASTContext &Context = D->getASTContext();
633 
634   // C++ [basic.link]p3:
635   //   A name having namespace scope (3.3.6) has internal linkage if it
636   //   is the name of
637 
638   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639     // - a variable, variable template, function, or function template
640     //   that is explicitly declared static; or
641     // (This bullet corresponds to C99 6.2.2p3.)
642     return getInternalLinkageFor(D);
643   }
644 
645   if (const auto *Var = dyn_cast<VarDecl>(D)) {
646     // - a non-template variable of non-volatile const-qualified type, unless
647     //   - it is explicitly declared extern, or
648     //   - it is inline or exported, or
649     //   - it was previously declared and the prior declaration did not have
650     //     internal linkage
651     // (There is no equivalent in C99.)
652     if (Context.getLangOpts().CPlusPlus &&
653         Var->getType().isConstQualified() &&
654         !Var->getType().isVolatileQualified() &&
655         !Var->isInline() &&
656         !isExportedFromModuleInterfaceUnit(Var) &&
657         !isa<VarTemplateSpecializationDecl>(Var) &&
658         !Var->getDescribedVarTemplate()) {
659       const VarDecl *PrevVar = Var->getPreviousDecl();
660       if (PrevVar)
661         return getLVForDecl(PrevVar, computation);
662 
663       if (Var->getStorageClass() != SC_Extern &&
664           Var->getStorageClass() != SC_PrivateExtern &&
665           !isSingleLineLanguageLinkage(*Var))
666         return getInternalLinkageFor(Var);
667     }
668 
669     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670          PrevVar = PrevVar->getPreviousDecl()) {
671       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672           Var->getStorageClass() == SC_None)
673         return getDeclLinkageAndVisibility(PrevVar);
674       // Explicitly declared static.
675       if (PrevVar->getStorageClass() == SC_Static)
676         return getInternalLinkageFor(Var);
677     }
678   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679     //   - a data member of an anonymous union.
680     const VarDecl *VD = IFD->getVarDecl();
681     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
682     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683   }
684   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
685 
686   // FIXME: This gives internal linkage to names that should have no linkage
687   // (those not covered by [basic.link]p6).
688   if (D->isInAnonymousNamespace()) {
689     const auto *Var = dyn_cast<VarDecl>(D);
690     const auto *Func = dyn_cast<FunctionDecl>(D);
691     // FIXME: The check for extern "C" here is not justified by the standard
692     // wording, but we retain it from the pre-DR1113 model to avoid breaking
693     // code.
694     //
695     // C++11 [basic.link]p4:
696     //   An unnamed namespace or a namespace declared directly or indirectly
697     //   within an unnamed namespace has internal linkage.
698     if ((!Var || !isFirstInExternCContext(Var)) &&
699         (!Func || !isFirstInExternCContext(Func)))
700       return getInternalLinkageFor(D);
701   }
702 
703   // Set up the defaults.
704 
705   // C99 6.2.2p5:
706   //   If the declaration of an identifier for an object has file
707   //   scope and no storage-class specifier, its linkage is
708   //   external.
709   LinkageInfo LV = getExternalLinkageFor(D);
710 
711   if (!hasExplicitVisibilityAlready(computation)) {
712     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713       LV.mergeVisibility(*Vis, true);
714     } else {
715       // If we're declared in a namespace with a visibility attribute,
716       // use that namespace's visibility, and it still counts as explicit.
717       for (const DeclContext *DC = D->getDeclContext();
718            !isa<TranslationUnitDecl>(DC);
719            DC = DC->getParent()) {
720         const auto *ND = dyn_cast<NamespaceDecl>(DC);
721         if (!ND) continue;
722         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723           LV.mergeVisibility(*Vis, true);
724           break;
725         }
726       }
727     }
728 
729     // Add in global settings if the above didn't give us direct visibility.
730     if (!LV.isVisibilityExplicit()) {
731       // Use global type/value visibility as appropriate.
732       Visibility globalVisibility =
733           computation.isValueVisibility()
734               ? Context.getLangOpts().getValueVisibilityMode()
735               : Context.getLangOpts().getTypeVisibilityMode();
736       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737 
738       // If we're paying attention to global visibility, apply
739       // -finline-visibility-hidden if this is an inline method.
740       if (useInlineVisibilityHidden(D))
741         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742     }
743   }
744 
745   // C++ [basic.link]p4:
746 
747   //   A name having namespace scope that has not been given internal linkage
748   //   above and that is the name of
749   //   [...bullets...]
750   //   has its linkage determined as follows:
751   //     - if the enclosing namespace has internal linkage, the name has
752   //       internal linkage; [handled above]
753   //     - otherwise, if the declaration of the name is attached to a named
754   //       module and is not exported, the name has module linkage;
755   //     - otherwise, the name has external linkage.
756   // LV is currently set up to handle the last two bullets.
757   //
758   //   The bullets are:
759 
760   //     - a variable; or
761   if (const auto *Var = dyn_cast<VarDecl>(D)) {
762     // GCC applies the following optimization to variables and static
763     // data members, but not to functions:
764     //
765     // Modify the variable's LV by the LV of its type unless this is
766     // C or extern "C".  This follows from [basic.link]p9:
767     //   A type without linkage shall not be used as the type of a
768     //   variable or function with external linkage unless
769     //    - the entity has C language linkage, or
770     //    - the entity is declared within an unnamed namespace, or
771     //    - the entity is not used or is defined in the same
772     //      translation unit.
773     // and [basic.link]p10:
774     //   ...the types specified by all declarations referring to a
775     //   given variable or function shall be identical...
776     // C does not have an equivalent rule.
777     //
778     // Ignore this if we've got an explicit attribute;  the user
779     // probably knows what they're doing.
780     //
781     // Note that we don't want to make the variable non-external
782     // because of this, but unique-external linkage suits us.
783     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784         !IgnoreVarTypeLinkage) {
785       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786       if (!isExternallyVisible(TypeLV.getLinkage()))
787         return LinkageInfo::uniqueExternal();
788       if (!LV.isVisibilityExplicit())
789         LV.mergeVisibility(TypeLV);
790     }
791 
792     if (Var->getStorageClass() == SC_PrivateExtern)
793       LV.mergeVisibility(HiddenVisibility, true);
794 
795     // Note that Sema::MergeVarDecl already takes care of implementing
796     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797     // to do it here.
798 
799     // As per function and class template specializations (below),
800     // consider LV for the template and template arguments.  We're at file
801     // scope, so we do not need to worry about nested specializations.
802     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803       mergeTemplateLV(LV, spec, computation);
804     }
805 
806   //     - a function; or
807   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808     // In theory, we can modify the function's LV by the LV of its
809     // type unless it has C linkage (see comment above about variables
810     // for justification).  In practice, GCC doesn't do this, so it's
811     // just too painful to make work.
812 
813     if (Function->getStorageClass() == SC_PrivateExtern)
814       LV.mergeVisibility(HiddenVisibility, true);
815 
816     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817     // merging storage classes and visibility attributes, so we don't have to
818     // look at previous decls in here.
819 
820     // In C++, then if the type of the function uses a type with
821     // unique-external linkage, it's not legally usable from outside
822     // this translation unit.  However, we should use the C linkage
823     // rules instead for extern "C" declarations.
824     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825       // Only look at the type-as-written. Otherwise, deducing the return type
826       // of a function could change its linkage.
827       QualType TypeAsWritten = Function->getType();
828       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829         TypeAsWritten = TSI->getType();
830       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831         return LinkageInfo::uniqueExternal();
832     }
833 
834     // Consider LV from the template and the template arguments.
835     // We're at file scope, so we do not need to worry about nested
836     // specializations.
837     if (FunctionTemplateSpecializationInfo *specInfo
838                                = Function->getTemplateSpecializationInfo()) {
839       mergeTemplateLV(LV, Function, specInfo, computation);
840     }
841 
842   //     - a named class (Clause 9), or an unnamed class defined in a
843   //       typedef declaration in which the class has the typedef name
844   //       for linkage purposes (7.1.3); or
845   //     - a named enumeration (7.2), or an unnamed enumeration
846   //       defined in a typedef declaration in which the enumeration
847   //       has the typedef name for linkage purposes (7.1.3); or
848   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849     // Unnamed tags have no linkage.
850     if (!Tag->hasNameForLinkage())
851       return LinkageInfo::none();
852 
853     // If this is a class template specialization, consider the
854     // linkage of the template and template arguments.  We're at file
855     // scope, so we do not need to worry about nested specializations.
856     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857       mergeTemplateLV(LV, spec, computation);
858     }
859 
860   // FIXME: This is not part of the C++ standard any more.
861   //     - an enumerator belonging to an enumeration with external linkage; or
862   } else if (isa<EnumConstantDecl>(D)) {
863     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864                                       computation);
865     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866       return LinkageInfo::none();
867     LV.merge(EnumLV);
868 
869   //     - a template
870   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872     LinkageInfo tempLV =
873       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875 
876   //     An unnamed namespace or a namespace declared directly or indirectly
877   //     within an unnamed namespace has internal linkage. All other namespaces
878   //     have external linkage.
879   //
880   // We handled names in anonymous namespaces above.
881   } else if (isa<NamespaceDecl>(D)) {
882     return LV;
883 
884   // By extension, we assign external linkage to Objective-C
885   // interfaces.
886   } else if (isa<ObjCInterfaceDecl>(D)) {
887     // fallout
888 
889   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890     // A typedef declaration has linkage if it gives a type a name for
891     // linkage purposes.
892     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893       return LinkageInfo::none();
894 
895   } else if (isa<MSGuidDecl>(D)) {
896     // A GUID behaves like an inline variable with external linkage. Fall
897     // through.
898 
899   // Everything not covered here has no linkage.
900   } else {
901     return LinkageInfo::none();
902   }
903 
904   // If we ended up with non-externally-visible linkage, visibility should
905   // always be default.
906   if (!isExternallyVisible(LV.getLinkage()))
907     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908 
909   // Mark the symbols as hidden when compiling for the device.
910   if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911     LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912 
913   return LV;
914 }
915 
916 LinkageInfo
917 LinkageComputer::getLVForClassMember(const NamedDecl *D,
918                                      LVComputationKind computation,
919                                      bool IgnoreVarTypeLinkage) {
920   // Only certain class members have linkage.  Note that fields don't
921   // really have linkage, but it's convenient to say they do for the
922   // purposes of calculating linkage of pointer-to-data-member
923   // template arguments.
924   //
925   // Templates also don't officially have linkage, but since we ignore
926   // the C++ standard and look at template arguments when determining
927   // linkage and visibility of a template specialization, we might hit
928   // a template template argument that way. If we do, we need to
929   // consider its linkage.
930   if (!(isa<CXXMethodDecl>(D) ||
931         isa<VarDecl>(D) ||
932         isa<FieldDecl>(D) ||
933         isa<IndirectFieldDecl>(D) ||
934         isa<TagDecl>(D) ||
935         isa<TemplateDecl>(D)))
936     return LinkageInfo::none();
937 
938   LinkageInfo LV;
939 
940   // If we have an explicit visibility attribute, merge that in.
941   if (!hasExplicitVisibilityAlready(computation)) {
942     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943       LV.mergeVisibility(*Vis, true);
944     // If we're paying attention to global visibility, apply
945     // -finline-visibility-hidden if this is an inline method.
946     //
947     // Note that we do this before merging information about
948     // the class visibility.
949     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951   }
952 
953   // If this class member has an explicit visibility attribute, the only
954   // thing that can change its visibility is the template arguments, so
955   // only look for them when processing the class.
956   LVComputationKind classComputation = computation;
957   if (LV.isVisibilityExplicit())
958     classComputation = withExplicitVisibilityAlready(computation);
959 
960   LinkageInfo classLV =
961     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962   // The member has the same linkage as the class. If that's not externally
963   // visible, we don't need to compute anything about the linkage.
964   // FIXME: If we're only computing linkage, can we bail out here?
965   if (!isExternallyVisible(classLV.getLinkage()))
966     return classLV;
967 
968 
969   // Otherwise, don't merge in classLV yet, because in certain cases
970   // we need to completely ignore the visibility from it.
971 
972   // Specifically, if this decl exists and has an explicit attribute.
973   const NamedDecl *explicitSpecSuppressor = nullptr;
974 
975   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976     // Only look at the type-as-written. Otherwise, deducing the return type
977     // of a function could change its linkage.
978     QualType TypeAsWritten = MD->getType();
979     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980       TypeAsWritten = TSI->getType();
981     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982       return LinkageInfo::uniqueExternal();
983 
984     // If this is a method template specialization, use the linkage for
985     // the template parameters and arguments.
986     if (FunctionTemplateSpecializationInfo *spec
987            = MD->getTemplateSpecializationInfo()) {
988       mergeTemplateLV(LV, MD, spec, computation);
989       if (spec->isExplicitSpecialization()) {
990         explicitSpecSuppressor = MD;
991       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993       }
994     } else if (isExplicitMemberSpecialization(MD)) {
995       explicitSpecSuppressor = MD;
996     }
997 
998   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000       mergeTemplateLV(LV, spec, computation);
1001       if (spec->isExplicitSpecialization()) {
1002         explicitSpecSuppressor = spec;
1003       } else {
1004         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005         if (isExplicitMemberSpecialization(temp)) {
1006           explicitSpecSuppressor = temp->getTemplatedDecl();
1007         }
1008       }
1009     } else if (isExplicitMemberSpecialization(RD)) {
1010       explicitSpecSuppressor = RD;
1011     }
1012 
1013   // Static data members.
1014   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016       mergeTemplateLV(LV, spec, computation);
1017 
1018     // Modify the variable's linkage by its type, but ignore the
1019     // type's visibility unless it's a definition.
1020     if (!IgnoreVarTypeLinkage) {
1021       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022       // FIXME: If the type's linkage is not externally visible, we can
1023       // give this static data member UniqueExternalLinkage.
1024       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025         LV.mergeVisibility(typeLV);
1026       LV.mergeExternalVisibility(typeLV);
1027     }
1028 
1029     if (isExplicitMemberSpecialization(VD)) {
1030       explicitSpecSuppressor = VD;
1031     }
1032 
1033   // Template members.
1034   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035     bool considerVisibility =
1036       (!LV.isVisibilityExplicit() &&
1037        !classLV.isVisibilityExplicit() &&
1038        !hasExplicitVisibilityAlready(computation));
1039     LinkageInfo tempLV =
1040       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042 
1043     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044       if (isExplicitMemberSpecialization(redeclTemp)) {
1045         explicitSpecSuppressor = temp->getTemplatedDecl();
1046       }
1047     }
1048   }
1049 
1050   // We should never be looking for an attribute directly on a template.
1051   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1052 
1053   // If this member is an explicit member specialization, and it has
1054   // an explicit attribute, ignore visibility from the parent.
1055   bool considerClassVisibility = true;
1056   if (explicitSpecSuppressor &&
1057       // optimization: hasDVA() is true only with explicit visibility.
1058       LV.isVisibilityExplicit() &&
1059       classLV.getVisibility() != DefaultVisibility &&
1060       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061     considerClassVisibility = false;
1062   }
1063 
1064   // Finally, merge in information from the class.
1065   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066   return LV;
1067 }
1068 
1069 void NamedDecl::anchor() {}
1070 
1071 bool NamedDecl::isLinkageValid() const {
1072   if (!hasCachedLinkage())
1073     return true;
1074 
1075   Linkage L = LinkageComputer{}
1076                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077                   .getLinkage();
1078   return L == getCachedLinkage();
1079 }
1080 
1081 ReservedIdentifierStatus
1082 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1083   const IdentifierInfo *II = getIdentifier();
1084 
1085   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1086   // at lexing time.
1087   if (!II)
1088     return ReservedIdentifierStatus::NotReserved;
1089 
1090   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1091   if (Status == ReservedIdentifierStatus::StartsWithUnderscoreAtGlobalScope) {
1092     // Check if we're at TU level or not.
1093     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1094       return ReservedIdentifierStatus::NotReserved;
1095     const DeclContext *DC = getDeclContext()->getRedeclContext();
1096     if (!DC->isTranslationUnit())
1097       return ReservedIdentifierStatus::NotReserved;
1098   }
1099 
1100   return Status;
1101 }
1102 
1103 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1104   StringRef name = getName();
1105   if (name.empty()) return SFF_None;
1106 
1107   if (name.front() == 'C')
1108     if (name == "CFStringCreateWithFormat" ||
1109         name == "CFStringCreateWithFormatAndArguments" ||
1110         name == "CFStringAppendFormat" ||
1111         name == "CFStringAppendFormatAndArguments")
1112       return SFF_CFString;
1113   return SFF_None;
1114 }
1115 
1116 Linkage NamedDecl::getLinkageInternal() const {
1117   // We don't care about visibility here, so ask for the cheapest
1118   // possible visibility analysis.
1119   return LinkageComputer{}
1120       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1121       .getLinkage();
1122 }
1123 
1124 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1125   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1126 }
1127 
1128 static Optional<Visibility>
1129 getExplicitVisibilityAux(const NamedDecl *ND,
1130                          NamedDecl::ExplicitVisibilityKind kind,
1131                          bool IsMostRecent) {
1132   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1133 
1134   // Check the declaration itself first.
1135   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1136     return V;
1137 
1138   // If this is a member class of a specialization of a class template
1139   // and the corresponding decl has explicit visibility, use that.
1140   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1141     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1142     if (InstantiatedFrom)
1143       return getVisibilityOf(InstantiatedFrom, kind);
1144   }
1145 
1146   // If there wasn't explicit visibility there, and this is a
1147   // specialization of a class template, check for visibility
1148   // on the pattern.
1149   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1150     // Walk all the template decl till this point to see if there are
1151     // explicit visibility attributes.
1152     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1153     while (TD != nullptr) {
1154       auto Vis = getVisibilityOf(TD, kind);
1155       if (Vis != None)
1156         return Vis;
1157       TD = TD->getPreviousDecl();
1158     }
1159     return None;
1160   }
1161 
1162   // Use the most recent declaration.
1163   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1164     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1165     if (MostRecent != ND)
1166       return getExplicitVisibilityAux(MostRecent, kind, true);
1167   }
1168 
1169   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1170     if (Var->isStaticDataMember()) {
1171       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1172       if (InstantiatedFrom)
1173         return getVisibilityOf(InstantiatedFrom, kind);
1174     }
1175 
1176     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1177       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1178                              kind);
1179 
1180     return None;
1181   }
1182   // Also handle function template specializations.
1183   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1184     // If the function is a specialization of a template with an
1185     // explicit visibility attribute, use that.
1186     if (FunctionTemplateSpecializationInfo *templateInfo
1187           = fn->getTemplateSpecializationInfo())
1188       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1189                              kind);
1190 
1191     // If the function is a member of a specialization of a class template
1192     // and the corresponding decl has explicit visibility, use that.
1193     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1194     if (InstantiatedFrom)
1195       return getVisibilityOf(InstantiatedFrom, kind);
1196 
1197     return None;
1198   }
1199 
1200   // The visibility of a template is stored in the templated decl.
1201   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1202     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1203 
1204   return None;
1205 }
1206 
1207 Optional<Visibility>
1208 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1209   return getExplicitVisibilityAux(this, kind, false);
1210 }
1211 
1212 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1213                                              Decl *ContextDecl,
1214                                              LVComputationKind computation) {
1215   // This lambda has its linkage/visibility determined by its owner.
1216   const NamedDecl *Owner;
1217   if (!ContextDecl)
1218     Owner = dyn_cast<NamedDecl>(DC);
1219   else if (isa<ParmVarDecl>(ContextDecl))
1220     Owner =
1221         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1222   else
1223     Owner = cast<NamedDecl>(ContextDecl);
1224 
1225   if (!Owner)
1226     return LinkageInfo::none();
1227 
1228   // If the owner has a deduced type, we need to skip querying the linkage and
1229   // visibility of that type, because it might involve this closure type.  The
1230   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1231   // than NoLinkage when we don't strictly need to, which is benign.
1232   auto *VD = dyn_cast<VarDecl>(Owner);
1233   LinkageInfo OwnerLV =
1234       VD && VD->getType()->getContainedDeducedType()
1235           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1236           : getLVForDecl(Owner, computation);
1237 
1238   // A lambda never formally has linkage. But if the owner is externally
1239   // visible, then the lambda is too. We apply the same rules to blocks.
1240   if (!isExternallyVisible(OwnerLV.getLinkage()))
1241     return LinkageInfo::none();
1242   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1243                      OwnerLV.isVisibilityExplicit());
1244 }
1245 
1246 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1247                                                LVComputationKind computation) {
1248   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1249     if (Function->isInAnonymousNamespace() &&
1250         !isFirstInExternCContext(Function))
1251       return getInternalLinkageFor(Function);
1252 
1253     // This is a "void f();" which got merged with a file static.
1254     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1255       return getInternalLinkageFor(Function);
1256 
1257     LinkageInfo LV;
1258     if (!hasExplicitVisibilityAlready(computation)) {
1259       if (Optional<Visibility> Vis =
1260               getExplicitVisibility(Function, computation))
1261         LV.mergeVisibility(*Vis, true);
1262     }
1263 
1264     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1265     // merging storage classes and visibility attributes, so we don't have to
1266     // look at previous decls in here.
1267 
1268     return LV;
1269   }
1270 
1271   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1272     if (Var->hasExternalStorage()) {
1273       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1274         return getInternalLinkageFor(Var);
1275 
1276       LinkageInfo LV;
1277       if (Var->getStorageClass() == SC_PrivateExtern)
1278         LV.mergeVisibility(HiddenVisibility, true);
1279       else if (!hasExplicitVisibilityAlready(computation)) {
1280         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1281           LV.mergeVisibility(*Vis, true);
1282       }
1283 
1284       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1285         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1286         if (PrevLV.getLinkage())
1287           LV.setLinkage(PrevLV.getLinkage());
1288         LV.mergeVisibility(PrevLV);
1289       }
1290 
1291       return LV;
1292     }
1293 
1294     if (!Var->isStaticLocal())
1295       return LinkageInfo::none();
1296   }
1297 
1298   ASTContext &Context = D->getASTContext();
1299   if (!Context.getLangOpts().CPlusPlus)
1300     return LinkageInfo::none();
1301 
1302   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1303   if (!OuterD || OuterD->isInvalidDecl())
1304     return LinkageInfo::none();
1305 
1306   LinkageInfo LV;
1307   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1308     if (!BD->getBlockManglingNumber())
1309       return LinkageInfo::none();
1310 
1311     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1312                          BD->getBlockManglingContextDecl(), computation);
1313   } else {
1314     const auto *FD = cast<FunctionDecl>(OuterD);
1315     if (!FD->isInlined() &&
1316         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1317       return LinkageInfo::none();
1318 
1319     // If a function is hidden by -fvisibility-inlines-hidden option and
1320     // is not explicitly attributed as a hidden function,
1321     // we should not make static local variables in the function hidden.
1322     LV = getLVForDecl(FD, computation);
1323     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1324         !LV.isVisibilityExplicit() &&
1325         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1326       assert(cast<VarDecl>(D)->isStaticLocal());
1327       // If this was an implicitly hidden inline method, check again for
1328       // explicit visibility on the parent class, and use that for static locals
1329       // if present.
1330       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1331         LV = getLVForDecl(MD->getParent(), computation);
1332       if (!LV.isVisibilityExplicit()) {
1333         Visibility globalVisibility =
1334             computation.isValueVisibility()
1335                 ? Context.getLangOpts().getValueVisibilityMode()
1336                 : Context.getLangOpts().getTypeVisibilityMode();
1337         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1338                            /*visibilityExplicit=*/false);
1339       }
1340     }
1341   }
1342   if (!isExternallyVisible(LV.getLinkage()))
1343     return LinkageInfo::none();
1344   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1345                      LV.isVisibilityExplicit());
1346 }
1347 
1348 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1349                                               LVComputationKind computation,
1350                                               bool IgnoreVarTypeLinkage) {
1351   // Internal_linkage attribute overrides other considerations.
1352   if (D->hasAttr<InternalLinkageAttr>())
1353     return getInternalLinkageFor(D);
1354 
1355   // Objective-C: treat all Objective-C declarations as having external
1356   // linkage.
1357   switch (D->getKind()) {
1358     default:
1359       break;
1360 
1361     // Per C++ [basic.link]p2, only the names of objects, references,
1362     // functions, types, templates, namespaces, and values ever have linkage.
1363     //
1364     // Note that the name of a typedef, namespace alias, using declaration,
1365     // and so on are not the name of the corresponding type, namespace, or
1366     // declaration, so they do *not* have linkage.
1367     case Decl::ImplicitParam:
1368     case Decl::Label:
1369     case Decl::NamespaceAlias:
1370     case Decl::ParmVar:
1371     case Decl::Using:
1372     case Decl::UsingEnum:
1373     case Decl::UsingShadow:
1374     case Decl::UsingDirective:
1375       return LinkageInfo::none();
1376 
1377     case Decl::EnumConstant:
1378       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1379       if (D->getASTContext().getLangOpts().CPlusPlus)
1380         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1381       return LinkageInfo::visible_none();
1382 
1383     case Decl::Typedef:
1384     case Decl::TypeAlias:
1385       // A typedef declaration has linkage if it gives a type a name for
1386       // linkage purposes.
1387       if (!cast<TypedefNameDecl>(D)
1388                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1389         return LinkageInfo::none();
1390       break;
1391 
1392     case Decl::TemplateTemplateParm: // count these as external
1393     case Decl::NonTypeTemplateParm:
1394     case Decl::ObjCAtDefsField:
1395     case Decl::ObjCCategory:
1396     case Decl::ObjCCategoryImpl:
1397     case Decl::ObjCCompatibleAlias:
1398     case Decl::ObjCImplementation:
1399     case Decl::ObjCMethod:
1400     case Decl::ObjCProperty:
1401     case Decl::ObjCPropertyImpl:
1402     case Decl::ObjCProtocol:
1403       return getExternalLinkageFor(D);
1404 
1405     case Decl::CXXRecord: {
1406       const auto *Record = cast<CXXRecordDecl>(D);
1407       if (Record->isLambda()) {
1408         if (Record->hasKnownLambdaInternalLinkage() ||
1409             !Record->getLambdaManglingNumber()) {
1410           // This lambda has no mangling number, so it's internal.
1411           return getInternalLinkageFor(D);
1412         }
1413 
1414         return getLVForClosure(
1415                   Record->getDeclContext()->getRedeclContext(),
1416                   Record->getLambdaContextDecl(), computation);
1417       }
1418 
1419       break;
1420     }
1421 
1422     case Decl::TemplateParamObject: {
1423       // The template parameter object can be referenced from anywhere its type
1424       // and value can be referenced.
1425       auto *TPO = cast<TemplateParamObjectDecl>(D);
1426       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1427       LV.merge(getLVForValue(TPO->getValue(), computation));
1428       return LV;
1429     }
1430   }
1431 
1432   // Handle linkage for namespace-scope names.
1433   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1434     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1435 
1436   // C++ [basic.link]p5:
1437   //   In addition, a member function, static data member, a named
1438   //   class or enumeration of class scope, or an unnamed class or
1439   //   enumeration defined in a class-scope typedef declaration such
1440   //   that the class or enumeration has the typedef name for linkage
1441   //   purposes (7.1.3), has external linkage if the name of the class
1442   //   has external linkage.
1443   if (D->getDeclContext()->isRecord())
1444     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1445 
1446   // C++ [basic.link]p6:
1447   //   The name of a function declared in block scope and the name of
1448   //   an object declared by a block scope extern declaration have
1449   //   linkage. If there is a visible declaration of an entity with
1450   //   linkage having the same name and type, ignoring entities
1451   //   declared outside the innermost enclosing namespace scope, the
1452   //   block scope declaration declares that same entity and receives
1453   //   the linkage of the previous declaration. If there is more than
1454   //   one such matching entity, the program is ill-formed. Otherwise,
1455   //   if no matching entity is found, the block scope entity receives
1456   //   external linkage.
1457   if (D->getDeclContext()->isFunctionOrMethod())
1458     return getLVForLocalDecl(D, computation);
1459 
1460   // C++ [basic.link]p6:
1461   //   Names not covered by these rules have no linkage.
1462   return LinkageInfo::none();
1463 }
1464 
1465 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1466 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1467                                           LVComputationKind computation) {
1468   // Internal_linkage attribute overrides other considerations.
1469   if (D->hasAttr<InternalLinkageAttr>())
1470     return getInternalLinkageFor(D);
1471 
1472   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1473     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1474 
1475   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1476     return *LI;
1477 
1478   LinkageInfo LV = computeLVForDecl(D, computation);
1479   if (D->hasCachedLinkage())
1480     assert(D->getCachedLinkage() == LV.getLinkage());
1481 
1482   D->setCachedLinkage(LV.getLinkage());
1483   cache(D, computation, LV);
1484 
1485 #ifndef NDEBUG
1486   // In C (because of gnu inline) and in c++ with microsoft extensions an
1487   // static can follow an extern, so we can have two decls with different
1488   // linkages.
1489   const LangOptions &Opts = D->getASTContext().getLangOpts();
1490   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1491     return LV;
1492 
1493   // We have just computed the linkage for this decl. By induction we know
1494   // that all other computed linkages match, check that the one we just
1495   // computed also does.
1496   NamedDecl *Old = nullptr;
1497   for (auto I : D->redecls()) {
1498     auto *T = cast<NamedDecl>(I);
1499     if (T == D)
1500       continue;
1501     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1502       Old = T;
1503       break;
1504     }
1505   }
1506   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1507 #endif
1508 
1509   return LV;
1510 }
1511 
1512 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1513   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1514                                              ? NamedDecl::VisibilityForType
1515                                              : NamedDecl::VisibilityForValue;
1516   LVComputationKind CK(EK);
1517   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1518                              ? CK.forLinkageOnly()
1519                              : CK);
1520 }
1521 
1522 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1523   Module *M = getOwningModule();
1524   if (!M)
1525     return nullptr;
1526 
1527   switch (M->Kind) {
1528   case Module::ModuleMapModule:
1529     // Module map modules have no special linkage semantics.
1530     return nullptr;
1531 
1532   case Module::ModuleInterfaceUnit:
1533     return M;
1534 
1535   case Module::GlobalModuleFragment: {
1536     // External linkage declarations in the global module have no owning module
1537     // for linkage purposes. But internal linkage declarations in the global
1538     // module fragment of a particular module are owned by that module for
1539     // linkage purposes.
1540     if (IgnoreLinkage)
1541       return nullptr;
1542     bool InternalLinkage;
1543     if (auto *ND = dyn_cast<NamedDecl>(this))
1544       InternalLinkage = !ND->hasExternalFormalLinkage();
1545     else {
1546       auto *NSD = dyn_cast<NamespaceDecl>(this);
1547       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1548                         isInAnonymousNamespace();
1549     }
1550     return InternalLinkage ? M->Parent : nullptr;
1551   }
1552 
1553   case Module::PrivateModuleFragment:
1554     // The private module fragment is part of its containing module for linkage
1555     // purposes.
1556     return M->Parent;
1557   }
1558 
1559   llvm_unreachable("unknown module kind");
1560 }
1561 
1562 void NamedDecl::printName(raw_ostream &os) const {
1563   os << Name;
1564 }
1565 
1566 std::string NamedDecl::getQualifiedNameAsString() const {
1567   std::string QualName;
1568   llvm::raw_string_ostream OS(QualName);
1569   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1570   return OS.str();
1571 }
1572 
1573 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1574   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1575 }
1576 
1577 void NamedDecl::printQualifiedName(raw_ostream &OS,
1578                                    const PrintingPolicy &P) const {
1579   if (getDeclContext()->isFunctionOrMethod()) {
1580     // We do not print '(anonymous)' for function parameters without name.
1581     printName(OS);
1582     return;
1583   }
1584   printNestedNameSpecifier(OS, P);
1585   if (getDeclName())
1586     OS << *this;
1587   else {
1588     // Give the printName override a chance to pick a different name before we
1589     // fall back to "(anonymous)".
1590     SmallString<64> NameBuffer;
1591     llvm::raw_svector_ostream NameOS(NameBuffer);
1592     printName(NameOS);
1593     if (NameBuffer.empty())
1594       OS << "(anonymous)";
1595     else
1596       OS << NameBuffer;
1597   }
1598 }
1599 
1600 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1601   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1602 }
1603 
1604 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1605                                          const PrintingPolicy &P) const {
1606   const DeclContext *Ctx = getDeclContext();
1607 
1608   // For ObjC methods and properties, look through categories and use the
1609   // interface as context.
1610   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1611     if (auto *ID = MD->getClassInterface())
1612       Ctx = ID;
1613   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1614     if (auto *MD = PD->getGetterMethodDecl())
1615       if (auto *ID = MD->getClassInterface())
1616         Ctx = ID;
1617   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1618     if (auto *CI = ID->getContainingInterface())
1619       Ctx = CI;
1620   }
1621 
1622   if (Ctx->isFunctionOrMethod())
1623     return;
1624 
1625   using ContextsTy = SmallVector<const DeclContext *, 8>;
1626   ContextsTy Contexts;
1627 
1628   // Collect named contexts.
1629   DeclarationName NameInScope = getDeclName();
1630   for (; Ctx; Ctx = Ctx->getParent()) {
1631     // Suppress anonymous namespace if requested.
1632     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1633         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1634       continue;
1635 
1636     // Suppress inline namespace if it doesn't make the result ambiguous.
1637     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1638         cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1639       continue;
1640 
1641     // Skip non-named contexts such as linkage specifications and ExportDecls.
1642     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1643     if (!ND)
1644       continue;
1645 
1646     Contexts.push_back(Ctx);
1647     NameInScope = ND->getDeclName();
1648   }
1649 
1650   for (unsigned I = Contexts.size(); I != 0; --I) {
1651     const DeclContext *DC = Contexts[I - 1];
1652     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1653       OS << Spec->getName();
1654       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1655       printTemplateArgumentList(
1656           OS, TemplateArgs.asArray(), P,
1657           Spec->getSpecializedTemplate()->getTemplateParameters());
1658     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1659       if (ND->isAnonymousNamespace()) {
1660         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1661                                 : "(anonymous namespace)");
1662       }
1663       else
1664         OS << *ND;
1665     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1666       if (!RD->getIdentifier())
1667         OS << "(anonymous " << RD->getKindName() << ')';
1668       else
1669         OS << *RD;
1670     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1671       const FunctionProtoType *FT = nullptr;
1672       if (FD->hasWrittenPrototype())
1673         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1674 
1675       OS << *FD << '(';
1676       if (FT) {
1677         unsigned NumParams = FD->getNumParams();
1678         for (unsigned i = 0; i < NumParams; ++i) {
1679           if (i)
1680             OS << ", ";
1681           OS << FD->getParamDecl(i)->getType().stream(P);
1682         }
1683 
1684         if (FT->isVariadic()) {
1685           if (NumParams > 0)
1686             OS << ", ";
1687           OS << "...";
1688         }
1689       }
1690       OS << ')';
1691     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1692       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1693       // enumerator is declared in the scope that immediately contains
1694       // the enum-specifier. Each scoped enumerator is declared in the
1695       // scope of the enumeration.
1696       // For the case of unscoped enumerator, do not include in the qualified
1697       // name any information about its enum enclosing scope, as its visibility
1698       // is global.
1699       if (ED->isScoped())
1700         OS << *ED;
1701       else
1702         continue;
1703     } else {
1704       OS << *cast<NamedDecl>(DC);
1705     }
1706     OS << "::";
1707   }
1708 }
1709 
1710 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1711                                      const PrintingPolicy &Policy,
1712                                      bool Qualified) const {
1713   if (Qualified)
1714     printQualifiedName(OS, Policy);
1715   else
1716     printName(OS);
1717 }
1718 
1719 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1720   return true;
1721 }
1722 static bool isRedeclarableImpl(...) { return false; }
1723 static bool isRedeclarable(Decl::Kind K) {
1724   switch (K) {
1725 #define DECL(Type, Base) \
1726   case Decl::Type: \
1727     return isRedeclarableImpl((Type##Decl *)nullptr);
1728 #define ABSTRACT_DECL(DECL)
1729 #include "clang/AST/DeclNodes.inc"
1730   }
1731   llvm_unreachable("unknown decl kind");
1732 }
1733 
1734 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1735   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1736 
1737   // Never replace one imported declaration with another; we need both results
1738   // when re-exporting.
1739   if (OldD->isFromASTFile() && isFromASTFile())
1740     return false;
1741 
1742   // A kind mismatch implies that the declaration is not replaced.
1743   if (OldD->getKind() != getKind())
1744     return false;
1745 
1746   // For method declarations, we never replace. (Why?)
1747   if (isa<ObjCMethodDecl>(this))
1748     return false;
1749 
1750   // For parameters, pick the newer one. This is either an error or (in
1751   // Objective-C) permitted as an extension.
1752   if (isa<ParmVarDecl>(this))
1753     return true;
1754 
1755   // Inline namespaces can give us two declarations with the same
1756   // name and kind in the same scope but different contexts; we should
1757   // keep both declarations in this case.
1758   if (!this->getDeclContext()->getRedeclContext()->Equals(
1759           OldD->getDeclContext()->getRedeclContext()))
1760     return false;
1761 
1762   // Using declarations can be replaced if they import the same name from the
1763   // same context.
1764   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1765     ASTContext &Context = getASTContext();
1766     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1767            Context.getCanonicalNestedNameSpecifier(
1768                cast<UsingDecl>(OldD)->getQualifier());
1769   }
1770   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1771     ASTContext &Context = getASTContext();
1772     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1773            Context.getCanonicalNestedNameSpecifier(
1774                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1775   }
1776 
1777   if (isRedeclarable(getKind())) {
1778     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1779       return false;
1780 
1781     if (IsKnownNewer)
1782       return true;
1783 
1784     // Check whether this is actually newer than OldD. We want to keep the
1785     // newer declaration. This loop will usually only iterate once, because
1786     // OldD is usually the previous declaration.
1787     for (auto D : redecls()) {
1788       if (D == OldD)
1789         break;
1790 
1791       // If we reach the canonical declaration, then OldD is not actually older
1792       // than this one.
1793       //
1794       // FIXME: In this case, we should not add this decl to the lookup table.
1795       if (D->isCanonicalDecl())
1796         return false;
1797     }
1798 
1799     // It's a newer declaration of the same kind of declaration in the same
1800     // scope: we want this decl instead of the existing one.
1801     return true;
1802   }
1803 
1804   // In all other cases, we need to keep both declarations in case they have
1805   // different visibility. Any attempt to use the name will result in an
1806   // ambiguity if more than one is visible.
1807   return false;
1808 }
1809 
1810 bool NamedDecl::hasLinkage() const {
1811   return getFormalLinkage() != NoLinkage;
1812 }
1813 
1814 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1815   NamedDecl *ND = this;
1816   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1817     ND = UD->getTargetDecl();
1818 
1819   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1820     return AD->getClassInterface();
1821 
1822   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1823     return AD->getNamespace();
1824 
1825   return ND;
1826 }
1827 
1828 bool NamedDecl::isCXXInstanceMember() const {
1829   if (!isCXXClassMember())
1830     return false;
1831 
1832   const NamedDecl *D = this;
1833   if (isa<UsingShadowDecl>(D))
1834     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1835 
1836   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1837     return true;
1838   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1839     return MD->isInstance();
1840   return false;
1841 }
1842 
1843 //===----------------------------------------------------------------------===//
1844 // DeclaratorDecl Implementation
1845 //===----------------------------------------------------------------------===//
1846 
1847 template <typename DeclT>
1848 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1849   if (decl->getNumTemplateParameterLists() > 0)
1850     return decl->getTemplateParameterList(0)->getTemplateLoc();
1851   return decl->getInnerLocStart();
1852 }
1853 
1854 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1855   TypeSourceInfo *TSI = getTypeSourceInfo();
1856   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1857   return SourceLocation();
1858 }
1859 
1860 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1861   TypeSourceInfo *TSI = getTypeSourceInfo();
1862   if (TSI) return TSI->getTypeLoc().getEndLoc();
1863   return SourceLocation();
1864 }
1865 
1866 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1867   if (QualifierLoc) {
1868     // Make sure the extended decl info is allocated.
1869     if (!hasExtInfo()) {
1870       // Save (non-extended) type source info pointer.
1871       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1872       // Allocate external info struct.
1873       DeclInfo = new (getASTContext()) ExtInfo;
1874       // Restore savedTInfo into (extended) decl info.
1875       getExtInfo()->TInfo = savedTInfo;
1876     }
1877     // Set qualifier info.
1878     getExtInfo()->QualifierLoc = QualifierLoc;
1879   } else if (hasExtInfo()) {
1880     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1881     getExtInfo()->QualifierLoc = QualifierLoc;
1882   }
1883 }
1884 
1885 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1886   assert(TrailingRequiresClause);
1887   // Make sure the extended decl info is allocated.
1888   if (!hasExtInfo()) {
1889     // Save (non-extended) type source info pointer.
1890     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1891     // Allocate external info struct.
1892     DeclInfo = new (getASTContext()) ExtInfo;
1893     // Restore savedTInfo into (extended) decl info.
1894     getExtInfo()->TInfo = savedTInfo;
1895   }
1896   // Set requires clause info.
1897   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1898 }
1899 
1900 void DeclaratorDecl::setTemplateParameterListsInfo(
1901     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1902   assert(!TPLists.empty());
1903   // Make sure the extended decl info is allocated.
1904   if (!hasExtInfo()) {
1905     // Save (non-extended) type source info pointer.
1906     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1907     // Allocate external info struct.
1908     DeclInfo = new (getASTContext()) ExtInfo;
1909     // Restore savedTInfo into (extended) decl info.
1910     getExtInfo()->TInfo = savedTInfo;
1911   }
1912   // Set the template parameter lists info.
1913   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1914 }
1915 
1916 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1917   return getTemplateOrInnerLocStart(this);
1918 }
1919 
1920 // Helper function: returns true if QT is or contains a type
1921 // having a postfix component.
1922 static bool typeIsPostfix(QualType QT) {
1923   while (true) {
1924     const Type* T = QT.getTypePtr();
1925     switch (T->getTypeClass()) {
1926     default:
1927       return false;
1928     case Type::Pointer:
1929       QT = cast<PointerType>(T)->getPointeeType();
1930       break;
1931     case Type::BlockPointer:
1932       QT = cast<BlockPointerType>(T)->getPointeeType();
1933       break;
1934     case Type::MemberPointer:
1935       QT = cast<MemberPointerType>(T)->getPointeeType();
1936       break;
1937     case Type::LValueReference:
1938     case Type::RValueReference:
1939       QT = cast<ReferenceType>(T)->getPointeeType();
1940       break;
1941     case Type::PackExpansion:
1942       QT = cast<PackExpansionType>(T)->getPattern();
1943       break;
1944     case Type::Paren:
1945     case Type::ConstantArray:
1946     case Type::DependentSizedArray:
1947     case Type::IncompleteArray:
1948     case Type::VariableArray:
1949     case Type::FunctionProto:
1950     case Type::FunctionNoProto:
1951       return true;
1952     }
1953   }
1954 }
1955 
1956 SourceRange DeclaratorDecl::getSourceRange() const {
1957   SourceLocation RangeEnd = getLocation();
1958   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1959     // If the declaration has no name or the type extends past the name take the
1960     // end location of the type.
1961     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1962       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1963   }
1964   return SourceRange(getOuterLocStart(), RangeEnd);
1965 }
1966 
1967 void QualifierInfo::setTemplateParameterListsInfo(
1968     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1969   // Free previous template parameters (if any).
1970   if (NumTemplParamLists > 0) {
1971     Context.Deallocate(TemplParamLists);
1972     TemplParamLists = nullptr;
1973     NumTemplParamLists = 0;
1974   }
1975   // Set info on matched template parameter lists (if any).
1976   if (!TPLists.empty()) {
1977     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1978     NumTemplParamLists = TPLists.size();
1979     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1980   }
1981 }
1982 
1983 //===----------------------------------------------------------------------===//
1984 // VarDecl Implementation
1985 //===----------------------------------------------------------------------===//
1986 
1987 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1988   switch (SC) {
1989   case SC_None:                 break;
1990   case SC_Auto:                 return "auto";
1991   case SC_Extern:               return "extern";
1992   case SC_PrivateExtern:        return "__private_extern__";
1993   case SC_Register:             return "register";
1994   case SC_Static:               return "static";
1995   }
1996 
1997   llvm_unreachable("Invalid storage class");
1998 }
1999 
2000 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2001                  SourceLocation StartLoc, SourceLocation IdLoc,
2002                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2003                  StorageClass SC)
2004     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2005       redeclarable_base(C) {
2006   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2007                 "VarDeclBitfields too large!");
2008   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2009                 "ParmVarDeclBitfields too large!");
2010   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2011                 "NonParmVarDeclBitfields too large!");
2012   AllBits = 0;
2013   VarDeclBits.SClass = SC;
2014   // Everything else is implicitly initialized to false.
2015 }
2016 
2017 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
2018                          SourceLocation StartL, SourceLocation IdL,
2019                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2020                          StorageClass S) {
2021   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2022 }
2023 
2024 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2025   return new (C, ID)
2026       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2027               QualType(), nullptr, SC_None);
2028 }
2029 
2030 void VarDecl::setStorageClass(StorageClass SC) {
2031   assert(isLegalForVariable(SC));
2032   VarDeclBits.SClass = SC;
2033 }
2034 
2035 VarDecl::TLSKind VarDecl::getTLSKind() const {
2036   switch (VarDeclBits.TSCSpec) {
2037   case TSCS_unspecified:
2038     if (!hasAttr<ThreadAttr>() &&
2039         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2040           getASTContext().getTargetInfo().isTLSSupported() &&
2041           hasAttr<OMPThreadPrivateDeclAttr>()))
2042       return TLS_None;
2043     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2044                 LangOptions::MSVC2015)) ||
2045             hasAttr<OMPThreadPrivateDeclAttr>())
2046                ? TLS_Dynamic
2047                : TLS_Static;
2048   case TSCS___thread: // Fall through.
2049   case TSCS__Thread_local:
2050     return TLS_Static;
2051   case TSCS_thread_local:
2052     return TLS_Dynamic;
2053   }
2054   llvm_unreachable("Unknown thread storage class specifier!");
2055 }
2056 
2057 SourceRange VarDecl::getSourceRange() const {
2058   if (const Expr *Init = getInit()) {
2059     SourceLocation InitEnd = Init->getEndLoc();
2060     // If Init is implicit, ignore its source range and fallback on
2061     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2062     if (InitEnd.isValid() && InitEnd != getLocation())
2063       return SourceRange(getOuterLocStart(), InitEnd);
2064   }
2065   return DeclaratorDecl::getSourceRange();
2066 }
2067 
2068 template<typename T>
2069 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2070   // C++ [dcl.link]p1: All function types, function names with external linkage,
2071   // and variable names with external linkage have a language linkage.
2072   if (!D.hasExternalFormalLinkage())
2073     return NoLanguageLinkage;
2074 
2075   // Language linkage is a C++ concept, but saying that everything else in C has
2076   // C language linkage fits the implementation nicely.
2077   ASTContext &Context = D.getASTContext();
2078   if (!Context.getLangOpts().CPlusPlus)
2079     return CLanguageLinkage;
2080 
2081   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2082   // language linkage of the names of class members and the function type of
2083   // class member functions.
2084   const DeclContext *DC = D.getDeclContext();
2085   if (DC->isRecord())
2086     return CXXLanguageLinkage;
2087 
2088   // If the first decl is in an extern "C" context, any other redeclaration
2089   // will have C language linkage. If the first one is not in an extern "C"
2090   // context, we would have reported an error for any other decl being in one.
2091   if (isFirstInExternCContext(&D))
2092     return CLanguageLinkage;
2093   return CXXLanguageLinkage;
2094 }
2095 
2096 template<typename T>
2097 static bool isDeclExternC(const T &D) {
2098   // Since the context is ignored for class members, they can only have C++
2099   // language linkage or no language linkage.
2100   const DeclContext *DC = D.getDeclContext();
2101   if (DC->isRecord()) {
2102     assert(D.getASTContext().getLangOpts().CPlusPlus);
2103     return false;
2104   }
2105 
2106   return D.getLanguageLinkage() == CLanguageLinkage;
2107 }
2108 
2109 LanguageLinkage VarDecl::getLanguageLinkage() const {
2110   return getDeclLanguageLinkage(*this);
2111 }
2112 
2113 bool VarDecl::isExternC() const {
2114   return isDeclExternC(*this);
2115 }
2116 
2117 bool VarDecl::isInExternCContext() const {
2118   return getLexicalDeclContext()->isExternCContext();
2119 }
2120 
2121 bool VarDecl::isInExternCXXContext() const {
2122   return getLexicalDeclContext()->isExternCXXContext();
2123 }
2124 
2125 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2126 
2127 VarDecl::DefinitionKind
2128 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2129   if (isThisDeclarationADemotedDefinition())
2130     return DeclarationOnly;
2131 
2132   // C++ [basic.def]p2:
2133   //   A declaration is a definition unless [...] it contains the 'extern'
2134   //   specifier or a linkage-specification and neither an initializer [...],
2135   //   it declares a non-inline static data member in a class declaration [...],
2136   //   it declares a static data member outside a class definition and the variable
2137   //   was defined within the class with the constexpr specifier [...],
2138   // C++1y [temp.expl.spec]p15:
2139   //   An explicit specialization of a static data member or an explicit
2140   //   specialization of a static data member template is a definition if the
2141   //   declaration includes an initializer; otherwise, it is a declaration.
2142   //
2143   // FIXME: How do you declare (but not define) a partial specialization of
2144   // a static data member template outside the containing class?
2145   if (isStaticDataMember()) {
2146     if (isOutOfLine() &&
2147         !(getCanonicalDecl()->isInline() &&
2148           getCanonicalDecl()->isConstexpr()) &&
2149         (hasInit() ||
2150          // If the first declaration is out-of-line, this may be an
2151          // instantiation of an out-of-line partial specialization of a variable
2152          // template for which we have not yet instantiated the initializer.
2153          (getFirstDecl()->isOutOfLine()
2154               ? getTemplateSpecializationKind() == TSK_Undeclared
2155               : getTemplateSpecializationKind() !=
2156                     TSK_ExplicitSpecialization) ||
2157          isa<VarTemplatePartialSpecializationDecl>(this)))
2158       return Definition;
2159     if (!isOutOfLine() && isInline())
2160       return Definition;
2161     return DeclarationOnly;
2162   }
2163   // C99 6.7p5:
2164   //   A definition of an identifier is a declaration for that identifier that
2165   //   [...] causes storage to be reserved for that object.
2166   // Note: that applies for all non-file-scope objects.
2167   // C99 6.9.2p1:
2168   //   If the declaration of an identifier for an object has file scope and an
2169   //   initializer, the declaration is an external definition for the identifier
2170   if (hasInit())
2171     return Definition;
2172 
2173   if (hasDefiningAttr())
2174     return Definition;
2175 
2176   if (const auto *SAA = getAttr<SelectAnyAttr>())
2177     if (!SAA->isInherited())
2178       return Definition;
2179 
2180   // A variable template specialization (other than a static data member
2181   // template or an explicit specialization) is a declaration until we
2182   // instantiate its initializer.
2183   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2184     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2185         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2186         !VTSD->IsCompleteDefinition)
2187       return DeclarationOnly;
2188   }
2189 
2190   if (hasExternalStorage())
2191     return DeclarationOnly;
2192 
2193   // [dcl.link] p7:
2194   //   A declaration directly contained in a linkage-specification is treated
2195   //   as if it contains the extern specifier for the purpose of determining
2196   //   the linkage of the declared name and whether it is a definition.
2197   if (isSingleLineLanguageLinkage(*this))
2198     return DeclarationOnly;
2199 
2200   // C99 6.9.2p2:
2201   //   A declaration of an object that has file scope without an initializer,
2202   //   and without a storage class specifier or the scs 'static', constitutes
2203   //   a tentative definition.
2204   // No such thing in C++.
2205   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2206     return TentativeDefinition;
2207 
2208   // What's left is (in C, block-scope) declarations without initializers or
2209   // external storage. These are definitions.
2210   return Definition;
2211 }
2212 
2213 VarDecl *VarDecl::getActingDefinition() {
2214   DefinitionKind Kind = isThisDeclarationADefinition();
2215   if (Kind != TentativeDefinition)
2216     return nullptr;
2217 
2218   VarDecl *LastTentative = nullptr;
2219   VarDecl *First = getFirstDecl();
2220   for (auto I : First->redecls()) {
2221     Kind = I->isThisDeclarationADefinition();
2222     if (Kind == Definition)
2223       return nullptr;
2224     if (Kind == TentativeDefinition)
2225       LastTentative = I;
2226   }
2227   return LastTentative;
2228 }
2229 
2230 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2231   VarDecl *First = getFirstDecl();
2232   for (auto I : First->redecls()) {
2233     if (I->isThisDeclarationADefinition(C) == Definition)
2234       return I;
2235   }
2236   return nullptr;
2237 }
2238 
2239 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2240   DefinitionKind Kind = DeclarationOnly;
2241 
2242   const VarDecl *First = getFirstDecl();
2243   for (auto I : First->redecls()) {
2244     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2245     if (Kind == Definition)
2246       break;
2247   }
2248 
2249   return Kind;
2250 }
2251 
2252 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2253   for (auto I : redecls()) {
2254     if (auto Expr = I->getInit()) {
2255       D = I;
2256       return Expr;
2257     }
2258   }
2259   return nullptr;
2260 }
2261 
2262 bool VarDecl::hasInit() const {
2263   if (auto *P = dyn_cast<ParmVarDecl>(this))
2264     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2265       return false;
2266 
2267   return !Init.isNull();
2268 }
2269 
2270 Expr *VarDecl::getInit() {
2271   if (!hasInit())
2272     return nullptr;
2273 
2274   if (auto *S = Init.dyn_cast<Stmt *>())
2275     return cast<Expr>(S);
2276 
2277   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2278 }
2279 
2280 Stmt **VarDecl::getInitAddress() {
2281   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2282     return &ES->Value;
2283 
2284   return Init.getAddrOfPtr1();
2285 }
2286 
2287 VarDecl *VarDecl::getInitializingDeclaration() {
2288   VarDecl *Def = nullptr;
2289   for (auto I : redecls()) {
2290     if (I->hasInit())
2291       return I;
2292 
2293     if (I->isThisDeclarationADefinition()) {
2294       if (isStaticDataMember())
2295         return I;
2296       Def = I;
2297     }
2298   }
2299   return Def;
2300 }
2301 
2302 bool VarDecl::isOutOfLine() const {
2303   if (Decl::isOutOfLine())
2304     return true;
2305 
2306   if (!isStaticDataMember())
2307     return false;
2308 
2309   // If this static data member was instantiated from a static data member of
2310   // a class template, check whether that static data member was defined
2311   // out-of-line.
2312   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2313     return VD->isOutOfLine();
2314 
2315   return false;
2316 }
2317 
2318 void VarDecl::setInit(Expr *I) {
2319   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2320     Eval->~EvaluatedStmt();
2321     getASTContext().Deallocate(Eval);
2322   }
2323 
2324   Init = I;
2325 }
2326 
2327 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2328   const LangOptions &Lang = C.getLangOpts();
2329 
2330   // OpenCL permits const integral variables to be used in constant
2331   // expressions, like in C++98.
2332   if (!Lang.CPlusPlus && !Lang.OpenCL)
2333     return false;
2334 
2335   // Function parameters are never usable in constant expressions.
2336   if (isa<ParmVarDecl>(this))
2337     return false;
2338 
2339   // The values of weak variables are never usable in constant expressions.
2340   if (isWeak())
2341     return false;
2342 
2343   // In C++11, any variable of reference type can be used in a constant
2344   // expression if it is initialized by a constant expression.
2345   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2346     return true;
2347 
2348   // Only const objects can be used in constant expressions in C++. C++98 does
2349   // not require the variable to be non-volatile, but we consider this to be a
2350   // defect.
2351   if (!getType().isConstant(C) || getType().isVolatileQualified())
2352     return false;
2353 
2354   // In C++, const, non-volatile variables of integral or enumeration types
2355   // can be used in constant expressions.
2356   if (getType()->isIntegralOrEnumerationType())
2357     return true;
2358 
2359   // Additionally, in C++11, non-volatile constexpr variables can be used in
2360   // constant expressions.
2361   return Lang.CPlusPlus11 && isConstexpr();
2362 }
2363 
2364 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2365   // C++2a [expr.const]p3:
2366   //   A variable is usable in constant expressions after its initializing
2367   //   declaration is encountered...
2368   const VarDecl *DefVD = nullptr;
2369   const Expr *Init = getAnyInitializer(DefVD);
2370   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2371     return false;
2372   //   ... if it is a constexpr variable, or it is of reference type or of
2373   //   const-qualified integral or enumeration type, ...
2374   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2375     return false;
2376   //   ... and its initializer is a constant initializer.
2377   if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2378     return false;
2379   // C++98 [expr.const]p1:
2380   //   An integral constant-expression can involve only [...] const variables
2381   //   or static data members of integral or enumeration types initialized with
2382   //   [integer] constant expressions (dcl.init)
2383   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2384       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2385     return false;
2386   return true;
2387 }
2388 
2389 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2390 /// form, which contains extra information on the evaluated value of the
2391 /// initializer.
2392 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2393   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2394   if (!Eval) {
2395     // Note: EvaluatedStmt contains an APValue, which usually holds
2396     // resources not allocated from the ASTContext.  We need to do some
2397     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2398     // where we can detect whether there's anything to clean up or not.
2399     Eval = new (getASTContext()) EvaluatedStmt;
2400     Eval->Value = Init.get<Stmt *>();
2401     Init = Eval;
2402   }
2403   return Eval;
2404 }
2405 
2406 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2407   return Init.dyn_cast<EvaluatedStmt *>();
2408 }
2409 
2410 APValue *VarDecl::evaluateValue() const {
2411   SmallVector<PartialDiagnosticAt, 8> Notes;
2412   return evaluateValue(Notes);
2413 }
2414 
2415 APValue *VarDecl::evaluateValue(
2416     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2417   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2418 
2419   const auto *Init = cast<Expr>(Eval->Value);
2420   assert(!Init->isValueDependent());
2421 
2422   // We only produce notes indicating why an initializer is non-constant the
2423   // first time it is evaluated. FIXME: The notes won't always be emitted the
2424   // first time we try evaluation, so might not be produced at all.
2425   if (Eval->WasEvaluated)
2426     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2427 
2428   if (Eval->IsEvaluating) {
2429     // FIXME: Produce a diagnostic for self-initialization.
2430     return nullptr;
2431   }
2432 
2433   Eval->IsEvaluating = true;
2434 
2435   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2436                                             this, Notes);
2437 
2438   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2439   // or that it's empty (so that there's nothing to clean up) if evaluation
2440   // failed.
2441   if (!Result)
2442     Eval->Evaluated = APValue();
2443   else if (Eval->Evaluated.needsCleanup())
2444     getASTContext().addDestruction(&Eval->Evaluated);
2445 
2446   Eval->IsEvaluating = false;
2447   Eval->WasEvaluated = true;
2448 
2449   return Result ? &Eval->Evaluated : nullptr;
2450 }
2451 
2452 APValue *VarDecl::getEvaluatedValue() const {
2453   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2454     if (Eval->WasEvaluated)
2455       return &Eval->Evaluated;
2456 
2457   return nullptr;
2458 }
2459 
2460 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2461   const Expr *Init = getInit();
2462   assert(Init && "no initializer");
2463 
2464   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2465   if (!Eval->CheckedForICEInit) {
2466     Eval->CheckedForICEInit = true;
2467     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2468   }
2469   return Eval->HasICEInit;
2470 }
2471 
2472 bool VarDecl::hasConstantInitialization() const {
2473   // In C, all globals (and only globals) have constant initialization.
2474   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2475     return true;
2476 
2477   // In C++, it depends on whether the evaluation at the point of definition
2478   // was evaluatable as a constant initializer.
2479   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2480     return Eval->HasConstantInitialization;
2481 
2482   return false;
2483 }
2484 
2485 bool VarDecl::checkForConstantInitialization(
2486     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2487   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2488   // If we ask for the value before we know whether we have a constant
2489   // initializer, we can compute the wrong value (for example, due to
2490   // std::is_constant_evaluated()).
2491   assert(!Eval->WasEvaluated &&
2492          "already evaluated var value before checking for constant init");
2493   assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2494 
2495   assert(!cast<Expr>(Eval->Value)->isValueDependent());
2496 
2497   // Evaluate the initializer to check whether it's a constant expression.
2498   Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty();
2499   return Eval->HasConstantInitialization;
2500 }
2501 
2502 bool VarDecl::isParameterPack() const {
2503   return isa<PackExpansionType>(getType());
2504 }
2505 
2506 template<typename DeclT>
2507 static DeclT *getDefinitionOrSelf(DeclT *D) {
2508   assert(D);
2509   if (auto *Def = D->getDefinition())
2510     return Def;
2511   return D;
2512 }
2513 
2514 bool VarDecl::isEscapingByref() const {
2515   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2516 }
2517 
2518 bool VarDecl::isNonEscapingByref() const {
2519   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2520 }
2521 
2522 bool VarDecl::hasDependentAlignment() const {
2523   QualType T = getType();
2524   return T->isDependentType() || T->isUndeducedAutoType() ||
2525          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2526            return AA->isAlignmentDependent();
2527          });
2528 }
2529 
2530 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2531   const VarDecl *VD = this;
2532 
2533   // If this is an instantiated member, walk back to the template from which
2534   // it was instantiated.
2535   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2536     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2537       VD = VD->getInstantiatedFromStaticDataMember();
2538       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2539         VD = NewVD;
2540     }
2541   }
2542 
2543   // If it's an instantiated variable template specialization, find the
2544   // template or partial specialization from which it was instantiated.
2545   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2546     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2547       auto From = VDTemplSpec->getInstantiatedFrom();
2548       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2549         while (!VTD->isMemberSpecialization()) {
2550           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2551           if (!NewVTD)
2552             break;
2553           VTD = NewVTD;
2554         }
2555         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2556       }
2557       if (auto *VTPSD =
2558               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2559         while (!VTPSD->isMemberSpecialization()) {
2560           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2561           if (!NewVTPSD)
2562             break;
2563           VTPSD = NewVTPSD;
2564         }
2565         return getDefinitionOrSelf<VarDecl>(VTPSD);
2566       }
2567     }
2568   }
2569 
2570   // If this is the pattern of a variable template, find where it was
2571   // instantiated from. FIXME: Is this necessary?
2572   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2573     while (!VarTemplate->isMemberSpecialization()) {
2574       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2575       if (!NewVT)
2576         break;
2577       VarTemplate = NewVT;
2578     }
2579 
2580     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2581   }
2582 
2583   if (VD == this)
2584     return nullptr;
2585   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2586 }
2587 
2588 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2589   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2590     return cast<VarDecl>(MSI->getInstantiatedFrom());
2591 
2592   return nullptr;
2593 }
2594 
2595 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2596   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2597     return Spec->getSpecializationKind();
2598 
2599   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2600     return MSI->getTemplateSpecializationKind();
2601 
2602   return TSK_Undeclared;
2603 }
2604 
2605 TemplateSpecializationKind
2606 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2607   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2608     return MSI->getTemplateSpecializationKind();
2609 
2610   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2611     return Spec->getSpecializationKind();
2612 
2613   return TSK_Undeclared;
2614 }
2615 
2616 SourceLocation VarDecl::getPointOfInstantiation() const {
2617   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2618     return Spec->getPointOfInstantiation();
2619 
2620   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2621     return MSI->getPointOfInstantiation();
2622 
2623   return SourceLocation();
2624 }
2625 
2626 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2627   return getASTContext().getTemplateOrSpecializationInfo(this)
2628       .dyn_cast<VarTemplateDecl *>();
2629 }
2630 
2631 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2632   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2633 }
2634 
2635 bool VarDecl::isKnownToBeDefined() const {
2636   const auto &LangOpts = getASTContext().getLangOpts();
2637   // In CUDA mode without relocatable device code, variables of form 'extern
2638   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2639   // memory pool.  These are never undefined variables, even if they appear
2640   // inside of an anon namespace or static function.
2641   //
2642   // With CUDA relocatable device code enabled, these variables don't get
2643   // special handling; they're treated like regular extern variables.
2644   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2645       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2646       isa<IncompleteArrayType>(getType()))
2647     return true;
2648 
2649   return hasDefinition();
2650 }
2651 
2652 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2653   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2654                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2655                                  !hasAttr<AlwaysDestroyAttr>()));
2656 }
2657 
2658 QualType::DestructionKind
2659 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2660   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2661     if (Eval->HasConstantDestruction)
2662       return QualType::DK_none;
2663 
2664   if (isNoDestroy(Ctx))
2665     return QualType::DK_none;
2666 
2667   return getType().isDestructedType();
2668 }
2669 
2670 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2671   if (isStaticDataMember())
2672     // FIXME: Remove ?
2673     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2674     return getASTContext().getTemplateOrSpecializationInfo(this)
2675         .dyn_cast<MemberSpecializationInfo *>();
2676   return nullptr;
2677 }
2678 
2679 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2680                                          SourceLocation PointOfInstantiation) {
2681   assert((isa<VarTemplateSpecializationDecl>(this) ||
2682           getMemberSpecializationInfo()) &&
2683          "not a variable or static data member template specialization");
2684 
2685   if (VarTemplateSpecializationDecl *Spec =
2686           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2687     Spec->setSpecializationKind(TSK);
2688     if (TSK != TSK_ExplicitSpecialization &&
2689         PointOfInstantiation.isValid() &&
2690         Spec->getPointOfInstantiation().isInvalid()) {
2691       Spec->setPointOfInstantiation(PointOfInstantiation);
2692       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2693         L->InstantiationRequested(this);
2694     }
2695   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2696     MSI->setTemplateSpecializationKind(TSK);
2697     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2698         MSI->getPointOfInstantiation().isInvalid()) {
2699       MSI->setPointOfInstantiation(PointOfInstantiation);
2700       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2701         L->InstantiationRequested(this);
2702     }
2703   }
2704 }
2705 
2706 void
2707 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2708                                             TemplateSpecializationKind TSK) {
2709   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2710          "Previous template or instantiation?");
2711   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2712 }
2713 
2714 //===----------------------------------------------------------------------===//
2715 // ParmVarDecl Implementation
2716 //===----------------------------------------------------------------------===//
2717 
2718 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2719                                  SourceLocation StartLoc,
2720                                  SourceLocation IdLoc, IdentifierInfo *Id,
2721                                  QualType T, TypeSourceInfo *TInfo,
2722                                  StorageClass S, Expr *DefArg) {
2723   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2724                                  S, DefArg);
2725 }
2726 
2727 QualType ParmVarDecl::getOriginalType() const {
2728   TypeSourceInfo *TSI = getTypeSourceInfo();
2729   QualType T = TSI ? TSI->getType() : getType();
2730   if (const auto *DT = dyn_cast<DecayedType>(T))
2731     return DT->getOriginalType();
2732   return T;
2733 }
2734 
2735 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2736   return new (C, ID)
2737       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2738                   nullptr, QualType(), nullptr, SC_None, nullptr);
2739 }
2740 
2741 SourceRange ParmVarDecl::getSourceRange() const {
2742   if (!hasInheritedDefaultArg()) {
2743     SourceRange ArgRange = getDefaultArgRange();
2744     if (ArgRange.isValid())
2745       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2746   }
2747 
2748   // DeclaratorDecl considers the range of postfix types as overlapping with the
2749   // declaration name, but this is not the case with parameters in ObjC methods.
2750   if (isa<ObjCMethodDecl>(getDeclContext()))
2751     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2752 
2753   return DeclaratorDecl::getSourceRange();
2754 }
2755 
2756 bool ParmVarDecl::isDestroyedInCallee() const {
2757   if (hasAttr<NSConsumedAttr>())
2758     return true;
2759 
2760   auto *RT = getType()->getAs<RecordType>();
2761   if (RT && RT->getDecl()->isParamDestroyedInCallee())
2762     return true;
2763 
2764   return false;
2765 }
2766 
2767 Expr *ParmVarDecl::getDefaultArg() {
2768   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2769   assert(!hasUninstantiatedDefaultArg() &&
2770          "Default argument is not yet instantiated!");
2771 
2772   Expr *Arg = getInit();
2773   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2774     return E->getSubExpr();
2775 
2776   return Arg;
2777 }
2778 
2779 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2780   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2781   Init = defarg;
2782 }
2783 
2784 SourceRange ParmVarDecl::getDefaultArgRange() const {
2785   switch (ParmVarDeclBits.DefaultArgKind) {
2786   case DAK_None:
2787   case DAK_Unparsed:
2788     // Nothing we can do here.
2789     return SourceRange();
2790 
2791   case DAK_Uninstantiated:
2792     return getUninstantiatedDefaultArg()->getSourceRange();
2793 
2794   case DAK_Normal:
2795     if (const Expr *E = getInit())
2796       return E->getSourceRange();
2797 
2798     // Missing an actual expression, may be invalid.
2799     return SourceRange();
2800   }
2801   llvm_unreachable("Invalid default argument kind.");
2802 }
2803 
2804 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2805   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2806   Init = arg;
2807 }
2808 
2809 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2810   assert(hasUninstantiatedDefaultArg() &&
2811          "Wrong kind of initialization expression!");
2812   return cast_or_null<Expr>(Init.get<Stmt *>());
2813 }
2814 
2815 bool ParmVarDecl::hasDefaultArg() const {
2816   // FIXME: We should just return false for DAK_None here once callers are
2817   // prepared for the case that we encountered an invalid default argument and
2818   // were unable to even build an invalid expression.
2819   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2820          !Init.isNull();
2821 }
2822 
2823 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2824   getASTContext().setParameterIndex(this, parameterIndex);
2825   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2826 }
2827 
2828 unsigned ParmVarDecl::getParameterIndexLarge() const {
2829   return getASTContext().getParameterIndex(this);
2830 }
2831 
2832 //===----------------------------------------------------------------------===//
2833 // FunctionDecl Implementation
2834 //===----------------------------------------------------------------------===//
2835 
2836 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2837                            SourceLocation StartLoc,
2838                            const DeclarationNameInfo &NameInfo, QualType T,
2839                            TypeSourceInfo *TInfo, StorageClass S,
2840                            bool isInlineSpecified,
2841                            ConstexprSpecKind ConstexprKind,
2842                            Expr *TrailingRequiresClause)
2843     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2844                      StartLoc),
2845       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2846       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2847   assert(T.isNull() || T->isFunctionType());
2848   FunctionDeclBits.SClass = S;
2849   FunctionDeclBits.IsInline = isInlineSpecified;
2850   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2851   FunctionDeclBits.IsVirtualAsWritten = false;
2852   FunctionDeclBits.IsPure = false;
2853   FunctionDeclBits.HasInheritedPrototype = false;
2854   FunctionDeclBits.HasWrittenPrototype = true;
2855   FunctionDeclBits.IsDeleted = false;
2856   FunctionDeclBits.IsTrivial = false;
2857   FunctionDeclBits.IsTrivialForCall = false;
2858   FunctionDeclBits.IsDefaulted = false;
2859   FunctionDeclBits.IsExplicitlyDefaulted = false;
2860   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2861   FunctionDeclBits.HasImplicitReturnZero = false;
2862   FunctionDeclBits.IsLateTemplateParsed = false;
2863   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2864   FunctionDeclBits.InstantiationIsPending = false;
2865   FunctionDeclBits.UsesSEHTry = false;
2866   FunctionDeclBits.UsesFPIntrin = false;
2867   FunctionDeclBits.HasSkippedBody = false;
2868   FunctionDeclBits.WillHaveBody = false;
2869   FunctionDeclBits.IsMultiVersion = false;
2870   FunctionDeclBits.IsCopyDeductionCandidate = false;
2871   FunctionDeclBits.HasODRHash = false;
2872   if (TrailingRequiresClause)
2873     setTrailingRequiresClause(TrailingRequiresClause);
2874 }
2875 
2876 void FunctionDecl::getNameForDiagnostic(
2877     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2878   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2879   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2880   if (TemplateArgs)
2881     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2882 }
2883 
2884 bool FunctionDecl::isVariadic() const {
2885   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2886     return FT->isVariadic();
2887   return false;
2888 }
2889 
2890 FunctionDecl::DefaultedFunctionInfo *
2891 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2892                                             ArrayRef<DeclAccessPair> Lookups) {
2893   DefaultedFunctionInfo *Info = new (Context.Allocate(
2894       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2895       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2896       DefaultedFunctionInfo;
2897   Info->NumLookups = Lookups.size();
2898   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2899                           Info->getTrailingObjects<DeclAccessPair>());
2900   return Info;
2901 }
2902 
2903 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2904   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2905   assert(!Body && "can't replace function body with defaulted function info");
2906 
2907   FunctionDeclBits.HasDefaultedFunctionInfo = true;
2908   DefaultedInfo = Info;
2909 }
2910 
2911 FunctionDecl::DefaultedFunctionInfo *
2912 FunctionDecl::getDefaultedFunctionInfo() const {
2913   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2914 }
2915 
2916 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2917   for (auto I : redecls()) {
2918     if (I->doesThisDeclarationHaveABody()) {
2919       Definition = I;
2920       return true;
2921     }
2922   }
2923 
2924   return false;
2925 }
2926 
2927 bool FunctionDecl::hasTrivialBody() const {
2928   Stmt *S = getBody();
2929   if (!S) {
2930     // Since we don't have a body for this function, we don't know if it's
2931     // trivial or not.
2932     return false;
2933   }
2934 
2935   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2936     return true;
2937   return false;
2938 }
2939 
2940 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2941   if (!getFriendObjectKind())
2942     return false;
2943 
2944   // Check for a friend function instantiated from a friend function
2945   // definition in a templated class.
2946   if (const FunctionDecl *InstantiatedFrom =
2947           getInstantiatedFromMemberFunction())
2948     return InstantiatedFrom->getFriendObjectKind() &&
2949            InstantiatedFrom->isThisDeclarationADefinition();
2950 
2951   // Check for a friend function template instantiated from a friend
2952   // function template definition in a templated class.
2953   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2954     if (const FunctionTemplateDecl *InstantiatedFrom =
2955             Template->getInstantiatedFromMemberTemplate())
2956       return InstantiatedFrom->getFriendObjectKind() &&
2957              InstantiatedFrom->isThisDeclarationADefinition();
2958   }
2959 
2960   return false;
2961 }
2962 
2963 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2964                              bool CheckForPendingFriendDefinition) const {
2965   for (const FunctionDecl *FD : redecls()) {
2966     if (FD->isThisDeclarationADefinition()) {
2967       Definition = FD;
2968       return true;
2969     }
2970 
2971     // If this is a friend function defined in a class template, it does not
2972     // have a body until it is used, nevertheless it is a definition, see
2973     // [temp.inst]p2:
2974     //
2975     // ... for the purpose of determining whether an instantiated redeclaration
2976     // is valid according to [basic.def.odr] and [class.mem], a declaration that
2977     // corresponds to a definition in the template is considered to be a
2978     // definition.
2979     //
2980     // The following code must produce redefinition error:
2981     //
2982     //     template<typename T> struct C20 { friend void func_20() {} };
2983     //     C20<int> c20i;
2984     //     void func_20() {}
2985     //
2986     if (CheckForPendingFriendDefinition &&
2987         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
2988       Definition = FD;
2989       return true;
2990     }
2991   }
2992 
2993   return false;
2994 }
2995 
2996 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2997   if (!hasBody(Definition))
2998     return nullptr;
2999 
3000   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
3001          "definition should not have a body");
3002   if (Definition->Body)
3003     return Definition->Body.get(getASTContext().getExternalSource());
3004 
3005   return nullptr;
3006 }
3007 
3008 void FunctionDecl::setBody(Stmt *B) {
3009   FunctionDeclBits.HasDefaultedFunctionInfo = false;
3010   Body = LazyDeclStmtPtr(B);
3011   if (B)
3012     EndRangeLoc = B->getEndLoc();
3013 }
3014 
3015 void FunctionDecl::setPure(bool P) {
3016   FunctionDeclBits.IsPure = P;
3017   if (P)
3018     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3019       Parent->markedVirtualFunctionPure();
3020 }
3021 
3022 template<std::size_t Len>
3023 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3024   IdentifierInfo *II = ND->getIdentifier();
3025   return II && II->isStr(Str);
3026 }
3027 
3028 bool FunctionDecl::isMain() const {
3029   const TranslationUnitDecl *tunit =
3030     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3031   return tunit &&
3032          !tunit->getASTContext().getLangOpts().Freestanding &&
3033          isNamed(this, "main");
3034 }
3035 
3036 bool FunctionDecl::isMSVCRTEntryPoint() const {
3037   const TranslationUnitDecl *TUnit =
3038       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3039   if (!TUnit)
3040     return false;
3041 
3042   // Even though we aren't really targeting MSVCRT if we are freestanding,
3043   // semantic analysis for these functions remains the same.
3044 
3045   // MSVCRT entry points only exist on MSVCRT targets.
3046   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3047     return false;
3048 
3049   // Nameless functions like constructors cannot be entry points.
3050   if (!getIdentifier())
3051     return false;
3052 
3053   return llvm::StringSwitch<bool>(getName())
3054       .Cases("main",     // an ANSI console app
3055              "wmain",    // a Unicode console App
3056              "WinMain",  // an ANSI GUI app
3057              "wWinMain", // a Unicode GUI app
3058              "DllMain",  // a DLL
3059              true)
3060       .Default(false);
3061 }
3062 
3063 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3064   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
3065   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
3066          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3067          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
3068          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
3069 
3070   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3071     return false;
3072 
3073   const auto *proto = getType()->castAs<FunctionProtoType>();
3074   if (proto->getNumParams() != 2 || proto->isVariadic())
3075     return false;
3076 
3077   ASTContext &Context =
3078     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3079       ->getASTContext();
3080 
3081   // The result type and first argument type are constant across all
3082   // these operators.  The second argument must be exactly void*.
3083   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3084 }
3085 
3086 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3087     Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3088   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3089     return false;
3090   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3091       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3092       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3093       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3094     return false;
3095 
3096   if (isa<CXXRecordDecl>(getDeclContext()))
3097     return false;
3098 
3099   // This can only fail for an invalid 'operator new' declaration.
3100   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3101     return false;
3102 
3103   const auto *FPT = getType()->castAs<FunctionProtoType>();
3104   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3105     return false;
3106 
3107   // If this is a single-parameter function, it must be a replaceable global
3108   // allocation or deallocation function.
3109   if (FPT->getNumParams() == 1)
3110     return true;
3111 
3112   unsigned Params = 1;
3113   QualType Ty = FPT->getParamType(Params);
3114   ASTContext &Ctx = getASTContext();
3115 
3116   auto Consume = [&] {
3117     ++Params;
3118     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3119   };
3120 
3121   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3122   bool IsSizedDelete = false;
3123   if (Ctx.getLangOpts().SizedDeallocation &&
3124       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3125        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3126       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3127     IsSizedDelete = true;
3128     Consume();
3129   }
3130 
3131   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3132   // new/delete.
3133   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3134     Consume();
3135     if (AlignmentParam)
3136       *AlignmentParam = Params;
3137   }
3138 
3139   // Finally, if this is not a sized delete, the final parameter can
3140   // be a 'const std::nothrow_t&'.
3141   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3142     Ty = Ty->getPointeeType();
3143     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3144       return false;
3145     if (Ty->isNothrowT()) {
3146       if (IsNothrow)
3147         *IsNothrow = true;
3148       Consume();
3149     }
3150   }
3151 
3152   return Params == FPT->getNumParams();
3153 }
3154 
3155 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3156   if (!getBuiltinID())
3157     return false;
3158 
3159   const FunctionDecl *Definition;
3160   return hasBody(Definition) && Definition->isInlineSpecified();
3161 }
3162 
3163 bool FunctionDecl::isDestroyingOperatorDelete() const {
3164   // C++ P0722:
3165   //   Within a class C, a single object deallocation function with signature
3166   //     (T, std::destroying_delete_t, <more params>)
3167   //   is a destroying operator delete.
3168   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3169       getNumParams() < 2)
3170     return false;
3171 
3172   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3173   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3174          RD->getIdentifier()->isStr("destroying_delete_t");
3175 }
3176 
3177 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3178   return getDeclLanguageLinkage(*this);
3179 }
3180 
3181 bool FunctionDecl::isExternC() const {
3182   return isDeclExternC(*this);
3183 }
3184 
3185 bool FunctionDecl::isInExternCContext() const {
3186   if (hasAttr<OpenCLKernelAttr>())
3187     return true;
3188   return getLexicalDeclContext()->isExternCContext();
3189 }
3190 
3191 bool FunctionDecl::isInExternCXXContext() const {
3192   return getLexicalDeclContext()->isExternCXXContext();
3193 }
3194 
3195 bool FunctionDecl::isGlobal() const {
3196   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3197     return Method->isStatic();
3198 
3199   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3200     return false;
3201 
3202   for (const DeclContext *DC = getDeclContext();
3203        DC->isNamespace();
3204        DC = DC->getParent()) {
3205     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3206       if (!Namespace->getDeclName())
3207         return false;
3208       break;
3209     }
3210   }
3211 
3212   return true;
3213 }
3214 
3215 bool FunctionDecl::isNoReturn() const {
3216   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3217       hasAttr<C11NoReturnAttr>())
3218     return true;
3219 
3220   if (auto *FnTy = getType()->getAs<FunctionType>())
3221     return FnTy->getNoReturnAttr();
3222 
3223   return false;
3224 }
3225 
3226 
3227 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3228   if (hasAttr<TargetAttr>())
3229     return MultiVersionKind::Target;
3230   if (hasAttr<CPUDispatchAttr>())
3231     return MultiVersionKind::CPUDispatch;
3232   if (hasAttr<CPUSpecificAttr>())
3233     return MultiVersionKind::CPUSpecific;
3234   return MultiVersionKind::None;
3235 }
3236 
3237 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3238   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3239 }
3240 
3241 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3242   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3243 }
3244 
3245 bool FunctionDecl::isTargetMultiVersion() const {
3246   return isMultiVersion() && hasAttr<TargetAttr>();
3247 }
3248 
3249 void
3250 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3251   redeclarable_base::setPreviousDecl(PrevDecl);
3252 
3253   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3254     FunctionTemplateDecl *PrevFunTmpl
3255       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3256     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3257     FunTmpl->setPreviousDecl(PrevFunTmpl);
3258   }
3259 
3260   if (PrevDecl && PrevDecl->isInlined())
3261     setImplicitlyInline(true);
3262 }
3263 
3264 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3265 
3266 /// Returns a value indicating whether this function corresponds to a builtin
3267 /// function.
3268 ///
3269 /// The function corresponds to a built-in function if it is declared at
3270 /// translation scope or within an extern "C" block and its name matches with
3271 /// the name of a builtin. The returned value will be 0 for functions that do
3272 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3273 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3274 /// value.
3275 ///
3276 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3277 /// functions as their wrapped builtins. This shouldn't be done in general, but
3278 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3279 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3280   unsigned BuiltinID = 0;
3281 
3282   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3283     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3284   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3285     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3286   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3287     BuiltinID = A->getID();
3288   }
3289 
3290   if (!BuiltinID)
3291     return 0;
3292 
3293   // If the function is marked "overloadable", it has a different mangled name
3294   // and is not the C library function.
3295   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3296       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3297     return 0;
3298 
3299   ASTContext &Context = getASTContext();
3300   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3301     return BuiltinID;
3302 
3303   // This function has the name of a known C library
3304   // function. Determine whether it actually refers to the C library
3305   // function or whether it just has the same name.
3306 
3307   // If this is a static function, it's not a builtin.
3308   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3309     return 0;
3310 
3311   // OpenCL v1.2 s6.9.f - The library functions defined in
3312   // the C99 standard headers are not available.
3313   if (Context.getLangOpts().OpenCL &&
3314       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3315     return 0;
3316 
3317   // CUDA does not have device-side standard library. printf and malloc are the
3318   // only special cases that are supported by device-side runtime.
3319   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3320       !hasAttr<CUDAHostAttr>() &&
3321       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3322     return 0;
3323 
3324   // As AMDGCN implementation of OpenMP does not have a device-side standard
3325   // library, none of the predefined library functions except printf and malloc
3326   // should be treated as a builtin i.e. 0 should be returned for them.
3327   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3328       Context.getLangOpts().OpenMPIsDevice &&
3329       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3330       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3331     return 0;
3332 
3333   return BuiltinID;
3334 }
3335 
3336 /// getNumParams - Return the number of parameters this function must have
3337 /// based on its FunctionType.  This is the length of the ParamInfo array
3338 /// after it has been created.
3339 unsigned FunctionDecl::getNumParams() const {
3340   const auto *FPT = getType()->getAs<FunctionProtoType>();
3341   return FPT ? FPT->getNumParams() : 0;
3342 }
3343 
3344 void FunctionDecl::setParams(ASTContext &C,
3345                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3346   assert(!ParamInfo && "Already has param info!");
3347   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3348 
3349   // Zero params -> null pointer.
3350   if (!NewParamInfo.empty()) {
3351     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3352     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3353   }
3354 }
3355 
3356 /// getMinRequiredArguments - Returns the minimum number of arguments
3357 /// needed to call this function. This may be fewer than the number of
3358 /// function parameters, if some of the parameters have default
3359 /// arguments (in C++) or are parameter packs (C++11).
3360 unsigned FunctionDecl::getMinRequiredArguments() const {
3361   if (!getASTContext().getLangOpts().CPlusPlus)
3362     return getNumParams();
3363 
3364   // Note that it is possible for a parameter with no default argument to
3365   // follow a parameter with a default argument.
3366   unsigned NumRequiredArgs = 0;
3367   unsigned MinParamsSoFar = 0;
3368   for (auto *Param : parameters()) {
3369     if (!Param->isParameterPack()) {
3370       ++MinParamsSoFar;
3371       if (!Param->hasDefaultArg())
3372         NumRequiredArgs = MinParamsSoFar;
3373     }
3374   }
3375   return NumRequiredArgs;
3376 }
3377 
3378 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3379   return getNumParams() == 1 ||
3380          (getNumParams() > 1 &&
3381           std::all_of(param_begin() + 1, param_end(),
3382                       [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3383 }
3384 
3385 /// The combination of the extern and inline keywords under MSVC forces
3386 /// the function to be required.
3387 ///
3388 /// Note: This function assumes that we will only get called when isInlined()
3389 /// would return true for this FunctionDecl.
3390 bool FunctionDecl::isMSExternInline() const {
3391   assert(isInlined() && "expected to get called on an inlined function!");
3392 
3393   const ASTContext &Context = getASTContext();
3394   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3395       !hasAttr<DLLExportAttr>())
3396     return false;
3397 
3398   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3399        FD = FD->getPreviousDecl())
3400     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3401       return true;
3402 
3403   return false;
3404 }
3405 
3406 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3407   if (Redecl->getStorageClass() != SC_Extern)
3408     return false;
3409 
3410   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3411        FD = FD->getPreviousDecl())
3412     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3413       return false;
3414 
3415   return true;
3416 }
3417 
3418 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3419   // Only consider file-scope declarations in this test.
3420   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3421     return false;
3422 
3423   // Only consider explicit declarations; the presence of a builtin for a
3424   // libcall shouldn't affect whether a definition is externally visible.
3425   if (Redecl->isImplicit())
3426     return false;
3427 
3428   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3429     return true; // Not an inline definition
3430 
3431   return false;
3432 }
3433 
3434 /// For a function declaration in C or C++, determine whether this
3435 /// declaration causes the definition to be externally visible.
3436 ///
3437 /// For instance, this determines if adding the current declaration to the set
3438 /// of redeclarations of the given functions causes
3439 /// isInlineDefinitionExternallyVisible to change from false to true.
3440 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3441   assert(!doesThisDeclarationHaveABody() &&
3442          "Must have a declaration without a body.");
3443 
3444   ASTContext &Context = getASTContext();
3445 
3446   if (Context.getLangOpts().MSVCCompat) {
3447     const FunctionDecl *Definition;
3448     if (hasBody(Definition) && Definition->isInlined() &&
3449         redeclForcesDefMSVC(this))
3450       return true;
3451   }
3452 
3453   if (Context.getLangOpts().CPlusPlus)
3454     return false;
3455 
3456   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3457     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3458     // an externally visible definition.
3459     //
3460     // FIXME: What happens if gnu_inline gets added on after the first
3461     // declaration?
3462     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3463       return false;
3464 
3465     const FunctionDecl *Prev = this;
3466     bool FoundBody = false;
3467     while ((Prev = Prev->getPreviousDecl())) {
3468       FoundBody |= Prev->doesThisDeclarationHaveABody();
3469 
3470       if (Prev->doesThisDeclarationHaveABody()) {
3471         // If it's not the case that both 'inline' and 'extern' are
3472         // specified on the definition, then it is always externally visible.
3473         if (!Prev->isInlineSpecified() ||
3474             Prev->getStorageClass() != SC_Extern)
3475           return false;
3476       } else if (Prev->isInlineSpecified() &&
3477                  Prev->getStorageClass() != SC_Extern) {
3478         return false;
3479       }
3480     }
3481     return FoundBody;
3482   }
3483 
3484   // C99 6.7.4p6:
3485   //   [...] If all of the file scope declarations for a function in a
3486   //   translation unit include the inline function specifier without extern,
3487   //   then the definition in that translation unit is an inline definition.
3488   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3489     return false;
3490   const FunctionDecl *Prev = this;
3491   bool FoundBody = false;
3492   while ((Prev = Prev->getPreviousDecl())) {
3493     FoundBody |= Prev->doesThisDeclarationHaveABody();
3494     if (RedeclForcesDefC99(Prev))
3495       return false;
3496   }
3497   return FoundBody;
3498 }
3499 
3500 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3501   const TypeSourceInfo *TSI = getTypeSourceInfo();
3502   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3503              : FunctionTypeLoc();
3504 }
3505 
3506 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3507   FunctionTypeLoc FTL = getFunctionTypeLoc();
3508   if (!FTL)
3509     return SourceRange();
3510 
3511   // Skip self-referential return types.
3512   const SourceManager &SM = getASTContext().getSourceManager();
3513   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3514   SourceLocation Boundary = getNameInfo().getBeginLoc();
3515   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3516       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3517     return SourceRange();
3518 
3519   return RTRange;
3520 }
3521 
3522 SourceRange FunctionDecl::getParametersSourceRange() const {
3523   unsigned NP = getNumParams();
3524   SourceLocation EllipsisLoc = getEllipsisLoc();
3525 
3526   if (NP == 0 && EllipsisLoc.isInvalid())
3527     return SourceRange();
3528 
3529   SourceLocation Begin =
3530       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3531   SourceLocation End = EllipsisLoc.isValid()
3532                            ? EllipsisLoc
3533                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3534 
3535   return SourceRange(Begin, End);
3536 }
3537 
3538 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3539   FunctionTypeLoc FTL = getFunctionTypeLoc();
3540   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3541 }
3542 
3543 /// For an inline function definition in C, or for a gnu_inline function
3544 /// in C++, determine whether the definition will be externally visible.
3545 ///
3546 /// Inline function definitions are always available for inlining optimizations.
3547 /// However, depending on the language dialect, declaration specifiers, and
3548 /// attributes, the definition of an inline function may or may not be
3549 /// "externally" visible to other translation units in the program.
3550 ///
3551 /// In C99, inline definitions are not externally visible by default. However,
3552 /// if even one of the global-scope declarations is marked "extern inline", the
3553 /// inline definition becomes externally visible (C99 6.7.4p6).
3554 ///
3555 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3556 /// definition, we use the GNU semantics for inline, which are nearly the
3557 /// opposite of C99 semantics. In particular, "inline" by itself will create
3558 /// an externally visible symbol, but "extern inline" will not create an
3559 /// externally visible symbol.
3560 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3561   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3562           hasAttr<AliasAttr>()) &&
3563          "Must be a function definition");
3564   assert(isInlined() && "Function must be inline");
3565   ASTContext &Context = getASTContext();
3566 
3567   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3568     // Note: If you change the logic here, please change
3569     // doesDeclarationForceExternallyVisibleDefinition as well.
3570     //
3571     // If it's not the case that both 'inline' and 'extern' are
3572     // specified on the definition, then this inline definition is
3573     // externally visible.
3574     if (Context.getLangOpts().CPlusPlus)
3575       return false;
3576     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3577       return true;
3578 
3579     // If any declaration is 'inline' but not 'extern', then this definition
3580     // is externally visible.
3581     for (auto Redecl : redecls()) {
3582       if (Redecl->isInlineSpecified() &&
3583           Redecl->getStorageClass() != SC_Extern)
3584         return true;
3585     }
3586 
3587     return false;
3588   }
3589 
3590   // The rest of this function is C-only.
3591   assert(!Context.getLangOpts().CPlusPlus &&
3592          "should not use C inline rules in C++");
3593 
3594   // C99 6.7.4p6:
3595   //   [...] If all of the file scope declarations for a function in a
3596   //   translation unit include the inline function specifier without extern,
3597   //   then the definition in that translation unit is an inline definition.
3598   for (auto Redecl : redecls()) {
3599     if (RedeclForcesDefC99(Redecl))
3600       return true;
3601   }
3602 
3603   // C99 6.7.4p6:
3604   //   An inline definition does not provide an external definition for the
3605   //   function, and does not forbid an external definition in another
3606   //   translation unit.
3607   return false;
3608 }
3609 
3610 /// getOverloadedOperator - Which C++ overloaded operator this
3611 /// function represents, if any.
3612 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3613   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3614     return getDeclName().getCXXOverloadedOperator();
3615   return OO_None;
3616 }
3617 
3618 /// getLiteralIdentifier - The literal suffix identifier this function
3619 /// represents, if any.
3620 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3621   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3622     return getDeclName().getCXXLiteralIdentifier();
3623   return nullptr;
3624 }
3625 
3626 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3627   if (TemplateOrSpecialization.isNull())
3628     return TK_NonTemplate;
3629   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3630     return TK_FunctionTemplate;
3631   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3632     return TK_MemberSpecialization;
3633   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3634     return TK_FunctionTemplateSpecialization;
3635   if (TemplateOrSpecialization.is
3636                                <DependentFunctionTemplateSpecializationInfo*>())
3637     return TK_DependentFunctionTemplateSpecialization;
3638 
3639   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3640 }
3641 
3642 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3643   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3644     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3645 
3646   return nullptr;
3647 }
3648 
3649 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3650   if (auto *MSI =
3651           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3652     return MSI;
3653   if (auto *FTSI = TemplateOrSpecialization
3654                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3655     return FTSI->getMemberSpecializationInfo();
3656   return nullptr;
3657 }
3658 
3659 void
3660 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3661                                                FunctionDecl *FD,
3662                                                TemplateSpecializationKind TSK) {
3663   assert(TemplateOrSpecialization.isNull() &&
3664          "Member function is already a specialization");
3665   MemberSpecializationInfo *Info
3666     = new (C) MemberSpecializationInfo(FD, TSK);
3667   TemplateOrSpecialization = Info;
3668 }
3669 
3670 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3671   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3672 }
3673 
3674 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3675   assert(TemplateOrSpecialization.isNull() &&
3676          "Member function is already a specialization");
3677   TemplateOrSpecialization = Template;
3678 }
3679 
3680 bool FunctionDecl::isImplicitlyInstantiable() const {
3681   // If the function is invalid, it can't be implicitly instantiated.
3682   if (isInvalidDecl())
3683     return false;
3684 
3685   switch (getTemplateSpecializationKindForInstantiation()) {
3686   case TSK_Undeclared:
3687   case TSK_ExplicitInstantiationDefinition:
3688   case TSK_ExplicitSpecialization:
3689     return false;
3690 
3691   case TSK_ImplicitInstantiation:
3692     return true;
3693 
3694   case TSK_ExplicitInstantiationDeclaration:
3695     // Handled below.
3696     break;
3697   }
3698 
3699   // Find the actual template from which we will instantiate.
3700   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3701   bool HasPattern = false;
3702   if (PatternDecl)
3703     HasPattern = PatternDecl->hasBody(PatternDecl);
3704 
3705   // C++0x [temp.explicit]p9:
3706   //   Except for inline functions, other explicit instantiation declarations
3707   //   have the effect of suppressing the implicit instantiation of the entity
3708   //   to which they refer.
3709   if (!HasPattern || !PatternDecl)
3710     return true;
3711 
3712   return PatternDecl->isInlined();
3713 }
3714 
3715 bool FunctionDecl::isTemplateInstantiation() const {
3716   // FIXME: Remove this, it's not clear what it means. (Which template
3717   // specialization kind?)
3718   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3719 }
3720 
3721 FunctionDecl *
3722 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3723   // If this is a generic lambda call operator specialization, its
3724   // instantiation pattern is always its primary template's pattern
3725   // even if its primary template was instantiated from another
3726   // member template (which happens with nested generic lambdas).
3727   // Since a lambda's call operator's body is transformed eagerly,
3728   // we don't have to go hunting for a prototype definition template
3729   // (i.e. instantiated-from-member-template) to use as an instantiation
3730   // pattern.
3731 
3732   if (isGenericLambdaCallOperatorSpecialization(
3733           dyn_cast<CXXMethodDecl>(this))) {
3734     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3735     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3736   }
3737 
3738   // Check for a declaration of this function that was instantiated from a
3739   // friend definition.
3740   const FunctionDecl *FD = nullptr;
3741   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3742     FD = this;
3743 
3744   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3745     if (ForDefinition &&
3746         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3747       return nullptr;
3748     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3749   }
3750 
3751   if (ForDefinition &&
3752       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3753     return nullptr;
3754 
3755   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3756     // If we hit a point where the user provided a specialization of this
3757     // template, we're done looking.
3758     while (!ForDefinition || !Primary->isMemberSpecialization()) {
3759       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3760       if (!NewPrimary)
3761         break;
3762       Primary = NewPrimary;
3763     }
3764 
3765     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3766   }
3767 
3768   return nullptr;
3769 }
3770 
3771 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3772   if (FunctionTemplateSpecializationInfo *Info
3773         = TemplateOrSpecialization
3774             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3775     return Info->getTemplate();
3776   }
3777   return nullptr;
3778 }
3779 
3780 FunctionTemplateSpecializationInfo *
3781 FunctionDecl::getTemplateSpecializationInfo() const {
3782   return TemplateOrSpecialization
3783       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3784 }
3785 
3786 const TemplateArgumentList *
3787 FunctionDecl::getTemplateSpecializationArgs() const {
3788   if (FunctionTemplateSpecializationInfo *Info
3789         = TemplateOrSpecialization
3790             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3791     return Info->TemplateArguments;
3792   }
3793   return nullptr;
3794 }
3795 
3796 const ASTTemplateArgumentListInfo *
3797 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3798   if (FunctionTemplateSpecializationInfo *Info
3799         = TemplateOrSpecialization
3800             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3801     return Info->TemplateArgumentsAsWritten;
3802   }
3803   return nullptr;
3804 }
3805 
3806 void
3807 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3808                                                 FunctionTemplateDecl *Template,
3809                                      const TemplateArgumentList *TemplateArgs,
3810                                                 void *InsertPos,
3811                                                 TemplateSpecializationKind TSK,
3812                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3813                                           SourceLocation PointOfInstantiation) {
3814   assert((TemplateOrSpecialization.isNull() ||
3815           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3816          "Member function is already a specialization");
3817   assert(TSK != TSK_Undeclared &&
3818          "Must specify the type of function template specialization");
3819   assert((TemplateOrSpecialization.isNull() ||
3820           TSK == TSK_ExplicitSpecialization) &&
3821          "Member specialization must be an explicit specialization");
3822   FunctionTemplateSpecializationInfo *Info =
3823       FunctionTemplateSpecializationInfo::Create(
3824           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3825           PointOfInstantiation,
3826           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3827   TemplateOrSpecialization = Info;
3828   Template->addSpecialization(Info, InsertPos);
3829 }
3830 
3831 void
3832 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3833                                     const UnresolvedSetImpl &Templates,
3834                              const TemplateArgumentListInfo &TemplateArgs) {
3835   assert(TemplateOrSpecialization.isNull());
3836   DependentFunctionTemplateSpecializationInfo *Info =
3837       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3838                                                           TemplateArgs);
3839   TemplateOrSpecialization = Info;
3840 }
3841 
3842 DependentFunctionTemplateSpecializationInfo *
3843 FunctionDecl::getDependentSpecializationInfo() const {
3844   return TemplateOrSpecialization
3845       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3846 }
3847 
3848 DependentFunctionTemplateSpecializationInfo *
3849 DependentFunctionTemplateSpecializationInfo::Create(
3850     ASTContext &Context, const UnresolvedSetImpl &Ts,
3851     const TemplateArgumentListInfo &TArgs) {
3852   void *Buffer = Context.Allocate(
3853       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3854           TArgs.size(), Ts.size()));
3855   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3856 }
3857 
3858 DependentFunctionTemplateSpecializationInfo::
3859 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3860                                       const TemplateArgumentListInfo &TArgs)
3861   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3862   NumTemplates = Ts.size();
3863   NumArgs = TArgs.size();
3864 
3865   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3866   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3867     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3868 
3869   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3870   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3871     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3872 }
3873 
3874 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3875   // For a function template specialization, query the specialization
3876   // information object.
3877   if (FunctionTemplateSpecializationInfo *FTSInfo =
3878           TemplateOrSpecialization
3879               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3880     return FTSInfo->getTemplateSpecializationKind();
3881 
3882   if (MemberSpecializationInfo *MSInfo =
3883           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3884     return MSInfo->getTemplateSpecializationKind();
3885 
3886   return TSK_Undeclared;
3887 }
3888 
3889 TemplateSpecializationKind
3890 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3891   // This is the same as getTemplateSpecializationKind(), except that for a
3892   // function that is both a function template specialization and a member
3893   // specialization, we prefer the member specialization information. Eg:
3894   //
3895   // template<typename T> struct A {
3896   //   template<typename U> void f() {}
3897   //   template<> void f<int>() {}
3898   // };
3899   //
3900   // For A<int>::f<int>():
3901   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3902   // * getTemplateSpecializationKindForInstantiation() will return
3903   //       TSK_ImplicitInstantiation
3904   //
3905   // This reflects the facts that A<int>::f<int> is an explicit specialization
3906   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3907   // from A::f<int> if a definition is needed.
3908   if (FunctionTemplateSpecializationInfo *FTSInfo =
3909           TemplateOrSpecialization
3910               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3911     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3912       return MSInfo->getTemplateSpecializationKind();
3913     return FTSInfo->getTemplateSpecializationKind();
3914   }
3915 
3916   if (MemberSpecializationInfo *MSInfo =
3917           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3918     return MSInfo->getTemplateSpecializationKind();
3919 
3920   return TSK_Undeclared;
3921 }
3922 
3923 void
3924 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3925                                           SourceLocation PointOfInstantiation) {
3926   if (FunctionTemplateSpecializationInfo *FTSInfo
3927         = TemplateOrSpecialization.dyn_cast<
3928                                     FunctionTemplateSpecializationInfo*>()) {
3929     FTSInfo->setTemplateSpecializationKind(TSK);
3930     if (TSK != TSK_ExplicitSpecialization &&
3931         PointOfInstantiation.isValid() &&
3932         FTSInfo->getPointOfInstantiation().isInvalid()) {
3933       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3934       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3935         L->InstantiationRequested(this);
3936     }
3937   } else if (MemberSpecializationInfo *MSInfo
3938              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3939     MSInfo->setTemplateSpecializationKind(TSK);
3940     if (TSK != TSK_ExplicitSpecialization &&
3941         PointOfInstantiation.isValid() &&
3942         MSInfo->getPointOfInstantiation().isInvalid()) {
3943       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3944       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3945         L->InstantiationRequested(this);
3946     }
3947   } else
3948     llvm_unreachable("Function cannot have a template specialization kind");
3949 }
3950 
3951 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3952   if (FunctionTemplateSpecializationInfo *FTSInfo
3953         = TemplateOrSpecialization.dyn_cast<
3954                                         FunctionTemplateSpecializationInfo*>())
3955     return FTSInfo->getPointOfInstantiation();
3956   if (MemberSpecializationInfo *MSInfo =
3957           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3958     return MSInfo->getPointOfInstantiation();
3959 
3960   return SourceLocation();
3961 }
3962 
3963 bool FunctionDecl::isOutOfLine() const {
3964   if (Decl::isOutOfLine())
3965     return true;
3966 
3967   // If this function was instantiated from a member function of a
3968   // class template, check whether that member function was defined out-of-line.
3969   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3970     const FunctionDecl *Definition;
3971     if (FD->hasBody(Definition))
3972       return Definition->isOutOfLine();
3973   }
3974 
3975   // If this function was instantiated from a function template,
3976   // check whether that function template was defined out-of-line.
3977   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3978     const FunctionDecl *Definition;
3979     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3980       return Definition->isOutOfLine();
3981   }
3982 
3983   return false;
3984 }
3985 
3986 SourceRange FunctionDecl::getSourceRange() const {
3987   return SourceRange(getOuterLocStart(), EndRangeLoc);
3988 }
3989 
3990 unsigned FunctionDecl::getMemoryFunctionKind() const {
3991   IdentifierInfo *FnInfo = getIdentifier();
3992 
3993   if (!FnInfo)
3994     return 0;
3995 
3996   // Builtin handling.
3997   switch (getBuiltinID()) {
3998   case Builtin::BI__builtin_memset:
3999   case Builtin::BI__builtin___memset_chk:
4000   case Builtin::BImemset:
4001     return Builtin::BImemset;
4002 
4003   case Builtin::BI__builtin_memcpy:
4004   case Builtin::BI__builtin___memcpy_chk:
4005   case Builtin::BImemcpy:
4006     return Builtin::BImemcpy;
4007 
4008   case Builtin::BI__builtin_mempcpy:
4009   case Builtin::BI__builtin___mempcpy_chk:
4010   case Builtin::BImempcpy:
4011     return Builtin::BImempcpy;
4012 
4013   case Builtin::BI__builtin_memmove:
4014   case Builtin::BI__builtin___memmove_chk:
4015   case Builtin::BImemmove:
4016     return Builtin::BImemmove;
4017 
4018   case Builtin::BIstrlcpy:
4019   case Builtin::BI__builtin___strlcpy_chk:
4020     return Builtin::BIstrlcpy;
4021 
4022   case Builtin::BIstrlcat:
4023   case Builtin::BI__builtin___strlcat_chk:
4024     return Builtin::BIstrlcat;
4025 
4026   case Builtin::BI__builtin_memcmp:
4027   case Builtin::BImemcmp:
4028     return Builtin::BImemcmp;
4029 
4030   case Builtin::BI__builtin_bcmp:
4031   case Builtin::BIbcmp:
4032     return Builtin::BIbcmp;
4033 
4034   case Builtin::BI__builtin_strncpy:
4035   case Builtin::BI__builtin___strncpy_chk:
4036   case Builtin::BIstrncpy:
4037     return Builtin::BIstrncpy;
4038 
4039   case Builtin::BI__builtin_strncmp:
4040   case Builtin::BIstrncmp:
4041     return Builtin::BIstrncmp;
4042 
4043   case Builtin::BI__builtin_strncasecmp:
4044   case Builtin::BIstrncasecmp:
4045     return Builtin::BIstrncasecmp;
4046 
4047   case Builtin::BI__builtin_strncat:
4048   case Builtin::BI__builtin___strncat_chk:
4049   case Builtin::BIstrncat:
4050     return Builtin::BIstrncat;
4051 
4052   case Builtin::BI__builtin_strndup:
4053   case Builtin::BIstrndup:
4054     return Builtin::BIstrndup;
4055 
4056   case Builtin::BI__builtin_strlen:
4057   case Builtin::BIstrlen:
4058     return Builtin::BIstrlen;
4059 
4060   case Builtin::BI__builtin_bzero:
4061   case Builtin::BIbzero:
4062     return Builtin::BIbzero;
4063 
4064   case Builtin::BIfree:
4065     return Builtin::BIfree;
4066 
4067   default:
4068     if (isExternC()) {
4069       if (FnInfo->isStr("memset"))
4070         return Builtin::BImemset;
4071       if (FnInfo->isStr("memcpy"))
4072         return Builtin::BImemcpy;
4073       if (FnInfo->isStr("mempcpy"))
4074         return Builtin::BImempcpy;
4075       if (FnInfo->isStr("memmove"))
4076         return Builtin::BImemmove;
4077       if (FnInfo->isStr("memcmp"))
4078         return Builtin::BImemcmp;
4079       if (FnInfo->isStr("bcmp"))
4080         return Builtin::BIbcmp;
4081       if (FnInfo->isStr("strncpy"))
4082         return Builtin::BIstrncpy;
4083       if (FnInfo->isStr("strncmp"))
4084         return Builtin::BIstrncmp;
4085       if (FnInfo->isStr("strncasecmp"))
4086         return Builtin::BIstrncasecmp;
4087       if (FnInfo->isStr("strncat"))
4088         return Builtin::BIstrncat;
4089       if (FnInfo->isStr("strndup"))
4090         return Builtin::BIstrndup;
4091       if (FnInfo->isStr("strlen"))
4092         return Builtin::BIstrlen;
4093       if (FnInfo->isStr("bzero"))
4094         return Builtin::BIbzero;
4095     } else if (isInStdNamespace()) {
4096       if (FnInfo->isStr("free"))
4097         return Builtin::BIfree;
4098     }
4099     break;
4100   }
4101   return 0;
4102 }
4103 
4104 unsigned FunctionDecl::getODRHash() const {
4105   assert(hasODRHash());
4106   return ODRHash;
4107 }
4108 
4109 unsigned FunctionDecl::getODRHash() {
4110   if (hasODRHash())
4111     return ODRHash;
4112 
4113   if (auto *FT = getInstantiatedFromMemberFunction()) {
4114     setHasODRHash(true);
4115     ODRHash = FT->getODRHash();
4116     return ODRHash;
4117   }
4118 
4119   class ODRHash Hash;
4120   Hash.AddFunctionDecl(this);
4121   setHasODRHash(true);
4122   ODRHash = Hash.CalculateHash();
4123   return ODRHash;
4124 }
4125 
4126 //===----------------------------------------------------------------------===//
4127 // FieldDecl Implementation
4128 //===----------------------------------------------------------------------===//
4129 
4130 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4131                              SourceLocation StartLoc, SourceLocation IdLoc,
4132                              IdentifierInfo *Id, QualType T,
4133                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4134                              InClassInitStyle InitStyle) {
4135   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4136                                BW, Mutable, InitStyle);
4137 }
4138 
4139 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4140   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4141                                SourceLocation(), nullptr, QualType(), nullptr,
4142                                nullptr, false, ICIS_NoInit);
4143 }
4144 
4145 bool FieldDecl::isAnonymousStructOrUnion() const {
4146   if (!isImplicit() || getDeclName())
4147     return false;
4148 
4149   if (const auto *Record = getType()->getAs<RecordType>())
4150     return Record->getDecl()->isAnonymousStructOrUnion();
4151 
4152   return false;
4153 }
4154 
4155 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4156   assert(isBitField() && "not a bitfield");
4157   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4158 }
4159 
4160 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4161   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4162          getBitWidthValue(Ctx) == 0;
4163 }
4164 
4165 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4166   if (isZeroLengthBitField(Ctx))
4167     return true;
4168 
4169   // C++2a [intro.object]p7:
4170   //   An object has nonzero size if it
4171   //     -- is not a potentially-overlapping subobject, or
4172   if (!hasAttr<NoUniqueAddressAttr>())
4173     return false;
4174 
4175   //     -- is not of class type, or
4176   const auto *RT = getType()->getAs<RecordType>();
4177   if (!RT)
4178     return false;
4179   const RecordDecl *RD = RT->getDecl()->getDefinition();
4180   if (!RD) {
4181     assert(isInvalidDecl() && "valid field has incomplete type");
4182     return false;
4183   }
4184 
4185   //     -- [has] virtual member functions or virtual base classes, or
4186   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4187   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4188   if (!CXXRD->isEmpty())
4189     return false;
4190 
4191   // Otherwise, [...] the circumstances under which the object has zero size
4192   // are implementation-defined.
4193   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4194   // ABI will do.
4195   return true;
4196 }
4197 
4198 unsigned FieldDecl::getFieldIndex() const {
4199   const FieldDecl *Canonical = getCanonicalDecl();
4200   if (Canonical != this)
4201     return Canonical->getFieldIndex();
4202 
4203   if (CachedFieldIndex) return CachedFieldIndex - 1;
4204 
4205   unsigned Index = 0;
4206   const RecordDecl *RD = getParent()->getDefinition();
4207   assert(RD && "requested index for field of struct with no definition");
4208 
4209   for (auto *Field : RD->fields()) {
4210     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4211     ++Index;
4212   }
4213 
4214   assert(CachedFieldIndex && "failed to find field in parent");
4215   return CachedFieldIndex - 1;
4216 }
4217 
4218 SourceRange FieldDecl::getSourceRange() const {
4219   const Expr *FinalExpr = getInClassInitializer();
4220   if (!FinalExpr)
4221     FinalExpr = getBitWidth();
4222   if (FinalExpr)
4223     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4224   return DeclaratorDecl::getSourceRange();
4225 }
4226 
4227 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4228   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4229          "capturing type in non-lambda or captured record.");
4230   assert(InitStorage.getInt() == ISK_NoInit &&
4231          InitStorage.getPointer() == nullptr &&
4232          "bit width, initializer or captured type already set");
4233   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4234                                ISK_CapturedVLAType);
4235 }
4236 
4237 //===----------------------------------------------------------------------===//
4238 // TagDecl Implementation
4239 //===----------------------------------------------------------------------===//
4240 
4241 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4242                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4243                  SourceLocation StartL)
4244     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4245       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4246   assert((DK != Enum || TK == TTK_Enum) &&
4247          "EnumDecl not matched with TTK_Enum");
4248   setPreviousDecl(PrevDecl);
4249   setTagKind(TK);
4250   setCompleteDefinition(false);
4251   setBeingDefined(false);
4252   setEmbeddedInDeclarator(false);
4253   setFreeStanding(false);
4254   setCompleteDefinitionRequired(false);
4255 }
4256 
4257 SourceLocation TagDecl::getOuterLocStart() const {
4258   return getTemplateOrInnerLocStart(this);
4259 }
4260 
4261 SourceRange TagDecl::getSourceRange() const {
4262   SourceLocation RBraceLoc = BraceRange.getEnd();
4263   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4264   return SourceRange(getOuterLocStart(), E);
4265 }
4266 
4267 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4268 
4269 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4270   TypedefNameDeclOrQualifier = TDD;
4271   if (const Type *T = getTypeForDecl()) {
4272     (void)T;
4273     assert(T->isLinkageValid());
4274   }
4275   assert(isLinkageValid());
4276 }
4277 
4278 void TagDecl::startDefinition() {
4279   setBeingDefined(true);
4280 
4281   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4282     struct CXXRecordDecl::DefinitionData *Data =
4283       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4284     for (auto I : redecls())
4285       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4286   }
4287 }
4288 
4289 void TagDecl::completeDefinition() {
4290   assert((!isa<CXXRecordDecl>(this) ||
4291           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4292          "definition completed but not started");
4293 
4294   setCompleteDefinition(true);
4295   setBeingDefined(false);
4296 
4297   if (ASTMutationListener *L = getASTMutationListener())
4298     L->CompletedTagDefinition(this);
4299 }
4300 
4301 TagDecl *TagDecl::getDefinition() const {
4302   if (isCompleteDefinition())
4303     return const_cast<TagDecl *>(this);
4304 
4305   // If it's possible for us to have an out-of-date definition, check now.
4306   if (mayHaveOutOfDateDef()) {
4307     if (IdentifierInfo *II = getIdentifier()) {
4308       if (II->isOutOfDate()) {
4309         updateOutOfDate(*II);
4310       }
4311     }
4312   }
4313 
4314   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4315     return CXXRD->getDefinition();
4316 
4317   for (auto R : redecls())
4318     if (R->isCompleteDefinition())
4319       return R;
4320 
4321   return nullptr;
4322 }
4323 
4324 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4325   if (QualifierLoc) {
4326     // Make sure the extended qualifier info is allocated.
4327     if (!hasExtInfo())
4328       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4329     // Set qualifier info.
4330     getExtInfo()->QualifierLoc = QualifierLoc;
4331   } else {
4332     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4333     if (hasExtInfo()) {
4334       if (getExtInfo()->NumTemplParamLists == 0) {
4335         getASTContext().Deallocate(getExtInfo());
4336         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4337       }
4338       else
4339         getExtInfo()->QualifierLoc = QualifierLoc;
4340     }
4341   }
4342 }
4343 
4344 void TagDecl::setTemplateParameterListsInfo(
4345     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4346   assert(!TPLists.empty());
4347   // Make sure the extended decl info is allocated.
4348   if (!hasExtInfo())
4349     // Allocate external info struct.
4350     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4351   // Set the template parameter lists info.
4352   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4353 }
4354 
4355 //===----------------------------------------------------------------------===//
4356 // EnumDecl Implementation
4357 //===----------------------------------------------------------------------===//
4358 
4359 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4360                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4361                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4362     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4363   assert(Scoped || !ScopedUsingClassTag);
4364   IntegerType = nullptr;
4365   setNumPositiveBits(0);
4366   setNumNegativeBits(0);
4367   setScoped(Scoped);
4368   setScopedUsingClassTag(ScopedUsingClassTag);
4369   setFixed(Fixed);
4370   setHasODRHash(false);
4371   ODRHash = 0;
4372 }
4373 
4374 void EnumDecl::anchor() {}
4375 
4376 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4377                            SourceLocation StartLoc, SourceLocation IdLoc,
4378                            IdentifierInfo *Id,
4379                            EnumDecl *PrevDecl, bool IsScoped,
4380                            bool IsScopedUsingClassTag, bool IsFixed) {
4381   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4382                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4383   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4384   C.getTypeDeclType(Enum, PrevDecl);
4385   return Enum;
4386 }
4387 
4388 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4389   EnumDecl *Enum =
4390       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4391                            nullptr, nullptr, false, false, false);
4392   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4393   return Enum;
4394 }
4395 
4396 SourceRange EnumDecl::getIntegerTypeRange() const {
4397   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4398     return TI->getTypeLoc().getSourceRange();
4399   return SourceRange();
4400 }
4401 
4402 void EnumDecl::completeDefinition(QualType NewType,
4403                                   QualType NewPromotionType,
4404                                   unsigned NumPositiveBits,
4405                                   unsigned NumNegativeBits) {
4406   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4407   if (!IntegerType)
4408     IntegerType = NewType.getTypePtr();
4409   PromotionType = NewPromotionType;
4410   setNumPositiveBits(NumPositiveBits);
4411   setNumNegativeBits(NumNegativeBits);
4412   TagDecl::completeDefinition();
4413 }
4414 
4415 bool EnumDecl::isClosed() const {
4416   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4417     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4418   return true;
4419 }
4420 
4421 bool EnumDecl::isClosedFlag() const {
4422   return isClosed() && hasAttr<FlagEnumAttr>();
4423 }
4424 
4425 bool EnumDecl::isClosedNonFlag() const {
4426   return isClosed() && !hasAttr<FlagEnumAttr>();
4427 }
4428 
4429 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4430   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4431     return MSI->getTemplateSpecializationKind();
4432 
4433   return TSK_Undeclared;
4434 }
4435 
4436 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4437                                          SourceLocation PointOfInstantiation) {
4438   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4439   assert(MSI && "Not an instantiated member enumeration?");
4440   MSI->setTemplateSpecializationKind(TSK);
4441   if (TSK != TSK_ExplicitSpecialization &&
4442       PointOfInstantiation.isValid() &&
4443       MSI->getPointOfInstantiation().isInvalid())
4444     MSI->setPointOfInstantiation(PointOfInstantiation);
4445 }
4446 
4447 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4448   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4449     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4450       EnumDecl *ED = getInstantiatedFromMemberEnum();
4451       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4452         ED = NewED;
4453       return getDefinitionOrSelf(ED);
4454     }
4455   }
4456 
4457   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4458          "couldn't find pattern for enum instantiation");
4459   return nullptr;
4460 }
4461 
4462 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4463   if (SpecializationInfo)
4464     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4465 
4466   return nullptr;
4467 }
4468 
4469 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4470                                             TemplateSpecializationKind TSK) {
4471   assert(!SpecializationInfo && "Member enum is already a specialization");
4472   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4473 }
4474 
4475 unsigned EnumDecl::getODRHash() {
4476   if (hasODRHash())
4477     return ODRHash;
4478 
4479   class ODRHash Hash;
4480   Hash.AddEnumDecl(this);
4481   setHasODRHash(true);
4482   ODRHash = Hash.CalculateHash();
4483   return ODRHash;
4484 }
4485 
4486 //===----------------------------------------------------------------------===//
4487 // RecordDecl Implementation
4488 //===----------------------------------------------------------------------===//
4489 
4490 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4491                        DeclContext *DC, SourceLocation StartLoc,
4492                        SourceLocation IdLoc, IdentifierInfo *Id,
4493                        RecordDecl *PrevDecl)
4494     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4495   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4496   setHasFlexibleArrayMember(false);
4497   setAnonymousStructOrUnion(false);
4498   setHasObjectMember(false);
4499   setHasVolatileMember(false);
4500   setHasLoadedFieldsFromExternalStorage(false);
4501   setNonTrivialToPrimitiveDefaultInitialize(false);
4502   setNonTrivialToPrimitiveCopy(false);
4503   setNonTrivialToPrimitiveDestroy(false);
4504   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4505   setHasNonTrivialToPrimitiveDestructCUnion(false);
4506   setHasNonTrivialToPrimitiveCopyCUnion(false);
4507   setParamDestroyedInCallee(false);
4508   setArgPassingRestrictions(APK_CanPassInRegs);
4509 }
4510 
4511 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4512                                SourceLocation StartLoc, SourceLocation IdLoc,
4513                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4514   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4515                                          StartLoc, IdLoc, Id, PrevDecl);
4516   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4517 
4518   C.getTypeDeclType(R, PrevDecl);
4519   return R;
4520 }
4521 
4522 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4523   RecordDecl *R =
4524       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4525                              SourceLocation(), nullptr, nullptr);
4526   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4527   return R;
4528 }
4529 
4530 bool RecordDecl::isInjectedClassName() const {
4531   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4532     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4533 }
4534 
4535 bool RecordDecl::isLambda() const {
4536   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4537     return RD->isLambda();
4538   return false;
4539 }
4540 
4541 bool RecordDecl::isCapturedRecord() const {
4542   return hasAttr<CapturedRecordAttr>();
4543 }
4544 
4545 void RecordDecl::setCapturedRecord() {
4546   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4547 }
4548 
4549 bool RecordDecl::isOrContainsUnion() const {
4550   if (isUnion())
4551     return true;
4552 
4553   if (const RecordDecl *Def = getDefinition()) {
4554     for (const FieldDecl *FD : Def->fields()) {
4555       const RecordType *RT = FD->getType()->getAs<RecordType>();
4556       if (RT && RT->getDecl()->isOrContainsUnion())
4557         return true;
4558     }
4559   }
4560 
4561   return false;
4562 }
4563 
4564 RecordDecl::field_iterator RecordDecl::field_begin() const {
4565   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4566     LoadFieldsFromExternalStorage();
4567 
4568   return field_iterator(decl_iterator(FirstDecl));
4569 }
4570 
4571 /// completeDefinition - Notes that the definition of this type is now
4572 /// complete.
4573 void RecordDecl::completeDefinition() {
4574   assert(!isCompleteDefinition() && "Cannot redefine record!");
4575   TagDecl::completeDefinition();
4576 
4577   ASTContext &Ctx = getASTContext();
4578 
4579   // Layouts are dumped when computed, so if we are dumping for all complete
4580   // types, we need to force usage to get types that wouldn't be used elsewhere.
4581   if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4582     (void)Ctx.getASTRecordLayout(this);
4583 }
4584 
4585 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4586 /// This which can be turned on with an attribute, pragma, or the
4587 /// -mms-bitfields command-line option.
4588 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4589   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4590 }
4591 
4592 void RecordDecl::LoadFieldsFromExternalStorage() const {
4593   ExternalASTSource *Source = getASTContext().getExternalSource();
4594   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4595 
4596   // Notify that we have a RecordDecl doing some initialization.
4597   ExternalASTSource::Deserializing TheFields(Source);
4598 
4599   SmallVector<Decl*, 64> Decls;
4600   setHasLoadedFieldsFromExternalStorage(true);
4601   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4602     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4603   }, Decls);
4604 
4605 #ifndef NDEBUG
4606   // Check that all decls we got were FieldDecls.
4607   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4608     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4609 #endif
4610 
4611   if (Decls.empty())
4612     return;
4613 
4614   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4615                                                  /*FieldsAlreadyLoaded=*/false);
4616 }
4617 
4618 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4619   ASTContext &Context = getASTContext();
4620   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4621       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4622   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4623     return false;
4624   const auto &NoSanitizeList = Context.getNoSanitizeList();
4625   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4626   // We may be able to relax some of these requirements.
4627   int ReasonToReject = -1;
4628   if (!CXXRD || CXXRD->isExternCContext())
4629     ReasonToReject = 0;  // is not C++.
4630   else if (CXXRD->hasAttr<PackedAttr>())
4631     ReasonToReject = 1;  // is packed.
4632   else if (CXXRD->isUnion())
4633     ReasonToReject = 2;  // is a union.
4634   else if (CXXRD->isTriviallyCopyable())
4635     ReasonToReject = 3;  // is trivially copyable.
4636   else if (CXXRD->hasTrivialDestructor())
4637     ReasonToReject = 4;  // has trivial destructor.
4638   else if (CXXRD->isStandardLayout())
4639     ReasonToReject = 5;  // is standard layout.
4640   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4641                                            "field-padding"))
4642     ReasonToReject = 6;  // is in an excluded file.
4643   else if (NoSanitizeList.containsType(
4644                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4645     ReasonToReject = 7;  // The type is excluded.
4646 
4647   if (EmitRemark) {
4648     if (ReasonToReject >= 0)
4649       Context.getDiagnostics().Report(
4650           getLocation(),
4651           diag::remark_sanitize_address_insert_extra_padding_rejected)
4652           << getQualifiedNameAsString() << ReasonToReject;
4653     else
4654       Context.getDiagnostics().Report(
4655           getLocation(),
4656           diag::remark_sanitize_address_insert_extra_padding_accepted)
4657           << getQualifiedNameAsString();
4658   }
4659   return ReasonToReject < 0;
4660 }
4661 
4662 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4663   for (const auto *I : fields()) {
4664     if (I->getIdentifier())
4665       return I;
4666 
4667     if (const auto *RT = I->getType()->getAs<RecordType>())
4668       if (const FieldDecl *NamedDataMember =
4669               RT->getDecl()->findFirstNamedDataMember())
4670         return NamedDataMember;
4671   }
4672 
4673   // We didn't find a named data member.
4674   return nullptr;
4675 }
4676 
4677 //===----------------------------------------------------------------------===//
4678 // BlockDecl Implementation
4679 //===----------------------------------------------------------------------===//
4680 
4681 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4682     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4683   setIsVariadic(false);
4684   setCapturesCXXThis(false);
4685   setBlockMissingReturnType(true);
4686   setIsConversionFromLambda(false);
4687   setDoesNotEscape(false);
4688   setCanAvoidCopyToHeap(false);
4689 }
4690 
4691 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4692   assert(!ParamInfo && "Already has param info!");
4693 
4694   // Zero params -> null pointer.
4695   if (!NewParamInfo.empty()) {
4696     NumParams = NewParamInfo.size();
4697     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4698     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4699   }
4700 }
4701 
4702 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4703                             bool CapturesCXXThis) {
4704   this->setCapturesCXXThis(CapturesCXXThis);
4705   this->NumCaptures = Captures.size();
4706 
4707   if (Captures.empty()) {
4708     this->Captures = nullptr;
4709     return;
4710   }
4711 
4712   this->Captures = Captures.copy(Context).data();
4713 }
4714 
4715 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4716   for (const auto &I : captures())
4717     // Only auto vars can be captured, so no redeclaration worries.
4718     if (I.getVariable() == variable)
4719       return true;
4720 
4721   return false;
4722 }
4723 
4724 SourceRange BlockDecl::getSourceRange() const {
4725   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4726 }
4727 
4728 //===----------------------------------------------------------------------===//
4729 // Other Decl Allocation/Deallocation Method Implementations
4730 //===----------------------------------------------------------------------===//
4731 
4732 void TranslationUnitDecl::anchor() {}
4733 
4734 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4735   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4736 }
4737 
4738 void PragmaCommentDecl::anchor() {}
4739 
4740 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4741                                              TranslationUnitDecl *DC,
4742                                              SourceLocation CommentLoc,
4743                                              PragmaMSCommentKind CommentKind,
4744                                              StringRef Arg) {
4745   PragmaCommentDecl *PCD =
4746       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4747           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4748   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4749   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4750   return PCD;
4751 }
4752 
4753 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4754                                                          unsigned ID,
4755                                                          unsigned ArgSize) {
4756   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4757       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4758 }
4759 
4760 void PragmaDetectMismatchDecl::anchor() {}
4761 
4762 PragmaDetectMismatchDecl *
4763 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4764                                  SourceLocation Loc, StringRef Name,
4765                                  StringRef Value) {
4766   size_t ValueStart = Name.size() + 1;
4767   PragmaDetectMismatchDecl *PDMD =
4768       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4769           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4770   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4771   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4772   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4773          Value.size());
4774   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4775   return PDMD;
4776 }
4777 
4778 PragmaDetectMismatchDecl *
4779 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4780                                              unsigned NameValueSize) {
4781   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4782       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4783 }
4784 
4785 void ExternCContextDecl::anchor() {}
4786 
4787 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4788                                                TranslationUnitDecl *DC) {
4789   return new (C, DC) ExternCContextDecl(DC);
4790 }
4791 
4792 void LabelDecl::anchor() {}
4793 
4794 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4795                              SourceLocation IdentL, IdentifierInfo *II) {
4796   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4797 }
4798 
4799 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4800                              SourceLocation IdentL, IdentifierInfo *II,
4801                              SourceLocation GnuLabelL) {
4802   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4803   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4804 }
4805 
4806 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4807   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4808                                SourceLocation());
4809 }
4810 
4811 void LabelDecl::setMSAsmLabel(StringRef Name) {
4812 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4813   memcpy(Buffer, Name.data(), Name.size());
4814   Buffer[Name.size()] = '\0';
4815   MSAsmName = Buffer;
4816 }
4817 
4818 void ValueDecl::anchor() {}
4819 
4820 bool ValueDecl::isWeak() const {
4821   auto *MostRecent = getMostRecentDecl();
4822   return MostRecent->hasAttr<WeakAttr>() ||
4823          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4824 }
4825 
4826 void ImplicitParamDecl::anchor() {}
4827 
4828 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4829                                              SourceLocation IdLoc,
4830                                              IdentifierInfo *Id, QualType Type,
4831                                              ImplicitParamKind ParamKind) {
4832   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4833 }
4834 
4835 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4836                                              ImplicitParamKind ParamKind) {
4837   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4838 }
4839 
4840 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4841                                                          unsigned ID) {
4842   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4843 }
4844 
4845 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4846                                    SourceLocation StartLoc,
4847                                    const DeclarationNameInfo &NameInfo,
4848                                    QualType T, TypeSourceInfo *TInfo,
4849                                    StorageClass SC, bool isInlineSpecified,
4850                                    bool hasWrittenPrototype,
4851                                    ConstexprSpecKind ConstexprKind,
4852                                    Expr *TrailingRequiresClause) {
4853   FunctionDecl *New =
4854       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4855                                SC, isInlineSpecified, ConstexprKind,
4856                                TrailingRequiresClause);
4857   New->setHasWrittenPrototype(hasWrittenPrototype);
4858   return New;
4859 }
4860 
4861 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4862   return new (C, ID) FunctionDecl(
4863       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4864       nullptr, SC_None, false, ConstexprSpecKind::Unspecified, nullptr);
4865 }
4866 
4867 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4868   return new (C, DC) BlockDecl(DC, L);
4869 }
4870 
4871 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4872   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4873 }
4874 
4875 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4876     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4877       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4878 
4879 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4880                                    unsigned NumParams) {
4881   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4882       CapturedDecl(DC, NumParams);
4883 }
4884 
4885 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4886                                                unsigned NumParams) {
4887   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4888       CapturedDecl(nullptr, NumParams);
4889 }
4890 
4891 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4892 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4893 
4894 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4895 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4896 
4897 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4898                                            SourceLocation L,
4899                                            IdentifierInfo *Id, QualType T,
4900                                            Expr *E, const llvm::APSInt &V) {
4901   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4902 }
4903 
4904 EnumConstantDecl *
4905 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4906   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4907                                       QualType(), nullptr, llvm::APSInt());
4908 }
4909 
4910 void IndirectFieldDecl::anchor() {}
4911 
4912 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4913                                      SourceLocation L, DeclarationName N,
4914                                      QualType T,
4915                                      MutableArrayRef<NamedDecl *> CH)
4916     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4917       ChainingSize(CH.size()) {
4918   // In C++, indirect field declarations conflict with tag declarations in the
4919   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4920   if (C.getLangOpts().CPlusPlus)
4921     IdentifierNamespace |= IDNS_Tag;
4922 }
4923 
4924 IndirectFieldDecl *
4925 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4926                           IdentifierInfo *Id, QualType T,
4927                           llvm::MutableArrayRef<NamedDecl *> CH) {
4928   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4929 }
4930 
4931 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4932                                                          unsigned ID) {
4933   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4934                                        DeclarationName(), QualType(), None);
4935 }
4936 
4937 SourceRange EnumConstantDecl::getSourceRange() const {
4938   SourceLocation End = getLocation();
4939   if (Init)
4940     End = Init->getEndLoc();
4941   return SourceRange(getLocation(), End);
4942 }
4943 
4944 void TypeDecl::anchor() {}
4945 
4946 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4947                                  SourceLocation StartLoc, SourceLocation IdLoc,
4948                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4949   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4950 }
4951 
4952 void TypedefNameDecl::anchor() {}
4953 
4954 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4955   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4956     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4957     auto *ThisTypedef = this;
4958     if (AnyRedecl && OwningTypedef) {
4959       OwningTypedef = OwningTypedef->getCanonicalDecl();
4960       ThisTypedef = ThisTypedef->getCanonicalDecl();
4961     }
4962     if (OwningTypedef == ThisTypedef)
4963       return TT->getDecl();
4964   }
4965 
4966   return nullptr;
4967 }
4968 
4969 bool TypedefNameDecl::isTransparentTagSlow() const {
4970   auto determineIsTransparent = [&]() {
4971     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4972       if (auto *TD = TT->getDecl()) {
4973         if (TD->getName() != getName())
4974           return false;
4975         SourceLocation TTLoc = getLocation();
4976         SourceLocation TDLoc = TD->getLocation();
4977         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4978           return false;
4979         SourceManager &SM = getASTContext().getSourceManager();
4980         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4981       }
4982     }
4983     return false;
4984   };
4985 
4986   bool isTransparent = determineIsTransparent();
4987   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4988   return isTransparent;
4989 }
4990 
4991 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4992   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4993                                  nullptr, nullptr);
4994 }
4995 
4996 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4997                                      SourceLocation StartLoc,
4998                                      SourceLocation IdLoc, IdentifierInfo *Id,
4999                                      TypeSourceInfo *TInfo) {
5000   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5001 }
5002 
5003 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5004   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5005                                    SourceLocation(), nullptr, nullptr);
5006 }
5007 
5008 SourceRange TypedefDecl::getSourceRange() const {
5009   SourceLocation RangeEnd = getLocation();
5010   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5011     if (typeIsPostfix(TInfo->getType()))
5012       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5013   }
5014   return SourceRange(getBeginLoc(), RangeEnd);
5015 }
5016 
5017 SourceRange TypeAliasDecl::getSourceRange() const {
5018   SourceLocation RangeEnd = getBeginLoc();
5019   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5020     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5021   return SourceRange(getBeginLoc(), RangeEnd);
5022 }
5023 
5024 void FileScopeAsmDecl::anchor() {}
5025 
5026 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5027                                            StringLiteral *Str,
5028                                            SourceLocation AsmLoc,
5029                                            SourceLocation RParenLoc) {
5030   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5031 }
5032 
5033 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5034                                                        unsigned ID) {
5035   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5036                                       SourceLocation());
5037 }
5038 
5039 void EmptyDecl::anchor() {}
5040 
5041 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5042   return new (C, DC) EmptyDecl(DC, L);
5043 }
5044 
5045 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5046   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5047 }
5048 
5049 //===----------------------------------------------------------------------===//
5050 // ImportDecl Implementation
5051 //===----------------------------------------------------------------------===//
5052 
5053 /// Retrieve the number of module identifiers needed to name the given
5054 /// module.
5055 static unsigned getNumModuleIdentifiers(Module *Mod) {
5056   unsigned Result = 1;
5057   while (Mod->Parent) {
5058     Mod = Mod->Parent;
5059     ++Result;
5060   }
5061   return Result;
5062 }
5063 
5064 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5065                        Module *Imported,
5066                        ArrayRef<SourceLocation> IdentifierLocs)
5067     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5068       NextLocalImportAndComplete(nullptr, true) {
5069   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5070   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5071   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5072                           StoredLocs);
5073 }
5074 
5075 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5076                        Module *Imported, SourceLocation EndLoc)
5077     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5078       NextLocalImportAndComplete(nullptr, false) {
5079   *getTrailingObjects<SourceLocation>() = EndLoc;
5080 }
5081 
5082 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5083                                SourceLocation StartLoc, Module *Imported,
5084                                ArrayRef<SourceLocation> IdentifierLocs) {
5085   return new (C, DC,
5086               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5087       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5088 }
5089 
5090 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5091                                        SourceLocation StartLoc,
5092                                        Module *Imported,
5093                                        SourceLocation EndLoc) {
5094   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5095       ImportDecl(DC, StartLoc, Imported, EndLoc);
5096   Import->setImplicit();
5097   return Import;
5098 }
5099 
5100 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5101                                            unsigned NumLocations) {
5102   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5103       ImportDecl(EmptyShell());
5104 }
5105 
5106 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5107   if (!isImportComplete())
5108     return None;
5109 
5110   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5111   return llvm::makeArrayRef(StoredLocs,
5112                             getNumModuleIdentifiers(getImportedModule()));
5113 }
5114 
5115 SourceRange ImportDecl::getSourceRange() const {
5116   if (!isImportComplete())
5117     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5118 
5119   return SourceRange(getLocation(), getIdentifierLocs().back());
5120 }
5121 
5122 //===----------------------------------------------------------------------===//
5123 // ExportDecl Implementation
5124 //===----------------------------------------------------------------------===//
5125 
5126 void ExportDecl::anchor() {}
5127 
5128 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5129                                SourceLocation ExportLoc) {
5130   return new (C, DC) ExportDecl(DC, ExportLoc);
5131 }
5132 
5133 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5134   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5135 }
5136