1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Redeclarable.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/IdentifierTable.h" 40 #include "clang/Basic/LLVM.h" 41 #include "clang/Basic/LangOptions.h" 42 #include "clang/Basic/Linkage.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/NoSanitizeList.h" 45 #include "clang/Basic/PartialDiagnostic.h" 46 #include "clang/Basic/Sanitizers.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/TargetCXXABI.h" 51 #include "clang/Basic/TargetInfo.h" 52 #include "clang/Basic/Visibility.h" 53 #include "llvm/ADT/APSInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/Optional.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <string> 71 #include <tuple> 72 #include <type_traits> 73 74 using namespace clang; 75 76 Decl *clang::getPrimaryMergedDecl(Decl *D) { 77 return D->getASTContext().getPrimaryMergedDecl(D); 78 } 79 80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 81 SourceLocation Loc = this->Loc; 82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 83 if (Loc.isValid()) { 84 Loc.print(OS, Context.getSourceManager()); 85 OS << ": "; 86 } 87 OS << Message; 88 89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 90 OS << " '"; 91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 92 OS << "'"; 93 } 94 95 OS << '\n'; 96 } 97 98 // Defined here so that it can be inlined into its direct callers. 99 bool Decl::isOutOfLine() const { 100 return !getLexicalDeclContext()->Equals(getDeclContext()); 101 } 102 103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 104 : Decl(TranslationUnit, nullptr, SourceLocation()), 105 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {} 106 107 //===----------------------------------------------------------------------===// 108 // NamedDecl Implementation 109 //===----------------------------------------------------------------------===// 110 111 // Visibility rules aren't rigorously externally specified, but here 112 // are the basic principles behind what we implement: 113 // 114 // 1. An explicit visibility attribute is generally a direct expression 115 // of the user's intent and should be honored. Only the innermost 116 // visibility attribute applies. If no visibility attribute applies, 117 // global visibility settings are considered. 118 // 119 // 2. There is one caveat to the above: on or in a template pattern, 120 // an explicit visibility attribute is just a default rule, and 121 // visibility can be decreased by the visibility of template 122 // arguments. But this, too, has an exception: an attribute on an 123 // explicit specialization or instantiation causes all the visibility 124 // restrictions of the template arguments to be ignored. 125 // 126 // 3. A variable that does not otherwise have explicit visibility can 127 // be restricted by the visibility of its type. 128 // 129 // 4. A visibility restriction is explicit if it comes from an 130 // attribute (or something like it), not a global visibility setting. 131 // When emitting a reference to an external symbol, visibility 132 // restrictions are ignored unless they are explicit. 133 // 134 // 5. When computing the visibility of a non-type, including a 135 // non-type member of a class, only non-type visibility restrictions 136 // are considered: the 'visibility' attribute, global value-visibility 137 // settings, and a few special cases like __private_extern. 138 // 139 // 6. When computing the visibility of a type, including a type member 140 // of a class, only type visibility restrictions are considered: 141 // the 'type_visibility' attribute and global type-visibility settings. 142 // However, a 'visibility' attribute counts as a 'type_visibility' 143 // attribute on any declaration that only has the former. 144 // 145 // The visibility of a "secondary" entity, like a template argument, 146 // is computed using the kind of that entity, not the kind of the 147 // primary entity for which we are computing visibility. For example, 148 // the visibility of a specialization of either of these templates: 149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 150 // template <class T, bool (&compare)(T, X)> class matcher; 151 // is restricted according to the type visibility of the argument 'T', 152 // the type visibility of 'bool(&)(T,X)', and the value visibility of 153 // the argument function 'compare'. That 'has_match' is a value 154 // and 'matcher' is a type only matters when looking for attributes 155 // and settings from the immediate context. 156 157 /// Does this computation kind permit us to consider additional 158 /// visibility settings from attributes and the like? 159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 160 return computation.IgnoreExplicitVisibility; 161 } 162 163 /// Given an LVComputationKind, return one of the same type/value sort 164 /// that records that it already has explicit visibility. 165 static LVComputationKind 166 withExplicitVisibilityAlready(LVComputationKind Kind) { 167 Kind.IgnoreExplicitVisibility = true; 168 return Kind; 169 } 170 171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 172 LVComputationKind kind) { 173 assert(!kind.IgnoreExplicitVisibility && 174 "asking for explicit visibility when we shouldn't be"); 175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 176 } 177 178 /// Is the given declaration a "type" or a "value" for the purposes of 179 /// visibility computation? 180 static bool usesTypeVisibility(const NamedDecl *D) { 181 return isa<TypeDecl>(D) || 182 isa<ClassTemplateDecl>(D) || 183 isa<ObjCInterfaceDecl>(D); 184 } 185 186 /// Does the given declaration have member specialization information, 187 /// and if so, is it an explicit specialization? 188 template <class T> static typename 189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 190 isExplicitMemberSpecialization(const T *D) { 191 if (const MemberSpecializationInfo *member = 192 D->getMemberSpecializationInfo()) { 193 return member->isExplicitSpecialization(); 194 } 195 return false; 196 } 197 198 /// For templates, this question is easier: a member template can't be 199 /// explicitly instantiated, so there's a single bit indicating whether 200 /// or not this is an explicit member specialization. 201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 202 return D->isMemberSpecialization(); 203 } 204 205 /// Given a visibility attribute, return the explicit visibility 206 /// associated with it. 207 template <class T> 208 static Visibility getVisibilityFromAttr(const T *attr) { 209 switch (attr->getVisibility()) { 210 case T::Default: 211 return DefaultVisibility; 212 case T::Hidden: 213 return HiddenVisibility; 214 case T::Protected: 215 return ProtectedVisibility; 216 } 217 llvm_unreachable("bad visibility kind"); 218 } 219 220 /// Return the explicit visibility of the given declaration. 221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 222 NamedDecl::ExplicitVisibilityKind kind) { 223 // If we're ultimately computing the visibility of a type, look for 224 // a 'type_visibility' attribute before looking for 'visibility'. 225 if (kind == NamedDecl::VisibilityForType) { 226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 227 return getVisibilityFromAttr(A); 228 } 229 } 230 231 // If this declaration has an explicit visibility attribute, use it. 232 if (const auto *A = D->getAttr<VisibilityAttr>()) { 233 return getVisibilityFromAttr(A); 234 } 235 236 return None; 237 } 238 239 LinkageInfo LinkageComputer::getLVForType(const Type &T, 240 LVComputationKind computation) { 241 if (computation.IgnoreAllVisibility) 242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 243 return getTypeLinkageAndVisibility(&T); 244 } 245 246 /// Get the most restrictive linkage for the types in the given 247 /// template parameter list. For visibility purposes, template 248 /// parameters are part of the signature of a template. 249 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 250 const TemplateParameterList *Params, LVComputationKind computation) { 251 LinkageInfo LV; 252 for (const NamedDecl *P : *Params) { 253 // Template type parameters are the most common and never 254 // contribute to visibility, pack or not. 255 if (isa<TemplateTypeParmDecl>(P)) 256 continue; 257 258 // Non-type template parameters can be restricted by the value type, e.g. 259 // template <enum X> class A { ... }; 260 // We have to be careful here, though, because we can be dealing with 261 // dependent types. 262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 263 // Handle the non-pack case first. 264 if (!NTTP->isExpandedParameterPack()) { 265 if (!NTTP->getType()->isDependentType()) { 266 LV.merge(getLVForType(*NTTP->getType(), computation)); 267 } 268 continue; 269 } 270 271 // Look at all the types in an expanded pack. 272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 273 QualType type = NTTP->getExpansionType(i); 274 if (!type->isDependentType()) 275 LV.merge(getTypeLinkageAndVisibility(type)); 276 } 277 continue; 278 } 279 280 // Template template parameters can be restricted by their 281 // template parameters, recursively. 282 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 283 284 // Handle the non-pack case first. 285 if (!TTP->isExpandedParameterPack()) { 286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 287 computation)); 288 continue; 289 } 290 291 // Look at all expansions in an expanded pack. 292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 293 i != n; ++i) { 294 LV.merge(getLVForTemplateParameterList( 295 TTP->getExpansionTemplateParameters(i), computation)); 296 } 297 } 298 299 return LV; 300 } 301 302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 303 const Decl *Ret = nullptr; 304 const DeclContext *DC = D->getDeclContext(); 305 while (DC->getDeclKind() != Decl::TranslationUnit) { 306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 307 Ret = cast<Decl>(DC); 308 DC = DC->getParent(); 309 } 310 return Ret; 311 } 312 313 /// Get the most restrictive linkage for the types and 314 /// declarations in the given template argument list. 315 /// 316 /// Note that we don't take an LVComputationKind because we always 317 /// want to honor the visibility of template arguments in the same way. 318 LinkageInfo 319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 320 LVComputationKind computation) { 321 LinkageInfo LV; 322 323 for (const TemplateArgument &Arg : Args) { 324 switch (Arg.getKind()) { 325 case TemplateArgument::Null: 326 case TemplateArgument::Integral: 327 case TemplateArgument::Expression: 328 continue; 329 330 case TemplateArgument::Type: 331 LV.merge(getLVForType(*Arg.getAsType(), computation)); 332 continue; 333 334 case TemplateArgument::Declaration: { 335 const NamedDecl *ND = Arg.getAsDecl(); 336 assert(!usesTypeVisibility(ND)); 337 LV.merge(getLVForDecl(ND, computation)); 338 continue; 339 } 340 341 case TemplateArgument::NullPtr: 342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 343 continue; 344 345 case TemplateArgument::Template: 346 case TemplateArgument::TemplateExpansion: 347 if (TemplateDecl *Template = 348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 349 LV.merge(getLVForDecl(Template, computation)); 350 continue; 351 352 case TemplateArgument::Pack: 353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 354 continue; 355 } 356 llvm_unreachable("bad template argument kind"); 357 } 358 359 return LV; 360 } 361 362 LinkageInfo 363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 364 LVComputationKind computation) { 365 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 366 } 367 368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 369 const FunctionTemplateSpecializationInfo *specInfo) { 370 // Include visibility from the template parameters and arguments 371 // only if this is not an explicit instantiation or specialization 372 // with direct explicit visibility. (Implicit instantiations won't 373 // have a direct attribute.) 374 if (!specInfo->isExplicitInstantiationOrSpecialization()) 375 return true; 376 377 return !fn->hasAttr<VisibilityAttr>(); 378 } 379 380 /// Merge in template-related linkage and visibility for the given 381 /// function template specialization. 382 /// 383 /// We don't need a computation kind here because we can assume 384 /// LVForValue. 385 /// 386 /// \param[out] LV the computation to use for the parent 387 void LinkageComputer::mergeTemplateLV( 388 LinkageInfo &LV, const FunctionDecl *fn, 389 const FunctionTemplateSpecializationInfo *specInfo, 390 LVComputationKind computation) { 391 bool considerVisibility = 392 shouldConsiderTemplateVisibility(fn, specInfo); 393 394 // Merge information from the template parameters. 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 LinkageInfo tempLV = 397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 399 400 // Merge information from the template arguments. 401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 404 } 405 406 /// Does the given declaration have a direct visibility attribute 407 /// that would match the given rules? 408 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 409 LVComputationKind computation) { 410 if (computation.IgnoreAllVisibility) 411 return false; 412 413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 414 D->hasAttr<VisibilityAttr>(); 415 } 416 417 /// Should we consider visibility associated with the template 418 /// arguments and parameters of the given class template specialization? 419 static bool shouldConsiderTemplateVisibility( 420 const ClassTemplateSpecializationDecl *spec, 421 LVComputationKind computation) { 422 // Include visibility from the template parameters and arguments 423 // only if this is not an explicit instantiation or specialization 424 // with direct explicit visibility (and note that implicit 425 // instantiations won't have a direct attribute). 426 // 427 // Furthermore, we want to ignore template parameters and arguments 428 // for an explicit specialization when computing the visibility of a 429 // member thereof with explicit visibility. 430 // 431 // This is a bit complex; let's unpack it. 432 // 433 // An explicit class specialization is an independent, top-level 434 // declaration. As such, if it or any of its members has an 435 // explicit visibility attribute, that must directly express the 436 // user's intent, and we should honor it. The same logic applies to 437 // an explicit instantiation of a member of such a thing. 438 439 // Fast path: if this is not an explicit instantiation or 440 // specialization, we always want to consider template-related 441 // visibility restrictions. 442 if (!spec->isExplicitInstantiationOrSpecialization()) 443 return true; 444 445 // This is the 'member thereof' check. 446 if (spec->isExplicitSpecialization() && 447 hasExplicitVisibilityAlready(computation)) 448 return false; 449 450 return !hasDirectVisibilityAttribute(spec, computation); 451 } 452 453 /// Merge in template-related linkage and visibility for the given 454 /// class template specialization. 455 void LinkageComputer::mergeTemplateLV( 456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 457 LVComputationKind computation) { 458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 459 460 // Merge information from the template parameters, but ignore 461 // visibility if we're only considering template arguments. 462 463 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 464 LinkageInfo tempLV = 465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 466 LV.mergeMaybeWithVisibility(tempLV, 467 considerVisibility && !hasExplicitVisibilityAlready(computation)); 468 469 // Merge information from the template arguments. We ignore 470 // template-argument visibility if we've got an explicit 471 // instantiation with a visibility attribute. 472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 474 if (considerVisibility) 475 LV.mergeVisibility(argsLV); 476 LV.mergeExternalVisibility(argsLV); 477 } 478 479 /// Should we consider visibility associated with the template 480 /// arguments and parameters of the given variable template 481 /// specialization? As usual, follow class template specialization 482 /// logic up to initialization. 483 static bool shouldConsiderTemplateVisibility( 484 const VarTemplateSpecializationDecl *spec, 485 LVComputationKind computation) { 486 // Include visibility from the template parameters and arguments 487 // only if this is not an explicit instantiation or specialization 488 // with direct explicit visibility (and note that implicit 489 // instantiations won't have a direct attribute). 490 if (!spec->isExplicitInstantiationOrSpecialization()) 491 return true; 492 493 // An explicit variable specialization is an independent, top-level 494 // declaration. As such, if it has an explicit visibility attribute, 495 // that must directly express the user's intent, and we should honor 496 // it. 497 if (spec->isExplicitSpecialization() && 498 hasExplicitVisibilityAlready(computation)) 499 return false; 500 501 return !hasDirectVisibilityAttribute(spec, computation); 502 } 503 504 /// Merge in template-related linkage and visibility for the given 505 /// variable template specialization. As usual, follow class template 506 /// specialization logic up to initialization. 507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 508 const VarTemplateSpecializationDecl *spec, 509 LVComputationKind computation) { 510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 511 512 // Merge information from the template parameters, but ignore 513 // visibility if we're only considering template arguments. 514 515 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 516 LinkageInfo tempLV = 517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 518 LV.mergeMaybeWithVisibility(tempLV, 519 considerVisibility && !hasExplicitVisibilityAlready(computation)); 520 521 // Merge information from the template arguments. We ignore 522 // template-argument visibility if we've got an explicit 523 // instantiation with a visibility attribute. 524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 526 if (considerVisibility) 527 LV.mergeVisibility(argsLV); 528 LV.mergeExternalVisibility(argsLV); 529 } 530 531 static bool useInlineVisibilityHidden(const NamedDecl *D) { 532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 533 const LangOptions &Opts = D->getASTContext().getLangOpts(); 534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 535 return false; 536 537 const auto *FD = dyn_cast<FunctionDecl>(D); 538 if (!FD) 539 return false; 540 541 TemplateSpecializationKind TSK = TSK_Undeclared; 542 if (FunctionTemplateSpecializationInfo *spec 543 = FD->getTemplateSpecializationInfo()) { 544 TSK = spec->getTemplateSpecializationKind(); 545 } else if (MemberSpecializationInfo *MSI = 546 FD->getMemberSpecializationInfo()) { 547 TSK = MSI->getTemplateSpecializationKind(); 548 } 549 550 const FunctionDecl *Def = nullptr; 551 // InlineVisibilityHidden only applies to definitions, and 552 // isInlined() only gives meaningful answers on definitions 553 // anyway. 554 return TSK != TSK_ExplicitInstantiationDeclaration && 555 TSK != TSK_ExplicitInstantiationDefinition && 556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 557 } 558 559 template <typename T> static bool isFirstInExternCContext(T *D) { 560 const T *First = D->getFirstDecl(); 561 return First->isInExternCContext(); 562 } 563 564 static bool isSingleLineLanguageLinkage(const Decl &D) { 565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 566 if (!SD->hasBraces()) 567 return true; 568 return false; 569 } 570 571 /// Determine whether D is declared in the purview of a named module. 572 static bool isInModulePurview(const NamedDecl *D) { 573 if (auto *M = D->getOwningModule()) 574 return M->isModulePurview(); 575 return false; 576 } 577 578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 579 // FIXME: Handle isModulePrivate. 580 switch (D->getModuleOwnershipKind()) { 581 case Decl::ModuleOwnershipKind::Unowned: 582 case Decl::ModuleOwnershipKind::ModulePrivate: 583 return false; 584 case Decl::ModuleOwnershipKind::Visible: 585 case Decl::ModuleOwnershipKind::VisibleWhenImported: 586 return isInModulePurview(D); 587 } 588 llvm_unreachable("unexpected module ownership kind"); 589 } 590 591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 592 // Internal linkage declarations within a module interface unit are modeled 593 // as "module-internal linkage", which means that they have internal linkage 594 // formally but can be indirectly accessed from outside the module via inline 595 // functions and templates defined within the module. 596 if (isInModulePurview(D)) 597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 598 599 return LinkageInfo::internal(); 600 } 601 602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 603 // C++ Modules TS [basic.link]/6.8: 604 // - A name declared at namespace scope that does not have internal linkage 605 // by the previous rules and that is introduced by a non-exported 606 // declaration has module linkage. 607 // 608 // [basic.namespace.general]/p2 609 // A namespace is never attached to a named module and never has a name with 610 // module linkage. 611 if (isInModulePurview(D) && 612 !isExportedFromModuleInterfaceUnit( 613 cast<NamedDecl>(D->getCanonicalDecl())) && 614 !isa<NamespaceDecl>(D)) 615 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 616 617 return LinkageInfo::external(); 618 } 619 620 static StorageClass getStorageClass(const Decl *D) { 621 if (auto *TD = dyn_cast<TemplateDecl>(D)) 622 D = TD->getTemplatedDecl(); 623 if (D) { 624 if (auto *VD = dyn_cast<VarDecl>(D)) 625 return VD->getStorageClass(); 626 if (auto *FD = dyn_cast<FunctionDecl>(D)) 627 return FD->getStorageClass(); 628 } 629 return SC_None; 630 } 631 632 LinkageInfo 633 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 634 LVComputationKind computation, 635 bool IgnoreVarTypeLinkage) { 636 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 637 "Not a name having namespace scope"); 638 ASTContext &Context = D->getASTContext(); 639 640 // C++ [basic.link]p3: 641 // A name having namespace scope (3.3.6) has internal linkage if it 642 // is the name of 643 644 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 645 // - a variable, variable template, function, or function template 646 // that is explicitly declared static; or 647 // (This bullet corresponds to C99 6.2.2p3.) 648 return getInternalLinkageFor(D); 649 } 650 651 if (const auto *Var = dyn_cast<VarDecl>(D)) { 652 // - a non-template variable of non-volatile const-qualified type, unless 653 // - it is explicitly declared extern, or 654 // - it is inline or exported, or 655 // - it was previously declared and the prior declaration did not have 656 // internal linkage 657 // (There is no equivalent in C99.) 658 if (Context.getLangOpts().CPlusPlus && 659 Var->getType().isConstQualified() && 660 !Var->getType().isVolatileQualified() && 661 !Var->isInline() && 662 !isExportedFromModuleInterfaceUnit(Var) && 663 !isa<VarTemplateSpecializationDecl>(Var) && 664 !Var->getDescribedVarTemplate()) { 665 const VarDecl *PrevVar = Var->getPreviousDecl(); 666 if (PrevVar) 667 return getLVForDecl(PrevVar, computation); 668 669 if (Var->getStorageClass() != SC_Extern && 670 Var->getStorageClass() != SC_PrivateExtern && 671 !isSingleLineLanguageLinkage(*Var)) 672 return getInternalLinkageFor(Var); 673 } 674 675 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 676 PrevVar = PrevVar->getPreviousDecl()) { 677 if (PrevVar->getStorageClass() == SC_PrivateExtern && 678 Var->getStorageClass() == SC_None) 679 return getDeclLinkageAndVisibility(PrevVar); 680 // Explicitly declared static. 681 if (PrevVar->getStorageClass() == SC_Static) 682 return getInternalLinkageFor(Var); 683 } 684 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 685 // - a data member of an anonymous union. 686 const VarDecl *VD = IFD->getVarDecl(); 687 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 688 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 689 } 690 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 691 692 // FIXME: This gives internal linkage to names that should have no linkage 693 // (those not covered by [basic.link]p6). 694 if (D->isInAnonymousNamespace()) { 695 const auto *Var = dyn_cast<VarDecl>(D); 696 const auto *Func = dyn_cast<FunctionDecl>(D); 697 // FIXME: The check for extern "C" here is not justified by the standard 698 // wording, but we retain it from the pre-DR1113 model to avoid breaking 699 // code. 700 // 701 // C++11 [basic.link]p4: 702 // An unnamed namespace or a namespace declared directly or indirectly 703 // within an unnamed namespace has internal linkage. 704 if ((!Var || !isFirstInExternCContext(Var)) && 705 (!Func || !isFirstInExternCContext(Func))) 706 return getInternalLinkageFor(D); 707 } 708 709 // Set up the defaults. 710 711 // C99 6.2.2p5: 712 // If the declaration of an identifier for an object has file 713 // scope and no storage-class specifier, its linkage is 714 // external. 715 LinkageInfo LV = getExternalLinkageFor(D); 716 717 if (!hasExplicitVisibilityAlready(computation)) { 718 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 719 LV.mergeVisibility(*Vis, true); 720 } else { 721 // If we're declared in a namespace with a visibility attribute, 722 // use that namespace's visibility, and it still counts as explicit. 723 for (const DeclContext *DC = D->getDeclContext(); 724 !isa<TranslationUnitDecl>(DC); 725 DC = DC->getParent()) { 726 const auto *ND = dyn_cast<NamespaceDecl>(DC); 727 if (!ND) continue; 728 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 729 LV.mergeVisibility(*Vis, true); 730 break; 731 } 732 } 733 } 734 735 // Add in global settings if the above didn't give us direct visibility. 736 if (!LV.isVisibilityExplicit()) { 737 // Use global type/value visibility as appropriate. 738 Visibility globalVisibility = 739 computation.isValueVisibility() 740 ? Context.getLangOpts().getValueVisibilityMode() 741 : Context.getLangOpts().getTypeVisibilityMode(); 742 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 743 744 // If we're paying attention to global visibility, apply 745 // -finline-visibility-hidden if this is an inline method. 746 if (useInlineVisibilityHidden(D)) 747 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 748 } 749 } 750 751 // C++ [basic.link]p4: 752 753 // A name having namespace scope that has not been given internal linkage 754 // above and that is the name of 755 // [...bullets...] 756 // has its linkage determined as follows: 757 // - if the enclosing namespace has internal linkage, the name has 758 // internal linkage; [handled above] 759 // - otherwise, if the declaration of the name is attached to a named 760 // module and is not exported, the name has module linkage; 761 // - otherwise, the name has external linkage. 762 // LV is currently set up to handle the last two bullets. 763 // 764 // The bullets are: 765 766 // - a variable; or 767 if (const auto *Var = dyn_cast<VarDecl>(D)) { 768 // GCC applies the following optimization to variables and static 769 // data members, but not to functions: 770 // 771 // Modify the variable's LV by the LV of its type unless this is 772 // C or extern "C". This follows from [basic.link]p9: 773 // A type without linkage shall not be used as the type of a 774 // variable or function with external linkage unless 775 // - the entity has C language linkage, or 776 // - the entity is declared within an unnamed namespace, or 777 // - the entity is not used or is defined in the same 778 // translation unit. 779 // and [basic.link]p10: 780 // ...the types specified by all declarations referring to a 781 // given variable or function shall be identical... 782 // C does not have an equivalent rule. 783 // 784 // Ignore this if we've got an explicit attribute; the user 785 // probably knows what they're doing. 786 // 787 // Note that we don't want to make the variable non-external 788 // because of this, but unique-external linkage suits us. 789 790 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 791 !IgnoreVarTypeLinkage) { 792 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 793 if (!isExternallyVisible(TypeLV.getLinkage())) 794 return LinkageInfo::uniqueExternal(); 795 if (!LV.isVisibilityExplicit()) 796 LV.mergeVisibility(TypeLV); 797 } 798 799 if (Var->getStorageClass() == SC_PrivateExtern) 800 LV.mergeVisibility(HiddenVisibility, true); 801 802 // Note that Sema::MergeVarDecl already takes care of implementing 803 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 804 // to do it here. 805 806 // As per function and class template specializations (below), 807 // consider LV for the template and template arguments. We're at file 808 // scope, so we do not need to worry about nested specializations. 809 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 810 mergeTemplateLV(LV, spec, computation); 811 } 812 813 // - a function; or 814 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 815 // In theory, we can modify the function's LV by the LV of its 816 // type unless it has C linkage (see comment above about variables 817 // for justification). In practice, GCC doesn't do this, so it's 818 // just too painful to make work. 819 820 if (Function->getStorageClass() == SC_PrivateExtern) 821 LV.mergeVisibility(HiddenVisibility, true); 822 823 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 824 // merging storage classes and visibility attributes, so we don't have to 825 // look at previous decls in here. 826 827 // In C++, then if the type of the function uses a type with 828 // unique-external linkage, it's not legally usable from outside 829 // this translation unit. However, we should use the C linkage 830 // rules instead for extern "C" declarations. 831 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 832 // Only look at the type-as-written. Otherwise, deducing the return type 833 // of a function could change its linkage. 834 QualType TypeAsWritten = Function->getType(); 835 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 836 TypeAsWritten = TSI->getType(); 837 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 838 return LinkageInfo::uniqueExternal(); 839 } 840 841 // Consider LV from the template and the template arguments. 842 // We're at file scope, so we do not need to worry about nested 843 // specializations. 844 if (FunctionTemplateSpecializationInfo *specInfo 845 = Function->getTemplateSpecializationInfo()) { 846 mergeTemplateLV(LV, Function, specInfo, computation); 847 } 848 849 // - a named class (Clause 9), or an unnamed class defined in a 850 // typedef declaration in which the class has the typedef name 851 // for linkage purposes (7.1.3); or 852 // - a named enumeration (7.2), or an unnamed enumeration 853 // defined in a typedef declaration in which the enumeration 854 // has the typedef name for linkage purposes (7.1.3); or 855 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 856 // Unnamed tags have no linkage. 857 if (!Tag->hasNameForLinkage()) 858 return LinkageInfo::none(); 859 860 // If this is a class template specialization, consider the 861 // linkage of the template and template arguments. We're at file 862 // scope, so we do not need to worry about nested specializations. 863 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 864 mergeTemplateLV(LV, spec, computation); 865 } 866 867 // FIXME: This is not part of the C++ standard any more. 868 // - an enumerator belonging to an enumeration with external linkage; or 869 } else if (isa<EnumConstantDecl>(D)) { 870 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 871 computation); 872 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 873 return LinkageInfo::none(); 874 LV.merge(EnumLV); 875 876 // - a template 877 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 878 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 879 LinkageInfo tempLV = 880 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 881 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 882 883 // An unnamed namespace or a namespace declared directly or indirectly 884 // within an unnamed namespace has internal linkage. All other namespaces 885 // have external linkage. 886 // 887 // We handled names in anonymous namespaces above. 888 } else if (isa<NamespaceDecl>(D)) { 889 return LV; 890 891 // By extension, we assign external linkage to Objective-C 892 // interfaces. 893 } else if (isa<ObjCInterfaceDecl>(D)) { 894 // fallout 895 896 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 897 // A typedef declaration has linkage if it gives a type a name for 898 // linkage purposes. 899 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 900 return LinkageInfo::none(); 901 902 } else if (isa<MSGuidDecl>(D)) { 903 // A GUID behaves like an inline variable with external linkage. Fall 904 // through. 905 906 // Everything not covered here has no linkage. 907 } else { 908 return LinkageInfo::none(); 909 } 910 911 // If we ended up with non-externally-visible linkage, visibility should 912 // always be default. 913 if (!isExternallyVisible(LV.getLinkage())) 914 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 915 916 return LV; 917 } 918 919 LinkageInfo 920 LinkageComputer::getLVForClassMember(const NamedDecl *D, 921 LVComputationKind computation, 922 bool IgnoreVarTypeLinkage) { 923 // Only certain class members have linkage. Note that fields don't 924 // really have linkage, but it's convenient to say they do for the 925 // purposes of calculating linkage of pointer-to-data-member 926 // template arguments. 927 // 928 // Templates also don't officially have linkage, but since we ignore 929 // the C++ standard and look at template arguments when determining 930 // linkage and visibility of a template specialization, we might hit 931 // a template template argument that way. If we do, we need to 932 // consider its linkage. 933 if (!(isa<CXXMethodDecl>(D) || 934 isa<VarDecl>(D) || 935 isa<FieldDecl>(D) || 936 isa<IndirectFieldDecl>(D) || 937 isa<TagDecl>(D) || 938 isa<TemplateDecl>(D))) 939 return LinkageInfo::none(); 940 941 LinkageInfo LV; 942 943 // If we have an explicit visibility attribute, merge that in. 944 if (!hasExplicitVisibilityAlready(computation)) { 945 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 946 LV.mergeVisibility(*Vis, true); 947 // If we're paying attention to global visibility, apply 948 // -finline-visibility-hidden if this is an inline method. 949 // 950 // Note that we do this before merging information about 951 // the class visibility. 952 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 953 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 954 } 955 956 // If this class member has an explicit visibility attribute, the only 957 // thing that can change its visibility is the template arguments, so 958 // only look for them when processing the class. 959 LVComputationKind classComputation = computation; 960 if (LV.isVisibilityExplicit()) 961 classComputation = withExplicitVisibilityAlready(computation); 962 963 LinkageInfo classLV = 964 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 965 // The member has the same linkage as the class. If that's not externally 966 // visible, we don't need to compute anything about the linkage. 967 // FIXME: If we're only computing linkage, can we bail out here? 968 if (!isExternallyVisible(classLV.getLinkage())) 969 return classLV; 970 971 972 // Otherwise, don't merge in classLV yet, because in certain cases 973 // we need to completely ignore the visibility from it. 974 975 // Specifically, if this decl exists and has an explicit attribute. 976 const NamedDecl *explicitSpecSuppressor = nullptr; 977 978 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 979 // Only look at the type-as-written. Otherwise, deducing the return type 980 // of a function could change its linkage. 981 QualType TypeAsWritten = MD->getType(); 982 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 983 TypeAsWritten = TSI->getType(); 984 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 985 return LinkageInfo::uniqueExternal(); 986 987 // If this is a method template specialization, use the linkage for 988 // the template parameters and arguments. 989 if (FunctionTemplateSpecializationInfo *spec 990 = MD->getTemplateSpecializationInfo()) { 991 mergeTemplateLV(LV, MD, spec, computation); 992 if (spec->isExplicitSpecialization()) { 993 explicitSpecSuppressor = MD; 994 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 995 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 996 } 997 } else if (isExplicitMemberSpecialization(MD)) { 998 explicitSpecSuppressor = MD; 999 } 1000 1001 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 1002 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 1003 mergeTemplateLV(LV, spec, computation); 1004 if (spec->isExplicitSpecialization()) { 1005 explicitSpecSuppressor = spec; 1006 } else { 1007 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1008 if (isExplicitMemberSpecialization(temp)) { 1009 explicitSpecSuppressor = temp->getTemplatedDecl(); 1010 } 1011 } 1012 } else if (isExplicitMemberSpecialization(RD)) { 1013 explicitSpecSuppressor = RD; 1014 } 1015 1016 // Static data members. 1017 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1018 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1019 mergeTemplateLV(LV, spec, computation); 1020 1021 // Modify the variable's linkage by its type, but ignore the 1022 // type's visibility unless it's a definition. 1023 if (!IgnoreVarTypeLinkage) { 1024 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1025 // FIXME: If the type's linkage is not externally visible, we can 1026 // give this static data member UniqueExternalLinkage. 1027 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1028 LV.mergeVisibility(typeLV); 1029 LV.mergeExternalVisibility(typeLV); 1030 } 1031 1032 if (isExplicitMemberSpecialization(VD)) { 1033 explicitSpecSuppressor = VD; 1034 } 1035 1036 // Template members. 1037 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1038 bool considerVisibility = 1039 (!LV.isVisibilityExplicit() && 1040 !classLV.isVisibilityExplicit() && 1041 !hasExplicitVisibilityAlready(computation)); 1042 LinkageInfo tempLV = 1043 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1044 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1045 1046 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1047 if (isExplicitMemberSpecialization(redeclTemp)) { 1048 explicitSpecSuppressor = temp->getTemplatedDecl(); 1049 } 1050 } 1051 } 1052 1053 // We should never be looking for an attribute directly on a template. 1054 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1055 1056 // If this member is an explicit member specialization, and it has 1057 // an explicit attribute, ignore visibility from the parent. 1058 bool considerClassVisibility = true; 1059 if (explicitSpecSuppressor && 1060 // optimization: hasDVA() is true only with explicit visibility. 1061 LV.isVisibilityExplicit() && 1062 classLV.getVisibility() != DefaultVisibility && 1063 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1064 considerClassVisibility = false; 1065 } 1066 1067 // Finally, merge in information from the class. 1068 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1069 1070 return LV; 1071 } 1072 1073 void NamedDecl::anchor() {} 1074 1075 bool NamedDecl::isLinkageValid() const { 1076 if (!hasCachedLinkage()) 1077 return true; 1078 1079 Linkage L = LinkageComputer{} 1080 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1081 .getLinkage(); 1082 return L == getCachedLinkage(); 1083 } 1084 1085 ReservedIdentifierStatus 1086 NamedDecl::isReserved(const LangOptions &LangOpts) const { 1087 const IdentifierInfo *II = getIdentifier(); 1088 1089 // This triggers at least for CXXLiteralIdentifiers, which we already checked 1090 // at lexing time. 1091 if (!II) 1092 return ReservedIdentifierStatus::NotReserved; 1093 1094 ReservedIdentifierStatus Status = II->isReserved(LangOpts); 1095 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) { 1096 // This name is only reserved at global scope. Check if this declaration 1097 // conflicts with a global scope declaration. 1098 if (isa<ParmVarDecl>(this) || isTemplateParameter()) 1099 return ReservedIdentifierStatus::NotReserved; 1100 1101 // C++ [dcl.link]/7: 1102 // Two declarations [conflict] if [...] one declares a function or 1103 // variable with C language linkage, and the other declares [...] a 1104 // variable that belongs to the global scope. 1105 // 1106 // Therefore names that are reserved at global scope are also reserved as 1107 // names of variables and functions with C language linkage. 1108 const DeclContext *DC = getDeclContext()->getRedeclContext(); 1109 if (DC->isTranslationUnit()) 1110 return Status; 1111 if (auto *VD = dyn_cast<VarDecl>(this)) 1112 if (VD->isExternC()) 1113 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1114 if (auto *FD = dyn_cast<FunctionDecl>(this)) 1115 if (FD->isExternC()) 1116 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1117 return ReservedIdentifierStatus::NotReserved; 1118 } 1119 1120 return Status; 1121 } 1122 1123 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1124 StringRef name = getName(); 1125 if (name.empty()) return SFF_None; 1126 1127 if (name.front() == 'C') 1128 if (name == "CFStringCreateWithFormat" || 1129 name == "CFStringCreateWithFormatAndArguments" || 1130 name == "CFStringAppendFormat" || 1131 name == "CFStringAppendFormatAndArguments") 1132 return SFF_CFString; 1133 return SFF_None; 1134 } 1135 1136 Linkage NamedDecl::getLinkageInternal() const { 1137 // We don't care about visibility here, so ask for the cheapest 1138 // possible visibility analysis. 1139 return LinkageComputer{} 1140 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1141 .getLinkage(); 1142 } 1143 1144 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1145 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1146 } 1147 1148 static Optional<Visibility> 1149 getExplicitVisibilityAux(const NamedDecl *ND, 1150 NamedDecl::ExplicitVisibilityKind kind, 1151 bool IsMostRecent) { 1152 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1153 1154 // Check the declaration itself first. 1155 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1156 return V; 1157 1158 // If this is a member class of a specialization of a class template 1159 // and the corresponding decl has explicit visibility, use that. 1160 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1161 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1162 if (InstantiatedFrom) 1163 return getVisibilityOf(InstantiatedFrom, kind); 1164 } 1165 1166 // If there wasn't explicit visibility there, and this is a 1167 // specialization of a class template, check for visibility 1168 // on the pattern. 1169 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1170 // Walk all the template decl till this point to see if there are 1171 // explicit visibility attributes. 1172 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1173 while (TD != nullptr) { 1174 auto Vis = getVisibilityOf(TD, kind); 1175 if (Vis != None) 1176 return Vis; 1177 TD = TD->getPreviousDecl(); 1178 } 1179 return None; 1180 } 1181 1182 // Use the most recent declaration. 1183 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1184 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1185 if (MostRecent != ND) 1186 return getExplicitVisibilityAux(MostRecent, kind, true); 1187 } 1188 1189 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1190 if (Var->isStaticDataMember()) { 1191 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1192 if (InstantiatedFrom) 1193 return getVisibilityOf(InstantiatedFrom, kind); 1194 } 1195 1196 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1197 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1198 kind); 1199 1200 return None; 1201 } 1202 // Also handle function template specializations. 1203 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1204 // If the function is a specialization of a template with an 1205 // explicit visibility attribute, use that. 1206 if (FunctionTemplateSpecializationInfo *templateInfo 1207 = fn->getTemplateSpecializationInfo()) 1208 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1209 kind); 1210 1211 // If the function is a member of a specialization of a class template 1212 // and the corresponding decl has explicit visibility, use that. 1213 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1214 if (InstantiatedFrom) 1215 return getVisibilityOf(InstantiatedFrom, kind); 1216 1217 return None; 1218 } 1219 1220 // The visibility of a template is stored in the templated decl. 1221 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1222 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1223 1224 return None; 1225 } 1226 1227 Optional<Visibility> 1228 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1229 return getExplicitVisibilityAux(this, kind, false); 1230 } 1231 1232 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1233 Decl *ContextDecl, 1234 LVComputationKind computation) { 1235 // This lambda has its linkage/visibility determined by its owner. 1236 const NamedDecl *Owner; 1237 if (!ContextDecl) 1238 Owner = dyn_cast<NamedDecl>(DC); 1239 else if (isa<ParmVarDecl>(ContextDecl)) 1240 Owner = 1241 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1242 else 1243 Owner = cast<NamedDecl>(ContextDecl); 1244 1245 if (!Owner) 1246 return LinkageInfo::none(); 1247 1248 // If the owner has a deduced type, we need to skip querying the linkage and 1249 // visibility of that type, because it might involve this closure type. The 1250 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1251 // than NoLinkage when we don't strictly need to, which is benign. 1252 auto *VD = dyn_cast<VarDecl>(Owner); 1253 LinkageInfo OwnerLV = 1254 VD && VD->getType()->getContainedDeducedType() 1255 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1256 : getLVForDecl(Owner, computation); 1257 1258 // A lambda never formally has linkage. But if the owner is externally 1259 // visible, then the lambda is too. We apply the same rules to blocks. 1260 if (!isExternallyVisible(OwnerLV.getLinkage())) 1261 return LinkageInfo::none(); 1262 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1263 OwnerLV.isVisibilityExplicit()); 1264 } 1265 1266 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1267 LVComputationKind computation) { 1268 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1269 if (Function->isInAnonymousNamespace() && 1270 !isFirstInExternCContext(Function)) 1271 return getInternalLinkageFor(Function); 1272 1273 // This is a "void f();" which got merged with a file static. 1274 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1275 return getInternalLinkageFor(Function); 1276 1277 LinkageInfo LV; 1278 if (!hasExplicitVisibilityAlready(computation)) { 1279 if (Optional<Visibility> Vis = 1280 getExplicitVisibility(Function, computation)) 1281 LV.mergeVisibility(*Vis, true); 1282 } 1283 1284 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1285 // merging storage classes and visibility attributes, so we don't have to 1286 // look at previous decls in here. 1287 1288 return LV; 1289 } 1290 1291 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1292 if (Var->hasExternalStorage()) { 1293 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1294 return getInternalLinkageFor(Var); 1295 1296 LinkageInfo LV; 1297 if (Var->getStorageClass() == SC_PrivateExtern) 1298 LV.mergeVisibility(HiddenVisibility, true); 1299 else if (!hasExplicitVisibilityAlready(computation)) { 1300 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1301 LV.mergeVisibility(*Vis, true); 1302 } 1303 1304 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1305 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1306 if (PrevLV.getLinkage()) 1307 LV.setLinkage(PrevLV.getLinkage()); 1308 LV.mergeVisibility(PrevLV); 1309 } 1310 1311 return LV; 1312 } 1313 1314 if (!Var->isStaticLocal()) 1315 return LinkageInfo::none(); 1316 } 1317 1318 ASTContext &Context = D->getASTContext(); 1319 if (!Context.getLangOpts().CPlusPlus) 1320 return LinkageInfo::none(); 1321 1322 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1323 if (!OuterD || OuterD->isInvalidDecl()) 1324 return LinkageInfo::none(); 1325 1326 LinkageInfo LV; 1327 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1328 if (!BD->getBlockManglingNumber()) 1329 return LinkageInfo::none(); 1330 1331 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1332 BD->getBlockManglingContextDecl(), computation); 1333 } else { 1334 const auto *FD = cast<FunctionDecl>(OuterD); 1335 if (!FD->isInlined() && 1336 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1337 return LinkageInfo::none(); 1338 1339 // If a function is hidden by -fvisibility-inlines-hidden option and 1340 // is not explicitly attributed as a hidden function, 1341 // we should not make static local variables in the function hidden. 1342 LV = getLVForDecl(FD, computation); 1343 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1344 !LV.isVisibilityExplicit() && 1345 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) { 1346 assert(cast<VarDecl>(D)->isStaticLocal()); 1347 // If this was an implicitly hidden inline method, check again for 1348 // explicit visibility on the parent class, and use that for static locals 1349 // if present. 1350 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1351 LV = getLVForDecl(MD->getParent(), computation); 1352 if (!LV.isVisibilityExplicit()) { 1353 Visibility globalVisibility = 1354 computation.isValueVisibility() 1355 ? Context.getLangOpts().getValueVisibilityMode() 1356 : Context.getLangOpts().getTypeVisibilityMode(); 1357 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1358 /*visibilityExplicit=*/false); 1359 } 1360 } 1361 } 1362 if (!isExternallyVisible(LV.getLinkage())) 1363 return LinkageInfo::none(); 1364 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1365 LV.isVisibilityExplicit()); 1366 } 1367 1368 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1369 LVComputationKind computation, 1370 bool IgnoreVarTypeLinkage) { 1371 // Internal_linkage attribute overrides other considerations. 1372 if (D->hasAttr<InternalLinkageAttr>()) 1373 return getInternalLinkageFor(D); 1374 1375 // Objective-C: treat all Objective-C declarations as having external 1376 // linkage. 1377 switch (D->getKind()) { 1378 default: 1379 break; 1380 1381 // Per C++ [basic.link]p2, only the names of objects, references, 1382 // functions, types, templates, namespaces, and values ever have linkage. 1383 // 1384 // Note that the name of a typedef, namespace alias, using declaration, 1385 // and so on are not the name of the corresponding type, namespace, or 1386 // declaration, so they do *not* have linkage. 1387 case Decl::ImplicitParam: 1388 case Decl::Label: 1389 case Decl::NamespaceAlias: 1390 case Decl::ParmVar: 1391 case Decl::Using: 1392 case Decl::UsingEnum: 1393 case Decl::UsingShadow: 1394 case Decl::UsingDirective: 1395 return LinkageInfo::none(); 1396 1397 case Decl::EnumConstant: 1398 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1399 if (D->getASTContext().getLangOpts().CPlusPlus) 1400 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1401 return LinkageInfo::visible_none(); 1402 1403 case Decl::Typedef: 1404 case Decl::TypeAlias: 1405 // A typedef declaration has linkage if it gives a type a name for 1406 // linkage purposes. 1407 if (!cast<TypedefNameDecl>(D) 1408 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1409 return LinkageInfo::none(); 1410 break; 1411 1412 case Decl::TemplateTemplateParm: // count these as external 1413 case Decl::NonTypeTemplateParm: 1414 case Decl::ObjCAtDefsField: 1415 case Decl::ObjCCategory: 1416 case Decl::ObjCCategoryImpl: 1417 case Decl::ObjCCompatibleAlias: 1418 case Decl::ObjCImplementation: 1419 case Decl::ObjCMethod: 1420 case Decl::ObjCProperty: 1421 case Decl::ObjCPropertyImpl: 1422 case Decl::ObjCProtocol: 1423 return getExternalLinkageFor(D); 1424 1425 case Decl::CXXRecord: { 1426 const auto *Record = cast<CXXRecordDecl>(D); 1427 if (Record->isLambda()) { 1428 if (Record->hasKnownLambdaInternalLinkage() || 1429 !Record->getLambdaManglingNumber()) { 1430 // This lambda has no mangling number, so it's internal. 1431 return getInternalLinkageFor(D); 1432 } 1433 1434 return getLVForClosure( 1435 Record->getDeclContext()->getRedeclContext(), 1436 Record->getLambdaContextDecl(), computation); 1437 } 1438 1439 break; 1440 } 1441 1442 case Decl::TemplateParamObject: { 1443 // The template parameter object can be referenced from anywhere its type 1444 // and value can be referenced. 1445 auto *TPO = cast<TemplateParamObjectDecl>(D); 1446 LinkageInfo LV = getLVForType(*TPO->getType(), computation); 1447 LV.merge(getLVForValue(TPO->getValue(), computation)); 1448 return LV; 1449 } 1450 } 1451 1452 // Handle linkage for namespace-scope names. 1453 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1454 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1455 1456 // C++ [basic.link]p5: 1457 // In addition, a member function, static data member, a named 1458 // class or enumeration of class scope, or an unnamed class or 1459 // enumeration defined in a class-scope typedef declaration such 1460 // that the class or enumeration has the typedef name for linkage 1461 // purposes (7.1.3), has external linkage if the name of the class 1462 // has external linkage. 1463 if (D->getDeclContext()->isRecord()) 1464 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1465 1466 // C++ [basic.link]p6: 1467 // The name of a function declared in block scope and the name of 1468 // an object declared by a block scope extern declaration have 1469 // linkage. If there is a visible declaration of an entity with 1470 // linkage having the same name and type, ignoring entities 1471 // declared outside the innermost enclosing namespace scope, the 1472 // block scope declaration declares that same entity and receives 1473 // the linkage of the previous declaration. If there is more than 1474 // one such matching entity, the program is ill-formed. Otherwise, 1475 // if no matching entity is found, the block scope entity receives 1476 // external linkage. 1477 if (D->getDeclContext()->isFunctionOrMethod()) 1478 return getLVForLocalDecl(D, computation); 1479 1480 // C++ [basic.link]p6: 1481 // Names not covered by these rules have no linkage. 1482 return LinkageInfo::none(); 1483 } 1484 1485 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1486 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1487 LVComputationKind computation) { 1488 // Internal_linkage attribute overrides other considerations. 1489 if (D->hasAttr<InternalLinkageAttr>()) 1490 return getInternalLinkageFor(D); 1491 1492 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1493 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1494 1495 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) 1496 return *LI; 1497 1498 LinkageInfo LV = computeLVForDecl(D, computation); 1499 if (D->hasCachedLinkage()) 1500 assert(D->getCachedLinkage() == LV.getLinkage()); 1501 1502 D->setCachedLinkage(LV.getLinkage()); 1503 cache(D, computation, LV); 1504 1505 #ifndef NDEBUG 1506 // In C (because of gnu inline) and in c++ with microsoft extensions an 1507 // static can follow an extern, so we can have two decls with different 1508 // linkages. 1509 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1510 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1511 return LV; 1512 1513 // We have just computed the linkage for this decl. By induction we know 1514 // that all other computed linkages match, check that the one we just 1515 // computed also does. 1516 NamedDecl *Old = nullptr; 1517 for (auto I : D->redecls()) { 1518 auto *T = cast<NamedDecl>(I); 1519 if (T == D) 1520 continue; 1521 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1522 Old = T; 1523 break; 1524 } 1525 } 1526 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1527 #endif 1528 1529 return LV; 1530 } 1531 1532 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1533 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D) 1534 ? NamedDecl::VisibilityForType 1535 : NamedDecl::VisibilityForValue; 1536 LVComputationKind CK(EK); 1537 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility 1538 ? CK.forLinkageOnly() 1539 : CK); 1540 } 1541 1542 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1543 Module *M = getOwningModule(); 1544 if (!M) 1545 return nullptr; 1546 1547 switch (M->Kind) { 1548 case Module::ModuleMapModule: 1549 // Module map modules have no special linkage semantics. 1550 return nullptr; 1551 1552 case Module::ModuleInterfaceUnit: 1553 return M; 1554 1555 case Module::GlobalModuleFragment: { 1556 // External linkage declarations in the global module have no owning module 1557 // for linkage purposes. But internal linkage declarations in the global 1558 // module fragment of a particular module are owned by that module for 1559 // linkage purposes. 1560 if (IgnoreLinkage) 1561 return nullptr; 1562 bool InternalLinkage; 1563 if (auto *ND = dyn_cast<NamedDecl>(this)) 1564 InternalLinkage = !ND->hasExternalFormalLinkage(); 1565 else { 1566 auto *NSD = dyn_cast<NamespaceDecl>(this); 1567 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || 1568 isInAnonymousNamespace(); 1569 } 1570 return InternalLinkage ? M->Parent : nullptr; 1571 } 1572 1573 case Module::PrivateModuleFragment: 1574 // The private module fragment is part of its containing module for linkage 1575 // purposes. 1576 return M->Parent; 1577 } 1578 1579 llvm_unreachable("unknown module kind"); 1580 } 1581 1582 void NamedDecl::printName(raw_ostream &os) const { 1583 os << Name; 1584 } 1585 1586 std::string NamedDecl::getQualifiedNameAsString() const { 1587 std::string QualName; 1588 llvm::raw_string_ostream OS(QualName); 1589 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1590 return QualName; 1591 } 1592 1593 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1594 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1595 } 1596 1597 void NamedDecl::printQualifiedName(raw_ostream &OS, 1598 const PrintingPolicy &P) const { 1599 if (getDeclContext()->isFunctionOrMethod()) { 1600 // We do not print '(anonymous)' for function parameters without name. 1601 printName(OS); 1602 return; 1603 } 1604 printNestedNameSpecifier(OS, P); 1605 if (getDeclName()) 1606 OS << *this; 1607 else { 1608 // Give the printName override a chance to pick a different name before we 1609 // fall back to "(anonymous)". 1610 SmallString<64> NameBuffer; 1611 llvm::raw_svector_ostream NameOS(NameBuffer); 1612 printName(NameOS); 1613 if (NameBuffer.empty()) 1614 OS << "(anonymous)"; 1615 else 1616 OS << NameBuffer; 1617 } 1618 } 1619 1620 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1621 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1622 } 1623 1624 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1625 const PrintingPolicy &P) const { 1626 const DeclContext *Ctx = getDeclContext(); 1627 1628 // For ObjC methods and properties, look through categories and use the 1629 // interface as context. 1630 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { 1631 if (auto *ID = MD->getClassInterface()) 1632 Ctx = ID; 1633 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1634 if (auto *MD = PD->getGetterMethodDecl()) 1635 if (auto *ID = MD->getClassInterface()) 1636 Ctx = ID; 1637 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { 1638 if (auto *CI = ID->getContainingInterface()) 1639 Ctx = CI; 1640 } 1641 1642 if (Ctx->isFunctionOrMethod()) 1643 return; 1644 1645 using ContextsTy = SmallVector<const DeclContext *, 8>; 1646 ContextsTy Contexts; 1647 1648 // Collect named contexts. 1649 DeclarationName NameInScope = getDeclName(); 1650 for (; Ctx; Ctx = Ctx->getParent()) { 1651 // Suppress anonymous namespace if requested. 1652 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) && 1653 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace()) 1654 continue; 1655 1656 // Suppress inline namespace if it doesn't make the result ambiguous. 1657 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope && 1658 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope)) 1659 continue; 1660 1661 // Skip non-named contexts such as linkage specifications and ExportDecls. 1662 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx); 1663 if (!ND) 1664 continue; 1665 1666 Contexts.push_back(Ctx); 1667 NameInScope = ND->getDeclName(); 1668 } 1669 1670 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1671 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1672 OS << Spec->getName(); 1673 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1674 printTemplateArgumentList( 1675 OS, TemplateArgs.asArray(), P, 1676 Spec->getSpecializedTemplate()->getTemplateParameters()); 1677 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1678 if (ND->isAnonymousNamespace()) { 1679 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1680 : "(anonymous namespace)"); 1681 } 1682 else 1683 OS << *ND; 1684 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1685 if (!RD->getIdentifier()) 1686 OS << "(anonymous " << RD->getKindName() << ')'; 1687 else 1688 OS << *RD; 1689 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1690 const FunctionProtoType *FT = nullptr; 1691 if (FD->hasWrittenPrototype()) 1692 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1693 1694 OS << *FD << '('; 1695 if (FT) { 1696 unsigned NumParams = FD->getNumParams(); 1697 for (unsigned i = 0; i < NumParams; ++i) { 1698 if (i) 1699 OS << ", "; 1700 OS << FD->getParamDecl(i)->getType().stream(P); 1701 } 1702 1703 if (FT->isVariadic()) { 1704 if (NumParams > 0) 1705 OS << ", "; 1706 OS << "..."; 1707 } 1708 } 1709 OS << ')'; 1710 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1711 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1712 // enumerator is declared in the scope that immediately contains 1713 // the enum-specifier. Each scoped enumerator is declared in the 1714 // scope of the enumeration. 1715 // For the case of unscoped enumerator, do not include in the qualified 1716 // name any information about its enum enclosing scope, as its visibility 1717 // is global. 1718 if (ED->isScoped()) 1719 OS << *ED; 1720 else 1721 continue; 1722 } else { 1723 OS << *cast<NamedDecl>(DC); 1724 } 1725 OS << "::"; 1726 } 1727 } 1728 1729 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1730 const PrintingPolicy &Policy, 1731 bool Qualified) const { 1732 if (Qualified) 1733 printQualifiedName(OS, Policy); 1734 else 1735 printName(OS); 1736 } 1737 1738 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1739 return true; 1740 } 1741 static bool isRedeclarableImpl(...) { return false; } 1742 static bool isRedeclarable(Decl::Kind K) { 1743 switch (K) { 1744 #define DECL(Type, Base) \ 1745 case Decl::Type: \ 1746 return isRedeclarableImpl((Type##Decl *)nullptr); 1747 #define ABSTRACT_DECL(DECL) 1748 #include "clang/AST/DeclNodes.inc" 1749 } 1750 llvm_unreachable("unknown decl kind"); 1751 } 1752 1753 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1754 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1755 1756 // Never replace one imported declaration with another; we need both results 1757 // when re-exporting. 1758 if (OldD->isFromASTFile() && isFromASTFile()) 1759 return false; 1760 1761 // A kind mismatch implies that the declaration is not replaced. 1762 if (OldD->getKind() != getKind()) 1763 return false; 1764 1765 // For method declarations, we never replace. (Why?) 1766 if (isa<ObjCMethodDecl>(this)) 1767 return false; 1768 1769 // For parameters, pick the newer one. This is either an error or (in 1770 // Objective-C) permitted as an extension. 1771 if (isa<ParmVarDecl>(this)) 1772 return true; 1773 1774 // Inline namespaces can give us two declarations with the same 1775 // name and kind in the same scope but different contexts; we should 1776 // keep both declarations in this case. 1777 if (!this->getDeclContext()->getRedeclContext()->Equals( 1778 OldD->getDeclContext()->getRedeclContext())) 1779 return false; 1780 1781 // Using declarations can be replaced if they import the same name from the 1782 // same context. 1783 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1784 ASTContext &Context = getASTContext(); 1785 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1786 Context.getCanonicalNestedNameSpecifier( 1787 cast<UsingDecl>(OldD)->getQualifier()); 1788 } 1789 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1790 ASTContext &Context = getASTContext(); 1791 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1792 Context.getCanonicalNestedNameSpecifier( 1793 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1794 } 1795 1796 if (isRedeclarable(getKind())) { 1797 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1798 return false; 1799 1800 if (IsKnownNewer) 1801 return true; 1802 1803 // Check whether this is actually newer than OldD. We want to keep the 1804 // newer declaration. This loop will usually only iterate once, because 1805 // OldD is usually the previous declaration. 1806 for (auto D : redecls()) { 1807 if (D == OldD) 1808 break; 1809 1810 // If we reach the canonical declaration, then OldD is not actually older 1811 // than this one. 1812 // 1813 // FIXME: In this case, we should not add this decl to the lookup table. 1814 if (D->isCanonicalDecl()) 1815 return false; 1816 } 1817 1818 // It's a newer declaration of the same kind of declaration in the same 1819 // scope: we want this decl instead of the existing one. 1820 return true; 1821 } 1822 1823 // In all other cases, we need to keep both declarations in case they have 1824 // different visibility. Any attempt to use the name will result in an 1825 // ambiguity if more than one is visible. 1826 return false; 1827 } 1828 1829 bool NamedDecl::hasLinkage() const { 1830 return getFormalLinkage() != NoLinkage; 1831 } 1832 1833 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1834 NamedDecl *ND = this; 1835 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1836 ND = UD->getTargetDecl(); 1837 1838 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1839 return AD->getClassInterface(); 1840 1841 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1842 return AD->getNamespace(); 1843 1844 return ND; 1845 } 1846 1847 bool NamedDecl::isCXXInstanceMember() const { 1848 if (!isCXXClassMember()) 1849 return false; 1850 1851 const NamedDecl *D = this; 1852 if (isa<UsingShadowDecl>(D)) 1853 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1854 1855 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1856 return true; 1857 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1858 return MD->isInstance(); 1859 return false; 1860 } 1861 1862 //===----------------------------------------------------------------------===// 1863 // DeclaratorDecl Implementation 1864 //===----------------------------------------------------------------------===// 1865 1866 template <typename DeclT> 1867 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1868 if (decl->getNumTemplateParameterLists() > 0) 1869 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1870 return decl->getInnerLocStart(); 1871 } 1872 1873 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1874 TypeSourceInfo *TSI = getTypeSourceInfo(); 1875 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1876 return SourceLocation(); 1877 } 1878 1879 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1880 TypeSourceInfo *TSI = getTypeSourceInfo(); 1881 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1882 return SourceLocation(); 1883 } 1884 1885 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1886 if (QualifierLoc) { 1887 // Make sure the extended decl info is allocated. 1888 if (!hasExtInfo()) { 1889 // Save (non-extended) type source info pointer. 1890 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1891 // Allocate external info struct. 1892 DeclInfo = new (getASTContext()) ExtInfo; 1893 // Restore savedTInfo into (extended) decl info. 1894 getExtInfo()->TInfo = savedTInfo; 1895 } 1896 // Set qualifier info. 1897 getExtInfo()->QualifierLoc = QualifierLoc; 1898 } else if (hasExtInfo()) { 1899 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1900 getExtInfo()->QualifierLoc = QualifierLoc; 1901 } 1902 } 1903 1904 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 1905 assert(TrailingRequiresClause); 1906 // Make sure the extended decl info is allocated. 1907 if (!hasExtInfo()) { 1908 // Save (non-extended) type source info pointer. 1909 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1910 // Allocate external info struct. 1911 DeclInfo = new (getASTContext()) ExtInfo; 1912 // Restore savedTInfo into (extended) decl info. 1913 getExtInfo()->TInfo = savedTInfo; 1914 } 1915 // Set requires clause info. 1916 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 1917 } 1918 1919 void DeclaratorDecl::setTemplateParameterListsInfo( 1920 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1921 assert(!TPLists.empty()); 1922 // Make sure the extended decl info is allocated. 1923 if (!hasExtInfo()) { 1924 // Save (non-extended) type source info pointer. 1925 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1926 // Allocate external info struct. 1927 DeclInfo = new (getASTContext()) ExtInfo; 1928 // Restore savedTInfo into (extended) decl info. 1929 getExtInfo()->TInfo = savedTInfo; 1930 } 1931 // Set the template parameter lists info. 1932 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1933 } 1934 1935 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1936 return getTemplateOrInnerLocStart(this); 1937 } 1938 1939 // Helper function: returns true if QT is or contains a type 1940 // having a postfix component. 1941 static bool typeIsPostfix(QualType QT) { 1942 while (true) { 1943 const Type* T = QT.getTypePtr(); 1944 switch (T->getTypeClass()) { 1945 default: 1946 return false; 1947 case Type::Pointer: 1948 QT = cast<PointerType>(T)->getPointeeType(); 1949 break; 1950 case Type::BlockPointer: 1951 QT = cast<BlockPointerType>(T)->getPointeeType(); 1952 break; 1953 case Type::MemberPointer: 1954 QT = cast<MemberPointerType>(T)->getPointeeType(); 1955 break; 1956 case Type::LValueReference: 1957 case Type::RValueReference: 1958 QT = cast<ReferenceType>(T)->getPointeeType(); 1959 break; 1960 case Type::PackExpansion: 1961 QT = cast<PackExpansionType>(T)->getPattern(); 1962 break; 1963 case Type::Paren: 1964 case Type::ConstantArray: 1965 case Type::DependentSizedArray: 1966 case Type::IncompleteArray: 1967 case Type::VariableArray: 1968 case Type::FunctionProto: 1969 case Type::FunctionNoProto: 1970 return true; 1971 } 1972 } 1973 } 1974 1975 SourceRange DeclaratorDecl::getSourceRange() const { 1976 SourceLocation RangeEnd = getLocation(); 1977 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1978 // If the declaration has no name or the type extends past the name take the 1979 // end location of the type. 1980 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1981 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1982 } 1983 return SourceRange(getOuterLocStart(), RangeEnd); 1984 } 1985 1986 void QualifierInfo::setTemplateParameterListsInfo( 1987 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1988 // Free previous template parameters (if any). 1989 if (NumTemplParamLists > 0) { 1990 Context.Deallocate(TemplParamLists); 1991 TemplParamLists = nullptr; 1992 NumTemplParamLists = 0; 1993 } 1994 // Set info on matched template parameter lists (if any). 1995 if (!TPLists.empty()) { 1996 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1997 NumTemplParamLists = TPLists.size(); 1998 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1999 } 2000 } 2001 2002 //===----------------------------------------------------------------------===// 2003 // VarDecl Implementation 2004 //===----------------------------------------------------------------------===// 2005 2006 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 2007 switch (SC) { 2008 case SC_None: break; 2009 case SC_Auto: return "auto"; 2010 case SC_Extern: return "extern"; 2011 case SC_PrivateExtern: return "__private_extern__"; 2012 case SC_Register: return "register"; 2013 case SC_Static: return "static"; 2014 } 2015 2016 llvm_unreachable("Invalid storage class"); 2017 } 2018 2019 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 2020 SourceLocation StartLoc, SourceLocation IdLoc, 2021 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2022 StorageClass SC) 2023 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 2024 redeclarable_base(C) { 2025 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 2026 "VarDeclBitfields too large!"); 2027 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 2028 "ParmVarDeclBitfields too large!"); 2029 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 2030 "NonParmVarDeclBitfields too large!"); 2031 AllBits = 0; 2032 VarDeclBits.SClass = SC; 2033 // Everything else is implicitly initialized to false. 2034 } 2035 2036 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 2037 SourceLocation StartL, SourceLocation IdL, 2038 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2039 StorageClass S) { 2040 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 2041 } 2042 2043 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2044 return new (C, ID) 2045 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 2046 QualType(), nullptr, SC_None); 2047 } 2048 2049 void VarDecl::setStorageClass(StorageClass SC) { 2050 assert(isLegalForVariable(SC)); 2051 VarDeclBits.SClass = SC; 2052 } 2053 2054 VarDecl::TLSKind VarDecl::getTLSKind() const { 2055 switch (VarDeclBits.TSCSpec) { 2056 case TSCS_unspecified: 2057 if (!hasAttr<ThreadAttr>() && 2058 !(getASTContext().getLangOpts().OpenMPUseTLS && 2059 getASTContext().getTargetInfo().isTLSSupported() && 2060 hasAttr<OMPThreadPrivateDeclAttr>())) 2061 return TLS_None; 2062 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2063 LangOptions::MSVC2015)) || 2064 hasAttr<OMPThreadPrivateDeclAttr>()) 2065 ? TLS_Dynamic 2066 : TLS_Static; 2067 case TSCS___thread: // Fall through. 2068 case TSCS__Thread_local: 2069 return TLS_Static; 2070 case TSCS_thread_local: 2071 return TLS_Dynamic; 2072 } 2073 llvm_unreachable("Unknown thread storage class specifier!"); 2074 } 2075 2076 SourceRange VarDecl::getSourceRange() const { 2077 if (const Expr *Init = getInit()) { 2078 SourceLocation InitEnd = Init->getEndLoc(); 2079 // If Init is implicit, ignore its source range and fallback on 2080 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2081 if (InitEnd.isValid() && InitEnd != getLocation()) 2082 return SourceRange(getOuterLocStart(), InitEnd); 2083 } 2084 return DeclaratorDecl::getSourceRange(); 2085 } 2086 2087 template<typename T> 2088 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2089 // C++ [dcl.link]p1: All function types, function names with external linkage, 2090 // and variable names with external linkage have a language linkage. 2091 if (!D.hasExternalFormalLinkage()) 2092 return NoLanguageLinkage; 2093 2094 // Language linkage is a C++ concept, but saying that everything else in C has 2095 // C language linkage fits the implementation nicely. 2096 ASTContext &Context = D.getASTContext(); 2097 if (!Context.getLangOpts().CPlusPlus) 2098 return CLanguageLinkage; 2099 2100 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2101 // language linkage of the names of class members and the function type of 2102 // class member functions. 2103 const DeclContext *DC = D.getDeclContext(); 2104 if (DC->isRecord()) 2105 return CXXLanguageLinkage; 2106 2107 // If the first decl is in an extern "C" context, any other redeclaration 2108 // will have C language linkage. If the first one is not in an extern "C" 2109 // context, we would have reported an error for any other decl being in one. 2110 if (isFirstInExternCContext(&D)) 2111 return CLanguageLinkage; 2112 return CXXLanguageLinkage; 2113 } 2114 2115 template<typename T> 2116 static bool isDeclExternC(const T &D) { 2117 // Since the context is ignored for class members, they can only have C++ 2118 // language linkage or no language linkage. 2119 const DeclContext *DC = D.getDeclContext(); 2120 if (DC->isRecord()) { 2121 assert(D.getASTContext().getLangOpts().CPlusPlus); 2122 return false; 2123 } 2124 2125 return D.getLanguageLinkage() == CLanguageLinkage; 2126 } 2127 2128 LanguageLinkage VarDecl::getLanguageLinkage() const { 2129 return getDeclLanguageLinkage(*this); 2130 } 2131 2132 bool VarDecl::isExternC() const { 2133 return isDeclExternC(*this); 2134 } 2135 2136 bool VarDecl::isInExternCContext() const { 2137 return getLexicalDeclContext()->isExternCContext(); 2138 } 2139 2140 bool VarDecl::isInExternCXXContext() const { 2141 return getLexicalDeclContext()->isExternCXXContext(); 2142 } 2143 2144 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2145 2146 VarDecl::DefinitionKind 2147 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2148 if (isThisDeclarationADemotedDefinition()) 2149 return DeclarationOnly; 2150 2151 // C++ [basic.def]p2: 2152 // A declaration is a definition unless [...] it contains the 'extern' 2153 // specifier or a linkage-specification and neither an initializer [...], 2154 // it declares a non-inline static data member in a class declaration [...], 2155 // it declares a static data member outside a class definition and the variable 2156 // was defined within the class with the constexpr specifier [...], 2157 // C++1y [temp.expl.spec]p15: 2158 // An explicit specialization of a static data member or an explicit 2159 // specialization of a static data member template is a definition if the 2160 // declaration includes an initializer; otherwise, it is a declaration. 2161 // 2162 // FIXME: How do you declare (but not define) a partial specialization of 2163 // a static data member template outside the containing class? 2164 if (isStaticDataMember()) { 2165 if (isOutOfLine() && 2166 !(getCanonicalDecl()->isInline() && 2167 getCanonicalDecl()->isConstexpr()) && 2168 (hasInit() || 2169 // If the first declaration is out-of-line, this may be an 2170 // instantiation of an out-of-line partial specialization of a variable 2171 // template for which we have not yet instantiated the initializer. 2172 (getFirstDecl()->isOutOfLine() 2173 ? getTemplateSpecializationKind() == TSK_Undeclared 2174 : getTemplateSpecializationKind() != 2175 TSK_ExplicitSpecialization) || 2176 isa<VarTemplatePartialSpecializationDecl>(this))) 2177 return Definition; 2178 if (!isOutOfLine() && isInline()) 2179 return Definition; 2180 return DeclarationOnly; 2181 } 2182 // C99 6.7p5: 2183 // A definition of an identifier is a declaration for that identifier that 2184 // [...] causes storage to be reserved for that object. 2185 // Note: that applies for all non-file-scope objects. 2186 // C99 6.9.2p1: 2187 // If the declaration of an identifier for an object has file scope and an 2188 // initializer, the declaration is an external definition for the identifier 2189 if (hasInit()) 2190 return Definition; 2191 2192 if (hasDefiningAttr()) 2193 return Definition; 2194 2195 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2196 if (!SAA->isInherited()) 2197 return Definition; 2198 2199 // A variable template specialization (other than a static data member 2200 // template or an explicit specialization) is a declaration until we 2201 // instantiate its initializer. 2202 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2203 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2204 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2205 !VTSD->IsCompleteDefinition) 2206 return DeclarationOnly; 2207 } 2208 2209 if (hasExternalStorage()) 2210 return DeclarationOnly; 2211 2212 // [dcl.link] p7: 2213 // A declaration directly contained in a linkage-specification is treated 2214 // as if it contains the extern specifier for the purpose of determining 2215 // the linkage of the declared name and whether it is a definition. 2216 if (isSingleLineLanguageLinkage(*this)) 2217 return DeclarationOnly; 2218 2219 // C99 6.9.2p2: 2220 // A declaration of an object that has file scope without an initializer, 2221 // and without a storage class specifier or the scs 'static', constitutes 2222 // a tentative definition. 2223 // No such thing in C++. 2224 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2225 return TentativeDefinition; 2226 2227 // What's left is (in C, block-scope) declarations without initializers or 2228 // external storage. These are definitions. 2229 return Definition; 2230 } 2231 2232 VarDecl *VarDecl::getActingDefinition() { 2233 DefinitionKind Kind = isThisDeclarationADefinition(); 2234 if (Kind != TentativeDefinition) 2235 return nullptr; 2236 2237 VarDecl *LastTentative = nullptr; 2238 2239 // Loop through the declaration chain, starting with the most recent. 2240 for (VarDecl *Decl = getMostRecentDecl(); Decl; 2241 Decl = Decl->getPreviousDecl()) { 2242 Kind = Decl->isThisDeclarationADefinition(); 2243 if (Kind == Definition) 2244 return nullptr; 2245 // Record the first (most recent) TentativeDefinition that is encountered. 2246 if (Kind == TentativeDefinition && !LastTentative) 2247 LastTentative = Decl; 2248 } 2249 2250 return LastTentative; 2251 } 2252 2253 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2254 VarDecl *First = getFirstDecl(); 2255 for (auto I : First->redecls()) { 2256 if (I->isThisDeclarationADefinition(C) == Definition) 2257 return I; 2258 } 2259 return nullptr; 2260 } 2261 2262 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2263 DefinitionKind Kind = DeclarationOnly; 2264 2265 const VarDecl *First = getFirstDecl(); 2266 for (auto I : First->redecls()) { 2267 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2268 if (Kind == Definition) 2269 break; 2270 } 2271 2272 return Kind; 2273 } 2274 2275 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2276 for (auto I : redecls()) { 2277 if (auto Expr = I->getInit()) { 2278 D = I; 2279 return Expr; 2280 } 2281 } 2282 return nullptr; 2283 } 2284 2285 bool VarDecl::hasInit() const { 2286 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2287 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2288 return false; 2289 2290 return !Init.isNull(); 2291 } 2292 2293 Expr *VarDecl::getInit() { 2294 if (!hasInit()) 2295 return nullptr; 2296 2297 if (auto *S = Init.dyn_cast<Stmt *>()) 2298 return cast<Expr>(S); 2299 2300 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2301 } 2302 2303 Stmt **VarDecl::getInitAddress() { 2304 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2305 return &ES->Value; 2306 2307 return Init.getAddrOfPtr1(); 2308 } 2309 2310 VarDecl *VarDecl::getInitializingDeclaration() { 2311 VarDecl *Def = nullptr; 2312 for (auto I : redecls()) { 2313 if (I->hasInit()) 2314 return I; 2315 2316 if (I->isThisDeclarationADefinition()) { 2317 if (isStaticDataMember()) 2318 return I; 2319 Def = I; 2320 } 2321 } 2322 return Def; 2323 } 2324 2325 bool VarDecl::isOutOfLine() const { 2326 if (Decl::isOutOfLine()) 2327 return true; 2328 2329 if (!isStaticDataMember()) 2330 return false; 2331 2332 // If this static data member was instantiated from a static data member of 2333 // a class template, check whether that static data member was defined 2334 // out-of-line. 2335 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2336 return VD->isOutOfLine(); 2337 2338 return false; 2339 } 2340 2341 void VarDecl::setInit(Expr *I) { 2342 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2343 Eval->~EvaluatedStmt(); 2344 getASTContext().Deallocate(Eval); 2345 } 2346 2347 Init = I; 2348 } 2349 2350 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const { 2351 const LangOptions &Lang = C.getLangOpts(); 2352 2353 // OpenCL permits const integral variables to be used in constant 2354 // expressions, like in C++98. 2355 if (!Lang.CPlusPlus && !Lang.OpenCL) 2356 return false; 2357 2358 // Function parameters are never usable in constant expressions. 2359 if (isa<ParmVarDecl>(this)) 2360 return false; 2361 2362 // The values of weak variables are never usable in constant expressions. 2363 if (isWeak()) 2364 return false; 2365 2366 // In C++11, any variable of reference type can be used in a constant 2367 // expression if it is initialized by a constant expression. 2368 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2369 return true; 2370 2371 // Only const objects can be used in constant expressions in C++. C++98 does 2372 // not require the variable to be non-volatile, but we consider this to be a 2373 // defect. 2374 if (!getType().isConstant(C) || getType().isVolatileQualified()) 2375 return false; 2376 2377 // In C++, const, non-volatile variables of integral or enumeration types 2378 // can be used in constant expressions. 2379 if (getType()->isIntegralOrEnumerationType()) 2380 return true; 2381 2382 // Additionally, in C++11, non-volatile constexpr variables can be used in 2383 // constant expressions. 2384 return Lang.CPlusPlus11 && isConstexpr(); 2385 } 2386 2387 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const { 2388 // C++2a [expr.const]p3: 2389 // A variable is usable in constant expressions after its initializing 2390 // declaration is encountered... 2391 const VarDecl *DefVD = nullptr; 2392 const Expr *Init = getAnyInitializer(DefVD); 2393 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2394 return false; 2395 // ... if it is a constexpr variable, or it is of reference type or of 2396 // const-qualified integral or enumeration type, ... 2397 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2398 return false; 2399 // ... and its initializer is a constant initializer. 2400 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization()) 2401 return false; 2402 // C++98 [expr.const]p1: 2403 // An integral constant-expression can involve only [...] const variables 2404 // or static data members of integral or enumeration types initialized with 2405 // [integer] constant expressions (dcl.init) 2406 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) && 2407 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context)) 2408 return false; 2409 return true; 2410 } 2411 2412 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2413 /// form, which contains extra information on the evaluated value of the 2414 /// initializer. 2415 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2416 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2417 if (!Eval) { 2418 // Note: EvaluatedStmt contains an APValue, which usually holds 2419 // resources not allocated from the ASTContext. We need to do some 2420 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2421 // where we can detect whether there's anything to clean up or not. 2422 Eval = new (getASTContext()) EvaluatedStmt; 2423 Eval->Value = Init.get<Stmt *>(); 2424 Init = Eval; 2425 } 2426 return Eval; 2427 } 2428 2429 EvaluatedStmt *VarDecl::getEvaluatedStmt() const { 2430 return Init.dyn_cast<EvaluatedStmt *>(); 2431 } 2432 2433 APValue *VarDecl::evaluateValue() const { 2434 SmallVector<PartialDiagnosticAt, 8> Notes; 2435 return evaluateValue(Notes); 2436 } 2437 2438 APValue *VarDecl::evaluateValue( 2439 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2440 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2441 2442 const auto *Init = cast<Expr>(Eval->Value); 2443 assert(!Init->isValueDependent()); 2444 2445 // We only produce notes indicating why an initializer is non-constant the 2446 // first time it is evaluated. FIXME: The notes won't always be emitted the 2447 // first time we try evaluation, so might not be produced at all. 2448 if (Eval->WasEvaluated) 2449 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2450 2451 if (Eval->IsEvaluating) { 2452 // FIXME: Produce a diagnostic for self-initialization. 2453 return nullptr; 2454 } 2455 2456 Eval->IsEvaluating = true; 2457 2458 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2459 this, Notes); 2460 2461 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2462 // or that it's empty (so that there's nothing to clean up) if evaluation 2463 // failed. 2464 if (!Result) 2465 Eval->Evaluated = APValue(); 2466 else if (Eval->Evaluated.needsCleanup()) 2467 getASTContext().addDestruction(&Eval->Evaluated); 2468 2469 Eval->IsEvaluating = false; 2470 Eval->WasEvaluated = true; 2471 2472 return Result ? &Eval->Evaluated : nullptr; 2473 } 2474 2475 APValue *VarDecl::getEvaluatedValue() const { 2476 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2477 if (Eval->WasEvaluated) 2478 return &Eval->Evaluated; 2479 2480 return nullptr; 2481 } 2482 2483 bool VarDecl::hasICEInitializer(const ASTContext &Context) const { 2484 const Expr *Init = getInit(); 2485 assert(Init && "no initializer"); 2486 2487 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2488 if (!Eval->CheckedForICEInit) { 2489 Eval->CheckedForICEInit = true; 2490 Eval->HasICEInit = Init->isIntegerConstantExpr(Context); 2491 } 2492 return Eval->HasICEInit; 2493 } 2494 2495 bool VarDecl::hasConstantInitialization() const { 2496 // In C, all globals (and only globals) have constant initialization. 2497 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus) 2498 return true; 2499 2500 // In C++, it depends on whether the evaluation at the point of definition 2501 // was evaluatable as a constant initializer. 2502 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2503 return Eval->HasConstantInitialization; 2504 2505 return false; 2506 } 2507 2508 bool VarDecl::checkForConstantInitialization( 2509 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2510 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2511 // If we ask for the value before we know whether we have a constant 2512 // initializer, we can compute the wrong value (for example, due to 2513 // std::is_constant_evaluated()). 2514 assert(!Eval->WasEvaluated && 2515 "already evaluated var value before checking for constant init"); 2516 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"); 2517 2518 assert(!cast<Expr>(Eval->Value)->isValueDependent()); 2519 2520 // Evaluate the initializer to check whether it's a constant expression. 2521 Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty(); 2522 return Eval->HasConstantInitialization; 2523 } 2524 2525 bool VarDecl::isParameterPack() const { 2526 return isa<PackExpansionType>(getType()); 2527 } 2528 2529 template<typename DeclT> 2530 static DeclT *getDefinitionOrSelf(DeclT *D) { 2531 assert(D); 2532 if (auto *Def = D->getDefinition()) 2533 return Def; 2534 return D; 2535 } 2536 2537 bool VarDecl::isEscapingByref() const { 2538 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2539 } 2540 2541 bool VarDecl::isNonEscapingByref() const { 2542 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2543 } 2544 2545 bool VarDecl::hasDependentAlignment() const { 2546 QualType T = getType(); 2547 return T->isDependentType() || T->isUndeducedAutoType() || 2548 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) { 2549 return AA->isAlignmentDependent(); 2550 }); 2551 } 2552 2553 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2554 const VarDecl *VD = this; 2555 2556 // If this is an instantiated member, walk back to the template from which 2557 // it was instantiated. 2558 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2559 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2560 VD = VD->getInstantiatedFromStaticDataMember(); 2561 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2562 VD = NewVD; 2563 } 2564 } 2565 2566 // If it's an instantiated variable template specialization, find the 2567 // template or partial specialization from which it was instantiated. 2568 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2569 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2570 auto From = VDTemplSpec->getInstantiatedFrom(); 2571 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2572 while (!VTD->isMemberSpecialization()) { 2573 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2574 if (!NewVTD) 2575 break; 2576 VTD = NewVTD; 2577 } 2578 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2579 } 2580 if (auto *VTPSD = 2581 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2582 while (!VTPSD->isMemberSpecialization()) { 2583 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2584 if (!NewVTPSD) 2585 break; 2586 VTPSD = NewVTPSD; 2587 } 2588 return getDefinitionOrSelf<VarDecl>(VTPSD); 2589 } 2590 } 2591 } 2592 2593 // If this is the pattern of a variable template, find where it was 2594 // instantiated from. FIXME: Is this necessary? 2595 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2596 while (!VarTemplate->isMemberSpecialization()) { 2597 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2598 if (!NewVT) 2599 break; 2600 VarTemplate = NewVT; 2601 } 2602 2603 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2604 } 2605 2606 if (VD == this) 2607 return nullptr; 2608 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2609 } 2610 2611 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2612 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2613 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2614 2615 return nullptr; 2616 } 2617 2618 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2619 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2620 return Spec->getSpecializationKind(); 2621 2622 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2623 return MSI->getTemplateSpecializationKind(); 2624 2625 return TSK_Undeclared; 2626 } 2627 2628 TemplateSpecializationKind 2629 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2630 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2631 return MSI->getTemplateSpecializationKind(); 2632 2633 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2634 return Spec->getSpecializationKind(); 2635 2636 return TSK_Undeclared; 2637 } 2638 2639 SourceLocation VarDecl::getPointOfInstantiation() const { 2640 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2641 return Spec->getPointOfInstantiation(); 2642 2643 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2644 return MSI->getPointOfInstantiation(); 2645 2646 return SourceLocation(); 2647 } 2648 2649 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2650 return getASTContext().getTemplateOrSpecializationInfo(this) 2651 .dyn_cast<VarTemplateDecl *>(); 2652 } 2653 2654 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2655 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2656 } 2657 2658 bool VarDecl::isKnownToBeDefined() const { 2659 const auto &LangOpts = getASTContext().getLangOpts(); 2660 // In CUDA mode without relocatable device code, variables of form 'extern 2661 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2662 // memory pool. These are never undefined variables, even if they appear 2663 // inside of an anon namespace or static function. 2664 // 2665 // With CUDA relocatable device code enabled, these variables don't get 2666 // special handling; they're treated like regular extern variables. 2667 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2668 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2669 isa<IncompleteArrayType>(getType())) 2670 return true; 2671 2672 return hasDefinition(); 2673 } 2674 2675 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2676 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2677 (!Ctx.getLangOpts().RegisterStaticDestructors && 2678 !hasAttr<AlwaysDestroyAttr>())); 2679 } 2680 2681 QualType::DestructionKind 2682 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2683 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2684 if (Eval->HasConstantDestruction) 2685 return QualType::DK_none; 2686 2687 if (isNoDestroy(Ctx)) 2688 return QualType::DK_none; 2689 2690 return getType().isDestructedType(); 2691 } 2692 2693 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2694 if (isStaticDataMember()) 2695 // FIXME: Remove ? 2696 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2697 return getASTContext().getTemplateOrSpecializationInfo(this) 2698 .dyn_cast<MemberSpecializationInfo *>(); 2699 return nullptr; 2700 } 2701 2702 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2703 SourceLocation PointOfInstantiation) { 2704 assert((isa<VarTemplateSpecializationDecl>(this) || 2705 getMemberSpecializationInfo()) && 2706 "not a variable or static data member template specialization"); 2707 2708 if (VarTemplateSpecializationDecl *Spec = 2709 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2710 Spec->setSpecializationKind(TSK); 2711 if (TSK != TSK_ExplicitSpecialization && 2712 PointOfInstantiation.isValid() && 2713 Spec->getPointOfInstantiation().isInvalid()) { 2714 Spec->setPointOfInstantiation(PointOfInstantiation); 2715 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2716 L->InstantiationRequested(this); 2717 } 2718 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2719 MSI->setTemplateSpecializationKind(TSK); 2720 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2721 MSI->getPointOfInstantiation().isInvalid()) { 2722 MSI->setPointOfInstantiation(PointOfInstantiation); 2723 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2724 L->InstantiationRequested(this); 2725 } 2726 } 2727 } 2728 2729 void 2730 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2731 TemplateSpecializationKind TSK) { 2732 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2733 "Previous template or instantiation?"); 2734 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2735 } 2736 2737 //===----------------------------------------------------------------------===// 2738 // ParmVarDecl Implementation 2739 //===----------------------------------------------------------------------===// 2740 2741 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2742 SourceLocation StartLoc, 2743 SourceLocation IdLoc, IdentifierInfo *Id, 2744 QualType T, TypeSourceInfo *TInfo, 2745 StorageClass S, Expr *DefArg) { 2746 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2747 S, DefArg); 2748 } 2749 2750 QualType ParmVarDecl::getOriginalType() const { 2751 TypeSourceInfo *TSI = getTypeSourceInfo(); 2752 QualType T = TSI ? TSI->getType() : getType(); 2753 if (const auto *DT = dyn_cast<DecayedType>(T)) 2754 return DT->getOriginalType(); 2755 return T; 2756 } 2757 2758 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2759 return new (C, ID) 2760 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2761 nullptr, QualType(), nullptr, SC_None, nullptr); 2762 } 2763 2764 SourceRange ParmVarDecl::getSourceRange() const { 2765 if (!hasInheritedDefaultArg()) { 2766 SourceRange ArgRange = getDefaultArgRange(); 2767 if (ArgRange.isValid()) 2768 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2769 } 2770 2771 // DeclaratorDecl considers the range of postfix types as overlapping with the 2772 // declaration name, but this is not the case with parameters in ObjC methods. 2773 if (isa<ObjCMethodDecl>(getDeclContext())) 2774 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2775 2776 return DeclaratorDecl::getSourceRange(); 2777 } 2778 2779 bool ParmVarDecl::isDestroyedInCallee() const { 2780 // ns_consumed only affects code generation in ARC 2781 if (hasAttr<NSConsumedAttr>()) 2782 return getASTContext().getLangOpts().ObjCAutoRefCount; 2783 2784 // FIXME: isParamDestroyedInCallee() should probably imply 2785 // isDestructedType() 2786 auto *RT = getType()->getAs<RecordType>(); 2787 if (RT && RT->getDecl()->isParamDestroyedInCallee() && 2788 getType().isDestructedType()) 2789 return true; 2790 2791 return false; 2792 } 2793 2794 Expr *ParmVarDecl::getDefaultArg() { 2795 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2796 assert(!hasUninstantiatedDefaultArg() && 2797 "Default argument is not yet instantiated!"); 2798 2799 Expr *Arg = getInit(); 2800 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2801 return E->getSubExpr(); 2802 2803 return Arg; 2804 } 2805 2806 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2807 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2808 Init = defarg; 2809 } 2810 2811 SourceRange ParmVarDecl::getDefaultArgRange() const { 2812 switch (ParmVarDeclBits.DefaultArgKind) { 2813 case DAK_None: 2814 case DAK_Unparsed: 2815 // Nothing we can do here. 2816 return SourceRange(); 2817 2818 case DAK_Uninstantiated: 2819 return getUninstantiatedDefaultArg()->getSourceRange(); 2820 2821 case DAK_Normal: 2822 if (const Expr *E = getInit()) 2823 return E->getSourceRange(); 2824 2825 // Missing an actual expression, may be invalid. 2826 return SourceRange(); 2827 } 2828 llvm_unreachable("Invalid default argument kind."); 2829 } 2830 2831 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2832 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2833 Init = arg; 2834 } 2835 2836 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2837 assert(hasUninstantiatedDefaultArg() && 2838 "Wrong kind of initialization expression!"); 2839 return cast_or_null<Expr>(Init.get<Stmt *>()); 2840 } 2841 2842 bool ParmVarDecl::hasDefaultArg() const { 2843 // FIXME: We should just return false for DAK_None here once callers are 2844 // prepared for the case that we encountered an invalid default argument and 2845 // were unable to even build an invalid expression. 2846 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2847 !Init.isNull(); 2848 } 2849 2850 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2851 getASTContext().setParameterIndex(this, parameterIndex); 2852 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2853 } 2854 2855 unsigned ParmVarDecl::getParameterIndexLarge() const { 2856 return getASTContext().getParameterIndex(this); 2857 } 2858 2859 //===----------------------------------------------------------------------===// 2860 // FunctionDecl Implementation 2861 //===----------------------------------------------------------------------===// 2862 2863 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2864 SourceLocation StartLoc, 2865 const DeclarationNameInfo &NameInfo, QualType T, 2866 TypeSourceInfo *TInfo, StorageClass S, 2867 bool UsesFPIntrin, bool isInlineSpecified, 2868 ConstexprSpecKind ConstexprKind, 2869 Expr *TrailingRequiresClause) 2870 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2871 StartLoc), 2872 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 2873 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2874 assert(T.isNull() || T->isFunctionType()); 2875 FunctionDeclBits.SClass = S; 2876 FunctionDeclBits.IsInline = isInlineSpecified; 2877 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2878 FunctionDeclBits.IsVirtualAsWritten = false; 2879 FunctionDeclBits.IsPure = false; 2880 FunctionDeclBits.HasInheritedPrototype = false; 2881 FunctionDeclBits.HasWrittenPrototype = true; 2882 FunctionDeclBits.IsDeleted = false; 2883 FunctionDeclBits.IsTrivial = false; 2884 FunctionDeclBits.IsTrivialForCall = false; 2885 FunctionDeclBits.IsDefaulted = false; 2886 FunctionDeclBits.IsExplicitlyDefaulted = false; 2887 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2888 FunctionDeclBits.HasImplicitReturnZero = false; 2889 FunctionDeclBits.IsLateTemplateParsed = false; 2890 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind); 2891 FunctionDeclBits.InstantiationIsPending = false; 2892 FunctionDeclBits.UsesSEHTry = false; 2893 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin; 2894 FunctionDeclBits.HasSkippedBody = false; 2895 FunctionDeclBits.WillHaveBody = false; 2896 FunctionDeclBits.IsMultiVersion = false; 2897 FunctionDeclBits.IsCopyDeductionCandidate = false; 2898 FunctionDeclBits.HasODRHash = false; 2899 if (TrailingRequiresClause) 2900 setTrailingRequiresClause(TrailingRequiresClause); 2901 } 2902 2903 void FunctionDecl::getNameForDiagnostic( 2904 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2905 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2906 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2907 if (TemplateArgs) 2908 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2909 } 2910 2911 bool FunctionDecl::isVariadic() const { 2912 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2913 return FT->isVariadic(); 2914 return false; 2915 } 2916 2917 FunctionDecl::DefaultedFunctionInfo * 2918 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 2919 ArrayRef<DeclAccessPair> Lookups) { 2920 DefaultedFunctionInfo *Info = new (Context.Allocate( 2921 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 2922 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 2923 DefaultedFunctionInfo; 2924 Info->NumLookups = Lookups.size(); 2925 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 2926 Info->getTrailingObjects<DeclAccessPair>()); 2927 return Info; 2928 } 2929 2930 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 2931 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 2932 assert(!Body && "can't replace function body with defaulted function info"); 2933 2934 FunctionDeclBits.HasDefaultedFunctionInfo = true; 2935 DefaultedInfo = Info; 2936 } 2937 2938 FunctionDecl::DefaultedFunctionInfo * 2939 FunctionDecl::getDefaultedFunctionInfo() const { 2940 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 2941 } 2942 2943 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2944 for (auto I : redecls()) { 2945 if (I->doesThisDeclarationHaveABody()) { 2946 Definition = I; 2947 return true; 2948 } 2949 } 2950 2951 return false; 2952 } 2953 2954 bool FunctionDecl::hasTrivialBody() const { 2955 Stmt *S = getBody(); 2956 if (!S) { 2957 // Since we don't have a body for this function, we don't know if it's 2958 // trivial or not. 2959 return false; 2960 } 2961 2962 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2963 return true; 2964 return false; 2965 } 2966 2967 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const { 2968 if (!getFriendObjectKind()) 2969 return false; 2970 2971 // Check for a friend function instantiated from a friend function 2972 // definition in a templated class. 2973 if (const FunctionDecl *InstantiatedFrom = 2974 getInstantiatedFromMemberFunction()) 2975 return InstantiatedFrom->getFriendObjectKind() && 2976 InstantiatedFrom->isThisDeclarationADefinition(); 2977 2978 // Check for a friend function template instantiated from a friend 2979 // function template definition in a templated class. 2980 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) { 2981 if (const FunctionTemplateDecl *InstantiatedFrom = 2982 Template->getInstantiatedFromMemberTemplate()) 2983 return InstantiatedFrom->getFriendObjectKind() && 2984 InstantiatedFrom->isThisDeclarationADefinition(); 2985 } 2986 2987 return false; 2988 } 2989 2990 bool FunctionDecl::isDefined(const FunctionDecl *&Definition, 2991 bool CheckForPendingFriendDefinition) const { 2992 for (const FunctionDecl *FD : redecls()) { 2993 if (FD->isThisDeclarationADefinition()) { 2994 Definition = FD; 2995 return true; 2996 } 2997 2998 // If this is a friend function defined in a class template, it does not 2999 // have a body until it is used, nevertheless it is a definition, see 3000 // [temp.inst]p2: 3001 // 3002 // ... for the purpose of determining whether an instantiated redeclaration 3003 // is valid according to [basic.def.odr] and [class.mem], a declaration that 3004 // corresponds to a definition in the template is considered to be a 3005 // definition. 3006 // 3007 // The following code must produce redefinition error: 3008 // 3009 // template<typename T> struct C20 { friend void func_20() {} }; 3010 // C20<int> c20i; 3011 // void func_20() {} 3012 // 3013 if (CheckForPendingFriendDefinition && 3014 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 3015 Definition = FD; 3016 return true; 3017 } 3018 } 3019 3020 return false; 3021 } 3022 3023 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 3024 if (!hasBody(Definition)) 3025 return nullptr; 3026 3027 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 3028 "definition should not have a body"); 3029 if (Definition->Body) 3030 return Definition->Body.get(getASTContext().getExternalSource()); 3031 3032 return nullptr; 3033 } 3034 3035 void FunctionDecl::setBody(Stmt *B) { 3036 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3037 Body = LazyDeclStmtPtr(B); 3038 if (B) 3039 EndRangeLoc = B->getEndLoc(); 3040 } 3041 3042 void FunctionDecl::setPure(bool P) { 3043 FunctionDeclBits.IsPure = P; 3044 if (P) 3045 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 3046 Parent->markedVirtualFunctionPure(); 3047 } 3048 3049 template<std::size_t Len> 3050 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 3051 IdentifierInfo *II = ND->getIdentifier(); 3052 return II && II->isStr(Str); 3053 } 3054 3055 bool FunctionDecl::isMain() const { 3056 const TranslationUnitDecl *tunit = 3057 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3058 return tunit && 3059 !tunit->getASTContext().getLangOpts().Freestanding && 3060 isNamed(this, "main"); 3061 } 3062 3063 bool FunctionDecl::isMSVCRTEntryPoint() const { 3064 const TranslationUnitDecl *TUnit = 3065 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3066 if (!TUnit) 3067 return false; 3068 3069 // Even though we aren't really targeting MSVCRT if we are freestanding, 3070 // semantic analysis for these functions remains the same. 3071 3072 // MSVCRT entry points only exist on MSVCRT targets. 3073 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 3074 return false; 3075 3076 // Nameless functions like constructors cannot be entry points. 3077 if (!getIdentifier()) 3078 return false; 3079 3080 return llvm::StringSwitch<bool>(getName()) 3081 .Cases("main", // an ANSI console app 3082 "wmain", // a Unicode console App 3083 "WinMain", // an ANSI GUI app 3084 "wWinMain", // a Unicode GUI app 3085 "DllMain", // a DLL 3086 true) 3087 .Default(false); 3088 } 3089 3090 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 3091 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 3092 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 3093 getDeclName().getCXXOverloadedOperator() == OO_Delete || 3094 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 3095 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 3096 3097 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3098 return false; 3099 3100 const auto *proto = getType()->castAs<FunctionProtoType>(); 3101 if (proto->getNumParams() != 2 || proto->isVariadic()) 3102 return false; 3103 3104 ASTContext &Context = 3105 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 3106 ->getASTContext(); 3107 3108 // The result type and first argument type are constant across all 3109 // these operators. The second argument must be exactly void*. 3110 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 3111 } 3112 3113 bool FunctionDecl::isReplaceableGlobalAllocationFunction( 3114 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const { 3115 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3116 return false; 3117 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3118 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3119 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3120 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3121 return false; 3122 3123 if (isa<CXXRecordDecl>(getDeclContext())) 3124 return false; 3125 3126 // This can only fail for an invalid 'operator new' declaration. 3127 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3128 return false; 3129 3130 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3131 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 3132 return false; 3133 3134 // If this is a single-parameter function, it must be a replaceable global 3135 // allocation or deallocation function. 3136 if (FPT->getNumParams() == 1) 3137 return true; 3138 3139 unsigned Params = 1; 3140 QualType Ty = FPT->getParamType(Params); 3141 ASTContext &Ctx = getASTContext(); 3142 3143 auto Consume = [&] { 3144 ++Params; 3145 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3146 }; 3147 3148 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3149 bool IsSizedDelete = false; 3150 if (Ctx.getLangOpts().SizedDeallocation && 3151 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3152 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3153 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3154 IsSizedDelete = true; 3155 Consume(); 3156 } 3157 3158 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3159 // new/delete. 3160 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3161 Consume(); 3162 if (AlignmentParam) 3163 *AlignmentParam = Params; 3164 } 3165 3166 // Finally, if this is not a sized delete, the final parameter can 3167 // be a 'const std::nothrow_t&'. 3168 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3169 Ty = Ty->getPointeeType(); 3170 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3171 return false; 3172 if (Ty->isNothrowT()) { 3173 if (IsNothrow) 3174 *IsNothrow = true; 3175 Consume(); 3176 } 3177 } 3178 3179 return Params == FPT->getNumParams(); 3180 } 3181 3182 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3183 if (!getBuiltinID()) 3184 return false; 3185 3186 const FunctionDecl *Definition; 3187 return hasBody(Definition) && Definition->isInlineSpecified() && 3188 Definition->hasAttr<AlwaysInlineAttr>() && 3189 Definition->hasAttr<GNUInlineAttr>(); 3190 } 3191 3192 bool FunctionDecl::isDestroyingOperatorDelete() const { 3193 // C++ P0722: 3194 // Within a class C, a single object deallocation function with signature 3195 // (T, std::destroying_delete_t, <more params>) 3196 // is a destroying operator delete. 3197 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3198 getNumParams() < 2) 3199 return false; 3200 3201 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3202 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3203 RD->getIdentifier()->isStr("destroying_delete_t"); 3204 } 3205 3206 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3207 return getDeclLanguageLinkage(*this); 3208 } 3209 3210 bool FunctionDecl::isExternC() const { 3211 return isDeclExternC(*this); 3212 } 3213 3214 bool FunctionDecl::isInExternCContext() const { 3215 if (hasAttr<OpenCLKernelAttr>()) 3216 return true; 3217 return getLexicalDeclContext()->isExternCContext(); 3218 } 3219 3220 bool FunctionDecl::isInExternCXXContext() const { 3221 return getLexicalDeclContext()->isExternCXXContext(); 3222 } 3223 3224 bool FunctionDecl::isGlobal() const { 3225 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3226 return Method->isStatic(); 3227 3228 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3229 return false; 3230 3231 for (const DeclContext *DC = getDeclContext(); 3232 DC->isNamespace(); 3233 DC = DC->getParent()) { 3234 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3235 if (!Namespace->getDeclName()) 3236 return false; 3237 } 3238 } 3239 3240 return true; 3241 } 3242 3243 bool FunctionDecl::isNoReturn() const { 3244 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3245 hasAttr<C11NoReturnAttr>()) 3246 return true; 3247 3248 if (auto *FnTy = getType()->getAs<FunctionType>()) 3249 return FnTy->getNoReturnAttr(); 3250 3251 return false; 3252 } 3253 3254 3255 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3256 if (hasAttr<TargetAttr>()) 3257 return MultiVersionKind::Target; 3258 if (hasAttr<CPUDispatchAttr>()) 3259 return MultiVersionKind::CPUDispatch; 3260 if (hasAttr<CPUSpecificAttr>()) 3261 return MultiVersionKind::CPUSpecific; 3262 if (hasAttr<TargetClonesAttr>()) 3263 return MultiVersionKind::TargetClones; 3264 return MultiVersionKind::None; 3265 } 3266 3267 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3268 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3269 } 3270 3271 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3272 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3273 } 3274 3275 bool FunctionDecl::isTargetMultiVersion() const { 3276 return isMultiVersion() && hasAttr<TargetAttr>(); 3277 } 3278 3279 bool FunctionDecl::isTargetClonesMultiVersion() const { 3280 return isMultiVersion() && hasAttr<TargetClonesAttr>(); 3281 } 3282 3283 void 3284 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3285 redeclarable_base::setPreviousDecl(PrevDecl); 3286 3287 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3288 FunctionTemplateDecl *PrevFunTmpl 3289 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3290 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3291 FunTmpl->setPreviousDecl(PrevFunTmpl); 3292 } 3293 3294 if (PrevDecl && PrevDecl->isInlined()) 3295 setImplicitlyInline(true); 3296 } 3297 3298 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3299 3300 /// Returns a value indicating whether this function corresponds to a builtin 3301 /// function. 3302 /// 3303 /// The function corresponds to a built-in function if it is declared at 3304 /// translation scope or within an extern "C" block and its name matches with 3305 /// the name of a builtin. The returned value will be 0 for functions that do 3306 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3307 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3308 /// value. 3309 /// 3310 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3311 /// functions as their wrapped builtins. This shouldn't be done in general, but 3312 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3313 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3314 unsigned BuiltinID = 0; 3315 3316 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { 3317 BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); 3318 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) { 3319 BuiltinID = BAA->getBuiltinName()->getBuiltinID(); 3320 } else if (const auto *A = getAttr<BuiltinAttr>()) { 3321 BuiltinID = A->getID(); 3322 } 3323 3324 if (!BuiltinID) 3325 return 0; 3326 3327 // If the function is marked "overloadable", it has a different mangled name 3328 // and is not the C library function. 3329 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3330 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>())) 3331 return 0; 3332 3333 ASTContext &Context = getASTContext(); 3334 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3335 return BuiltinID; 3336 3337 // This function has the name of a known C library 3338 // function. Determine whether it actually refers to the C library 3339 // function or whether it just has the same name. 3340 3341 // If this is a static function, it's not a builtin. 3342 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3343 return 0; 3344 3345 // OpenCL v1.2 s6.9.f - The library functions defined in 3346 // the C99 standard headers are not available. 3347 if (Context.getLangOpts().OpenCL && 3348 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3349 return 0; 3350 3351 // CUDA does not have device-side standard library. printf and malloc are the 3352 // only special cases that are supported by device-side runtime. 3353 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3354 !hasAttr<CUDAHostAttr>() && 3355 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3356 return 0; 3357 3358 // As AMDGCN implementation of OpenMP does not have a device-side standard 3359 // library, none of the predefined library functions except printf and malloc 3360 // should be treated as a builtin i.e. 0 should be returned for them. 3361 if (Context.getTargetInfo().getTriple().isAMDGCN() && 3362 Context.getLangOpts().OpenMPIsDevice && 3363 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 3364 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3365 return 0; 3366 3367 return BuiltinID; 3368 } 3369 3370 /// getNumParams - Return the number of parameters this function must have 3371 /// based on its FunctionType. This is the length of the ParamInfo array 3372 /// after it has been created. 3373 unsigned FunctionDecl::getNumParams() const { 3374 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3375 return FPT ? FPT->getNumParams() : 0; 3376 } 3377 3378 void FunctionDecl::setParams(ASTContext &C, 3379 ArrayRef<ParmVarDecl *> NewParamInfo) { 3380 assert(!ParamInfo && "Already has param info!"); 3381 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3382 3383 // Zero params -> null pointer. 3384 if (!NewParamInfo.empty()) { 3385 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3386 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3387 } 3388 } 3389 3390 /// getMinRequiredArguments - Returns the minimum number of arguments 3391 /// needed to call this function. This may be fewer than the number of 3392 /// function parameters, if some of the parameters have default 3393 /// arguments (in C++) or are parameter packs (C++11). 3394 unsigned FunctionDecl::getMinRequiredArguments() const { 3395 if (!getASTContext().getLangOpts().CPlusPlus) 3396 return getNumParams(); 3397 3398 // Note that it is possible for a parameter with no default argument to 3399 // follow a parameter with a default argument. 3400 unsigned NumRequiredArgs = 0; 3401 unsigned MinParamsSoFar = 0; 3402 for (auto *Param : parameters()) { 3403 if (!Param->isParameterPack()) { 3404 ++MinParamsSoFar; 3405 if (!Param->hasDefaultArg()) 3406 NumRequiredArgs = MinParamsSoFar; 3407 } 3408 } 3409 return NumRequiredArgs; 3410 } 3411 3412 bool FunctionDecl::hasOneParamOrDefaultArgs() const { 3413 return getNumParams() == 1 || 3414 (getNumParams() > 1 && 3415 std::all_of(param_begin() + 1, param_end(), 3416 [](ParmVarDecl *P) { return P->hasDefaultArg(); })); 3417 } 3418 3419 /// The combination of the extern and inline keywords under MSVC forces 3420 /// the function to be required. 3421 /// 3422 /// Note: This function assumes that we will only get called when isInlined() 3423 /// would return true for this FunctionDecl. 3424 bool FunctionDecl::isMSExternInline() const { 3425 assert(isInlined() && "expected to get called on an inlined function!"); 3426 3427 const ASTContext &Context = getASTContext(); 3428 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3429 !hasAttr<DLLExportAttr>()) 3430 return false; 3431 3432 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3433 FD = FD->getPreviousDecl()) 3434 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3435 return true; 3436 3437 return false; 3438 } 3439 3440 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3441 if (Redecl->getStorageClass() != SC_Extern) 3442 return false; 3443 3444 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3445 FD = FD->getPreviousDecl()) 3446 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3447 return false; 3448 3449 return true; 3450 } 3451 3452 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3453 // Only consider file-scope declarations in this test. 3454 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3455 return false; 3456 3457 // Only consider explicit declarations; the presence of a builtin for a 3458 // libcall shouldn't affect whether a definition is externally visible. 3459 if (Redecl->isImplicit()) 3460 return false; 3461 3462 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3463 return true; // Not an inline definition 3464 3465 return false; 3466 } 3467 3468 /// For a function declaration in C or C++, determine whether this 3469 /// declaration causes the definition to be externally visible. 3470 /// 3471 /// For instance, this determines if adding the current declaration to the set 3472 /// of redeclarations of the given functions causes 3473 /// isInlineDefinitionExternallyVisible to change from false to true. 3474 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3475 assert(!doesThisDeclarationHaveABody() && 3476 "Must have a declaration without a body."); 3477 3478 ASTContext &Context = getASTContext(); 3479 3480 if (Context.getLangOpts().MSVCCompat) { 3481 const FunctionDecl *Definition; 3482 if (hasBody(Definition) && Definition->isInlined() && 3483 redeclForcesDefMSVC(this)) 3484 return true; 3485 } 3486 3487 if (Context.getLangOpts().CPlusPlus) 3488 return false; 3489 3490 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3491 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3492 // an externally visible definition. 3493 // 3494 // FIXME: What happens if gnu_inline gets added on after the first 3495 // declaration? 3496 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3497 return false; 3498 3499 const FunctionDecl *Prev = this; 3500 bool FoundBody = false; 3501 while ((Prev = Prev->getPreviousDecl())) { 3502 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3503 3504 if (Prev->doesThisDeclarationHaveABody()) { 3505 // If it's not the case that both 'inline' and 'extern' are 3506 // specified on the definition, then it is always externally visible. 3507 if (!Prev->isInlineSpecified() || 3508 Prev->getStorageClass() != SC_Extern) 3509 return false; 3510 } else if (Prev->isInlineSpecified() && 3511 Prev->getStorageClass() != SC_Extern) { 3512 return false; 3513 } 3514 } 3515 return FoundBody; 3516 } 3517 3518 // C99 6.7.4p6: 3519 // [...] If all of the file scope declarations for a function in a 3520 // translation unit include the inline function specifier without extern, 3521 // then the definition in that translation unit is an inline definition. 3522 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3523 return false; 3524 const FunctionDecl *Prev = this; 3525 bool FoundBody = false; 3526 while ((Prev = Prev->getPreviousDecl())) { 3527 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3528 if (RedeclForcesDefC99(Prev)) 3529 return false; 3530 } 3531 return FoundBody; 3532 } 3533 3534 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3535 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3536 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3537 : FunctionTypeLoc(); 3538 } 3539 3540 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3541 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3542 if (!FTL) 3543 return SourceRange(); 3544 3545 // Skip self-referential return types. 3546 const SourceManager &SM = getASTContext().getSourceManager(); 3547 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3548 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3549 if (RTRange.isInvalid() || Boundary.isInvalid() || 3550 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3551 return SourceRange(); 3552 3553 return RTRange; 3554 } 3555 3556 SourceRange FunctionDecl::getParametersSourceRange() const { 3557 unsigned NP = getNumParams(); 3558 SourceLocation EllipsisLoc = getEllipsisLoc(); 3559 3560 if (NP == 0 && EllipsisLoc.isInvalid()) 3561 return SourceRange(); 3562 3563 SourceLocation Begin = 3564 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3565 SourceLocation End = EllipsisLoc.isValid() 3566 ? EllipsisLoc 3567 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3568 3569 return SourceRange(Begin, End); 3570 } 3571 3572 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3573 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3574 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3575 } 3576 3577 /// For an inline function definition in C, or for a gnu_inline function 3578 /// in C++, determine whether the definition will be externally visible. 3579 /// 3580 /// Inline function definitions are always available for inlining optimizations. 3581 /// However, depending on the language dialect, declaration specifiers, and 3582 /// attributes, the definition of an inline function may or may not be 3583 /// "externally" visible to other translation units in the program. 3584 /// 3585 /// In C99, inline definitions are not externally visible by default. However, 3586 /// if even one of the global-scope declarations is marked "extern inline", the 3587 /// inline definition becomes externally visible (C99 6.7.4p6). 3588 /// 3589 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3590 /// definition, we use the GNU semantics for inline, which are nearly the 3591 /// opposite of C99 semantics. In particular, "inline" by itself will create 3592 /// an externally visible symbol, but "extern inline" will not create an 3593 /// externally visible symbol. 3594 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3595 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3596 hasAttr<AliasAttr>()) && 3597 "Must be a function definition"); 3598 assert(isInlined() && "Function must be inline"); 3599 ASTContext &Context = getASTContext(); 3600 3601 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3602 // Note: If you change the logic here, please change 3603 // doesDeclarationForceExternallyVisibleDefinition as well. 3604 // 3605 // If it's not the case that both 'inline' and 'extern' are 3606 // specified on the definition, then this inline definition is 3607 // externally visible. 3608 if (Context.getLangOpts().CPlusPlus) 3609 return false; 3610 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3611 return true; 3612 3613 // If any declaration is 'inline' but not 'extern', then this definition 3614 // is externally visible. 3615 for (auto Redecl : redecls()) { 3616 if (Redecl->isInlineSpecified() && 3617 Redecl->getStorageClass() != SC_Extern) 3618 return true; 3619 } 3620 3621 return false; 3622 } 3623 3624 // The rest of this function is C-only. 3625 assert(!Context.getLangOpts().CPlusPlus && 3626 "should not use C inline rules in C++"); 3627 3628 // C99 6.7.4p6: 3629 // [...] If all of the file scope declarations for a function in a 3630 // translation unit include the inline function specifier without extern, 3631 // then the definition in that translation unit is an inline definition. 3632 for (auto Redecl : redecls()) { 3633 if (RedeclForcesDefC99(Redecl)) 3634 return true; 3635 } 3636 3637 // C99 6.7.4p6: 3638 // An inline definition does not provide an external definition for the 3639 // function, and does not forbid an external definition in another 3640 // translation unit. 3641 return false; 3642 } 3643 3644 /// getOverloadedOperator - Which C++ overloaded operator this 3645 /// function represents, if any. 3646 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3647 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3648 return getDeclName().getCXXOverloadedOperator(); 3649 return OO_None; 3650 } 3651 3652 /// getLiteralIdentifier - The literal suffix identifier this function 3653 /// represents, if any. 3654 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3655 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3656 return getDeclName().getCXXLiteralIdentifier(); 3657 return nullptr; 3658 } 3659 3660 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3661 if (TemplateOrSpecialization.isNull()) 3662 return TK_NonTemplate; 3663 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3664 return TK_FunctionTemplate; 3665 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3666 return TK_MemberSpecialization; 3667 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3668 return TK_FunctionTemplateSpecialization; 3669 if (TemplateOrSpecialization.is 3670 <DependentFunctionTemplateSpecializationInfo*>()) 3671 return TK_DependentFunctionTemplateSpecialization; 3672 3673 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3674 } 3675 3676 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3677 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3678 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3679 3680 return nullptr; 3681 } 3682 3683 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3684 if (auto *MSI = 3685 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3686 return MSI; 3687 if (auto *FTSI = TemplateOrSpecialization 3688 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3689 return FTSI->getMemberSpecializationInfo(); 3690 return nullptr; 3691 } 3692 3693 void 3694 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3695 FunctionDecl *FD, 3696 TemplateSpecializationKind TSK) { 3697 assert(TemplateOrSpecialization.isNull() && 3698 "Member function is already a specialization"); 3699 MemberSpecializationInfo *Info 3700 = new (C) MemberSpecializationInfo(FD, TSK); 3701 TemplateOrSpecialization = Info; 3702 } 3703 3704 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3705 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3706 } 3707 3708 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3709 assert(TemplateOrSpecialization.isNull() && 3710 "Member function is already a specialization"); 3711 TemplateOrSpecialization = Template; 3712 } 3713 3714 bool FunctionDecl::isImplicitlyInstantiable() const { 3715 // If the function is invalid, it can't be implicitly instantiated. 3716 if (isInvalidDecl()) 3717 return false; 3718 3719 switch (getTemplateSpecializationKindForInstantiation()) { 3720 case TSK_Undeclared: 3721 case TSK_ExplicitInstantiationDefinition: 3722 case TSK_ExplicitSpecialization: 3723 return false; 3724 3725 case TSK_ImplicitInstantiation: 3726 return true; 3727 3728 case TSK_ExplicitInstantiationDeclaration: 3729 // Handled below. 3730 break; 3731 } 3732 3733 // Find the actual template from which we will instantiate. 3734 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3735 bool HasPattern = false; 3736 if (PatternDecl) 3737 HasPattern = PatternDecl->hasBody(PatternDecl); 3738 3739 // C++0x [temp.explicit]p9: 3740 // Except for inline functions, other explicit instantiation declarations 3741 // have the effect of suppressing the implicit instantiation of the entity 3742 // to which they refer. 3743 if (!HasPattern || !PatternDecl) 3744 return true; 3745 3746 return PatternDecl->isInlined(); 3747 } 3748 3749 bool FunctionDecl::isTemplateInstantiation() const { 3750 // FIXME: Remove this, it's not clear what it means. (Which template 3751 // specialization kind?) 3752 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3753 } 3754 3755 FunctionDecl * 3756 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { 3757 // If this is a generic lambda call operator specialization, its 3758 // instantiation pattern is always its primary template's pattern 3759 // even if its primary template was instantiated from another 3760 // member template (which happens with nested generic lambdas). 3761 // Since a lambda's call operator's body is transformed eagerly, 3762 // we don't have to go hunting for a prototype definition template 3763 // (i.e. instantiated-from-member-template) to use as an instantiation 3764 // pattern. 3765 3766 if (isGenericLambdaCallOperatorSpecialization( 3767 dyn_cast<CXXMethodDecl>(this))) { 3768 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3769 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3770 } 3771 3772 // Check for a declaration of this function that was instantiated from a 3773 // friend definition. 3774 const FunctionDecl *FD = nullptr; 3775 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true)) 3776 FD = this; 3777 3778 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) { 3779 if (ForDefinition && 3780 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3781 return nullptr; 3782 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3783 } 3784 3785 if (ForDefinition && 3786 !clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3787 return nullptr; 3788 3789 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3790 // If we hit a point where the user provided a specialization of this 3791 // template, we're done looking. 3792 while (!ForDefinition || !Primary->isMemberSpecialization()) { 3793 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3794 if (!NewPrimary) 3795 break; 3796 Primary = NewPrimary; 3797 } 3798 3799 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3800 } 3801 3802 return nullptr; 3803 } 3804 3805 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3806 if (FunctionTemplateSpecializationInfo *Info 3807 = TemplateOrSpecialization 3808 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3809 return Info->getTemplate(); 3810 } 3811 return nullptr; 3812 } 3813 3814 FunctionTemplateSpecializationInfo * 3815 FunctionDecl::getTemplateSpecializationInfo() const { 3816 return TemplateOrSpecialization 3817 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3818 } 3819 3820 const TemplateArgumentList * 3821 FunctionDecl::getTemplateSpecializationArgs() const { 3822 if (FunctionTemplateSpecializationInfo *Info 3823 = TemplateOrSpecialization 3824 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3825 return Info->TemplateArguments; 3826 } 3827 return nullptr; 3828 } 3829 3830 const ASTTemplateArgumentListInfo * 3831 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3832 if (FunctionTemplateSpecializationInfo *Info 3833 = TemplateOrSpecialization 3834 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3835 return Info->TemplateArgumentsAsWritten; 3836 } 3837 return nullptr; 3838 } 3839 3840 void 3841 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3842 FunctionTemplateDecl *Template, 3843 const TemplateArgumentList *TemplateArgs, 3844 void *InsertPos, 3845 TemplateSpecializationKind TSK, 3846 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3847 SourceLocation PointOfInstantiation) { 3848 assert((TemplateOrSpecialization.isNull() || 3849 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3850 "Member function is already a specialization"); 3851 assert(TSK != TSK_Undeclared && 3852 "Must specify the type of function template specialization"); 3853 assert((TemplateOrSpecialization.isNull() || 3854 TSK == TSK_ExplicitSpecialization) && 3855 "Member specialization must be an explicit specialization"); 3856 FunctionTemplateSpecializationInfo *Info = 3857 FunctionTemplateSpecializationInfo::Create( 3858 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3859 PointOfInstantiation, 3860 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3861 TemplateOrSpecialization = Info; 3862 Template->addSpecialization(Info, InsertPos); 3863 } 3864 3865 void 3866 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3867 const UnresolvedSetImpl &Templates, 3868 const TemplateArgumentListInfo &TemplateArgs) { 3869 assert(TemplateOrSpecialization.isNull()); 3870 DependentFunctionTemplateSpecializationInfo *Info = 3871 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3872 TemplateArgs); 3873 TemplateOrSpecialization = Info; 3874 } 3875 3876 DependentFunctionTemplateSpecializationInfo * 3877 FunctionDecl::getDependentSpecializationInfo() const { 3878 return TemplateOrSpecialization 3879 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3880 } 3881 3882 DependentFunctionTemplateSpecializationInfo * 3883 DependentFunctionTemplateSpecializationInfo::Create( 3884 ASTContext &Context, const UnresolvedSetImpl &Ts, 3885 const TemplateArgumentListInfo &TArgs) { 3886 void *Buffer = Context.Allocate( 3887 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3888 TArgs.size(), Ts.size())); 3889 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3890 } 3891 3892 DependentFunctionTemplateSpecializationInfo:: 3893 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3894 const TemplateArgumentListInfo &TArgs) 3895 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3896 NumTemplates = Ts.size(); 3897 NumArgs = TArgs.size(); 3898 3899 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3900 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3901 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3902 3903 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3904 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3905 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3906 } 3907 3908 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3909 // For a function template specialization, query the specialization 3910 // information object. 3911 if (FunctionTemplateSpecializationInfo *FTSInfo = 3912 TemplateOrSpecialization 3913 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3914 return FTSInfo->getTemplateSpecializationKind(); 3915 3916 if (MemberSpecializationInfo *MSInfo = 3917 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3918 return MSInfo->getTemplateSpecializationKind(); 3919 3920 return TSK_Undeclared; 3921 } 3922 3923 TemplateSpecializationKind 3924 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 3925 // This is the same as getTemplateSpecializationKind(), except that for a 3926 // function that is both a function template specialization and a member 3927 // specialization, we prefer the member specialization information. Eg: 3928 // 3929 // template<typename T> struct A { 3930 // template<typename U> void f() {} 3931 // template<> void f<int>() {} 3932 // }; 3933 // 3934 // For A<int>::f<int>(): 3935 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 3936 // * getTemplateSpecializationKindForInstantiation() will return 3937 // TSK_ImplicitInstantiation 3938 // 3939 // This reflects the facts that A<int>::f<int> is an explicit specialization 3940 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 3941 // from A::f<int> if a definition is needed. 3942 if (FunctionTemplateSpecializationInfo *FTSInfo = 3943 TemplateOrSpecialization 3944 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 3945 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 3946 return MSInfo->getTemplateSpecializationKind(); 3947 return FTSInfo->getTemplateSpecializationKind(); 3948 } 3949 3950 if (MemberSpecializationInfo *MSInfo = 3951 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3952 return MSInfo->getTemplateSpecializationKind(); 3953 3954 return TSK_Undeclared; 3955 } 3956 3957 void 3958 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3959 SourceLocation PointOfInstantiation) { 3960 if (FunctionTemplateSpecializationInfo *FTSInfo 3961 = TemplateOrSpecialization.dyn_cast< 3962 FunctionTemplateSpecializationInfo*>()) { 3963 FTSInfo->setTemplateSpecializationKind(TSK); 3964 if (TSK != TSK_ExplicitSpecialization && 3965 PointOfInstantiation.isValid() && 3966 FTSInfo->getPointOfInstantiation().isInvalid()) { 3967 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3968 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3969 L->InstantiationRequested(this); 3970 } 3971 } else if (MemberSpecializationInfo *MSInfo 3972 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3973 MSInfo->setTemplateSpecializationKind(TSK); 3974 if (TSK != TSK_ExplicitSpecialization && 3975 PointOfInstantiation.isValid() && 3976 MSInfo->getPointOfInstantiation().isInvalid()) { 3977 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3978 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3979 L->InstantiationRequested(this); 3980 } 3981 } else 3982 llvm_unreachable("Function cannot have a template specialization kind"); 3983 } 3984 3985 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3986 if (FunctionTemplateSpecializationInfo *FTSInfo 3987 = TemplateOrSpecialization.dyn_cast< 3988 FunctionTemplateSpecializationInfo*>()) 3989 return FTSInfo->getPointOfInstantiation(); 3990 if (MemberSpecializationInfo *MSInfo = 3991 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3992 return MSInfo->getPointOfInstantiation(); 3993 3994 return SourceLocation(); 3995 } 3996 3997 bool FunctionDecl::isOutOfLine() const { 3998 if (Decl::isOutOfLine()) 3999 return true; 4000 4001 // If this function was instantiated from a member function of a 4002 // class template, check whether that member function was defined out-of-line. 4003 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 4004 const FunctionDecl *Definition; 4005 if (FD->hasBody(Definition)) 4006 return Definition->isOutOfLine(); 4007 } 4008 4009 // If this function was instantiated from a function template, 4010 // check whether that function template was defined out-of-line. 4011 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 4012 const FunctionDecl *Definition; 4013 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 4014 return Definition->isOutOfLine(); 4015 } 4016 4017 return false; 4018 } 4019 4020 SourceRange FunctionDecl::getSourceRange() const { 4021 return SourceRange(getOuterLocStart(), EndRangeLoc); 4022 } 4023 4024 unsigned FunctionDecl::getMemoryFunctionKind() const { 4025 IdentifierInfo *FnInfo = getIdentifier(); 4026 4027 if (!FnInfo) 4028 return 0; 4029 4030 // Builtin handling. 4031 switch (getBuiltinID()) { 4032 case Builtin::BI__builtin_memset: 4033 case Builtin::BI__builtin___memset_chk: 4034 case Builtin::BImemset: 4035 return Builtin::BImemset; 4036 4037 case Builtin::BI__builtin_memcpy: 4038 case Builtin::BI__builtin___memcpy_chk: 4039 case Builtin::BImemcpy: 4040 return Builtin::BImemcpy; 4041 4042 case Builtin::BI__builtin_mempcpy: 4043 case Builtin::BI__builtin___mempcpy_chk: 4044 case Builtin::BImempcpy: 4045 return Builtin::BImempcpy; 4046 4047 case Builtin::BI__builtin_memmove: 4048 case Builtin::BI__builtin___memmove_chk: 4049 case Builtin::BImemmove: 4050 return Builtin::BImemmove; 4051 4052 case Builtin::BIstrlcpy: 4053 case Builtin::BI__builtin___strlcpy_chk: 4054 return Builtin::BIstrlcpy; 4055 4056 case Builtin::BIstrlcat: 4057 case Builtin::BI__builtin___strlcat_chk: 4058 return Builtin::BIstrlcat; 4059 4060 case Builtin::BI__builtin_memcmp: 4061 case Builtin::BImemcmp: 4062 return Builtin::BImemcmp; 4063 4064 case Builtin::BI__builtin_bcmp: 4065 case Builtin::BIbcmp: 4066 return Builtin::BIbcmp; 4067 4068 case Builtin::BI__builtin_strncpy: 4069 case Builtin::BI__builtin___strncpy_chk: 4070 case Builtin::BIstrncpy: 4071 return Builtin::BIstrncpy; 4072 4073 case Builtin::BI__builtin_strncmp: 4074 case Builtin::BIstrncmp: 4075 return Builtin::BIstrncmp; 4076 4077 case Builtin::BI__builtin_strncasecmp: 4078 case Builtin::BIstrncasecmp: 4079 return Builtin::BIstrncasecmp; 4080 4081 case Builtin::BI__builtin_strncat: 4082 case Builtin::BI__builtin___strncat_chk: 4083 case Builtin::BIstrncat: 4084 return Builtin::BIstrncat; 4085 4086 case Builtin::BI__builtin_strndup: 4087 case Builtin::BIstrndup: 4088 return Builtin::BIstrndup; 4089 4090 case Builtin::BI__builtin_strlen: 4091 case Builtin::BIstrlen: 4092 return Builtin::BIstrlen; 4093 4094 case Builtin::BI__builtin_bzero: 4095 case Builtin::BIbzero: 4096 return Builtin::BIbzero; 4097 4098 case Builtin::BIfree: 4099 return Builtin::BIfree; 4100 4101 default: 4102 if (isExternC()) { 4103 if (FnInfo->isStr("memset")) 4104 return Builtin::BImemset; 4105 if (FnInfo->isStr("memcpy")) 4106 return Builtin::BImemcpy; 4107 if (FnInfo->isStr("mempcpy")) 4108 return Builtin::BImempcpy; 4109 if (FnInfo->isStr("memmove")) 4110 return Builtin::BImemmove; 4111 if (FnInfo->isStr("memcmp")) 4112 return Builtin::BImemcmp; 4113 if (FnInfo->isStr("bcmp")) 4114 return Builtin::BIbcmp; 4115 if (FnInfo->isStr("strncpy")) 4116 return Builtin::BIstrncpy; 4117 if (FnInfo->isStr("strncmp")) 4118 return Builtin::BIstrncmp; 4119 if (FnInfo->isStr("strncasecmp")) 4120 return Builtin::BIstrncasecmp; 4121 if (FnInfo->isStr("strncat")) 4122 return Builtin::BIstrncat; 4123 if (FnInfo->isStr("strndup")) 4124 return Builtin::BIstrndup; 4125 if (FnInfo->isStr("strlen")) 4126 return Builtin::BIstrlen; 4127 if (FnInfo->isStr("bzero")) 4128 return Builtin::BIbzero; 4129 } else if (isInStdNamespace()) { 4130 if (FnInfo->isStr("free")) 4131 return Builtin::BIfree; 4132 } 4133 break; 4134 } 4135 return 0; 4136 } 4137 4138 unsigned FunctionDecl::getODRHash() const { 4139 assert(hasODRHash()); 4140 return ODRHash; 4141 } 4142 4143 unsigned FunctionDecl::getODRHash() { 4144 if (hasODRHash()) 4145 return ODRHash; 4146 4147 if (auto *FT = getInstantiatedFromMemberFunction()) { 4148 setHasODRHash(true); 4149 ODRHash = FT->getODRHash(); 4150 return ODRHash; 4151 } 4152 4153 class ODRHash Hash; 4154 Hash.AddFunctionDecl(this); 4155 setHasODRHash(true); 4156 ODRHash = Hash.CalculateHash(); 4157 return ODRHash; 4158 } 4159 4160 //===----------------------------------------------------------------------===// 4161 // FieldDecl Implementation 4162 //===----------------------------------------------------------------------===// 4163 4164 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4165 SourceLocation StartLoc, SourceLocation IdLoc, 4166 IdentifierInfo *Id, QualType T, 4167 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4168 InClassInitStyle InitStyle) { 4169 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4170 BW, Mutable, InitStyle); 4171 } 4172 4173 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4174 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4175 SourceLocation(), nullptr, QualType(), nullptr, 4176 nullptr, false, ICIS_NoInit); 4177 } 4178 4179 bool FieldDecl::isAnonymousStructOrUnion() const { 4180 if (!isImplicit() || getDeclName()) 4181 return false; 4182 4183 if (const auto *Record = getType()->getAs<RecordType>()) 4184 return Record->getDecl()->isAnonymousStructOrUnion(); 4185 4186 return false; 4187 } 4188 4189 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4190 assert(isBitField() && "not a bitfield"); 4191 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4192 } 4193 4194 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4195 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4196 getBitWidthValue(Ctx) == 0; 4197 } 4198 4199 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4200 if (isZeroLengthBitField(Ctx)) 4201 return true; 4202 4203 // C++2a [intro.object]p7: 4204 // An object has nonzero size if it 4205 // -- is not a potentially-overlapping subobject, or 4206 if (!hasAttr<NoUniqueAddressAttr>()) 4207 return false; 4208 4209 // -- is not of class type, or 4210 const auto *RT = getType()->getAs<RecordType>(); 4211 if (!RT) 4212 return false; 4213 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4214 if (!RD) { 4215 assert(isInvalidDecl() && "valid field has incomplete type"); 4216 return false; 4217 } 4218 4219 // -- [has] virtual member functions or virtual base classes, or 4220 // -- has subobjects of nonzero size or bit-fields of nonzero length 4221 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4222 if (!CXXRD->isEmpty()) 4223 return false; 4224 4225 // Otherwise, [...] the circumstances under which the object has zero size 4226 // are implementation-defined. 4227 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 4228 // ABI will do. 4229 return true; 4230 } 4231 4232 unsigned FieldDecl::getFieldIndex() const { 4233 const FieldDecl *Canonical = getCanonicalDecl(); 4234 if (Canonical != this) 4235 return Canonical->getFieldIndex(); 4236 4237 if (CachedFieldIndex) return CachedFieldIndex - 1; 4238 4239 unsigned Index = 0; 4240 const RecordDecl *RD = getParent()->getDefinition(); 4241 assert(RD && "requested index for field of struct with no definition"); 4242 4243 for (auto *Field : RD->fields()) { 4244 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4245 ++Index; 4246 } 4247 4248 assert(CachedFieldIndex && "failed to find field in parent"); 4249 return CachedFieldIndex - 1; 4250 } 4251 4252 SourceRange FieldDecl::getSourceRange() const { 4253 const Expr *FinalExpr = getInClassInitializer(); 4254 if (!FinalExpr) 4255 FinalExpr = getBitWidth(); 4256 if (FinalExpr) 4257 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4258 return DeclaratorDecl::getSourceRange(); 4259 } 4260 4261 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4262 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4263 "capturing type in non-lambda or captured record."); 4264 assert(InitStorage.getInt() == ISK_NoInit && 4265 InitStorage.getPointer() == nullptr && 4266 "bit width, initializer or captured type already set"); 4267 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4268 ISK_CapturedVLAType); 4269 } 4270 4271 //===----------------------------------------------------------------------===// 4272 // TagDecl Implementation 4273 //===----------------------------------------------------------------------===// 4274 4275 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4276 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4277 SourceLocation StartL) 4278 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4279 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4280 assert((DK != Enum || TK == TTK_Enum) && 4281 "EnumDecl not matched with TTK_Enum"); 4282 setPreviousDecl(PrevDecl); 4283 setTagKind(TK); 4284 setCompleteDefinition(false); 4285 setBeingDefined(false); 4286 setEmbeddedInDeclarator(false); 4287 setFreeStanding(false); 4288 setCompleteDefinitionRequired(false); 4289 } 4290 4291 SourceLocation TagDecl::getOuterLocStart() const { 4292 return getTemplateOrInnerLocStart(this); 4293 } 4294 4295 SourceRange TagDecl::getSourceRange() const { 4296 SourceLocation RBraceLoc = BraceRange.getEnd(); 4297 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4298 return SourceRange(getOuterLocStart(), E); 4299 } 4300 4301 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4302 4303 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4304 TypedefNameDeclOrQualifier = TDD; 4305 if (const Type *T = getTypeForDecl()) { 4306 (void)T; 4307 assert(T->isLinkageValid()); 4308 } 4309 assert(isLinkageValid()); 4310 } 4311 4312 void TagDecl::startDefinition() { 4313 setBeingDefined(true); 4314 4315 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4316 struct CXXRecordDecl::DefinitionData *Data = 4317 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4318 for (auto I : redecls()) 4319 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4320 } 4321 } 4322 4323 void TagDecl::completeDefinition() { 4324 assert((!isa<CXXRecordDecl>(this) || 4325 cast<CXXRecordDecl>(this)->hasDefinition()) && 4326 "definition completed but not started"); 4327 4328 setCompleteDefinition(true); 4329 setBeingDefined(false); 4330 4331 if (ASTMutationListener *L = getASTMutationListener()) 4332 L->CompletedTagDefinition(this); 4333 } 4334 4335 TagDecl *TagDecl::getDefinition() const { 4336 if (isCompleteDefinition()) 4337 return const_cast<TagDecl *>(this); 4338 4339 // If it's possible for us to have an out-of-date definition, check now. 4340 if (mayHaveOutOfDateDef()) { 4341 if (IdentifierInfo *II = getIdentifier()) { 4342 if (II->isOutOfDate()) { 4343 updateOutOfDate(*II); 4344 } 4345 } 4346 } 4347 4348 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4349 return CXXRD->getDefinition(); 4350 4351 for (auto R : redecls()) 4352 if (R->isCompleteDefinition()) 4353 return R; 4354 4355 return nullptr; 4356 } 4357 4358 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4359 if (QualifierLoc) { 4360 // Make sure the extended qualifier info is allocated. 4361 if (!hasExtInfo()) 4362 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4363 // Set qualifier info. 4364 getExtInfo()->QualifierLoc = QualifierLoc; 4365 } else { 4366 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4367 if (hasExtInfo()) { 4368 if (getExtInfo()->NumTemplParamLists == 0) { 4369 getASTContext().Deallocate(getExtInfo()); 4370 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4371 } 4372 else 4373 getExtInfo()->QualifierLoc = QualifierLoc; 4374 } 4375 } 4376 } 4377 4378 void TagDecl::setTemplateParameterListsInfo( 4379 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4380 assert(!TPLists.empty()); 4381 // Make sure the extended decl info is allocated. 4382 if (!hasExtInfo()) 4383 // Allocate external info struct. 4384 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4385 // Set the template parameter lists info. 4386 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4387 } 4388 4389 //===----------------------------------------------------------------------===// 4390 // EnumDecl Implementation 4391 //===----------------------------------------------------------------------===// 4392 4393 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4394 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4395 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4396 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4397 assert(Scoped || !ScopedUsingClassTag); 4398 IntegerType = nullptr; 4399 setNumPositiveBits(0); 4400 setNumNegativeBits(0); 4401 setScoped(Scoped); 4402 setScopedUsingClassTag(ScopedUsingClassTag); 4403 setFixed(Fixed); 4404 setHasODRHash(false); 4405 ODRHash = 0; 4406 } 4407 4408 void EnumDecl::anchor() {} 4409 4410 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4411 SourceLocation StartLoc, SourceLocation IdLoc, 4412 IdentifierInfo *Id, 4413 EnumDecl *PrevDecl, bool IsScoped, 4414 bool IsScopedUsingClassTag, bool IsFixed) { 4415 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4416 IsScoped, IsScopedUsingClassTag, IsFixed); 4417 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4418 C.getTypeDeclType(Enum, PrevDecl); 4419 return Enum; 4420 } 4421 4422 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4423 EnumDecl *Enum = 4424 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4425 nullptr, nullptr, false, false, false); 4426 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4427 return Enum; 4428 } 4429 4430 SourceRange EnumDecl::getIntegerTypeRange() const { 4431 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4432 return TI->getTypeLoc().getSourceRange(); 4433 return SourceRange(); 4434 } 4435 4436 void EnumDecl::completeDefinition(QualType NewType, 4437 QualType NewPromotionType, 4438 unsigned NumPositiveBits, 4439 unsigned NumNegativeBits) { 4440 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4441 if (!IntegerType) 4442 IntegerType = NewType.getTypePtr(); 4443 PromotionType = NewPromotionType; 4444 setNumPositiveBits(NumPositiveBits); 4445 setNumNegativeBits(NumNegativeBits); 4446 TagDecl::completeDefinition(); 4447 } 4448 4449 bool EnumDecl::isClosed() const { 4450 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4451 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4452 return true; 4453 } 4454 4455 bool EnumDecl::isClosedFlag() const { 4456 return isClosed() && hasAttr<FlagEnumAttr>(); 4457 } 4458 4459 bool EnumDecl::isClosedNonFlag() const { 4460 return isClosed() && !hasAttr<FlagEnumAttr>(); 4461 } 4462 4463 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4464 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4465 return MSI->getTemplateSpecializationKind(); 4466 4467 return TSK_Undeclared; 4468 } 4469 4470 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4471 SourceLocation PointOfInstantiation) { 4472 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4473 assert(MSI && "Not an instantiated member enumeration?"); 4474 MSI->setTemplateSpecializationKind(TSK); 4475 if (TSK != TSK_ExplicitSpecialization && 4476 PointOfInstantiation.isValid() && 4477 MSI->getPointOfInstantiation().isInvalid()) 4478 MSI->setPointOfInstantiation(PointOfInstantiation); 4479 } 4480 4481 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4482 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4483 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4484 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4485 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4486 ED = NewED; 4487 return getDefinitionOrSelf(ED); 4488 } 4489 } 4490 4491 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4492 "couldn't find pattern for enum instantiation"); 4493 return nullptr; 4494 } 4495 4496 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4497 if (SpecializationInfo) 4498 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4499 4500 return nullptr; 4501 } 4502 4503 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4504 TemplateSpecializationKind TSK) { 4505 assert(!SpecializationInfo && "Member enum is already a specialization"); 4506 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4507 } 4508 4509 unsigned EnumDecl::getODRHash() { 4510 if (hasODRHash()) 4511 return ODRHash; 4512 4513 class ODRHash Hash; 4514 Hash.AddEnumDecl(this); 4515 setHasODRHash(true); 4516 ODRHash = Hash.CalculateHash(); 4517 return ODRHash; 4518 } 4519 4520 SourceRange EnumDecl::getSourceRange() const { 4521 auto Res = TagDecl::getSourceRange(); 4522 // Set end-point to enum-base, e.g. enum foo : ^bar 4523 if (auto *TSI = getIntegerTypeSourceInfo()) { 4524 // TagDecl doesn't know about the enum base. 4525 if (!getBraceRange().getEnd().isValid()) 4526 Res.setEnd(TSI->getTypeLoc().getEndLoc()); 4527 } 4528 return Res; 4529 } 4530 4531 //===----------------------------------------------------------------------===// 4532 // RecordDecl Implementation 4533 //===----------------------------------------------------------------------===// 4534 4535 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4536 DeclContext *DC, SourceLocation StartLoc, 4537 SourceLocation IdLoc, IdentifierInfo *Id, 4538 RecordDecl *PrevDecl) 4539 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4540 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4541 setHasFlexibleArrayMember(false); 4542 setAnonymousStructOrUnion(false); 4543 setHasObjectMember(false); 4544 setHasVolatileMember(false); 4545 setHasLoadedFieldsFromExternalStorage(false); 4546 setNonTrivialToPrimitiveDefaultInitialize(false); 4547 setNonTrivialToPrimitiveCopy(false); 4548 setNonTrivialToPrimitiveDestroy(false); 4549 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4550 setHasNonTrivialToPrimitiveDestructCUnion(false); 4551 setHasNonTrivialToPrimitiveCopyCUnion(false); 4552 setParamDestroyedInCallee(false); 4553 setArgPassingRestrictions(APK_CanPassInRegs); 4554 } 4555 4556 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4557 SourceLocation StartLoc, SourceLocation IdLoc, 4558 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4559 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4560 StartLoc, IdLoc, Id, PrevDecl); 4561 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4562 4563 C.getTypeDeclType(R, PrevDecl); 4564 return R; 4565 } 4566 4567 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4568 RecordDecl *R = 4569 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4570 SourceLocation(), nullptr, nullptr); 4571 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4572 return R; 4573 } 4574 4575 bool RecordDecl::isInjectedClassName() const { 4576 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4577 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4578 } 4579 4580 bool RecordDecl::isLambda() const { 4581 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4582 return RD->isLambda(); 4583 return false; 4584 } 4585 4586 bool RecordDecl::isCapturedRecord() const { 4587 return hasAttr<CapturedRecordAttr>(); 4588 } 4589 4590 void RecordDecl::setCapturedRecord() { 4591 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4592 } 4593 4594 bool RecordDecl::isOrContainsUnion() const { 4595 if (isUnion()) 4596 return true; 4597 4598 if (const RecordDecl *Def = getDefinition()) { 4599 for (const FieldDecl *FD : Def->fields()) { 4600 const RecordType *RT = FD->getType()->getAs<RecordType>(); 4601 if (RT && RT->getDecl()->isOrContainsUnion()) 4602 return true; 4603 } 4604 } 4605 4606 return false; 4607 } 4608 4609 RecordDecl::field_iterator RecordDecl::field_begin() const { 4610 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4611 LoadFieldsFromExternalStorage(); 4612 4613 return field_iterator(decl_iterator(FirstDecl)); 4614 } 4615 4616 /// completeDefinition - Notes that the definition of this type is now 4617 /// complete. 4618 void RecordDecl::completeDefinition() { 4619 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4620 TagDecl::completeDefinition(); 4621 4622 ASTContext &Ctx = getASTContext(); 4623 4624 // Layouts are dumped when computed, so if we are dumping for all complete 4625 // types, we need to force usage to get types that wouldn't be used elsewhere. 4626 if (Ctx.getLangOpts().DumpRecordLayoutsComplete) 4627 (void)Ctx.getASTRecordLayout(this); 4628 } 4629 4630 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4631 /// This which can be turned on with an attribute, pragma, or the 4632 /// -mms-bitfields command-line option. 4633 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4634 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4635 } 4636 4637 void RecordDecl::LoadFieldsFromExternalStorage() const { 4638 ExternalASTSource *Source = getASTContext().getExternalSource(); 4639 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4640 4641 // Notify that we have a RecordDecl doing some initialization. 4642 ExternalASTSource::Deserializing TheFields(Source); 4643 4644 SmallVector<Decl*, 64> Decls; 4645 setHasLoadedFieldsFromExternalStorage(true); 4646 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4647 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4648 }, Decls); 4649 4650 #ifndef NDEBUG 4651 // Check that all decls we got were FieldDecls. 4652 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4653 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4654 #endif 4655 4656 if (Decls.empty()) 4657 return; 4658 4659 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4660 /*FieldsAlreadyLoaded=*/false); 4661 } 4662 4663 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4664 ASTContext &Context = getASTContext(); 4665 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4666 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4667 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4668 return false; 4669 const auto &NoSanitizeList = Context.getNoSanitizeList(); 4670 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4671 // We may be able to relax some of these requirements. 4672 int ReasonToReject = -1; 4673 if (!CXXRD || CXXRD->isExternCContext()) 4674 ReasonToReject = 0; // is not C++. 4675 else if (CXXRD->hasAttr<PackedAttr>()) 4676 ReasonToReject = 1; // is packed. 4677 else if (CXXRD->isUnion()) 4678 ReasonToReject = 2; // is a union. 4679 else if (CXXRD->isTriviallyCopyable()) 4680 ReasonToReject = 3; // is trivially copyable. 4681 else if (CXXRD->hasTrivialDestructor()) 4682 ReasonToReject = 4; // has trivial destructor. 4683 else if (CXXRD->isStandardLayout()) 4684 ReasonToReject = 5; // is standard layout. 4685 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(), 4686 "field-padding")) 4687 ReasonToReject = 6; // is in an excluded file. 4688 else if (NoSanitizeList.containsType( 4689 EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) 4690 ReasonToReject = 7; // The type is excluded. 4691 4692 if (EmitRemark) { 4693 if (ReasonToReject >= 0) 4694 Context.getDiagnostics().Report( 4695 getLocation(), 4696 diag::remark_sanitize_address_insert_extra_padding_rejected) 4697 << getQualifiedNameAsString() << ReasonToReject; 4698 else 4699 Context.getDiagnostics().Report( 4700 getLocation(), 4701 diag::remark_sanitize_address_insert_extra_padding_accepted) 4702 << getQualifiedNameAsString(); 4703 } 4704 return ReasonToReject < 0; 4705 } 4706 4707 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4708 for (const auto *I : fields()) { 4709 if (I->getIdentifier()) 4710 return I; 4711 4712 if (const auto *RT = I->getType()->getAs<RecordType>()) 4713 if (const FieldDecl *NamedDataMember = 4714 RT->getDecl()->findFirstNamedDataMember()) 4715 return NamedDataMember; 4716 } 4717 4718 // We didn't find a named data member. 4719 return nullptr; 4720 } 4721 4722 //===----------------------------------------------------------------------===// 4723 // BlockDecl Implementation 4724 //===----------------------------------------------------------------------===// 4725 4726 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4727 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4728 setIsVariadic(false); 4729 setCapturesCXXThis(false); 4730 setBlockMissingReturnType(true); 4731 setIsConversionFromLambda(false); 4732 setDoesNotEscape(false); 4733 setCanAvoidCopyToHeap(false); 4734 } 4735 4736 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4737 assert(!ParamInfo && "Already has param info!"); 4738 4739 // Zero params -> null pointer. 4740 if (!NewParamInfo.empty()) { 4741 NumParams = NewParamInfo.size(); 4742 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4743 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4744 } 4745 } 4746 4747 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4748 bool CapturesCXXThis) { 4749 this->setCapturesCXXThis(CapturesCXXThis); 4750 this->NumCaptures = Captures.size(); 4751 4752 if (Captures.empty()) { 4753 this->Captures = nullptr; 4754 return; 4755 } 4756 4757 this->Captures = Captures.copy(Context).data(); 4758 } 4759 4760 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4761 for (const auto &I : captures()) 4762 // Only auto vars can be captured, so no redeclaration worries. 4763 if (I.getVariable() == variable) 4764 return true; 4765 4766 return false; 4767 } 4768 4769 SourceRange BlockDecl::getSourceRange() const { 4770 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4771 } 4772 4773 //===----------------------------------------------------------------------===// 4774 // Other Decl Allocation/Deallocation Method Implementations 4775 //===----------------------------------------------------------------------===// 4776 4777 void TranslationUnitDecl::anchor() {} 4778 4779 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4780 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4781 } 4782 4783 void PragmaCommentDecl::anchor() {} 4784 4785 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4786 TranslationUnitDecl *DC, 4787 SourceLocation CommentLoc, 4788 PragmaMSCommentKind CommentKind, 4789 StringRef Arg) { 4790 PragmaCommentDecl *PCD = 4791 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4792 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4793 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4794 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4795 return PCD; 4796 } 4797 4798 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4799 unsigned ID, 4800 unsigned ArgSize) { 4801 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4802 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4803 } 4804 4805 void PragmaDetectMismatchDecl::anchor() {} 4806 4807 PragmaDetectMismatchDecl * 4808 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4809 SourceLocation Loc, StringRef Name, 4810 StringRef Value) { 4811 size_t ValueStart = Name.size() + 1; 4812 PragmaDetectMismatchDecl *PDMD = 4813 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4814 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4815 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4816 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4817 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4818 Value.size()); 4819 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4820 return PDMD; 4821 } 4822 4823 PragmaDetectMismatchDecl * 4824 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4825 unsigned NameValueSize) { 4826 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4827 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4828 } 4829 4830 void ExternCContextDecl::anchor() {} 4831 4832 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4833 TranslationUnitDecl *DC) { 4834 return new (C, DC) ExternCContextDecl(DC); 4835 } 4836 4837 void LabelDecl::anchor() {} 4838 4839 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4840 SourceLocation IdentL, IdentifierInfo *II) { 4841 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4842 } 4843 4844 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4845 SourceLocation IdentL, IdentifierInfo *II, 4846 SourceLocation GnuLabelL) { 4847 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4848 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4849 } 4850 4851 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4852 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4853 SourceLocation()); 4854 } 4855 4856 void LabelDecl::setMSAsmLabel(StringRef Name) { 4857 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4858 memcpy(Buffer, Name.data(), Name.size()); 4859 Buffer[Name.size()] = '\0'; 4860 MSAsmName = Buffer; 4861 } 4862 4863 void ValueDecl::anchor() {} 4864 4865 bool ValueDecl::isWeak() const { 4866 auto *MostRecent = getMostRecentDecl(); 4867 return MostRecent->hasAttr<WeakAttr>() || 4868 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported(); 4869 } 4870 4871 void ImplicitParamDecl::anchor() {} 4872 4873 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4874 SourceLocation IdLoc, 4875 IdentifierInfo *Id, QualType Type, 4876 ImplicitParamKind ParamKind) { 4877 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 4878 } 4879 4880 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 4881 ImplicitParamKind ParamKind) { 4882 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 4883 } 4884 4885 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4886 unsigned ID) { 4887 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 4888 } 4889 4890 FunctionDecl * 4891 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4892 const DeclarationNameInfo &NameInfo, QualType T, 4893 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 4894 bool isInlineSpecified, bool hasWrittenPrototype, 4895 ConstexprSpecKind ConstexprKind, 4896 Expr *TrailingRequiresClause) { 4897 FunctionDecl *New = new (C, DC) FunctionDecl( 4898 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 4899 isInlineSpecified, ConstexprKind, TrailingRequiresClause); 4900 New->setHasWrittenPrototype(hasWrittenPrototype); 4901 return New; 4902 } 4903 4904 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4905 return new (C, ID) FunctionDecl( 4906 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), 4907 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr); 4908 } 4909 4910 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4911 return new (C, DC) BlockDecl(DC, L); 4912 } 4913 4914 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4915 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4916 } 4917 4918 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4919 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4920 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4921 4922 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4923 unsigned NumParams) { 4924 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4925 CapturedDecl(DC, NumParams); 4926 } 4927 4928 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4929 unsigned NumParams) { 4930 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4931 CapturedDecl(nullptr, NumParams); 4932 } 4933 4934 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4935 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4936 4937 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4938 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4939 4940 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4941 SourceLocation L, 4942 IdentifierInfo *Id, QualType T, 4943 Expr *E, const llvm::APSInt &V) { 4944 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4945 } 4946 4947 EnumConstantDecl * 4948 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4949 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4950 QualType(), nullptr, llvm::APSInt()); 4951 } 4952 4953 void IndirectFieldDecl::anchor() {} 4954 4955 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4956 SourceLocation L, DeclarationName N, 4957 QualType T, 4958 MutableArrayRef<NamedDecl *> CH) 4959 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4960 ChainingSize(CH.size()) { 4961 // In C++, indirect field declarations conflict with tag declarations in the 4962 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4963 if (C.getLangOpts().CPlusPlus) 4964 IdentifierNamespace |= IDNS_Tag; 4965 } 4966 4967 IndirectFieldDecl * 4968 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4969 IdentifierInfo *Id, QualType T, 4970 llvm::MutableArrayRef<NamedDecl *> CH) { 4971 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4972 } 4973 4974 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4975 unsigned ID) { 4976 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4977 DeclarationName(), QualType(), None); 4978 } 4979 4980 SourceRange EnumConstantDecl::getSourceRange() const { 4981 SourceLocation End = getLocation(); 4982 if (Init) 4983 End = Init->getEndLoc(); 4984 return SourceRange(getLocation(), End); 4985 } 4986 4987 void TypeDecl::anchor() {} 4988 4989 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 4990 SourceLocation StartLoc, SourceLocation IdLoc, 4991 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 4992 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4993 } 4994 4995 void TypedefNameDecl::anchor() {} 4996 4997 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 4998 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 4999 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 5000 auto *ThisTypedef = this; 5001 if (AnyRedecl && OwningTypedef) { 5002 OwningTypedef = OwningTypedef->getCanonicalDecl(); 5003 ThisTypedef = ThisTypedef->getCanonicalDecl(); 5004 } 5005 if (OwningTypedef == ThisTypedef) 5006 return TT->getDecl(); 5007 } 5008 5009 return nullptr; 5010 } 5011 5012 bool TypedefNameDecl::isTransparentTagSlow() const { 5013 auto determineIsTransparent = [&]() { 5014 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 5015 if (auto *TD = TT->getDecl()) { 5016 if (TD->getName() != getName()) 5017 return false; 5018 SourceLocation TTLoc = getLocation(); 5019 SourceLocation TDLoc = TD->getLocation(); 5020 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 5021 return false; 5022 SourceManager &SM = getASTContext().getSourceManager(); 5023 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 5024 } 5025 } 5026 return false; 5027 }; 5028 5029 bool isTransparent = determineIsTransparent(); 5030 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 5031 return isTransparent; 5032 } 5033 5034 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5035 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 5036 nullptr, nullptr); 5037 } 5038 5039 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 5040 SourceLocation StartLoc, 5041 SourceLocation IdLoc, IdentifierInfo *Id, 5042 TypeSourceInfo *TInfo) { 5043 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5044 } 5045 5046 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5047 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 5048 SourceLocation(), nullptr, nullptr); 5049 } 5050 5051 SourceRange TypedefDecl::getSourceRange() const { 5052 SourceLocation RangeEnd = getLocation(); 5053 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 5054 if (typeIsPostfix(TInfo->getType())) 5055 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5056 } 5057 return SourceRange(getBeginLoc(), RangeEnd); 5058 } 5059 5060 SourceRange TypeAliasDecl::getSourceRange() const { 5061 SourceLocation RangeEnd = getBeginLoc(); 5062 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 5063 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5064 return SourceRange(getBeginLoc(), RangeEnd); 5065 } 5066 5067 void FileScopeAsmDecl::anchor() {} 5068 5069 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 5070 StringLiteral *Str, 5071 SourceLocation AsmLoc, 5072 SourceLocation RParenLoc) { 5073 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 5074 } 5075 5076 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 5077 unsigned ID) { 5078 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 5079 SourceLocation()); 5080 } 5081 5082 void EmptyDecl::anchor() {} 5083 5084 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5085 return new (C, DC) EmptyDecl(DC, L); 5086 } 5087 5088 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5089 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 5090 } 5091 5092 //===----------------------------------------------------------------------===// 5093 // ImportDecl Implementation 5094 //===----------------------------------------------------------------------===// 5095 5096 /// Retrieve the number of module identifiers needed to name the given 5097 /// module. 5098 static unsigned getNumModuleIdentifiers(Module *Mod) { 5099 unsigned Result = 1; 5100 while (Mod->Parent) { 5101 Mod = Mod->Parent; 5102 ++Result; 5103 } 5104 return Result; 5105 } 5106 5107 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5108 Module *Imported, 5109 ArrayRef<SourceLocation> IdentifierLocs) 5110 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5111 NextLocalImportAndComplete(nullptr, true) { 5112 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 5113 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5114 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 5115 StoredLocs); 5116 } 5117 5118 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5119 Module *Imported, SourceLocation EndLoc) 5120 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5121 NextLocalImportAndComplete(nullptr, false) { 5122 *getTrailingObjects<SourceLocation>() = EndLoc; 5123 } 5124 5125 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 5126 SourceLocation StartLoc, Module *Imported, 5127 ArrayRef<SourceLocation> IdentifierLocs) { 5128 return new (C, DC, 5129 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 5130 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 5131 } 5132 5133 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 5134 SourceLocation StartLoc, 5135 Module *Imported, 5136 SourceLocation EndLoc) { 5137 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 5138 ImportDecl(DC, StartLoc, Imported, EndLoc); 5139 Import->setImplicit(); 5140 return Import; 5141 } 5142 5143 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5144 unsigned NumLocations) { 5145 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 5146 ImportDecl(EmptyShell()); 5147 } 5148 5149 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 5150 if (!isImportComplete()) 5151 return None; 5152 5153 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5154 return llvm::makeArrayRef(StoredLocs, 5155 getNumModuleIdentifiers(getImportedModule())); 5156 } 5157 5158 SourceRange ImportDecl::getSourceRange() const { 5159 if (!isImportComplete()) 5160 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 5161 5162 return SourceRange(getLocation(), getIdentifierLocs().back()); 5163 } 5164 5165 //===----------------------------------------------------------------------===// 5166 // ExportDecl Implementation 5167 //===----------------------------------------------------------------------===// 5168 5169 void ExportDecl::anchor() {} 5170 5171 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 5172 SourceLocation ExportLoc) { 5173 return new (C, DC) ExportDecl(DC, ExportLoc); 5174 } 5175 5176 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5177 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 5178 } 5179