1 //===- ASTStructuralEquivalence.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implement StructuralEquivalenceContext class and helper functions 10 // for layout matching. 11 // 12 // The structural equivalence check could have been implemented as a parallel 13 // BFS on a pair of graphs. That must have been the original approach at the 14 // beginning. 15 // Let's consider this simple BFS algorithm from the `s` source: 16 // ``` 17 // void bfs(Graph G, int s) 18 // { 19 // Queue<Integer> queue = new Queue<Integer>(); 20 // marked[s] = true; // Mark the source 21 // queue.enqueue(s); // and put it on the queue. 22 // while (!q.isEmpty()) { 23 // int v = queue.dequeue(); // Remove next vertex from the queue. 24 // for (int w : G.adj(v)) 25 // if (!marked[w]) // For every unmarked adjacent vertex, 26 // { 27 // marked[w] = true; 28 // queue.enqueue(w); 29 // } 30 // } 31 // } 32 // ``` 33 // Indeed, it has it's queue, which holds pairs of nodes, one from each graph, 34 // this is the `DeclsToCheck` member. `VisitedDecls` plays the role of the 35 // marking (`marked`) functionality above, we use it to check whether we've 36 // already seen a pair of nodes. 37 // 38 // We put in the elements into the queue only in the toplevel decl check 39 // function: 40 // ``` 41 // static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 42 // Decl *D1, Decl *D2); 43 // ``` 44 // The `while` loop where we iterate over the children is implemented in 45 // `Finish()`. And `Finish` is called only from the two **member** functions 46 // which check the equivalency of two Decls or two Types. ASTImporter (and 47 // other clients) call only these functions. 48 // 49 // The `static` implementation functions are called from `Finish`, these push 50 // the children nodes to the queue via `static bool 51 // IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, 52 // Decl *D2)`. So far so good, this is almost like the BFS. However, if we 53 // let a static implementation function to call `Finish` via another **member** 54 // function that means we end up with two nested while loops each of them 55 // working on the same queue. This is wrong and nobody can reason about it's 56 // doing. Thus, static implementation functions must not call the **member** 57 // functions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "clang/AST/ASTStructuralEquivalence.h" 62 #include "clang/AST/ASTContext.h" 63 #include "clang/AST/ASTDiagnostic.h" 64 #include "clang/AST/Decl.h" 65 #include "clang/AST/DeclBase.h" 66 #include "clang/AST/DeclCXX.h" 67 #include "clang/AST/DeclFriend.h" 68 #include "clang/AST/DeclObjC.h" 69 #include "clang/AST/DeclOpenMP.h" 70 #include "clang/AST/DeclTemplate.h" 71 #include "clang/AST/ExprCXX.h" 72 #include "clang/AST/ExprConcepts.h" 73 #include "clang/AST/ExprObjC.h" 74 #include "clang/AST/ExprOpenMP.h" 75 #include "clang/AST/NestedNameSpecifier.h" 76 #include "clang/AST/StmtObjC.h" 77 #include "clang/AST/StmtOpenMP.h" 78 #include "clang/AST/TemplateBase.h" 79 #include "clang/AST/TemplateName.h" 80 #include "clang/AST/Type.h" 81 #include "clang/Basic/ExceptionSpecificationType.h" 82 #include "clang/Basic/IdentifierTable.h" 83 #include "clang/Basic/LLVM.h" 84 #include "clang/Basic/SourceLocation.h" 85 #include "llvm/ADT/APInt.h" 86 #include "llvm/ADT/APSInt.h" 87 #include "llvm/ADT/StringExtras.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/Compiler.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include <cassert> 92 #include <optional> 93 #include <utility> 94 95 using namespace clang; 96 97 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 98 QualType T1, QualType T2); 99 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 100 Decl *D1, Decl *D2); 101 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 102 const Stmt *S1, const Stmt *S2); 103 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 104 const TemplateArgument &Arg1, 105 const TemplateArgument &Arg2); 106 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 107 const TemplateArgumentLoc &Arg1, 108 const TemplateArgumentLoc &Arg2); 109 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 110 NestedNameSpecifier *NNS1, 111 NestedNameSpecifier *NNS2); 112 static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, 113 const IdentifierInfo *Name2); 114 115 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 116 const DeclarationName Name1, 117 const DeclarationName Name2) { 118 if (Name1.getNameKind() != Name2.getNameKind()) 119 return false; 120 121 switch (Name1.getNameKind()) { 122 123 case DeclarationName::Identifier: 124 return IsStructurallyEquivalent(Name1.getAsIdentifierInfo(), 125 Name2.getAsIdentifierInfo()); 126 127 case DeclarationName::CXXConstructorName: 128 case DeclarationName::CXXDestructorName: 129 case DeclarationName::CXXConversionFunctionName: 130 return IsStructurallyEquivalent(Context, Name1.getCXXNameType(), 131 Name2.getCXXNameType()); 132 133 case DeclarationName::CXXDeductionGuideName: { 134 if (!IsStructurallyEquivalent( 135 Context, Name1.getCXXDeductionGuideTemplate()->getDeclName(), 136 Name2.getCXXDeductionGuideTemplate()->getDeclName())) 137 return false; 138 return IsStructurallyEquivalent(Context, 139 Name1.getCXXDeductionGuideTemplate(), 140 Name2.getCXXDeductionGuideTemplate()); 141 } 142 143 case DeclarationName::CXXOperatorName: 144 return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator(); 145 146 case DeclarationName::CXXLiteralOperatorName: 147 return IsStructurallyEquivalent(Name1.getCXXLiteralIdentifier(), 148 Name2.getCXXLiteralIdentifier()); 149 150 case DeclarationName::CXXUsingDirective: 151 return true; // FIXME When do we consider two using directives equal? 152 153 case DeclarationName::ObjCZeroArgSelector: 154 case DeclarationName::ObjCOneArgSelector: 155 case DeclarationName::ObjCMultiArgSelector: 156 return true; // FIXME 157 } 158 159 llvm_unreachable("Unhandled kind of DeclarationName"); 160 return true; 161 } 162 163 namespace { 164 /// Encapsulates Stmt comparison logic. 165 class StmtComparer { 166 StructuralEquivalenceContext &Context; 167 168 // IsStmtEquivalent overloads. Each overload compares a specific statement 169 // and only has to compare the data that is specific to the specific statement 170 // class. Should only be called from TraverseStmt. 171 172 bool IsStmtEquivalent(const AddrLabelExpr *E1, const AddrLabelExpr *E2) { 173 return IsStructurallyEquivalent(Context, E1->getLabel(), E2->getLabel()); 174 } 175 176 bool IsStmtEquivalent(const AtomicExpr *E1, const AtomicExpr *E2) { 177 return E1->getOp() == E2->getOp(); 178 } 179 180 bool IsStmtEquivalent(const BinaryOperator *E1, const BinaryOperator *E2) { 181 return E1->getOpcode() == E2->getOpcode(); 182 } 183 184 bool IsStmtEquivalent(const CallExpr *E1, const CallExpr *E2) { 185 // FIXME: IsStructurallyEquivalent requires non-const Decls. 186 Decl *Callee1 = const_cast<Decl *>(E1->getCalleeDecl()); 187 Decl *Callee2 = const_cast<Decl *>(E2->getCalleeDecl()); 188 189 // Compare whether both calls know their callee. 190 if (static_cast<bool>(Callee1) != static_cast<bool>(Callee2)) 191 return false; 192 193 // Both calls have no callee, so nothing to do. 194 if (!static_cast<bool>(Callee1)) 195 return true; 196 197 assert(Callee2); 198 return IsStructurallyEquivalent(Context, Callee1, Callee2); 199 } 200 201 bool IsStmtEquivalent(const CharacterLiteral *E1, 202 const CharacterLiteral *E2) { 203 return E1->getValue() == E2->getValue() && E1->getKind() == E2->getKind(); 204 } 205 206 bool IsStmtEquivalent(const ChooseExpr *E1, const ChooseExpr *E2) { 207 return true; // Semantics only depend on children. 208 } 209 210 bool IsStmtEquivalent(const CompoundStmt *E1, const CompoundStmt *E2) { 211 // Number of children is actually checked by the generic children comparison 212 // code, but a CompoundStmt is one of the few statements where the number of 213 // children frequently differs and the number of statements is also always 214 // precomputed. Directly comparing the number of children here is thus 215 // just an optimization. 216 return E1->size() == E2->size(); 217 } 218 219 bool IsStmtEquivalent(const DeclRefExpr *DRE1, const DeclRefExpr *DRE2) { 220 const ValueDecl *Decl1 = DRE1->getDecl(); 221 const ValueDecl *Decl2 = DRE2->getDecl(); 222 if (!Decl1 || !Decl2) 223 return false; 224 return IsStructurallyEquivalent(Context, const_cast<ValueDecl *>(Decl1), 225 const_cast<ValueDecl *>(Decl2)); 226 } 227 228 bool IsStmtEquivalent(const DependentScopeDeclRefExpr *DE1, 229 const DependentScopeDeclRefExpr *DE2) { 230 if (!IsStructurallyEquivalent(Context, DE1->getDeclName(), 231 DE2->getDeclName())) 232 return false; 233 return IsStructurallyEquivalent(Context, DE1->getQualifier(), 234 DE2->getQualifier()); 235 } 236 237 bool IsStmtEquivalent(const Expr *E1, const Expr *E2) { 238 return IsStructurallyEquivalent(Context, E1->getType(), E2->getType()); 239 } 240 241 bool IsStmtEquivalent(const ExpressionTraitExpr *E1, 242 const ExpressionTraitExpr *E2) { 243 return E1->getTrait() == E2->getTrait() && E1->getValue() == E2->getValue(); 244 } 245 246 bool IsStmtEquivalent(const FloatingLiteral *E1, const FloatingLiteral *E2) { 247 return E1->isExact() == E2->isExact() && E1->getValue() == E2->getValue(); 248 } 249 250 bool IsStmtEquivalent(const GenericSelectionExpr *E1, 251 const GenericSelectionExpr *E2) { 252 for (auto Pair : zip_longest(E1->getAssocTypeSourceInfos(), 253 E2->getAssocTypeSourceInfos())) { 254 std::optional<TypeSourceInfo *> Child1 = std::get<0>(Pair); 255 std::optional<TypeSourceInfo *> Child2 = std::get<1>(Pair); 256 // Skip this case if there are a different number of associated types. 257 if (!Child1 || !Child2) 258 return false; 259 260 if (!IsStructurallyEquivalent(Context, (*Child1)->getType(), 261 (*Child2)->getType())) 262 return false; 263 } 264 265 return true; 266 } 267 268 bool IsStmtEquivalent(const ImplicitCastExpr *CastE1, 269 const ImplicitCastExpr *CastE2) { 270 return IsStructurallyEquivalent(Context, CastE1->getType(), 271 CastE2->getType()); 272 } 273 274 bool IsStmtEquivalent(const IntegerLiteral *E1, const IntegerLiteral *E2) { 275 return E1->getValue() == E2->getValue(); 276 } 277 278 bool IsStmtEquivalent(const MemberExpr *E1, const MemberExpr *E2) { 279 return IsStructurallyEquivalent(Context, E1->getFoundDecl(), 280 E2->getFoundDecl()); 281 } 282 283 bool IsStmtEquivalent(const ObjCStringLiteral *E1, 284 const ObjCStringLiteral *E2) { 285 // Just wraps a StringLiteral child. 286 return true; 287 } 288 289 bool IsStmtEquivalent(const Stmt *S1, const Stmt *S2) { return true; } 290 291 bool IsStmtEquivalent(const GotoStmt *S1, const GotoStmt *S2) { 292 LabelDecl *L1 = S1->getLabel(); 293 LabelDecl *L2 = S2->getLabel(); 294 if (!L1 || !L2) 295 return L1 == L2; 296 297 IdentifierInfo *Name1 = L1->getIdentifier(); 298 IdentifierInfo *Name2 = L2->getIdentifier(); 299 return ::IsStructurallyEquivalent(Name1, Name2); 300 } 301 302 bool IsStmtEquivalent(const SourceLocExpr *E1, const SourceLocExpr *E2) { 303 return E1->getIdentKind() == E2->getIdentKind(); 304 } 305 306 bool IsStmtEquivalent(const StmtExpr *E1, const StmtExpr *E2) { 307 return E1->getTemplateDepth() == E2->getTemplateDepth(); 308 } 309 310 bool IsStmtEquivalent(const StringLiteral *E1, const StringLiteral *E2) { 311 return E1->getBytes() == E2->getBytes(); 312 } 313 314 bool IsStmtEquivalent(const SubstNonTypeTemplateParmExpr *E1, 315 const SubstNonTypeTemplateParmExpr *E2) { 316 if (!IsStructurallyEquivalent(Context, E1->getAssociatedDecl(), 317 E2->getAssociatedDecl())) 318 return false; 319 if (E1->getIndex() != E2->getIndex()) 320 return false; 321 if (E1->getPackIndex() != E2->getPackIndex()) 322 return false; 323 return true; 324 } 325 326 bool IsStmtEquivalent(const SubstNonTypeTemplateParmPackExpr *E1, 327 const SubstNonTypeTemplateParmPackExpr *E2) { 328 return IsStructurallyEquivalent(Context, E1->getArgumentPack(), 329 E2->getArgumentPack()); 330 } 331 332 bool IsStmtEquivalent(const TypeTraitExpr *E1, const TypeTraitExpr *E2) { 333 if (E1->getTrait() != E2->getTrait()) 334 return false; 335 336 for (auto Pair : zip_longest(E1->getArgs(), E2->getArgs())) { 337 std::optional<TypeSourceInfo *> Child1 = std::get<0>(Pair); 338 std::optional<TypeSourceInfo *> Child2 = std::get<1>(Pair); 339 // Different number of args. 340 if (!Child1 || !Child2) 341 return false; 342 343 if (!IsStructurallyEquivalent(Context, (*Child1)->getType(), 344 (*Child2)->getType())) 345 return false; 346 } 347 return true; 348 } 349 350 bool IsStmtEquivalent(const UnaryExprOrTypeTraitExpr *E1, 351 const UnaryExprOrTypeTraitExpr *E2) { 352 if (E1->getKind() != E2->getKind()) 353 return false; 354 return IsStructurallyEquivalent(Context, E1->getTypeOfArgument(), 355 E2->getTypeOfArgument()); 356 } 357 358 bool IsStmtEquivalent(const UnaryOperator *E1, const UnaryOperator *E2) { 359 return E1->getOpcode() == E2->getOpcode(); 360 } 361 362 bool IsStmtEquivalent(const VAArgExpr *E1, const VAArgExpr *E2) { 363 // Semantics only depend on children. 364 return true; 365 } 366 367 bool IsStmtEquivalent(const OverloadExpr *E1, const OverloadExpr *E2) { 368 if (!IsStructurallyEquivalent(Context, E1->getName(), E2->getName())) 369 return false; 370 371 if (static_cast<bool>(E1->getQualifier()) != 372 static_cast<bool>(E2->getQualifier())) 373 return false; 374 if (E1->getQualifier() && 375 !IsStructurallyEquivalent(Context, E1->getQualifier(), 376 E2->getQualifier())) 377 return false; 378 379 if (E1->getNumTemplateArgs() != E2->getNumTemplateArgs()) 380 return false; 381 const TemplateArgumentLoc *Args1 = E1->getTemplateArgs(); 382 const TemplateArgumentLoc *Args2 = E2->getTemplateArgs(); 383 for (unsigned int ArgI = 0, ArgN = E1->getNumTemplateArgs(); ArgI < ArgN; 384 ++ArgI) 385 if (!IsStructurallyEquivalent(Context, Args1[ArgI], Args2[ArgI])) 386 return false; 387 388 return true; 389 } 390 391 bool IsStmtEquivalent(const CXXBoolLiteralExpr *E1, const CXXBoolLiteralExpr *E2) { 392 return E1->getValue() == E2->getValue(); 393 } 394 395 /// End point of the traversal chain. 396 bool TraverseStmt(const Stmt *S1, const Stmt *S2) { return true; } 397 398 // Create traversal methods that traverse the class hierarchy and return 399 // the accumulated result of the comparison. Each TraverseStmt overload 400 // calls the TraverseStmt overload of the parent class. For example, 401 // the TraverseStmt overload for 'BinaryOperator' calls the TraverseStmt 402 // overload of 'Expr' which then calls the overload for 'Stmt'. 403 #define STMT(CLASS, PARENT) \ 404 bool TraverseStmt(const CLASS *S1, const CLASS *S2) { \ 405 if (!TraverseStmt(static_cast<const PARENT *>(S1), \ 406 static_cast<const PARENT *>(S2))) \ 407 return false; \ 408 return IsStmtEquivalent(S1, S2); \ 409 } 410 #include "clang/AST/StmtNodes.inc" 411 412 public: 413 StmtComparer(StructuralEquivalenceContext &C) : Context(C) {} 414 415 /// Determine whether two statements are equivalent. The statements have to 416 /// be of the same kind. The children of the statements and their properties 417 /// are not compared by this function. 418 bool IsEquivalent(const Stmt *S1, const Stmt *S2) { 419 if (S1->getStmtClass() != S2->getStmtClass()) 420 return false; 421 422 // Each TraverseStmt walks the class hierarchy from the leaf class to 423 // the root class 'Stmt' (e.g. 'BinaryOperator' -> 'Expr' -> 'Stmt'). Cast 424 // the Stmt we have here to its specific subclass so that we call the 425 // overload that walks the whole class hierarchy from leaf to root (e.g., 426 // cast to 'BinaryOperator' so that 'Expr' and 'Stmt' is traversed). 427 switch (S1->getStmtClass()) { 428 case Stmt::NoStmtClass: 429 llvm_unreachable("Can't traverse NoStmtClass"); 430 #define STMT(CLASS, PARENT) \ 431 case Stmt::StmtClass::CLASS##Class: \ 432 return TraverseStmt(static_cast<const CLASS *>(S1), \ 433 static_cast<const CLASS *>(S2)); 434 #define ABSTRACT_STMT(S) 435 #include "clang/AST/StmtNodes.inc" 436 } 437 llvm_unreachable("Invalid statement kind"); 438 } 439 }; 440 } // namespace 441 442 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 443 const UnaryOperator *E1, 444 const CXXOperatorCallExpr *E2) { 445 return UnaryOperator::getOverloadedOperator(E1->getOpcode()) == 446 E2->getOperator() && 447 IsStructurallyEquivalent(Context, E1->getSubExpr(), E2->getArg(0)); 448 } 449 450 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 451 const CXXOperatorCallExpr *E1, 452 const UnaryOperator *E2) { 453 return E1->getOperator() == 454 UnaryOperator::getOverloadedOperator(E2->getOpcode()) && 455 IsStructurallyEquivalent(Context, E1->getArg(0), E2->getSubExpr()); 456 } 457 458 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 459 const BinaryOperator *E1, 460 const CXXOperatorCallExpr *E2) { 461 return BinaryOperator::getOverloadedOperator(E1->getOpcode()) == 462 E2->getOperator() && 463 IsStructurallyEquivalent(Context, E1->getLHS(), E2->getArg(0)) && 464 IsStructurallyEquivalent(Context, E1->getRHS(), E2->getArg(1)); 465 } 466 467 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 468 const CXXOperatorCallExpr *E1, 469 const BinaryOperator *E2) { 470 return E1->getOperator() == 471 BinaryOperator::getOverloadedOperator(E2->getOpcode()) && 472 IsStructurallyEquivalent(Context, E1->getArg(0), E2->getLHS()) && 473 IsStructurallyEquivalent(Context, E1->getArg(1), E2->getRHS()); 474 } 475 476 /// Determine structural equivalence of two statements. 477 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 478 const Stmt *S1, const Stmt *S2) { 479 if (!S1 || !S2) 480 return S1 == S2; 481 482 // Check for statements with similar syntax but different AST. 483 // A UnaryOperator node is more lightweight than a CXXOperatorCallExpr node. 484 // The more heavyweight node is only created if the definition-time name 485 // lookup had any results. The lookup results are stored CXXOperatorCallExpr 486 // only. The lookup results can be different in a "From" and "To" AST even if 487 // the compared structure is otherwise equivalent. For this reason we must 488 // treat a similar unary/binary operator node and CXXOperatorCall node as 489 // equivalent. 490 if (const auto *E2CXXOperatorCall = dyn_cast<CXXOperatorCallExpr>(S2)) { 491 if (const auto *E1Unary = dyn_cast<UnaryOperator>(S1)) 492 return IsStructurallyEquivalent(Context, E1Unary, E2CXXOperatorCall); 493 if (const auto *E1Binary = dyn_cast<BinaryOperator>(S1)) 494 return IsStructurallyEquivalent(Context, E1Binary, E2CXXOperatorCall); 495 } 496 if (const auto *E1CXXOperatorCall = dyn_cast<CXXOperatorCallExpr>(S1)) { 497 if (const auto *E2Unary = dyn_cast<UnaryOperator>(S2)) 498 return IsStructurallyEquivalent(Context, E1CXXOperatorCall, E2Unary); 499 if (const auto *E2Binary = dyn_cast<BinaryOperator>(S2)) 500 return IsStructurallyEquivalent(Context, E1CXXOperatorCall, E2Binary); 501 } 502 503 // Compare the statements itself. 504 StmtComparer Comparer(Context); 505 if (!Comparer.IsEquivalent(S1, S2)) 506 return false; 507 508 // Iterate over the children of both statements and also compare them. 509 for (auto Pair : zip_longest(S1->children(), S2->children())) { 510 std::optional<const Stmt *> Child1 = std::get<0>(Pair); 511 std::optional<const Stmt *> Child2 = std::get<1>(Pair); 512 // One of the statements has a different amount of children than the other, 513 // so the statements can't be equivalent. 514 if (!Child1 || !Child2) 515 return false; 516 if (!IsStructurallyEquivalent(Context, *Child1, *Child2)) 517 return false; 518 } 519 return true; 520 } 521 522 /// Determine whether two identifiers are equivalent. 523 static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, 524 const IdentifierInfo *Name2) { 525 if (!Name1 || !Name2) 526 return Name1 == Name2; 527 528 return Name1->getName() == Name2->getName(); 529 } 530 531 /// Determine whether two nested-name-specifiers are equivalent. 532 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 533 NestedNameSpecifier *NNS1, 534 NestedNameSpecifier *NNS2) { 535 if (NNS1->getKind() != NNS2->getKind()) 536 return false; 537 538 NestedNameSpecifier *Prefix1 = NNS1->getPrefix(), 539 *Prefix2 = NNS2->getPrefix(); 540 if ((bool)Prefix1 != (bool)Prefix2) 541 return false; 542 543 if (Prefix1) 544 if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2)) 545 return false; 546 547 switch (NNS1->getKind()) { 548 case NestedNameSpecifier::Identifier: 549 return IsStructurallyEquivalent(NNS1->getAsIdentifier(), 550 NNS2->getAsIdentifier()); 551 case NestedNameSpecifier::Namespace: 552 return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(), 553 NNS2->getAsNamespace()); 554 case NestedNameSpecifier::NamespaceAlias: 555 return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(), 556 NNS2->getAsNamespaceAlias()); 557 case NestedNameSpecifier::TypeSpec: 558 case NestedNameSpecifier::TypeSpecWithTemplate: 559 return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0), 560 QualType(NNS2->getAsType(), 0)); 561 case NestedNameSpecifier::Global: 562 return true; 563 case NestedNameSpecifier::Super: 564 return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(), 565 NNS2->getAsRecordDecl()); 566 } 567 return false; 568 } 569 570 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 571 const TemplateName &N1, 572 const TemplateName &N2) { 573 TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl(); 574 TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl(); 575 if (TemplateDeclN1 && TemplateDeclN2) { 576 if (!IsStructurallyEquivalent(Context, TemplateDeclN1, TemplateDeclN2)) 577 return false; 578 // If the kind is different we compare only the template decl. 579 if (N1.getKind() != N2.getKind()) 580 return true; 581 } else if (TemplateDeclN1 || TemplateDeclN2) 582 return false; 583 else if (N1.getKind() != N2.getKind()) 584 return false; 585 586 // Check for special case incompatibilities. 587 switch (N1.getKind()) { 588 589 case TemplateName::OverloadedTemplate: { 590 OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(), 591 *OS2 = N2.getAsOverloadedTemplate(); 592 OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(), 593 E1 = OS1->end(), E2 = OS2->end(); 594 for (; I1 != E1 && I2 != E2; ++I1, ++I2) 595 if (!IsStructurallyEquivalent(Context, *I1, *I2)) 596 return false; 597 return I1 == E1 && I2 == E2; 598 } 599 600 case TemplateName::AssumedTemplate: { 601 AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(), 602 *TN2 = N1.getAsAssumedTemplateName(); 603 return TN1->getDeclName() == TN2->getDeclName(); 604 } 605 606 case TemplateName::DependentTemplate: { 607 DependentTemplateName *DN1 = N1.getAsDependentTemplateName(), 608 *DN2 = N2.getAsDependentTemplateName(); 609 if (!IsStructurallyEquivalent(Context, DN1->getQualifier(), 610 DN2->getQualifier())) 611 return false; 612 if (DN1->isIdentifier() && DN2->isIdentifier()) 613 return IsStructurallyEquivalent(DN1->getIdentifier(), 614 DN2->getIdentifier()); 615 else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator()) 616 return DN1->getOperator() == DN2->getOperator(); 617 return false; 618 } 619 620 case TemplateName::SubstTemplateTemplateParmPack: { 621 SubstTemplateTemplateParmPackStorage 622 *P1 = N1.getAsSubstTemplateTemplateParmPack(), 623 *P2 = N2.getAsSubstTemplateTemplateParmPack(); 624 return IsStructurallyEquivalent(Context, P1->getArgumentPack(), 625 P2->getArgumentPack()) && 626 IsStructurallyEquivalent(Context, P1->getAssociatedDecl(), 627 P2->getAssociatedDecl()) && 628 P1->getIndex() == P2->getIndex(); 629 } 630 631 case TemplateName::Template: 632 case TemplateName::QualifiedTemplate: 633 case TemplateName::SubstTemplateTemplateParm: 634 case TemplateName::UsingTemplate: 635 // It is sufficient to check value of getAsTemplateDecl. 636 break; 637 638 } 639 640 return true; 641 } 642 643 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 644 ArrayRef<TemplateArgument> Args1, 645 ArrayRef<TemplateArgument> Args2); 646 647 /// Determine whether two template arguments are equivalent. 648 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 649 const TemplateArgument &Arg1, 650 const TemplateArgument &Arg2) { 651 if (Arg1.getKind() != Arg2.getKind()) 652 return false; 653 654 switch (Arg1.getKind()) { 655 case TemplateArgument::Null: 656 return true; 657 658 case TemplateArgument::Type: 659 return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType()); 660 661 case TemplateArgument::Integral: 662 if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(), 663 Arg2.getIntegralType())) 664 return false; 665 666 return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), 667 Arg2.getAsIntegral()); 668 669 case TemplateArgument::Declaration: 670 return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl()); 671 672 case TemplateArgument::NullPtr: 673 return true; // FIXME: Is this correct? 674 675 case TemplateArgument::Template: 676 return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(), 677 Arg2.getAsTemplate()); 678 679 case TemplateArgument::TemplateExpansion: 680 return IsStructurallyEquivalent(Context, 681 Arg1.getAsTemplateOrTemplatePattern(), 682 Arg2.getAsTemplateOrTemplatePattern()); 683 684 case TemplateArgument::Expression: 685 return IsStructurallyEquivalent(Context, Arg1.getAsExpr(), 686 Arg2.getAsExpr()); 687 688 case TemplateArgument::StructuralValue: 689 return Arg1.structurallyEquals(Arg2); 690 691 case TemplateArgument::Pack: 692 return IsStructurallyEquivalent(Context, Arg1.pack_elements(), 693 Arg2.pack_elements()); 694 } 695 696 llvm_unreachable("Invalid template argument kind"); 697 } 698 699 /// Determine structural equivalence of two template argument lists. 700 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 701 ArrayRef<TemplateArgument> Args1, 702 ArrayRef<TemplateArgument> Args2) { 703 if (Args1.size() != Args2.size()) 704 return false; 705 for (unsigned I = 0, N = Args1.size(); I != N; ++I) { 706 if (!IsStructurallyEquivalent(Context, Args1[I], Args2[I])) 707 return false; 708 } 709 return true; 710 } 711 712 /// Determine whether two template argument locations are equivalent. 713 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 714 const TemplateArgumentLoc &Arg1, 715 const TemplateArgumentLoc &Arg2) { 716 return IsStructurallyEquivalent(Context, Arg1.getArgument(), 717 Arg2.getArgument()); 718 } 719 720 /// Determine structural equivalence for the common part of array 721 /// types. 722 static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, 723 const ArrayType *Array1, 724 const ArrayType *Array2) { 725 if (!IsStructurallyEquivalent(Context, Array1->getElementType(), 726 Array2->getElementType())) 727 return false; 728 if (Array1->getSizeModifier() != Array2->getSizeModifier()) 729 return false; 730 if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) 731 return false; 732 733 return true; 734 } 735 736 /// Determine structural equivalence based on the ExtInfo of functions. This 737 /// is inspired by ASTContext::mergeFunctionTypes(), we compare calling 738 /// conventions bits but must not compare some other bits. 739 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 740 FunctionType::ExtInfo EI1, 741 FunctionType::ExtInfo EI2) { 742 // Compatible functions must have compatible calling conventions. 743 if (EI1.getCC() != EI2.getCC()) 744 return false; 745 746 // Regparm is part of the calling convention. 747 if (EI1.getHasRegParm() != EI2.getHasRegParm()) 748 return false; 749 if (EI1.getRegParm() != EI2.getRegParm()) 750 return false; 751 752 if (EI1.getProducesResult() != EI2.getProducesResult()) 753 return false; 754 if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs()) 755 return false; 756 if (EI1.getNoCfCheck() != EI2.getNoCfCheck()) 757 return false; 758 759 return true; 760 } 761 762 /// Check the equivalence of exception specifications. 763 static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context, 764 const FunctionProtoType *Proto1, 765 const FunctionProtoType *Proto2) { 766 767 auto Spec1 = Proto1->getExceptionSpecType(); 768 auto Spec2 = Proto2->getExceptionSpecType(); 769 770 if (isUnresolvedExceptionSpec(Spec1) || isUnresolvedExceptionSpec(Spec2)) 771 return true; 772 773 if (Spec1 != Spec2) 774 return false; 775 if (Spec1 == EST_Dynamic) { 776 if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) 777 return false; 778 for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { 779 if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I), 780 Proto2->getExceptionType(I))) 781 return false; 782 } 783 } else if (isComputedNoexcept(Spec1)) { 784 if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(), 785 Proto2->getNoexceptExpr())) 786 return false; 787 } 788 789 return true; 790 } 791 792 /// Determine structural equivalence of two types. 793 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 794 QualType T1, QualType T2) { 795 if (T1.isNull() || T2.isNull()) 796 return T1.isNull() && T2.isNull(); 797 798 QualType OrigT1 = T1; 799 QualType OrigT2 = T2; 800 801 if (!Context.StrictTypeSpelling) { 802 // We aren't being strict about token-to-token equivalence of types, 803 // so map down to the canonical type. 804 T1 = Context.FromCtx.getCanonicalType(T1); 805 T2 = Context.ToCtx.getCanonicalType(T2); 806 } 807 808 if (T1.getQualifiers() != T2.getQualifiers()) 809 return false; 810 811 Type::TypeClass TC = T1->getTypeClass(); 812 813 if (T1->getTypeClass() != T2->getTypeClass()) { 814 // Compare function types with prototypes vs. without prototypes as if 815 // both did not have prototypes. 816 if (T1->getTypeClass() == Type::FunctionProto && 817 T2->getTypeClass() == Type::FunctionNoProto) 818 TC = Type::FunctionNoProto; 819 else if (T1->getTypeClass() == Type::FunctionNoProto && 820 T2->getTypeClass() == Type::FunctionProto) 821 TC = Type::FunctionNoProto; 822 else 823 return false; 824 } 825 826 switch (TC) { 827 case Type::Builtin: 828 // FIXME: Deal with Char_S/Char_U. 829 if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind()) 830 return false; 831 break; 832 833 case Type::Complex: 834 if (!IsStructurallyEquivalent(Context, 835 cast<ComplexType>(T1)->getElementType(), 836 cast<ComplexType>(T2)->getElementType())) 837 return false; 838 break; 839 840 case Type::Adjusted: 841 case Type::Decayed: 842 if (!IsStructurallyEquivalent(Context, 843 cast<AdjustedType>(T1)->getOriginalType(), 844 cast<AdjustedType>(T2)->getOriginalType())) 845 return false; 846 break; 847 848 case Type::Pointer: 849 if (!IsStructurallyEquivalent(Context, 850 cast<PointerType>(T1)->getPointeeType(), 851 cast<PointerType>(T2)->getPointeeType())) 852 return false; 853 break; 854 855 case Type::BlockPointer: 856 if (!IsStructurallyEquivalent(Context, 857 cast<BlockPointerType>(T1)->getPointeeType(), 858 cast<BlockPointerType>(T2)->getPointeeType())) 859 return false; 860 break; 861 862 case Type::LValueReference: 863 case Type::RValueReference: { 864 const auto *Ref1 = cast<ReferenceType>(T1); 865 const auto *Ref2 = cast<ReferenceType>(T2); 866 if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) 867 return false; 868 if (Ref1->isInnerRef() != Ref2->isInnerRef()) 869 return false; 870 if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(), 871 Ref2->getPointeeTypeAsWritten())) 872 return false; 873 break; 874 } 875 876 case Type::MemberPointer: { 877 const auto *MemPtr1 = cast<MemberPointerType>(T1); 878 const auto *MemPtr2 = cast<MemberPointerType>(T2); 879 if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(), 880 MemPtr2->getPointeeType())) 881 return false; 882 if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0), 883 QualType(MemPtr2->getClass(), 0))) 884 return false; 885 break; 886 } 887 888 case Type::ConstantArray: { 889 const auto *Array1 = cast<ConstantArrayType>(T1); 890 const auto *Array2 = cast<ConstantArrayType>(T2); 891 if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize())) 892 return false; 893 894 if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) 895 return false; 896 break; 897 } 898 899 case Type::IncompleteArray: 900 if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1), 901 cast<ArrayType>(T2))) 902 return false; 903 break; 904 905 case Type::VariableArray: { 906 const auto *Array1 = cast<VariableArrayType>(T1); 907 const auto *Array2 = cast<VariableArrayType>(T2); 908 if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), 909 Array2->getSizeExpr())) 910 return false; 911 912 if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) 913 return false; 914 915 break; 916 } 917 918 case Type::DependentSizedArray: { 919 const auto *Array1 = cast<DependentSizedArrayType>(T1); 920 const auto *Array2 = cast<DependentSizedArrayType>(T2); 921 if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), 922 Array2->getSizeExpr())) 923 return false; 924 925 if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) 926 return false; 927 928 break; 929 } 930 931 case Type::DependentAddressSpace: { 932 const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(T1); 933 const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(T2); 934 if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(), 935 DepAddressSpace2->getAddrSpaceExpr())) 936 return false; 937 if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(), 938 DepAddressSpace2->getPointeeType())) 939 return false; 940 941 break; 942 } 943 944 case Type::DependentSizedExtVector: { 945 const auto *Vec1 = cast<DependentSizedExtVectorType>(T1); 946 const auto *Vec2 = cast<DependentSizedExtVectorType>(T2); 947 if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), 948 Vec2->getSizeExpr())) 949 return false; 950 if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), 951 Vec2->getElementType())) 952 return false; 953 break; 954 } 955 956 case Type::DependentVector: { 957 const auto *Vec1 = cast<DependentVectorType>(T1); 958 const auto *Vec2 = cast<DependentVectorType>(T2); 959 if (Vec1->getVectorKind() != Vec2->getVectorKind()) 960 return false; 961 if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), 962 Vec2->getSizeExpr())) 963 return false; 964 if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), 965 Vec2->getElementType())) 966 return false; 967 break; 968 } 969 970 case Type::Vector: 971 case Type::ExtVector: { 972 const auto *Vec1 = cast<VectorType>(T1); 973 const auto *Vec2 = cast<VectorType>(T2); 974 if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), 975 Vec2->getElementType())) 976 return false; 977 if (Vec1->getNumElements() != Vec2->getNumElements()) 978 return false; 979 if (Vec1->getVectorKind() != Vec2->getVectorKind()) 980 return false; 981 break; 982 } 983 984 case Type::DependentSizedMatrix: { 985 const DependentSizedMatrixType *Mat1 = cast<DependentSizedMatrixType>(T1); 986 const DependentSizedMatrixType *Mat2 = cast<DependentSizedMatrixType>(T2); 987 // The element types, row and column expressions must be structurally 988 // equivalent. 989 if (!IsStructurallyEquivalent(Context, Mat1->getRowExpr(), 990 Mat2->getRowExpr()) || 991 !IsStructurallyEquivalent(Context, Mat1->getColumnExpr(), 992 Mat2->getColumnExpr()) || 993 !IsStructurallyEquivalent(Context, Mat1->getElementType(), 994 Mat2->getElementType())) 995 return false; 996 break; 997 } 998 999 case Type::ConstantMatrix: { 1000 const ConstantMatrixType *Mat1 = cast<ConstantMatrixType>(T1); 1001 const ConstantMatrixType *Mat2 = cast<ConstantMatrixType>(T2); 1002 // The element types must be structurally equivalent and the number of rows 1003 // and columns must match. 1004 if (!IsStructurallyEquivalent(Context, Mat1->getElementType(), 1005 Mat2->getElementType()) || 1006 Mat1->getNumRows() != Mat2->getNumRows() || 1007 Mat1->getNumColumns() != Mat2->getNumColumns()) 1008 return false; 1009 break; 1010 } 1011 1012 case Type::FunctionProto: { 1013 const auto *Proto1 = cast<FunctionProtoType>(T1); 1014 const auto *Proto2 = cast<FunctionProtoType>(T2); 1015 1016 if (Proto1->getNumParams() != Proto2->getNumParams()) 1017 return false; 1018 for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) { 1019 if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I), 1020 Proto2->getParamType(I))) 1021 return false; 1022 } 1023 if (Proto1->isVariadic() != Proto2->isVariadic()) 1024 return false; 1025 1026 if (Proto1->getMethodQuals() != Proto2->getMethodQuals()) 1027 return false; 1028 1029 // Check exceptions, this information is lost in canonical type. 1030 const auto *OrigProto1 = 1031 cast<FunctionProtoType>(OrigT1.getDesugaredType(Context.FromCtx)); 1032 const auto *OrigProto2 = 1033 cast<FunctionProtoType>(OrigT2.getDesugaredType(Context.ToCtx)); 1034 if (!IsEquivalentExceptionSpec(Context, OrigProto1, OrigProto2)) 1035 return false; 1036 1037 // Fall through to check the bits common with FunctionNoProtoType. 1038 [[fallthrough]]; 1039 } 1040 1041 case Type::FunctionNoProto: { 1042 const auto *Function1 = cast<FunctionType>(T1); 1043 const auto *Function2 = cast<FunctionType>(T2); 1044 if (!IsStructurallyEquivalent(Context, Function1->getReturnType(), 1045 Function2->getReturnType())) 1046 return false; 1047 if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(), 1048 Function2->getExtInfo())) 1049 return false; 1050 break; 1051 } 1052 1053 case Type::UnresolvedUsing: 1054 if (!IsStructurallyEquivalent(Context, 1055 cast<UnresolvedUsingType>(T1)->getDecl(), 1056 cast<UnresolvedUsingType>(T2)->getDecl())) 1057 return false; 1058 break; 1059 1060 case Type::Attributed: 1061 if (!IsStructurallyEquivalent(Context, 1062 cast<AttributedType>(T1)->getModifiedType(), 1063 cast<AttributedType>(T2)->getModifiedType())) 1064 return false; 1065 if (!IsStructurallyEquivalent( 1066 Context, cast<AttributedType>(T1)->getEquivalentType(), 1067 cast<AttributedType>(T2)->getEquivalentType())) 1068 return false; 1069 break; 1070 1071 case Type::BTFTagAttributed: 1072 if (!IsStructurallyEquivalent( 1073 Context, cast<BTFTagAttributedType>(T1)->getWrappedType(), 1074 cast<BTFTagAttributedType>(T2)->getWrappedType())) 1075 return false; 1076 break; 1077 1078 case Type::Paren: 1079 if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(), 1080 cast<ParenType>(T2)->getInnerType())) 1081 return false; 1082 break; 1083 1084 case Type::MacroQualified: 1085 if (!IsStructurallyEquivalent( 1086 Context, cast<MacroQualifiedType>(T1)->getUnderlyingType(), 1087 cast<MacroQualifiedType>(T2)->getUnderlyingType())) 1088 return false; 1089 break; 1090 1091 case Type::Using: 1092 if (!IsStructurallyEquivalent(Context, cast<UsingType>(T1)->getFoundDecl(), 1093 cast<UsingType>(T2)->getFoundDecl())) 1094 return false; 1095 if (!IsStructurallyEquivalent(Context, 1096 cast<UsingType>(T1)->getUnderlyingType(), 1097 cast<UsingType>(T2)->getUnderlyingType())) 1098 return false; 1099 break; 1100 1101 case Type::Typedef: 1102 if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(), 1103 cast<TypedefType>(T2)->getDecl()) || 1104 !IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->desugar(), 1105 cast<TypedefType>(T2)->desugar())) 1106 return false; 1107 break; 1108 1109 case Type::TypeOfExpr: 1110 if (!IsStructurallyEquivalent( 1111 Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(), 1112 cast<TypeOfExprType>(T2)->getUnderlyingExpr())) 1113 return false; 1114 break; 1115 1116 case Type::TypeOf: 1117 if (!IsStructurallyEquivalent(Context, 1118 cast<TypeOfType>(T1)->getUnmodifiedType(), 1119 cast<TypeOfType>(T2)->getUnmodifiedType())) 1120 return false; 1121 break; 1122 1123 case Type::UnaryTransform: 1124 if (!IsStructurallyEquivalent( 1125 Context, cast<UnaryTransformType>(T1)->getUnderlyingType(), 1126 cast<UnaryTransformType>(T2)->getUnderlyingType())) 1127 return false; 1128 break; 1129 1130 case Type::Decltype: 1131 if (!IsStructurallyEquivalent(Context, 1132 cast<DecltypeType>(T1)->getUnderlyingExpr(), 1133 cast<DecltypeType>(T2)->getUnderlyingExpr())) 1134 return false; 1135 break; 1136 1137 case Type::Auto: { 1138 auto *Auto1 = cast<AutoType>(T1); 1139 auto *Auto2 = cast<AutoType>(T2); 1140 if (!IsStructurallyEquivalent(Context, Auto1->getDeducedType(), 1141 Auto2->getDeducedType())) 1142 return false; 1143 if (Auto1->isConstrained() != Auto2->isConstrained()) 1144 return false; 1145 if (Auto1->isConstrained()) { 1146 if (Auto1->getTypeConstraintConcept() != 1147 Auto2->getTypeConstraintConcept()) 1148 return false; 1149 if (!IsStructurallyEquivalent(Context, 1150 Auto1->getTypeConstraintArguments(), 1151 Auto2->getTypeConstraintArguments())) 1152 return false; 1153 } 1154 break; 1155 } 1156 1157 case Type::DeducedTemplateSpecialization: { 1158 const auto *DT1 = cast<DeducedTemplateSpecializationType>(T1); 1159 const auto *DT2 = cast<DeducedTemplateSpecializationType>(T2); 1160 if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(), 1161 DT2->getTemplateName())) 1162 return false; 1163 if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(), 1164 DT2->getDeducedType())) 1165 return false; 1166 break; 1167 } 1168 1169 case Type::Record: 1170 case Type::Enum: 1171 if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(), 1172 cast<TagType>(T2)->getDecl())) 1173 return false; 1174 break; 1175 1176 case Type::TemplateTypeParm: { 1177 const auto *Parm1 = cast<TemplateTypeParmType>(T1); 1178 const auto *Parm2 = cast<TemplateTypeParmType>(T2); 1179 if (!Context.IgnoreTemplateParmDepth && 1180 Parm1->getDepth() != Parm2->getDepth()) 1181 return false; 1182 if (Parm1->getIndex() != Parm2->getIndex()) 1183 return false; 1184 if (Parm1->isParameterPack() != Parm2->isParameterPack()) 1185 return false; 1186 1187 // Names of template type parameters are never significant. 1188 break; 1189 } 1190 1191 case Type::SubstTemplateTypeParm: { 1192 const auto *Subst1 = cast<SubstTemplateTypeParmType>(T1); 1193 const auto *Subst2 = cast<SubstTemplateTypeParmType>(T2); 1194 if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(), 1195 Subst2->getReplacementType())) 1196 return false; 1197 if (!IsStructurallyEquivalent(Context, Subst1->getAssociatedDecl(), 1198 Subst2->getAssociatedDecl())) 1199 return false; 1200 if (Subst1->getIndex() != Subst2->getIndex()) 1201 return false; 1202 if (Subst1->getPackIndex() != Subst2->getPackIndex()) 1203 return false; 1204 break; 1205 } 1206 1207 case Type::SubstTemplateTypeParmPack: { 1208 const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(T1); 1209 const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(T2); 1210 if (!IsStructurallyEquivalent(Context, Subst1->getAssociatedDecl(), 1211 Subst2->getAssociatedDecl())) 1212 return false; 1213 if (Subst1->getIndex() != Subst2->getIndex()) 1214 return false; 1215 if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(), 1216 Subst2->getArgumentPack())) 1217 return false; 1218 break; 1219 } 1220 1221 case Type::TemplateSpecialization: { 1222 const auto *Spec1 = cast<TemplateSpecializationType>(T1); 1223 const auto *Spec2 = cast<TemplateSpecializationType>(T2); 1224 if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(), 1225 Spec2->getTemplateName())) 1226 return false; 1227 if (!IsStructurallyEquivalent(Context, Spec1->template_arguments(), 1228 Spec2->template_arguments())) 1229 return false; 1230 break; 1231 } 1232 1233 case Type::Elaborated: { 1234 const auto *Elab1 = cast<ElaboratedType>(T1); 1235 const auto *Elab2 = cast<ElaboratedType>(T2); 1236 // CHECKME: what if a keyword is ElaboratedTypeKeyword::None or 1237 // ElaboratedTypeKeyword::Typename 1238 // ? 1239 if (Elab1->getKeyword() != Elab2->getKeyword()) 1240 return false; 1241 if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(), 1242 Elab2->getQualifier())) 1243 return false; 1244 if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(), 1245 Elab2->getNamedType())) 1246 return false; 1247 break; 1248 } 1249 1250 case Type::InjectedClassName: { 1251 const auto *Inj1 = cast<InjectedClassNameType>(T1); 1252 const auto *Inj2 = cast<InjectedClassNameType>(T2); 1253 if (!IsStructurallyEquivalent(Context, 1254 Inj1->getInjectedSpecializationType(), 1255 Inj2->getInjectedSpecializationType())) 1256 return false; 1257 break; 1258 } 1259 1260 case Type::DependentName: { 1261 const auto *Typename1 = cast<DependentNameType>(T1); 1262 const auto *Typename2 = cast<DependentNameType>(T2); 1263 if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(), 1264 Typename2->getQualifier())) 1265 return false; 1266 if (!IsStructurallyEquivalent(Typename1->getIdentifier(), 1267 Typename2->getIdentifier())) 1268 return false; 1269 1270 break; 1271 } 1272 1273 case Type::DependentTemplateSpecialization: { 1274 const auto *Spec1 = cast<DependentTemplateSpecializationType>(T1); 1275 const auto *Spec2 = cast<DependentTemplateSpecializationType>(T2); 1276 if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(), 1277 Spec2->getQualifier())) 1278 return false; 1279 if (!IsStructurallyEquivalent(Spec1->getIdentifier(), 1280 Spec2->getIdentifier())) 1281 return false; 1282 if (!IsStructurallyEquivalent(Context, Spec1->template_arguments(), 1283 Spec2->template_arguments())) 1284 return false; 1285 break; 1286 } 1287 1288 case Type::PackExpansion: 1289 if (!IsStructurallyEquivalent(Context, 1290 cast<PackExpansionType>(T1)->getPattern(), 1291 cast<PackExpansionType>(T2)->getPattern())) 1292 return false; 1293 break; 1294 1295 case Type::ObjCInterface: { 1296 const auto *Iface1 = cast<ObjCInterfaceType>(T1); 1297 const auto *Iface2 = cast<ObjCInterfaceType>(T2); 1298 if (!IsStructurallyEquivalent(Context, Iface1->getDecl(), 1299 Iface2->getDecl())) 1300 return false; 1301 break; 1302 } 1303 1304 case Type::ObjCTypeParam: { 1305 const auto *Obj1 = cast<ObjCTypeParamType>(T1); 1306 const auto *Obj2 = cast<ObjCTypeParamType>(T2); 1307 if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl())) 1308 return false; 1309 1310 if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) 1311 return false; 1312 for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { 1313 if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), 1314 Obj2->getProtocol(I))) 1315 return false; 1316 } 1317 break; 1318 } 1319 1320 case Type::ObjCObject: { 1321 const auto *Obj1 = cast<ObjCObjectType>(T1); 1322 const auto *Obj2 = cast<ObjCObjectType>(T2); 1323 if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(), 1324 Obj2->getBaseType())) 1325 return false; 1326 if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) 1327 return false; 1328 for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { 1329 if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), 1330 Obj2->getProtocol(I))) 1331 return false; 1332 } 1333 break; 1334 } 1335 1336 case Type::ObjCObjectPointer: { 1337 const auto *Ptr1 = cast<ObjCObjectPointerType>(T1); 1338 const auto *Ptr2 = cast<ObjCObjectPointerType>(T2); 1339 if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(), 1340 Ptr2->getPointeeType())) 1341 return false; 1342 break; 1343 } 1344 1345 case Type::Atomic: 1346 if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(), 1347 cast<AtomicType>(T2)->getValueType())) 1348 return false; 1349 break; 1350 1351 case Type::Pipe: 1352 if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(), 1353 cast<PipeType>(T2)->getElementType())) 1354 return false; 1355 break; 1356 case Type::BitInt: { 1357 const auto *Int1 = cast<BitIntType>(T1); 1358 const auto *Int2 = cast<BitIntType>(T2); 1359 1360 if (Int1->isUnsigned() != Int2->isUnsigned() || 1361 Int1->getNumBits() != Int2->getNumBits()) 1362 return false; 1363 break; 1364 } 1365 case Type::DependentBitInt: { 1366 const auto *Int1 = cast<DependentBitIntType>(T1); 1367 const auto *Int2 = cast<DependentBitIntType>(T2); 1368 1369 if (Int1->isUnsigned() != Int2->isUnsigned() || 1370 !IsStructurallyEquivalent(Context, Int1->getNumBitsExpr(), 1371 Int2->getNumBitsExpr())) 1372 return false; 1373 break; 1374 } 1375 } // end switch 1376 1377 return true; 1378 } 1379 1380 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1381 VarDecl *D1, VarDecl *D2) { 1382 if (D1->getStorageClass() != D2->getStorageClass()) 1383 return false; 1384 1385 IdentifierInfo *Name1 = D1->getIdentifier(); 1386 IdentifierInfo *Name2 = D2->getIdentifier(); 1387 if (!::IsStructurallyEquivalent(Name1, Name2)) 1388 return false; 1389 1390 if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) 1391 return false; 1392 1393 return IsStructurallyEquivalent(Context, D1->getInit(), D2->getInit()); 1394 } 1395 1396 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1397 FieldDecl *Field1, FieldDecl *Field2, 1398 QualType Owner2Type) { 1399 const auto *Owner2 = cast<Decl>(Field2->getDeclContext()); 1400 1401 // For anonymous structs/unions, match up the anonymous struct/union type 1402 // declarations directly, so that we don't go off searching for anonymous 1403 // types 1404 if (Field1->isAnonymousStructOrUnion() && 1405 Field2->isAnonymousStructOrUnion()) { 1406 RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl(); 1407 RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl(); 1408 return IsStructurallyEquivalent(Context, D1, D2); 1409 } 1410 1411 // Check for equivalent field names. 1412 IdentifierInfo *Name1 = Field1->getIdentifier(); 1413 IdentifierInfo *Name2 = Field2->getIdentifier(); 1414 if (!::IsStructurallyEquivalent(Name1, Name2)) { 1415 if (Context.Complain) { 1416 Context.Diag2( 1417 Owner2->getLocation(), 1418 Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) 1419 << Owner2Type; 1420 Context.Diag2(Field2->getLocation(), diag::note_odr_field_name) 1421 << Field2->getDeclName(); 1422 Context.Diag1(Field1->getLocation(), diag::note_odr_field_name) 1423 << Field1->getDeclName(); 1424 } 1425 return false; 1426 } 1427 1428 if (!IsStructurallyEquivalent(Context, Field1->getType(), 1429 Field2->getType())) { 1430 if (Context.Complain) { 1431 Context.Diag2( 1432 Owner2->getLocation(), 1433 Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) 1434 << Owner2Type; 1435 Context.Diag2(Field2->getLocation(), diag::note_odr_field) 1436 << Field2->getDeclName() << Field2->getType(); 1437 Context.Diag1(Field1->getLocation(), diag::note_odr_field) 1438 << Field1->getDeclName() << Field1->getType(); 1439 } 1440 return false; 1441 } 1442 1443 if (Field1->isBitField()) 1444 return IsStructurallyEquivalent(Context, Field1->getBitWidth(), 1445 Field2->getBitWidth()); 1446 1447 return true; 1448 } 1449 1450 /// Determine structural equivalence of two fields. 1451 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1452 FieldDecl *Field1, FieldDecl *Field2) { 1453 const auto *Owner2 = cast<RecordDecl>(Field2->getDeclContext()); 1454 return IsStructurallyEquivalent(Context, Field1, Field2, 1455 Context.ToCtx.getTypeDeclType(Owner2)); 1456 } 1457 1458 /// Determine structural equivalence of two methods. 1459 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1460 CXXMethodDecl *Method1, 1461 CXXMethodDecl *Method2) { 1462 bool PropertiesEqual = 1463 Method1->getDeclKind() == Method2->getDeclKind() && 1464 Method1->getRefQualifier() == Method2->getRefQualifier() && 1465 Method1->getAccess() == Method2->getAccess() && 1466 Method1->getOverloadedOperator() == Method2->getOverloadedOperator() && 1467 Method1->isStatic() == Method2->isStatic() && 1468 Method1->isImplicitObjectMemberFunction() == 1469 Method2->isImplicitObjectMemberFunction() && 1470 Method1->isConst() == Method2->isConst() && 1471 Method1->isVolatile() == Method2->isVolatile() && 1472 Method1->isVirtual() == Method2->isVirtual() && 1473 Method1->isPureVirtual() == Method2->isPureVirtual() && 1474 Method1->isDefaulted() == Method2->isDefaulted() && 1475 Method1->isDeleted() == Method2->isDeleted(); 1476 if (!PropertiesEqual) 1477 return false; 1478 // FIXME: Check for 'final'. 1479 1480 if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Method1)) { 1481 auto *Constructor2 = cast<CXXConstructorDecl>(Method2); 1482 if (!Constructor1->getExplicitSpecifier().isEquivalent( 1483 Constructor2->getExplicitSpecifier())) 1484 return false; 1485 } 1486 1487 if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Method1)) { 1488 auto *Conversion2 = cast<CXXConversionDecl>(Method2); 1489 if (!Conversion1->getExplicitSpecifier().isEquivalent( 1490 Conversion2->getExplicitSpecifier())) 1491 return false; 1492 if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(), 1493 Conversion2->getConversionType())) 1494 return false; 1495 } 1496 1497 const IdentifierInfo *Name1 = Method1->getIdentifier(); 1498 const IdentifierInfo *Name2 = Method2->getIdentifier(); 1499 if (!::IsStructurallyEquivalent(Name1, Name2)) { 1500 return false; 1501 // TODO: Names do not match, add warning like at check for FieldDecl. 1502 } 1503 1504 // Check the prototypes. 1505 if (!::IsStructurallyEquivalent(Context, 1506 Method1->getType(), Method2->getType())) 1507 return false; 1508 1509 return true; 1510 } 1511 1512 /// Determine structural equivalence of two lambda classes. 1513 static bool 1514 IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context, 1515 CXXRecordDecl *D1, CXXRecordDecl *D2) { 1516 assert(D1->isLambda() && D2->isLambda() && 1517 "Must be called on lambda classes"); 1518 if (!IsStructurallyEquivalent(Context, D1->getLambdaCallOperator(), 1519 D2->getLambdaCallOperator())) 1520 return false; 1521 1522 return true; 1523 } 1524 1525 /// Determine if context of a class is equivalent. 1526 static bool 1527 IsRecordContextStructurallyEquivalent(StructuralEquivalenceContext &Context, 1528 RecordDecl *D1, RecordDecl *D2) { 1529 // The context should be completely equal, including anonymous and inline 1530 // namespaces. 1531 // We compare objects as part of full translation units, not subtrees of 1532 // translation units. 1533 DeclContext *DC1 = D1->getDeclContext()->getNonTransparentContext(); 1534 DeclContext *DC2 = D2->getDeclContext()->getNonTransparentContext(); 1535 while (true) { 1536 // Special case: We allow a struct defined in a function to be equivalent 1537 // with a similar struct defined outside of a function. 1538 if ((DC1->isFunctionOrMethod() && DC2->isTranslationUnit()) || 1539 (DC2->isFunctionOrMethod() && DC1->isTranslationUnit())) 1540 return true; 1541 1542 if (DC1->getDeclKind() != DC2->getDeclKind()) 1543 return false; 1544 if (DC1->isTranslationUnit()) 1545 break; 1546 if (DC1->isInlineNamespace() != DC2->isInlineNamespace()) 1547 return false; 1548 if (const auto *ND1 = dyn_cast<NamedDecl>(DC1)) { 1549 const auto *ND2 = cast<NamedDecl>(DC2); 1550 if (!DC1->isInlineNamespace() && 1551 !IsStructurallyEquivalent(ND1->getIdentifier(), ND2->getIdentifier())) 1552 return false; 1553 } 1554 1555 if (auto *D1Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC1)) { 1556 auto *D2Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC2); 1557 if (!IsStructurallyEquivalent(Context, D1Spec, D2Spec)) 1558 return false; 1559 } 1560 1561 DC1 = DC1->getParent()->getNonTransparentContext(); 1562 DC2 = DC2->getParent()->getNonTransparentContext(); 1563 } 1564 1565 return true; 1566 } 1567 1568 static bool NameIsStructurallyEquivalent(const TagDecl &D1, const TagDecl &D2) { 1569 auto GetName = [](const TagDecl &D) -> const IdentifierInfo * { 1570 if (const IdentifierInfo *Name = D.getIdentifier()) 1571 return Name; 1572 if (const TypedefNameDecl *TypedefName = D.getTypedefNameForAnonDecl()) 1573 return TypedefName->getIdentifier(); 1574 return nullptr; 1575 }; 1576 return IsStructurallyEquivalent(GetName(D1), GetName(D2)); 1577 } 1578 1579 /// Determine structural equivalence of two records. 1580 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1581 RecordDecl *D1, RecordDecl *D2) { 1582 if (!NameIsStructurallyEquivalent(*D1, *D2)) { 1583 return false; 1584 } 1585 1586 if (D1->isUnion() != D2->isUnion()) { 1587 if (Context.Complain) { 1588 Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( 1589 diag::err_odr_tag_type_inconsistent)) 1590 << Context.ToCtx.getTypeDeclType(D2); 1591 Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here) 1592 << D1->getDeclName() << (unsigned)D1->getTagKind(); 1593 } 1594 return false; 1595 } 1596 1597 if (!D1->getDeclName() && !D2->getDeclName()) { 1598 // If both anonymous structs/unions are in a record context, make sure 1599 // they occur in the same location in the context records. 1600 if (std::optional<unsigned> Index1 = 1601 StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) { 1602 if (std::optional<unsigned> Index2 = 1603 StructuralEquivalenceContext::findUntaggedStructOrUnionIndex( 1604 D2)) { 1605 if (*Index1 != *Index2) 1606 return false; 1607 } 1608 } 1609 } 1610 1611 // If the records occur in different context (namespace), these should be 1612 // different. This is specially important if the definition of one or both 1613 // records is missing. 1614 if (!IsRecordContextStructurallyEquivalent(Context, D1, D2)) 1615 return false; 1616 1617 // If both declarations are class template specializations, we know 1618 // the ODR applies, so check the template and template arguments. 1619 const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1); 1620 const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2); 1621 if (Spec1 && Spec2) { 1622 // Check that the specialized templates are the same. 1623 if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(), 1624 Spec2->getSpecializedTemplate())) 1625 return false; 1626 1627 // Check that the template arguments are the same. 1628 if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) 1629 return false; 1630 1631 for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) 1632 if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I), 1633 Spec2->getTemplateArgs().get(I))) 1634 return false; 1635 } 1636 // If one is a class template specialization and the other is not, these 1637 // structures are different. 1638 else if (Spec1 || Spec2) 1639 return false; 1640 1641 // Compare the definitions of these two records. If either or both are 1642 // incomplete (i.e. it is a forward decl), we assume that they are 1643 // equivalent. 1644 D1 = D1->getDefinition(); 1645 D2 = D2->getDefinition(); 1646 if (!D1 || !D2) 1647 return true; 1648 1649 // If any of the records has external storage and we do a minimal check (or 1650 // AST import) we assume they are equivalent. (If we didn't have this 1651 // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger 1652 // another AST import which in turn would call the structural equivalency 1653 // check again and finally we'd have an improper result.) 1654 if (Context.EqKind == StructuralEquivalenceKind::Minimal) 1655 if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage()) 1656 return true; 1657 1658 // If one definition is currently being defined, we do not compare for 1659 // equality and we assume that the decls are equal. 1660 if (D1->isBeingDefined() || D2->isBeingDefined()) 1661 return true; 1662 1663 if (auto *D1CXX = dyn_cast<CXXRecordDecl>(D1)) { 1664 if (auto *D2CXX = dyn_cast<CXXRecordDecl>(D2)) { 1665 if (D1CXX->hasExternalLexicalStorage() && 1666 !D1CXX->isCompleteDefinition()) { 1667 D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX); 1668 } 1669 1670 if (D1CXX->isLambda() != D2CXX->isLambda()) 1671 return false; 1672 if (D1CXX->isLambda()) { 1673 if (!IsStructurallyEquivalentLambdas(Context, D1CXX, D2CXX)) 1674 return false; 1675 } 1676 1677 if (D1CXX->getNumBases() != D2CXX->getNumBases()) { 1678 if (Context.Complain) { 1679 Context.Diag2(D2->getLocation(), 1680 Context.getApplicableDiagnostic( 1681 diag::err_odr_tag_type_inconsistent)) 1682 << Context.ToCtx.getTypeDeclType(D2); 1683 Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases) 1684 << D2CXX->getNumBases(); 1685 Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases) 1686 << D1CXX->getNumBases(); 1687 } 1688 return false; 1689 } 1690 1691 // Check the base classes. 1692 for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), 1693 BaseEnd1 = D1CXX->bases_end(), 1694 Base2 = D2CXX->bases_begin(); 1695 Base1 != BaseEnd1; ++Base1, ++Base2) { 1696 if (!IsStructurallyEquivalent(Context, Base1->getType(), 1697 Base2->getType())) { 1698 if (Context.Complain) { 1699 Context.Diag2(D2->getLocation(), 1700 Context.getApplicableDiagnostic( 1701 diag::err_odr_tag_type_inconsistent)) 1702 << Context.ToCtx.getTypeDeclType(D2); 1703 Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base) 1704 << Base2->getType() << Base2->getSourceRange(); 1705 Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) 1706 << Base1->getType() << Base1->getSourceRange(); 1707 } 1708 return false; 1709 } 1710 1711 // Check virtual vs. non-virtual inheritance mismatch. 1712 if (Base1->isVirtual() != Base2->isVirtual()) { 1713 if (Context.Complain) { 1714 Context.Diag2(D2->getLocation(), 1715 Context.getApplicableDiagnostic( 1716 diag::err_odr_tag_type_inconsistent)) 1717 << Context.ToCtx.getTypeDeclType(D2); 1718 Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base) 1719 << Base2->isVirtual() << Base2->getSourceRange(); 1720 Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) 1721 << Base1->isVirtual() << Base1->getSourceRange(); 1722 } 1723 return false; 1724 } 1725 } 1726 1727 // Check the friends for consistency. 1728 CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(), 1729 Friend2End = D2CXX->friend_end(); 1730 for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(), 1731 Friend1End = D1CXX->friend_end(); 1732 Friend1 != Friend1End; ++Friend1, ++Friend2) { 1733 if (Friend2 == Friend2End) { 1734 if (Context.Complain) { 1735 Context.Diag2(D2->getLocation(), 1736 Context.getApplicableDiagnostic( 1737 diag::err_odr_tag_type_inconsistent)) 1738 << Context.ToCtx.getTypeDeclType(D2CXX); 1739 Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); 1740 Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend); 1741 } 1742 return false; 1743 } 1744 1745 if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) { 1746 if (Context.Complain) { 1747 Context.Diag2(D2->getLocation(), 1748 Context.getApplicableDiagnostic( 1749 diag::err_odr_tag_type_inconsistent)) 1750 << Context.ToCtx.getTypeDeclType(D2CXX); 1751 Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); 1752 Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); 1753 } 1754 return false; 1755 } 1756 } 1757 1758 if (Friend2 != Friend2End) { 1759 if (Context.Complain) { 1760 Context.Diag2(D2->getLocation(), 1761 Context.getApplicableDiagnostic( 1762 diag::err_odr_tag_type_inconsistent)) 1763 << Context.ToCtx.getTypeDeclType(D2); 1764 Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); 1765 Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend); 1766 } 1767 return false; 1768 } 1769 } else if (D1CXX->getNumBases() > 0) { 1770 if (Context.Complain) { 1771 Context.Diag2(D2->getLocation(), 1772 Context.getApplicableDiagnostic( 1773 diag::err_odr_tag_type_inconsistent)) 1774 << Context.ToCtx.getTypeDeclType(D2); 1775 const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); 1776 Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) 1777 << Base1->getType() << Base1->getSourceRange(); 1778 Context.Diag2(D2->getLocation(), diag::note_odr_missing_base); 1779 } 1780 return false; 1781 } 1782 } 1783 1784 // Check the fields for consistency. 1785 QualType D2Type = Context.ToCtx.getTypeDeclType(D2); 1786 RecordDecl::field_iterator Field2 = D2->field_begin(), 1787 Field2End = D2->field_end(); 1788 for (RecordDecl::field_iterator Field1 = D1->field_begin(), 1789 Field1End = D1->field_end(); 1790 Field1 != Field1End; ++Field1, ++Field2) { 1791 if (Field2 == Field2End) { 1792 if (Context.Complain) { 1793 Context.Diag2(D2->getLocation(), 1794 Context.getApplicableDiagnostic( 1795 diag::err_odr_tag_type_inconsistent)) 1796 << Context.ToCtx.getTypeDeclType(D2); 1797 Context.Diag1(Field1->getLocation(), diag::note_odr_field) 1798 << Field1->getDeclName() << Field1->getType(); 1799 Context.Diag2(D2->getLocation(), diag::note_odr_missing_field); 1800 } 1801 return false; 1802 } 1803 1804 if (!IsStructurallyEquivalent(Context, *Field1, *Field2, D2Type)) 1805 return false; 1806 } 1807 1808 if (Field2 != Field2End) { 1809 if (Context.Complain) { 1810 Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( 1811 diag::err_odr_tag_type_inconsistent)) 1812 << Context.ToCtx.getTypeDeclType(D2); 1813 Context.Diag2(Field2->getLocation(), diag::note_odr_field) 1814 << Field2->getDeclName() << Field2->getType(); 1815 Context.Diag1(D1->getLocation(), diag::note_odr_missing_field); 1816 } 1817 return false; 1818 } 1819 1820 return true; 1821 } 1822 1823 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1824 EnumConstantDecl *D1, 1825 EnumConstantDecl *D2) { 1826 const llvm::APSInt &FromVal = D1->getInitVal(); 1827 const llvm::APSInt &ToVal = D2->getInitVal(); 1828 if (FromVal.isSigned() != ToVal.isSigned()) 1829 return false; 1830 if (FromVal.getBitWidth() != ToVal.getBitWidth()) 1831 return false; 1832 if (FromVal != ToVal) 1833 return false; 1834 1835 if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) 1836 return false; 1837 1838 // Init expressions are the most expensive check, so do them last. 1839 return IsStructurallyEquivalent(Context, D1->getInitExpr(), 1840 D2->getInitExpr()); 1841 } 1842 1843 /// Determine structural equivalence of two enums. 1844 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1845 EnumDecl *D1, EnumDecl *D2) { 1846 if (!NameIsStructurallyEquivalent(*D1, *D2)) { 1847 return false; 1848 } 1849 1850 // Compare the definitions of these two enums. If either or both are 1851 // incomplete (i.e. forward declared), we assume that they are equivalent. 1852 D1 = D1->getDefinition(); 1853 D2 = D2->getDefinition(); 1854 if (!D1 || !D2) 1855 return true; 1856 1857 EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), 1858 EC2End = D2->enumerator_end(); 1859 for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), 1860 EC1End = D1->enumerator_end(); 1861 EC1 != EC1End; ++EC1, ++EC2) { 1862 if (EC2 == EC2End) { 1863 if (Context.Complain) { 1864 Context.Diag2(D2->getLocation(), 1865 Context.getApplicableDiagnostic( 1866 diag::err_odr_tag_type_inconsistent)) 1867 << Context.ToCtx.getTypeDeclType(D2); 1868 Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) 1869 << EC1->getDeclName() << toString(EC1->getInitVal(), 10); 1870 Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator); 1871 } 1872 return false; 1873 } 1874 1875 llvm::APSInt Val1 = EC1->getInitVal(); 1876 llvm::APSInt Val2 = EC2->getInitVal(); 1877 if (!llvm::APSInt::isSameValue(Val1, Val2) || 1878 !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) { 1879 if (Context.Complain) { 1880 Context.Diag2(D2->getLocation(), 1881 Context.getApplicableDiagnostic( 1882 diag::err_odr_tag_type_inconsistent)) 1883 << Context.ToCtx.getTypeDeclType(D2); 1884 Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) 1885 << EC2->getDeclName() << toString(EC2->getInitVal(), 10); 1886 Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) 1887 << EC1->getDeclName() << toString(EC1->getInitVal(), 10); 1888 } 1889 return false; 1890 } 1891 } 1892 1893 if (EC2 != EC2End) { 1894 if (Context.Complain) { 1895 Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( 1896 diag::err_odr_tag_type_inconsistent)) 1897 << Context.ToCtx.getTypeDeclType(D2); 1898 Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) 1899 << EC2->getDeclName() << toString(EC2->getInitVal(), 10); 1900 Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator); 1901 } 1902 return false; 1903 } 1904 1905 return true; 1906 } 1907 1908 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1909 TemplateParameterList *Params1, 1910 TemplateParameterList *Params2) { 1911 if (Params1->size() != Params2->size()) { 1912 if (Context.Complain) { 1913 Context.Diag2(Params2->getTemplateLoc(), 1914 Context.getApplicableDiagnostic( 1915 diag::err_odr_different_num_template_parameters)) 1916 << Params1->size() << Params2->size(); 1917 Context.Diag1(Params1->getTemplateLoc(), 1918 diag::note_odr_template_parameter_list); 1919 } 1920 return false; 1921 } 1922 1923 for (unsigned I = 0, N = Params1->size(); I != N; ++I) { 1924 if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) { 1925 if (Context.Complain) { 1926 Context.Diag2(Params2->getParam(I)->getLocation(), 1927 Context.getApplicableDiagnostic( 1928 diag::err_odr_different_template_parameter_kind)); 1929 Context.Diag1(Params1->getParam(I)->getLocation(), 1930 diag::note_odr_template_parameter_here); 1931 } 1932 return false; 1933 } 1934 1935 if (!IsStructurallyEquivalent(Context, Params1->getParam(I), 1936 Params2->getParam(I))) 1937 return false; 1938 } 1939 1940 return true; 1941 } 1942 1943 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1944 TemplateTypeParmDecl *D1, 1945 TemplateTypeParmDecl *D2) { 1946 if (D1->isParameterPack() != D2->isParameterPack()) { 1947 if (Context.Complain) { 1948 Context.Diag2(D2->getLocation(), 1949 Context.getApplicableDiagnostic( 1950 diag::err_odr_parameter_pack_non_pack)) 1951 << D2->isParameterPack(); 1952 Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) 1953 << D1->isParameterPack(); 1954 } 1955 return false; 1956 } 1957 1958 return true; 1959 } 1960 1961 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1962 NonTypeTemplateParmDecl *D1, 1963 NonTypeTemplateParmDecl *D2) { 1964 if (D1->isParameterPack() != D2->isParameterPack()) { 1965 if (Context.Complain) { 1966 Context.Diag2(D2->getLocation(), 1967 Context.getApplicableDiagnostic( 1968 diag::err_odr_parameter_pack_non_pack)) 1969 << D2->isParameterPack(); 1970 Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) 1971 << D1->isParameterPack(); 1972 } 1973 return false; 1974 } 1975 1976 // Check types. 1977 if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) { 1978 if (Context.Complain) { 1979 Context.Diag2(D2->getLocation(), 1980 Context.getApplicableDiagnostic( 1981 diag::err_odr_non_type_parameter_type_inconsistent)) 1982 << D2->getType() << D1->getType(); 1983 Context.Diag1(D1->getLocation(), diag::note_odr_value_here) 1984 << D1->getType(); 1985 } 1986 return false; 1987 } 1988 1989 return true; 1990 } 1991 1992 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 1993 TemplateTemplateParmDecl *D1, 1994 TemplateTemplateParmDecl *D2) { 1995 if (D1->isParameterPack() != D2->isParameterPack()) { 1996 if (Context.Complain) { 1997 Context.Diag2(D2->getLocation(), 1998 Context.getApplicableDiagnostic( 1999 diag::err_odr_parameter_pack_non_pack)) 2000 << D2->isParameterPack(); 2001 Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) 2002 << D1->isParameterPack(); 2003 } 2004 return false; 2005 } 2006 2007 // Check template parameter lists. 2008 return IsStructurallyEquivalent(Context, D1->getTemplateParameters(), 2009 D2->getTemplateParameters()); 2010 } 2011 2012 static bool IsTemplateDeclCommonStructurallyEquivalent( 2013 StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) { 2014 if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) 2015 return false; 2016 if (!D1->getIdentifier()) // Special name 2017 if (D1->getNameAsString() != D2->getNameAsString()) 2018 return false; 2019 return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(), 2020 D2->getTemplateParameters()); 2021 } 2022 2023 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2024 ClassTemplateDecl *D1, 2025 ClassTemplateDecl *D2) { 2026 // Check template parameters. 2027 if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) 2028 return false; 2029 2030 // Check the templated declaration. 2031 return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(), 2032 D2->getTemplatedDecl()); 2033 } 2034 2035 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2036 FunctionTemplateDecl *D1, 2037 FunctionTemplateDecl *D2) { 2038 // Check template parameters. 2039 if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) 2040 return false; 2041 2042 // Check the templated declaration. 2043 return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(), 2044 D2->getTemplatedDecl()->getType()); 2045 } 2046 2047 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2048 TypeAliasTemplateDecl *D1, 2049 TypeAliasTemplateDecl *D2) { 2050 // Check template parameters. 2051 if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) 2052 return false; 2053 2054 // Check the templated declaration. 2055 return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(), 2056 D2->getTemplatedDecl()); 2057 } 2058 2059 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2060 ConceptDecl *D1, 2061 ConceptDecl *D2) { 2062 // Check template parameters. 2063 if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) 2064 return false; 2065 2066 // Check the constraint expression. 2067 return IsStructurallyEquivalent(Context, D1->getConstraintExpr(), 2068 D2->getConstraintExpr()); 2069 } 2070 2071 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2072 FriendDecl *D1, FriendDecl *D2) { 2073 if ((D1->getFriendType() && D2->getFriendDecl()) || 2074 (D1->getFriendDecl() && D2->getFriendType())) { 2075 return false; 2076 } 2077 if (D1->getFriendType() && D2->getFriendType()) 2078 return IsStructurallyEquivalent(Context, 2079 D1->getFriendType()->getType(), 2080 D2->getFriendType()->getType()); 2081 if (D1->getFriendDecl() && D2->getFriendDecl()) 2082 return IsStructurallyEquivalent(Context, D1->getFriendDecl(), 2083 D2->getFriendDecl()); 2084 return false; 2085 } 2086 2087 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2088 TypedefNameDecl *D1, TypedefNameDecl *D2) { 2089 if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) 2090 return false; 2091 2092 return IsStructurallyEquivalent(Context, D1->getUnderlyingType(), 2093 D2->getUnderlyingType()); 2094 } 2095 2096 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2097 FunctionDecl *D1, FunctionDecl *D2) { 2098 if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) 2099 return false; 2100 2101 if (D1->isOverloadedOperator()) { 2102 if (!D2->isOverloadedOperator()) 2103 return false; 2104 if (D1->getOverloadedOperator() != D2->getOverloadedOperator()) 2105 return false; 2106 } 2107 2108 // FIXME: Consider checking for function attributes as well. 2109 if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) 2110 return false; 2111 2112 return true; 2113 } 2114 2115 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2116 ObjCIvarDecl *D1, ObjCIvarDecl *D2, 2117 QualType Owner2Type) { 2118 if (D1->getAccessControl() != D2->getAccessControl()) 2119 return false; 2120 2121 return IsStructurallyEquivalent(Context, cast<FieldDecl>(D1), 2122 cast<FieldDecl>(D2), Owner2Type); 2123 } 2124 2125 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2126 ObjCIvarDecl *D1, ObjCIvarDecl *D2) { 2127 QualType Owner2Type = 2128 Context.ToCtx.getObjCInterfaceType(D2->getContainingInterface()); 2129 return IsStructurallyEquivalent(Context, D1, D2, Owner2Type); 2130 } 2131 2132 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2133 ObjCMethodDecl *Method1, 2134 ObjCMethodDecl *Method2) { 2135 bool PropertiesEqual = 2136 Method1->isInstanceMethod() == Method2->isInstanceMethod() && 2137 Method1->isVariadic() == Method2->isVariadic() && 2138 Method1->isDirectMethod() == Method2->isDirectMethod(); 2139 if (!PropertiesEqual) 2140 return false; 2141 2142 // Compare selector slot names. 2143 Selector Selector1 = Method1->getSelector(), 2144 Selector2 = Method2->getSelector(); 2145 unsigned NumArgs = Selector1.getNumArgs(); 2146 if (NumArgs != Selector2.getNumArgs()) 2147 return false; 2148 // Compare all selector slots. For selectors with arguments it means all arg 2149 // slots. And if there are no arguments, compare the first-and-only slot. 2150 unsigned SlotsToCheck = NumArgs > 0 ? NumArgs : 1; 2151 for (unsigned I = 0; I < SlotsToCheck; ++I) { 2152 if (!IsStructurallyEquivalent(Selector1.getIdentifierInfoForSlot(I), 2153 Selector2.getIdentifierInfoForSlot(I))) 2154 return false; 2155 } 2156 2157 // Compare types. 2158 if (!IsStructurallyEquivalent(Context, Method1->getReturnType(), 2159 Method2->getReturnType())) 2160 return false; 2161 assert( 2162 Method1->param_size() == Method2->param_size() && 2163 "Same number of arguments should be already enforced in Selector checks"); 2164 for (ObjCMethodDecl::param_type_iterator 2165 ParamT1 = Method1->param_type_begin(), 2166 ParamT1End = Method1->param_type_end(), 2167 ParamT2 = Method2->param_type_begin(), 2168 ParamT2End = Method2->param_type_end(); 2169 (ParamT1 != ParamT1End) && (ParamT2 != ParamT2End); 2170 ++ParamT1, ++ParamT2) { 2171 if (!IsStructurallyEquivalent(Context, *ParamT1, *ParamT2)) 2172 return false; 2173 } 2174 2175 return true; 2176 } 2177 2178 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2179 ObjCCategoryDecl *D1, 2180 ObjCCategoryDecl *D2) { 2181 if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) 2182 return false; 2183 2184 const ObjCInterfaceDecl *Intf1 = D1->getClassInterface(), 2185 *Intf2 = D2->getClassInterface(); 2186 if ((!Intf1 || !Intf2) && (Intf1 != Intf2)) 2187 return false; 2188 2189 if (Intf1 && 2190 !IsStructurallyEquivalent(Intf1->getIdentifier(), Intf2->getIdentifier())) 2191 return false; 2192 2193 // Compare protocols. 2194 ObjCCategoryDecl::protocol_iterator Protocol2 = D2->protocol_begin(), 2195 Protocol2End = D2->protocol_end(); 2196 for (ObjCCategoryDecl::protocol_iterator Protocol1 = D1->protocol_begin(), 2197 Protocol1End = D1->protocol_end(); 2198 Protocol1 != Protocol1End; ++Protocol1, ++Protocol2) { 2199 if (Protocol2 == Protocol2End) 2200 return false; 2201 if (!IsStructurallyEquivalent((*Protocol1)->getIdentifier(), 2202 (*Protocol2)->getIdentifier())) 2203 return false; 2204 } 2205 if (Protocol2 != Protocol2End) 2206 return false; 2207 2208 // Compare ivars. 2209 QualType D2Type = 2210 Intf2 ? Context.ToCtx.getObjCInterfaceType(Intf2) : QualType(); 2211 ObjCCategoryDecl::ivar_iterator Ivar2 = D2->ivar_begin(), 2212 Ivar2End = D2->ivar_end(); 2213 for (ObjCCategoryDecl::ivar_iterator Ivar1 = D1->ivar_begin(), 2214 Ivar1End = D1->ivar_end(); 2215 Ivar1 != Ivar1End; ++Ivar1, ++Ivar2) { 2216 if (Ivar2 == Ivar2End) 2217 return false; 2218 if (!IsStructurallyEquivalent(Context, *Ivar1, *Ivar2, D2Type)) 2219 return false; 2220 } 2221 if (Ivar2 != Ivar2End) 2222 return false; 2223 2224 // Compare methods. 2225 ObjCCategoryDecl::method_iterator Method2 = D2->meth_begin(), 2226 Method2End = D2->meth_end(); 2227 for (ObjCCategoryDecl::method_iterator Method1 = D1->meth_begin(), 2228 Method1End = D1->meth_end(); 2229 Method1 != Method1End; ++Method1, ++Method2) { 2230 if (Method2 == Method2End) 2231 return false; 2232 if (!IsStructurallyEquivalent(Context, *Method1, *Method2)) 2233 return false; 2234 } 2235 if (Method2 != Method2End) 2236 return false; 2237 2238 return true; 2239 } 2240 2241 /// Determine structural equivalence of two declarations. 2242 static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, 2243 Decl *D1, Decl *D2) { 2244 // FIXME: Check for known structural equivalences via a callback of some sort. 2245 2246 D1 = D1->getCanonicalDecl(); 2247 D2 = D2->getCanonicalDecl(); 2248 std::pair<Decl *, Decl *> P{D1, D2}; 2249 2250 // Check whether we already know that these two declarations are not 2251 // structurally equivalent. 2252 if (Context.NonEquivalentDecls.count(P)) 2253 return false; 2254 2255 // Check if a check for these declarations is already pending. 2256 // If yes D1 and D2 will be checked later (from DeclsToCheck), 2257 // or these are already checked (and equivalent). 2258 bool Inserted = Context.VisitedDecls.insert(P).second; 2259 if (!Inserted) 2260 return true; 2261 2262 Context.DeclsToCheck.push(P); 2263 2264 return true; 2265 } 2266 2267 DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc, 2268 unsigned DiagID) { 2269 assert(Complain && "Not allowed to complain"); 2270 if (LastDiagFromC2) 2271 FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics()); 2272 LastDiagFromC2 = false; 2273 return FromCtx.getDiagnostics().Report(Loc, DiagID); 2274 } 2275 2276 DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc, 2277 unsigned DiagID) { 2278 assert(Complain && "Not allowed to complain"); 2279 if (!LastDiagFromC2) 2280 ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics()); 2281 LastDiagFromC2 = true; 2282 return ToCtx.getDiagnostics().Report(Loc, DiagID); 2283 } 2284 2285 std::optional<unsigned> 2286 StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) { 2287 ASTContext &Context = Anon->getASTContext(); 2288 QualType AnonTy = Context.getRecordType(Anon); 2289 2290 const auto *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext()); 2291 if (!Owner) 2292 return std::nullopt; 2293 2294 unsigned Index = 0; 2295 for (const auto *D : Owner->noload_decls()) { 2296 const auto *F = dyn_cast<FieldDecl>(D); 2297 if (!F) 2298 continue; 2299 2300 if (F->isAnonymousStructOrUnion()) { 2301 if (Context.hasSameType(F->getType(), AnonTy)) 2302 break; 2303 ++Index; 2304 continue; 2305 } 2306 2307 // If the field looks like this: 2308 // struct { ... } A; 2309 QualType FieldType = F->getType(); 2310 // In case of nested structs. 2311 while (const auto *ElabType = dyn_cast<ElaboratedType>(FieldType)) 2312 FieldType = ElabType->getNamedType(); 2313 2314 if (const auto *RecType = dyn_cast<RecordType>(FieldType)) { 2315 const RecordDecl *RecDecl = RecType->getDecl(); 2316 if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) { 2317 if (Context.hasSameType(FieldType, AnonTy)) 2318 break; 2319 ++Index; 2320 continue; 2321 } 2322 } 2323 } 2324 2325 return Index; 2326 } 2327 2328 unsigned StructuralEquivalenceContext::getApplicableDiagnostic( 2329 unsigned ErrorDiagnostic) { 2330 if (ErrorOnTagTypeMismatch) 2331 return ErrorDiagnostic; 2332 2333 switch (ErrorDiagnostic) { 2334 case diag::err_odr_variable_type_inconsistent: 2335 return diag::warn_odr_variable_type_inconsistent; 2336 case diag::err_odr_variable_multiple_def: 2337 return diag::warn_odr_variable_multiple_def; 2338 case diag::err_odr_function_type_inconsistent: 2339 return diag::warn_odr_function_type_inconsistent; 2340 case diag::err_odr_tag_type_inconsistent: 2341 return diag::warn_odr_tag_type_inconsistent; 2342 case diag::err_odr_field_type_inconsistent: 2343 return diag::warn_odr_field_type_inconsistent; 2344 case diag::err_odr_ivar_type_inconsistent: 2345 return diag::warn_odr_ivar_type_inconsistent; 2346 case diag::err_odr_objc_superclass_inconsistent: 2347 return diag::warn_odr_objc_superclass_inconsistent; 2348 case diag::err_odr_objc_method_result_type_inconsistent: 2349 return diag::warn_odr_objc_method_result_type_inconsistent; 2350 case diag::err_odr_objc_method_num_params_inconsistent: 2351 return diag::warn_odr_objc_method_num_params_inconsistent; 2352 case diag::err_odr_objc_method_param_type_inconsistent: 2353 return diag::warn_odr_objc_method_param_type_inconsistent; 2354 case diag::err_odr_objc_method_variadic_inconsistent: 2355 return diag::warn_odr_objc_method_variadic_inconsistent; 2356 case diag::err_odr_objc_property_type_inconsistent: 2357 return diag::warn_odr_objc_property_type_inconsistent; 2358 case diag::err_odr_objc_property_impl_kind_inconsistent: 2359 return diag::warn_odr_objc_property_impl_kind_inconsistent; 2360 case diag::err_odr_objc_synthesize_ivar_inconsistent: 2361 return diag::warn_odr_objc_synthesize_ivar_inconsistent; 2362 case diag::err_odr_different_num_template_parameters: 2363 return diag::warn_odr_different_num_template_parameters; 2364 case diag::err_odr_different_template_parameter_kind: 2365 return diag::warn_odr_different_template_parameter_kind; 2366 case diag::err_odr_parameter_pack_non_pack: 2367 return diag::warn_odr_parameter_pack_non_pack; 2368 case diag::err_odr_non_type_parameter_type_inconsistent: 2369 return diag::warn_odr_non_type_parameter_type_inconsistent; 2370 } 2371 llvm_unreachable("Diagnostic kind not handled in preceding switch"); 2372 } 2373 2374 bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) { 2375 2376 // Ensure that the implementation functions (all static functions in this TU) 2377 // never call the public ASTStructuralEquivalence::IsEquivalent() functions, 2378 // because that will wreak havoc the internal state (DeclsToCheck and 2379 // VisitedDecls members) and can cause faulty behaviour. 2380 // In other words: Do not start a graph search from a new node with the 2381 // internal data of another search in progress. 2382 // FIXME: Better encapsulation and separation of internal and public 2383 // functionality. 2384 assert(DeclsToCheck.empty()); 2385 assert(VisitedDecls.empty()); 2386 2387 if (!::IsStructurallyEquivalent(*this, D1, D2)) 2388 return false; 2389 2390 return !Finish(); 2391 } 2392 2393 bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) { 2394 assert(DeclsToCheck.empty()); 2395 assert(VisitedDecls.empty()); 2396 if (!::IsStructurallyEquivalent(*this, T1, T2)) 2397 return false; 2398 2399 return !Finish(); 2400 } 2401 2402 bool StructuralEquivalenceContext::IsEquivalent(Stmt *S1, Stmt *S2) { 2403 assert(DeclsToCheck.empty()); 2404 assert(VisitedDecls.empty()); 2405 if (!::IsStructurallyEquivalent(*this, S1, S2)) 2406 return false; 2407 2408 return !Finish(); 2409 } 2410 2411 bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) { 2412 // Check for equivalent described template. 2413 TemplateDecl *Template1 = D1->getDescribedTemplate(); 2414 TemplateDecl *Template2 = D2->getDescribedTemplate(); 2415 if ((Template1 != nullptr) != (Template2 != nullptr)) 2416 return false; 2417 if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2)) 2418 return false; 2419 2420 // FIXME: Move check for identifier names into this function. 2421 2422 return true; 2423 } 2424 2425 bool StructuralEquivalenceContext::CheckKindSpecificEquivalence( 2426 Decl *D1, Decl *D2) { 2427 2428 // Kind mismatch. 2429 if (D1->getKind() != D2->getKind()) 2430 return false; 2431 2432 // Cast the Decls to their actual subclass so that the right overload of 2433 // IsStructurallyEquivalent is called. 2434 switch (D1->getKind()) { 2435 #define ABSTRACT_DECL(DECL) 2436 #define DECL(DERIVED, BASE) \ 2437 case Decl::Kind::DERIVED: \ 2438 return ::IsStructurallyEquivalent(*this, static_cast<DERIVED##Decl *>(D1), \ 2439 static_cast<DERIVED##Decl *>(D2)); 2440 #include "clang/AST/DeclNodes.inc" 2441 } 2442 return true; 2443 } 2444 2445 bool StructuralEquivalenceContext::Finish() { 2446 while (!DeclsToCheck.empty()) { 2447 // Check the next declaration. 2448 std::pair<Decl *, Decl *> P = DeclsToCheck.front(); 2449 DeclsToCheck.pop(); 2450 2451 Decl *D1 = P.first; 2452 Decl *D2 = P.second; 2453 2454 bool Equivalent = 2455 CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2); 2456 2457 if (!Equivalent) { 2458 // Note that these two declarations are not equivalent (and we already 2459 // know about it). 2460 NonEquivalentDecls.insert(P); 2461 2462 return true; 2463 } 2464 } 2465 2466 return false; 2467 } 2468