xref: /freebsd/contrib/llvm-project/clang/lib/AST/ASTStructuralEquivalence.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- ASTStructuralEquivalence.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implement StructuralEquivalenceContext class and helper functions
10 //  for layout matching.
11 //
12 // The structural equivalence check could have been implemented as a parallel
13 // BFS on a pair of graphs.  That must have been the original approach at the
14 // beginning.
15 // Let's consider this simple BFS algorithm from the `s` source:
16 // ```
17 // void bfs(Graph G, int s)
18 // {
19 //   Queue<Integer> queue = new Queue<Integer>();
20 //   marked[s] = true; // Mark the source
21 //   queue.enqueue(s); // and put it on the queue.
22 //   while (!q.isEmpty()) {
23 //     int v = queue.dequeue(); // Remove next vertex from the queue.
24 //     for (int w : G.adj(v))
25 //       if (!marked[w]) // For every unmarked adjacent vertex,
26 //       {
27 //         marked[w] = true;
28 //         queue.enqueue(w);
29 //       }
30 //   }
31 // }
32 // ```
33 // Indeed, it has it's queue, which holds pairs of nodes, one from each graph,
34 // this is the `DeclsToCheck` member. `VisitedDecls` plays the role of the
35 // marking (`marked`) functionality above, we use it to check whether we've
36 // already seen a pair of nodes.
37 //
38 // We put in the elements into the queue only in the toplevel decl check
39 // function:
40 // ```
41 // static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
42 //                                      Decl *D1, Decl *D2);
43 // ```
44 // The `while` loop where we iterate over the children is implemented in
45 // `Finish()`.  And `Finish` is called only from the two **member** functions
46 // which check the equivalency of two Decls or two Types. ASTImporter (and
47 // other clients) call only these functions.
48 //
49 // The `static` implementation functions are called from `Finish`, these push
50 // the children nodes to the queue via `static bool
51 // IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1,
52 // Decl *D2)`.  So far so good, this is almost like the BFS.  However, if we
53 // let a static implementation function to call `Finish` via another **member**
54 // function that means we end up with two nested while loops each of them
55 // working on the same queue. This is wrong and nobody can reason about it's
56 // doing. Thus, static implementation functions must not call the **member**
57 // functions.
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "clang/AST/ASTStructuralEquivalence.h"
62 #include "clang/AST/ASTContext.h"
63 #include "clang/AST/ASTDiagnostic.h"
64 #include "clang/AST/Decl.h"
65 #include "clang/AST/DeclBase.h"
66 #include "clang/AST/DeclCXX.h"
67 #include "clang/AST/DeclFriend.h"
68 #include "clang/AST/DeclObjC.h"
69 #include "clang/AST/DeclOpenMP.h"
70 #include "clang/AST/DeclTemplate.h"
71 #include "clang/AST/ExprCXX.h"
72 #include "clang/AST/ExprConcepts.h"
73 #include "clang/AST/ExprObjC.h"
74 #include "clang/AST/ExprOpenMP.h"
75 #include "clang/AST/NestedNameSpecifier.h"
76 #include "clang/AST/StmtObjC.h"
77 #include "clang/AST/StmtOpenMP.h"
78 #include "clang/AST/TemplateBase.h"
79 #include "clang/AST/TemplateName.h"
80 #include "clang/AST/Type.h"
81 #include "clang/Basic/ExceptionSpecificationType.h"
82 #include "clang/Basic/IdentifierTable.h"
83 #include "clang/Basic/LLVM.h"
84 #include "clang/Basic/SourceLocation.h"
85 #include "llvm/ADT/APInt.h"
86 #include "llvm/ADT/APSInt.h"
87 #include "llvm/ADT/None.h"
88 #include "llvm/ADT/Optional.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/ErrorHandling.h"
92 #include <cassert>
93 #include <utility>
94 
95 using namespace clang;
96 
97 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
98                                      QualType T1, QualType T2);
99 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
100                                      Decl *D1, Decl *D2);
101 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
102                                      const TemplateArgument &Arg1,
103                                      const TemplateArgument &Arg2);
104 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
105                                      NestedNameSpecifier *NNS1,
106                                      NestedNameSpecifier *NNS2);
107 static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
108                                      const IdentifierInfo *Name2);
109 
110 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
111                                      const DeclarationName Name1,
112                                      const DeclarationName Name2) {
113   if (Name1.getNameKind() != Name2.getNameKind())
114     return false;
115 
116   switch (Name1.getNameKind()) {
117 
118   case DeclarationName::Identifier:
119     return IsStructurallyEquivalent(Name1.getAsIdentifierInfo(),
120                                     Name2.getAsIdentifierInfo());
121 
122   case DeclarationName::CXXConstructorName:
123   case DeclarationName::CXXDestructorName:
124   case DeclarationName::CXXConversionFunctionName:
125     return IsStructurallyEquivalent(Context, Name1.getCXXNameType(),
126                                     Name2.getCXXNameType());
127 
128   case DeclarationName::CXXDeductionGuideName: {
129     if (!IsStructurallyEquivalent(
130             Context, Name1.getCXXDeductionGuideTemplate()->getDeclName(),
131             Name2.getCXXDeductionGuideTemplate()->getDeclName()))
132       return false;
133     return IsStructurallyEquivalent(Context,
134                                     Name1.getCXXDeductionGuideTemplate(),
135                                     Name2.getCXXDeductionGuideTemplate());
136   }
137 
138   case DeclarationName::CXXOperatorName:
139     return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator();
140 
141   case DeclarationName::CXXLiteralOperatorName:
142     return IsStructurallyEquivalent(Name1.getCXXLiteralIdentifier(),
143                                     Name2.getCXXLiteralIdentifier());
144 
145   case DeclarationName::CXXUsingDirective:
146     return true; // FIXME When do we consider two using directives equal?
147 
148   case DeclarationName::ObjCZeroArgSelector:
149   case DeclarationName::ObjCOneArgSelector:
150   case DeclarationName::ObjCMultiArgSelector:
151     return true; // FIXME
152   }
153 
154   llvm_unreachable("Unhandled kind of DeclarationName");
155   return true;
156 }
157 
158 namespace {
159 /// Encapsulates Stmt comparison logic.
160 class StmtComparer {
161   StructuralEquivalenceContext &Context;
162 
163   // IsStmtEquivalent overloads. Each overload compares a specific statement
164   // and only has to compare the data that is specific to the specific statement
165   // class. Should only be called from TraverseStmt.
166 
167   bool IsStmtEquivalent(const AddrLabelExpr *E1, const AddrLabelExpr *E2) {
168     return IsStructurallyEquivalent(Context, E1->getLabel(), E2->getLabel());
169   }
170 
171   bool IsStmtEquivalent(const AtomicExpr *E1, const AtomicExpr *E2) {
172     return E1->getOp() == E2->getOp();
173   }
174 
175   bool IsStmtEquivalent(const BinaryOperator *E1, const BinaryOperator *E2) {
176     return E1->getOpcode() == E2->getOpcode();
177   }
178 
179   bool IsStmtEquivalent(const CallExpr *E1, const CallExpr *E2) {
180     // FIXME: IsStructurallyEquivalent requires non-const Decls.
181     Decl *Callee1 = const_cast<Decl *>(E1->getCalleeDecl());
182     Decl *Callee2 = const_cast<Decl *>(E2->getCalleeDecl());
183 
184     // Compare whether both calls know their callee.
185     if (static_cast<bool>(Callee1) != static_cast<bool>(Callee2))
186       return false;
187 
188     // Both calls have no callee, so nothing to do.
189     if (!static_cast<bool>(Callee1))
190       return true;
191 
192     assert(Callee2);
193     return IsStructurallyEquivalent(Context, Callee1, Callee2);
194   }
195 
196   bool IsStmtEquivalent(const CharacterLiteral *E1,
197                         const CharacterLiteral *E2) {
198     return E1->getValue() == E2->getValue() && E1->getKind() == E2->getKind();
199   }
200 
201   bool IsStmtEquivalent(const ChooseExpr *E1, const ChooseExpr *E2) {
202     return true; // Semantics only depend on children.
203   }
204 
205   bool IsStmtEquivalent(const CompoundStmt *E1, const CompoundStmt *E2) {
206     // Number of children is actually checked by the generic children comparison
207     // code, but a CompoundStmt is one of the few statements where the number of
208     // children frequently differs and the number of statements is also always
209     // precomputed. Directly comparing the number of children here is thus
210     // just an optimization.
211     return E1->size() == E2->size();
212   }
213 
214   bool IsStmtEquivalent(const DependentScopeDeclRefExpr *DE1,
215                         const DependentScopeDeclRefExpr *DE2) {
216     if (!IsStructurallyEquivalent(Context, DE1->getDeclName(),
217                                   DE2->getDeclName()))
218       return false;
219     return IsStructurallyEquivalent(Context, DE1->getQualifier(),
220                                     DE2->getQualifier());
221   }
222 
223   bool IsStmtEquivalent(const Expr *E1, const Expr *E2) {
224     return IsStructurallyEquivalent(Context, E1->getType(), E2->getType());
225   }
226 
227   bool IsStmtEquivalent(const ExpressionTraitExpr *E1,
228                         const ExpressionTraitExpr *E2) {
229     return E1->getTrait() == E2->getTrait() && E1->getValue() == E2->getValue();
230   }
231 
232   bool IsStmtEquivalent(const FloatingLiteral *E1, const FloatingLiteral *E2) {
233     return E1->isExact() == E2->isExact() && E1->getValue() == E2->getValue();
234   }
235 
236   bool IsStmtEquivalent(const GenericSelectionExpr *E1,
237                         const GenericSelectionExpr *E2) {
238     for (auto Pair : zip_longest(E1->getAssocTypeSourceInfos(),
239                                  E2->getAssocTypeSourceInfos())) {
240       Optional<TypeSourceInfo *> Child1 = std::get<0>(Pair);
241       Optional<TypeSourceInfo *> Child2 = std::get<1>(Pair);
242       // Skip this case if there are a different number of associated types.
243       if (!Child1 || !Child2)
244         return false;
245 
246       if (!IsStructurallyEquivalent(Context, (*Child1)->getType(),
247                                     (*Child2)->getType()))
248         return false;
249     }
250 
251     return true;
252   }
253 
254   bool IsStmtEquivalent(const ImplicitCastExpr *CastE1,
255                         const ImplicitCastExpr *CastE2) {
256     return IsStructurallyEquivalent(Context, CastE1->getType(),
257                                     CastE2->getType());
258   }
259 
260   bool IsStmtEquivalent(const IntegerLiteral *E1, const IntegerLiteral *E2) {
261     return E1->getValue() == E2->getValue();
262   }
263 
264   bool IsStmtEquivalent(const MemberExpr *E1, const MemberExpr *E2) {
265     return IsStructurallyEquivalent(Context, E1->getFoundDecl(),
266                                     E2->getFoundDecl());
267   }
268 
269   bool IsStmtEquivalent(const ObjCStringLiteral *E1,
270                         const ObjCStringLiteral *E2) {
271     // Just wraps a StringLiteral child.
272     return true;
273   }
274 
275   bool IsStmtEquivalent(const Stmt *S1, const Stmt *S2) { return true; }
276 
277   bool IsStmtEquivalent(const SourceLocExpr *E1, const SourceLocExpr *E2) {
278     return E1->getIdentKind() == E2->getIdentKind();
279   }
280 
281   bool IsStmtEquivalent(const StmtExpr *E1, const StmtExpr *E2) {
282     return E1->getTemplateDepth() == E2->getTemplateDepth();
283   }
284 
285   bool IsStmtEquivalent(const StringLiteral *E1, const StringLiteral *E2) {
286     return E1->getBytes() == E2->getBytes();
287   }
288 
289   bool IsStmtEquivalent(const SubstNonTypeTemplateParmExpr *E1,
290                         const SubstNonTypeTemplateParmExpr *E2) {
291     return IsStructurallyEquivalent(Context, E1->getParameter(),
292                                     E2->getParameter());
293   }
294 
295   bool IsStmtEquivalent(const SubstNonTypeTemplateParmPackExpr *E1,
296                         const SubstNonTypeTemplateParmPackExpr *E2) {
297     return IsStructurallyEquivalent(Context, E1->getArgumentPack(),
298                                     E2->getArgumentPack());
299   }
300 
301   bool IsStmtEquivalent(const TypeTraitExpr *E1, const TypeTraitExpr *E2) {
302     if (E1->getTrait() != E2->getTrait())
303       return false;
304 
305     for (auto Pair : zip_longest(E1->getArgs(), E2->getArgs())) {
306       Optional<TypeSourceInfo *> Child1 = std::get<0>(Pair);
307       Optional<TypeSourceInfo *> Child2 = std::get<1>(Pair);
308       // Different number of args.
309       if (!Child1 || !Child2)
310         return false;
311 
312       if (!IsStructurallyEquivalent(Context, (*Child1)->getType(),
313                                     (*Child2)->getType()))
314         return false;
315     }
316     return true;
317   }
318 
319   bool IsStmtEquivalent(const UnaryExprOrTypeTraitExpr *E1,
320                         const UnaryExprOrTypeTraitExpr *E2) {
321     if (E1->getKind() != E2->getKind())
322       return false;
323     return IsStructurallyEquivalent(Context, E1->getTypeOfArgument(),
324                                     E2->getTypeOfArgument());
325   }
326 
327   bool IsStmtEquivalent(const UnaryOperator *E1, const UnaryOperator *E2) {
328     return E1->getOpcode() == E2->getOpcode();
329   }
330 
331   bool IsStmtEquivalent(const VAArgExpr *E1, const VAArgExpr *E2) {
332     // Semantics only depend on children.
333     return true;
334   }
335 
336   /// End point of the traversal chain.
337   bool TraverseStmt(const Stmt *S1, const Stmt *S2) { return true; }
338 
339   // Create traversal methods that traverse the class hierarchy and return
340   // the accumulated result of the comparison. Each TraverseStmt overload
341   // calls the TraverseStmt overload of the parent class. For example,
342   // the TraverseStmt overload for 'BinaryOperator' calls the TraverseStmt
343   // overload of 'Expr' which then calls the overload for 'Stmt'.
344 #define STMT(CLASS, PARENT)                                                    \
345   bool TraverseStmt(const CLASS *S1, const CLASS *S2) {                        \
346     if (!TraverseStmt(static_cast<const PARENT *>(S1),                         \
347                       static_cast<const PARENT *>(S2)))                        \
348       return false;                                                            \
349     return IsStmtEquivalent(S1, S2);                                           \
350   }
351 #include "clang/AST/StmtNodes.inc"
352 
353 public:
354   StmtComparer(StructuralEquivalenceContext &C) : Context(C) {}
355 
356   /// Determine whether two statements are equivalent. The statements have to
357   /// be of the same kind. The children of the statements and their properties
358   /// are not compared by this function.
359   bool IsEquivalent(const Stmt *S1, const Stmt *S2) {
360     if (S1->getStmtClass() != S2->getStmtClass())
361       return false;
362 
363     // Each TraverseStmt walks the class hierarchy from the leaf class to
364     // the root class 'Stmt' (e.g. 'BinaryOperator' -> 'Expr' -> 'Stmt'). Cast
365     // the Stmt we have here to its specific subclass so that we call the
366     // overload that walks the whole class hierarchy from leaf to root (e.g.,
367     // cast to 'BinaryOperator' so that 'Expr' and 'Stmt' is traversed).
368     switch (S1->getStmtClass()) {
369     case Stmt::NoStmtClass:
370       llvm_unreachable("Can't traverse NoStmtClass");
371 #define STMT(CLASS, PARENT)                                                    \
372   case Stmt::StmtClass::CLASS##Class:                                          \
373     return TraverseStmt(static_cast<const CLASS *>(S1),                        \
374                         static_cast<const CLASS *>(S2));
375 #define ABSTRACT_STMT(S)
376 #include "clang/AST/StmtNodes.inc"
377     }
378     llvm_unreachable("Invalid statement kind");
379   }
380 };
381 } // namespace
382 
383 /// Determine structural equivalence of two statements.
384 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
385                                      const Stmt *S1, const Stmt *S2) {
386   if (!S1 || !S2)
387     return S1 == S2;
388 
389   // Compare the statements itself.
390   StmtComparer Comparer(Context);
391   if (!Comparer.IsEquivalent(S1, S2))
392     return false;
393 
394   // Iterate over the children of both statements and also compare them.
395   for (auto Pair : zip_longest(S1->children(), S2->children())) {
396     Optional<const Stmt *> Child1 = std::get<0>(Pair);
397     Optional<const Stmt *> Child2 = std::get<1>(Pair);
398     // One of the statements has a different amount of children than the other,
399     // so the statements can't be equivalent.
400     if (!Child1 || !Child2)
401       return false;
402     if (!IsStructurallyEquivalent(Context, *Child1, *Child2))
403       return false;
404   }
405   return true;
406 }
407 
408 /// Determine whether two identifiers are equivalent.
409 static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
410                                      const IdentifierInfo *Name2) {
411   if (!Name1 || !Name2)
412     return Name1 == Name2;
413 
414   return Name1->getName() == Name2->getName();
415 }
416 
417 /// Determine whether two nested-name-specifiers are equivalent.
418 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
419                                      NestedNameSpecifier *NNS1,
420                                      NestedNameSpecifier *NNS2) {
421   if (NNS1->getKind() != NNS2->getKind())
422     return false;
423 
424   NestedNameSpecifier *Prefix1 = NNS1->getPrefix(),
425                       *Prefix2 = NNS2->getPrefix();
426   if ((bool)Prefix1 != (bool)Prefix2)
427     return false;
428 
429   if (Prefix1)
430     if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2))
431       return false;
432 
433   switch (NNS1->getKind()) {
434   case NestedNameSpecifier::Identifier:
435     return IsStructurallyEquivalent(NNS1->getAsIdentifier(),
436                                     NNS2->getAsIdentifier());
437   case NestedNameSpecifier::Namespace:
438     return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(),
439                                     NNS2->getAsNamespace());
440   case NestedNameSpecifier::NamespaceAlias:
441     return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(),
442                                     NNS2->getAsNamespaceAlias());
443   case NestedNameSpecifier::TypeSpec:
444   case NestedNameSpecifier::TypeSpecWithTemplate:
445     return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0),
446                                     QualType(NNS2->getAsType(), 0));
447   case NestedNameSpecifier::Global:
448     return true;
449   case NestedNameSpecifier::Super:
450     return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(),
451                                     NNS2->getAsRecordDecl());
452   }
453   return false;
454 }
455 
456 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
457                                      const TemplateName &N1,
458                                      const TemplateName &N2) {
459   TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl();
460   TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl();
461   if (TemplateDeclN1 && TemplateDeclN2) {
462     if (!IsStructurallyEquivalent(Context, TemplateDeclN1, TemplateDeclN2))
463       return false;
464     // If the kind is different we compare only the template decl.
465     if (N1.getKind() != N2.getKind())
466       return true;
467   } else if (TemplateDeclN1 || TemplateDeclN2)
468     return false;
469   else if (N1.getKind() != N2.getKind())
470     return false;
471 
472   // Check for special case incompatibilities.
473   switch (N1.getKind()) {
474 
475   case TemplateName::OverloadedTemplate: {
476     OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(),
477                               *OS2 = N2.getAsOverloadedTemplate();
478     OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(),
479                                         E1 = OS1->end(), E2 = OS2->end();
480     for (; I1 != E1 && I2 != E2; ++I1, ++I2)
481       if (!IsStructurallyEquivalent(Context, *I1, *I2))
482         return false;
483     return I1 == E1 && I2 == E2;
484   }
485 
486   case TemplateName::AssumedTemplate: {
487     AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(),
488                            *TN2 = N1.getAsAssumedTemplateName();
489     return TN1->getDeclName() == TN2->getDeclName();
490   }
491 
492   case TemplateName::DependentTemplate: {
493     DependentTemplateName *DN1 = N1.getAsDependentTemplateName(),
494                           *DN2 = N2.getAsDependentTemplateName();
495     if (!IsStructurallyEquivalent(Context, DN1->getQualifier(),
496                                   DN2->getQualifier()))
497       return false;
498     if (DN1->isIdentifier() && DN2->isIdentifier())
499       return IsStructurallyEquivalent(DN1->getIdentifier(),
500                                       DN2->getIdentifier());
501     else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator())
502       return DN1->getOperator() == DN2->getOperator();
503     return false;
504   }
505 
506   case TemplateName::SubstTemplateTemplateParmPack: {
507     SubstTemplateTemplateParmPackStorage
508         *P1 = N1.getAsSubstTemplateTemplateParmPack(),
509         *P2 = N2.getAsSubstTemplateTemplateParmPack();
510     return IsStructurallyEquivalent(Context, P1->getArgumentPack(),
511                                     P2->getArgumentPack()) &&
512            IsStructurallyEquivalent(Context, P1->getParameterPack(),
513                                     P2->getParameterPack());
514   }
515 
516    case TemplateName::Template:
517    case TemplateName::QualifiedTemplate:
518    case TemplateName::SubstTemplateTemplateParm:
519      // It is sufficient to check value of getAsTemplateDecl.
520      break;
521 
522   }
523 
524   return true;
525 }
526 
527 /// Determine whether two template arguments are equivalent.
528 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
529                                      const TemplateArgument &Arg1,
530                                      const TemplateArgument &Arg2) {
531   if (Arg1.getKind() != Arg2.getKind())
532     return false;
533 
534   switch (Arg1.getKind()) {
535   case TemplateArgument::Null:
536     return true;
537 
538   case TemplateArgument::Type:
539     return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType());
540 
541   case TemplateArgument::Integral:
542     if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(),
543                                           Arg2.getIntegralType()))
544       return false;
545 
546     return llvm::APSInt::isSameValue(Arg1.getAsIntegral(),
547                                      Arg2.getAsIntegral());
548 
549   case TemplateArgument::Declaration:
550     return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl());
551 
552   case TemplateArgument::NullPtr:
553     return true; // FIXME: Is this correct?
554 
555   case TemplateArgument::Template:
556     return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(),
557                                     Arg2.getAsTemplate());
558 
559   case TemplateArgument::TemplateExpansion:
560     return IsStructurallyEquivalent(Context,
561                                     Arg1.getAsTemplateOrTemplatePattern(),
562                                     Arg2.getAsTemplateOrTemplatePattern());
563 
564   case TemplateArgument::Expression:
565     return IsStructurallyEquivalent(Context, Arg1.getAsExpr(),
566                                     Arg2.getAsExpr());
567 
568   case TemplateArgument::Pack:
569     if (Arg1.pack_size() != Arg2.pack_size())
570       return false;
571 
572     for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
573       if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I],
574                                     Arg2.pack_begin()[I]))
575         return false;
576 
577     return true;
578   }
579 
580   llvm_unreachable("Invalid template argument kind");
581 }
582 
583 /// Determine structural equivalence for the common part of array
584 /// types.
585 static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
586                                           const ArrayType *Array1,
587                                           const ArrayType *Array2) {
588   if (!IsStructurallyEquivalent(Context, Array1->getElementType(),
589                                 Array2->getElementType()))
590     return false;
591   if (Array1->getSizeModifier() != Array2->getSizeModifier())
592     return false;
593   if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
594     return false;
595 
596   return true;
597 }
598 
599 /// Determine structural equivalence based on the ExtInfo of functions. This
600 /// is inspired by ASTContext::mergeFunctionTypes(), we compare calling
601 /// conventions bits but must not compare some other bits.
602 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
603                                      FunctionType::ExtInfo EI1,
604                                      FunctionType::ExtInfo EI2) {
605   // Compatible functions must have compatible calling conventions.
606   if (EI1.getCC() != EI2.getCC())
607     return false;
608 
609   // Regparm is part of the calling convention.
610   if (EI1.getHasRegParm() != EI2.getHasRegParm())
611     return false;
612   if (EI1.getRegParm() != EI2.getRegParm())
613     return false;
614 
615   if (EI1.getProducesResult() != EI2.getProducesResult())
616     return false;
617   if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs())
618     return false;
619   if (EI1.getNoCfCheck() != EI2.getNoCfCheck())
620     return false;
621 
622   return true;
623 }
624 
625 /// Check the equivalence of exception specifications.
626 static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context,
627                                       const FunctionProtoType *Proto1,
628                                       const FunctionProtoType *Proto2) {
629 
630   auto Spec1 = Proto1->getExceptionSpecType();
631   auto Spec2 = Proto2->getExceptionSpecType();
632 
633   if (isUnresolvedExceptionSpec(Spec1) || isUnresolvedExceptionSpec(Spec2))
634     return true;
635 
636   if (Spec1 != Spec2)
637     return false;
638   if (Spec1 == EST_Dynamic) {
639     if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
640       return false;
641     for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
642       if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I),
643                                     Proto2->getExceptionType(I)))
644         return false;
645     }
646   } else if (isComputedNoexcept(Spec1)) {
647     if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(),
648                                   Proto2->getNoexceptExpr()))
649       return false;
650   }
651 
652   return true;
653 }
654 
655 /// Determine structural equivalence of two types.
656 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
657                                      QualType T1, QualType T2) {
658   if (T1.isNull() || T2.isNull())
659     return T1.isNull() && T2.isNull();
660 
661   QualType OrigT1 = T1;
662   QualType OrigT2 = T2;
663 
664   if (!Context.StrictTypeSpelling) {
665     // We aren't being strict about token-to-token equivalence of types,
666     // so map down to the canonical type.
667     T1 = Context.FromCtx.getCanonicalType(T1);
668     T2 = Context.ToCtx.getCanonicalType(T2);
669   }
670 
671   if (T1.getQualifiers() != T2.getQualifiers())
672     return false;
673 
674   Type::TypeClass TC = T1->getTypeClass();
675 
676   if (T1->getTypeClass() != T2->getTypeClass()) {
677     // Compare function types with prototypes vs. without prototypes as if
678     // both did not have prototypes.
679     if (T1->getTypeClass() == Type::FunctionProto &&
680         T2->getTypeClass() == Type::FunctionNoProto)
681       TC = Type::FunctionNoProto;
682     else if (T1->getTypeClass() == Type::FunctionNoProto &&
683              T2->getTypeClass() == Type::FunctionProto)
684       TC = Type::FunctionNoProto;
685     else
686       return false;
687   }
688 
689   switch (TC) {
690   case Type::Builtin:
691     // FIXME: Deal with Char_S/Char_U.
692     if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
693       return false;
694     break;
695 
696   case Type::Complex:
697     if (!IsStructurallyEquivalent(Context,
698                                   cast<ComplexType>(T1)->getElementType(),
699                                   cast<ComplexType>(T2)->getElementType()))
700       return false;
701     break;
702 
703   case Type::Adjusted:
704   case Type::Decayed:
705     if (!IsStructurallyEquivalent(Context,
706                                   cast<AdjustedType>(T1)->getOriginalType(),
707                                   cast<AdjustedType>(T2)->getOriginalType()))
708       return false;
709     break;
710 
711   case Type::Pointer:
712     if (!IsStructurallyEquivalent(Context,
713                                   cast<PointerType>(T1)->getPointeeType(),
714                                   cast<PointerType>(T2)->getPointeeType()))
715       return false;
716     break;
717 
718   case Type::BlockPointer:
719     if (!IsStructurallyEquivalent(Context,
720                                   cast<BlockPointerType>(T1)->getPointeeType(),
721                                   cast<BlockPointerType>(T2)->getPointeeType()))
722       return false;
723     break;
724 
725   case Type::LValueReference:
726   case Type::RValueReference: {
727     const auto *Ref1 = cast<ReferenceType>(T1);
728     const auto *Ref2 = cast<ReferenceType>(T2);
729     if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
730       return false;
731     if (Ref1->isInnerRef() != Ref2->isInnerRef())
732       return false;
733     if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(),
734                                   Ref2->getPointeeTypeAsWritten()))
735       return false;
736     break;
737   }
738 
739   case Type::MemberPointer: {
740     const auto *MemPtr1 = cast<MemberPointerType>(T1);
741     const auto *MemPtr2 = cast<MemberPointerType>(T2);
742     if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(),
743                                   MemPtr2->getPointeeType()))
744       return false;
745     if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0),
746                                   QualType(MemPtr2->getClass(), 0)))
747       return false;
748     break;
749   }
750 
751   case Type::ConstantArray: {
752     const auto *Array1 = cast<ConstantArrayType>(T1);
753     const auto *Array2 = cast<ConstantArrayType>(T2);
754     if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize()))
755       return false;
756 
757     if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
758       return false;
759     break;
760   }
761 
762   case Type::IncompleteArray:
763     if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1),
764                                        cast<ArrayType>(T2)))
765       return false;
766     break;
767 
768   case Type::VariableArray: {
769     const auto *Array1 = cast<VariableArrayType>(T1);
770     const auto *Array2 = cast<VariableArrayType>(T2);
771     if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
772                                   Array2->getSizeExpr()))
773       return false;
774 
775     if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
776       return false;
777 
778     break;
779   }
780 
781   case Type::DependentSizedArray: {
782     const auto *Array1 = cast<DependentSizedArrayType>(T1);
783     const auto *Array2 = cast<DependentSizedArrayType>(T2);
784     if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
785                                   Array2->getSizeExpr()))
786       return false;
787 
788     if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
789       return false;
790 
791     break;
792   }
793 
794   case Type::DependentAddressSpace: {
795     const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(T1);
796     const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(T2);
797     if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(),
798                                   DepAddressSpace2->getAddrSpaceExpr()))
799       return false;
800     if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(),
801                                   DepAddressSpace2->getPointeeType()))
802       return false;
803 
804     break;
805   }
806 
807   case Type::DependentSizedExtVector: {
808     const auto *Vec1 = cast<DependentSizedExtVectorType>(T1);
809     const auto *Vec2 = cast<DependentSizedExtVectorType>(T2);
810     if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
811                                   Vec2->getSizeExpr()))
812       return false;
813     if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
814                                   Vec2->getElementType()))
815       return false;
816     break;
817   }
818 
819   case Type::DependentVector: {
820     const auto *Vec1 = cast<DependentVectorType>(T1);
821     const auto *Vec2 = cast<DependentVectorType>(T2);
822     if (Vec1->getVectorKind() != Vec2->getVectorKind())
823       return false;
824     if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
825                                   Vec2->getSizeExpr()))
826       return false;
827     if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
828                                   Vec2->getElementType()))
829       return false;
830     break;
831   }
832 
833   case Type::Vector:
834   case Type::ExtVector: {
835     const auto *Vec1 = cast<VectorType>(T1);
836     const auto *Vec2 = cast<VectorType>(T2);
837     if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
838                                   Vec2->getElementType()))
839       return false;
840     if (Vec1->getNumElements() != Vec2->getNumElements())
841       return false;
842     if (Vec1->getVectorKind() != Vec2->getVectorKind())
843       return false;
844     break;
845   }
846 
847   case Type::DependentSizedMatrix: {
848     const DependentSizedMatrixType *Mat1 = cast<DependentSizedMatrixType>(T1);
849     const DependentSizedMatrixType *Mat2 = cast<DependentSizedMatrixType>(T2);
850     // The element types, row and column expressions must be structurally
851     // equivalent.
852     if (!IsStructurallyEquivalent(Context, Mat1->getRowExpr(),
853                                   Mat2->getRowExpr()) ||
854         !IsStructurallyEquivalent(Context, Mat1->getColumnExpr(),
855                                   Mat2->getColumnExpr()) ||
856         !IsStructurallyEquivalent(Context, Mat1->getElementType(),
857                                   Mat2->getElementType()))
858       return false;
859     break;
860   }
861 
862   case Type::ConstantMatrix: {
863     const ConstantMatrixType *Mat1 = cast<ConstantMatrixType>(T1);
864     const ConstantMatrixType *Mat2 = cast<ConstantMatrixType>(T2);
865     // The element types must be structurally equivalent and the number of rows
866     // and columns must match.
867     if (!IsStructurallyEquivalent(Context, Mat1->getElementType(),
868                                   Mat2->getElementType()) ||
869         Mat1->getNumRows() != Mat2->getNumRows() ||
870         Mat1->getNumColumns() != Mat2->getNumColumns())
871       return false;
872     break;
873   }
874 
875   case Type::FunctionProto: {
876     const auto *Proto1 = cast<FunctionProtoType>(T1);
877     const auto *Proto2 = cast<FunctionProtoType>(T2);
878 
879     if (Proto1->getNumParams() != Proto2->getNumParams())
880       return false;
881     for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) {
882       if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I),
883                                     Proto2->getParamType(I)))
884         return false;
885     }
886     if (Proto1->isVariadic() != Proto2->isVariadic())
887       return false;
888 
889     if (Proto1->getMethodQuals() != Proto2->getMethodQuals())
890       return false;
891 
892     // Check exceptions, this information is lost in canonical type.
893     const auto *OrigProto1 =
894         cast<FunctionProtoType>(OrigT1.getDesugaredType(Context.FromCtx));
895     const auto *OrigProto2 =
896         cast<FunctionProtoType>(OrigT2.getDesugaredType(Context.ToCtx));
897     if (!IsEquivalentExceptionSpec(Context, OrigProto1, OrigProto2))
898       return false;
899 
900     // Fall through to check the bits common with FunctionNoProtoType.
901     LLVM_FALLTHROUGH;
902   }
903 
904   case Type::FunctionNoProto: {
905     const auto *Function1 = cast<FunctionType>(T1);
906     const auto *Function2 = cast<FunctionType>(T2);
907     if (!IsStructurallyEquivalent(Context, Function1->getReturnType(),
908                                   Function2->getReturnType()))
909       return false;
910     if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(),
911                                   Function2->getExtInfo()))
912       return false;
913     break;
914   }
915 
916   case Type::UnresolvedUsing:
917     if (!IsStructurallyEquivalent(Context,
918                                   cast<UnresolvedUsingType>(T1)->getDecl(),
919                                   cast<UnresolvedUsingType>(T2)->getDecl()))
920       return false;
921     break;
922 
923   case Type::Attributed:
924     if (!IsStructurallyEquivalent(Context,
925                                   cast<AttributedType>(T1)->getModifiedType(),
926                                   cast<AttributedType>(T2)->getModifiedType()))
927       return false;
928     if (!IsStructurallyEquivalent(
929             Context, cast<AttributedType>(T1)->getEquivalentType(),
930             cast<AttributedType>(T2)->getEquivalentType()))
931       return false;
932     break;
933 
934   case Type::Paren:
935     if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(),
936                                   cast<ParenType>(T2)->getInnerType()))
937       return false;
938     break;
939 
940   case Type::MacroQualified:
941     if (!IsStructurallyEquivalent(
942             Context, cast<MacroQualifiedType>(T1)->getUnderlyingType(),
943             cast<MacroQualifiedType>(T2)->getUnderlyingType()))
944       return false;
945     break;
946 
947   case Type::Typedef:
948     if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(),
949                                   cast<TypedefType>(T2)->getDecl()))
950       return false;
951     break;
952 
953   case Type::TypeOfExpr:
954     if (!IsStructurallyEquivalent(
955             Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
956             cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
957       return false;
958     break;
959 
960   case Type::TypeOf:
961     if (!IsStructurallyEquivalent(Context,
962                                   cast<TypeOfType>(T1)->getUnderlyingType(),
963                                   cast<TypeOfType>(T2)->getUnderlyingType()))
964       return false;
965     break;
966 
967   case Type::UnaryTransform:
968     if (!IsStructurallyEquivalent(
969             Context, cast<UnaryTransformType>(T1)->getUnderlyingType(),
970             cast<UnaryTransformType>(T2)->getUnderlyingType()))
971       return false;
972     break;
973 
974   case Type::Decltype:
975     if (!IsStructurallyEquivalent(Context,
976                                   cast<DecltypeType>(T1)->getUnderlyingExpr(),
977                                   cast<DecltypeType>(T2)->getUnderlyingExpr()))
978       return false;
979     break;
980 
981   case Type::Auto: {
982     auto *Auto1 = cast<AutoType>(T1);
983     auto *Auto2 = cast<AutoType>(T2);
984     if (!IsStructurallyEquivalent(Context, Auto1->getDeducedType(),
985                                   Auto2->getDeducedType()))
986       return false;
987     if (Auto1->isConstrained() != Auto2->isConstrained())
988       return false;
989     if (Auto1->isConstrained()) {
990       if (Auto1->getTypeConstraintConcept() !=
991           Auto2->getTypeConstraintConcept())
992         return false;
993       ArrayRef<TemplateArgument> Auto1Args =
994           Auto1->getTypeConstraintArguments();
995       ArrayRef<TemplateArgument> Auto2Args =
996           Auto2->getTypeConstraintArguments();
997       if (Auto1Args.size() != Auto2Args.size())
998         return false;
999       for (unsigned I = 0, N = Auto1Args.size(); I != N; ++I) {
1000         if (!IsStructurallyEquivalent(Context, Auto1Args[I], Auto2Args[I]))
1001           return false;
1002       }
1003     }
1004     break;
1005   }
1006 
1007   case Type::DeducedTemplateSpecialization: {
1008     const auto *DT1 = cast<DeducedTemplateSpecializationType>(T1);
1009     const auto *DT2 = cast<DeducedTemplateSpecializationType>(T2);
1010     if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(),
1011                                   DT2->getTemplateName()))
1012       return false;
1013     if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(),
1014                                   DT2->getDeducedType()))
1015       return false;
1016     break;
1017   }
1018 
1019   case Type::Record:
1020   case Type::Enum:
1021     if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(),
1022                                   cast<TagType>(T2)->getDecl()))
1023       return false;
1024     break;
1025 
1026   case Type::TemplateTypeParm: {
1027     const auto *Parm1 = cast<TemplateTypeParmType>(T1);
1028     const auto *Parm2 = cast<TemplateTypeParmType>(T2);
1029     if (Parm1->getDepth() != Parm2->getDepth())
1030       return false;
1031     if (Parm1->getIndex() != Parm2->getIndex())
1032       return false;
1033     if (Parm1->isParameterPack() != Parm2->isParameterPack())
1034       return false;
1035 
1036     // Names of template type parameters are never significant.
1037     break;
1038   }
1039 
1040   case Type::SubstTemplateTypeParm: {
1041     const auto *Subst1 = cast<SubstTemplateTypeParmType>(T1);
1042     const auto *Subst2 = cast<SubstTemplateTypeParmType>(T2);
1043     if (!IsStructurallyEquivalent(Context,
1044                                   QualType(Subst1->getReplacedParameter(), 0),
1045                                   QualType(Subst2->getReplacedParameter(), 0)))
1046       return false;
1047     if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(),
1048                                   Subst2->getReplacementType()))
1049       return false;
1050     break;
1051   }
1052 
1053   case Type::SubstTemplateTypeParmPack: {
1054     const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(T1);
1055     const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(T2);
1056     if (!IsStructurallyEquivalent(Context,
1057                                   QualType(Subst1->getReplacedParameter(), 0),
1058                                   QualType(Subst2->getReplacedParameter(), 0)))
1059       return false;
1060     if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(),
1061                                   Subst2->getArgumentPack()))
1062       return false;
1063     break;
1064   }
1065 
1066   case Type::TemplateSpecialization: {
1067     const auto *Spec1 = cast<TemplateSpecializationType>(T1);
1068     const auto *Spec2 = cast<TemplateSpecializationType>(T2);
1069     if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(),
1070                                   Spec2->getTemplateName()))
1071       return false;
1072     if (Spec1->getNumArgs() != Spec2->getNumArgs())
1073       return false;
1074     for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
1075       if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
1076                                     Spec2->getArg(I)))
1077         return false;
1078     }
1079     break;
1080   }
1081 
1082   case Type::Elaborated: {
1083     const auto *Elab1 = cast<ElaboratedType>(T1);
1084     const auto *Elab2 = cast<ElaboratedType>(T2);
1085     // CHECKME: what if a keyword is ETK_None or ETK_typename ?
1086     if (Elab1->getKeyword() != Elab2->getKeyword())
1087       return false;
1088     if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(),
1089                                   Elab2->getQualifier()))
1090       return false;
1091     if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(),
1092                                   Elab2->getNamedType()))
1093       return false;
1094     break;
1095   }
1096 
1097   case Type::InjectedClassName: {
1098     const auto *Inj1 = cast<InjectedClassNameType>(T1);
1099     const auto *Inj2 = cast<InjectedClassNameType>(T2);
1100     if (!IsStructurallyEquivalent(Context,
1101                                   Inj1->getInjectedSpecializationType(),
1102                                   Inj2->getInjectedSpecializationType()))
1103       return false;
1104     break;
1105   }
1106 
1107   case Type::DependentName: {
1108     const auto *Typename1 = cast<DependentNameType>(T1);
1109     const auto *Typename2 = cast<DependentNameType>(T2);
1110     if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(),
1111                                   Typename2->getQualifier()))
1112       return false;
1113     if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
1114                                   Typename2->getIdentifier()))
1115       return false;
1116 
1117     break;
1118   }
1119 
1120   case Type::DependentTemplateSpecialization: {
1121     const auto *Spec1 = cast<DependentTemplateSpecializationType>(T1);
1122     const auto *Spec2 = cast<DependentTemplateSpecializationType>(T2);
1123     if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(),
1124                                   Spec2->getQualifier()))
1125       return false;
1126     if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
1127                                   Spec2->getIdentifier()))
1128       return false;
1129     if (Spec1->getNumArgs() != Spec2->getNumArgs())
1130       return false;
1131     for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
1132       if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
1133                                     Spec2->getArg(I)))
1134         return false;
1135     }
1136     break;
1137   }
1138 
1139   case Type::PackExpansion:
1140     if (!IsStructurallyEquivalent(Context,
1141                                   cast<PackExpansionType>(T1)->getPattern(),
1142                                   cast<PackExpansionType>(T2)->getPattern()))
1143       return false;
1144     break;
1145 
1146   case Type::ObjCInterface: {
1147     const auto *Iface1 = cast<ObjCInterfaceType>(T1);
1148     const auto *Iface2 = cast<ObjCInterfaceType>(T2);
1149     if (!IsStructurallyEquivalent(Context, Iface1->getDecl(),
1150                                   Iface2->getDecl()))
1151       return false;
1152     break;
1153   }
1154 
1155   case Type::ObjCTypeParam: {
1156     const auto *Obj1 = cast<ObjCTypeParamType>(T1);
1157     const auto *Obj2 = cast<ObjCTypeParamType>(T2);
1158     if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl()))
1159       return false;
1160 
1161     if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
1162       return false;
1163     for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
1164       if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
1165                                     Obj2->getProtocol(I)))
1166         return false;
1167     }
1168     break;
1169   }
1170 
1171   case Type::ObjCObject: {
1172     const auto *Obj1 = cast<ObjCObjectType>(T1);
1173     const auto *Obj2 = cast<ObjCObjectType>(T2);
1174     if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(),
1175                                   Obj2->getBaseType()))
1176       return false;
1177     if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
1178       return false;
1179     for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
1180       if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
1181                                     Obj2->getProtocol(I)))
1182         return false;
1183     }
1184     break;
1185   }
1186 
1187   case Type::ObjCObjectPointer: {
1188     const auto *Ptr1 = cast<ObjCObjectPointerType>(T1);
1189     const auto *Ptr2 = cast<ObjCObjectPointerType>(T2);
1190     if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(),
1191                                   Ptr2->getPointeeType()))
1192       return false;
1193     break;
1194   }
1195 
1196   case Type::Atomic:
1197     if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(),
1198                                   cast<AtomicType>(T2)->getValueType()))
1199       return false;
1200     break;
1201 
1202   case Type::Pipe:
1203     if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(),
1204                                   cast<PipeType>(T2)->getElementType()))
1205       return false;
1206     break;
1207   case Type::ExtInt: {
1208     const auto *Int1 = cast<ExtIntType>(T1);
1209     const auto *Int2 = cast<ExtIntType>(T2);
1210 
1211     if (Int1->isUnsigned() != Int2->isUnsigned() ||
1212         Int1->getNumBits() != Int2->getNumBits())
1213       return false;
1214     break;
1215   }
1216   case Type::DependentExtInt: {
1217     const auto *Int1 = cast<DependentExtIntType>(T1);
1218     const auto *Int2 = cast<DependentExtIntType>(T2);
1219 
1220     if (Int1->isUnsigned() != Int2->isUnsigned() ||
1221         !IsStructurallyEquivalent(Context, Int1->getNumBitsExpr(),
1222                                   Int2->getNumBitsExpr()))
1223       return false;
1224   }
1225   } // end switch
1226 
1227   return true;
1228 }
1229 
1230 /// Determine structural equivalence of two fields.
1231 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1232                                      FieldDecl *Field1, FieldDecl *Field2) {
1233   const auto *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
1234 
1235   // For anonymous structs/unions, match up the anonymous struct/union type
1236   // declarations directly, so that we don't go off searching for anonymous
1237   // types
1238   if (Field1->isAnonymousStructOrUnion() &&
1239       Field2->isAnonymousStructOrUnion()) {
1240     RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl();
1241     RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl();
1242     return IsStructurallyEquivalent(Context, D1, D2);
1243   }
1244 
1245   // Check for equivalent field names.
1246   IdentifierInfo *Name1 = Field1->getIdentifier();
1247   IdentifierInfo *Name2 = Field2->getIdentifier();
1248   if (!::IsStructurallyEquivalent(Name1, Name2)) {
1249     if (Context.Complain) {
1250       Context.Diag2(
1251           Owner2->getLocation(),
1252           Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
1253           << Context.ToCtx.getTypeDeclType(Owner2);
1254       Context.Diag2(Field2->getLocation(), diag::note_odr_field_name)
1255           << Field2->getDeclName();
1256       Context.Diag1(Field1->getLocation(), diag::note_odr_field_name)
1257           << Field1->getDeclName();
1258     }
1259     return false;
1260   }
1261 
1262   if (!IsStructurallyEquivalent(Context, Field1->getType(),
1263                                 Field2->getType())) {
1264     if (Context.Complain) {
1265       Context.Diag2(
1266           Owner2->getLocation(),
1267           Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
1268           << Context.ToCtx.getTypeDeclType(Owner2);
1269       Context.Diag2(Field2->getLocation(), diag::note_odr_field)
1270           << Field2->getDeclName() << Field2->getType();
1271       Context.Diag1(Field1->getLocation(), diag::note_odr_field)
1272           << Field1->getDeclName() << Field1->getType();
1273     }
1274     return false;
1275   }
1276 
1277   if (Field1->isBitField())
1278     return IsStructurallyEquivalent(Context, Field1->getBitWidth(),
1279                                     Field2->getBitWidth());
1280 
1281   return true;
1282 }
1283 
1284 /// Determine structural equivalence of two methods.
1285 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1286                                      CXXMethodDecl *Method1,
1287                                      CXXMethodDecl *Method2) {
1288   bool PropertiesEqual =
1289       Method1->getDeclKind() == Method2->getDeclKind() &&
1290       Method1->getRefQualifier() == Method2->getRefQualifier() &&
1291       Method1->getAccess() == Method2->getAccess() &&
1292       Method1->getOverloadedOperator() == Method2->getOverloadedOperator() &&
1293       Method1->isStatic() == Method2->isStatic() &&
1294       Method1->isConst() == Method2->isConst() &&
1295       Method1->isVolatile() == Method2->isVolatile() &&
1296       Method1->isVirtual() == Method2->isVirtual() &&
1297       Method1->isPure() == Method2->isPure() &&
1298       Method1->isDefaulted() == Method2->isDefaulted() &&
1299       Method1->isDeleted() == Method2->isDeleted();
1300   if (!PropertiesEqual)
1301     return false;
1302   // FIXME: Check for 'final'.
1303 
1304   if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Method1)) {
1305     auto *Constructor2 = cast<CXXConstructorDecl>(Method2);
1306     if (!Constructor1->getExplicitSpecifier().isEquivalent(
1307             Constructor2->getExplicitSpecifier()))
1308       return false;
1309   }
1310 
1311   if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Method1)) {
1312     auto *Conversion2 = cast<CXXConversionDecl>(Method2);
1313     if (!Conversion1->getExplicitSpecifier().isEquivalent(
1314             Conversion2->getExplicitSpecifier()))
1315       return false;
1316     if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(),
1317                                   Conversion2->getConversionType()))
1318       return false;
1319   }
1320 
1321   const IdentifierInfo *Name1 = Method1->getIdentifier();
1322   const IdentifierInfo *Name2 = Method2->getIdentifier();
1323   if (!::IsStructurallyEquivalent(Name1, Name2)) {
1324     return false;
1325     // TODO: Names do not match, add warning like at check for FieldDecl.
1326   }
1327 
1328   // Check the prototypes.
1329   if (!::IsStructurallyEquivalent(Context,
1330                                   Method1->getType(), Method2->getType()))
1331     return false;
1332 
1333   return true;
1334 }
1335 
1336 /// Determine structural equivalence of two lambda classes.
1337 static bool
1338 IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context,
1339                                 CXXRecordDecl *D1, CXXRecordDecl *D2) {
1340   assert(D1->isLambda() && D2->isLambda() &&
1341          "Must be called on lambda classes");
1342   if (!IsStructurallyEquivalent(Context, D1->getLambdaCallOperator(),
1343                                 D2->getLambdaCallOperator()))
1344     return false;
1345 
1346   return true;
1347 }
1348 
1349 /// Determine structural equivalence of two records.
1350 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1351                                      RecordDecl *D1, RecordDecl *D2) {
1352 
1353   // Check for equivalent structure names.
1354   IdentifierInfo *Name1 = D1->getIdentifier();
1355   if (!Name1 && D1->getTypedefNameForAnonDecl())
1356     Name1 = D1->getTypedefNameForAnonDecl()->getIdentifier();
1357   IdentifierInfo *Name2 = D2->getIdentifier();
1358   if (!Name2 && D2->getTypedefNameForAnonDecl())
1359     Name2 = D2->getTypedefNameForAnonDecl()->getIdentifier();
1360   if (!IsStructurallyEquivalent(Name1, Name2))
1361     return false;
1362 
1363   if (D1->isUnion() != D2->isUnion()) {
1364     if (Context.Complain) {
1365       Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
1366                                            diag::err_odr_tag_type_inconsistent))
1367           << Context.ToCtx.getTypeDeclType(D2);
1368       Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
1369           << D1->getDeclName() << (unsigned)D1->getTagKind();
1370     }
1371     return false;
1372   }
1373 
1374   if (!D1->getDeclName() && !D2->getDeclName()) {
1375     // If both anonymous structs/unions are in a record context, make sure
1376     // they occur in the same location in the context records.
1377     if (Optional<unsigned> Index1 =
1378             StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) {
1379       if (Optional<unsigned> Index2 =
1380               StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(
1381                   D2)) {
1382         if (*Index1 != *Index2)
1383           return false;
1384       }
1385     }
1386   }
1387 
1388   // If both declarations are class template specializations, we know
1389   // the ODR applies, so check the template and template arguments.
1390   const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1);
1391   const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2);
1392   if (Spec1 && Spec2) {
1393     // Check that the specialized templates are the same.
1394     if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
1395                                   Spec2->getSpecializedTemplate()))
1396       return false;
1397 
1398     // Check that the template arguments are the same.
1399     if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
1400       return false;
1401 
1402     for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
1403       if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I),
1404                                     Spec2->getTemplateArgs().get(I)))
1405         return false;
1406   }
1407   // If one is a class template specialization and the other is not, these
1408   // structures are different.
1409   else if (Spec1 || Spec2)
1410     return false;
1411 
1412   // Compare the definitions of these two records. If either or both are
1413   // incomplete (i.e. it is a forward decl), we assume that they are
1414   // equivalent.
1415   D1 = D1->getDefinition();
1416   D2 = D2->getDefinition();
1417   if (!D1 || !D2)
1418     return true;
1419 
1420   // If any of the records has external storage and we do a minimal check (or
1421   // AST import) we assume they are equivalent. (If we didn't have this
1422   // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger
1423   // another AST import which in turn would call the structural equivalency
1424   // check again and finally we'd have an improper result.)
1425   if (Context.EqKind == StructuralEquivalenceKind::Minimal)
1426     if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage())
1427       return true;
1428 
1429   // If one definition is currently being defined, we do not compare for
1430   // equality and we assume that the decls are equal.
1431   if (D1->isBeingDefined() || D2->isBeingDefined())
1432     return true;
1433 
1434   if (auto *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
1435     if (auto *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
1436       if (D1CXX->hasExternalLexicalStorage() &&
1437           !D1CXX->isCompleteDefinition()) {
1438         D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX);
1439       }
1440 
1441       if (D1CXX->isLambda() != D2CXX->isLambda())
1442         return false;
1443       if (D1CXX->isLambda()) {
1444         if (!IsStructurallyEquivalentLambdas(Context, D1CXX, D2CXX))
1445           return false;
1446       }
1447 
1448       if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
1449         if (Context.Complain) {
1450           Context.Diag2(D2->getLocation(),
1451                         Context.getApplicableDiagnostic(
1452                             diag::err_odr_tag_type_inconsistent))
1453               << Context.ToCtx.getTypeDeclType(D2);
1454           Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
1455               << D2CXX->getNumBases();
1456           Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
1457               << D1CXX->getNumBases();
1458         }
1459         return false;
1460       }
1461 
1462       // Check the base classes.
1463       for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
1464                                               BaseEnd1 = D1CXX->bases_end(),
1465                                               Base2 = D2CXX->bases_begin();
1466            Base1 != BaseEnd1; ++Base1, ++Base2) {
1467         if (!IsStructurallyEquivalent(Context, Base1->getType(),
1468                                       Base2->getType())) {
1469           if (Context.Complain) {
1470             Context.Diag2(D2->getLocation(),
1471                           Context.getApplicableDiagnostic(
1472                               diag::err_odr_tag_type_inconsistent))
1473                 << Context.ToCtx.getTypeDeclType(D2);
1474             Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base)
1475                 << Base2->getType() << Base2->getSourceRange();
1476             Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
1477                 << Base1->getType() << Base1->getSourceRange();
1478           }
1479           return false;
1480         }
1481 
1482         // Check virtual vs. non-virtual inheritance mismatch.
1483         if (Base1->isVirtual() != Base2->isVirtual()) {
1484           if (Context.Complain) {
1485             Context.Diag2(D2->getLocation(),
1486                           Context.getApplicableDiagnostic(
1487                               diag::err_odr_tag_type_inconsistent))
1488                 << Context.ToCtx.getTypeDeclType(D2);
1489             Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base)
1490                 << Base2->isVirtual() << Base2->getSourceRange();
1491             Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
1492                 << Base1->isVirtual() << Base1->getSourceRange();
1493           }
1494           return false;
1495         }
1496       }
1497 
1498       // Check the friends for consistency.
1499       CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(),
1500                                      Friend2End = D2CXX->friend_end();
1501       for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(),
1502                                           Friend1End = D1CXX->friend_end();
1503            Friend1 != Friend1End; ++Friend1, ++Friend2) {
1504         if (Friend2 == Friend2End) {
1505           if (Context.Complain) {
1506             Context.Diag2(D2->getLocation(),
1507                           Context.getApplicableDiagnostic(
1508                               diag::err_odr_tag_type_inconsistent))
1509                 << Context.ToCtx.getTypeDeclType(D2CXX);
1510             Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
1511             Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend);
1512           }
1513           return false;
1514         }
1515 
1516         if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) {
1517           if (Context.Complain) {
1518             Context.Diag2(D2->getLocation(),
1519                           Context.getApplicableDiagnostic(
1520                               diag::err_odr_tag_type_inconsistent))
1521                 << Context.ToCtx.getTypeDeclType(D2CXX);
1522             Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
1523             Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
1524           }
1525           return false;
1526         }
1527       }
1528 
1529       if (Friend2 != Friend2End) {
1530         if (Context.Complain) {
1531           Context.Diag2(D2->getLocation(),
1532                         Context.getApplicableDiagnostic(
1533                             diag::err_odr_tag_type_inconsistent))
1534               << Context.ToCtx.getTypeDeclType(D2);
1535           Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
1536           Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend);
1537         }
1538         return false;
1539       }
1540     } else if (D1CXX->getNumBases() > 0) {
1541       if (Context.Complain) {
1542         Context.Diag2(D2->getLocation(),
1543                       Context.getApplicableDiagnostic(
1544                           diag::err_odr_tag_type_inconsistent))
1545             << Context.ToCtx.getTypeDeclType(D2);
1546         const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
1547         Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
1548             << Base1->getType() << Base1->getSourceRange();
1549         Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
1550       }
1551       return false;
1552     }
1553   }
1554 
1555   // Check the fields for consistency.
1556   RecordDecl::field_iterator Field2 = D2->field_begin(),
1557                              Field2End = D2->field_end();
1558   for (RecordDecl::field_iterator Field1 = D1->field_begin(),
1559                                   Field1End = D1->field_end();
1560        Field1 != Field1End; ++Field1, ++Field2) {
1561     if (Field2 == Field2End) {
1562       if (Context.Complain) {
1563         Context.Diag2(D2->getLocation(),
1564                       Context.getApplicableDiagnostic(
1565                           diag::err_odr_tag_type_inconsistent))
1566             << Context.ToCtx.getTypeDeclType(D2);
1567         Context.Diag1(Field1->getLocation(), diag::note_odr_field)
1568             << Field1->getDeclName() << Field1->getType();
1569         Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
1570       }
1571       return false;
1572     }
1573 
1574     if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
1575       return false;
1576   }
1577 
1578   if (Field2 != Field2End) {
1579     if (Context.Complain) {
1580       Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
1581                                            diag::err_odr_tag_type_inconsistent))
1582           << Context.ToCtx.getTypeDeclType(D2);
1583       Context.Diag2(Field2->getLocation(), diag::note_odr_field)
1584           << Field2->getDeclName() << Field2->getType();
1585       Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
1586     }
1587     return false;
1588   }
1589 
1590   return true;
1591 }
1592 
1593 /// Determine structural equivalence of two enums.
1594 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1595                                      EnumDecl *D1, EnumDecl *D2) {
1596 
1597   // Check for equivalent enum names.
1598   IdentifierInfo *Name1 = D1->getIdentifier();
1599   if (!Name1 && D1->getTypedefNameForAnonDecl())
1600     Name1 = D1->getTypedefNameForAnonDecl()->getIdentifier();
1601   IdentifierInfo *Name2 = D2->getIdentifier();
1602   if (!Name2 && D2->getTypedefNameForAnonDecl())
1603     Name2 = D2->getTypedefNameForAnonDecl()->getIdentifier();
1604   if (!IsStructurallyEquivalent(Name1, Name2))
1605     return false;
1606 
1607   // Compare the definitions of these two enums. If either or both are
1608   // incomplete (i.e. forward declared), we assume that they are equivalent.
1609   D1 = D1->getDefinition();
1610   D2 = D2->getDefinition();
1611   if (!D1 || !D2)
1612     return true;
1613 
1614   EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
1615                                 EC2End = D2->enumerator_end();
1616   for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
1617                                      EC1End = D1->enumerator_end();
1618        EC1 != EC1End; ++EC1, ++EC2) {
1619     if (EC2 == EC2End) {
1620       if (Context.Complain) {
1621         Context.Diag2(D2->getLocation(),
1622                       Context.getApplicableDiagnostic(
1623                           diag::err_odr_tag_type_inconsistent))
1624             << Context.ToCtx.getTypeDeclType(D2);
1625         Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
1626             << EC1->getDeclName() << EC1->getInitVal().toString(10);
1627         Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
1628       }
1629       return false;
1630     }
1631 
1632     llvm::APSInt Val1 = EC1->getInitVal();
1633     llvm::APSInt Val2 = EC2->getInitVal();
1634     if (!llvm::APSInt::isSameValue(Val1, Val2) ||
1635         !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
1636       if (Context.Complain) {
1637         Context.Diag2(D2->getLocation(),
1638                       Context.getApplicableDiagnostic(
1639                           diag::err_odr_tag_type_inconsistent))
1640             << Context.ToCtx.getTypeDeclType(D2);
1641         Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
1642             << EC2->getDeclName() << EC2->getInitVal().toString(10);
1643         Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
1644             << EC1->getDeclName() << EC1->getInitVal().toString(10);
1645       }
1646       return false;
1647     }
1648   }
1649 
1650   if (EC2 != EC2End) {
1651     if (Context.Complain) {
1652       Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
1653                                            diag::err_odr_tag_type_inconsistent))
1654           << Context.ToCtx.getTypeDeclType(D2);
1655       Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
1656           << EC2->getDeclName() << EC2->getInitVal().toString(10);
1657       Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
1658     }
1659     return false;
1660   }
1661 
1662   return true;
1663 }
1664 
1665 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1666                                      TemplateParameterList *Params1,
1667                                      TemplateParameterList *Params2) {
1668   if (Params1->size() != Params2->size()) {
1669     if (Context.Complain) {
1670       Context.Diag2(Params2->getTemplateLoc(),
1671                     Context.getApplicableDiagnostic(
1672                         diag::err_odr_different_num_template_parameters))
1673           << Params1->size() << Params2->size();
1674       Context.Diag1(Params1->getTemplateLoc(),
1675                     diag::note_odr_template_parameter_list);
1676     }
1677     return false;
1678   }
1679 
1680   for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
1681     if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
1682       if (Context.Complain) {
1683         Context.Diag2(Params2->getParam(I)->getLocation(),
1684                       Context.getApplicableDiagnostic(
1685                           diag::err_odr_different_template_parameter_kind));
1686         Context.Diag1(Params1->getParam(I)->getLocation(),
1687                       diag::note_odr_template_parameter_here);
1688       }
1689       return false;
1690     }
1691 
1692     if (!IsStructurallyEquivalent(Context, Params1->getParam(I),
1693                                   Params2->getParam(I)))
1694       return false;
1695   }
1696 
1697   return true;
1698 }
1699 
1700 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1701                                      TemplateTypeParmDecl *D1,
1702                                      TemplateTypeParmDecl *D2) {
1703   if (D1->isParameterPack() != D2->isParameterPack()) {
1704     if (Context.Complain) {
1705       Context.Diag2(D2->getLocation(),
1706                     Context.getApplicableDiagnostic(
1707                         diag::err_odr_parameter_pack_non_pack))
1708           << D2->isParameterPack();
1709       Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
1710           << D1->isParameterPack();
1711     }
1712     return false;
1713   }
1714 
1715   return true;
1716 }
1717 
1718 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1719                                      NonTypeTemplateParmDecl *D1,
1720                                      NonTypeTemplateParmDecl *D2) {
1721   if (D1->isParameterPack() != D2->isParameterPack()) {
1722     if (Context.Complain) {
1723       Context.Diag2(D2->getLocation(),
1724                     Context.getApplicableDiagnostic(
1725                         diag::err_odr_parameter_pack_non_pack))
1726           << D2->isParameterPack();
1727       Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
1728           << D1->isParameterPack();
1729     }
1730     return false;
1731   }
1732 
1733   // Check types.
1734   if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) {
1735     if (Context.Complain) {
1736       Context.Diag2(D2->getLocation(),
1737                     Context.getApplicableDiagnostic(
1738                         diag::err_odr_non_type_parameter_type_inconsistent))
1739           << D2->getType() << D1->getType();
1740       Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
1741           << D1->getType();
1742     }
1743     return false;
1744   }
1745 
1746   return true;
1747 }
1748 
1749 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1750                                      TemplateTemplateParmDecl *D1,
1751                                      TemplateTemplateParmDecl *D2) {
1752   if (D1->isParameterPack() != D2->isParameterPack()) {
1753     if (Context.Complain) {
1754       Context.Diag2(D2->getLocation(),
1755                     Context.getApplicableDiagnostic(
1756                         diag::err_odr_parameter_pack_non_pack))
1757           << D2->isParameterPack();
1758       Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
1759           << D1->isParameterPack();
1760     }
1761     return false;
1762   }
1763 
1764   // Check template parameter lists.
1765   return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
1766                                   D2->getTemplateParameters());
1767 }
1768 
1769 static bool IsTemplateDeclCommonStructurallyEquivalent(
1770     StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) {
1771   if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
1772     return false;
1773   if (!D1->getIdentifier()) // Special name
1774     if (D1->getNameAsString() != D2->getNameAsString())
1775       return false;
1776   return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(),
1777                                   D2->getTemplateParameters());
1778 }
1779 
1780 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1781                                      ClassTemplateDecl *D1,
1782                                      ClassTemplateDecl *D2) {
1783   // Check template parameters.
1784   if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
1785     return false;
1786 
1787   // Check the templated declaration.
1788   return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(),
1789                                   D2->getTemplatedDecl());
1790 }
1791 
1792 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1793                                      FunctionTemplateDecl *D1,
1794                                      FunctionTemplateDecl *D2) {
1795   // Check template parameters.
1796   if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
1797     return false;
1798 
1799   // Check the templated declaration.
1800   return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(),
1801                                   D2->getTemplatedDecl()->getType());
1802 }
1803 
1804 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1805                                      ConceptDecl *D1,
1806                                      ConceptDecl *D2) {
1807   // Check template parameters.
1808   if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
1809     return false;
1810 
1811   // Check the constraint expression.
1812   return IsStructurallyEquivalent(Context, D1->getConstraintExpr(),
1813                                   D2->getConstraintExpr());
1814 }
1815 
1816 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1817                                      FriendDecl *D1, FriendDecl *D2) {
1818   if ((D1->getFriendType() && D2->getFriendDecl()) ||
1819       (D1->getFriendDecl() && D2->getFriendType())) {
1820       return false;
1821   }
1822   if (D1->getFriendType() && D2->getFriendType())
1823     return IsStructurallyEquivalent(Context,
1824                                     D1->getFriendType()->getType(),
1825                                     D2->getFriendType()->getType());
1826   if (D1->getFriendDecl() && D2->getFriendDecl())
1827     return IsStructurallyEquivalent(Context, D1->getFriendDecl(),
1828                                     D2->getFriendDecl());
1829   return false;
1830 }
1831 
1832 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1833                                      TypedefNameDecl *D1, TypedefNameDecl *D2) {
1834   if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
1835     return false;
1836 
1837   return IsStructurallyEquivalent(Context, D1->getUnderlyingType(),
1838                                   D2->getUnderlyingType());
1839 }
1840 
1841 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1842                                      FunctionDecl *D1, FunctionDecl *D2) {
1843   if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
1844     return false;
1845 
1846   if (D1->isOverloadedOperator()) {
1847     if (!D2->isOverloadedOperator())
1848       return false;
1849     if (D1->getOverloadedOperator() != D2->getOverloadedOperator())
1850       return false;
1851   }
1852 
1853   // FIXME: Consider checking for function attributes as well.
1854   if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType()))
1855     return false;
1856 
1857   return true;
1858 }
1859 
1860 /// Determine structural equivalence of two declarations.
1861 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1862                                      Decl *D1, Decl *D2) {
1863   // FIXME: Check for known structural equivalences via a callback of some sort.
1864 
1865   D1 = D1->getCanonicalDecl();
1866   D2 = D2->getCanonicalDecl();
1867   std::pair<Decl *, Decl *> P{D1, D2};
1868 
1869   // Check whether we already know that these two declarations are not
1870   // structurally equivalent.
1871   if (Context.NonEquivalentDecls.count(P))
1872     return false;
1873 
1874   // Check if a check for these declarations is already pending.
1875   // If yes D1 and D2 will be checked later (from DeclsToCheck),
1876   // or these are already checked (and equivalent).
1877   bool Inserted = Context.VisitedDecls.insert(P).second;
1878   if (!Inserted)
1879     return true;
1880 
1881   Context.DeclsToCheck.push(P);
1882 
1883   return true;
1884 }
1885 
1886 DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc,
1887                                                       unsigned DiagID) {
1888   assert(Complain && "Not allowed to complain");
1889   if (LastDiagFromC2)
1890     FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics());
1891   LastDiagFromC2 = false;
1892   return FromCtx.getDiagnostics().Report(Loc, DiagID);
1893 }
1894 
1895 DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc,
1896                                                       unsigned DiagID) {
1897   assert(Complain && "Not allowed to complain");
1898   if (!LastDiagFromC2)
1899     ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics());
1900   LastDiagFromC2 = true;
1901   return ToCtx.getDiagnostics().Report(Loc, DiagID);
1902 }
1903 
1904 Optional<unsigned>
1905 StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) {
1906   ASTContext &Context = Anon->getASTContext();
1907   QualType AnonTy = Context.getRecordType(Anon);
1908 
1909   const auto *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext());
1910   if (!Owner)
1911     return None;
1912 
1913   unsigned Index = 0;
1914   for (const auto *D : Owner->noload_decls()) {
1915     const auto *F = dyn_cast<FieldDecl>(D);
1916     if (!F)
1917       continue;
1918 
1919     if (F->isAnonymousStructOrUnion()) {
1920       if (Context.hasSameType(F->getType(), AnonTy))
1921         break;
1922       ++Index;
1923       continue;
1924     }
1925 
1926     // If the field looks like this:
1927     // struct { ... } A;
1928     QualType FieldType = F->getType();
1929     // In case of nested structs.
1930     while (const auto *ElabType = dyn_cast<ElaboratedType>(FieldType))
1931       FieldType = ElabType->getNamedType();
1932 
1933     if (const auto *RecType = dyn_cast<RecordType>(FieldType)) {
1934       const RecordDecl *RecDecl = RecType->getDecl();
1935       if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) {
1936         if (Context.hasSameType(FieldType, AnonTy))
1937           break;
1938         ++Index;
1939         continue;
1940       }
1941     }
1942   }
1943 
1944   return Index;
1945 }
1946 
1947 unsigned StructuralEquivalenceContext::getApplicableDiagnostic(
1948     unsigned ErrorDiagnostic) {
1949   if (ErrorOnTagTypeMismatch)
1950     return ErrorDiagnostic;
1951 
1952   switch (ErrorDiagnostic) {
1953   case diag::err_odr_variable_type_inconsistent:
1954     return diag::warn_odr_variable_type_inconsistent;
1955   case diag::err_odr_variable_multiple_def:
1956     return diag::warn_odr_variable_multiple_def;
1957   case diag::err_odr_function_type_inconsistent:
1958     return diag::warn_odr_function_type_inconsistent;
1959   case diag::err_odr_tag_type_inconsistent:
1960     return diag::warn_odr_tag_type_inconsistent;
1961   case diag::err_odr_field_type_inconsistent:
1962     return diag::warn_odr_field_type_inconsistent;
1963   case diag::err_odr_ivar_type_inconsistent:
1964     return diag::warn_odr_ivar_type_inconsistent;
1965   case diag::err_odr_objc_superclass_inconsistent:
1966     return diag::warn_odr_objc_superclass_inconsistent;
1967   case diag::err_odr_objc_method_result_type_inconsistent:
1968     return diag::warn_odr_objc_method_result_type_inconsistent;
1969   case diag::err_odr_objc_method_num_params_inconsistent:
1970     return diag::warn_odr_objc_method_num_params_inconsistent;
1971   case diag::err_odr_objc_method_param_type_inconsistent:
1972     return diag::warn_odr_objc_method_param_type_inconsistent;
1973   case diag::err_odr_objc_method_variadic_inconsistent:
1974     return diag::warn_odr_objc_method_variadic_inconsistent;
1975   case diag::err_odr_objc_property_type_inconsistent:
1976     return diag::warn_odr_objc_property_type_inconsistent;
1977   case diag::err_odr_objc_property_impl_kind_inconsistent:
1978     return diag::warn_odr_objc_property_impl_kind_inconsistent;
1979   case diag::err_odr_objc_synthesize_ivar_inconsistent:
1980     return diag::warn_odr_objc_synthesize_ivar_inconsistent;
1981   case diag::err_odr_different_num_template_parameters:
1982     return diag::warn_odr_different_num_template_parameters;
1983   case diag::err_odr_different_template_parameter_kind:
1984     return diag::warn_odr_different_template_parameter_kind;
1985   case diag::err_odr_parameter_pack_non_pack:
1986     return diag::warn_odr_parameter_pack_non_pack;
1987   case diag::err_odr_non_type_parameter_type_inconsistent:
1988     return diag::warn_odr_non_type_parameter_type_inconsistent;
1989   }
1990   llvm_unreachable("Diagnostic kind not handled in preceding switch");
1991 }
1992 
1993 bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) {
1994 
1995   // Ensure that the implementation functions (all static functions in this TU)
1996   // never call the public ASTStructuralEquivalence::IsEquivalent() functions,
1997   // because that will wreak havoc the internal state (DeclsToCheck and
1998   // VisitedDecls members) and can cause faulty behaviour.
1999   // In other words: Do not start a graph search from a new node with the
2000   // internal data of another search in progress.
2001   // FIXME: Better encapsulation and separation of internal and public
2002   // functionality.
2003   assert(DeclsToCheck.empty());
2004   assert(VisitedDecls.empty());
2005 
2006   if (!::IsStructurallyEquivalent(*this, D1, D2))
2007     return false;
2008 
2009   return !Finish();
2010 }
2011 
2012 bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) {
2013   assert(DeclsToCheck.empty());
2014   assert(VisitedDecls.empty());
2015   if (!::IsStructurallyEquivalent(*this, T1, T2))
2016     return false;
2017 
2018   return !Finish();
2019 }
2020 
2021 bool StructuralEquivalenceContext::IsEquivalent(Stmt *S1, Stmt *S2) {
2022   assert(DeclsToCheck.empty());
2023   assert(VisitedDecls.empty());
2024   if (!::IsStructurallyEquivalent(*this, S1, S2))
2025     return false;
2026 
2027   return !Finish();
2028 }
2029 
2030 bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) {
2031   // Check for equivalent described template.
2032   TemplateDecl *Template1 = D1->getDescribedTemplate();
2033   TemplateDecl *Template2 = D2->getDescribedTemplate();
2034   if ((Template1 != nullptr) != (Template2 != nullptr))
2035     return false;
2036   if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2))
2037     return false;
2038 
2039   // FIXME: Move check for identifier names into this function.
2040 
2041   return true;
2042 }
2043 
2044 bool StructuralEquivalenceContext::CheckKindSpecificEquivalence(
2045     Decl *D1, Decl *D2) {
2046 
2047   // Kind mismatch.
2048   if (D1->getKind() != D2->getKind())
2049     return false;
2050 
2051   // Cast the Decls to their actual subclass so that the right overload of
2052   // IsStructurallyEquivalent is called.
2053   switch (D1->getKind()) {
2054 #define ABSTRACT_DECL(DECL)
2055 #define DECL(DERIVED, BASE)                                                    \
2056   case Decl::Kind::DERIVED:                                                    \
2057     return ::IsStructurallyEquivalent(*this, static_cast<DERIVED##Decl *>(D1), \
2058                                       static_cast<DERIVED##Decl *>(D2));
2059 #include "clang/AST/DeclNodes.inc"
2060   }
2061   return true;
2062 }
2063 
2064 bool StructuralEquivalenceContext::Finish() {
2065   while (!DeclsToCheck.empty()) {
2066     // Check the next declaration.
2067     std::pair<Decl *, Decl *> P = DeclsToCheck.front();
2068     DeclsToCheck.pop();
2069 
2070     Decl *D1 = P.first;
2071     Decl *D2 = P.second;
2072 
2073     bool Equivalent =
2074         CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2);
2075 
2076     if (!Equivalent) {
2077       // Note that these two declarations are not equivalent (and we already
2078       // know about it).
2079       NonEquivalentDecls.insert(P);
2080 
2081       return true;
2082     }
2083   }
2084 
2085   return false;
2086 }
2087