xref: /freebsd/contrib/llvm-project/clang/lib/AST/ASTContext.cpp (revision f126890ac5386406dadf7c4cfa9566cbb56537c5)
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/SourceLocation.h"
62 #include "clang/Basic/SourceManager.h"
63 #include "clang/Basic/Specifiers.h"
64 #include "clang/Basic/TargetCXXABI.h"
65 #include "clang/Basic/TargetInfo.h"
66 #include "clang/Basic/XRayLists.h"
67 #include "llvm/ADT/APFixedPoint.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/PointerUnion.h"
75 #include "llvm/ADT/STLExtras.h"
76 #include "llvm/ADT/SmallPtrSet.h"
77 #include "llvm/ADT/SmallVector.h"
78 #include "llvm/ADT/StringExtras.h"
79 #include "llvm/ADT/StringRef.h"
80 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
81 #include "llvm/Support/Capacity.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/MD5.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/TargetParser/Triple.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstddef>
92 #include <cstdint>
93 #include <cstdlib>
94 #include <map>
95 #include <memory>
96 #include <optional>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace clang;
102 
103 enum FloatingRank {
104   BFloat16Rank,
105   Float16Rank,
106   HalfRank,
107   FloatRank,
108   DoubleRank,
109   LongDoubleRank,
110   Float128Rank,
111   Ibm128Rank
112 };
113 
114 /// \returns location that is relevant when searching for Doc comments related
115 /// to \p D.
116 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
117                                                  SourceManager &SourceMgr) {
118   assert(D);
119 
120   // User can not attach documentation to implicit declarations.
121   if (D->isImplicit())
122     return {};
123 
124   // User can not attach documentation to implicit instantiations.
125   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
126     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
127       return {};
128   }
129 
130   if (const auto *VD = dyn_cast<VarDecl>(D)) {
131     if (VD->isStaticDataMember() &&
132         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
133       return {};
134   }
135 
136   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
137     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
138       return {};
139   }
140 
141   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
142     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
143     if (TSK == TSK_ImplicitInstantiation ||
144         TSK == TSK_Undeclared)
145       return {};
146   }
147 
148   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
149     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
150       return {};
151   }
152   if (const auto *TD = dyn_cast<TagDecl>(D)) {
153     // When tag declaration (but not definition!) is part of the
154     // decl-specifier-seq of some other declaration, it doesn't get comment
155     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
156       return {};
157   }
158   // TODO: handle comments for function parameters properly.
159   if (isa<ParmVarDecl>(D))
160     return {};
161 
162   // TODO: we could look up template parameter documentation in the template
163   // documentation.
164   if (isa<TemplateTypeParmDecl>(D) ||
165       isa<NonTypeTemplateParmDecl>(D) ||
166       isa<TemplateTemplateParmDecl>(D))
167     return {};
168 
169   // Find declaration location.
170   // For Objective-C declarations we generally don't expect to have multiple
171   // declarators, thus use declaration starting location as the "declaration
172   // location".
173   // For all other declarations multiple declarators are used quite frequently,
174   // so we use the location of the identifier as the "declaration location".
175   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
176       isa<ObjCPropertyDecl>(D) ||
177       isa<RedeclarableTemplateDecl>(D) ||
178       isa<ClassTemplateSpecializationDecl>(D) ||
179       // Allow association with Y across {} in `typedef struct X {} Y`.
180       isa<TypedefDecl>(D))
181     return D->getBeginLoc();
182 
183   const SourceLocation DeclLoc = D->getLocation();
184   if (DeclLoc.isMacroID()) {
185     // There are (at least) three types of macros we care about here.
186     //
187     // 1. Macros that are used in the definition of a type outside the macro,
188     //    with a comment attached at the macro call site.
189     //    ```
190     //    #define MAKE_NAME(Foo) Name##Foo
191     //
192     //    /// Comment is here, where we use the macro.
193     //    struct MAKE_NAME(Foo) {
194     //        int a;
195     //        int b;
196     //    };
197     //    ```
198     // 2. Macros that define whole things along with the comment.
199     //    ```
200     //    #define MAKE_METHOD(name) \
201     //      /** Comment is here, inside the macro. */ \
202     //      void name() {}
203     //
204     //    struct S {
205     //      MAKE_METHOD(f)
206     //    }
207     //    ```
208     // 3. Macros that both declare a type and name a decl outside the macro.
209     //    ```
210     //    /// Comment is here, where we use the macro.
211     //    typedef NS_ENUM(NSInteger, Size) {
212     //        SizeWidth,
213     //        SizeHeight
214     //    };
215     //    ```
216     //    In this case NS_ENUM declares am enum type, and uses the same name for
217     //    the typedef declaration that appears outside the macro. The comment
218     //    here should be applied to both declarations inside and outside the
219     //    macro.
220     //
221     // We have found a Decl name that comes from inside a macro, but
222     // Decl::getLocation() returns the place where the macro is being called.
223     // If the declaration (and not just the name) resides inside the macro,
224     // then we want to map Decl::getLocation() into the macro to where the
225     // declaration and its attached comment (if any) were written.
226     //
227     // This mapping into the macro is done by mapping the location to its
228     // spelling location, however even if the declaration is inside a macro,
229     // the name's spelling can come from a macro argument (case 2 above). In
230     // this case mapping the location to the spelling location finds the
231     // argument's position (at `f` in MAKE_METHOD(`f`) above), which is not
232     // where the declaration and its comment are located.
233     //
234     // To avoid this issue, we make use of Decl::getBeginLocation() instead.
235     // While the declaration's position is where the name is written, the
236     // comment is always attached to the begining of the declaration, not to
237     // the name.
238     //
239     // In the first case, the begin location of the decl is outside the macro,
240     // at the location of `typedef`. This is where the comment is found as
241     // well. The begin location is not inside a macro, so it's spelling
242     // location is the same.
243     //
244     // In the second case, the begin location of the decl is the call to the
245     // macro, at `MAKE_METHOD`. However its spelling location is inside the
246     // the macro at the location of `void`. This is where the comment is found
247     // again.
248     //
249     // In the third case, there's no correct single behaviour. We want to use
250     // the comment outside the macro for the definition that's inside the macro.
251     // There is also a definition outside the macro, and we want the comment to
252     // apply to both. The cases we care about here is NS_ENUM() and
253     // NS_OPTIONS(). In general, if an enum is defined inside a macro, we should
254     // try to find the comment there.
255 
256     // This is handling case 3 for NS_ENUM() and NS_OPTIONS(), which define
257     // enum types inside the macro.
258     if (isa<EnumDecl>(D)) {
259       SourceLocation MacroCallLoc = SourceMgr.getExpansionLoc(DeclLoc);
260       if (auto BufferRef =
261               SourceMgr.getBufferOrNone(SourceMgr.getFileID(MacroCallLoc));
262           BufferRef.has_value()) {
263         llvm::StringRef buffer = BufferRef->getBuffer().substr(
264             SourceMgr.getFileOffset(MacroCallLoc));
265         if (buffer.starts_with("NS_ENUM(") ||
266             buffer.starts_with("NS_OPTIONS(")) {
267           // We want to use the comment on the call to NS_ENUM and NS_OPTIONS
268           // macros for the types defined inside the macros, which is at the
269           // expansion location.
270           return MacroCallLoc;
271         }
272       }
273     }
274     return SourceMgr.getSpellingLoc(D->getBeginLoc());
275   }
276 
277   return DeclLoc;
278 }
279 
280 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
281     const Decl *D, const SourceLocation RepresentativeLocForDecl,
282     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
283   // If the declaration doesn't map directly to a location in a file, we
284   // can't find the comment.
285   if (RepresentativeLocForDecl.isInvalid() ||
286       !RepresentativeLocForDecl.isFileID())
287     return nullptr;
288 
289   // If there are no comments anywhere, we won't find anything.
290   if (CommentsInTheFile.empty())
291     return nullptr;
292 
293   // Decompose the location for the declaration and find the beginning of the
294   // file buffer.
295   const std::pair<FileID, unsigned> DeclLocDecomp =
296       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
297 
298   // Slow path.
299   auto OffsetCommentBehindDecl =
300       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
301 
302   // First check whether we have a trailing comment.
303   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
304     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
305     if ((CommentBehindDecl->isDocumentation() ||
306          LangOpts.CommentOpts.ParseAllComments) &&
307         CommentBehindDecl->isTrailingComment() &&
308         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
309          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
310 
311       // Check that Doxygen trailing comment comes after the declaration, starts
312       // on the same line and in the same file as the declaration.
313       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
314           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
315                                        OffsetCommentBehindDecl->first)) {
316         return CommentBehindDecl;
317       }
318     }
319   }
320 
321   // The comment just after the declaration was not a trailing comment.
322   // Let's look at the previous comment.
323   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
324     return nullptr;
325 
326   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
327   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
328 
329   // Check that we actually have a non-member Doxygen comment.
330   if (!(CommentBeforeDecl->isDocumentation() ||
331         LangOpts.CommentOpts.ParseAllComments) ||
332       CommentBeforeDecl->isTrailingComment())
333     return nullptr;
334 
335   // Decompose the end of the comment.
336   const unsigned CommentEndOffset =
337       Comments.getCommentEndOffset(CommentBeforeDecl);
338 
339   // Get the corresponding buffer.
340   bool Invalid = false;
341   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
342                                                &Invalid).data();
343   if (Invalid)
344     return nullptr;
345 
346   // Extract text between the comment and declaration.
347   StringRef Text(Buffer + CommentEndOffset,
348                  DeclLocDecomp.second - CommentEndOffset);
349 
350   // There should be no other declarations or preprocessor directives between
351   // comment and declaration.
352   if (Text.find_last_of(";{}#@") != StringRef::npos)
353     return nullptr;
354 
355   return CommentBeforeDecl;
356 }
357 
358 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
359   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
360 
361   // If the declaration doesn't map directly to a location in a file, we
362   // can't find the comment.
363   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
364     return nullptr;
365 
366   if (ExternalSource && !CommentsLoaded) {
367     ExternalSource->ReadComments();
368     CommentsLoaded = true;
369   }
370 
371   if (Comments.empty())
372     return nullptr;
373 
374   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
375   if (!File.isValid()) {
376     return nullptr;
377   }
378   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
379   if (!CommentsInThisFile || CommentsInThisFile->empty())
380     return nullptr;
381 
382   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
383 }
384 
385 void ASTContext::addComment(const RawComment &RC) {
386   assert(LangOpts.RetainCommentsFromSystemHeaders ||
387          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
388   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
389 }
390 
391 /// If we have a 'templated' declaration for a template, adjust 'D' to
392 /// refer to the actual template.
393 /// If we have an implicit instantiation, adjust 'D' to refer to template.
394 static const Decl &adjustDeclToTemplate(const Decl &D) {
395   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
396     // Is this function declaration part of a function template?
397     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
398       return *FTD;
399 
400     // Nothing to do if function is not an implicit instantiation.
401     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
402       return D;
403 
404     // Function is an implicit instantiation of a function template?
405     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
406       return *FTD;
407 
408     // Function is instantiated from a member definition of a class template?
409     if (const FunctionDecl *MemberDecl =
410             FD->getInstantiatedFromMemberFunction())
411       return *MemberDecl;
412 
413     return D;
414   }
415   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
416     // Static data member is instantiated from a member definition of a class
417     // template?
418     if (VD->isStaticDataMember())
419       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
420         return *MemberDecl;
421 
422     return D;
423   }
424   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
425     // Is this class declaration part of a class template?
426     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
427       return *CTD;
428 
429     // Class is an implicit instantiation of a class template or partial
430     // specialization?
431     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
432       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
433         return D;
434       llvm::PointerUnion<ClassTemplateDecl *,
435                          ClassTemplatePartialSpecializationDecl *>
436           PU = CTSD->getSpecializedTemplateOrPartial();
437       return PU.is<ClassTemplateDecl *>()
438                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
439                  : *static_cast<const Decl *>(
440                        PU.get<ClassTemplatePartialSpecializationDecl *>());
441     }
442 
443     // Class is instantiated from a member definition of a class template?
444     if (const MemberSpecializationInfo *Info =
445             CRD->getMemberSpecializationInfo())
446       return *Info->getInstantiatedFrom();
447 
448     return D;
449   }
450   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
451     // Enum is instantiated from a member definition of a class template?
452     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
453       return *MemberDecl;
454 
455     return D;
456   }
457   // FIXME: Adjust alias templates?
458   return D;
459 }
460 
461 const RawComment *ASTContext::getRawCommentForAnyRedecl(
462                                                 const Decl *D,
463                                                 const Decl **OriginalDecl) const {
464   if (!D) {
465     if (OriginalDecl)
466       OriginalDecl = nullptr;
467     return nullptr;
468   }
469 
470   D = &adjustDeclToTemplate(*D);
471 
472   // Any comment directly attached to D?
473   {
474     auto DeclComment = DeclRawComments.find(D);
475     if (DeclComment != DeclRawComments.end()) {
476       if (OriginalDecl)
477         *OriginalDecl = D;
478       return DeclComment->second;
479     }
480   }
481 
482   // Any comment attached to any redeclaration of D?
483   const Decl *CanonicalD = D->getCanonicalDecl();
484   if (!CanonicalD)
485     return nullptr;
486 
487   {
488     auto RedeclComment = RedeclChainComments.find(CanonicalD);
489     if (RedeclComment != RedeclChainComments.end()) {
490       if (OriginalDecl)
491         *OriginalDecl = RedeclComment->second;
492       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
493       assert(CommentAtRedecl != DeclRawComments.end() &&
494              "This decl is supposed to have comment attached.");
495       return CommentAtRedecl->second;
496     }
497   }
498 
499   // Any redeclarations of D that we haven't checked for comments yet?
500   // We can't use DenseMap::iterator directly since it'd get invalid.
501   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
502     return CommentlessRedeclChains.lookup(CanonicalD);
503   }();
504 
505   for (const auto Redecl : D->redecls()) {
506     assert(Redecl);
507     // Skip all redeclarations that have been checked previously.
508     if (LastCheckedRedecl) {
509       if (LastCheckedRedecl == Redecl) {
510         LastCheckedRedecl = nullptr;
511       }
512       continue;
513     }
514     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
515     if (RedeclComment) {
516       cacheRawCommentForDecl(*Redecl, *RedeclComment);
517       if (OriginalDecl)
518         *OriginalDecl = Redecl;
519       return RedeclComment;
520     }
521     CommentlessRedeclChains[CanonicalD] = Redecl;
522   }
523 
524   if (OriginalDecl)
525     *OriginalDecl = nullptr;
526   return nullptr;
527 }
528 
529 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
530                                         const RawComment &Comment) const {
531   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
532   DeclRawComments.try_emplace(&OriginalD, &Comment);
533   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
534   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
535   CommentlessRedeclChains.erase(CanonicalDecl);
536 }
537 
538 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
539                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
540   const DeclContext *DC = ObjCMethod->getDeclContext();
541   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
542     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
543     if (!ID)
544       return;
545     // Add redeclared method here.
546     for (const auto *Ext : ID->known_extensions()) {
547       if (ObjCMethodDecl *RedeclaredMethod =
548             Ext->getMethod(ObjCMethod->getSelector(),
549                                   ObjCMethod->isInstanceMethod()))
550         Redeclared.push_back(RedeclaredMethod);
551     }
552   }
553 }
554 
555 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
556                                                  const Preprocessor *PP) {
557   if (Comments.empty() || Decls.empty())
558     return;
559 
560   FileID File;
561   for (Decl *D : Decls) {
562     SourceLocation Loc = D->getLocation();
563     if (Loc.isValid()) {
564       // See if there are any new comments that are not attached to a decl.
565       // The location doesn't have to be precise - we care only about the file.
566       File = SourceMgr.getDecomposedLoc(Loc).first;
567       break;
568     }
569   }
570 
571   if (File.isInvalid())
572     return;
573 
574   auto CommentsInThisFile = Comments.getCommentsInFile(File);
575   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
576       CommentsInThisFile->rbegin()->second->isAttached())
577     return;
578 
579   // There is at least one comment not attached to a decl.
580   // Maybe it should be attached to one of Decls?
581   //
582   // Note that this way we pick up not only comments that precede the
583   // declaration, but also comments that *follow* the declaration -- thanks to
584   // the lookahead in the lexer: we've consumed the semicolon and looked
585   // ahead through comments.
586 
587   for (const Decl *D : Decls) {
588     assert(D);
589     if (D->isInvalidDecl())
590       continue;
591 
592     D = &adjustDeclToTemplate(*D);
593 
594     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
595 
596     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
597       continue;
598 
599     if (DeclRawComments.count(D) > 0)
600       continue;
601 
602     if (RawComment *const DocComment =
603             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
604       cacheRawCommentForDecl(*D, *DocComment);
605       comments::FullComment *FC = DocComment->parse(*this, PP, D);
606       ParsedComments[D->getCanonicalDecl()] = FC;
607     }
608   }
609 }
610 
611 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
612                                                     const Decl *D) const {
613   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
614   ThisDeclInfo->CommentDecl = D;
615   ThisDeclInfo->IsFilled = false;
616   ThisDeclInfo->fill();
617   ThisDeclInfo->CommentDecl = FC->getDecl();
618   if (!ThisDeclInfo->TemplateParameters)
619     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
620   comments::FullComment *CFC =
621     new (*this) comments::FullComment(FC->getBlocks(),
622                                       ThisDeclInfo);
623   return CFC;
624 }
625 
626 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
627   const RawComment *RC = getRawCommentForDeclNoCache(D);
628   return RC ? RC->parse(*this, nullptr, D) : nullptr;
629 }
630 
631 comments::FullComment *ASTContext::getCommentForDecl(
632                                               const Decl *D,
633                                               const Preprocessor *PP) const {
634   if (!D || D->isInvalidDecl())
635     return nullptr;
636   D = &adjustDeclToTemplate(*D);
637 
638   const Decl *Canonical = D->getCanonicalDecl();
639   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
640       ParsedComments.find(Canonical);
641 
642   if (Pos != ParsedComments.end()) {
643     if (Canonical != D) {
644       comments::FullComment *FC = Pos->second;
645       comments::FullComment *CFC = cloneFullComment(FC, D);
646       return CFC;
647     }
648     return Pos->second;
649   }
650 
651   const Decl *OriginalDecl = nullptr;
652 
653   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
654   if (!RC) {
655     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
656       SmallVector<const NamedDecl*, 8> Overridden;
657       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
658       if (OMD && OMD->isPropertyAccessor())
659         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
660           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
661             return cloneFullComment(FC, D);
662       if (OMD)
663         addRedeclaredMethods(OMD, Overridden);
664       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
665       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
666         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
667           return cloneFullComment(FC, D);
668     }
669     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
670       // Attach any tag type's documentation to its typedef if latter
671       // does not have one of its own.
672       QualType QT = TD->getUnderlyingType();
673       if (const auto *TT = QT->getAs<TagType>())
674         if (const Decl *TD = TT->getDecl())
675           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
676             return cloneFullComment(FC, D);
677     }
678     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
679       while (IC->getSuperClass()) {
680         IC = IC->getSuperClass();
681         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
682           return cloneFullComment(FC, D);
683       }
684     }
685     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
686       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
687         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
688           return cloneFullComment(FC, D);
689     }
690     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
691       if (!(RD = RD->getDefinition()))
692         return nullptr;
693       // Check non-virtual bases.
694       for (const auto &I : RD->bases()) {
695         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
696           continue;
697         QualType Ty = I.getType();
698         if (Ty.isNull())
699           continue;
700         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
701           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
702             continue;
703 
704           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
705             return cloneFullComment(FC, D);
706         }
707       }
708       // Check virtual bases.
709       for (const auto &I : RD->vbases()) {
710         if (I.getAccessSpecifier() != AS_public)
711           continue;
712         QualType Ty = I.getType();
713         if (Ty.isNull())
714           continue;
715         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
716           if (!(VirtualBase= VirtualBase->getDefinition()))
717             continue;
718           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
719             return cloneFullComment(FC, D);
720         }
721       }
722     }
723     return nullptr;
724   }
725 
726   // If the RawComment was attached to other redeclaration of this Decl, we
727   // should parse the comment in context of that other Decl.  This is important
728   // because comments can contain references to parameter names which can be
729   // different across redeclarations.
730   if (D != OriginalDecl && OriginalDecl)
731     return getCommentForDecl(OriginalDecl, PP);
732 
733   comments::FullComment *FC = RC->parse(*this, PP, D);
734   ParsedComments[Canonical] = FC;
735   return FC;
736 }
737 
738 void
739 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
740                                                    const ASTContext &C,
741                                                TemplateTemplateParmDecl *Parm) {
742   ID.AddInteger(Parm->getDepth());
743   ID.AddInteger(Parm->getPosition());
744   ID.AddBoolean(Parm->isParameterPack());
745 
746   TemplateParameterList *Params = Parm->getTemplateParameters();
747   ID.AddInteger(Params->size());
748   for (TemplateParameterList::const_iterator P = Params->begin(),
749                                           PEnd = Params->end();
750        P != PEnd; ++P) {
751     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
752       ID.AddInteger(0);
753       ID.AddBoolean(TTP->isParameterPack());
754       if (TTP->isExpandedParameterPack()) {
755         ID.AddBoolean(true);
756         ID.AddInteger(TTP->getNumExpansionParameters());
757       } else
758         ID.AddBoolean(false);
759       continue;
760     }
761 
762     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
763       ID.AddInteger(1);
764       ID.AddBoolean(NTTP->isParameterPack());
765       ID.AddPointer(C.getUnconstrainedType(C.getCanonicalType(NTTP->getType()))
766                         .getAsOpaquePtr());
767       if (NTTP->isExpandedParameterPack()) {
768         ID.AddBoolean(true);
769         ID.AddInteger(NTTP->getNumExpansionTypes());
770         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
771           QualType T = NTTP->getExpansionType(I);
772           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
773         }
774       } else
775         ID.AddBoolean(false);
776       continue;
777     }
778 
779     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
780     ID.AddInteger(2);
781     Profile(ID, C, TTP);
782   }
783 }
784 
785 TemplateTemplateParmDecl *
786 ASTContext::getCanonicalTemplateTemplateParmDecl(
787                                           TemplateTemplateParmDecl *TTP) const {
788   // Check if we already have a canonical template template parameter.
789   llvm::FoldingSetNodeID ID;
790   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
791   void *InsertPos = nullptr;
792   CanonicalTemplateTemplateParm *Canonical
793     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
794   if (Canonical)
795     return Canonical->getParam();
796 
797   // Build a canonical template parameter list.
798   TemplateParameterList *Params = TTP->getTemplateParameters();
799   SmallVector<NamedDecl *, 4> CanonParams;
800   CanonParams.reserve(Params->size());
801   for (TemplateParameterList::const_iterator P = Params->begin(),
802                                           PEnd = Params->end();
803        P != PEnd; ++P) {
804     // Note that, per C++20 [temp.over.link]/6, when determining whether
805     // template-parameters are equivalent, constraints are ignored.
806     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
807       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(
808           *this, getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
809           TTP->getDepth(), TTP->getIndex(), nullptr, false,
810           TTP->isParameterPack(), /*HasTypeConstraint=*/false,
811           TTP->isExpandedParameterPack()
812               ? std::optional<unsigned>(TTP->getNumExpansionParameters())
813               : std::nullopt);
814       CanonParams.push_back(NewTTP);
815     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
816       QualType T = getUnconstrainedType(getCanonicalType(NTTP->getType()));
817       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
818       NonTypeTemplateParmDecl *Param;
819       if (NTTP->isExpandedParameterPack()) {
820         SmallVector<QualType, 2> ExpandedTypes;
821         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
822         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
823           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
824           ExpandedTInfos.push_back(
825                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
826         }
827 
828         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
829                                                 SourceLocation(),
830                                                 SourceLocation(),
831                                                 NTTP->getDepth(),
832                                                 NTTP->getPosition(), nullptr,
833                                                 T,
834                                                 TInfo,
835                                                 ExpandedTypes,
836                                                 ExpandedTInfos);
837       } else {
838         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
839                                                 SourceLocation(),
840                                                 SourceLocation(),
841                                                 NTTP->getDepth(),
842                                                 NTTP->getPosition(), nullptr,
843                                                 T,
844                                                 NTTP->isParameterPack(),
845                                                 TInfo);
846       }
847       CanonParams.push_back(Param);
848     } else
849       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
850                                            cast<TemplateTemplateParmDecl>(*P)));
851   }
852 
853   TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create(
854       *this, getTranslationUnitDecl(), SourceLocation(), TTP->getDepth(),
855       TTP->getPosition(), TTP->isParameterPack(), nullptr,
856       TemplateParameterList::Create(*this, SourceLocation(), SourceLocation(),
857                                     CanonParams, SourceLocation(),
858                                     /*RequiresClause=*/nullptr));
859 
860   // Get the new insert position for the node we care about.
861   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
862   assert(!Canonical && "Shouldn't be in the map!");
863   (void)Canonical;
864 
865   // Create the canonical template template parameter entry.
866   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
867   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
868   return CanonTTP;
869 }
870 
871 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
872   auto Kind = getTargetInfo().getCXXABI().getKind();
873   return getLangOpts().CXXABI.value_or(Kind);
874 }
875 
876 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
877   if (!LangOpts.CPlusPlus) return nullptr;
878 
879   switch (getCXXABIKind()) {
880   case TargetCXXABI::AppleARM64:
881   case TargetCXXABI::Fuchsia:
882   case TargetCXXABI::GenericARM: // Same as Itanium at this level
883   case TargetCXXABI::iOS:
884   case TargetCXXABI::WatchOS:
885   case TargetCXXABI::GenericAArch64:
886   case TargetCXXABI::GenericMIPS:
887   case TargetCXXABI::GenericItanium:
888   case TargetCXXABI::WebAssembly:
889   case TargetCXXABI::XL:
890     return CreateItaniumCXXABI(*this);
891   case TargetCXXABI::Microsoft:
892     return CreateMicrosoftCXXABI(*this);
893   }
894   llvm_unreachable("Invalid CXXABI type!");
895 }
896 
897 interp::Context &ASTContext::getInterpContext() {
898   if (!InterpContext) {
899     InterpContext.reset(new interp::Context(*this));
900   }
901   return *InterpContext.get();
902 }
903 
904 ParentMapContext &ASTContext::getParentMapContext() {
905   if (!ParentMapCtx)
906     ParentMapCtx.reset(new ParentMapContext(*this));
907   return *ParentMapCtx.get();
908 }
909 
910 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
911                                           const LangOptions &LangOpts) {
912   switch (LangOpts.getAddressSpaceMapMangling()) {
913   case LangOptions::ASMM_Target:
914     return TI.useAddressSpaceMapMangling();
915   case LangOptions::ASMM_On:
916     return true;
917   case LangOptions::ASMM_Off:
918     return false;
919   }
920   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
921 }
922 
923 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
924                        IdentifierTable &idents, SelectorTable &sels,
925                        Builtin::Context &builtins, TranslationUnitKind TUKind)
926     : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize),
927       FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize),
928       TemplateSpecializationTypes(this_()),
929       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
930       SubstTemplateTemplateParmPacks(this_()),
931       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
932       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
933       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
934                                         LangOpts.XRayNeverInstrumentFiles,
935                                         LangOpts.XRayAttrListFiles, SM)),
936       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
937       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
938       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
939       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
940       CompCategories(this_()), LastSDM(nullptr, 0) {
941   addTranslationUnitDecl();
942 }
943 
944 void ASTContext::cleanup() {
945   // Release the DenseMaps associated with DeclContext objects.
946   // FIXME: Is this the ideal solution?
947   ReleaseDeclContextMaps();
948 
949   // Call all of the deallocation functions on all of their targets.
950   for (auto &Pair : Deallocations)
951     (Pair.first)(Pair.second);
952   Deallocations.clear();
953 
954   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
955   // because they can contain DenseMaps.
956   for (llvm::DenseMap<const ObjCContainerDecl*,
957        const ASTRecordLayout*>::iterator
958        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
959     // Increment in loop to prevent using deallocated memory.
960     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
961       R->Destroy(*this);
962   ObjCLayouts.clear();
963 
964   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
965        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
966     // Increment in loop to prevent using deallocated memory.
967     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
968       R->Destroy(*this);
969   }
970   ASTRecordLayouts.clear();
971 
972   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
973                                                     AEnd = DeclAttrs.end();
974        A != AEnd; ++A)
975     A->second->~AttrVec();
976   DeclAttrs.clear();
977 
978   for (const auto &Value : ModuleInitializers)
979     Value.second->~PerModuleInitializers();
980   ModuleInitializers.clear();
981 }
982 
983 ASTContext::~ASTContext() { cleanup(); }
984 
985 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
986   TraversalScope = TopLevelDecls;
987   getParentMapContext().clear();
988 }
989 
990 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
991   Deallocations.push_back({Callback, Data});
992 }
993 
994 void
995 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
996   ExternalSource = std::move(Source);
997 }
998 
999 void ASTContext::PrintStats() const {
1000   llvm::errs() << "\n*** AST Context Stats:\n";
1001   llvm::errs() << "  " << Types.size() << " types total.\n";
1002 
1003   unsigned counts[] = {
1004 #define TYPE(Name, Parent) 0,
1005 #define ABSTRACT_TYPE(Name, Parent)
1006 #include "clang/AST/TypeNodes.inc"
1007     0 // Extra
1008   };
1009 
1010   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1011     Type *T = Types[i];
1012     counts[(unsigned)T->getTypeClass()]++;
1013   }
1014 
1015   unsigned Idx = 0;
1016   unsigned TotalBytes = 0;
1017 #define TYPE(Name, Parent)                                              \
1018   if (counts[Idx])                                                      \
1019     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1020                  << " types, " << sizeof(Name##Type) << " each "        \
1021                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1022                  << " bytes)\n";                                        \
1023   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1024   ++Idx;
1025 #define ABSTRACT_TYPE(Name, Parent)
1026 #include "clang/AST/TypeNodes.inc"
1027 
1028   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1029 
1030   // Implicit special member functions.
1031   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1032                << NumImplicitDefaultConstructors
1033                << " implicit default constructors created\n";
1034   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1035                << NumImplicitCopyConstructors
1036                << " implicit copy constructors created\n";
1037   if (getLangOpts().CPlusPlus)
1038     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1039                  << NumImplicitMoveConstructors
1040                  << " implicit move constructors created\n";
1041   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1042                << NumImplicitCopyAssignmentOperators
1043                << " implicit copy assignment operators created\n";
1044   if (getLangOpts().CPlusPlus)
1045     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1046                  << NumImplicitMoveAssignmentOperators
1047                  << " implicit move assignment operators created\n";
1048   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1049                << NumImplicitDestructors
1050                << " implicit destructors created\n";
1051 
1052   if (ExternalSource) {
1053     llvm::errs() << "\n";
1054     ExternalSource->PrintStats();
1055   }
1056 
1057   BumpAlloc.PrintStats();
1058 }
1059 
1060 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1061                                            bool NotifyListeners) {
1062   if (NotifyListeners)
1063     if (auto *Listener = getASTMutationListener())
1064       Listener->RedefinedHiddenDefinition(ND, M);
1065 
1066   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1067 }
1068 
1069 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1070   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1071   if (It == MergedDefModules.end())
1072     return;
1073 
1074   auto &Merged = It->second;
1075   llvm::DenseSet<Module*> Found;
1076   for (Module *&M : Merged)
1077     if (!Found.insert(M).second)
1078       M = nullptr;
1079   llvm::erase_value(Merged, nullptr);
1080 }
1081 
1082 ArrayRef<Module *>
1083 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1084   auto MergedIt =
1085       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1086   if (MergedIt == MergedDefModules.end())
1087     return std::nullopt;
1088   return MergedIt->second;
1089 }
1090 
1091 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1092   if (LazyInitializers.empty())
1093     return;
1094 
1095   auto *Source = Ctx.getExternalSource();
1096   assert(Source && "lazy initializers but no external source");
1097 
1098   auto LazyInits = std::move(LazyInitializers);
1099   LazyInitializers.clear();
1100 
1101   for (auto ID : LazyInits)
1102     Initializers.push_back(Source->GetExternalDecl(ID));
1103 
1104   assert(LazyInitializers.empty() &&
1105          "GetExternalDecl for lazy module initializer added more inits");
1106 }
1107 
1108 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1109   // One special case: if we add a module initializer that imports another
1110   // module, and that module's only initializer is an ImportDecl, simplify.
1111   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1112     auto It = ModuleInitializers.find(ID->getImportedModule());
1113 
1114     // Maybe the ImportDecl does nothing at all. (Common case.)
1115     if (It == ModuleInitializers.end())
1116       return;
1117 
1118     // Maybe the ImportDecl only imports another ImportDecl.
1119     auto &Imported = *It->second;
1120     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1121       Imported.resolve(*this);
1122       auto *OnlyDecl = Imported.Initializers.front();
1123       if (isa<ImportDecl>(OnlyDecl))
1124         D = OnlyDecl;
1125     }
1126   }
1127 
1128   auto *&Inits = ModuleInitializers[M];
1129   if (!Inits)
1130     Inits = new (*this) PerModuleInitializers;
1131   Inits->Initializers.push_back(D);
1132 }
1133 
1134 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1135   auto *&Inits = ModuleInitializers[M];
1136   if (!Inits)
1137     Inits = new (*this) PerModuleInitializers;
1138   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1139                                  IDs.begin(), IDs.end());
1140 }
1141 
1142 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1143   auto It = ModuleInitializers.find(M);
1144   if (It == ModuleInitializers.end())
1145     return std::nullopt;
1146 
1147   auto *Inits = It->second;
1148   Inits->resolve(*this);
1149   return Inits->Initializers;
1150 }
1151 
1152 void ASTContext::setCurrentNamedModule(Module *M) {
1153   assert(M->isModulePurview());
1154   assert(!CurrentCXXNamedModule &&
1155          "We should set named module for ASTContext for only once");
1156   CurrentCXXNamedModule = M;
1157 }
1158 
1159 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1160   if (!ExternCContext)
1161     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1162 
1163   return ExternCContext;
1164 }
1165 
1166 BuiltinTemplateDecl *
1167 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1168                                      const IdentifierInfo *II) const {
1169   auto *BuiltinTemplate =
1170       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1171   BuiltinTemplate->setImplicit();
1172   getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1173 
1174   return BuiltinTemplate;
1175 }
1176 
1177 BuiltinTemplateDecl *
1178 ASTContext::getMakeIntegerSeqDecl() const {
1179   if (!MakeIntegerSeqDecl)
1180     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1181                                                   getMakeIntegerSeqName());
1182   return MakeIntegerSeqDecl;
1183 }
1184 
1185 BuiltinTemplateDecl *
1186 ASTContext::getTypePackElementDecl() const {
1187   if (!TypePackElementDecl)
1188     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1189                                                    getTypePackElementName());
1190   return TypePackElementDecl;
1191 }
1192 
1193 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1194                                             RecordDecl::TagKind TK) const {
1195   SourceLocation Loc;
1196   RecordDecl *NewDecl;
1197   if (getLangOpts().CPlusPlus)
1198     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1199                                     Loc, &Idents.get(Name));
1200   else
1201     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1202                                  &Idents.get(Name));
1203   NewDecl->setImplicit();
1204   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1205       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1206   return NewDecl;
1207 }
1208 
1209 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1210                                               StringRef Name) const {
1211   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1212   TypedefDecl *NewDecl = TypedefDecl::Create(
1213       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1214       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1215   NewDecl->setImplicit();
1216   return NewDecl;
1217 }
1218 
1219 TypedefDecl *ASTContext::getInt128Decl() const {
1220   if (!Int128Decl)
1221     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1222   return Int128Decl;
1223 }
1224 
1225 TypedefDecl *ASTContext::getUInt128Decl() const {
1226   if (!UInt128Decl)
1227     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1228   return UInt128Decl;
1229 }
1230 
1231 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1232   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1233   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1234   Types.push_back(Ty);
1235 }
1236 
1237 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1238                                   const TargetInfo *AuxTarget) {
1239   assert((!this->Target || this->Target == &Target) &&
1240          "Incorrect target reinitialization");
1241   assert(VoidTy.isNull() && "Context reinitialized?");
1242 
1243   this->Target = &Target;
1244   this->AuxTarget = AuxTarget;
1245 
1246   ABI.reset(createCXXABI(Target));
1247   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1248 
1249   // C99 6.2.5p19.
1250   InitBuiltinType(VoidTy,              BuiltinType::Void);
1251 
1252   // C99 6.2.5p2.
1253   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1254   // C99 6.2.5p3.
1255   if (LangOpts.CharIsSigned)
1256     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1257   else
1258     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1259   // C99 6.2.5p4.
1260   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1261   InitBuiltinType(ShortTy,             BuiltinType::Short);
1262   InitBuiltinType(IntTy,               BuiltinType::Int);
1263   InitBuiltinType(LongTy,              BuiltinType::Long);
1264   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1265 
1266   // C99 6.2.5p6.
1267   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1268   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1269   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1270   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1271   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1272 
1273   // C99 6.2.5p10.
1274   InitBuiltinType(FloatTy,             BuiltinType::Float);
1275   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1276   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1277 
1278   // GNU extension, __float128 for IEEE quadruple precision
1279   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1280 
1281   // __ibm128 for IBM extended precision
1282   InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
1283 
1284   // C11 extension ISO/IEC TS 18661-3
1285   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1286 
1287   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1288   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1289   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1290   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1291   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1292   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1293   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1294   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1295   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1296   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1297   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1298   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1299   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1300   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1301   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1302   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1303   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1304   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1305   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1306   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1307   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1308   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1309   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1310   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1311   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1312 
1313   // GNU extension, 128-bit integers.
1314   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1315   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1316 
1317   // C++ 3.9.1p5
1318   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1319     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1320   else  // -fshort-wchar makes wchar_t be unsigned.
1321     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1322   if (LangOpts.CPlusPlus && LangOpts.WChar)
1323     WideCharTy = WCharTy;
1324   else {
1325     // C99 (or C++ using -fno-wchar).
1326     WideCharTy = getFromTargetType(Target.getWCharType());
1327   }
1328 
1329   WIntTy = getFromTargetType(Target.getWIntType());
1330 
1331   // C++20 (proposed)
1332   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1333 
1334   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1335     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1336   else // C99
1337     Char16Ty = getFromTargetType(Target.getChar16Type());
1338 
1339   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1340     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1341   else // C99
1342     Char32Ty = getFromTargetType(Target.getChar32Type());
1343 
1344   // Placeholder type for type-dependent expressions whose type is
1345   // completely unknown. No code should ever check a type against
1346   // DependentTy and users should never see it; however, it is here to
1347   // help diagnose failures to properly check for type-dependent
1348   // expressions.
1349   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1350 
1351   // Placeholder type for functions.
1352   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1353 
1354   // Placeholder type for bound members.
1355   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1356 
1357   // Placeholder type for pseudo-objects.
1358   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1359 
1360   // "any" type; useful for debugger-like clients.
1361   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1362 
1363   // Placeholder type for unbridged ARC casts.
1364   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1365 
1366   // Placeholder type for builtin functions.
1367   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1368 
1369   // Placeholder type for OMP array sections.
1370   if (LangOpts.OpenMP) {
1371     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1372     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1373     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1374   }
1375   if (LangOpts.MatrixTypes)
1376     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1377 
1378   // Builtin types for 'id', 'Class', and 'SEL'.
1379   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1380   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1381   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1382 
1383   if (LangOpts.OpenCL) {
1384 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1385     InitBuiltinType(SingletonId, BuiltinType::Id);
1386 #include "clang/Basic/OpenCLImageTypes.def"
1387 
1388     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1389     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1390     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1391     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1392     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1393 
1394 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1395     InitBuiltinType(Id##Ty, BuiltinType::Id);
1396 #include "clang/Basic/OpenCLExtensionTypes.def"
1397   }
1398 
1399   if (Target.hasAArch64SVETypes()) {
1400 #define SVE_TYPE(Name, Id, SingletonId) \
1401     InitBuiltinType(SingletonId, BuiltinType::Id);
1402 #include "clang/Basic/AArch64SVEACLETypes.def"
1403   }
1404 
1405   if (Target.getTriple().isPPC64()) {
1406 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1407       InitBuiltinType(Id##Ty, BuiltinType::Id);
1408 #include "clang/Basic/PPCTypes.def"
1409 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1410     InitBuiltinType(Id##Ty, BuiltinType::Id);
1411 #include "clang/Basic/PPCTypes.def"
1412   }
1413 
1414   if (Target.hasRISCVVTypes()) {
1415 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1416   InitBuiltinType(SingletonId, BuiltinType::Id);
1417 #include "clang/Basic/RISCVVTypes.def"
1418   }
1419 
1420   if (Target.getTriple().isWasm() && Target.hasFeature("reference-types")) {
1421 #define WASM_TYPE(Name, Id, SingletonId)                                       \
1422   InitBuiltinType(SingletonId, BuiltinType::Id);
1423 #include "clang/Basic/WebAssemblyReferenceTypes.def"
1424   }
1425 
1426   // Builtin type for __objc_yes and __objc_no
1427   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1428                        SignedCharTy : BoolTy);
1429 
1430   ObjCConstantStringType = QualType();
1431 
1432   ObjCSuperType = QualType();
1433 
1434   // void * type
1435   if (LangOpts.OpenCLGenericAddressSpace) {
1436     auto Q = VoidTy.getQualifiers();
1437     Q.setAddressSpace(LangAS::opencl_generic);
1438     VoidPtrTy = getPointerType(getCanonicalType(
1439         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1440   } else {
1441     VoidPtrTy = getPointerType(VoidTy);
1442   }
1443 
1444   // nullptr type (C++0x 2.14.7)
1445   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1446 
1447   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1448   InitBuiltinType(HalfTy, BuiltinType::Half);
1449 
1450   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1451 
1452   // Builtin type used to help define __builtin_va_list.
1453   VaListTagDecl = nullptr;
1454 
1455   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1456   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1457     MSGuidTagDecl = buildImplicitRecord("_GUID");
1458     getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1459   }
1460 }
1461 
1462 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1463   return SourceMgr.getDiagnostics();
1464 }
1465 
1466 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1467   AttrVec *&Result = DeclAttrs[D];
1468   if (!Result) {
1469     void *Mem = Allocate(sizeof(AttrVec));
1470     Result = new (Mem) AttrVec;
1471   }
1472 
1473   return *Result;
1474 }
1475 
1476 /// Erase the attributes corresponding to the given declaration.
1477 void ASTContext::eraseDeclAttrs(const Decl *D) {
1478   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1479   if (Pos != DeclAttrs.end()) {
1480     Pos->second->~AttrVec();
1481     DeclAttrs.erase(Pos);
1482   }
1483 }
1484 
1485 // FIXME: Remove ?
1486 MemberSpecializationInfo *
1487 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1488   assert(Var->isStaticDataMember() && "Not a static data member");
1489   return getTemplateOrSpecializationInfo(Var)
1490       .dyn_cast<MemberSpecializationInfo *>();
1491 }
1492 
1493 ASTContext::TemplateOrSpecializationInfo
1494 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1495   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1496       TemplateOrInstantiation.find(Var);
1497   if (Pos == TemplateOrInstantiation.end())
1498     return {};
1499 
1500   return Pos->second;
1501 }
1502 
1503 void
1504 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1505                                                 TemplateSpecializationKind TSK,
1506                                           SourceLocation PointOfInstantiation) {
1507   assert(Inst->isStaticDataMember() && "Not a static data member");
1508   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1509   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1510                                             Tmpl, TSK, PointOfInstantiation));
1511 }
1512 
1513 void
1514 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1515                                             TemplateOrSpecializationInfo TSI) {
1516   assert(!TemplateOrInstantiation[Inst] &&
1517          "Already noted what the variable was instantiated from");
1518   TemplateOrInstantiation[Inst] = TSI;
1519 }
1520 
1521 NamedDecl *
1522 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1523   return InstantiatedFromUsingDecl.lookup(UUD);
1524 }
1525 
1526 void
1527 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1528   assert((isa<UsingDecl>(Pattern) ||
1529           isa<UnresolvedUsingValueDecl>(Pattern) ||
1530           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1531          "pattern decl is not a using decl");
1532   assert((isa<UsingDecl>(Inst) ||
1533           isa<UnresolvedUsingValueDecl>(Inst) ||
1534           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1535          "instantiation did not produce a using decl");
1536   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1537   InstantiatedFromUsingDecl[Inst] = Pattern;
1538 }
1539 
1540 UsingEnumDecl *
1541 ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1542   return InstantiatedFromUsingEnumDecl.lookup(UUD);
1543 }
1544 
1545 void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1546                                                   UsingEnumDecl *Pattern) {
1547   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
1548   InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1549 }
1550 
1551 UsingShadowDecl *
1552 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1553   return InstantiatedFromUsingShadowDecl.lookup(Inst);
1554 }
1555 
1556 void
1557 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1558                                                UsingShadowDecl *Pattern) {
1559   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1560   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1561 }
1562 
1563 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1564   return InstantiatedFromUnnamedFieldDecl.lookup(Field);
1565 }
1566 
1567 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1568                                                      FieldDecl *Tmpl) {
1569   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1570   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1571   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1572          "Already noted what unnamed field was instantiated from");
1573 
1574   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1575 }
1576 
1577 ASTContext::overridden_cxx_method_iterator
1578 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1579   return overridden_methods(Method).begin();
1580 }
1581 
1582 ASTContext::overridden_cxx_method_iterator
1583 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1584   return overridden_methods(Method).end();
1585 }
1586 
1587 unsigned
1588 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1589   auto Range = overridden_methods(Method);
1590   return Range.end() - Range.begin();
1591 }
1592 
1593 ASTContext::overridden_method_range
1594 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1595   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1596       OverriddenMethods.find(Method->getCanonicalDecl());
1597   if (Pos == OverriddenMethods.end())
1598     return overridden_method_range(nullptr, nullptr);
1599   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1600 }
1601 
1602 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1603                                      const CXXMethodDecl *Overridden) {
1604   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1605   OverriddenMethods[Method].push_back(Overridden);
1606 }
1607 
1608 void ASTContext::getOverriddenMethods(
1609                       const NamedDecl *D,
1610                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1611   assert(D);
1612 
1613   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1614     Overridden.append(overridden_methods_begin(CXXMethod),
1615                       overridden_methods_end(CXXMethod));
1616     return;
1617   }
1618 
1619   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1620   if (!Method)
1621     return;
1622 
1623   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1624   Method->getOverriddenMethods(OverDecls);
1625   Overridden.append(OverDecls.begin(), OverDecls.end());
1626 }
1627 
1628 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1629   assert(!Import->getNextLocalImport() &&
1630          "Import declaration already in the chain");
1631   assert(!Import->isFromASTFile() && "Non-local import declaration");
1632   if (!FirstLocalImport) {
1633     FirstLocalImport = Import;
1634     LastLocalImport = Import;
1635     return;
1636   }
1637 
1638   LastLocalImport->setNextLocalImport(Import);
1639   LastLocalImport = Import;
1640 }
1641 
1642 //===----------------------------------------------------------------------===//
1643 //                         Type Sizing and Analysis
1644 //===----------------------------------------------------------------------===//
1645 
1646 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1647 /// scalar floating point type.
1648 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1649   switch (T->castAs<BuiltinType>()->getKind()) {
1650   default:
1651     llvm_unreachable("Not a floating point type!");
1652   case BuiltinType::BFloat16:
1653     return Target->getBFloat16Format();
1654   case BuiltinType::Float16:
1655     return Target->getHalfFormat();
1656   case BuiltinType::Half:
1657     // For HLSL, when the native half type is disabled, half will be treat as
1658     // float.
1659     if (getLangOpts().HLSL)
1660       if (getLangOpts().NativeHalfType)
1661         return Target->getHalfFormat();
1662       else
1663         return Target->getFloatFormat();
1664     else
1665       return Target->getHalfFormat();
1666   case BuiltinType::Float:      return Target->getFloatFormat();
1667   case BuiltinType::Double:     return Target->getDoubleFormat();
1668   case BuiltinType::Ibm128:
1669     return Target->getIbm128Format();
1670   case BuiltinType::LongDouble:
1671     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice)
1672       return AuxTarget->getLongDoubleFormat();
1673     return Target->getLongDoubleFormat();
1674   case BuiltinType::Float128:
1675     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice)
1676       return AuxTarget->getFloat128Format();
1677     return Target->getFloat128Format();
1678   }
1679 }
1680 
1681 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1682   unsigned Align = Target->getCharWidth();
1683 
1684   bool UseAlignAttrOnly = false;
1685   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1686     Align = AlignFromAttr;
1687 
1688     // __attribute__((aligned)) can increase or decrease alignment
1689     // *except* on a struct or struct member, where it only increases
1690     // alignment unless 'packed' is also specified.
1691     //
1692     // It is an error for alignas to decrease alignment, so we can
1693     // ignore that possibility;  Sema should diagnose it.
1694     if (isa<FieldDecl>(D)) {
1695       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1696         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1697     } else {
1698       UseAlignAttrOnly = true;
1699     }
1700   }
1701   else if (isa<FieldDecl>(D))
1702       UseAlignAttrOnly =
1703         D->hasAttr<PackedAttr>() ||
1704         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1705 
1706   // If we're using the align attribute only, just ignore everything
1707   // else about the declaration and its type.
1708   if (UseAlignAttrOnly) {
1709     // do nothing
1710   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1711     QualType T = VD->getType();
1712     if (const auto *RT = T->getAs<ReferenceType>()) {
1713       if (ForAlignof)
1714         T = RT->getPointeeType();
1715       else
1716         T = getPointerType(RT->getPointeeType());
1717     }
1718     QualType BaseT = getBaseElementType(T);
1719     if (T->isFunctionType())
1720       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1721     else if (!BaseT->isIncompleteType()) {
1722       // Adjust alignments of declarations with array type by the
1723       // large-array alignment on the target.
1724       if (const ArrayType *arrayType = getAsArrayType(T)) {
1725         unsigned MinWidth = Target->getLargeArrayMinWidth();
1726         if (!ForAlignof && MinWidth) {
1727           if (isa<VariableArrayType>(arrayType))
1728             Align = std::max(Align, Target->getLargeArrayAlign());
1729           else if (isa<ConstantArrayType>(arrayType) &&
1730                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1731             Align = std::max(Align, Target->getLargeArrayAlign());
1732         }
1733       }
1734       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1735       if (BaseT.getQualifiers().hasUnaligned())
1736         Align = Target->getCharWidth();
1737       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1738         if (VD->hasGlobalStorage() && !ForAlignof) {
1739           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1740           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1741         }
1742       }
1743     }
1744 
1745     // Fields can be subject to extra alignment constraints, like if
1746     // the field is packed, the struct is packed, or the struct has a
1747     // a max-field-alignment constraint (#pragma pack).  So calculate
1748     // the actual alignment of the field within the struct, and then
1749     // (as we're expected to) constrain that by the alignment of the type.
1750     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1751       const RecordDecl *Parent = Field->getParent();
1752       // We can only produce a sensible answer if the record is valid.
1753       if (!Parent->isInvalidDecl()) {
1754         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1755 
1756         // Start with the record's overall alignment.
1757         unsigned FieldAlign = toBits(Layout.getAlignment());
1758 
1759         // Use the GCD of that and the offset within the record.
1760         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1761         if (Offset > 0) {
1762           // Alignment is always a power of 2, so the GCD will be a power of 2,
1763           // which means we get to do this crazy thing instead of Euclid's.
1764           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1765           if (LowBitOfOffset < FieldAlign)
1766             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1767         }
1768 
1769         Align = std::min(Align, FieldAlign);
1770       }
1771     }
1772   }
1773 
1774   // Some targets have hard limitation on the maximum requestable alignment in
1775   // aligned attribute for static variables.
1776   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1777   const auto *VD = dyn_cast<VarDecl>(D);
1778   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1779     Align = std::min(Align, MaxAlignedAttr);
1780 
1781   return toCharUnitsFromBits(Align);
1782 }
1783 
1784 CharUnits ASTContext::getExnObjectAlignment() const {
1785   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1786 }
1787 
1788 // getTypeInfoDataSizeInChars - Return the size of a type, in
1789 // chars. If the type is a record, its data size is returned.  This is
1790 // the size of the memcpy that's performed when assigning this type
1791 // using a trivial copy/move assignment operator.
1792 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1793   TypeInfoChars Info = getTypeInfoInChars(T);
1794 
1795   // In C++, objects can sometimes be allocated into the tail padding
1796   // of a base-class subobject.  We decide whether that's possible
1797   // during class layout, so here we can just trust the layout results.
1798   if (getLangOpts().CPlusPlus) {
1799     if (const auto *RT = T->getAs<RecordType>()) {
1800       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1801       Info.Width = layout.getDataSize();
1802     }
1803   }
1804 
1805   return Info;
1806 }
1807 
1808 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1809 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1810 TypeInfoChars
1811 static getConstantArrayInfoInChars(const ASTContext &Context,
1812                                    const ConstantArrayType *CAT) {
1813   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1814   uint64_t Size = CAT->getSize().getZExtValue();
1815   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1816               (uint64_t)(-1)/Size) &&
1817          "Overflow in array type char size evaluation");
1818   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1819   unsigned Align = EltInfo.Align.getQuantity();
1820   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1821       Context.getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1822     Width = llvm::alignTo(Width, Align);
1823   return TypeInfoChars(CharUnits::fromQuantity(Width),
1824                        CharUnits::fromQuantity(Align),
1825                        EltInfo.AlignRequirement);
1826 }
1827 
1828 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1829   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1830     return getConstantArrayInfoInChars(*this, CAT);
1831   TypeInfo Info = getTypeInfo(T);
1832   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1833                        toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
1834 }
1835 
1836 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1837   return getTypeInfoInChars(T.getTypePtr());
1838 }
1839 
1840 bool ASTContext::isPromotableIntegerType(QualType T) const {
1841   // HLSL doesn't promote all small integer types to int, it
1842   // just uses the rank-based promotion rules for all types.
1843   if (getLangOpts().HLSL)
1844     return false;
1845 
1846   if (const auto *BT = T->getAs<BuiltinType>())
1847     switch (BT->getKind()) {
1848     case BuiltinType::Bool:
1849     case BuiltinType::Char_S:
1850     case BuiltinType::Char_U:
1851     case BuiltinType::SChar:
1852     case BuiltinType::UChar:
1853     case BuiltinType::Short:
1854     case BuiltinType::UShort:
1855     case BuiltinType::WChar_S:
1856     case BuiltinType::WChar_U:
1857     case BuiltinType::Char8:
1858     case BuiltinType::Char16:
1859     case BuiltinType::Char32:
1860       return true;
1861     default:
1862       return false;
1863     }
1864 
1865   // Enumerated types are promotable to their compatible integer types
1866   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1867   if (const auto *ET = T->getAs<EnumType>()) {
1868     if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() ||
1869         ET->getDecl()->isScoped())
1870       return false;
1871 
1872     return true;
1873   }
1874 
1875   return false;
1876 }
1877 
1878 bool ASTContext::isAlignmentRequired(const Type *T) const {
1879   return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
1880 }
1881 
1882 bool ASTContext::isAlignmentRequired(QualType T) const {
1883   return isAlignmentRequired(T.getTypePtr());
1884 }
1885 
1886 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1887                                          bool NeedsPreferredAlignment) const {
1888   // An alignment on a typedef overrides anything else.
1889   if (const auto *TT = T->getAs<TypedefType>())
1890     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1891       return Align;
1892 
1893   // If we have an (array of) complete type, we're done.
1894   T = getBaseElementType(T);
1895   if (!T->isIncompleteType())
1896     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1897 
1898   // If we had an array type, its element type might be a typedef
1899   // type with an alignment attribute.
1900   if (const auto *TT = T->getAs<TypedefType>())
1901     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1902       return Align;
1903 
1904   // Otherwise, see if the declaration of the type had an attribute.
1905   if (const auto *TT = T->getAs<TagType>())
1906     return TT->getDecl()->getMaxAlignment();
1907 
1908   return 0;
1909 }
1910 
1911 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1912   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1913   if (I != MemoizedTypeInfo.end())
1914     return I->second;
1915 
1916   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1917   TypeInfo TI = getTypeInfoImpl(T);
1918   MemoizedTypeInfo[T] = TI;
1919   return TI;
1920 }
1921 
1922 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1923 /// method does not work on incomplete types.
1924 ///
1925 /// FIXME: Pointers into different addr spaces could have different sizes and
1926 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1927 /// should take a QualType, &c.
1928 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1929   uint64_t Width = 0;
1930   unsigned Align = 8;
1931   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1932   LangAS AS = LangAS::Default;
1933   switch (T->getTypeClass()) {
1934 #define TYPE(Class, Base)
1935 #define ABSTRACT_TYPE(Class, Base)
1936 #define NON_CANONICAL_TYPE(Class, Base)
1937 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1938 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1939   case Type::Class:                                                            \
1940   assert(!T->isDependentType() && "should not see dependent types here");      \
1941   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1942 #include "clang/AST/TypeNodes.inc"
1943     llvm_unreachable("Should not see dependent types");
1944 
1945   case Type::FunctionNoProto:
1946   case Type::FunctionProto:
1947     // GCC extension: alignof(function) = 32 bits
1948     Width = 0;
1949     Align = 32;
1950     break;
1951 
1952   case Type::IncompleteArray:
1953   case Type::VariableArray:
1954   case Type::ConstantArray: {
1955     // Model non-constant sized arrays as size zero, but track the alignment.
1956     uint64_t Size = 0;
1957     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1958       Size = CAT->getSize().getZExtValue();
1959 
1960     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1961     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1962            "Overflow in array type bit size evaluation");
1963     Width = EltInfo.Width * Size;
1964     Align = EltInfo.Align;
1965     AlignRequirement = EltInfo.AlignRequirement;
1966     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1967         getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1968       Width = llvm::alignTo(Width, Align);
1969     break;
1970   }
1971 
1972   case Type::ExtVector:
1973   case Type::Vector: {
1974     const auto *VT = cast<VectorType>(T);
1975     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1976     Width = VT->isExtVectorBoolType() ? VT->getNumElements()
1977                                       : EltInfo.Width * VT->getNumElements();
1978     // Enforce at least byte size and alignment.
1979     Width = std::max<unsigned>(8, Width);
1980     Align = std::max<unsigned>(8, Width);
1981 
1982     // If the alignment is not a power of 2, round up to the next power of 2.
1983     // This happens for non-power-of-2 length vectors.
1984     if (Align & (Align-1)) {
1985       Align = llvm::bit_ceil(Align);
1986       Width = llvm::alignTo(Width, Align);
1987     }
1988     // Adjust the alignment based on the target max.
1989     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1990     if (TargetVectorAlign && TargetVectorAlign < Align)
1991       Align = TargetVectorAlign;
1992     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
1993       // Adjust the alignment for fixed-length SVE vectors. This is important
1994       // for non-power-of-2 vector lengths.
1995       Align = 128;
1996     else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
1997       // Adjust the alignment for fixed-length SVE predicates.
1998       Align = 16;
1999     else if (VT->getVectorKind() == VectorType::RVVFixedLengthDataVector)
2000       // Adjust the alignment for fixed-length RVV vectors.
2001       Align = std::min<unsigned>(64, Width);
2002     break;
2003   }
2004 
2005   case Type::ConstantMatrix: {
2006     const auto *MT = cast<ConstantMatrixType>(T);
2007     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
2008     // The internal layout of a matrix value is implementation defined.
2009     // Initially be ABI compatible with arrays with respect to alignment and
2010     // size.
2011     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
2012     Align = ElementInfo.Align;
2013     break;
2014   }
2015 
2016   case Type::Builtin:
2017     switch (cast<BuiltinType>(T)->getKind()) {
2018     default: llvm_unreachable("Unknown builtin type!");
2019     case BuiltinType::Void:
2020       // GCC extension: alignof(void) = 8 bits.
2021       Width = 0;
2022       Align = 8;
2023       break;
2024     case BuiltinType::Bool:
2025       Width = Target->getBoolWidth();
2026       Align = Target->getBoolAlign();
2027       break;
2028     case BuiltinType::Char_S:
2029     case BuiltinType::Char_U:
2030     case BuiltinType::UChar:
2031     case BuiltinType::SChar:
2032     case BuiltinType::Char8:
2033       Width = Target->getCharWidth();
2034       Align = Target->getCharAlign();
2035       break;
2036     case BuiltinType::WChar_S:
2037     case BuiltinType::WChar_U:
2038       Width = Target->getWCharWidth();
2039       Align = Target->getWCharAlign();
2040       break;
2041     case BuiltinType::Char16:
2042       Width = Target->getChar16Width();
2043       Align = Target->getChar16Align();
2044       break;
2045     case BuiltinType::Char32:
2046       Width = Target->getChar32Width();
2047       Align = Target->getChar32Align();
2048       break;
2049     case BuiltinType::UShort:
2050     case BuiltinType::Short:
2051       Width = Target->getShortWidth();
2052       Align = Target->getShortAlign();
2053       break;
2054     case BuiltinType::UInt:
2055     case BuiltinType::Int:
2056       Width = Target->getIntWidth();
2057       Align = Target->getIntAlign();
2058       break;
2059     case BuiltinType::ULong:
2060     case BuiltinType::Long:
2061       Width = Target->getLongWidth();
2062       Align = Target->getLongAlign();
2063       break;
2064     case BuiltinType::ULongLong:
2065     case BuiltinType::LongLong:
2066       Width = Target->getLongLongWidth();
2067       Align = Target->getLongLongAlign();
2068       break;
2069     case BuiltinType::Int128:
2070     case BuiltinType::UInt128:
2071       Width = 128;
2072       Align = Target->getInt128Align();
2073       break;
2074     case BuiltinType::ShortAccum:
2075     case BuiltinType::UShortAccum:
2076     case BuiltinType::SatShortAccum:
2077     case BuiltinType::SatUShortAccum:
2078       Width = Target->getShortAccumWidth();
2079       Align = Target->getShortAccumAlign();
2080       break;
2081     case BuiltinType::Accum:
2082     case BuiltinType::UAccum:
2083     case BuiltinType::SatAccum:
2084     case BuiltinType::SatUAccum:
2085       Width = Target->getAccumWidth();
2086       Align = Target->getAccumAlign();
2087       break;
2088     case BuiltinType::LongAccum:
2089     case BuiltinType::ULongAccum:
2090     case BuiltinType::SatLongAccum:
2091     case BuiltinType::SatULongAccum:
2092       Width = Target->getLongAccumWidth();
2093       Align = Target->getLongAccumAlign();
2094       break;
2095     case BuiltinType::ShortFract:
2096     case BuiltinType::UShortFract:
2097     case BuiltinType::SatShortFract:
2098     case BuiltinType::SatUShortFract:
2099       Width = Target->getShortFractWidth();
2100       Align = Target->getShortFractAlign();
2101       break;
2102     case BuiltinType::Fract:
2103     case BuiltinType::UFract:
2104     case BuiltinType::SatFract:
2105     case BuiltinType::SatUFract:
2106       Width = Target->getFractWidth();
2107       Align = Target->getFractAlign();
2108       break;
2109     case BuiltinType::LongFract:
2110     case BuiltinType::ULongFract:
2111     case BuiltinType::SatLongFract:
2112     case BuiltinType::SatULongFract:
2113       Width = Target->getLongFractWidth();
2114       Align = Target->getLongFractAlign();
2115       break;
2116     case BuiltinType::BFloat16:
2117       if (Target->hasBFloat16Type()) {
2118         Width = Target->getBFloat16Width();
2119         Align = Target->getBFloat16Align();
2120       } else if ((getLangOpts().SYCLIsDevice ||
2121                   (getLangOpts().OpenMP &&
2122                    getLangOpts().OpenMPIsTargetDevice)) &&
2123                  AuxTarget->hasBFloat16Type()) {
2124         Width = AuxTarget->getBFloat16Width();
2125         Align = AuxTarget->getBFloat16Align();
2126       }
2127       break;
2128     case BuiltinType::Float16:
2129     case BuiltinType::Half:
2130       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2131           !getLangOpts().OpenMPIsTargetDevice) {
2132         Width = Target->getHalfWidth();
2133         Align = Target->getHalfAlign();
2134       } else {
2135         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
2136                "Expected OpenMP device compilation.");
2137         Width = AuxTarget->getHalfWidth();
2138         Align = AuxTarget->getHalfAlign();
2139       }
2140       break;
2141     case BuiltinType::Float:
2142       Width = Target->getFloatWidth();
2143       Align = Target->getFloatAlign();
2144       break;
2145     case BuiltinType::Double:
2146       Width = Target->getDoubleWidth();
2147       Align = Target->getDoubleAlign();
2148       break;
2149     case BuiltinType::Ibm128:
2150       Width = Target->getIbm128Width();
2151       Align = Target->getIbm128Align();
2152       break;
2153     case BuiltinType::LongDouble:
2154       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
2155           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2156            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2157         Width = AuxTarget->getLongDoubleWidth();
2158         Align = AuxTarget->getLongDoubleAlign();
2159       } else {
2160         Width = Target->getLongDoubleWidth();
2161         Align = Target->getLongDoubleAlign();
2162       }
2163       break;
2164     case BuiltinType::Float128:
2165       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2166           !getLangOpts().OpenMPIsTargetDevice) {
2167         Width = Target->getFloat128Width();
2168         Align = Target->getFloat128Align();
2169       } else {
2170         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
2171                "Expected OpenMP device compilation.");
2172         Width = AuxTarget->getFloat128Width();
2173         Align = AuxTarget->getFloat128Align();
2174       }
2175       break;
2176     case BuiltinType::NullPtr:
2177       // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*)
2178       Width = Target->getPointerWidth(LangAS::Default);
2179       Align = Target->getPointerAlign(LangAS::Default);
2180       break;
2181     case BuiltinType::ObjCId:
2182     case BuiltinType::ObjCClass:
2183     case BuiltinType::ObjCSel:
2184       Width = Target->getPointerWidth(LangAS::Default);
2185       Align = Target->getPointerAlign(LangAS::Default);
2186       break;
2187     case BuiltinType::OCLSampler:
2188     case BuiltinType::OCLEvent:
2189     case BuiltinType::OCLClkEvent:
2190     case BuiltinType::OCLQueue:
2191     case BuiltinType::OCLReserveID:
2192 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2193     case BuiltinType::Id:
2194 #include "clang/Basic/OpenCLImageTypes.def"
2195 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2196   case BuiltinType::Id:
2197 #include "clang/Basic/OpenCLExtensionTypes.def"
2198       AS = Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
2199       Width = Target->getPointerWidth(AS);
2200       Align = Target->getPointerAlign(AS);
2201       break;
2202     // The SVE types are effectively target-specific.  The length of an
2203     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2204     // of 128 bits.  There is one predicate bit for each vector byte, so the
2205     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2206     //
2207     // Because the length is only known at runtime, we use a dummy value
2208     // of 0 for the static length.  The alignment values are those defined
2209     // by the Procedure Call Standard for the Arm Architecture.
2210 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2211                         IsSigned, IsFP, IsBF)                                  \
2212   case BuiltinType::Id:                                                        \
2213     Width = 0;                                                                 \
2214     Align = 128;                                                               \
2215     break;
2216 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2217   case BuiltinType::Id:                                                        \
2218     Width = 0;                                                                 \
2219     Align = 16;                                                                \
2220     break;
2221 #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId)                    \
2222   case BuiltinType::Id:                                                        \
2223     Width = 0;                                                                 \
2224     Align = 16;                                                                \
2225     break;
2226 #include "clang/Basic/AArch64SVEACLETypes.def"
2227 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2228   case BuiltinType::Id:                                                        \
2229     Width = Size;                                                              \
2230     Align = Size;                                                              \
2231     break;
2232 #include "clang/Basic/PPCTypes.def"
2233 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2234                         IsFP)                                                  \
2235   case BuiltinType::Id:                                                        \
2236     Width = 0;                                                                 \
2237     Align = ElBits;                                                            \
2238     break;
2239 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2240   case BuiltinType::Id:                                                        \
2241     Width = 0;                                                                 \
2242     Align = 8;                                                                 \
2243     break;
2244 #include "clang/Basic/RISCVVTypes.def"
2245 #define WASM_TYPE(Name, Id, SingletonId)                                       \
2246   case BuiltinType::Id:                                                        \
2247     Width = 0;                                                                 \
2248     Align = 8;                                                                 \
2249     break;
2250 #include "clang/Basic/WebAssemblyReferenceTypes.def"
2251     }
2252     break;
2253   case Type::ObjCObjectPointer:
2254     Width = Target->getPointerWidth(LangAS::Default);
2255     Align = Target->getPointerAlign(LangAS::Default);
2256     break;
2257   case Type::BlockPointer:
2258     AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
2259     Width = Target->getPointerWidth(AS);
2260     Align = Target->getPointerAlign(AS);
2261     break;
2262   case Type::LValueReference:
2263   case Type::RValueReference:
2264     // alignof and sizeof should never enter this code path here, so we go
2265     // the pointer route.
2266     AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
2267     Width = Target->getPointerWidth(AS);
2268     Align = Target->getPointerAlign(AS);
2269     break;
2270   case Type::Pointer:
2271     AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
2272     Width = Target->getPointerWidth(AS);
2273     Align = Target->getPointerAlign(AS);
2274     break;
2275   case Type::MemberPointer: {
2276     const auto *MPT = cast<MemberPointerType>(T);
2277     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2278     Width = MPI.Width;
2279     Align = MPI.Align;
2280     break;
2281   }
2282   case Type::Complex: {
2283     // Complex types have the same alignment as their elements, but twice the
2284     // size.
2285     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2286     Width = EltInfo.Width * 2;
2287     Align = EltInfo.Align;
2288     break;
2289   }
2290   case Type::ObjCObject:
2291     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2292   case Type::Adjusted:
2293   case Type::Decayed:
2294     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2295   case Type::ObjCInterface: {
2296     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2297     if (ObjCI->getDecl()->isInvalidDecl()) {
2298       Width = 8;
2299       Align = 8;
2300       break;
2301     }
2302     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2303     Width = toBits(Layout.getSize());
2304     Align = toBits(Layout.getAlignment());
2305     break;
2306   }
2307   case Type::BitInt: {
2308     const auto *EIT = cast<BitIntType>(T);
2309     Align = std::clamp<unsigned>(llvm::PowerOf2Ceil(EIT->getNumBits()),
2310                                  getCharWidth(), Target->getLongLongAlign());
2311     Width = llvm::alignTo(EIT->getNumBits(), Align);
2312     break;
2313   }
2314   case Type::Record:
2315   case Type::Enum: {
2316     const auto *TT = cast<TagType>(T);
2317 
2318     if (TT->getDecl()->isInvalidDecl()) {
2319       Width = 8;
2320       Align = 8;
2321       break;
2322     }
2323 
2324     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2325       const EnumDecl *ED = ET->getDecl();
2326       TypeInfo Info =
2327           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2328       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2329         Info.Align = AttrAlign;
2330         Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
2331       }
2332       return Info;
2333     }
2334 
2335     const auto *RT = cast<RecordType>(TT);
2336     const RecordDecl *RD = RT->getDecl();
2337     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2338     Width = toBits(Layout.getSize());
2339     Align = toBits(Layout.getAlignment());
2340     AlignRequirement = RD->hasAttr<AlignedAttr>()
2341                            ? AlignRequirementKind::RequiredByRecord
2342                            : AlignRequirementKind::None;
2343     break;
2344   }
2345 
2346   case Type::SubstTemplateTypeParm:
2347     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2348                        getReplacementType().getTypePtr());
2349 
2350   case Type::Auto:
2351   case Type::DeducedTemplateSpecialization: {
2352     const auto *A = cast<DeducedType>(T);
2353     assert(!A->getDeducedType().isNull() &&
2354            "cannot request the size of an undeduced or dependent auto type");
2355     return getTypeInfo(A->getDeducedType().getTypePtr());
2356   }
2357 
2358   case Type::Paren:
2359     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2360 
2361   case Type::MacroQualified:
2362     return getTypeInfo(
2363         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2364 
2365   case Type::ObjCTypeParam:
2366     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2367 
2368   case Type::Using:
2369     return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr());
2370 
2371   case Type::Typedef: {
2372     const auto *TT = cast<TypedefType>(T);
2373     TypeInfo Info = getTypeInfo(TT->desugar().getTypePtr());
2374     // If the typedef has an aligned attribute on it, it overrides any computed
2375     // alignment we have.  This violates the GCC documentation (which says that
2376     // attribute(aligned) can only round up) but matches its implementation.
2377     if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) {
2378       Align = AttrAlign;
2379       AlignRequirement = AlignRequirementKind::RequiredByTypedef;
2380     } else {
2381       Align = Info.Align;
2382       AlignRequirement = Info.AlignRequirement;
2383     }
2384     Width = Info.Width;
2385     break;
2386   }
2387 
2388   case Type::Elaborated:
2389     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2390 
2391   case Type::Attributed:
2392     return getTypeInfo(
2393                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2394 
2395   case Type::BTFTagAttributed:
2396     return getTypeInfo(
2397         cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr());
2398 
2399   case Type::Atomic: {
2400     // Start with the base type information.
2401     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2402     Width = Info.Width;
2403     Align = Info.Align;
2404 
2405     if (!Width) {
2406       // An otherwise zero-sized type should still generate an
2407       // atomic operation.
2408       Width = Target->getCharWidth();
2409       assert(Align);
2410     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2411       // If the size of the type doesn't exceed the platform's max
2412       // atomic promotion width, make the size and alignment more
2413       // favorable to atomic operations:
2414 
2415       // Round the size up to a power of 2.
2416       Width = llvm::bit_ceil(Width);
2417 
2418       // Set the alignment equal to the size.
2419       Align = static_cast<unsigned>(Width);
2420     }
2421   }
2422   break;
2423 
2424   case Type::Pipe:
2425     Width = Target->getPointerWidth(LangAS::opencl_global);
2426     Align = Target->getPointerAlign(LangAS::opencl_global);
2427     break;
2428   }
2429 
2430   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2431   return TypeInfo(Width, Align, AlignRequirement);
2432 }
2433 
2434 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2435   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2436   if (I != MemoizedUnadjustedAlign.end())
2437     return I->second;
2438 
2439   unsigned UnadjustedAlign;
2440   if (const auto *RT = T->getAs<RecordType>()) {
2441     const RecordDecl *RD = RT->getDecl();
2442     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2443     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2444   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2445     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2446     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2447   } else {
2448     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2449   }
2450 
2451   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2452   return UnadjustedAlign;
2453 }
2454 
2455 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2456   unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign(
2457       getTargetInfo().getTriple(), Target->getTargetOpts().FeatureMap);
2458   return SimdAlign;
2459 }
2460 
2461 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2462 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2463   return CharUnits::fromQuantity(BitSize / getCharWidth());
2464 }
2465 
2466 /// toBits - Convert a size in characters to a size in characters.
2467 int64_t ASTContext::toBits(CharUnits CharSize) const {
2468   return CharSize.getQuantity() * getCharWidth();
2469 }
2470 
2471 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2472 /// This method does not work on incomplete types.
2473 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2474   return getTypeInfoInChars(T).Width;
2475 }
2476 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2477   return getTypeInfoInChars(T).Width;
2478 }
2479 
2480 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2481 /// characters. This method does not work on incomplete types.
2482 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2483   return toCharUnitsFromBits(getTypeAlign(T));
2484 }
2485 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2486   return toCharUnitsFromBits(getTypeAlign(T));
2487 }
2488 
2489 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2490 /// type, in characters, before alignment adjustments. This method does
2491 /// not work on incomplete types.
2492 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2493   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2494 }
2495 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2496   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2497 }
2498 
2499 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2500 /// type for the current target in bits.  This can be different than the ABI
2501 /// alignment in cases where it is beneficial for performance or backwards
2502 /// compatibility preserving to overalign a data type. (Note: despite the name,
2503 /// the preferred alignment is ABI-impacting, and not an optimization.)
2504 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2505   TypeInfo TI = getTypeInfo(T);
2506   unsigned ABIAlign = TI.Align;
2507 
2508   T = T->getBaseElementTypeUnsafe();
2509 
2510   // The preferred alignment of member pointers is that of a pointer.
2511   if (T->isMemberPointerType())
2512     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2513 
2514   if (!Target->allowsLargerPreferedTypeAlignment())
2515     return ABIAlign;
2516 
2517   if (const auto *RT = T->getAs<RecordType>()) {
2518     const RecordDecl *RD = RT->getDecl();
2519 
2520     // When used as part of a typedef, or together with a 'packed' attribute,
2521     // the 'aligned' attribute can be used to decrease alignment. Note that the
2522     // 'packed' case is already taken into consideration when computing the
2523     // alignment, we only need to handle the typedef case here.
2524     if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
2525         RD->isInvalidDecl())
2526       return ABIAlign;
2527 
2528     unsigned PreferredAlign = static_cast<unsigned>(
2529         toBits(getASTRecordLayout(RD).PreferredAlignment));
2530     assert(PreferredAlign >= ABIAlign &&
2531            "PreferredAlign should be at least as large as ABIAlign.");
2532     return PreferredAlign;
2533   }
2534 
2535   // Double (and, for targets supporting AIX `power` alignment, long double) and
2536   // long long should be naturally aligned (despite requiring less alignment) if
2537   // possible.
2538   if (const auto *CT = T->getAs<ComplexType>())
2539     T = CT->getElementType().getTypePtr();
2540   if (const auto *ET = T->getAs<EnumType>())
2541     T = ET->getDecl()->getIntegerType().getTypePtr();
2542   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2543       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2544       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2545       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2546        Target->defaultsToAIXPowerAlignment()))
2547     // Don't increase the alignment if an alignment attribute was specified on a
2548     // typedef declaration.
2549     if (!TI.isAlignRequired())
2550       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2551 
2552   return ABIAlign;
2553 }
2554 
2555 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2556 /// for __attribute__((aligned)) on this target, to be used if no alignment
2557 /// value is specified.
2558 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2559   return getTargetInfo().getDefaultAlignForAttributeAligned();
2560 }
2561 
2562 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2563 /// to a global variable of the specified type.
2564 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2565   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2566   return std::max(getPreferredTypeAlign(T),
2567                   getTargetInfo().getMinGlobalAlign(TypeSize));
2568 }
2569 
2570 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2571 /// should be given to a global variable of the specified type.
2572 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2573   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2574 }
2575 
2576 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2577   CharUnits Offset = CharUnits::Zero();
2578   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2579   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2580     Offset += Layout->getBaseClassOffset(Base);
2581     Layout = &getASTRecordLayout(Base);
2582   }
2583   return Offset;
2584 }
2585 
2586 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2587   const ValueDecl *MPD = MP.getMemberPointerDecl();
2588   CharUnits ThisAdjustment = CharUnits::Zero();
2589   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2590   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2591   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2592   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2593     const CXXRecordDecl *Base = RD;
2594     const CXXRecordDecl *Derived = Path[I];
2595     if (DerivedMember)
2596       std::swap(Base, Derived);
2597     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2598     RD = Path[I];
2599   }
2600   if (DerivedMember)
2601     ThisAdjustment = -ThisAdjustment;
2602   return ThisAdjustment;
2603 }
2604 
2605 /// DeepCollectObjCIvars -
2606 /// This routine first collects all declared, but not synthesized, ivars in
2607 /// super class and then collects all ivars, including those synthesized for
2608 /// current class. This routine is used for implementation of current class
2609 /// when all ivars, declared and synthesized are known.
2610 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2611                                       bool leafClass,
2612                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2613   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2614     DeepCollectObjCIvars(SuperClass, false, Ivars);
2615   if (!leafClass) {
2616     llvm::append_range(Ivars, OI->ivars());
2617   } else {
2618     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2619     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2620          Iv= Iv->getNextIvar())
2621       Ivars.push_back(Iv);
2622   }
2623 }
2624 
2625 /// CollectInheritedProtocols - Collect all protocols in current class and
2626 /// those inherited by it.
2627 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2628                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2629   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2630     // We can use protocol_iterator here instead of
2631     // all_referenced_protocol_iterator since we are walking all categories.
2632     for (auto *Proto : OI->all_referenced_protocols()) {
2633       CollectInheritedProtocols(Proto, Protocols);
2634     }
2635 
2636     // Categories of this Interface.
2637     for (const auto *Cat : OI->visible_categories())
2638       CollectInheritedProtocols(Cat, Protocols);
2639 
2640     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2641       while (SD) {
2642         CollectInheritedProtocols(SD, Protocols);
2643         SD = SD->getSuperClass();
2644       }
2645   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2646     for (auto *Proto : OC->protocols()) {
2647       CollectInheritedProtocols(Proto, Protocols);
2648     }
2649   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2650     // Insert the protocol.
2651     if (!Protocols.insert(
2652           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2653       return;
2654 
2655     for (auto *Proto : OP->protocols())
2656       CollectInheritedProtocols(Proto, Protocols);
2657   }
2658 }
2659 
2660 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2661                                                 const RecordDecl *RD,
2662                                                 bool CheckIfTriviallyCopyable) {
2663   assert(RD->isUnion() && "Must be union type");
2664   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2665 
2666   for (const auto *Field : RD->fields()) {
2667     if (!Context.hasUniqueObjectRepresentations(Field->getType(),
2668                                                 CheckIfTriviallyCopyable))
2669       return false;
2670     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2671     if (FieldSize != UnionSize)
2672       return false;
2673   }
2674   return !RD->field_empty();
2675 }
2676 
2677 static int64_t getSubobjectOffset(const FieldDecl *Field,
2678                                   const ASTContext &Context,
2679                                   const clang::ASTRecordLayout & /*Layout*/) {
2680   return Context.getFieldOffset(Field);
2681 }
2682 
2683 static int64_t getSubobjectOffset(const CXXRecordDecl *RD,
2684                                   const ASTContext &Context,
2685                                   const clang::ASTRecordLayout &Layout) {
2686   return Context.toBits(Layout.getBaseClassOffset(RD));
2687 }
2688 
2689 static std::optional<int64_t>
2690 structHasUniqueObjectRepresentations(const ASTContext &Context,
2691                                      const RecordDecl *RD,
2692                                      bool CheckIfTriviallyCopyable);
2693 
2694 static std::optional<int64_t>
2695 getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context,
2696                        bool CheckIfTriviallyCopyable) {
2697   if (Field->getType()->isRecordType()) {
2698     const RecordDecl *RD = Field->getType()->getAsRecordDecl();
2699     if (!RD->isUnion())
2700       return structHasUniqueObjectRepresentations(Context, RD,
2701                                                   CheckIfTriviallyCopyable);
2702   }
2703 
2704   // A _BitInt type may not be unique if it has padding bits
2705   // but if it is a bitfield the padding bits are not used.
2706   bool IsBitIntType = Field->getType()->isBitIntType();
2707   if (!Field->getType()->isReferenceType() && !IsBitIntType &&
2708       !Context.hasUniqueObjectRepresentations(Field->getType(),
2709                                               CheckIfTriviallyCopyable))
2710     return std::nullopt;
2711 
2712   int64_t FieldSizeInBits =
2713       Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2714   if (Field->isBitField()) {
2715     // If we have explicit padding bits, they don't contribute bits
2716     // to the actual object representation, so return 0.
2717     if (Field->isUnnamedBitfield())
2718       return 0;
2719 
2720     int64_t BitfieldSize = Field->getBitWidthValue(Context);
2721     if (IsBitIntType) {
2722       if ((unsigned)BitfieldSize >
2723           cast<BitIntType>(Field->getType())->getNumBits())
2724         return std::nullopt;
2725     } else if (BitfieldSize > FieldSizeInBits) {
2726       return std::nullopt;
2727     }
2728     FieldSizeInBits = BitfieldSize;
2729   } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations(
2730                                  Field->getType(), CheckIfTriviallyCopyable)) {
2731     return std::nullopt;
2732   }
2733   return FieldSizeInBits;
2734 }
2735 
2736 static std::optional<int64_t>
2737 getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context,
2738                        bool CheckIfTriviallyCopyable) {
2739   return structHasUniqueObjectRepresentations(Context, RD,
2740                                               CheckIfTriviallyCopyable);
2741 }
2742 
2743 template <typename RangeT>
2744 static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations(
2745     const RangeT &Subobjects, int64_t CurOffsetInBits,
2746     const ASTContext &Context, const clang::ASTRecordLayout &Layout,
2747     bool CheckIfTriviallyCopyable) {
2748   for (const auto *Subobject : Subobjects) {
2749     std::optional<int64_t> SizeInBits =
2750         getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable);
2751     if (!SizeInBits)
2752       return std::nullopt;
2753     if (*SizeInBits != 0) {
2754       int64_t Offset = getSubobjectOffset(Subobject, Context, Layout);
2755       if (Offset != CurOffsetInBits)
2756         return std::nullopt;
2757       CurOffsetInBits += *SizeInBits;
2758     }
2759   }
2760   return CurOffsetInBits;
2761 }
2762 
2763 static std::optional<int64_t>
2764 structHasUniqueObjectRepresentations(const ASTContext &Context,
2765                                      const RecordDecl *RD,
2766                                      bool CheckIfTriviallyCopyable) {
2767   assert(!RD->isUnion() && "Must be struct/class type");
2768   const auto &Layout = Context.getASTRecordLayout(RD);
2769 
2770   int64_t CurOffsetInBits = 0;
2771   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2772     if (ClassDecl->isDynamicClass())
2773       return std::nullopt;
2774 
2775     SmallVector<CXXRecordDecl *, 4> Bases;
2776     for (const auto &Base : ClassDecl->bases()) {
2777       // Empty types can be inherited from, and non-empty types can potentially
2778       // have tail padding, so just make sure there isn't an error.
2779       Bases.emplace_back(Base.getType()->getAsCXXRecordDecl());
2780     }
2781 
2782     llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
2783       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
2784     });
2785 
2786     std::optional<int64_t> OffsetAfterBases =
2787         structSubobjectsHaveUniqueObjectRepresentations(
2788             Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable);
2789     if (!OffsetAfterBases)
2790       return std::nullopt;
2791     CurOffsetInBits = *OffsetAfterBases;
2792   }
2793 
2794   std::optional<int64_t> OffsetAfterFields =
2795       structSubobjectsHaveUniqueObjectRepresentations(
2796           RD->fields(), CurOffsetInBits, Context, Layout,
2797           CheckIfTriviallyCopyable);
2798   if (!OffsetAfterFields)
2799     return std::nullopt;
2800   CurOffsetInBits = *OffsetAfterFields;
2801 
2802   return CurOffsetInBits;
2803 }
2804 
2805 bool ASTContext::hasUniqueObjectRepresentations(
2806     QualType Ty, bool CheckIfTriviallyCopyable) const {
2807   // C++17 [meta.unary.prop]:
2808   //   The predicate condition for a template specialization
2809   //   has_unique_object_representations<T> shall be
2810   //   satisfied if and only if:
2811   //     (9.1) - T is trivially copyable, and
2812   //     (9.2) - any two objects of type T with the same value have the same
2813   //     object representation, where two objects
2814   //   of array or non-union class type are considered to have the same value
2815   //   if their respective sequences of
2816   //   direct subobjects have the same values, and two objects of union type
2817   //   are considered to have the same
2818   //   value if they have the same active member and the corresponding members
2819   //   have the same value.
2820   //   The set of scalar types for which this condition holds is
2821   //   implementation-defined. [ Note: If a type has padding
2822   //   bits, the condition does not hold; otherwise, the condition holds true
2823   //   for unsigned integral types. -- end note ]
2824   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2825 
2826   // Arrays are unique only if their element type is unique.
2827   if (Ty->isArrayType())
2828     return hasUniqueObjectRepresentations(getBaseElementType(Ty),
2829                                           CheckIfTriviallyCopyable);
2830 
2831   // (9.1) - T is trivially copyable...
2832   if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(*this))
2833     return false;
2834 
2835   // All integrals and enums are unique.
2836   if (Ty->isIntegralOrEnumerationType()) {
2837     // Except _BitInt types that have padding bits.
2838     if (const auto *BIT = Ty->getAs<BitIntType>())
2839       return getTypeSize(BIT) == BIT->getNumBits();
2840 
2841     return true;
2842   }
2843 
2844   // All other pointers are unique.
2845   if (Ty->isPointerType())
2846     return true;
2847 
2848   if (const auto *MPT = Ty->getAs<MemberPointerType>())
2849     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2850 
2851   if (Ty->isRecordType()) {
2852     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2853 
2854     if (Record->isInvalidDecl())
2855       return false;
2856 
2857     if (Record->isUnion())
2858       return unionHasUniqueObjectRepresentations(*this, Record,
2859                                                  CheckIfTriviallyCopyable);
2860 
2861     std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations(
2862         *this, Record, CheckIfTriviallyCopyable);
2863 
2864     return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(Ty));
2865   }
2866 
2867   // FIXME: More cases to handle here (list by rsmith):
2868   // vectors (careful about, eg, vector of 3 foo)
2869   // _Complex int and friends
2870   // _Atomic T
2871   // Obj-C block pointers
2872   // Obj-C object pointers
2873   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2874   // clk_event_t, queue_t, reserve_id_t)
2875   // There're also Obj-C class types and the Obj-C selector type, but I think it
2876   // makes sense for those to return false here.
2877 
2878   return false;
2879 }
2880 
2881 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2882   unsigned count = 0;
2883   // Count ivars declared in class extension.
2884   for (const auto *Ext : OI->known_extensions())
2885     count += Ext->ivar_size();
2886 
2887   // Count ivar defined in this class's implementation.  This
2888   // includes synthesized ivars.
2889   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2890     count += ImplDecl->ivar_size();
2891 
2892   return count;
2893 }
2894 
2895 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2896   if (!E)
2897     return false;
2898 
2899   // nullptr_t is always treated as null.
2900   if (E->getType()->isNullPtrType()) return true;
2901 
2902   if (E->getType()->isAnyPointerType() &&
2903       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2904                                                 Expr::NPC_ValueDependentIsNull))
2905     return true;
2906 
2907   // Unfortunately, __null has type 'int'.
2908   if (isa<GNUNullExpr>(E)) return true;
2909 
2910   return false;
2911 }
2912 
2913 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2914 /// exists.
2915 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2916   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2917     I = ObjCImpls.find(D);
2918   if (I != ObjCImpls.end())
2919     return cast<ObjCImplementationDecl>(I->second);
2920   return nullptr;
2921 }
2922 
2923 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2924 /// exists.
2925 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2926   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2927     I = ObjCImpls.find(D);
2928   if (I != ObjCImpls.end())
2929     return cast<ObjCCategoryImplDecl>(I->second);
2930   return nullptr;
2931 }
2932 
2933 /// Set the implementation of ObjCInterfaceDecl.
2934 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2935                            ObjCImplementationDecl *ImplD) {
2936   assert(IFaceD && ImplD && "Passed null params");
2937   ObjCImpls[IFaceD] = ImplD;
2938 }
2939 
2940 /// Set the implementation of ObjCCategoryDecl.
2941 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2942                            ObjCCategoryImplDecl *ImplD) {
2943   assert(CatD && ImplD && "Passed null params");
2944   ObjCImpls[CatD] = ImplD;
2945 }
2946 
2947 const ObjCMethodDecl *
2948 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2949   return ObjCMethodRedecls.lookup(MD);
2950 }
2951 
2952 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2953                                             const ObjCMethodDecl *Redecl) {
2954   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2955   ObjCMethodRedecls[MD] = Redecl;
2956 }
2957 
2958 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2959                                               const NamedDecl *ND) const {
2960   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2961     return ID;
2962   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2963     return CD->getClassInterface();
2964   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2965     return IMD->getClassInterface();
2966 
2967   return nullptr;
2968 }
2969 
2970 /// Get the copy initialization expression of VarDecl, or nullptr if
2971 /// none exists.
2972 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2973   assert(VD && "Passed null params");
2974   assert(VD->hasAttr<BlocksAttr>() &&
2975          "getBlockVarCopyInits - not __block var");
2976   auto I = BlockVarCopyInits.find(VD);
2977   if (I != BlockVarCopyInits.end())
2978     return I->second;
2979   return {nullptr, false};
2980 }
2981 
2982 /// Set the copy initialization expression of a block var decl.
2983 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2984                                      bool CanThrow) {
2985   assert(VD && CopyExpr && "Passed null params");
2986   assert(VD->hasAttr<BlocksAttr>() &&
2987          "setBlockVarCopyInits - not __block var");
2988   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2989 }
2990 
2991 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2992                                                  unsigned DataSize) const {
2993   if (!DataSize)
2994     DataSize = TypeLoc::getFullDataSizeForType(T);
2995   else
2996     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2997            "incorrect data size provided to CreateTypeSourceInfo!");
2998 
2999   auto *TInfo =
3000     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
3001   new (TInfo) TypeSourceInfo(T, DataSize);
3002   return TInfo;
3003 }
3004 
3005 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
3006                                                      SourceLocation L) const {
3007   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
3008   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
3009   return DI;
3010 }
3011 
3012 const ASTRecordLayout &
3013 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
3014   return getObjCLayout(D, nullptr);
3015 }
3016 
3017 const ASTRecordLayout &
3018 ASTContext::getASTObjCImplementationLayout(
3019                                         const ObjCImplementationDecl *D) const {
3020   return getObjCLayout(D->getClassInterface(), D);
3021 }
3022 
3023 static auto getCanonicalTemplateArguments(const ASTContext &C,
3024                                           ArrayRef<TemplateArgument> Args,
3025                                           bool &AnyNonCanonArgs) {
3026   SmallVector<TemplateArgument, 16> CanonArgs(Args);
3027   for (auto &Arg : CanonArgs) {
3028     TemplateArgument OrigArg = Arg;
3029     Arg = C.getCanonicalTemplateArgument(Arg);
3030     AnyNonCanonArgs |= !Arg.structurallyEquals(OrigArg);
3031   }
3032   return CanonArgs;
3033 }
3034 
3035 //===----------------------------------------------------------------------===//
3036 //                   Type creation/memoization methods
3037 //===----------------------------------------------------------------------===//
3038 
3039 QualType
3040 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
3041   unsigned fastQuals = quals.getFastQualifiers();
3042   quals.removeFastQualifiers();
3043 
3044   // Check if we've already instantiated this type.
3045   llvm::FoldingSetNodeID ID;
3046   ExtQuals::Profile(ID, baseType, quals);
3047   void *insertPos = nullptr;
3048   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
3049     assert(eq->getQualifiers() == quals);
3050     return QualType(eq, fastQuals);
3051   }
3052 
3053   // If the base type is not canonical, make the appropriate canonical type.
3054   QualType canon;
3055   if (!baseType->isCanonicalUnqualified()) {
3056     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
3057     canonSplit.Quals.addConsistentQualifiers(quals);
3058     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
3059 
3060     // Re-find the insert position.
3061     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
3062   }
3063 
3064   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
3065   ExtQualNodes.InsertNode(eq, insertPos);
3066   return QualType(eq, fastQuals);
3067 }
3068 
3069 QualType ASTContext::getAddrSpaceQualType(QualType T,
3070                                           LangAS AddressSpace) const {
3071   QualType CanT = getCanonicalType(T);
3072   if (CanT.getAddressSpace() == AddressSpace)
3073     return T;
3074 
3075   // If we are composing extended qualifiers together, merge together
3076   // into one ExtQuals node.
3077   QualifierCollector Quals;
3078   const Type *TypeNode = Quals.strip(T);
3079 
3080   // If this type already has an address space specified, it cannot get
3081   // another one.
3082   assert(!Quals.hasAddressSpace() &&
3083          "Type cannot be in multiple addr spaces!");
3084   Quals.addAddressSpace(AddressSpace);
3085 
3086   return getExtQualType(TypeNode, Quals);
3087 }
3088 
3089 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
3090   // If the type is not qualified with an address space, just return it
3091   // immediately.
3092   if (!T.hasAddressSpace())
3093     return T;
3094 
3095   // If we are composing extended qualifiers together, merge together
3096   // into one ExtQuals node.
3097   QualifierCollector Quals;
3098   const Type *TypeNode;
3099 
3100   while (T.hasAddressSpace()) {
3101     TypeNode = Quals.strip(T);
3102 
3103     // If the type no longer has an address space after stripping qualifiers,
3104     // jump out.
3105     if (!QualType(TypeNode, 0).hasAddressSpace())
3106       break;
3107 
3108     // There might be sugar in the way. Strip it and try again.
3109     T = T.getSingleStepDesugaredType(*this);
3110   }
3111 
3112   Quals.removeAddressSpace();
3113 
3114   // Removal of the address space can mean there are no longer any
3115   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3116   // or required.
3117   if (Quals.hasNonFastQualifiers())
3118     return getExtQualType(TypeNode, Quals);
3119   else
3120     return QualType(TypeNode, Quals.getFastQualifiers());
3121 }
3122 
3123 QualType ASTContext::getObjCGCQualType(QualType T,
3124                                        Qualifiers::GC GCAttr) const {
3125   QualType CanT = getCanonicalType(T);
3126   if (CanT.getObjCGCAttr() == GCAttr)
3127     return T;
3128 
3129   if (const auto *ptr = T->getAs<PointerType>()) {
3130     QualType Pointee = ptr->getPointeeType();
3131     if (Pointee->isAnyPointerType()) {
3132       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3133       return getPointerType(ResultType);
3134     }
3135   }
3136 
3137   // If we are composing extended qualifiers together, merge together
3138   // into one ExtQuals node.
3139   QualifierCollector Quals;
3140   const Type *TypeNode = Quals.strip(T);
3141 
3142   // If this type already has an ObjCGC specified, it cannot get
3143   // another one.
3144   assert(!Quals.hasObjCGCAttr() &&
3145          "Type cannot have multiple ObjCGCs!");
3146   Quals.addObjCGCAttr(GCAttr);
3147 
3148   return getExtQualType(TypeNode, Quals);
3149 }
3150 
3151 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3152   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3153     QualType Pointee = Ptr->getPointeeType();
3154     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3155       return getPointerType(removeAddrSpaceQualType(Pointee));
3156     }
3157   }
3158   return T;
3159 }
3160 
3161 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3162                                                    FunctionType::ExtInfo Info) {
3163   if (T->getExtInfo() == Info)
3164     return T;
3165 
3166   QualType Result;
3167   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3168     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3169   } else {
3170     const auto *FPT = cast<FunctionProtoType>(T);
3171     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3172     EPI.ExtInfo = Info;
3173     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3174   }
3175 
3176   return cast<FunctionType>(Result.getTypePtr());
3177 }
3178 
3179 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3180                                                  QualType ResultType) {
3181   FD = FD->getMostRecentDecl();
3182   while (true) {
3183     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3184     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3185     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3186     if (FunctionDecl *Next = FD->getPreviousDecl())
3187       FD = Next;
3188     else
3189       break;
3190   }
3191   if (ASTMutationListener *L = getASTMutationListener())
3192     L->DeducedReturnType(FD, ResultType);
3193 }
3194 
3195 /// Get a function type and produce the equivalent function type with the
3196 /// specified exception specification. Type sugar that can be present on a
3197 /// declaration of a function with an exception specification is permitted
3198 /// and preserved. Other type sugar (for instance, typedefs) is not.
3199 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3200     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const {
3201   // Might have some parens.
3202   if (const auto *PT = dyn_cast<ParenType>(Orig))
3203     return getParenType(
3204         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3205 
3206   // Might be wrapped in a macro qualified type.
3207   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3208     return getMacroQualifiedType(
3209         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3210         MQT->getMacroIdentifier());
3211 
3212   // Might have a calling-convention attribute.
3213   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3214     return getAttributedType(
3215         AT->getAttrKind(),
3216         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3217         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3218 
3219   // Anything else must be a function type. Rebuild it with the new exception
3220   // specification.
3221   const auto *Proto = Orig->castAs<FunctionProtoType>();
3222   return getFunctionType(
3223       Proto->getReturnType(), Proto->getParamTypes(),
3224       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3225 }
3226 
3227 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3228                                                           QualType U) const {
3229   return hasSameType(T, U) ||
3230          (getLangOpts().CPlusPlus17 &&
3231           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3232                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3233 }
3234 
3235 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3236   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3237     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3238     SmallVector<QualType, 16> Args(Proto->param_types().size());
3239     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3240       Args[i] = removePtrSizeAddrSpace(Proto->param_types()[i]);
3241     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3242   }
3243 
3244   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3245     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3246     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3247   }
3248 
3249   return T;
3250 }
3251 
3252 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3253   return hasSameType(T, U) ||
3254          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3255                      getFunctionTypeWithoutPtrSizes(U));
3256 }
3257 
3258 void ASTContext::adjustExceptionSpec(
3259     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3260     bool AsWritten) {
3261   // Update the type.
3262   QualType Updated =
3263       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3264   FD->setType(Updated);
3265 
3266   if (!AsWritten)
3267     return;
3268 
3269   // Update the type in the type source information too.
3270   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3271     // If the type and the type-as-written differ, we may need to update
3272     // the type-as-written too.
3273     if (TSInfo->getType() != FD->getType())
3274       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3275 
3276     // FIXME: When we get proper type location information for exceptions,
3277     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3278     // up the TypeSourceInfo;
3279     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3280                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3281            "TypeLoc size mismatch from updating exception specification");
3282     TSInfo->overrideType(Updated);
3283   }
3284 }
3285 
3286 /// getComplexType - Return the uniqued reference to the type for a complex
3287 /// number with the specified element type.
3288 QualType ASTContext::getComplexType(QualType T) const {
3289   // Unique pointers, to guarantee there is only one pointer of a particular
3290   // structure.
3291   llvm::FoldingSetNodeID ID;
3292   ComplexType::Profile(ID, T);
3293 
3294   void *InsertPos = nullptr;
3295   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3296     return QualType(CT, 0);
3297 
3298   // If the pointee type isn't canonical, this won't be a canonical type either,
3299   // so fill in the canonical type field.
3300   QualType Canonical;
3301   if (!T.isCanonical()) {
3302     Canonical = getComplexType(getCanonicalType(T));
3303 
3304     // Get the new insert position for the node we care about.
3305     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3306     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3307   }
3308   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3309   Types.push_back(New);
3310   ComplexTypes.InsertNode(New, InsertPos);
3311   return QualType(New, 0);
3312 }
3313 
3314 /// getPointerType - Return the uniqued reference to the type for a pointer to
3315 /// the specified type.
3316 QualType ASTContext::getPointerType(QualType T) const {
3317   // Unique pointers, to guarantee there is only one pointer of a particular
3318   // structure.
3319   llvm::FoldingSetNodeID ID;
3320   PointerType::Profile(ID, T);
3321 
3322   void *InsertPos = nullptr;
3323   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3324     return QualType(PT, 0);
3325 
3326   // If the pointee type isn't canonical, this won't be a canonical type either,
3327   // so fill in the canonical type field.
3328   QualType Canonical;
3329   if (!T.isCanonical()) {
3330     Canonical = getPointerType(getCanonicalType(T));
3331 
3332     // Get the new insert position for the node we care about.
3333     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3334     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3335   }
3336   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3337   Types.push_back(New);
3338   PointerTypes.InsertNode(New, InsertPos);
3339   return QualType(New, 0);
3340 }
3341 
3342 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3343   llvm::FoldingSetNodeID ID;
3344   AdjustedType::Profile(ID, Orig, New);
3345   void *InsertPos = nullptr;
3346   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3347   if (AT)
3348     return QualType(AT, 0);
3349 
3350   QualType Canonical = getCanonicalType(New);
3351 
3352   // Get the new insert position for the node we care about.
3353   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3354   assert(!AT && "Shouldn't be in the map!");
3355 
3356   AT = new (*this, TypeAlignment)
3357       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3358   Types.push_back(AT);
3359   AdjustedTypes.InsertNode(AT, InsertPos);
3360   return QualType(AT, 0);
3361 }
3362 
3363 QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const {
3364   llvm::FoldingSetNodeID ID;
3365   AdjustedType::Profile(ID, Orig, Decayed);
3366   void *InsertPos = nullptr;
3367   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3368   if (AT)
3369     return QualType(AT, 0);
3370 
3371   QualType Canonical = getCanonicalType(Decayed);
3372 
3373   // Get the new insert position for the node we care about.
3374   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3375   assert(!AT && "Shouldn't be in the map!");
3376 
3377   AT = new (*this, TypeAlignment) DecayedType(Orig, Decayed, Canonical);
3378   Types.push_back(AT);
3379   AdjustedTypes.InsertNode(AT, InsertPos);
3380   return QualType(AT, 0);
3381 }
3382 
3383 QualType ASTContext::getDecayedType(QualType T) const {
3384   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3385 
3386   QualType Decayed;
3387 
3388   // C99 6.7.5.3p7:
3389   //   A declaration of a parameter as "array of type" shall be
3390   //   adjusted to "qualified pointer to type", where the type
3391   //   qualifiers (if any) are those specified within the [ and ] of
3392   //   the array type derivation.
3393   if (T->isArrayType())
3394     Decayed = getArrayDecayedType(T);
3395 
3396   // C99 6.7.5.3p8:
3397   //   A declaration of a parameter as "function returning type"
3398   //   shall be adjusted to "pointer to function returning type", as
3399   //   in 6.3.2.1.
3400   if (T->isFunctionType())
3401     Decayed = getPointerType(T);
3402 
3403   return getDecayedType(T, Decayed);
3404 }
3405 
3406 /// getBlockPointerType - Return the uniqued reference to the type for
3407 /// a pointer to the specified block.
3408 QualType ASTContext::getBlockPointerType(QualType T) const {
3409   assert(T->isFunctionType() && "block of function types only");
3410   // Unique pointers, to guarantee there is only one block of a particular
3411   // structure.
3412   llvm::FoldingSetNodeID ID;
3413   BlockPointerType::Profile(ID, T);
3414 
3415   void *InsertPos = nullptr;
3416   if (BlockPointerType *PT =
3417         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3418     return QualType(PT, 0);
3419 
3420   // If the block pointee type isn't canonical, this won't be a canonical
3421   // type either so fill in the canonical type field.
3422   QualType Canonical;
3423   if (!T.isCanonical()) {
3424     Canonical = getBlockPointerType(getCanonicalType(T));
3425 
3426     // Get the new insert position for the node we care about.
3427     BlockPointerType *NewIP =
3428       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3429     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3430   }
3431   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3432   Types.push_back(New);
3433   BlockPointerTypes.InsertNode(New, InsertPos);
3434   return QualType(New, 0);
3435 }
3436 
3437 /// getLValueReferenceType - Return the uniqued reference to the type for an
3438 /// lvalue reference to the specified type.
3439 QualType
3440 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3441   assert((!T->isPlaceholderType() ||
3442           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3443          "Unresolved placeholder type");
3444 
3445   // Unique pointers, to guarantee there is only one pointer of a particular
3446   // structure.
3447   llvm::FoldingSetNodeID ID;
3448   ReferenceType::Profile(ID, T, SpelledAsLValue);
3449 
3450   void *InsertPos = nullptr;
3451   if (LValueReferenceType *RT =
3452         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3453     return QualType(RT, 0);
3454 
3455   const auto *InnerRef = T->getAs<ReferenceType>();
3456 
3457   // If the referencee type isn't canonical, this won't be a canonical type
3458   // either, so fill in the canonical type field.
3459   QualType Canonical;
3460   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3461     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3462     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3463 
3464     // Get the new insert position for the node we care about.
3465     LValueReferenceType *NewIP =
3466       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3467     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3468   }
3469 
3470   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3471                                                              SpelledAsLValue);
3472   Types.push_back(New);
3473   LValueReferenceTypes.InsertNode(New, InsertPos);
3474 
3475   return QualType(New, 0);
3476 }
3477 
3478 /// getRValueReferenceType - Return the uniqued reference to the type for an
3479 /// rvalue reference to the specified type.
3480 QualType ASTContext::getRValueReferenceType(QualType T) const {
3481   assert((!T->isPlaceholderType() ||
3482           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3483          "Unresolved placeholder type");
3484 
3485   // Unique pointers, to guarantee there is only one pointer of a particular
3486   // structure.
3487   llvm::FoldingSetNodeID ID;
3488   ReferenceType::Profile(ID, T, false);
3489 
3490   void *InsertPos = nullptr;
3491   if (RValueReferenceType *RT =
3492         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3493     return QualType(RT, 0);
3494 
3495   const auto *InnerRef = T->getAs<ReferenceType>();
3496 
3497   // If the referencee type isn't canonical, this won't be a canonical type
3498   // either, so fill in the canonical type field.
3499   QualType Canonical;
3500   if (InnerRef || !T.isCanonical()) {
3501     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3502     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3503 
3504     // Get the new insert position for the node we care about.
3505     RValueReferenceType *NewIP =
3506       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3507     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3508   }
3509 
3510   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3511   Types.push_back(New);
3512   RValueReferenceTypes.InsertNode(New, InsertPos);
3513   return QualType(New, 0);
3514 }
3515 
3516 /// getMemberPointerType - Return the uniqued reference to the type for a
3517 /// member pointer to the specified type, in the specified class.
3518 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3519   // Unique pointers, to guarantee there is only one pointer of a particular
3520   // structure.
3521   llvm::FoldingSetNodeID ID;
3522   MemberPointerType::Profile(ID, T, Cls);
3523 
3524   void *InsertPos = nullptr;
3525   if (MemberPointerType *PT =
3526       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3527     return QualType(PT, 0);
3528 
3529   // If the pointee or class type isn't canonical, this won't be a canonical
3530   // type either, so fill in the canonical type field.
3531   QualType Canonical;
3532   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3533     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3534 
3535     // Get the new insert position for the node we care about.
3536     MemberPointerType *NewIP =
3537       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3538     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3539   }
3540   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3541   Types.push_back(New);
3542   MemberPointerTypes.InsertNode(New, InsertPos);
3543   return QualType(New, 0);
3544 }
3545 
3546 /// getConstantArrayType - Return the unique reference to the type for an
3547 /// array of the specified element type.
3548 QualType ASTContext::getConstantArrayType(QualType EltTy,
3549                                           const llvm::APInt &ArySizeIn,
3550                                           const Expr *SizeExpr,
3551                                           ArrayType::ArraySizeModifier ASM,
3552                                           unsigned IndexTypeQuals) const {
3553   assert((EltTy->isDependentType() ||
3554           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3555          "Constant array of VLAs is illegal!");
3556 
3557   // We only need the size as part of the type if it's instantiation-dependent.
3558   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3559     SizeExpr = nullptr;
3560 
3561   // Convert the array size into a canonical width matching the pointer size for
3562   // the target.
3563   llvm::APInt ArySize(ArySizeIn);
3564   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3565 
3566   llvm::FoldingSetNodeID ID;
3567   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3568                              IndexTypeQuals);
3569 
3570   void *InsertPos = nullptr;
3571   if (ConstantArrayType *ATP =
3572       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3573     return QualType(ATP, 0);
3574 
3575   // If the element type isn't canonical or has qualifiers, or the array bound
3576   // is instantiation-dependent, this won't be a canonical type either, so fill
3577   // in the canonical type field.
3578   QualType Canon;
3579   // FIXME: Check below should look for qualifiers behind sugar.
3580   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3581     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3582     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3583                                  ASM, IndexTypeQuals);
3584     Canon = getQualifiedType(Canon, canonSplit.Quals);
3585 
3586     // Get the new insert position for the node we care about.
3587     ConstantArrayType *NewIP =
3588       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3589     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3590   }
3591 
3592   void *Mem = Allocate(
3593       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3594       TypeAlignment);
3595   auto *New = new (Mem)
3596     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3597   ConstantArrayTypes.InsertNode(New, InsertPos);
3598   Types.push_back(New);
3599   return QualType(New, 0);
3600 }
3601 
3602 /// getVariableArrayDecayedType - Turns the given type, which may be
3603 /// variably-modified, into the corresponding type with all the known
3604 /// sizes replaced with [*].
3605 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3606   // Vastly most common case.
3607   if (!type->isVariablyModifiedType()) return type;
3608 
3609   QualType result;
3610 
3611   SplitQualType split = type.getSplitDesugaredType();
3612   const Type *ty = split.Ty;
3613   switch (ty->getTypeClass()) {
3614 #define TYPE(Class, Base)
3615 #define ABSTRACT_TYPE(Class, Base)
3616 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3617 #include "clang/AST/TypeNodes.inc"
3618     llvm_unreachable("didn't desugar past all non-canonical types?");
3619 
3620   // These types should never be variably-modified.
3621   case Type::Builtin:
3622   case Type::Complex:
3623   case Type::Vector:
3624   case Type::DependentVector:
3625   case Type::ExtVector:
3626   case Type::DependentSizedExtVector:
3627   case Type::ConstantMatrix:
3628   case Type::DependentSizedMatrix:
3629   case Type::DependentAddressSpace:
3630   case Type::ObjCObject:
3631   case Type::ObjCInterface:
3632   case Type::ObjCObjectPointer:
3633   case Type::Record:
3634   case Type::Enum:
3635   case Type::UnresolvedUsing:
3636   case Type::TypeOfExpr:
3637   case Type::TypeOf:
3638   case Type::Decltype:
3639   case Type::UnaryTransform:
3640   case Type::DependentName:
3641   case Type::InjectedClassName:
3642   case Type::TemplateSpecialization:
3643   case Type::DependentTemplateSpecialization:
3644   case Type::TemplateTypeParm:
3645   case Type::SubstTemplateTypeParmPack:
3646   case Type::Auto:
3647   case Type::DeducedTemplateSpecialization:
3648   case Type::PackExpansion:
3649   case Type::BitInt:
3650   case Type::DependentBitInt:
3651     llvm_unreachable("type should never be variably-modified");
3652 
3653   // These types can be variably-modified but should never need to
3654   // further decay.
3655   case Type::FunctionNoProto:
3656   case Type::FunctionProto:
3657   case Type::BlockPointer:
3658   case Type::MemberPointer:
3659   case Type::Pipe:
3660     return type;
3661 
3662   // These types can be variably-modified.  All these modifications
3663   // preserve structure except as noted by comments.
3664   // TODO: if we ever care about optimizing VLAs, there are no-op
3665   // optimizations available here.
3666   case Type::Pointer:
3667     result = getPointerType(getVariableArrayDecayedType(
3668                               cast<PointerType>(ty)->getPointeeType()));
3669     break;
3670 
3671   case Type::LValueReference: {
3672     const auto *lv = cast<LValueReferenceType>(ty);
3673     result = getLValueReferenceType(
3674                  getVariableArrayDecayedType(lv->getPointeeType()),
3675                                     lv->isSpelledAsLValue());
3676     break;
3677   }
3678 
3679   case Type::RValueReference: {
3680     const auto *lv = cast<RValueReferenceType>(ty);
3681     result = getRValueReferenceType(
3682                  getVariableArrayDecayedType(lv->getPointeeType()));
3683     break;
3684   }
3685 
3686   case Type::Atomic: {
3687     const auto *at = cast<AtomicType>(ty);
3688     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3689     break;
3690   }
3691 
3692   case Type::ConstantArray: {
3693     const auto *cat = cast<ConstantArrayType>(ty);
3694     result = getConstantArrayType(
3695                  getVariableArrayDecayedType(cat->getElementType()),
3696                                   cat->getSize(),
3697                                   cat->getSizeExpr(),
3698                                   cat->getSizeModifier(),
3699                                   cat->getIndexTypeCVRQualifiers());
3700     break;
3701   }
3702 
3703   case Type::DependentSizedArray: {
3704     const auto *dat = cast<DependentSizedArrayType>(ty);
3705     result = getDependentSizedArrayType(
3706                  getVariableArrayDecayedType(dat->getElementType()),
3707                                         dat->getSizeExpr(),
3708                                         dat->getSizeModifier(),
3709                                         dat->getIndexTypeCVRQualifiers(),
3710                                         dat->getBracketsRange());
3711     break;
3712   }
3713 
3714   // Turn incomplete types into [*] types.
3715   case Type::IncompleteArray: {
3716     const auto *iat = cast<IncompleteArrayType>(ty);
3717     result = getVariableArrayType(
3718                  getVariableArrayDecayedType(iat->getElementType()),
3719                                   /*size*/ nullptr,
3720                                   ArrayType::Normal,
3721                                   iat->getIndexTypeCVRQualifiers(),
3722                                   SourceRange());
3723     break;
3724   }
3725 
3726   // Turn VLA types into [*] types.
3727   case Type::VariableArray: {
3728     const auto *vat = cast<VariableArrayType>(ty);
3729     result = getVariableArrayType(
3730                  getVariableArrayDecayedType(vat->getElementType()),
3731                                   /*size*/ nullptr,
3732                                   ArrayType::Star,
3733                                   vat->getIndexTypeCVRQualifiers(),
3734                                   vat->getBracketsRange());
3735     break;
3736   }
3737   }
3738 
3739   // Apply the top-level qualifiers from the original.
3740   return getQualifiedType(result, split.Quals);
3741 }
3742 
3743 /// getVariableArrayType - Returns a non-unique reference to the type for a
3744 /// variable array of the specified element type.
3745 QualType ASTContext::getVariableArrayType(QualType EltTy,
3746                                           Expr *NumElts,
3747                                           ArrayType::ArraySizeModifier ASM,
3748                                           unsigned IndexTypeQuals,
3749                                           SourceRange Brackets) const {
3750   // Since we don't unique expressions, it isn't possible to unique VLA's
3751   // that have an expression provided for their size.
3752   QualType Canon;
3753 
3754   // Be sure to pull qualifiers off the element type.
3755   // FIXME: Check below should look for qualifiers behind sugar.
3756   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3757     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3758     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3759                                  IndexTypeQuals, Brackets);
3760     Canon = getQualifiedType(Canon, canonSplit.Quals);
3761   }
3762 
3763   auto *New = new (*this, TypeAlignment)
3764     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3765 
3766   VariableArrayTypes.push_back(New);
3767   Types.push_back(New);
3768   return QualType(New, 0);
3769 }
3770 
3771 /// getDependentSizedArrayType - Returns a non-unique reference to
3772 /// the type for a dependently-sized array of the specified element
3773 /// type.
3774 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3775                                                 Expr *numElements,
3776                                                 ArrayType::ArraySizeModifier ASM,
3777                                                 unsigned elementTypeQuals,
3778                                                 SourceRange brackets) const {
3779   assert((!numElements || numElements->isTypeDependent() ||
3780           numElements->isValueDependent()) &&
3781          "Size must be type- or value-dependent!");
3782 
3783   // Dependently-sized array types that do not have a specified number
3784   // of elements will have their sizes deduced from a dependent
3785   // initializer.  We do no canonicalization here at all, which is okay
3786   // because they can't be used in most locations.
3787   if (!numElements) {
3788     auto *newType
3789       = new (*this, TypeAlignment)
3790           DependentSizedArrayType(*this, elementType, QualType(),
3791                                   numElements, ASM, elementTypeQuals,
3792                                   brackets);
3793     Types.push_back(newType);
3794     return QualType(newType, 0);
3795   }
3796 
3797   // Otherwise, we actually build a new type every time, but we
3798   // also build a canonical type.
3799 
3800   SplitQualType canonElementType = getCanonicalType(elementType).split();
3801 
3802   void *insertPos = nullptr;
3803   llvm::FoldingSetNodeID ID;
3804   DependentSizedArrayType::Profile(ID, *this,
3805                                    QualType(canonElementType.Ty, 0),
3806                                    ASM, elementTypeQuals, numElements);
3807 
3808   // Look for an existing type with these properties.
3809   DependentSizedArrayType *canonTy =
3810     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3811 
3812   // If we don't have one, build one.
3813   if (!canonTy) {
3814     canonTy = new (*this, TypeAlignment)
3815       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3816                               QualType(), numElements, ASM, elementTypeQuals,
3817                               brackets);
3818     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3819     Types.push_back(canonTy);
3820   }
3821 
3822   // Apply qualifiers from the element type to the array.
3823   QualType canon = getQualifiedType(QualType(canonTy,0),
3824                                     canonElementType.Quals);
3825 
3826   // If we didn't need extra canonicalization for the element type or the size
3827   // expression, then just use that as our result.
3828   if (QualType(canonElementType.Ty, 0) == elementType &&
3829       canonTy->getSizeExpr() == numElements)
3830     return canon;
3831 
3832   // Otherwise, we need to build a type which follows the spelling
3833   // of the element type.
3834   auto *sugaredType
3835     = new (*this, TypeAlignment)
3836         DependentSizedArrayType(*this, elementType, canon, numElements,
3837                                 ASM, elementTypeQuals, brackets);
3838   Types.push_back(sugaredType);
3839   return QualType(sugaredType, 0);
3840 }
3841 
3842 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3843                                             ArrayType::ArraySizeModifier ASM,
3844                                             unsigned elementTypeQuals) const {
3845   llvm::FoldingSetNodeID ID;
3846   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3847 
3848   void *insertPos = nullptr;
3849   if (IncompleteArrayType *iat =
3850        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3851     return QualType(iat, 0);
3852 
3853   // If the element type isn't canonical, this won't be a canonical type
3854   // either, so fill in the canonical type field.  We also have to pull
3855   // qualifiers off the element type.
3856   QualType canon;
3857 
3858   // FIXME: Check below should look for qualifiers behind sugar.
3859   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3860     SplitQualType canonSplit = getCanonicalType(elementType).split();
3861     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3862                                    ASM, elementTypeQuals);
3863     canon = getQualifiedType(canon, canonSplit.Quals);
3864 
3865     // Get the new insert position for the node we care about.
3866     IncompleteArrayType *existing =
3867       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3868     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3869   }
3870 
3871   auto *newType = new (*this, TypeAlignment)
3872     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3873 
3874   IncompleteArrayTypes.InsertNode(newType, insertPos);
3875   Types.push_back(newType);
3876   return QualType(newType, 0);
3877 }
3878 
3879 ASTContext::BuiltinVectorTypeInfo
3880 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3881 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3882   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3883    NUMVECTORS};
3884 
3885 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3886   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3887 
3888   switch (Ty->getKind()) {
3889   default:
3890     llvm_unreachable("Unsupported builtin vector type");
3891   case BuiltinType::SveInt8:
3892     return SVE_INT_ELTTY(8, 16, true, 1);
3893   case BuiltinType::SveUint8:
3894     return SVE_INT_ELTTY(8, 16, false, 1);
3895   case BuiltinType::SveInt8x2:
3896     return SVE_INT_ELTTY(8, 16, true, 2);
3897   case BuiltinType::SveUint8x2:
3898     return SVE_INT_ELTTY(8, 16, false, 2);
3899   case BuiltinType::SveInt8x3:
3900     return SVE_INT_ELTTY(8, 16, true, 3);
3901   case BuiltinType::SveUint8x3:
3902     return SVE_INT_ELTTY(8, 16, false, 3);
3903   case BuiltinType::SveInt8x4:
3904     return SVE_INT_ELTTY(8, 16, true, 4);
3905   case BuiltinType::SveUint8x4:
3906     return SVE_INT_ELTTY(8, 16, false, 4);
3907   case BuiltinType::SveInt16:
3908     return SVE_INT_ELTTY(16, 8, true, 1);
3909   case BuiltinType::SveUint16:
3910     return SVE_INT_ELTTY(16, 8, false, 1);
3911   case BuiltinType::SveInt16x2:
3912     return SVE_INT_ELTTY(16, 8, true, 2);
3913   case BuiltinType::SveUint16x2:
3914     return SVE_INT_ELTTY(16, 8, false, 2);
3915   case BuiltinType::SveInt16x3:
3916     return SVE_INT_ELTTY(16, 8, true, 3);
3917   case BuiltinType::SveUint16x3:
3918     return SVE_INT_ELTTY(16, 8, false, 3);
3919   case BuiltinType::SveInt16x4:
3920     return SVE_INT_ELTTY(16, 8, true, 4);
3921   case BuiltinType::SveUint16x4:
3922     return SVE_INT_ELTTY(16, 8, false, 4);
3923   case BuiltinType::SveInt32:
3924     return SVE_INT_ELTTY(32, 4, true, 1);
3925   case BuiltinType::SveUint32:
3926     return SVE_INT_ELTTY(32, 4, false, 1);
3927   case BuiltinType::SveInt32x2:
3928     return SVE_INT_ELTTY(32, 4, true, 2);
3929   case BuiltinType::SveUint32x2:
3930     return SVE_INT_ELTTY(32, 4, false, 2);
3931   case BuiltinType::SveInt32x3:
3932     return SVE_INT_ELTTY(32, 4, true, 3);
3933   case BuiltinType::SveUint32x3:
3934     return SVE_INT_ELTTY(32, 4, false, 3);
3935   case BuiltinType::SveInt32x4:
3936     return SVE_INT_ELTTY(32, 4, true, 4);
3937   case BuiltinType::SveUint32x4:
3938     return SVE_INT_ELTTY(32, 4, false, 4);
3939   case BuiltinType::SveInt64:
3940     return SVE_INT_ELTTY(64, 2, true, 1);
3941   case BuiltinType::SveUint64:
3942     return SVE_INT_ELTTY(64, 2, false, 1);
3943   case BuiltinType::SveInt64x2:
3944     return SVE_INT_ELTTY(64, 2, true, 2);
3945   case BuiltinType::SveUint64x2:
3946     return SVE_INT_ELTTY(64, 2, false, 2);
3947   case BuiltinType::SveInt64x3:
3948     return SVE_INT_ELTTY(64, 2, true, 3);
3949   case BuiltinType::SveUint64x3:
3950     return SVE_INT_ELTTY(64, 2, false, 3);
3951   case BuiltinType::SveInt64x4:
3952     return SVE_INT_ELTTY(64, 2, true, 4);
3953   case BuiltinType::SveUint64x4:
3954     return SVE_INT_ELTTY(64, 2, false, 4);
3955   case BuiltinType::SveBool:
3956     return SVE_ELTTY(BoolTy, 16, 1);
3957   case BuiltinType::SveBoolx2:
3958     return SVE_ELTTY(BoolTy, 16, 2);
3959   case BuiltinType::SveBoolx4:
3960     return SVE_ELTTY(BoolTy, 16, 4);
3961   case BuiltinType::SveFloat16:
3962     return SVE_ELTTY(HalfTy, 8, 1);
3963   case BuiltinType::SveFloat16x2:
3964     return SVE_ELTTY(HalfTy, 8, 2);
3965   case BuiltinType::SveFloat16x3:
3966     return SVE_ELTTY(HalfTy, 8, 3);
3967   case BuiltinType::SveFloat16x4:
3968     return SVE_ELTTY(HalfTy, 8, 4);
3969   case BuiltinType::SveFloat32:
3970     return SVE_ELTTY(FloatTy, 4, 1);
3971   case BuiltinType::SveFloat32x2:
3972     return SVE_ELTTY(FloatTy, 4, 2);
3973   case BuiltinType::SveFloat32x3:
3974     return SVE_ELTTY(FloatTy, 4, 3);
3975   case BuiltinType::SveFloat32x4:
3976     return SVE_ELTTY(FloatTy, 4, 4);
3977   case BuiltinType::SveFloat64:
3978     return SVE_ELTTY(DoubleTy, 2, 1);
3979   case BuiltinType::SveFloat64x2:
3980     return SVE_ELTTY(DoubleTy, 2, 2);
3981   case BuiltinType::SveFloat64x3:
3982     return SVE_ELTTY(DoubleTy, 2, 3);
3983   case BuiltinType::SveFloat64x4:
3984     return SVE_ELTTY(DoubleTy, 2, 4);
3985   case BuiltinType::SveBFloat16:
3986     return SVE_ELTTY(BFloat16Ty, 8, 1);
3987   case BuiltinType::SveBFloat16x2:
3988     return SVE_ELTTY(BFloat16Ty, 8, 2);
3989   case BuiltinType::SveBFloat16x3:
3990     return SVE_ELTTY(BFloat16Ty, 8, 3);
3991   case BuiltinType::SveBFloat16x4:
3992     return SVE_ELTTY(BFloat16Ty, 8, 4);
3993 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3994                             IsSigned)                                          \
3995   case BuiltinType::Id:                                                        \
3996     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3997             llvm::ElementCount::getScalable(NumEls), NF};
3998 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3999   case BuiltinType::Id:                                                        \
4000     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \
4001             llvm::ElementCount::getScalable(NumEls), NF};
4002 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
4003   case BuiltinType::Id:                                                        \
4004     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
4005 #include "clang/Basic/RISCVVTypes.def"
4006   }
4007 }
4008 
4009 /// getExternrefType - Return a WebAssembly externref type, which represents an
4010 /// opaque reference to a host value.
4011 QualType ASTContext::getWebAssemblyExternrefType() const {
4012   if (Target->getTriple().isWasm() && Target->hasFeature("reference-types")) {
4013 #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS)                  \
4014   if (BuiltinType::Id == BuiltinType::WasmExternRef)                           \
4015     return SingletonId;
4016 #include "clang/Basic/WebAssemblyReferenceTypes.def"
4017   }
4018   llvm_unreachable(
4019       "shouldn't try to generate type externref outside WebAssembly target");
4020 }
4021 
4022 /// getScalableVectorType - Return the unique reference to a scalable vector
4023 /// type of the specified element type and size. VectorType must be a built-in
4024 /// type.
4025 QualType ASTContext::getScalableVectorType(QualType EltTy, unsigned NumElts,
4026                                            unsigned NumFields) const {
4027   if (Target->hasAArch64SVETypes()) {
4028     uint64_t EltTySize = getTypeSize(EltTy);
4029 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
4030                         IsSigned, IsFP, IsBF)                                  \
4031   if (!EltTy->isBooleanType() &&                                               \
4032       ((EltTy->hasIntegerRepresentation() &&                                   \
4033         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
4034        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
4035         IsFP && !IsBF) ||                                                      \
4036        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
4037         IsBF && !IsFP)) &&                                                     \
4038       EltTySize == ElBits && NumElts == NumEls) {                              \
4039     return SingletonId;                                                        \
4040   }
4041 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
4042   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
4043     return SingletonId;
4044 #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingleTonId)
4045 #include "clang/Basic/AArch64SVEACLETypes.def"
4046   } else if (Target->hasRISCVVTypes()) {
4047     uint64_t EltTySize = getTypeSize(EltTy);
4048 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
4049                         IsFP)                                                  \
4050   if (!EltTy->isBooleanType() &&                                               \
4051       ((EltTy->hasIntegerRepresentation() &&                                   \
4052         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
4053        (EltTy->hasFloatingRepresentation() && IsFP)) &&                        \
4054       EltTySize == ElBits && NumElts == NumEls && NumFields == NF)             \
4055     return SingletonId;
4056 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
4057   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
4058     return SingletonId;
4059 #include "clang/Basic/RISCVVTypes.def"
4060   }
4061   return QualType();
4062 }
4063 
4064 /// getVectorType - Return the unique reference to a vector type of
4065 /// the specified element type and size. VectorType must be a built-in type.
4066 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
4067                                    VectorType::VectorKind VecKind) const {
4068   assert(vecType->isBuiltinType() ||
4069          (vecType->isBitIntType() &&
4070           // Only support _BitInt elements with byte-sized power of 2 NumBits.
4071           llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) &&
4072           vecType->getAs<BitIntType>()->getNumBits() >= 8));
4073 
4074   // Check if we've already instantiated a vector of this type.
4075   llvm::FoldingSetNodeID ID;
4076   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
4077 
4078   void *InsertPos = nullptr;
4079   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4080     return QualType(VTP, 0);
4081 
4082   // If the element type isn't canonical, this won't be a canonical type either,
4083   // so fill in the canonical type field.
4084   QualType Canonical;
4085   if (!vecType.isCanonical()) {
4086     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
4087 
4088     // Get the new insert position for the node we care about.
4089     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4090     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4091   }
4092   auto *New = new (*this, TypeAlignment)
4093     VectorType(vecType, NumElts, Canonical, VecKind);
4094   VectorTypes.InsertNode(New, InsertPos);
4095   Types.push_back(New);
4096   return QualType(New, 0);
4097 }
4098 
4099 QualType
4100 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
4101                                    SourceLocation AttrLoc,
4102                                    VectorType::VectorKind VecKind) const {
4103   llvm::FoldingSetNodeID ID;
4104   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
4105                                VecKind);
4106   void *InsertPos = nullptr;
4107   DependentVectorType *Canon =
4108       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4109   DependentVectorType *New;
4110 
4111   if (Canon) {
4112     New = new (*this, TypeAlignment) DependentVectorType(
4113         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
4114   } else {
4115     QualType CanonVecTy = getCanonicalType(VecType);
4116     if (CanonVecTy == VecType) {
4117       New = new (*this, TypeAlignment) DependentVectorType(
4118           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
4119 
4120       DependentVectorType *CanonCheck =
4121           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4122       assert(!CanonCheck &&
4123              "Dependent-sized vector_size canonical type broken");
4124       (void)CanonCheck;
4125       DependentVectorTypes.InsertNode(New, InsertPos);
4126     } else {
4127       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
4128                                                 SourceLocation(), VecKind);
4129       New = new (*this, TypeAlignment) DependentVectorType(
4130           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
4131     }
4132   }
4133 
4134   Types.push_back(New);
4135   return QualType(New, 0);
4136 }
4137 
4138 /// getExtVectorType - Return the unique reference to an extended vector type of
4139 /// the specified element type and size. VectorType must be a built-in type.
4140 QualType ASTContext::getExtVectorType(QualType vecType,
4141                                       unsigned NumElts) const {
4142   assert(vecType->isBuiltinType() || vecType->isDependentType() ||
4143          (vecType->isBitIntType() &&
4144           // Only support _BitInt elements with byte-sized power of 2 NumBits.
4145           llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) &&
4146           vecType->castAs<BitIntType>()->getNumBits() >= 8));
4147 
4148   // Check if we've already instantiated a vector of this type.
4149   llvm::FoldingSetNodeID ID;
4150   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4151                       VectorType::GenericVector);
4152   void *InsertPos = nullptr;
4153   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4154     return QualType(VTP, 0);
4155 
4156   // If the element type isn't canonical, this won't be a canonical type either,
4157   // so fill in the canonical type field.
4158   QualType Canonical;
4159   if (!vecType.isCanonical()) {
4160     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4161 
4162     // Get the new insert position for the node we care about.
4163     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4164     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4165   }
4166   auto *New = new (*this, TypeAlignment)
4167     ExtVectorType(vecType, NumElts, Canonical);
4168   VectorTypes.InsertNode(New, InsertPos);
4169   Types.push_back(New);
4170   return QualType(New, 0);
4171 }
4172 
4173 QualType
4174 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4175                                            Expr *SizeExpr,
4176                                            SourceLocation AttrLoc) const {
4177   llvm::FoldingSetNodeID ID;
4178   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4179                                        SizeExpr);
4180 
4181   void *InsertPos = nullptr;
4182   DependentSizedExtVectorType *Canon
4183     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4184   DependentSizedExtVectorType *New;
4185   if (Canon) {
4186     // We already have a canonical version of this array type; use it as
4187     // the canonical type for a newly-built type.
4188     New = new (*this, TypeAlignment)
4189       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4190                                   SizeExpr, AttrLoc);
4191   } else {
4192     QualType CanonVecTy = getCanonicalType(vecType);
4193     if (CanonVecTy == vecType) {
4194       New = new (*this, TypeAlignment)
4195         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4196                                     AttrLoc);
4197 
4198       DependentSizedExtVectorType *CanonCheck
4199         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4200       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4201       (void)CanonCheck;
4202       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4203     } else {
4204       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4205                                                            SourceLocation());
4206       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4207           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4208     }
4209   }
4210 
4211   Types.push_back(New);
4212   return QualType(New, 0);
4213 }
4214 
4215 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4216                                            unsigned NumColumns) const {
4217   llvm::FoldingSetNodeID ID;
4218   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4219                               Type::ConstantMatrix);
4220 
4221   assert(MatrixType::isValidElementType(ElementTy) &&
4222          "need a valid element type");
4223   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4224          ConstantMatrixType::isDimensionValid(NumColumns) &&
4225          "need valid matrix dimensions");
4226   void *InsertPos = nullptr;
4227   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4228     return QualType(MTP, 0);
4229 
4230   QualType Canonical;
4231   if (!ElementTy.isCanonical()) {
4232     Canonical =
4233         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4234 
4235     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4236     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4237     (void)NewIP;
4238   }
4239 
4240   auto *New = new (*this, TypeAlignment)
4241       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4242   MatrixTypes.InsertNode(New, InsertPos);
4243   Types.push_back(New);
4244   return QualType(New, 0);
4245 }
4246 
4247 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4248                                                  Expr *RowExpr,
4249                                                  Expr *ColumnExpr,
4250                                                  SourceLocation AttrLoc) const {
4251   QualType CanonElementTy = getCanonicalType(ElementTy);
4252   llvm::FoldingSetNodeID ID;
4253   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4254                                     ColumnExpr);
4255 
4256   void *InsertPos = nullptr;
4257   DependentSizedMatrixType *Canon =
4258       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4259 
4260   if (!Canon) {
4261     Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4262         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4263 #ifndef NDEBUG
4264     DependentSizedMatrixType *CanonCheck =
4265         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4266     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4267 #endif
4268     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4269     Types.push_back(Canon);
4270   }
4271 
4272   // Already have a canonical version of the matrix type
4273   //
4274   // If it exactly matches the requested type, use it directly.
4275   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4276       Canon->getRowExpr() == ColumnExpr)
4277     return QualType(Canon, 0);
4278 
4279   // Use Canon as the canonical type for newly-built type.
4280   DependentSizedMatrixType *New = new (*this, TypeAlignment)
4281       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4282                                ColumnExpr, AttrLoc);
4283   Types.push_back(New);
4284   return QualType(New, 0);
4285 }
4286 
4287 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4288                                                   Expr *AddrSpaceExpr,
4289                                                   SourceLocation AttrLoc) const {
4290   assert(AddrSpaceExpr->isInstantiationDependent());
4291 
4292   QualType canonPointeeType = getCanonicalType(PointeeType);
4293 
4294   void *insertPos = nullptr;
4295   llvm::FoldingSetNodeID ID;
4296   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4297                                      AddrSpaceExpr);
4298 
4299   DependentAddressSpaceType *canonTy =
4300     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4301 
4302   if (!canonTy) {
4303     canonTy = new (*this, TypeAlignment)
4304       DependentAddressSpaceType(*this, canonPointeeType,
4305                                 QualType(), AddrSpaceExpr, AttrLoc);
4306     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4307     Types.push_back(canonTy);
4308   }
4309 
4310   if (canonPointeeType == PointeeType &&
4311       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4312     return QualType(canonTy, 0);
4313 
4314   auto *sugaredType
4315     = new (*this, TypeAlignment)
4316         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4317                                   AddrSpaceExpr, AttrLoc);
4318   Types.push_back(sugaredType);
4319   return QualType(sugaredType, 0);
4320 }
4321 
4322 /// Determine whether \p T is canonical as the result type of a function.
4323 static bool isCanonicalResultType(QualType T) {
4324   return T.isCanonical() &&
4325          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4326           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4327 }
4328 
4329 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4330 QualType
4331 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4332                                    const FunctionType::ExtInfo &Info) const {
4333   // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter
4334   // functionality creates a function without a prototype regardless of
4335   // language mode (so it makes them even in C++). Once the rewriter has been
4336   // fixed, this assertion can be enabled again.
4337   //assert(!LangOpts.requiresStrictPrototypes() &&
4338   //       "strict prototypes are disabled");
4339 
4340   // Unique functions, to guarantee there is only one function of a particular
4341   // structure.
4342   llvm::FoldingSetNodeID ID;
4343   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4344 
4345   void *InsertPos = nullptr;
4346   if (FunctionNoProtoType *FT =
4347         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4348     return QualType(FT, 0);
4349 
4350   QualType Canonical;
4351   if (!isCanonicalResultType(ResultTy)) {
4352     Canonical =
4353       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4354 
4355     // Get the new insert position for the node we care about.
4356     FunctionNoProtoType *NewIP =
4357       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4358     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4359   }
4360 
4361   auto *New = new (*this, TypeAlignment)
4362     FunctionNoProtoType(ResultTy, Canonical, Info);
4363   Types.push_back(New);
4364   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4365   return QualType(New, 0);
4366 }
4367 
4368 CanQualType
4369 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4370   CanQualType CanResultType = getCanonicalType(ResultType);
4371 
4372   // Canonical result types do not have ARC lifetime qualifiers.
4373   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4374     Qualifiers Qs = CanResultType.getQualifiers();
4375     Qs.removeObjCLifetime();
4376     return CanQualType::CreateUnsafe(
4377              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4378   }
4379 
4380   return CanResultType;
4381 }
4382 
4383 static bool isCanonicalExceptionSpecification(
4384     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4385   if (ESI.Type == EST_None)
4386     return true;
4387   if (!NoexceptInType)
4388     return false;
4389 
4390   // C++17 onwards: exception specification is part of the type, as a simple
4391   // boolean "can this function type throw".
4392   if (ESI.Type == EST_BasicNoexcept)
4393     return true;
4394 
4395   // A noexcept(expr) specification is (possibly) canonical if expr is
4396   // value-dependent.
4397   if (ESI.Type == EST_DependentNoexcept)
4398     return true;
4399 
4400   // A dynamic exception specification is canonical if it only contains pack
4401   // expansions (so we can't tell whether it's non-throwing) and all its
4402   // contained types are canonical.
4403   if (ESI.Type == EST_Dynamic) {
4404     bool AnyPackExpansions = false;
4405     for (QualType ET : ESI.Exceptions) {
4406       if (!ET.isCanonical())
4407         return false;
4408       if (ET->getAs<PackExpansionType>())
4409         AnyPackExpansions = true;
4410     }
4411     return AnyPackExpansions;
4412   }
4413 
4414   return false;
4415 }
4416 
4417 QualType ASTContext::getFunctionTypeInternal(
4418     QualType ResultTy, ArrayRef<QualType> ArgArray,
4419     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4420   size_t NumArgs = ArgArray.size();
4421 
4422   // Unique functions, to guarantee there is only one function of a particular
4423   // structure.
4424   llvm::FoldingSetNodeID ID;
4425   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4426                              *this, true);
4427 
4428   QualType Canonical;
4429   bool Unique = false;
4430 
4431   void *InsertPos = nullptr;
4432   if (FunctionProtoType *FPT =
4433         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4434     QualType Existing = QualType(FPT, 0);
4435 
4436     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4437     // it so long as our exception specification doesn't contain a dependent
4438     // noexcept expression, or we're just looking for a canonical type.
4439     // Otherwise, we're going to need to create a type
4440     // sugar node to hold the concrete expression.
4441     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4442         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4443       return Existing;
4444 
4445     // We need a new type sugar node for this one, to hold the new noexcept
4446     // expression. We do no canonicalization here, but that's OK since we don't
4447     // expect to see the same noexcept expression much more than once.
4448     Canonical = getCanonicalType(Existing);
4449     Unique = true;
4450   }
4451 
4452   bool NoexceptInType = getLangOpts().CPlusPlus17;
4453   bool IsCanonicalExceptionSpec =
4454       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4455 
4456   // Determine whether the type being created is already canonical or not.
4457   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4458                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4459   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4460     if (!ArgArray[i].isCanonicalAsParam())
4461       isCanonical = false;
4462 
4463   if (OnlyWantCanonical)
4464     assert(isCanonical &&
4465            "given non-canonical parameters constructing canonical type");
4466 
4467   // If this type isn't canonical, get the canonical version of it if we don't
4468   // already have it. The exception spec is only partially part of the
4469   // canonical type, and only in C++17 onwards.
4470   if (!isCanonical && Canonical.isNull()) {
4471     SmallVector<QualType, 16> CanonicalArgs;
4472     CanonicalArgs.reserve(NumArgs);
4473     for (unsigned i = 0; i != NumArgs; ++i)
4474       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4475 
4476     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4477     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4478     CanonicalEPI.HasTrailingReturn = false;
4479 
4480     if (IsCanonicalExceptionSpec) {
4481       // Exception spec is already OK.
4482     } else if (NoexceptInType) {
4483       switch (EPI.ExceptionSpec.Type) {
4484       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4485         // We don't know yet. It shouldn't matter what we pick here; no-one
4486         // should ever look at this.
4487         [[fallthrough]];
4488       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4489         CanonicalEPI.ExceptionSpec.Type = EST_None;
4490         break;
4491 
4492         // A dynamic exception specification is almost always "not noexcept",
4493         // with the exception that a pack expansion might expand to no types.
4494       case EST_Dynamic: {
4495         bool AnyPacks = false;
4496         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4497           if (ET->getAs<PackExpansionType>())
4498             AnyPacks = true;
4499           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4500         }
4501         if (!AnyPacks)
4502           CanonicalEPI.ExceptionSpec.Type = EST_None;
4503         else {
4504           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4505           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4506         }
4507         break;
4508       }
4509 
4510       case EST_DynamicNone:
4511       case EST_BasicNoexcept:
4512       case EST_NoexceptTrue:
4513       case EST_NoThrow:
4514         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4515         break;
4516 
4517       case EST_DependentNoexcept:
4518         llvm_unreachable("dependent noexcept is already canonical");
4519       }
4520     } else {
4521       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4522     }
4523 
4524     // Adjust the canonical function result type.
4525     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4526     Canonical =
4527         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4528 
4529     // Get the new insert position for the node we care about.
4530     FunctionProtoType *NewIP =
4531       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4532     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4533   }
4534 
4535   // Compute the needed size to hold this FunctionProtoType and the
4536   // various trailing objects.
4537   auto ESH = FunctionProtoType::getExceptionSpecSize(
4538       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4539   size_t Size = FunctionProtoType::totalSizeToAlloc<
4540       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4541       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4542       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4543       NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(),
4544       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4545       EPI.ExtParameterInfos ? NumArgs : 0,
4546       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4547 
4548   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4549   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4550   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4551   Types.push_back(FTP);
4552   if (!Unique)
4553     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4554   return QualType(FTP, 0);
4555 }
4556 
4557 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4558   llvm::FoldingSetNodeID ID;
4559   PipeType::Profile(ID, T, ReadOnly);
4560 
4561   void *InsertPos = nullptr;
4562   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4563     return QualType(PT, 0);
4564 
4565   // If the pipe element type isn't canonical, this won't be a canonical type
4566   // either, so fill in the canonical type field.
4567   QualType Canonical;
4568   if (!T.isCanonical()) {
4569     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4570 
4571     // Get the new insert position for the node we care about.
4572     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4573     assert(!NewIP && "Shouldn't be in the map!");
4574     (void)NewIP;
4575   }
4576   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4577   Types.push_back(New);
4578   PipeTypes.InsertNode(New, InsertPos);
4579   return QualType(New, 0);
4580 }
4581 
4582 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4583   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4584   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4585                          : Ty;
4586 }
4587 
4588 QualType ASTContext::getReadPipeType(QualType T) const {
4589   return getPipeType(T, true);
4590 }
4591 
4592 QualType ASTContext::getWritePipeType(QualType T) const {
4593   return getPipeType(T, false);
4594 }
4595 
4596 QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const {
4597   llvm::FoldingSetNodeID ID;
4598   BitIntType::Profile(ID, IsUnsigned, NumBits);
4599 
4600   void *InsertPos = nullptr;
4601   if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4602     return QualType(EIT, 0);
4603 
4604   auto *New = new (*this, TypeAlignment) BitIntType(IsUnsigned, NumBits);
4605   BitIntTypes.InsertNode(New, InsertPos);
4606   Types.push_back(New);
4607   return QualType(New, 0);
4608 }
4609 
4610 QualType ASTContext::getDependentBitIntType(bool IsUnsigned,
4611                                             Expr *NumBitsExpr) const {
4612   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4613   llvm::FoldingSetNodeID ID;
4614   DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4615 
4616   void *InsertPos = nullptr;
4617   if (DependentBitIntType *Existing =
4618           DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4619     return QualType(Existing, 0);
4620 
4621   auto *New = new (*this, TypeAlignment)
4622       DependentBitIntType(*this, IsUnsigned, NumBitsExpr);
4623   DependentBitIntTypes.InsertNode(New, InsertPos);
4624 
4625   Types.push_back(New);
4626   return QualType(New, 0);
4627 }
4628 
4629 #ifndef NDEBUG
4630 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4631   if (!isa<CXXRecordDecl>(D)) return false;
4632   const auto *RD = cast<CXXRecordDecl>(D);
4633   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4634     return true;
4635   if (RD->getDescribedClassTemplate() &&
4636       !isa<ClassTemplateSpecializationDecl>(RD))
4637     return true;
4638   return false;
4639 }
4640 #endif
4641 
4642 /// getInjectedClassNameType - Return the unique reference to the
4643 /// injected class name type for the specified templated declaration.
4644 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4645                                               QualType TST) const {
4646   assert(NeedsInjectedClassNameType(Decl));
4647   if (Decl->TypeForDecl) {
4648     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4649   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4650     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4651     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4652     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4653   } else {
4654     Type *newType =
4655       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4656     Decl->TypeForDecl = newType;
4657     Types.push_back(newType);
4658   }
4659   return QualType(Decl->TypeForDecl, 0);
4660 }
4661 
4662 /// getTypeDeclType - Return the unique reference to the type for the
4663 /// specified type declaration.
4664 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4665   assert(Decl && "Passed null for Decl param");
4666   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4667 
4668   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4669     return getTypedefType(Typedef);
4670 
4671   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4672          "Template type parameter types are always available.");
4673 
4674   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4675     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4676     assert(!NeedsInjectedClassNameType(Record));
4677     return getRecordType(Record);
4678   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4679     assert(Enum->isFirstDecl() && "enum has previous declaration");
4680     return getEnumType(Enum);
4681   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4682     return getUnresolvedUsingType(Using);
4683   } else
4684     llvm_unreachable("TypeDecl without a type?");
4685 
4686   return QualType(Decl->TypeForDecl, 0);
4687 }
4688 
4689 /// getTypedefType - Return the unique reference to the type for the
4690 /// specified typedef name decl.
4691 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4692                                     QualType Underlying) const {
4693   if (!Decl->TypeForDecl) {
4694     if (Underlying.isNull())
4695       Underlying = Decl->getUnderlyingType();
4696     auto *NewType = new (*this, TypeAlignment) TypedefType(
4697         Type::Typedef, Decl, QualType(), getCanonicalType(Underlying));
4698     Decl->TypeForDecl = NewType;
4699     Types.push_back(NewType);
4700     return QualType(NewType, 0);
4701   }
4702   if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying)
4703     return QualType(Decl->TypeForDecl, 0);
4704   assert(hasSameType(Decl->getUnderlyingType(), Underlying));
4705 
4706   llvm::FoldingSetNodeID ID;
4707   TypedefType::Profile(ID, Decl, Underlying);
4708 
4709   void *InsertPos = nullptr;
4710   if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4711     assert(!T->typeMatchesDecl() &&
4712            "non-divergent case should be handled with TypeDecl");
4713     return QualType(T, 0);
4714   }
4715 
4716   void *Mem =
4717       Allocate(TypedefType::totalSizeToAlloc<QualType>(true), TypeAlignment);
4718   auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying,
4719                                         getCanonicalType(Underlying));
4720   TypedefTypes.InsertNode(NewType, InsertPos);
4721   Types.push_back(NewType);
4722   return QualType(NewType, 0);
4723 }
4724 
4725 QualType ASTContext::getUsingType(const UsingShadowDecl *Found,
4726                                   QualType Underlying) const {
4727   llvm::FoldingSetNodeID ID;
4728   UsingType::Profile(ID, Found, Underlying);
4729 
4730   void *InsertPos = nullptr;
4731   if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos))
4732     return QualType(T, 0);
4733 
4734   const Type *TypeForDecl =
4735       cast<TypeDecl>(Found->getTargetDecl())->getTypeForDecl();
4736 
4737   assert(!Underlying.hasLocalQualifiers());
4738   QualType Canon = Underlying->getCanonicalTypeInternal();
4739   assert(TypeForDecl->getCanonicalTypeInternal() == Canon);
4740 
4741   if (Underlying.getTypePtr() == TypeForDecl)
4742     Underlying = QualType();
4743   void *Mem =
4744       Allocate(UsingType::totalSizeToAlloc<QualType>(!Underlying.isNull()),
4745                TypeAlignment);
4746   UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon);
4747   Types.push_back(NewType);
4748   UsingTypes.InsertNode(NewType, InsertPos);
4749   return QualType(NewType, 0);
4750 }
4751 
4752 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4753   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4754 
4755   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4756     if (PrevDecl->TypeForDecl)
4757       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4758 
4759   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4760   Decl->TypeForDecl = newType;
4761   Types.push_back(newType);
4762   return QualType(newType, 0);
4763 }
4764 
4765 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4766   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4767 
4768   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4769     if (PrevDecl->TypeForDecl)
4770       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4771 
4772   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4773   Decl->TypeForDecl = newType;
4774   Types.push_back(newType);
4775   return QualType(newType, 0);
4776 }
4777 
4778 QualType ASTContext::getUnresolvedUsingType(
4779     const UnresolvedUsingTypenameDecl *Decl) const {
4780   if (Decl->TypeForDecl)
4781     return QualType(Decl->TypeForDecl, 0);
4782 
4783   if (const UnresolvedUsingTypenameDecl *CanonicalDecl =
4784           Decl->getCanonicalDecl())
4785     if (CanonicalDecl->TypeForDecl)
4786       return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0);
4787 
4788   Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Decl);
4789   Decl->TypeForDecl = newType;
4790   Types.push_back(newType);
4791   return QualType(newType, 0);
4792 }
4793 
4794 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4795                                        QualType modifiedType,
4796                                        QualType equivalentType) const {
4797   llvm::FoldingSetNodeID id;
4798   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4799 
4800   void *insertPos = nullptr;
4801   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4802   if (type) return QualType(type, 0);
4803 
4804   QualType canon = getCanonicalType(equivalentType);
4805   type = new (*this, TypeAlignment)
4806       AttributedType(canon, attrKind, modifiedType, equivalentType);
4807 
4808   Types.push_back(type);
4809   AttributedTypes.InsertNode(type, insertPos);
4810 
4811   return QualType(type, 0);
4812 }
4813 
4814 QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
4815                                              QualType Wrapped) {
4816   llvm::FoldingSetNodeID ID;
4817   BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr);
4818 
4819   void *InsertPos = nullptr;
4820   BTFTagAttributedType *Ty =
4821       BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos);
4822   if (Ty)
4823     return QualType(Ty, 0);
4824 
4825   QualType Canon = getCanonicalType(Wrapped);
4826   Ty = new (*this, TypeAlignment) BTFTagAttributedType(Canon, Wrapped, BTFAttr);
4827 
4828   Types.push_back(Ty);
4829   BTFTagAttributedTypes.InsertNode(Ty, InsertPos);
4830 
4831   return QualType(Ty, 0);
4832 }
4833 
4834 /// Retrieve a substitution-result type.
4835 QualType ASTContext::getSubstTemplateTypeParmType(
4836     QualType Replacement, Decl *AssociatedDecl, unsigned Index,
4837     std::optional<unsigned> PackIndex) const {
4838   llvm::FoldingSetNodeID ID;
4839   SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index,
4840                                      PackIndex);
4841   void *InsertPos = nullptr;
4842   SubstTemplateTypeParmType *SubstParm =
4843       SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4844 
4845   if (!SubstParm) {
4846     void *Mem = Allocate(SubstTemplateTypeParmType::totalSizeToAlloc<QualType>(
4847                              !Replacement.isCanonical()),
4848                          TypeAlignment);
4849     SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl,
4850                                                     Index, PackIndex);
4851     Types.push_back(SubstParm);
4852     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4853   }
4854 
4855   return QualType(SubstParm, 0);
4856 }
4857 
4858 /// Retrieve a
4859 QualType
4860 ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
4861                                              unsigned Index, bool Final,
4862                                              const TemplateArgument &ArgPack) {
4863 #ifndef NDEBUG
4864   for (const auto &P : ArgPack.pack_elements())
4865     assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type");
4866 #endif
4867 
4868   llvm::FoldingSetNodeID ID;
4869   SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final,
4870                                          ArgPack);
4871   void *InsertPos = nullptr;
4872   if (SubstTemplateTypeParmPackType *SubstParm =
4873           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4874     return QualType(SubstParm, 0);
4875 
4876   QualType Canon;
4877   {
4878     TemplateArgument CanonArgPack = getCanonicalTemplateArgument(ArgPack);
4879     if (!AssociatedDecl->isCanonicalDecl() ||
4880         !CanonArgPack.structurallyEquals(ArgPack)) {
4881       Canon = getSubstTemplateTypeParmPackType(
4882           AssociatedDecl->getCanonicalDecl(), Index, Final, CanonArgPack);
4883       [[maybe_unused]] const auto *Nothing =
4884           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4885       assert(!Nothing);
4886     }
4887   }
4888 
4889   auto *SubstParm = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(
4890       Canon, AssociatedDecl, Index, Final, ArgPack);
4891   Types.push_back(SubstParm);
4892   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4893   return QualType(SubstParm, 0);
4894 }
4895 
4896 /// Retrieve the template type parameter type for a template
4897 /// parameter or parameter pack with the given depth, index, and (optionally)
4898 /// name.
4899 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4900                                              bool ParameterPack,
4901                                              TemplateTypeParmDecl *TTPDecl) const {
4902   llvm::FoldingSetNodeID ID;
4903   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4904   void *InsertPos = nullptr;
4905   TemplateTypeParmType *TypeParm
4906     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4907 
4908   if (TypeParm)
4909     return QualType(TypeParm, 0);
4910 
4911   if (TTPDecl) {
4912     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4913     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4914 
4915     TemplateTypeParmType *TypeCheck
4916       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4917     assert(!TypeCheck && "Template type parameter canonical type broken");
4918     (void)TypeCheck;
4919   } else
4920     TypeParm = new (*this, TypeAlignment)
4921       TemplateTypeParmType(Depth, Index, ParameterPack);
4922 
4923   Types.push_back(TypeParm);
4924   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4925 
4926   return QualType(TypeParm, 0);
4927 }
4928 
4929 TypeSourceInfo *
4930 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4931                                               SourceLocation NameLoc,
4932                                         const TemplateArgumentListInfo &Args,
4933                                               QualType Underlying) const {
4934   assert(!Name.getAsDependentTemplateName() &&
4935          "No dependent template names here!");
4936   QualType TST =
4937       getTemplateSpecializationType(Name, Args.arguments(), Underlying);
4938 
4939   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4940   TemplateSpecializationTypeLoc TL =
4941       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4942   TL.setTemplateKeywordLoc(SourceLocation());
4943   TL.setTemplateNameLoc(NameLoc);
4944   TL.setLAngleLoc(Args.getLAngleLoc());
4945   TL.setRAngleLoc(Args.getRAngleLoc());
4946   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4947     TL.setArgLocInfo(i, Args[i].getLocInfo());
4948   return DI;
4949 }
4950 
4951 QualType
4952 ASTContext::getTemplateSpecializationType(TemplateName Template,
4953                                           ArrayRef<TemplateArgumentLoc> Args,
4954                                           QualType Underlying) const {
4955   assert(!Template.getAsDependentTemplateName() &&
4956          "No dependent template names here!");
4957 
4958   SmallVector<TemplateArgument, 4> ArgVec;
4959   ArgVec.reserve(Args.size());
4960   for (const TemplateArgumentLoc &Arg : Args)
4961     ArgVec.push_back(Arg.getArgument());
4962 
4963   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4964 }
4965 
4966 #ifndef NDEBUG
4967 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4968   for (const TemplateArgument &Arg : Args)
4969     if (Arg.isPackExpansion())
4970       return true;
4971 
4972   return true;
4973 }
4974 #endif
4975 
4976 QualType
4977 ASTContext::getTemplateSpecializationType(TemplateName Template,
4978                                           ArrayRef<TemplateArgument> Args,
4979                                           QualType Underlying) const {
4980   assert(!Template.getAsDependentTemplateName() &&
4981          "No dependent template names here!");
4982   // Look through qualified template names.
4983   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4984     Template = QTN->getUnderlyingTemplate();
4985 
4986   const auto *TD = Template.getAsTemplateDecl();
4987   bool IsTypeAlias = TD && TD->isTypeAlias();
4988   QualType CanonType;
4989   if (!Underlying.isNull())
4990     CanonType = getCanonicalType(Underlying);
4991   else {
4992     // We can get here with an alias template when the specialization contains
4993     // a pack expansion that does not match up with a parameter pack.
4994     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4995            "Caller must compute aliased type");
4996     IsTypeAlias = false;
4997     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4998   }
4999 
5000   // Allocate the (non-canonical) template specialization type, but don't
5001   // try to unique it: these types typically have location information that
5002   // we don't unique and don't want to lose.
5003   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
5004                        sizeof(TemplateArgument) * Args.size() +
5005                        (IsTypeAlias? sizeof(QualType) : 0),
5006                        TypeAlignment);
5007   auto *Spec
5008     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
5009                                          IsTypeAlias ? Underlying : QualType());
5010 
5011   Types.push_back(Spec);
5012   return QualType(Spec, 0);
5013 }
5014 
5015 QualType ASTContext::getCanonicalTemplateSpecializationType(
5016     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
5017   assert(!Template.getAsDependentTemplateName() &&
5018          "No dependent template names here!");
5019 
5020   // Look through qualified template names.
5021   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
5022     Template = TemplateName(QTN->getUnderlyingTemplate());
5023 
5024   // Build the canonical template specialization type.
5025   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
5026   bool AnyNonCanonArgs = false;
5027   auto CanonArgs =
5028       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
5029 
5030   // Determine whether this canonical template specialization type already
5031   // exists.
5032   llvm::FoldingSetNodeID ID;
5033   TemplateSpecializationType::Profile(ID, CanonTemplate,
5034                                       CanonArgs, *this);
5035 
5036   void *InsertPos = nullptr;
5037   TemplateSpecializationType *Spec
5038     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5039 
5040   if (!Spec) {
5041     // Allocate a new canonical template specialization type.
5042     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
5043                           sizeof(TemplateArgument) * CanonArgs.size()),
5044                          TypeAlignment);
5045     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
5046                                                 CanonArgs,
5047                                                 QualType(), QualType());
5048     Types.push_back(Spec);
5049     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
5050   }
5051 
5052   assert(Spec->isDependentType() &&
5053          "Non-dependent template-id type must have a canonical type");
5054   return QualType(Spec, 0);
5055 }
5056 
5057 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
5058                                        NestedNameSpecifier *NNS,
5059                                        QualType NamedType,
5060                                        TagDecl *OwnedTagDecl) const {
5061   llvm::FoldingSetNodeID ID;
5062   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
5063 
5064   void *InsertPos = nullptr;
5065   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5066   if (T)
5067     return QualType(T, 0);
5068 
5069   QualType Canon = NamedType;
5070   if (!Canon.isCanonical()) {
5071     Canon = getCanonicalType(NamedType);
5072     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5073     assert(!CheckT && "Elaborated canonical type broken");
5074     (void)CheckT;
5075   }
5076 
5077   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
5078                        TypeAlignment);
5079   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
5080 
5081   Types.push_back(T);
5082   ElaboratedTypes.InsertNode(T, InsertPos);
5083   return QualType(T, 0);
5084 }
5085 
5086 QualType
5087 ASTContext::getParenType(QualType InnerType) const {
5088   llvm::FoldingSetNodeID ID;
5089   ParenType::Profile(ID, InnerType);
5090 
5091   void *InsertPos = nullptr;
5092   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5093   if (T)
5094     return QualType(T, 0);
5095 
5096   QualType Canon = InnerType;
5097   if (!Canon.isCanonical()) {
5098     Canon = getCanonicalType(InnerType);
5099     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5100     assert(!CheckT && "Paren canonical type broken");
5101     (void)CheckT;
5102   }
5103 
5104   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
5105   Types.push_back(T);
5106   ParenTypes.InsertNode(T, InsertPos);
5107   return QualType(T, 0);
5108 }
5109 
5110 QualType
5111 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
5112                                   const IdentifierInfo *MacroII) const {
5113   QualType Canon = UnderlyingTy;
5114   if (!Canon.isCanonical())
5115     Canon = getCanonicalType(UnderlyingTy);
5116 
5117   auto *newType = new (*this, TypeAlignment)
5118       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
5119   Types.push_back(newType);
5120   return QualType(newType, 0);
5121 }
5122 
5123 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
5124                                           NestedNameSpecifier *NNS,
5125                                           const IdentifierInfo *Name,
5126                                           QualType Canon) const {
5127   if (Canon.isNull()) {
5128     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5129     if (CanonNNS != NNS)
5130       Canon = getDependentNameType(Keyword, CanonNNS, Name);
5131   }
5132 
5133   llvm::FoldingSetNodeID ID;
5134   DependentNameType::Profile(ID, Keyword, NNS, Name);
5135 
5136   void *InsertPos = nullptr;
5137   DependentNameType *T
5138     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
5139   if (T)
5140     return QualType(T, 0);
5141 
5142   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
5143   Types.push_back(T);
5144   DependentNameTypes.InsertNode(T, InsertPos);
5145   return QualType(T, 0);
5146 }
5147 
5148 QualType ASTContext::getDependentTemplateSpecializationType(
5149     ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5150     const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const {
5151   // TODO: avoid this copy
5152   SmallVector<TemplateArgument, 16> ArgCopy;
5153   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5154     ArgCopy.push_back(Args[I].getArgument());
5155   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
5156 }
5157 
5158 QualType
5159 ASTContext::getDependentTemplateSpecializationType(
5160                                  ElaboratedTypeKeyword Keyword,
5161                                  NestedNameSpecifier *NNS,
5162                                  const IdentifierInfo *Name,
5163                                  ArrayRef<TemplateArgument> Args) const {
5164   assert((!NNS || NNS->isDependent()) &&
5165          "nested-name-specifier must be dependent");
5166 
5167   llvm::FoldingSetNodeID ID;
5168   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
5169                                                Name, Args);
5170 
5171   void *InsertPos = nullptr;
5172   DependentTemplateSpecializationType *T
5173     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5174   if (T)
5175     return QualType(T, 0);
5176 
5177   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5178 
5179   ElaboratedTypeKeyword CanonKeyword = Keyword;
5180   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
5181 
5182   bool AnyNonCanonArgs = false;
5183   auto CanonArgs =
5184       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
5185 
5186   QualType Canon;
5187   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
5188     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
5189                                                    Name,
5190                                                    CanonArgs);
5191 
5192     // Find the insert position again.
5193     [[maybe_unused]] auto *Nothing =
5194         DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5195     assert(!Nothing && "canonical type broken");
5196   }
5197 
5198   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
5199                         sizeof(TemplateArgument) * Args.size()),
5200                        TypeAlignment);
5201   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
5202                                                     Name, Args, Canon);
5203   Types.push_back(T);
5204   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
5205   return QualType(T, 0);
5206 }
5207 
5208 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
5209   TemplateArgument Arg;
5210   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5211     QualType ArgType = getTypeDeclType(TTP);
5212     if (TTP->isParameterPack())
5213       ArgType = getPackExpansionType(ArgType, std::nullopt);
5214 
5215     Arg = TemplateArgument(ArgType);
5216   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5217     QualType T =
5218         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
5219     // For class NTTPs, ensure we include the 'const' so the type matches that
5220     // of a real template argument.
5221     // FIXME: It would be more faithful to model this as something like an
5222     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
5223     if (T->isRecordType())
5224       T.addConst();
5225     Expr *E = new (*this) DeclRefExpr(
5226         *this, NTTP, /*RefersToEnclosingVariableOrCapture*/ false, T,
5227         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
5228 
5229     if (NTTP->isParameterPack())
5230       E = new (*this)
5231           PackExpansionExpr(DependentTy, E, NTTP->getLocation(), std::nullopt);
5232     Arg = TemplateArgument(E);
5233   } else {
5234     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5235     if (TTP->isParameterPack())
5236       Arg = TemplateArgument(TemplateName(TTP), std::optional<unsigned>());
5237     else
5238       Arg = TemplateArgument(TemplateName(TTP));
5239   }
5240 
5241   if (Param->isTemplateParameterPack())
5242     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5243 
5244   return Arg;
5245 }
5246 
5247 void
5248 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5249                                     SmallVectorImpl<TemplateArgument> &Args) {
5250   Args.reserve(Args.size() + Params->size());
5251 
5252   for (NamedDecl *Param : *Params)
5253     Args.push_back(getInjectedTemplateArg(Param));
5254 }
5255 
5256 QualType ASTContext::getPackExpansionType(QualType Pattern,
5257                                           std::optional<unsigned> NumExpansions,
5258                                           bool ExpectPackInType) {
5259   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5260          "Pack expansions must expand one or more parameter packs");
5261 
5262   llvm::FoldingSetNodeID ID;
5263   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5264 
5265   void *InsertPos = nullptr;
5266   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5267   if (T)
5268     return QualType(T, 0);
5269 
5270   QualType Canon;
5271   if (!Pattern.isCanonical()) {
5272     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5273                                  /*ExpectPackInType=*/false);
5274 
5275     // Find the insert position again, in case we inserted an element into
5276     // PackExpansionTypes and invalidated our insert position.
5277     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5278   }
5279 
5280   T = new (*this, TypeAlignment)
5281       PackExpansionType(Pattern, Canon, NumExpansions);
5282   Types.push_back(T);
5283   PackExpansionTypes.InsertNode(T, InsertPos);
5284   return QualType(T, 0);
5285 }
5286 
5287 /// CmpProtocolNames - Comparison predicate for sorting protocols
5288 /// alphabetically.
5289 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5290                             ObjCProtocolDecl *const *RHS) {
5291   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5292 }
5293 
5294 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5295   if (Protocols.empty()) return true;
5296 
5297   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5298     return false;
5299 
5300   for (unsigned i = 1; i != Protocols.size(); ++i)
5301     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5302         Protocols[i]->getCanonicalDecl() != Protocols[i])
5303       return false;
5304   return true;
5305 }
5306 
5307 static void
5308 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5309   // Sort protocols, keyed by name.
5310   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5311 
5312   // Canonicalize.
5313   for (ObjCProtocolDecl *&P : Protocols)
5314     P = P->getCanonicalDecl();
5315 
5316   // Remove duplicates.
5317   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5318   Protocols.erase(ProtocolsEnd, Protocols.end());
5319 }
5320 
5321 QualType ASTContext::getObjCObjectType(QualType BaseType,
5322                                        ObjCProtocolDecl * const *Protocols,
5323                                        unsigned NumProtocols) const {
5324   return getObjCObjectType(BaseType, {},
5325                            llvm::ArrayRef(Protocols, NumProtocols),
5326                            /*isKindOf=*/false);
5327 }
5328 
5329 QualType ASTContext::getObjCObjectType(
5330            QualType baseType,
5331            ArrayRef<QualType> typeArgs,
5332            ArrayRef<ObjCProtocolDecl *> protocols,
5333            bool isKindOf) const {
5334   // If the base type is an interface and there aren't any protocols or
5335   // type arguments to add, then the interface type will do just fine.
5336   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5337       isa<ObjCInterfaceType>(baseType))
5338     return baseType;
5339 
5340   // Look in the folding set for an existing type.
5341   llvm::FoldingSetNodeID ID;
5342   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5343   void *InsertPos = nullptr;
5344   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5345     return QualType(QT, 0);
5346 
5347   // Determine the type arguments to be used for canonicalization,
5348   // which may be explicitly specified here or written on the base
5349   // type.
5350   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5351   if (effectiveTypeArgs.empty()) {
5352     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5353       effectiveTypeArgs = baseObject->getTypeArgs();
5354   }
5355 
5356   // Build the canonical type, which has the canonical base type and a
5357   // sorted-and-uniqued list of protocols and the type arguments
5358   // canonicalized.
5359   QualType canonical;
5360   bool typeArgsAreCanonical = llvm::all_of(
5361       effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); });
5362   bool protocolsSorted = areSortedAndUniqued(protocols);
5363   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5364     // Determine the canonical type arguments.
5365     ArrayRef<QualType> canonTypeArgs;
5366     SmallVector<QualType, 4> canonTypeArgsVec;
5367     if (!typeArgsAreCanonical) {
5368       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5369       for (auto typeArg : effectiveTypeArgs)
5370         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5371       canonTypeArgs = canonTypeArgsVec;
5372     } else {
5373       canonTypeArgs = effectiveTypeArgs;
5374     }
5375 
5376     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5377     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5378     if (!protocolsSorted) {
5379       canonProtocolsVec.append(protocols.begin(), protocols.end());
5380       SortAndUniqueProtocols(canonProtocolsVec);
5381       canonProtocols = canonProtocolsVec;
5382     } else {
5383       canonProtocols = protocols;
5384     }
5385 
5386     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5387                                   canonProtocols, isKindOf);
5388 
5389     // Regenerate InsertPos.
5390     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5391   }
5392 
5393   unsigned size = sizeof(ObjCObjectTypeImpl);
5394   size += typeArgs.size() * sizeof(QualType);
5395   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5396   void *mem = Allocate(size, TypeAlignment);
5397   auto *T =
5398     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5399                                  isKindOf);
5400 
5401   Types.push_back(T);
5402   ObjCObjectTypes.InsertNode(T, InsertPos);
5403   return QualType(T, 0);
5404 }
5405 
5406 /// Apply Objective-C protocol qualifiers to the given type.
5407 /// If this is for the canonical type of a type parameter, we can apply
5408 /// protocol qualifiers on the ObjCObjectPointerType.
5409 QualType
5410 ASTContext::applyObjCProtocolQualifiers(QualType type,
5411                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5412                   bool allowOnPointerType) const {
5413   hasError = false;
5414 
5415   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5416     return getObjCTypeParamType(objT->getDecl(), protocols);
5417   }
5418 
5419   // Apply protocol qualifiers to ObjCObjectPointerType.
5420   if (allowOnPointerType) {
5421     if (const auto *objPtr =
5422             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5423       const ObjCObjectType *objT = objPtr->getObjectType();
5424       // Merge protocol lists and construct ObjCObjectType.
5425       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5426       protocolsVec.append(objT->qual_begin(),
5427                           objT->qual_end());
5428       protocolsVec.append(protocols.begin(), protocols.end());
5429       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5430       type = getObjCObjectType(
5431              objT->getBaseType(),
5432              objT->getTypeArgsAsWritten(),
5433              protocols,
5434              objT->isKindOfTypeAsWritten());
5435       return getObjCObjectPointerType(type);
5436     }
5437   }
5438 
5439   // Apply protocol qualifiers to ObjCObjectType.
5440   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5441     // FIXME: Check for protocols to which the class type is already
5442     // known to conform.
5443 
5444     return getObjCObjectType(objT->getBaseType(),
5445                              objT->getTypeArgsAsWritten(),
5446                              protocols,
5447                              objT->isKindOfTypeAsWritten());
5448   }
5449 
5450   // If the canonical type is ObjCObjectType, ...
5451   if (type->isObjCObjectType()) {
5452     // Silently overwrite any existing protocol qualifiers.
5453     // TODO: determine whether that's the right thing to do.
5454 
5455     // FIXME: Check for protocols to which the class type is already
5456     // known to conform.
5457     return getObjCObjectType(type, {}, protocols, false);
5458   }
5459 
5460   // id<protocol-list>
5461   if (type->isObjCIdType()) {
5462     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5463     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5464                                  objPtr->isKindOfType());
5465     return getObjCObjectPointerType(type);
5466   }
5467 
5468   // Class<protocol-list>
5469   if (type->isObjCClassType()) {
5470     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5471     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5472                                  objPtr->isKindOfType());
5473     return getObjCObjectPointerType(type);
5474   }
5475 
5476   hasError = true;
5477   return type;
5478 }
5479 
5480 QualType
5481 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5482                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5483   // Look in the folding set for an existing type.
5484   llvm::FoldingSetNodeID ID;
5485   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5486   void *InsertPos = nullptr;
5487   if (ObjCTypeParamType *TypeParam =
5488       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5489     return QualType(TypeParam, 0);
5490 
5491   // We canonicalize to the underlying type.
5492   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5493   if (!protocols.empty()) {
5494     // Apply the protocol qualifers.
5495     bool hasError;
5496     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5497         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5498     assert(!hasError && "Error when apply protocol qualifier to bound type");
5499   }
5500 
5501   unsigned size = sizeof(ObjCTypeParamType);
5502   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5503   void *mem = Allocate(size, TypeAlignment);
5504   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5505 
5506   Types.push_back(newType);
5507   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5508   return QualType(newType, 0);
5509 }
5510 
5511 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5512                                               ObjCTypeParamDecl *New) const {
5513   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5514   // Update TypeForDecl after updating TypeSourceInfo.
5515   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5516   SmallVector<ObjCProtocolDecl *, 8> protocols;
5517   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5518   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5519   New->setTypeForDecl(UpdatedTy.getTypePtr());
5520 }
5521 
5522 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5523 /// protocol list adopt all protocols in QT's qualified-id protocol
5524 /// list.
5525 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5526                                                 ObjCInterfaceDecl *IC) {
5527   if (!QT->isObjCQualifiedIdType())
5528     return false;
5529 
5530   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5531     // If both the right and left sides have qualifiers.
5532     for (auto *Proto : OPT->quals()) {
5533       if (!IC->ClassImplementsProtocol(Proto, false))
5534         return false;
5535     }
5536     return true;
5537   }
5538   return false;
5539 }
5540 
5541 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5542 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5543 /// of protocols.
5544 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5545                                                 ObjCInterfaceDecl *IDecl) {
5546   if (!QT->isObjCQualifiedIdType())
5547     return false;
5548   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5549   if (!OPT)
5550     return false;
5551   if (!IDecl->hasDefinition())
5552     return false;
5553   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5554   CollectInheritedProtocols(IDecl, InheritedProtocols);
5555   if (InheritedProtocols.empty())
5556     return false;
5557   // Check that if every protocol in list of id<plist> conforms to a protocol
5558   // of IDecl's, then bridge casting is ok.
5559   bool Conforms = false;
5560   for (auto *Proto : OPT->quals()) {
5561     Conforms = false;
5562     for (auto *PI : InheritedProtocols) {
5563       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5564         Conforms = true;
5565         break;
5566       }
5567     }
5568     if (!Conforms)
5569       break;
5570   }
5571   if (Conforms)
5572     return true;
5573 
5574   for (auto *PI : InheritedProtocols) {
5575     // If both the right and left sides have qualifiers.
5576     bool Adopts = false;
5577     for (auto *Proto : OPT->quals()) {
5578       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5579       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5580         break;
5581     }
5582     if (!Adopts)
5583       return false;
5584   }
5585   return true;
5586 }
5587 
5588 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5589 /// the given object type.
5590 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5591   llvm::FoldingSetNodeID ID;
5592   ObjCObjectPointerType::Profile(ID, ObjectT);
5593 
5594   void *InsertPos = nullptr;
5595   if (ObjCObjectPointerType *QT =
5596               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5597     return QualType(QT, 0);
5598 
5599   // Find the canonical object type.
5600   QualType Canonical;
5601   if (!ObjectT.isCanonical()) {
5602     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5603 
5604     // Regenerate InsertPos.
5605     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5606   }
5607 
5608   // No match.
5609   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5610   auto *QType =
5611     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5612 
5613   Types.push_back(QType);
5614   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5615   return QualType(QType, 0);
5616 }
5617 
5618 /// getObjCInterfaceType - Return the unique reference to the type for the
5619 /// specified ObjC interface decl. The list of protocols is optional.
5620 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5621                                           ObjCInterfaceDecl *PrevDecl) const {
5622   if (Decl->TypeForDecl)
5623     return QualType(Decl->TypeForDecl, 0);
5624 
5625   if (PrevDecl) {
5626     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5627     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5628     return QualType(PrevDecl->TypeForDecl, 0);
5629   }
5630 
5631   // Prefer the definition, if there is one.
5632   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5633     Decl = Def;
5634 
5635   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5636   auto *T = new (Mem) ObjCInterfaceType(Decl);
5637   Decl->TypeForDecl = T;
5638   Types.push_back(T);
5639   return QualType(T, 0);
5640 }
5641 
5642 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5643 /// TypeOfExprType AST's (since expression's are never shared). For example,
5644 /// multiple declarations that refer to "typeof(x)" all contain different
5645 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5646 /// on canonical type's (which are always unique).
5647 QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const {
5648   TypeOfExprType *toe;
5649   if (tofExpr->isTypeDependent()) {
5650     llvm::FoldingSetNodeID ID;
5651     DependentTypeOfExprType::Profile(ID, *this, tofExpr,
5652                                      Kind == TypeOfKind::Unqualified);
5653 
5654     void *InsertPos = nullptr;
5655     DependentTypeOfExprType *Canon =
5656         DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5657     if (Canon) {
5658       // We already have a "canonical" version of an identical, dependent
5659       // typeof(expr) type. Use that as our canonical type.
5660       toe = new (*this, TypeAlignment)
5661           TypeOfExprType(tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0));
5662     } else {
5663       // Build a new, canonical typeof(expr) type.
5664       Canon = new (*this, TypeAlignment)
5665           DependentTypeOfExprType(*this, tofExpr, Kind);
5666       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5667       toe = Canon;
5668     }
5669   } else {
5670     QualType Canonical = getCanonicalType(tofExpr->getType());
5671     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Kind, Canonical);
5672   }
5673   Types.push_back(toe);
5674   return QualType(toe, 0);
5675 }
5676 
5677 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5678 /// TypeOfType nodes. The only motivation to unique these nodes would be
5679 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5680 /// an issue. This doesn't affect the type checker, since it operates
5681 /// on canonical types (which are always unique).
5682 QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const {
5683   QualType Canonical = getCanonicalType(tofType);
5684   auto *tot =
5685       new (*this, TypeAlignment) TypeOfType(tofType, Canonical, Kind);
5686   Types.push_back(tot);
5687   return QualType(tot, 0);
5688 }
5689 
5690 /// getReferenceQualifiedType - Given an expr, will return the type for
5691 /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
5692 /// and class member access into account.
5693 QualType ASTContext::getReferenceQualifiedType(const Expr *E) const {
5694   // C++11 [dcl.type.simple]p4:
5695   //   [...]
5696   QualType T = E->getType();
5697   switch (E->getValueKind()) {
5698   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5699   //       type of e;
5700   case VK_XValue:
5701     return getRValueReferenceType(T);
5702   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5703   //       type of e;
5704   case VK_LValue:
5705     return getLValueReferenceType(T);
5706   //  - otherwise, decltype(e) is the type of e.
5707   case VK_PRValue:
5708     return T;
5709   }
5710   llvm_unreachable("Unknown value kind");
5711 }
5712 
5713 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5714 /// nodes. This would never be helpful, since each such type has its own
5715 /// expression, and would not give a significant memory saving, since there
5716 /// is an Expr tree under each such type.
5717 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5718   DecltypeType *dt;
5719 
5720   // C++11 [temp.type]p2:
5721   //   If an expression e involves a template parameter, decltype(e) denotes a
5722   //   unique dependent type. Two such decltype-specifiers refer to the same
5723   //   type only if their expressions are equivalent (14.5.6.1).
5724   if (e->isInstantiationDependent()) {
5725     llvm::FoldingSetNodeID ID;
5726     DependentDecltypeType::Profile(ID, *this, e);
5727 
5728     void *InsertPos = nullptr;
5729     DependentDecltypeType *Canon
5730       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5731     if (!Canon) {
5732       // Build a new, canonical decltype(expr) type.
5733       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5734       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5735     }
5736     dt = new (*this, TypeAlignment)
5737         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5738   } else {
5739     dt = new (*this, TypeAlignment)
5740         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5741   }
5742   Types.push_back(dt);
5743   return QualType(dt, 0);
5744 }
5745 
5746 /// getUnaryTransformationType - We don't unique these, since the memory
5747 /// savings are minimal and these are rare.
5748 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5749                                            QualType UnderlyingType,
5750                                            UnaryTransformType::UTTKind Kind)
5751     const {
5752   UnaryTransformType *ut = nullptr;
5753 
5754   if (BaseType->isDependentType()) {
5755     // Look in the folding set for an existing type.
5756     llvm::FoldingSetNodeID ID;
5757     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5758 
5759     void *InsertPos = nullptr;
5760     DependentUnaryTransformType *Canon
5761       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5762 
5763     if (!Canon) {
5764       // Build a new, canonical __underlying_type(type) type.
5765       Canon = new (*this, TypeAlignment)
5766              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5767                                          Kind);
5768       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5769     }
5770     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5771                                                         QualType(), Kind,
5772                                                         QualType(Canon, 0));
5773   } else {
5774     QualType CanonType = getCanonicalType(UnderlyingType);
5775     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5776                                                         UnderlyingType, Kind,
5777                                                         CanonType);
5778   }
5779   Types.push_back(ut);
5780   return QualType(ut, 0);
5781 }
5782 
5783 QualType ASTContext::getAutoTypeInternal(
5784     QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent,
5785     bool IsPack, ConceptDecl *TypeConstraintConcept,
5786     ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const {
5787   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5788       !TypeConstraintConcept && !IsDependent)
5789     return getAutoDeductType();
5790 
5791   // Look in the folding set for an existing type.
5792   void *InsertPos = nullptr;
5793   llvm::FoldingSetNodeID ID;
5794   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5795                     TypeConstraintConcept, TypeConstraintArgs);
5796   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5797     return QualType(AT, 0);
5798 
5799   QualType Canon;
5800   if (!IsCanon) {
5801     if (!DeducedType.isNull()) {
5802       Canon = DeducedType.getCanonicalType();
5803     } else if (TypeConstraintConcept) {
5804       bool AnyNonCanonArgs = false;
5805       ConceptDecl *CanonicalConcept = TypeConstraintConcept->getCanonicalDecl();
5806       auto CanonicalConceptArgs = ::getCanonicalTemplateArguments(
5807           *this, TypeConstraintArgs, AnyNonCanonArgs);
5808       if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) {
5809         Canon =
5810             getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack,
5811                                 CanonicalConcept, CanonicalConceptArgs, true);
5812         // Find the insert position again.
5813         [[maybe_unused]] auto *Nothing =
5814             AutoTypes.FindNodeOrInsertPos(ID, InsertPos);
5815         assert(!Nothing && "canonical type broken");
5816       }
5817     }
5818   }
5819 
5820   void *Mem = Allocate(sizeof(AutoType) +
5821                            sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5822                        TypeAlignment);
5823   auto *AT = new (Mem) AutoType(
5824       DeducedType, Keyword,
5825       (IsDependent ? TypeDependence::DependentInstantiation
5826                    : TypeDependence::None) |
5827           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5828       Canon, TypeConstraintConcept, TypeConstraintArgs);
5829   Types.push_back(AT);
5830   AutoTypes.InsertNode(AT, InsertPos);
5831   return QualType(AT, 0);
5832 }
5833 
5834 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5835 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5836 /// canonical deduced-but-dependent 'auto' type.
5837 QualType
5838 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5839                         bool IsDependent, bool IsPack,
5840                         ConceptDecl *TypeConstraintConcept,
5841                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5842   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5843   assert((!IsDependent || DeducedType.isNull()) &&
5844          "A dependent auto should be undeduced");
5845   return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack,
5846                              TypeConstraintConcept, TypeConstraintArgs);
5847 }
5848 
5849 QualType ASTContext::getUnconstrainedType(QualType T) const {
5850   QualType CanonT = T.getCanonicalType();
5851 
5852   // Remove a type-constraint from a top-level auto or decltype(auto).
5853   if (auto *AT = CanonT->getAs<AutoType>()) {
5854     if (!AT->isConstrained())
5855       return T;
5856     return getQualifiedType(getAutoType(QualType(), AT->getKeyword(), false,
5857                                         AT->containsUnexpandedParameterPack()),
5858                             T.getQualifiers());
5859   }
5860 
5861   // FIXME: We only support constrained auto at the top level in the type of a
5862   // non-type template parameter at the moment. Once we lift that restriction,
5863   // we'll need to recursively build types containing auto here.
5864   assert(!CanonT->getContainedAutoType() ||
5865          !CanonT->getContainedAutoType()->isConstrained());
5866   return T;
5867 }
5868 
5869 /// Return the uniqued reference to the deduced template specialization type
5870 /// which has been deduced to the given type, or to the canonical undeduced
5871 /// such type, or the canonical deduced-but-dependent such type.
5872 QualType ASTContext::getDeducedTemplateSpecializationType(
5873     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5874   // Look in the folding set for an existing type.
5875   void *InsertPos = nullptr;
5876   llvm::FoldingSetNodeID ID;
5877   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5878                                              IsDependent);
5879   if (DeducedTemplateSpecializationType *DTST =
5880           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5881     return QualType(DTST, 0);
5882 
5883   auto *DTST = new (*this, TypeAlignment)
5884       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5885   llvm::FoldingSetNodeID TempID;
5886   DTST->Profile(TempID);
5887   assert(ID == TempID && "ID does not match");
5888   Types.push_back(DTST);
5889   DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5890   return QualType(DTST, 0);
5891 }
5892 
5893 /// getAtomicType - Return the uniqued reference to the atomic type for
5894 /// the given value type.
5895 QualType ASTContext::getAtomicType(QualType T) const {
5896   // Unique pointers, to guarantee there is only one pointer of a particular
5897   // structure.
5898   llvm::FoldingSetNodeID ID;
5899   AtomicType::Profile(ID, T);
5900 
5901   void *InsertPos = nullptr;
5902   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5903     return QualType(AT, 0);
5904 
5905   // If the atomic value type isn't canonical, this won't be a canonical type
5906   // either, so fill in the canonical type field.
5907   QualType Canonical;
5908   if (!T.isCanonical()) {
5909     Canonical = getAtomicType(getCanonicalType(T));
5910 
5911     // Get the new insert position for the node we care about.
5912     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5913     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5914   }
5915   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5916   Types.push_back(New);
5917   AtomicTypes.InsertNode(New, InsertPos);
5918   return QualType(New, 0);
5919 }
5920 
5921 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5922 QualType ASTContext::getAutoDeductType() const {
5923   if (AutoDeductTy.isNull())
5924     AutoDeductTy = QualType(new (*this, TypeAlignment)
5925                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5926                                          TypeDependence::None, QualType(),
5927                                          /*concept*/ nullptr, /*args*/ {}),
5928                             0);
5929   return AutoDeductTy;
5930 }
5931 
5932 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5933 QualType ASTContext::getAutoRRefDeductType() const {
5934   if (AutoRRefDeductTy.isNull())
5935     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5936   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5937   return AutoRRefDeductTy;
5938 }
5939 
5940 /// getTagDeclType - Return the unique reference to the type for the
5941 /// specified TagDecl (struct/union/class/enum) decl.
5942 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5943   assert(Decl);
5944   // FIXME: What is the design on getTagDeclType when it requires casting
5945   // away const?  mutable?
5946   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5947 }
5948 
5949 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5950 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5951 /// needs to agree with the definition in <stddef.h>.
5952 CanQualType ASTContext::getSizeType() const {
5953   return getFromTargetType(Target->getSizeType());
5954 }
5955 
5956 /// Return the unique signed counterpart of the integer type
5957 /// corresponding to size_t.
5958 CanQualType ASTContext::getSignedSizeType() const {
5959   return getFromTargetType(Target->getSignedSizeType());
5960 }
5961 
5962 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5963 CanQualType ASTContext::getIntMaxType() const {
5964   return getFromTargetType(Target->getIntMaxType());
5965 }
5966 
5967 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5968 CanQualType ASTContext::getUIntMaxType() const {
5969   return getFromTargetType(Target->getUIntMaxType());
5970 }
5971 
5972 /// getSignedWCharType - Return the type of "signed wchar_t".
5973 /// Used when in C++, as a GCC extension.
5974 QualType ASTContext::getSignedWCharType() const {
5975   // FIXME: derive from "Target" ?
5976   return WCharTy;
5977 }
5978 
5979 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5980 /// Used when in C++, as a GCC extension.
5981 QualType ASTContext::getUnsignedWCharType() const {
5982   // FIXME: derive from "Target" ?
5983   return UnsignedIntTy;
5984 }
5985 
5986 QualType ASTContext::getIntPtrType() const {
5987   return getFromTargetType(Target->getIntPtrType());
5988 }
5989 
5990 QualType ASTContext::getUIntPtrType() const {
5991   return getCorrespondingUnsignedType(getIntPtrType());
5992 }
5993 
5994 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5995 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5996 QualType ASTContext::getPointerDiffType() const {
5997   return getFromTargetType(Target->getPtrDiffType(LangAS::Default));
5998 }
5999 
6000 /// Return the unique unsigned counterpart of "ptrdiff_t"
6001 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
6002 /// in the definition of %tu format specifier.
6003 QualType ASTContext::getUnsignedPointerDiffType() const {
6004   return getFromTargetType(Target->getUnsignedPtrDiffType(LangAS::Default));
6005 }
6006 
6007 /// Return the unique type for "pid_t" defined in
6008 /// <sys/types.h>. We need this to compute the correct type for vfork().
6009 QualType ASTContext::getProcessIDType() const {
6010   return getFromTargetType(Target->getProcessIDType());
6011 }
6012 
6013 //===----------------------------------------------------------------------===//
6014 //                              Type Operators
6015 //===----------------------------------------------------------------------===//
6016 
6017 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
6018   // Push qualifiers into arrays, and then discard any remaining
6019   // qualifiers.
6020   T = getCanonicalType(T);
6021   T = getVariableArrayDecayedType(T);
6022   const Type *Ty = T.getTypePtr();
6023   QualType Result;
6024   if (isa<ArrayType>(Ty)) {
6025     Result = getArrayDecayedType(QualType(Ty,0));
6026   } else if (isa<FunctionType>(Ty)) {
6027     Result = getPointerType(QualType(Ty, 0));
6028   } else {
6029     Result = QualType(Ty, 0);
6030   }
6031 
6032   return CanQualType::CreateUnsafe(Result);
6033 }
6034 
6035 QualType ASTContext::getUnqualifiedArrayType(QualType type,
6036                                              Qualifiers &quals) {
6037   SplitQualType splitType = type.getSplitUnqualifiedType();
6038 
6039   // FIXME: getSplitUnqualifiedType() actually walks all the way to
6040   // the unqualified desugared type and then drops it on the floor.
6041   // We then have to strip that sugar back off with
6042   // getUnqualifiedDesugaredType(), which is silly.
6043   const auto *AT =
6044       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
6045 
6046   // If we don't have an array, just use the results in splitType.
6047   if (!AT) {
6048     quals = splitType.Quals;
6049     return QualType(splitType.Ty, 0);
6050   }
6051 
6052   // Otherwise, recurse on the array's element type.
6053   QualType elementType = AT->getElementType();
6054   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
6055 
6056   // If that didn't change the element type, AT has no qualifiers, so we
6057   // can just use the results in splitType.
6058   if (elementType == unqualElementType) {
6059     assert(quals.empty()); // from the recursive call
6060     quals = splitType.Quals;
6061     return QualType(splitType.Ty, 0);
6062   }
6063 
6064   // Otherwise, add in the qualifiers from the outermost type, then
6065   // build the type back up.
6066   quals.addConsistentQualifiers(splitType.Quals);
6067 
6068   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
6069     return getConstantArrayType(unqualElementType, CAT->getSize(),
6070                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
6071   }
6072 
6073   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
6074     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
6075   }
6076 
6077   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
6078     return getVariableArrayType(unqualElementType,
6079                                 VAT->getSizeExpr(),
6080                                 VAT->getSizeModifier(),
6081                                 VAT->getIndexTypeCVRQualifiers(),
6082                                 VAT->getBracketsRange());
6083   }
6084 
6085   const auto *DSAT = cast<DependentSizedArrayType>(AT);
6086   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
6087                                     DSAT->getSizeModifier(), 0,
6088                                     SourceRange());
6089 }
6090 
6091 /// Attempt to unwrap two types that may both be array types with the same bound
6092 /// (or both be array types of unknown bound) for the purpose of comparing the
6093 /// cv-decomposition of two types per C++ [conv.qual].
6094 ///
6095 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6096 ///        C++20 [conv.qual], if permitted by the current language mode.
6097 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
6098                                          bool AllowPiMismatch) {
6099   while (true) {
6100     auto *AT1 = getAsArrayType(T1);
6101     if (!AT1)
6102       return;
6103 
6104     auto *AT2 = getAsArrayType(T2);
6105     if (!AT2)
6106       return;
6107 
6108     // If we don't have two array types with the same constant bound nor two
6109     // incomplete array types, we've unwrapped everything we can.
6110     // C++20 also permits one type to be a constant array type and the other
6111     // to be an incomplete array type.
6112     // FIXME: Consider also unwrapping array of unknown bound and VLA.
6113     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
6114       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
6115       if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) ||
6116             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6117              isa<IncompleteArrayType>(AT2))))
6118         return;
6119     } else if (isa<IncompleteArrayType>(AT1)) {
6120       if (!(isa<IncompleteArrayType>(AT2) ||
6121             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6122              isa<ConstantArrayType>(AT2))))
6123         return;
6124     } else {
6125       return;
6126     }
6127 
6128     T1 = AT1->getElementType();
6129     T2 = AT2->getElementType();
6130   }
6131 }
6132 
6133 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
6134 ///
6135 /// If T1 and T2 are both pointer types of the same kind, or both array types
6136 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
6137 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
6138 ///
6139 /// This function will typically be called in a loop that successively
6140 /// "unwraps" pointer and pointer-to-member types to compare them at each
6141 /// level.
6142 ///
6143 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6144 ///        C++20 [conv.qual], if permitted by the current language mode.
6145 ///
6146 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
6147 /// pair of types that can't be unwrapped further.
6148 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2,
6149                                     bool AllowPiMismatch) {
6150   UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch);
6151 
6152   const auto *T1PtrType = T1->getAs<PointerType>();
6153   const auto *T2PtrType = T2->getAs<PointerType>();
6154   if (T1PtrType && T2PtrType) {
6155     T1 = T1PtrType->getPointeeType();
6156     T2 = T2PtrType->getPointeeType();
6157     return true;
6158   }
6159 
6160   const auto *T1MPType = T1->getAs<MemberPointerType>();
6161   const auto *T2MPType = T2->getAs<MemberPointerType>();
6162   if (T1MPType && T2MPType &&
6163       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
6164                              QualType(T2MPType->getClass(), 0))) {
6165     T1 = T1MPType->getPointeeType();
6166     T2 = T2MPType->getPointeeType();
6167     return true;
6168   }
6169 
6170   if (getLangOpts().ObjC) {
6171     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
6172     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
6173     if (T1OPType && T2OPType) {
6174       T1 = T1OPType->getPointeeType();
6175       T2 = T2OPType->getPointeeType();
6176       return true;
6177     }
6178   }
6179 
6180   // FIXME: Block pointers, too?
6181 
6182   return false;
6183 }
6184 
6185 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
6186   while (true) {
6187     Qualifiers Quals;
6188     T1 = getUnqualifiedArrayType(T1, Quals);
6189     T2 = getUnqualifiedArrayType(T2, Quals);
6190     if (hasSameType(T1, T2))
6191       return true;
6192     if (!UnwrapSimilarTypes(T1, T2))
6193       return false;
6194   }
6195 }
6196 
6197 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
6198   while (true) {
6199     Qualifiers Quals1, Quals2;
6200     T1 = getUnqualifiedArrayType(T1, Quals1);
6201     T2 = getUnqualifiedArrayType(T2, Quals2);
6202 
6203     Quals1.removeCVRQualifiers();
6204     Quals2.removeCVRQualifiers();
6205     if (Quals1 != Quals2)
6206       return false;
6207 
6208     if (hasSameType(T1, T2))
6209       return true;
6210 
6211     if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false))
6212       return false;
6213   }
6214 }
6215 
6216 DeclarationNameInfo
6217 ASTContext::getNameForTemplate(TemplateName Name,
6218                                SourceLocation NameLoc) const {
6219   switch (Name.getKind()) {
6220   case TemplateName::QualifiedTemplate:
6221   case TemplateName::Template:
6222     // DNInfo work in progress: CHECKME: what about DNLoc?
6223     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
6224                                NameLoc);
6225 
6226   case TemplateName::OverloadedTemplate: {
6227     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
6228     // DNInfo work in progress: CHECKME: what about DNLoc?
6229     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
6230   }
6231 
6232   case TemplateName::AssumedTemplate: {
6233     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
6234     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
6235   }
6236 
6237   case TemplateName::DependentTemplate: {
6238     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6239     DeclarationName DName;
6240     if (DTN->isIdentifier()) {
6241       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
6242       return DeclarationNameInfo(DName, NameLoc);
6243     } else {
6244       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
6245       // DNInfo work in progress: FIXME: source locations?
6246       DeclarationNameLoc DNLoc =
6247           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
6248       return DeclarationNameInfo(DName, NameLoc, DNLoc);
6249     }
6250   }
6251 
6252   case TemplateName::SubstTemplateTemplateParm: {
6253     SubstTemplateTemplateParmStorage *subst
6254       = Name.getAsSubstTemplateTemplateParm();
6255     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
6256                                NameLoc);
6257   }
6258 
6259   case TemplateName::SubstTemplateTemplateParmPack: {
6260     SubstTemplateTemplateParmPackStorage *subst
6261       = Name.getAsSubstTemplateTemplateParmPack();
6262     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
6263                                NameLoc);
6264   }
6265   case TemplateName::UsingTemplate:
6266     return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(),
6267                                NameLoc);
6268   }
6269 
6270   llvm_unreachable("bad template name kind!");
6271 }
6272 
6273 TemplateName
6274 ASTContext::getCanonicalTemplateName(const TemplateName &Name) const {
6275   switch (Name.getKind()) {
6276   case TemplateName::UsingTemplate:
6277   case TemplateName::QualifiedTemplate:
6278   case TemplateName::Template: {
6279     TemplateDecl *Template = Name.getAsTemplateDecl();
6280     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
6281       Template = getCanonicalTemplateTemplateParmDecl(TTP);
6282 
6283     // The canonical template name is the canonical template declaration.
6284     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
6285   }
6286 
6287   case TemplateName::OverloadedTemplate:
6288   case TemplateName::AssumedTemplate:
6289     llvm_unreachable("cannot canonicalize unresolved template");
6290 
6291   case TemplateName::DependentTemplate: {
6292     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6293     assert(DTN && "Non-dependent template names must refer to template decls.");
6294     return DTN->CanonicalTemplateName;
6295   }
6296 
6297   case TemplateName::SubstTemplateTemplateParm: {
6298     SubstTemplateTemplateParmStorage *subst
6299       = Name.getAsSubstTemplateTemplateParm();
6300     return getCanonicalTemplateName(subst->getReplacement());
6301   }
6302 
6303   case TemplateName::SubstTemplateTemplateParmPack: {
6304     SubstTemplateTemplateParmPackStorage *subst =
6305         Name.getAsSubstTemplateTemplateParmPack();
6306     TemplateArgument canonArgPack =
6307         getCanonicalTemplateArgument(subst->getArgumentPack());
6308     return getSubstTemplateTemplateParmPack(
6309         canonArgPack, subst->getAssociatedDecl()->getCanonicalDecl(),
6310         subst->getFinal(), subst->getIndex());
6311   }
6312   }
6313 
6314   llvm_unreachable("bad template name!");
6315 }
6316 
6317 bool ASTContext::hasSameTemplateName(const TemplateName &X,
6318                                      const TemplateName &Y) const {
6319   return getCanonicalTemplateName(X).getAsVoidPointer() ==
6320          getCanonicalTemplateName(Y).getAsVoidPointer();
6321 }
6322 
6323 bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const {
6324   if (!XCE != !YCE)
6325     return false;
6326 
6327   if (!XCE)
6328     return true;
6329 
6330   llvm::FoldingSetNodeID XCEID, YCEID;
6331   XCE->Profile(XCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true);
6332   YCE->Profile(YCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true);
6333   return XCEID == YCEID;
6334 }
6335 
6336 bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC,
6337                                       const TypeConstraint *YTC) const {
6338   if (!XTC != !YTC)
6339     return false;
6340 
6341   if (!XTC)
6342     return true;
6343 
6344   auto *NCX = XTC->getNamedConcept();
6345   auto *NCY = YTC->getNamedConcept();
6346   if (!NCX || !NCY || !isSameEntity(NCX, NCY))
6347     return false;
6348   if (XTC->hasExplicitTemplateArgs() != YTC->hasExplicitTemplateArgs())
6349     return false;
6350   if (XTC->hasExplicitTemplateArgs())
6351     if (XTC->getTemplateArgsAsWritten()->NumTemplateArgs !=
6352         YTC->getTemplateArgsAsWritten()->NumTemplateArgs)
6353       return false;
6354 
6355   // Compare slowly by profiling.
6356   //
6357   // We couldn't compare the profiling result for the template
6358   // args here. Consider the following example in different modules:
6359   //
6360   // template <__integer_like _Tp, C<_Tp> Sentinel>
6361   // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const {
6362   //   return __t;
6363   // }
6364   //
6365   // When we compare the profiling result for `C<_Tp>` in different
6366   // modules, it will compare the type of `_Tp` in different modules.
6367   // However, the type of `_Tp` in different modules refer to different
6368   // types here naturally. So we couldn't compare the profiling result
6369   // for the template args directly.
6370   return isSameConstraintExpr(XTC->getImmediatelyDeclaredConstraint(),
6371                               YTC->getImmediatelyDeclaredConstraint());
6372 }
6373 
6374 bool ASTContext::isSameTemplateParameter(const NamedDecl *X,
6375                                          const NamedDecl *Y) const {
6376   if (X->getKind() != Y->getKind())
6377     return false;
6378 
6379   if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
6380     auto *TY = cast<TemplateTypeParmDecl>(Y);
6381     if (TX->isParameterPack() != TY->isParameterPack())
6382       return false;
6383     if (TX->hasTypeConstraint() != TY->hasTypeConstraint())
6384       return false;
6385     return isSameTypeConstraint(TX->getTypeConstraint(),
6386                                 TY->getTypeConstraint());
6387   }
6388 
6389   if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6390     auto *TY = cast<NonTypeTemplateParmDecl>(Y);
6391     return TX->isParameterPack() == TY->isParameterPack() &&
6392            TX->getASTContext().hasSameType(TX->getType(), TY->getType()) &&
6393            isSameConstraintExpr(TX->getPlaceholderTypeConstraint(),
6394                                 TY->getPlaceholderTypeConstraint());
6395   }
6396 
6397   auto *TX = cast<TemplateTemplateParmDecl>(X);
6398   auto *TY = cast<TemplateTemplateParmDecl>(Y);
6399   return TX->isParameterPack() == TY->isParameterPack() &&
6400          isSameTemplateParameterList(TX->getTemplateParameters(),
6401                                      TY->getTemplateParameters());
6402 }
6403 
6404 bool ASTContext::isSameTemplateParameterList(
6405     const TemplateParameterList *X, const TemplateParameterList *Y) const {
6406   if (X->size() != Y->size())
6407     return false;
6408 
6409   for (unsigned I = 0, N = X->size(); I != N; ++I)
6410     if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
6411       return false;
6412 
6413   return isSameConstraintExpr(X->getRequiresClause(), Y->getRequiresClause());
6414 }
6415 
6416 bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X,
6417                                                const NamedDecl *Y) const {
6418   // If the type parameter isn't the same already, we don't need to check the
6419   // default argument further.
6420   if (!isSameTemplateParameter(X, Y))
6421     return false;
6422 
6423   if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(X)) {
6424     auto *TTPY = cast<TemplateTypeParmDecl>(Y);
6425     if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6426       return false;
6427 
6428     return hasSameType(TTPX->getDefaultArgument(), TTPY->getDefaultArgument());
6429   }
6430 
6431   if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6432     auto *NTTPY = cast<NonTypeTemplateParmDecl>(Y);
6433     if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument())
6434       return false;
6435 
6436     Expr *DefaultArgumentX = NTTPX->getDefaultArgument()->IgnoreImpCasts();
6437     Expr *DefaultArgumentY = NTTPY->getDefaultArgument()->IgnoreImpCasts();
6438     llvm::FoldingSetNodeID XID, YID;
6439     DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true);
6440     DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true);
6441     return XID == YID;
6442   }
6443 
6444   auto *TTPX = cast<TemplateTemplateParmDecl>(X);
6445   auto *TTPY = cast<TemplateTemplateParmDecl>(Y);
6446 
6447   if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6448     return false;
6449 
6450   const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument();
6451   const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument();
6452   return hasSameTemplateName(TAX.getAsTemplate(), TAY.getAsTemplate());
6453 }
6454 
6455 static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
6456   if (auto *NS = X->getAsNamespace())
6457     return NS;
6458   if (auto *NAS = X->getAsNamespaceAlias())
6459     return NAS->getNamespace();
6460   return nullptr;
6461 }
6462 
6463 static bool isSameQualifier(const NestedNameSpecifier *X,
6464                             const NestedNameSpecifier *Y) {
6465   if (auto *NSX = getNamespace(X)) {
6466     auto *NSY = getNamespace(Y);
6467     if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
6468       return false;
6469   } else if (X->getKind() != Y->getKind())
6470     return false;
6471 
6472   // FIXME: For namespaces and types, we're permitted to check that the entity
6473   // is named via the same tokens. We should probably do so.
6474   switch (X->getKind()) {
6475   case NestedNameSpecifier::Identifier:
6476     if (X->getAsIdentifier() != Y->getAsIdentifier())
6477       return false;
6478     break;
6479   case NestedNameSpecifier::Namespace:
6480   case NestedNameSpecifier::NamespaceAlias:
6481     // We've already checked that we named the same namespace.
6482     break;
6483   case NestedNameSpecifier::TypeSpec:
6484   case NestedNameSpecifier::TypeSpecWithTemplate:
6485     if (X->getAsType()->getCanonicalTypeInternal() !=
6486         Y->getAsType()->getCanonicalTypeInternal())
6487       return false;
6488     break;
6489   case NestedNameSpecifier::Global:
6490   case NestedNameSpecifier::Super:
6491     return true;
6492   }
6493 
6494   // Recurse into earlier portion of NNS, if any.
6495   auto *PX = X->getPrefix();
6496   auto *PY = Y->getPrefix();
6497   if (PX && PY)
6498     return isSameQualifier(PX, PY);
6499   return !PX && !PY;
6500 }
6501 
6502 /// Determine whether the attributes we can overload on are identical for A and
6503 /// B. Will ignore any overloadable attrs represented in the type of A and B.
6504 static bool hasSameOverloadableAttrs(const FunctionDecl *A,
6505                                      const FunctionDecl *B) {
6506   // Note that pass_object_size attributes are represented in the function's
6507   // ExtParameterInfo, so we don't need to check them here.
6508 
6509   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
6510   auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>();
6511   auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>();
6512 
6513   for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) {
6514     std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
6515     std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
6516 
6517     // Return false if the number of enable_if attributes is different.
6518     if (!Cand1A || !Cand2A)
6519       return false;
6520 
6521     Cand1ID.clear();
6522     Cand2ID.clear();
6523 
6524     (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true);
6525     (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true);
6526 
6527     // Return false if any of the enable_if expressions of A and B are
6528     // different.
6529     if (Cand1ID != Cand2ID)
6530       return false;
6531   }
6532   return true;
6533 }
6534 
6535 bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const {
6536   // Caution: this function is called by the AST reader during deserialization,
6537   // so it cannot rely on AST invariants being met. Non-trivial accessors
6538   // should be avoided, along with any traversal of redeclaration chains.
6539 
6540   if (X == Y)
6541     return true;
6542 
6543   if (X->getDeclName() != Y->getDeclName())
6544     return false;
6545 
6546   // Must be in the same context.
6547   //
6548   // Note that we can't use DeclContext::Equals here, because the DeclContexts
6549   // could be two different declarations of the same function. (We will fix the
6550   // semantic DC to refer to the primary definition after merging.)
6551   if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()),
6552                           cast<Decl>(Y->getDeclContext()->getRedeclContext())))
6553     return false;
6554 
6555   // Two typedefs refer to the same entity if they have the same underlying
6556   // type.
6557   if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X))
6558     if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y))
6559       return hasSameType(TypedefX->getUnderlyingType(),
6560                          TypedefY->getUnderlyingType());
6561 
6562   // Must have the same kind.
6563   if (X->getKind() != Y->getKind())
6564     return false;
6565 
6566   // Objective-C classes and protocols with the same name always match.
6567   if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
6568     return true;
6569 
6570   if (isa<ClassTemplateSpecializationDecl>(X)) {
6571     // No need to handle these here: we merge them when adding them to the
6572     // template.
6573     return false;
6574   }
6575 
6576   // Compatible tags match.
6577   if (const auto *TagX = dyn_cast<TagDecl>(X)) {
6578     const auto *TagY = cast<TagDecl>(Y);
6579     return (TagX->getTagKind() == TagY->getTagKind()) ||
6580            ((TagX->getTagKind() == TTK_Struct ||
6581              TagX->getTagKind() == TTK_Class ||
6582              TagX->getTagKind() == TTK_Interface) &&
6583             (TagY->getTagKind() == TTK_Struct ||
6584              TagY->getTagKind() == TTK_Class ||
6585              TagY->getTagKind() == TTK_Interface));
6586   }
6587 
6588   // Functions with the same type and linkage match.
6589   // FIXME: This needs to cope with merging of prototyped/non-prototyped
6590   // functions, etc.
6591   if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) {
6592     const auto *FuncY = cast<FunctionDecl>(Y);
6593     if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) {
6594       const auto *CtorY = cast<CXXConstructorDecl>(Y);
6595       if (CtorX->getInheritedConstructor() &&
6596           !isSameEntity(CtorX->getInheritedConstructor().getConstructor(),
6597                         CtorY->getInheritedConstructor().getConstructor()))
6598         return false;
6599     }
6600 
6601     if (FuncX->isMultiVersion() != FuncY->isMultiVersion())
6602       return false;
6603 
6604     // Multiversioned functions with different feature strings are represented
6605     // as separate declarations.
6606     if (FuncX->isMultiVersion()) {
6607       const auto *TAX = FuncX->getAttr<TargetAttr>();
6608       const auto *TAY = FuncY->getAttr<TargetAttr>();
6609       assert(TAX && TAY && "Multiversion Function without target attribute");
6610 
6611       if (TAX->getFeaturesStr() != TAY->getFeaturesStr())
6612         return false;
6613     }
6614 
6615     // Per C++20 [temp.over.link]/4, friends in different classes are sometimes
6616     // not the same entity if they are constrained.
6617     if ((FuncX->isMemberLikeConstrainedFriend() ||
6618          FuncY->isMemberLikeConstrainedFriend()) &&
6619         !FuncX->getLexicalDeclContext()->Equals(
6620             FuncY->getLexicalDeclContext())) {
6621       return false;
6622     }
6623 
6624     if (!isSameConstraintExpr(FuncX->getTrailingRequiresClause(),
6625                               FuncY->getTrailingRequiresClause()))
6626       return false;
6627 
6628     auto GetTypeAsWritten = [](const FunctionDecl *FD) {
6629       // Map to the first declaration that we've already merged into this one.
6630       // The TSI of redeclarations might not match (due to calling conventions
6631       // being inherited onto the type but not the TSI), but the TSI type of
6632       // the first declaration of the function should match across modules.
6633       FD = FD->getCanonicalDecl();
6634       return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType()
6635                                      : FD->getType();
6636     };
6637     QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY);
6638     if (!hasSameType(XT, YT)) {
6639       // We can get functions with different types on the redecl chain in C++17
6640       // if they have differing exception specifications and at least one of
6641       // the excpetion specs is unresolved.
6642       auto *XFPT = XT->getAs<FunctionProtoType>();
6643       auto *YFPT = YT->getAs<FunctionProtoType>();
6644       if (getLangOpts().CPlusPlus17 && XFPT && YFPT &&
6645           (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) ||
6646            isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) &&
6647           hasSameFunctionTypeIgnoringExceptionSpec(XT, YT))
6648         return true;
6649       return false;
6650     }
6651 
6652     return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() &&
6653            hasSameOverloadableAttrs(FuncX, FuncY);
6654   }
6655 
6656   // Variables with the same type and linkage match.
6657   if (const auto *VarX = dyn_cast<VarDecl>(X)) {
6658     const auto *VarY = cast<VarDecl>(Y);
6659     if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) {
6660       // During deserialization, we might compare variables before we load
6661       // their types. Assume the types will end up being the same.
6662       if (VarX->getType().isNull() || VarY->getType().isNull())
6663         return true;
6664 
6665       if (hasSameType(VarX->getType(), VarY->getType()))
6666         return true;
6667 
6668       // We can get decls with different types on the redecl chain. Eg.
6669       // template <typename T> struct S { static T Var[]; }; // #1
6670       // template <typename T> T S<T>::Var[sizeof(T)]; // #2
6671       // Only? happens when completing an incomplete array type. In this case
6672       // when comparing #1 and #2 we should go through their element type.
6673       const ArrayType *VarXTy = getAsArrayType(VarX->getType());
6674       const ArrayType *VarYTy = getAsArrayType(VarY->getType());
6675       if (!VarXTy || !VarYTy)
6676         return false;
6677       if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType())
6678         return hasSameType(VarXTy->getElementType(), VarYTy->getElementType());
6679     }
6680     return false;
6681   }
6682 
6683   // Namespaces with the same name and inlinedness match.
6684   if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
6685     const auto *NamespaceY = cast<NamespaceDecl>(Y);
6686     return NamespaceX->isInline() == NamespaceY->isInline();
6687   }
6688 
6689   // Identical template names and kinds match if their template parameter lists
6690   // and patterns match.
6691   if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) {
6692     const auto *TemplateY = cast<TemplateDecl>(Y);
6693 
6694     // ConceptDecl wouldn't be the same if their constraint expression differs.
6695     if (const auto *ConceptX = dyn_cast<ConceptDecl>(X)) {
6696       const auto *ConceptY = cast<ConceptDecl>(Y);
6697       if (!isSameConstraintExpr(ConceptX->getConstraintExpr(),
6698                                 ConceptY->getConstraintExpr()))
6699         return false;
6700     }
6701 
6702     return isSameEntity(TemplateX->getTemplatedDecl(),
6703                         TemplateY->getTemplatedDecl()) &&
6704            isSameTemplateParameterList(TemplateX->getTemplateParameters(),
6705                                        TemplateY->getTemplateParameters());
6706   }
6707 
6708   // Fields with the same name and the same type match.
6709   if (const auto *FDX = dyn_cast<FieldDecl>(X)) {
6710     const auto *FDY = cast<FieldDecl>(Y);
6711     // FIXME: Also check the bitwidth is odr-equivalent, if any.
6712     return hasSameType(FDX->getType(), FDY->getType());
6713   }
6714 
6715   // Indirect fields with the same target field match.
6716   if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
6717     const auto *IFDY = cast<IndirectFieldDecl>(Y);
6718     return IFDX->getAnonField()->getCanonicalDecl() ==
6719            IFDY->getAnonField()->getCanonicalDecl();
6720   }
6721 
6722   // Enumerators with the same name match.
6723   if (isa<EnumConstantDecl>(X))
6724     // FIXME: Also check the value is odr-equivalent.
6725     return true;
6726 
6727   // Using shadow declarations with the same target match.
6728   if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) {
6729     const auto *USY = cast<UsingShadowDecl>(Y);
6730     return USX->getTargetDecl() == USY->getTargetDecl();
6731   }
6732 
6733   // Using declarations with the same qualifier match. (We already know that
6734   // the name matches.)
6735   if (const auto *UX = dyn_cast<UsingDecl>(X)) {
6736     const auto *UY = cast<UsingDecl>(Y);
6737     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6738            UX->hasTypename() == UY->hasTypename() &&
6739            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6740   }
6741   if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
6742     const auto *UY = cast<UnresolvedUsingValueDecl>(Y);
6743     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6744            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6745   }
6746   if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) {
6747     return isSameQualifier(
6748         UX->getQualifier(),
6749         cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
6750   }
6751 
6752   // Using-pack declarations are only created by instantiation, and match if
6753   // they're instantiated from matching UnresolvedUsing...Decls.
6754   if (const auto *UX = dyn_cast<UsingPackDecl>(X)) {
6755     return declaresSameEntity(
6756         UX->getInstantiatedFromUsingDecl(),
6757         cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl());
6758   }
6759 
6760   // Namespace alias definitions with the same target match.
6761   if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
6762     const auto *NAY = cast<NamespaceAliasDecl>(Y);
6763     return NAX->getNamespace()->Equals(NAY->getNamespace());
6764   }
6765 
6766   return false;
6767 }
6768 
6769 TemplateArgument
6770 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
6771   switch (Arg.getKind()) {
6772     case TemplateArgument::Null:
6773       return Arg;
6774 
6775     case TemplateArgument::Expression:
6776       return Arg;
6777 
6778     case TemplateArgument::Declaration: {
6779       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6780       return TemplateArgument(D, getCanonicalType(Arg.getParamTypeForDecl()),
6781                               Arg.getIsDefaulted());
6782     }
6783 
6784     case TemplateArgument::NullPtr:
6785       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6786                               /*isNullPtr*/ true, Arg.getIsDefaulted());
6787 
6788     case TemplateArgument::Template:
6789       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()),
6790                               Arg.getIsDefaulted());
6791 
6792     case TemplateArgument::TemplateExpansion:
6793       return TemplateArgument(
6794           getCanonicalTemplateName(Arg.getAsTemplateOrTemplatePattern()),
6795           Arg.getNumTemplateExpansions(), Arg.getIsDefaulted());
6796 
6797     case TemplateArgument::Integral:
6798       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6799 
6800     case TemplateArgument::Type:
6801       return TemplateArgument(getCanonicalType(Arg.getAsType()),
6802                               /*isNullPtr*/ false, Arg.getIsDefaulted());
6803 
6804     case TemplateArgument::Pack: {
6805       bool AnyNonCanonArgs = false;
6806       auto CanonArgs = ::getCanonicalTemplateArguments(
6807           *this, Arg.pack_elements(), AnyNonCanonArgs);
6808       if (!AnyNonCanonArgs)
6809         return Arg;
6810       return TemplateArgument::CreatePackCopy(const_cast<ASTContext &>(*this),
6811                                               CanonArgs);
6812     }
6813   }
6814 
6815   // Silence GCC warning
6816   llvm_unreachable("Unhandled template argument kind");
6817 }
6818 
6819 NestedNameSpecifier *
6820 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6821   if (!NNS)
6822     return nullptr;
6823 
6824   switch (NNS->getKind()) {
6825   case NestedNameSpecifier::Identifier:
6826     // Canonicalize the prefix but keep the identifier the same.
6827     return NestedNameSpecifier::Create(*this,
6828                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6829                                        NNS->getAsIdentifier());
6830 
6831   case NestedNameSpecifier::Namespace:
6832     // A namespace is canonical; build a nested-name-specifier with
6833     // this namespace and no prefix.
6834     return NestedNameSpecifier::Create(*this, nullptr,
6835                                  NNS->getAsNamespace()->getOriginalNamespace());
6836 
6837   case NestedNameSpecifier::NamespaceAlias:
6838     // A namespace is canonical; build a nested-name-specifier with
6839     // this namespace and no prefix.
6840     return NestedNameSpecifier::Create(*this, nullptr,
6841                                     NNS->getAsNamespaceAlias()->getNamespace()
6842                                                       ->getOriginalNamespace());
6843 
6844   // The difference between TypeSpec and TypeSpecWithTemplate is that the
6845   // latter will have the 'template' keyword when printed.
6846   case NestedNameSpecifier::TypeSpec:
6847   case NestedNameSpecifier::TypeSpecWithTemplate: {
6848     const Type *T = getCanonicalType(NNS->getAsType());
6849 
6850     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6851     // break it apart into its prefix and identifier, then reconsititute those
6852     // as the canonical nested-name-specifier. This is required to canonicalize
6853     // a dependent nested-name-specifier involving typedefs of dependent-name
6854     // types, e.g.,
6855     //   typedef typename T::type T1;
6856     //   typedef typename T1::type T2;
6857     if (const auto *DNT = T->getAs<DependentNameType>())
6858       return NestedNameSpecifier::Create(
6859           *this, DNT->getQualifier(),
6860           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6861     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6862       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6863                                          const_cast<Type *>(T));
6864 
6865     // TODO: Set 'Template' parameter to true for other template types.
6866     return NestedNameSpecifier::Create(*this, nullptr, false,
6867                                        const_cast<Type *>(T));
6868   }
6869 
6870   case NestedNameSpecifier::Global:
6871   case NestedNameSpecifier::Super:
6872     // The global specifier and __super specifer are canonical and unique.
6873     return NNS;
6874   }
6875 
6876   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6877 }
6878 
6879 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6880   // Handle the non-qualified case efficiently.
6881   if (!T.hasLocalQualifiers()) {
6882     // Handle the common positive case fast.
6883     if (const auto *AT = dyn_cast<ArrayType>(T))
6884       return AT;
6885   }
6886 
6887   // Handle the common negative case fast.
6888   if (!isa<ArrayType>(T.getCanonicalType()))
6889     return nullptr;
6890 
6891   // Apply any qualifiers from the array type to the element type.  This
6892   // implements C99 6.7.3p8: "If the specification of an array type includes
6893   // any type qualifiers, the element type is so qualified, not the array type."
6894 
6895   // If we get here, we either have type qualifiers on the type, or we have
6896   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6897   // we must propagate them down into the element type.
6898 
6899   SplitQualType split = T.getSplitDesugaredType();
6900   Qualifiers qs = split.Quals;
6901 
6902   // If we have a simple case, just return now.
6903   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6904   if (!ATy || qs.empty())
6905     return ATy;
6906 
6907   // Otherwise, we have an array and we have qualifiers on it.  Push the
6908   // qualifiers into the array element type and return a new array type.
6909   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6910 
6911   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6912     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6913                                                 CAT->getSizeExpr(),
6914                                                 CAT->getSizeModifier(),
6915                                            CAT->getIndexTypeCVRQualifiers()));
6916   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6917     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6918                                                   IAT->getSizeModifier(),
6919                                            IAT->getIndexTypeCVRQualifiers()));
6920 
6921   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6922     return cast<ArrayType>(
6923                      getDependentSizedArrayType(NewEltTy,
6924                                                 DSAT->getSizeExpr(),
6925                                                 DSAT->getSizeModifier(),
6926                                               DSAT->getIndexTypeCVRQualifiers(),
6927                                                 DSAT->getBracketsRange()));
6928 
6929   const auto *VAT = cast<VariableArrayType>(ATy);
6930   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6931                                               VAT->getSizeExpr(),
6932                                               VAT->getSizeModifier(),
6933                                               VAT->getIndexTypeCVRQualifiers(),
6934                                               VAT->getBracketsRange()));
6935 }
6936 
6937 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6938   if (T->isArrayType() || T->isFunctionType())
6939     return getDecayedType(T);
6940   return T;
6941 }
6942 
6943 QualType ASTContext::getSignatureParameterType(QualType T) const {
6944   T = getVariableArrayDecayedType(T);
6945   T = getAdjustedParameterType(T);
6946   return T.getUnqualifiedType();
6947 }
6948 
6949 QualType ASTContext::getExceptionObjectType(QualType T) const {
6950   // C++ [except.throw]p3:
6951   //   A throw-expression initializes a temporary object, called the exception
6952   //   object, the type of which is determined by removing any top-level
6953   //   cv-qualifiers from the static type of the operand of throw and adjusting
6954   //   the type from "array of T" or "function returning T" to "pointer to T"
6955   //   or "pointer to function returning T", [...]
6956   T = getVariableArrayDecayedType(T);
6957   if (T->isArrayType() || T->isFunctionType())
6958     T = getDecayedType(T);
6959   return T.getUnqualifiedType();
6960 }
6961 
6962 /// getArrayDecayedType - Return the properly qualified result of decaying the
6963 /// specified array type to a pointer.  This operation is non-trivial when
6964 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6965 /// this returns a pointer to a properly qualified element of the array.
6966 ///
6967 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6968 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6969   // Get the element type with 'getAsArrayType' so that we don't lose any
6970   // typedefs in the element type of the array.  This also handles propagation
6971   // of type qualifiers from the array type into the element type if present
6972   // (C99 6.7.3p8).
6973   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6974   assert(PrettyArrayType && "Not an array type!");
6975 
6976   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6977 
6978   // int x[restrict 4] ->  int *restrict
6979   QualType Result = getQualifiedType(PtrTy,
6980                                      PrettyArrayType->getIndexTypeQualifiers());
6981 
6982   // int x[_Nullable] -> int * _Nullable
6983   if (auto Nullability = Ty->getNullability()) {
6984     Result = const_cast<ASTContext *>(this)->getAttributedType(
6985         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6986   }
6987   return Result;
6988 }
6989 
6990 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6991   return getBaseElementType(array->getElementType());
6992 }
6993 
6994 QualType ASTContext::getBaseElementType(QualType type) const {
6995   Qualifiers qs;
6996   while (true) {
6997     SplitQualType split = type.getSplitDesugaredType();
6998     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6999     if (!array) break;
7000 
7001     type = array->getElementType();
7002     qs.addConsistentQualifiers(split.Quals);
7003   }
7004 
7005   return getQualifiedType(type, qs);
7006 }
7007 
7008 /// getConstantArrayElementCount - Returns number of constant array elements.
7009 uint64_t
7010 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
7011   uint64_t ElementCount = 1;
7012   do {
7013     ElementCount *= CA->getSize().getZExtValue();
7014     CA = dyn_cast_or_null<ConstantArrayType>(
7015       CA->getElementType()->getAsArrayTypeUnsafe());
7016   } while (CA);
7017   return ElementCount;
7018 }
7019 
7020 uint64_t ASTContext::getArrayInitLoopExprElementCount(
7021     const ArrayInitLoopExpr *AILE) const {
7022   if (!AILE)
7023     return 0;
7024 
7025   uint64_t ElementCount = 1;
7026 
7027   do {
7028     ElementCount *= AILE->getArraySize().getZExtValue();
7029     AILE = dyn_cast<ArrayInitLoopExpr>(AILE->getSubExpr());
7030   } while (AILE);
7031 
7032   return ElementCount;
7033 }
7034 
7035 /// getFloatingRank - Return a relative rank for floating point types.
7036 /// This routine will assert if passed a built-in type that isn't a float.
7037 static FloatingRank getFloatingRank(QualType T) {
7038   if (const auto *CT = T->getAs<ComplexType>())
7039     return getFloatingRank(CT->getElementType());
7040 
7041   switch (T->castAs<BuiltinType>()->getKind()) {
7042   default: llvm_unreachable("getFloatingRank(): not a floating type");
7043   case BuiltinType::Float16:    return Float16Rank;
7044   case BuiltinType::Half:       return HalfRank;
7045   case BuiltinType::Float:      return FloatRank;
7046   case BuiltinType::Double:     return DoubleRank;
7047   case BuiltinType::LongDouble: return LongDoubleRank;
7048   case BuiltinType::Float128:   return Float128Rank;
7049   case BuiltinType::BFloat16:   return BFloat16Rank;
7050   case BuiltinType::Ibm128:     return Ibm128Rank;
7051   }
7052 }
7053 
7054 /// getFloatingTypeOrder - Compare the rank of the two specified floating
7055 /// point types, ignoring the domain of the type (i.e. 'double' ==
7056 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7057 /// LHS < RHS, return -1.
7058 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
7059   FloatingRank LHSR = getFloatingRank(LHS);
7060   FloatingRank RHSR = getFloatingRank(RHS);
7061 
7062   if (LHSR == RHSR)
7063     return 0;
7064   if (LHSR > RHSR)
7065     return 1;
7066   return -1;
7067 }
7068 
7069 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
7070   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
7071     return 0;
7072   return getFloatingTypeOrder(LHS, RHS);
7073 }
7074 
7075 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
7076 /// routine will assert if passed a built-in type that isn't an integer or enum,
7077 /// or if it is not canonicalized.
7078 unsigned ASTContext::getIntegerRank(const Type *T) const {
7079   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
7080 
7081   // Results in this 'losing' to any type of the same size, but winning if
7082   // larger.
7083   if (const auto *EIT = dyn_cast<BitIntType>(T))
7084     return 0 + (EIT->getNumBits() << 3);
7085 
7086   switch (cast<BuiltinType>(T)->getKind()) {
7087   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
7088   case BuiltinType::Bool:
7089     return 1 + (getIntWidth(BoolTy) << 3);
7090   case BuiltinType::Char_S:
7091   case BuiltinType::Char_U:
7092   case BuiltinType::SChar:
7093   case BuiltinType::UChar:
7094     return 2 + (getIntWidth(CharTy) << 3);
7095   case BuiltinType::Short:
7096   case BuiltinType::UShort:
7097     return 3 + (getIntWidth(ShortTy) << 3);
7098   case BuiltinType::Int:
7099   case BuiltinType::UInt:
7100     return 4 + (getIntWidth(IntTy) << 3);
7101   case BuiltinType::Long:
7102   case BuiltinType::ULong:
7103     return 5 + (getIntWidth(LongTy) << 3);
7104   case BuiltinType::LongLong:
7105   case BuiltinType::ULongLong:
7106     return 6 + (getIntWidth(LongLongTy) << 3);
7107   case BuiltinType::Int128:
7108   case BuiltinType::UInt128:
7109     return 7 + (getIntWidth(Int128Ty) << 3);
7110 
7111   // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of
7112   // their underlying types" [c++20 conv.rank]
7113   case BuiltinType::Char8:
7114     return getIntegerRank(UnsignedCharTy.getTypePtr());
7115   case BuiltinType::Char16:
7116     return getIntegerRank(
7117         getFromTargetType(Target->getChar16Type()).getTypePtr());
7118   case BuiltinType::Char32:
7119     return getIntegerRank(
7120         getFromTargetType(Target->getChar32Type()).getTypePtr());
7121   case BuiltinType::WChar_S:
7122   case BuiltinType::WChar_U:
7123     return getIntegerRank(
7124         getFromTargetType(Target->getWCharType()).getTypePtr());
7125   }
7126 }
7127 
7128 /// Whether this is a promotable bitfield reference according
7129 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
7130 ///
7131 /// \returns the type this bit-field will promote to, or NULL if no
7132 /// promotion occurs.
7133 QualType ASTContext::isPromotableBitField(Expr *E) const {
7134   if (E->isTypeDependent() || E->isValueDependent())
7135     return {};
7136 
7137   // C++ [conv.prom]p5:
7138   //    If the bit-field has an enumerated type, it is treated as any other
7139   //    value of that type for promotion purposes.
7140   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
7141     return {};
7142 
7143   // FIXME: We should not do this unless E->refersToBitField() is true. This
7144   // matters in C where getSourceBitField() will find bit-fields for various
7145   // cases where the source expression is not a bit-field designator.
7146 
7147   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
7148   if (!Field)
7149     return {};
7150 
7151   QualType FT = Field->getType();
7152 
7153   uint64_t BitWidth = Field->getBitWidthValue(*this);
7154   uint64_t IntSize = getTypeSize(IntTy);
7155   // C++ [conv.prom]p5:
7156   //   A prvalue for an integral bit-field can be converted to a prvalue of type
7157   //   int if int can represent all the values of the bit-field; otherwise, it
7158   //   can be converted to unsigned int if unsigned int can represent all the
7159   //   values of the bit-field. If the bit-field is larger yet, no integral
7160   //   promotion applies to it.
7161   // C11 6.3.1.1/2:
7162   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
7163   //   If an int can represent all values of the original type (as restricted by
7164   //   the width, for a bit-field), the value is converted to an int; otherwise,
7165   //   it is converted to an unsigned int.
7166   //
7167   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
7168   //        We perform that promotion here to match GCC and C++.
7169   // FIXME: C does not permit promotion of an enum bit-field whose rank is
7170   //        greater than that of 'int'. We perform that promotion to match GCC.
7171   if (BitWidth < IntSize)
7172     return IntTy;
7173 
7174   if (BitWidth == IntSize)
7175     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
7176 
7177   // Bit-fields wider than int are not subject to promotions, and therefore act
7178   // like the base type. GCC has some weird bugs in this area that we
7179   // deliberately do not follow (GCC follows a pre-standard resolution to
7180   // C's DR315 which treats bit-width as being part of the type, and this leaks
7181   // into their semantics in some cases).
7182   return {};
7183 }
7184 
7185 /// getPromotedIntegerType - Returns the type that Promotable will
7186 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
7187 /// integer type.
7188 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
7189   assert(!Promotable.isNull());
7190   assert(isPromotableIntegerType(Promotable));
7191   if (const auto *ET = Promotable->getAs<EnumType>())
7192     return ET->getDecl()->getPromotionType();
7193 
7194   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
7195     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
7196     // (3.9.1) can be converted to a prvalue of the first of the following
7197     // types that can represent all the values of its underlying type:
7198     // int, unsigned int, long int, unsigned long int, long long int, or
7199     // unsigned long long int [...]
7200     // FIXME: Is there some better way to compute this?
7201     if (BT->getKind() == BuiltinType::WChar_S ||
7202         BT->getKind() == BuiltinType::WChar_U ||
7203         BT->getKind() == BuiltinType::Char8 ||
7204         BT->getKind() == BuiltinType::Char16 ||
7205         BT->getKind() == BuiltinType::Char32) {
7206       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
7207       uint64_t FromSize = getTypeSize(BT);
7208       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
7209                                   LongLongTy, UnsignedLongLongTy };
7210       for (const auto &PT : PromoteTypes) {
7211         uint64_t ToSize = getTypeSize(PT);
7212         if (FromSize < ToSize ||
7213             (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType()))
7214           return PT;
7215       }
7216       llvm_unreachable("char type should fit into long long");
7217     }
7218   }
7219 
7220   // At this point, we should have a signed or unsigned integer type.
7221   if (Promotable->isSignedIntegerType())
7222     return IntTy;
7223   uint64_t PromotableSize = getIntWidth(Promotable);
7224   uint64_t IntSize = getIntWidth(IntTy);
7225   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
7226   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
7227 }
7228 
7229 /// Recurses in pointer/array types until it finds an objc retainable
7230 /// type and returns its ownership.
7231 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
7232   while (!T.isNull()) {
7233     if (T.getObjCLifetime() != Qualifiers::OCL_None)
7234       return T.getObjCLifetime();
7235     if (T->isArrayType())
7236       T = getBaseElementType(T);
7237     else if (const auto *PT = T->getAs<PointerType>())
7238       T = PT->getPointeeType();
7239     else if (const auto *RT = T->getAs<ReferenceType>())
7240       T = RT->getPointeeType();
7241     else
7242       break;
7243   }
7244 
7245   return Qualifiers::OCL_None;
7246 }
7247 
7248 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
7249   // Incomplete enum types are not treated as integer types.
7250   // FIXME: In C++, enum types are never integer types.
7251   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
7252     return ET->getDecl()->getIntegerType().getTypePtr();
7253   return nullptr;
7254 }
7255 
7256 /// getIntegerTypeOrder - Returns the highest ranked integer type:
7257 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7258 /// LHS < RHS, return -1.
7259 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
7260   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
7261   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
7262 
7263   // Unwrap enums to their underlying type.
7264   if (const auto *ET = dyn_cast<EnumType>(LHSC))
7265     LHSC = getIntegerTypeForEnum(ET);
7266   if (const auto *ET = dyn_cast<EnumType>(RHSC))
7267     RHSC = getIntegerTypeForEnum(ET);
7268 
7269   if (LHSC == RHSC) return 0;
7270 
7271   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
7272   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
7273 
7274   unsigned LHSRank = getIntegerRank(LHSC);
7275   unsigned RHSRank = getIntegerRank(RHSC);
7276 
7277   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
7278     if (LHSRank == RHSRank) return 0;
7279     return LHSRank > RHSRank ? 1 : -1;
7280   }
7281 
7282   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
7283   if (LHSUnsigned) {
7284     // If the unsigned [LHS] type is larger, return it.
7285     if (LHSRank >= RHSRank)
7286       return 1;
7287 
7288     // If the signed type can represent all values of the unsigned type, it
7289     // wins.  Because we are dealing with 2's complement and types that are
7290     // powers of two larger than each other, this is always safe.
7291     return -1;
7292   }
7293 
7294   // If the unsigned [RHS] type is larger, return it.
7295   if (RHSRank >= LHSRank)
7296     return -1;
7297 
7298   // If the signed type can represent all values of the unsigned type, it
7299   // wins.  Because we are dealing with 2's complement and types that are
7300   // powers of two larger than each other, this is always safe.
7301   return 1;
7302 }
7303 
7304 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
7305   if (CFConstantStringTypeDecl)
7306     return CFConstantStringTypeDecl;
7307 
7308   assert(!CFConstantStringTagDecl &&
7309          "tag and typedef should be initialized together");
7310   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
7311   CFConstantStringTagDecl->startDefinition();
7312 
7313   struct {
7314     QualType Type;
7315     const char *Name;
7316   } Fields[5];
7317   unsigned Count = 0;
7318 
7319   /// Objective-C ABI
7320   ///
7321   ///    typedef struct __NSConstantString_tag {
7322   ///      const int *isa;
7323   ///      int flags;
7324   ///      const char *str;
7325   ///      long length;
7326   ///    } __NSConstantString;
7327   ///
7328   /// Swift ABI (4.1, 4.2)
7329   ///
7330   ///    typedef struct __NSConstantString_tag {
7331   ///      uintptr_t _cfisa;
7332   ///      uintptr_t _swift_rc;
7333   ///      _Atomic(uint64_t) _cfinfoa;
7334   ///      const char *_ptr;
7335   ///      uint32_t _length;
7336   ///    } __NSConstantString;
7337   ///
7338   /// Swift ABI (5.0)
7339   ///
7340   ///    typedef struct __NSConstantString_tag {
7341   ///      uintptr_t _cfisa;
7342   ///      uintptr_t _swift_rc;
7343   ///      _Atomic(uint64_t) _cfinfoa;
7344   ///      const char *_ptr;
7345   ///      uintptr_t _length;
7346   ///    } __NSConstantString;
7347 
7348   const auto CFRuntime = getLangOpts().CFRuntime;
7349   if (static_cast<unsigned>(CFRuntime) <
7350       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
7351     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
7352     Fields[Count++] = { IntTy, "flags" };
7353     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
7354     Fields[Count++] = { LongTy, "length" };
7355   } else {
7356     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
7357     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
7358     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
7359     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
7360     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
7361         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
7362       Fields[Count++] = { IntTy, "_ptr" };
7363     else
7364       Fields[Count++] = { getUIntPtrType(), "_ptr" };
7365   }
7366 
7367   // Create fields
7368   for (unsigned i = 0; i < Count; ++i) {
7369     FieldDecl *Field =
7370         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
7371                           SourceLocation(), &Idents.get(Fields[i].Name),
7372                           Fields[i].Type, /*TInfo=*/nullptr,
7373                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7374     Field->setAccess(AS_public);
7375     CFConstantStringTagDecl->addDecl(Field);
7376   }
7377 
7378   CFConstantStringTagDecl->completeDefinition();
7379   // This type is designed to be compatible with NSConstantString, but cannot
7380   // use the same name, since NSConstantString is an interface.
7381   auto tagType = getTagDeclType(CFConstantStringTagDecl);
7382   CFConstantStringTypeDecl =
7383       buildImplicitTypedef(tagType, "__NSConstantString");
7384 
7385   return CFConstantStringTypeDecl;
7386 }
7387 
7388 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
7389   if (!CFConstantStringTagDecl)
7390     getCFConstantStringDecl(); // Build the tag and the typedef.
7391   return CFConstantStringTagDecl;
7392 }
7393 
7394 // getCFConstantStringType - Return the type used for constant CFStrings.
7395 QualType ASTContext::getCFConstantStringType() const {
7396   return getTypedefType(getCFConstantStringDecl());
7397 }
7398 
7399 QualType ASTContext::getObjCSuperType() const {
7400   if (ObjCSuperType.isNull()) {
7401     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
7402     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
7403     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
7404   }
7405   return ObjCSuperType;
7406 }
7407 
7408 void ASTContext::setCFConstantStringType(QualType T) {
7409   const auto *TD = T->castAs<TypedefType>();
7410   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
7411   const auto *TagType =
7412       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
7413   CFConstantStringTagDecl = TagType->getDecl();
7414 }
7415 
7416 QualType ASTContext::getBlockDescriptorType() const {
7417   if (BlockDescriptorType)
7418     return getTagDeclType(BlockDescriptorType);
7419 
7420   RecordDecl *RD;
7421   // FIXME: Needs the FlagAppleBlock bit.
7422   RD = buildImplicitRecord("__block_descriptor");
7423   RD->startDefinition();
7424 
7425   QualType FieldTypes[] = {
7426     UnsignedLongTy,
7427     UnsignedLongTy,
7428   };
7429 
7430   static const char *const FieldNames[] = {
7431     "reserved",
7432     "Size"
7433   };
7434 
7435   for (size_t i = 0; i < 2; ++i) {
7436     FieldDecl *Field = FieldDecl::Create(
7437         *this, RD, SourceLocation(), SourceLocation(),
7438         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7439         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7440     Field->setAccess(AS_public);
7441     RD->addDecl(Field);
7442   }
7443 
7444   RD->completeDefinition();
7445 
7446   BlockDescriptorType = RD;
7447 
7448   return getTagDeclType(BlockDescriptorType);
7449 }
7450 
7451 QualType ASTContext::getBlockDescriptorExtendedType() const {
7452   if (BlockDescriptorExtendedType)
7453     return getTagDeclType(BlockDescriptorExtendedType);
7454 
7455   RecordDecl *RD;
7456   // FIXME: Needs the FlagAppleBlock bit.
7457   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
7458   RD->startDefinition();
7459 
7460   QualType FieldTypes[] = {
7461     UnsignedLongTy,
7462     UnsignedLongTy,
7463     getPointerType(VoidPtrTy),
7464     getPointerType(VoidPtrTy)
7465   };
7466 
7467   static const char *const FieldNames[] = {
7468     "reserved",
7469     "Size",
7470     "CopyFuncPtr",
7471     "DestroyFuncPtr"
7472   };
7473 
7474   for (size_t i = 0; i < 4; ++i) {
7475     FieldDecl *Field = FieldDecl::Create(
7476         *this, RD, SourceLocation(), SourceLocation(),
7477         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7478         /*BitWidth=*/nullptr,
7479         /*Mutable=*/false, ICIS_NoInit);
7480     Field->setAccess(AS_public);
7481     RD->addDecl(Field);
7482   }
7483 
7484   RD->completeDefinition();
7485 
7486   BlockDescriptorExtendedType = RD;
7487   return getTagDeclType(BlockDescriptorExtendedType);
7488 }
7489 
7490 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
7491   const auto *BT = dyn_cast<BuiltinType>(T);
7492 
7493   if (!BT) {
7494     if (isa<PipeType>(T))
7495       return OCLTK_Pipe;
7496 
7497     return OCLTK_Default;
7498   }
7499 
7500   switch (BT->getKind()) {
7501 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
7502   case BuiltinType::Id:                                                        \
7503     return OCLTK_Image;
7504 #include "clang/Basic/OpenCLImageTypes.def"
7505 
7506   case BuiltinType::OCLClkEvent:
7507     return OCLTK_ClkEvent;
7508 
7509   case BuiltinType::OCLEvent:
7510     return OCLTK_Event;
7511 
7512   case BuiltinType::OCLQueue:
7513     return OCLTK_Queue;
7514 
7515   case BuiltinType::OCLReserveID:
7516     return OCLTK_ReserveID;
7517 
7518   case BuiltinType::OCLSampler:
7519     return OCLTK_Sampler;
7520 
7521   default:
7522     return OCLTK_Default;
7523   }
7524 }
7525 
7526 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
7527   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
7528 }
7529 
7530 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
7531 /// requires copy/dispose. Note that this must match the logic
7532 /// in buildByrefHelpers.
7533 bool ASTContext::BlockRequiresCopying(QualType Ty,
7534                                       const VarDecl *D) {
7535   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
7536     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
7537     if (!copyExpr && record->hasTrivialDestructor()) return false;
7538 
7539     return true;
7540   }
7541 
7542   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
7543   // move or destroy.
7544   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
7545     return true;
7546 
7547   if (!Ty->isObjCRetainableType()) return false;
7548 
7549   Qualifiers qs = Ty.getQualifiers();
7550 
7551   // If we have lifetime, that dominates.
7552   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
7553     switch (lifetime) {
7554       case Qualifiers::OCL_None: llvm_unreachable("impossible");
7555 
7556       // These are just bits as far as the runtime is concerned.
7557       case Qualifiers::OCL_ExplicitNone:
7558       case Qualifiers::OCL_Autoreleasing:
7559         return false;
7560 
7561       // These cases should have been taken care of when checking the type's
7562       // non-triviality.
7563       case Qualifiers::OCL_Weak:
7564       case Qualifiers::OCL_Strong:
7565         llvm_unreachable("impossible");
7566     }
7567     llvm_unreachable("fell out of lifetime switch!");
7568   }
7569   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
7570           Ty->isObjCObjectPointerType());
7571 }
7572 
7573 bool ASTContext::getByrefLifetime(QualType Ty,
7574                               Qualifiers::ObjCLifetime &LifeTime,
7575                               bool &HasByrefExtendedLayout) const {
7576   if (!getLangOpts().ObjC ||
7577       getLangOpts().getGC() != LangOptions::NonGC)
7578     return false;
7579 
7580   HasByrefExtendedLayout = false;
7581   if (Ty->isRecordType()) {
7582     HasByrefExtendedLayout = true;
7583     LifeTime = Qualifiers::OCL_None;
7584   } else if ((LifeTime = Ty.getObjCLifetime())) {
7585     // Honor the ARC qualifiers.
7586   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
7587     // The MRR rule.
7588     LifeTime = Qualifiers::OCL_ExplicitNone;
7589   } else {
7590     LifeTime = Qualifiers::OCL_None;
7591   }
7592   return true;
7593 }
7594 
7595 CanQualType ASTContext::getNSUIntegerType() const {
7596   assert(Target && "Expected target to be initialized");
7597   const llvm::Triple &T = Target->getTriple();
7598   // Windows is LLP64 rather than LP64
7599   if (T.isOSWindows() && T.isArch64Bit())
7600     return UnsignedLongLongTy;
7601   return UnsignedLongTy;
7602 }
7603 
7604 CanQualType ASTContext::getNSIntegerType() const {
7605   assert(Target && "Expected target to be initialized");
7606   const llvm::Triple &T = Target->getTriple();
7607   // Windows is LLP64 rather than LP64
7608   if (T.isOSWindows() && T.isArch64Bit())
7609     return LongLongTy;
7610   return LongTy;
7611 }
7612 
7613 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
7614   if (!ObjCInstanceTypeDecl)
7615     ObjCInstanceTypeDecl =
7616         buildImplicitTypedef(getObjCIdType(), "instancetype");
7617   return ObjCInstanceTypeDecl;
7618 }
7619 
7620 // This returns true if a type has been typedefed to BOOL:
7621 // typedef <type> BOOL;
7622 static bool isTypeTypedefedAsBOOL(QualType T) {
7623   if (const auto *TT = dyn_cast<TypedefType>(T))
7624     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
7625       return II->isStr("BOOL");
7626 
7627   return false;
7628 }
7629 
7630 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
7631 /// purpose.
7632 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
7633   if (!type->isIncompleteArrayType() && type->isIncompleteType())
7634     return CharUnits::Zero();
7635 
7636   CharUnits sz = getTypeSizeInChars(type);
7637 
7638   // Make all integer and enum types at least as large as an int
7639   if (sz.isPositive() && type->isIntegralOrEnumerationType())
7640     sz = std::max(sz, getTypeSizeInChars(IntTy));
7641   // Treat arrays as pointers, since that's how they're passed in.
7642   else if (type->isArrayType())
7643     sz = getTypeSizeInChars(VoidPtrTy);
7644   return sz;
7645 }
7646 
7647 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
7648   return getTargetInfo().getCXXABI().isMicrosoft() &&
7649          VD->isStaticDataMember() &&
7650          VD->getType()->isIntegralOrEnumerationType() &&
7651          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
7652 }
7653 
7654 ASTContext::InlineVariableDefinitionKind
7655 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
7656   if (!VD->isInline())
7657     return InlineVariableDefinitionKind::None;
7658 
7659   // In almost all cases, it's a weak definition.
7660   auto *First = VD->getFirstDecl();
7661   if (First->isInlineSpecified() || !First->isStaticDataMember())
7662     return InlineVariableDefinitionKind::Weak;
7663 
7664   // If there's a file-context declaration in this translation unit, it's a
7665   // non-discardable definition.
7666   for (auto *D : VD->redecls())
7667     if (D->getLexicalDeclContext()->isFileContext() &&
7668         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
7669       return InlineVariableDefinitionKind::Strong;
7670 
7671   // If we've not seen one yet, we don't know.
7672   return InlineVariableDefinitionKind::WeakUnknown;
7673 }
7674 
7675 static std::string charUnitsToString(const CharUnits &CU) {
7676   return llvm::itostr(CU.getQuantity());
7677 }
7678 
7679 /// getObjCEncodingForBlock - Return the encoded type for this block
7680 /// declaration.
7681 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
7682   std::string S;
7683 
7684   const BlockDecl *Decl = Expr->getBlockDecl();
7685   QualType BlockTy =
7686       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
7687   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
7688   // Encode result type.
7689   if (getLangOpts().EncodeExtendedBlockSig)
7690     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
7691                                       true /*Extended*/);
7692   else
7693     getObjCEncodingForType(BlockReturnTy, S);
7694   // Compute size of all parameters.
7695   // Start with computing size of a pointer in number of bytes.
7696   // FIXME: There might(should) be a better way of doing this computation!
7697   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7698   CharUnits ParmOffset = PtrSize;
7699   for (auto *PI : Decl->parameters()) {
7700     QualType PType = PI->getType();
7701     CharUnits sz = getObjCEncodingTypeSize(PType);
7702     if (sz.isZero())
7703       continue;
7704     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
7705     ParmOffset += sz;
7706   }
7707   // Size of the argument frame
7708   S += charUnitsToString(ParmOffset);
7709   // Block pointer and offset.
7710   S += "@?0";
7711 
7712   // Argument types.
7713   ParmOffset = PtrSize;
7714   for (auto *PVDecl : Decl->parameters()) {
7715     QualType PType = PVDecl->getOriginalType();
7716     if (const auto *AT =
7717             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7718       // Use array's original type only if it has known number of
7719       // elements.
7720       if (!isa<ConstantArrayType>(AT))
7721         PType = PVDecl->getType();
7722     } else if (PType->isFunctionType())
7723       PType = PVDecl->getType();
7724     if (getLangOpts().EncodeExtendedBlockSig)
7725       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
7726                                       S, true /*Extended*/);
7727     else
7728       getObjCEncodingForType(PType, S);
7729     S += charUnitsToString(ParmOffset);
7730     ParmOffset += getObjCEncodingTypeSize(PType);
7731   }
7732 
7733   return S;
7734 }
7735 
7736 std::string
7737 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
7738   std::string S;
7739   // Encode result type.
7740   getObjCEncodingForType(Decl->getReturnType(), S);
7741   CharUnits ParmOffset;
7742   // Compute size of all parameters.
7743   for (auto *PI : Decl->parameters()) {
7744     QualType PType = PI->getType();
7745     CharUnits sz = getObjCEncodingTypeSize(PType);
7746     if (sz.isZero())
7747       continue;
7748 
7749     assert(sz.isPositive() &&
7750            "getObjCEncodingForFunctionDecl - Incomplete param type");
7751     ParmOffset += sz;
7752   }
7753   S += charUnitsToString(ParmOffset);
7754   ParmOffset = CharUnits::Zero();
7755 
7756   // Argument types.
7757   for (auto *PVDecl : Decl->parameters()) {
7758     QualType PType = PVDecl->getOriginalType();
7759     if (const auto *AT =
7760             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7761       // Use array's original type only if it has known number of
7762       // elements.
7763       if (!isa<ConstantArrayType>(AT))
7764         PType = PVDecl->getType();
7765     } else if (PType->isFunctionType())
7766       PType = PVDecl->getType();
7767     getObjCEncodingForType(PType, S);
7768     S += charUnitsToString(ParmOffset);
7769     ParmOffset += getObjCEncodingTypeSize(PType);
7770   }
7771 
7772   return S;
7773 }
7774 
7775 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
7776 /// method parameter or return type. If Extended, include class names and
7777 /// block object types.
7778 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7779                                                    QualType T, std::string& S,
7780                                                    bool Extended) const {
7781   // Encode type qualifier, 'in', 'inout', etc. for the parameter.
7782   getObjCEncodingForTypeQualifier(QT, S);
7783   // Encode parameter type.
7784   ObjCEncOptions Options = ObjCEncOptions()
7785                                .setExpandPointedToStructures()
7786                                .setExpandStructures()
7787                                .setIsOutermostType();
7788   if (Extended)
7789     Options.setEncodeBlockParameters().setEncodeClassNames();
7790   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7791 }
7792 
7793 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7794 /// declaration.
7795 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7796                                                      bool Extended) const {
7797   // FIXME: This is not very efficient.
7798   // Encode return type.
7799   std::string S;
7800   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7801                                     Decl->getReturnType(), S, Extended);
7802   // Compute size of all parameters.
7803   // Start with computing size of a pointer in number of bytes.
7804   // FIXME: There might(should) be a better way of doing this computation!
7805   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7806   // The first two arguments (self and _cmd) are pointers; account for
7807   // their size.
7808   CharUnits ParmOffset = 2 * PtrSize;
7809   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7810        E = Decl->sel_param_end(); PI != E; ++PI) {
7811     QualType PType = (*PI)->getType();
7812     CharUnits sz = getObjCEncodingTypeSize(PType);
7813     if (sz.isZero())
7814       continue;
7815 
7816     assert(sz.isPositive() &&
7817            "getObjCEncodingForMethodDecl - Incomplete param type");
7818     ParmOffset += sz;
7819   }
7820   S += charUnitsToString(ParmOffset);
7821   S += "@0:";
7822   S += charUnitsToString(PtrSize);
7823 
7824   // Argument types.
7825   ParmOffset = 2 * PtrSize;
7826   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7827        E = Decl->sel_param_end(); PI != E; ++PI) {
7828     const ParmVarDecl *PVDecl = *PI;
7829     QualType PType = PVDecl->getOriginalType();
7830     if (const auto *AT =
7831             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7832       // Use array's original type only if it has known number of
7833       // elements.
7834       if (!isa<ConstantArrayType>(AT))
7835         PType = PVDecl->getType();
7836     } else if (PType->isFunctionType())
7837       PType = PVDecl->getType();
7838     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7839                                       PType, S, Extended);
7840     S += charUnitsToString(ParmOffset);
7841     ParmOffset += getObjCEncodingTypeSize(PType);
7842   }
7843 
7844   return S;
7845 }
7846 
7847 ObjCPropertyImplDecl *
7848 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7849                                       const ObjCPropertyDecl *PD,
7850                                       const Decl *Container) const {
7851   if (!Container)
7852     return nullptr;
7853   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7854     for (auto *PID : CID->property_impls())
7855       if (PID->getPropertyDecl() == PD)
7856         return PID;
7857   } else {
7858     const auto *OID = cast<ObjCImplementationDecl>(Container);
7859     for (auto *PID : OID->property_impls())
7860       if (PID->getPropertyDecl() == PD)
7861         return PID;
7862   }
7863   return nullptr;
7864 }
7865 
7866 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7867 /// property declaration. If non-NULL, Container must be either an
7868 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7869 /// NULL when getting encodings for protocol properties.
7870 /// Property attributes are stored as a comma-delimited C string. The simple
7871 /// attributes readonly and bycopy are encoded as single characters. The
7872 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7873 /// encoded as single characters, followed by an identifier. Property types
7874 /// are also encoded as a parametrized attribute. The characters used to encode
7875 /// these attributes are defined by the following enumeration:
7876 /// @code
7877 /// enum PropertyAttributes {
7878 /// kPropertyReadOnly = 'R',   // property is read-only.
7879 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7880 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7881 /// kPropertyDynamic = 'D',    // property is dynamic
7882 /// kPropertyGetter = 'G',     // followed by getter selector name
7883 /// kPropertySetter = 'S',     // followed by setter selector name
7884 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7885 /// kPropertyType = 'T'              // followed by old-style type encoding.
7886 /// kPropertyWeak = 'W'              // 'weak' property
7887 /// kPropertyStrong = 'P'            // property GC'able
7888 /// kPropertyNonAtomic = 'N'         // property non-atomic
7889 /// };
7890 /// @endcode
7891 std::string
7892 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7893                                            const Decl *Container) const {
7894   // Collect information from the property implementation decl(s).
7895   bool Dynamic = false;
7896   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7897 
7898   if (ObjCPropertyImplDecl *PropertyImpDecl =
7899       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7900     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7901       Dynamic = true;
7902     else
7903       SynthesizePID = PropertyImpDecl;
7904   }
7905 
7906   // FIXME: This is not very efficient.
7907   std::string S = "T";
7908 
7909   // Encode result type.
7910   // GCC has some special rules regarding encoding of properties which
7911   // closely resembles encoding of ivars.
7912   getObjCEncodingForPropertyType(PD->getType(), S);
7913 
7914   if (PD->isReadOnly()) {
7915     S += ",R";
7916     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7917       S += ",C";
7918     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7919       S += ",&";
7920     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7921       S += ",W";
7922   } else {
7923     switch (PD->getSetterKind()) {
7924     case ObjCPropertyDecl::Assign: break;
7925     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7926     case ObjCPropertyDecl::Retain: S += ",&"; break;
7927     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7928     }
7929   }
7930 
7931   // It really isn't clear at all what this means, since properties
7932   // are "dynamic by default".
7933   if (Dynamic)
7934     S += ",D";
7935 
7936   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7937     S += ",N";
7938 
7939   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7940     S += ",G";
7941     S += PD->getGetterName().getAsString();
7942   }
7943 
7944   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7945     S += ",S";
7946     S += PD->getSetterName().getAsString();
7947   }
7948 
7949   if (SynthesizePID) {
7950     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7951     S += ",V";
7952     S += OID->getNameAsString();
7953   }
7954 
7955   // FIXME: OBJCGC: weak & strong
7956   return S;
7957 }
7958 
7959 /// getLegacyIntegralTypeEncoding -
7960 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7961 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7962 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
7963 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7964   if (PointeeTy->getAs<TypedefType>()) {
7965     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7966       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7967         PointeeTy = UnsignedIntTy;
7968       else
7969         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7970           PointeeTy = IntTy;
7971     }
7972   }
7973 }
7974 
7975 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7976                                         const FieldDecl *Field,
7977                                         QualType *NotEncodedT) const {
7978   // We follow the behavior of gcc, expanding structures which are
7979   // directly pointed to, and expanding embedded structures. Note that
7980   // these rules are sufficient to prevent recursive encoding of the
7981   // same type.
7982   getObjCEncodingForTypeImpl(T, S,
7983                              ObjCEncOptions()
7984                                  .setExpandPointedToStructures()
7985                                  .setExpandStructures()
7986                                  .setIsOutermostType(),
7987                              Field, NotEncodedT);
7988 }
7989 
7990 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7991                                                 std::string& S) const {
7992   // Encode result type.
7993   // GCC has some special rules regarding encoding of properties which
7994   // closely resembles encoding of ivars.
7995   getObjCEncodingForTypeImpl(T, S,
7996                              ObjCEncOptions()
7997                                  .setExpandPointedToStructures()
7998                                  .setExpandStructures()
7999                                  .setIsOutermostType()
8000                                  .setEncodingProperty(),
8001                              /*Field=*/nullptr);
8002 }
8003 
8004 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
8005                                             const BuiltinType *BT) {
8006     BuiltinType::Kind kind = BT->getKind();
8007     switch (kind) {
8008     case BuiltinType::Void:       return 'v';
8009     case BuiltinType::Bool:       return 'B';
8010     case BuiltinType::Char8:
8011     case BuiltinType::Char_U:
8012     case BuiltinType::UChar:      return 'C';
8013     case BuiltinType::Char16:
8014     case BuiltinType::UShort:     return 'S';
8015     case BuiltinType::Char32:
8016     case BuiltinType::UInt:       return 'I';
8017     case BuiltinType::ULong:
8018         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
8019     case BuiltinType::UInt128:    return 'T';
8020     case BuiltinType::ULongLong:  return 'Q';
8021     case BuiltinType::Char_S:
8022     case BuiltinType::SChar:      return 'c';
8023     case BuiltinType::Short:      return 's';
8024     case BuiltinType::WChar_S:
8025     case BuiltinType::WChar_U:
8026     case BuiltinType::Int:        return 'i';
8027     case BuiltinType::Long:
8028       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
8029     case BuiltinType::LongLong:   return 'q';
8030     case BuiltinType::Int128:     return 't';
8031     case BuiltinType::Float:      return 'f';
8032     case BuiltinType::Double:     return 'd';
8033     case BuiltinType::LongDouble: return 'D';
8034     case BuiltinType::NullPtr:    return '*'; // like char*
8035 
8036     case BuiltinType::BFloat16:
8037     case BuiltinType::Float16:
8038     case BuiltinType::Float128:
8039     case BuiltinType::Ibm128:
8040     case BuiltinType::Half:
8041     case BuiltinType::ShortAccum:
8042     case BuiltinType::Accum:
8043     case BuiltinType::LongAccum:
8044     case BuiltinType::UShortAccum:
8045     case BuiltinType::UAccum:
8046     case BuiltinType::ULongAccum:
8047     case BuiltinType::ShortFract:
8048     case BuiltinType::Fract:
8049     case BuiltinType::LongFract:
8050     case BuiltinType::UShortFract:
8051     case BuiltinType::UFract:
8052     case BuiltinType::ULongFract:
8053     case BuiltinType::SatShortAccum:
8054     case BuiltinType::SatAccum:
8055     case BuiltinType::SatLongAccum:
8056     case BuiltinType::SatUShortAccum:
8057     case BuiltinType::SatUAccum:
8058     case BuiltinType::SatULongAccum:
8059     case BuiltinType::SatShortFract:
8060     case BuiltinType::SatFract:
8061     case BuiltinType::SatLongFract:
8062     case BuiltinType::SatUShortFract:
8063     case BuiltinType::SatUFract:
8064     case BuiltinType::SatULongFract:
8065       // FIXME: potentially need @encodes for these!
8066       return ' ';
8067 
8068 #define SVE_TYPE(Name, Id, SingletonId) \
8069     case BuiltinType::Id:
8070 #include "clang/Basic/AArch64SVEACLETypes.def"
8071 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
8072 #include "clang/Basic/RISCVVTypes.def"
8073 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
8074 #include "clang/Basic/WebAssemblyReferenceTypes.def"
8075       {
8076         DiagnosticsEngine &Diags = C->getDiagnostics();
8077         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
8078                                                 "cannot yet @encode type %0");
8079         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
8080         return ' ';
8081       }
8082 
8083     case BuiltinType::ObjCId:
8084     case BuiltinType::ObjCClass:
8085     case BuiltinType::ObjCSel:
8086       llvm_unreachable("@encoding ObjC primitive type");
8087 
8088     // OpenCL and placeholder types don't need @encodings.
8089 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8090     case BuiltinType::Id:
8091 #include "clang/Basic/OpenCLImageTypes.def"
8092 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
8093     case BuiltinType::Id:
8094 #include "clang/Basic/OpenCLExtensionTypes.def"
8095     case BuiltinType::OCLEvent:
8096     case BuiltinType::OCLClkEvent:
8097     case BuiltinType::OCLQueue:
8098     case BuiltinType::OCLReserveID:
8099     case BuiltinType::OCLSampler:
8100     case BuiltinType::Dependent:
8101 #define PPC_VECTOR_TYPE(Name, Id, Size) \
8102     case BuiltinType::Id:
8103 #include "clang/Basic/PPCTypes.def"
8104 #define BUILTIN_TYPE(KIND, ID)
8105 #define PLACEHOLDER_TYPE(KIND, ID) \
8106     case BuiltinType::KIND:
8107 #include "clang/AST/BuiltinTypes.def"
8108       llvm_unreachable("invalid builtin type for @encode");
8109     }
8110     llvm_unreachable("invalid BuiltinType::Kind value");
8111 }
8112 
8113 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
8114   EnumDecl *Enum = ET->getDecl();
8115 
8116   // The encoding of an non-fixed enum type is always 'i', regardless of size.
8117   if (!Enum->isFixed())
8118     return 'i';
8119 
8120   // The encoding of a fixed enum type matches its fixed underlying type.
8121   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
8122   return getObjCEncodingForPrimitiveType(C, BT);
8123 }
8124 
8125 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
8126                            QualType T, const FieldDecl *FD) {
8127   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
8128   S += 'b';
8129   // The NeXT runtime encodes bit fields as b followed by the number of bits.
8130   // The GNU runtime requires more information; bitfields are encoded as b,
8131   // then the offset (in bits) of the first element, then the type of the
8132   // bitfield, then the size in bits.  For example, in this structure:
8133   //
8134   // struct
8135   // {
8136   //    int integer;
8137   //    int flags:2;
8138   // };
8139   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
8140   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
8141   // information is not especially sensible, but we're stuck with it for
8142   // compatibility with GCC, although providing it breaks anything that
8143   // actually uses runtime introspection and wants to work on both runtimes...
8144   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
8145     uint64_t Offset;
8146 
8147     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
8148       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
8149                                          IVD);
8150     } else {
8151       const RecordDecl *RD = FD->getParent();
8152       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
8153       Offset = RL.getFieldOffset(FD->getFieldIndex());
8154     }
8155 
8156     S += llvm::utostr(Offset);
8157 
8158     if (const auto *ET = T->getAs<EnumType>())
8159       S += ObjCEncodingForEnumType(Ctx, ET);
8160     else {
8161       const auto *BT = T->castAs<BuiltinType>();
8162       S += getObjCEncodingForPrimitiveType(Ctx, BT);
8163     }
8164   }
8165   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
8166 }
8167 
8168 // Helper function for determining whether the encoded type string would include
8169 // a template specialization type.
8170 static bool hasTemplateSpecializationInEncodedString(const Type *T,
8171                                                      bool VisitBasesAndFields) {
8172   T = T->getBaseElementTypeUnsafe();
8173 
8174   if (auto *PT = T->getAs<PointerType>())
8175     return hasTemplateSpecializationInEncodedString(
8176         PT->getPointeeType().getTypePtr(), false);
8177 
8178   auto *CXXRD = T->getAsCXXRecordDecl();
8179 
8180   if (!CXXRD)
8181     return false;
8182 
8183   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
8184     return true;
8185 
8186   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
8187     return false;
8188 
8189   for (const auto &B : CXXRD->bases())
8190     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
8191                                                  true))
8192       return true;
8193 
8194   for (auto *FD : CXXRD->fields())
8195     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
8196                                                  true))
8197       return true;
8198 
8199   return false;
8200 }
8201 
8202 // FIXME: Use SmallString for accumulating string.
8203 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
8204                                             const ObjCEncOptions Options,
8205                                             const FieldDecl *FD,
8206                                             QualType *NotEncodedT) const {
8207   CanQualType CT = getCanonicalType(T);
8208   switch (CT->getTypeClass()) {
8209   case Type::Builtin:
8210   case Type::Enum:
8211     if (FD && FD->isBitField())
8212       return EncodeBitField(this, S, T, FD);
8213     if (const auto *BT = dyn_cast<BuiltinType>(CT))
8214       S += getObjCEncodingForPrimitiveType(this, BT);
8215     else
8216       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
8217     return;
8218 
8219   case Type::Complex:
8220     S += 'j';
8221     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
8222                                ObjCEncOptions(),
8223                                /*Field=*/nullptr);
8224     return;
8225 
8226   case Type::Atomic:
8227     S += 'A';
8228     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
8229                                ObjCEncOptions(),
8230                                /*Field=*/nullptr);
8231     return;
8232 
8233   // encoding for pointer or reference types.
8234   case Type::Pointer:
8235   case Type::LValueReference:
8236   case Type::RValueReference: {
8237     QualType PointeeTy;
8238     if (isa<PointerType>(CT)) {
8239       const auto *PT = T->castAs<PointerType>();
8240       if (PT->isObjCSelType()) {
8241         S += ':';
8242         return;
8243       }
8244       PointeeTy = PT->getPointeeType();
8245     } else {
8246       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
8247     }
8248 
8249     bool isReadOnly = false;
8250     // For historical/compatibility reasons, the read-only qualifier of the
8251     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
8252     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
8253     // Also, do not emit the 'r' for anything but the outermost type!
8254     if (T->getAs<TypedefType>()) {
8255       if (Options.IsOutermostType() && T.isConstQualified()) {
8256         isReadOnly = true;
8257         S += 'r';
8258       }
8259     } else if (Options.IsOutermostType()) {
8260       QualType P = PointeeTy;
8261       while (auto PT = P->getAs<PointerType>())
8262         P = PT->getPointeeType();
8263       if (P.isConstQualified()) {
8264         isReadOnly = true;
8265         S += 'r';
8266       }
8267     }
8268     if (isReadOnly) {
8269       // Another legacy compatibility encoding. Some ObjC qualifier and type
8270       // combinations need to be rearranged.
8271       // Rewrite "in const" from "nr" to "rn"
8272       if (StringRef(S).endswith("nr"))
8273         S.replace(S.end()-2, S.end(), "rn");
8274     }
8275 
8276     if (PointeeTy->isCharType()) {
8277       // char pointer types should be encoded as '*' unless it is a
8278       // type that has been typedef'd to 'BOOL'.
8279       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
8280         S += '*';
8281         return;
8282       }
8283     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
8284       // GCC binary compat: Need to convert "struct objc_class *" to "#".
8285       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
8286         S += '#';
8287         return;
8288       }
8289       // GCC binary compat: Need to convert "struct objc_object *" to "@".
8290       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
8291         S += '@';
8292         return;
8293       }
8294       // If the encoded string for the class includes template names, just emit
8295       // "^v" for pointers to the class.
8296       if (getLangOpts().CPlusPlus &&
8297           (!getLangOpts().EncodeCXXClassTemplateSpec &&
8298            hasTemplateSpecializationInEncodedString(
8299                RTy, Options.ExpandPointedToStructures()))) {
8300         S += "^v";
8301         return;
8302       }
8303       // fall through...
8304     }
8305     S += '^';
8306     getLegacyIntegralTypeEncoding(PointeeTy);
8307 
8308     ObjCEncOptions NewOptions;
8309     if (Options.ExpandPointedToStructures())
8310       NewOptions.setExpandStructures();
8311     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
8312                                /*Field=*/nullptr, NotEncodedT);
8313     return;
8314   }
8315 
8316   case Type::ConstantArray:
8317   case Type::IncompleteArray:
8318   case Type::VariableArray: {
8319     const auto *AT = cast<ArrayType>(CT);
8320 
8321     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
8322       // Incomplete arrays are encoded as a pointer to the array element.
8323       S += '^';
8324 
8325       getObjCEncodingForTypeImpl(
8326           AT->getElementType(), S,
8327           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
8328     } else {
8329       S += '[';
8330 
8331       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
8332         S += llvm::utostr(CAT->getSize().getZExtValue());
8333       else {
8334         //Variable length arrays are encoded as a regular array with 0 elements.
8335         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
8336                "Unknown array type!");
8337         S += '0';
8338       }
8339 
8340       getObjCEncodingForTypeImpl(
8341           AT->getElementType(), S,
8342           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
8343           NotEncodedT);
8344       S += ']';
8345     }
8346     return;
8347   }
8348 
8349   case Type::FunctionNoProto:
8350   case Type::FunctionProto:
8351     S += '?';
8352     return;
8353 
8354   case Type::Record: {
8355     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
8356     S += RDecl->isUnion() ? '(' : '{';
8357     // Anonymous structures print as '?'
8358     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
8359       S += II->getName();
8360       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
8361         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
8362         llvm::raw_string_ostream OS(S);
8363         printTemplateArgumentList(OS, TemplateArgs.asArray(),
8364                                   getPrintingPolicy());
8365       }
8366     } else {
8367       S += '?';
8368     }
8369     if (Options.ExpandStructures()) {
8370       S += '=';
8371       if (!RDecl->isUnion()) {
8372         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
8373       } else {
8374         for (const auto *Field : RDecl->fields()) {
8375           if (FD) {
8376             S += '"';
8377             S += Field->getNameAsString();
8378             S += '"';
8379           }
8380 
8381           // Special case bit-fields.
8382           if (Field->isBitField()) {
8383             getObjCEncodingForTypeImpl(Field->getType(), S,
8384                                        ObjCEncOptions().setExpandStructures(),
8385                                        Field);
8386           } else {
8387             QualType qt = Field->getType();
8388             getLegacyIntegralTypeEncoding(qt);
8389             getObjCEncodingForTypeImpl(
8390                 qt, S,
8391                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
8392                 NotEncodedT);
8393           }
8394         }
8395       }
8396     }
8397     S += RDecl->isUnion() ? ')' : '}';
8398     return;
8399   }
8400 
8401   case Type::BlockPointer: {
8402     const auto *BT = T->castAs<BlockPointerType>();
8403     S += "@?"; // Unlike a pointer-to-function, which is "^?".
8404     if (Options.EncodeBlockParameters()) {
8405       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
8406 
8407       S += '<';
8408       // Block return type
8409       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
8410                                  Options.forComponentType(), FD, NotEncodedT);
8411       // Block self
8412       S += "@?";
8413       // Block parameters
8414       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
8415         for (const auto &I : FPT->param_types())
8416           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
8417                                      NotEncodedT);
8418       }
8419       S += '>';
8420     }
8421     return;
8422   }
8423 
8424   case Type::ObjCObject: {
8425     // hack to match legacy encoding of *id and *Class
8426     QualType Ty = getObjCObjectPointerType(CT);
8427     if (Ty->isObjCIdType()) {
8428       S += "{objc_object=}";
8429       return;
8430     }
8431     else if (Ty->isObjCClassType()) {
8432       S += "{objc_class=}";
8433       return;
8434     }
8435     // TODO: Double check to make sure this intentionally falls through.
8436     [[fallthrough]];
8437   }
8438 
8439   case Type::ObjCInterface: {
8440     // Ignore protocol qualifiers when mangling at this level.
8441     // @encode(class_name)
8442     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
8443     S += '{';
8444     S += OI->getObjCRuntimeNameAsString();
8445     if (Options.ExpandStructures()) {
8446       S += '=';
8447       SmallVector<const ObjCIvarDecl*, 32> Ivars;
8448       DeepCollectObjCIvars(OI, true, Ivars);
8449       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
8450         const FieldDecl *Field = Ivars[i];
8451         if (Field->isBitField())
8452           getObjCEncodingForTypeImpl(Field->getType(), S,
8453                                      ObjCEncOptions().setExpandStructures(),
8454                                      Field);
8455         else
8456           getObjCEncodingForTypeImpl(Field->getType(), S,
8457                                      ObjCEncOptions().setExpandStructures(), FD,
8458                                      NotEncodedT);
8459       }
8460     }
8461     S += '}';
8462     return;
8463   }
8464 
8465   case Type::ObjCObjectPointer: {
8466     const auto *OPT = T->castAs<ObjCObjectPointerType>();
8467     if (OPT->isObjCIdType()) {
8468       S += '@';
8469       return;
8470     }
8471 
8472     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
8473       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
8474       // Since this is a binary compatibility issue, need to consult with
8475       // runtime folks. Fortunately, this is a *very* obscure construct.
8476       S += '#';
8477       return;
8478     }
8479 
8480     if (OPT->isObjCQualifiedIdType()) {
8481       getObjCEncodingForTypeImpl(
8482           getObjCIdType(), S,
8483           Options.keepingOnly(ObjCEncOptions()
8484                                   .setExpandPointedToStructures()
8485                                   .setExpandStructures()),
8486           FD);
8487       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
8488         // Note that we do extended encoding of protocol qualifier list
8489         // Only when doing ivar or property encoding.
8490         S += '"';
8491         for (const auto *I : OPT->quals()) {
8492           S += '<';
8493           S += I->getObjCRuntimeNameAsString();
8494           S += '>';
8495         }
8496         S += '"';
8497       }
8498       return;
8499     }
8500 
8501     S += '@';
8502     if (OPT->getInterfaceDecl() &&
8503         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
8504       S += '"';
8505       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
8506       for (const auto *I : OPT->quals()) {
8507         S += '<';
8508         S += I->getObjCRuntimeNameAsString();
8509         S += '>';
8510       }
8511       S += '"';
8512     }
8513     return;
8514   }
8515 
8516   // gcc just blithely ignores member pointers.
8517   // FIXME: we should do better than that.  'M' is available.
8518   case Type::MemberPointer:
8519   // This matches gcc's encoding, even though technically it is insufficient.
8520   //FIXME. We should do a better job than gcc.
8521   case Type::Vector:
8522   case Type::ExtVector:
8523   // Until we have a coherent encoding of these three types, issue warning.
8524     if (NotEncodedT)
8525       *NotEncodedT = T;
8526     return;
8527 
8528   case Type::ConstantMatrix:
8529     if (NotEncodedT)
8530       *NotEncodedT = T;
8531     return;
8532 
8533   case Type::BitInt:
8534     if (NotEncodedT)
8535       *NotEncodedT = T;
8536     return;
8537 
8538   // We could see an undeduced auto type here during error recovery.
8539   // Just ignore it.
8540   case Type::Auto:
8541   case Type::DeducedTemplateSpecialization:
8542     return;
8543 
8544   case Type::Pipe:
8545 #define ABSTRACT_TYPE(KIND, BASE)
8546 #define TYPE(KIND, BASE)
8547 #define DEPENDENT_TYPE(KIND, BASE) \
8548   case Type::KIND:
8549 #define NON_CANONICAL_TYPE(KIND, BASE) \
8550   case Type::KIND:
8551 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
8552   case Type::KIND:
8553 #include "clang/AST/TypeNodes.inc"
8554     llvm_unreachable("@encode for dependent type!");
8555   }
8556   llvm_unreachable("bad type kind!");
8557 }
8558 
8559 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
8560                                                  std::string &S,
8561                                                  const FieldDecl *FD,
8562                                                  bool includeVBases,
8563                                                  QualType *NotEncodedT) const {
8564   assert(RDecl && "Expected non-null RecordDecl");
8565   assert(!RDecl->isUnion() && "Should not be called for unions");
8566   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
8567     return;
8568 
8569   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
8570   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
8571   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
8572 
8573   if (CXXRec) {
8574     for (const auto &BI : CXXRec->bases()) {
8575       if (!BI.isVirtual()) {
8576         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8577         if (base->isEmpty())
8578           continue;
8579         uint64_t offs = toBits(layout.getBaseClassOffset(base));
8580         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8581                                   std::make_pair(offs, base));
8582       }
8583     }
8584   }
8585 
8586   unsigned i = 0;
8587   for (FieldDecl *Field : RDecl->fields()) {
8588     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
8589       continue;
8590     uint64_t offs = layout.getFieldOffset(i);
8591     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8592                               std::make_pair(offs, Field));
8593     ++i;
8594   }
8595 
8596   if (CXXRec && includeVBases) {
8597     for (const auto &BI : CXXRec->vbases()) {
8598       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8599       if (base->isEmpty())
8600         continue;
8601       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
8602       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
8603           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
8604         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
8605                                   std::make_pair(offs, base));
8606     }
8607   }
8608 
8609   CharUnits size;
8610   if (CXXRec) {
8611     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
8612   } else {
8613     size = layout.getSize();
8614   }
8615 
8616 #ifndef NDEBUG
8617   uint64_t CurOffs = 0;
8618 #endif
8619   std::multimap<uint64_t, NamedDecl *>::iterator
8620     CurLayObj = FieldOrBaseOffsets.begin();
8621 
8622   if (CXXRec && CXXRec->isDynamicClass() &&
8623       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
8624     if (FD) {
8625       S += "\"_vptr$";
8626       std::string recname = CXXRec->getNameAsString();
8627       if (recname.empty()) recname = "?";
8628       S += recname;
8629       S += '"';
8630     }
8631     S += "^^?";
8632 #ifndef NDEBUG
8633     CurOffs += getTypeSize(VoidPtrTy);
8634 #endif
8635   }
8636 
8637   if (!RDecl->hasFlexibleArrayMember()) {
8638     // Mark the end of the structure.
8639     uint64_t offs = toBits(size);
8640     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8641                               std::make_pair(offs, nullptr));
8642   }
8643 
8644   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
8645 #ifndef NDEBUG
8646     assert(CurOffs <= CurLayObj->first);
8647     if (CurOffs < CurLayObj->first) {
8648       uint64_t padding = CurLayObj->first - CurOffs;
8649       // FIXME: There doesn't seem to be a way to indicate in the encoding that
8650       // packing/alignment of members is different that normal, in which case
8651       // the encoding will be out-of-sync with the real layout.
8652       // If the runtime switches to just consider the size of types without
8653       // taking into account alignment, we could make padding explicit in the
8654       // encoding (e.g. using arrays of chars). The encoding strings would be
8655       // longer then though.
8656       CurOffs += padding;
8657     }
8658 #endif
8659 
8660     NamedDecl *dcl = CurLayObj->second;
8661     if (!dcl)
8662       break; // reached end of structure.
8663 
8664     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
8665       // We expand the bases without their virtual bases since those are going
8666       // in the initial structure. Note that this differs from gcc which
8667       // expands virtual bases each time one is encountered in the hierarchy,
8668       // making the encoding type bigger than it really is.
8669       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
8670                                       NotEncodedT);
8671       assert(!base->isEmpty());
8672 #ifndef NDEBUG
8673       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
8674 #endif
8675     } else {
8676       const auto *field = cast<FieldDecl>(dcl);
8677       if (FD) {
8678         S += '"';
8679         S += field->getNameAsString();
8680         S += '"';
8681       }
8682 
8683       if (field->isBitField()) {
8684         EncodeBitField(this, S, field->getType(), field);
8685 #ifndef NDEBUG
8686         CurOffs += field->getBitWidthValue(*this);
8687 #endif
8688       } else {
8689         QualType qt = field->getType();
8690         getLegacyIntegralTypeEncoding(qt);
8691         getObjCEncodingForTypeImpl(
8692             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
8693             FD, NotEncodedT);
8694 #ifndef NDEBUG
8695         CurOffs += getTypeSize(field->getType());
8696 #endif
8697       }
8698     }
8699   }
8700 }
8701 
8702 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
8703                                                  std::string& S) const {
8704   if (QT & Decl::OBJC_TQ_In)
8705     S += 'n';
8706   if (QT & Decl::OBJC_TQ_Inout)
8707     S += 'N';
8708   if (QT & Decl::OBJC_TQ_Out)
8709     S += 'o';
8710   if (QT & Decl::OBJC_TQ_Bycopy)
8711     S += 'O';
8712   if (QT & Decl::OBJC_TQ_Byref)
8713     S += 'R';
8714   if (QT & Decl::OBJC_TQ_Oneway)
8715     S += 'V';
8716 }
8717 
8718 TypedefDecl *ASTContext::getObjCIdDecl() const {
8719   if (!ObjCIdDecl) {
8720     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
8721     T = getObjCObjectPointerType(T);
8722     ObjCIdDecl = buildImplicitTypedef(T, "id");
8723   }
8724   return ObjCIdDecl;
8725 }
8726 
8727 TypedefDecl *ASTContext::getObjCSelDecl() const {
8728   if (!ObjCSelDecl) {
8729     QualType T = getPointerType(ObjCBuiltinSelTy);
8730     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
8731   }
8732   return ObjCSelDecl;
8733 }
8734 
8735 TypedefDecl *ASTContext::getObjCClassDecl() const {
8736   if (!ObjCClassDecl) {
8737     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
8738     T = getObjCObjectPointerType(T);
8739     ObjCClassDecl = buildImplicitTypedef(T, "Class");
8740   }
8741   return ObjCClassDecl;
8742 }
8743 
8744 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
8745   if (!ObjCProtocolClassDecl) {
8746     ObjCProtocolClassDecl
8747       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
8748                                   SourceLocation(),
8749                                   &Idents.get("Protocol"),
8750                                   /*typeParamList=*/nullptr,
8751                                   /*PrevDecl=*/nullptr,
8752                                   SourceLocation(), true);
8753   }
8754 
8755   return ObjCProtocolClassDecl;
8756 }
8757 
8758 //===----------------------------------------------------------------------===//
8759 // __builtin_va_list Construction Functions
8760 //===----------------------------------------------------------------------===//
8761 
8762 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
8763                                                  StringRef Name) {
8764   // typedef char* __builtin[_ms]_va_list;
8765   QualType T = Context->getPointerType(Context->CharTy);
8766   return Context->buildImplicitTypedef(T, Name);
8767 }
8768 
8769 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
8770   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
8771 }
8772 
8773 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
8774   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
8775 }
8776 
8777 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
8778   // typedef void* __builtin_va_list;
8779   QualType T = Context->getPointerType(Context->VoidTy);
8780   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8781 }
8782 
8783 static TypedefDecl *
8784 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8785   // struct __va_list
8786   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8787   if (Context->getLangOpts().CPlusPlus) {
8788     // namespace std { struct __va_list {
8789     auto *NS = NamespaceDecl::Create(
8790         const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(),
8791         /*Inline=*/false, SourceLocation(), SourceLocation(),
8792         &Context->Idents.get("std"),
8793         /*PrevDecl=*/nullptr, /*Nested=*/false);
8794     NS->setImplicit();
8795     VaListTagDecl->setDeclContext(NS);
8796   }
8797 
8798   VaListTagDecl->startDefinition();
8799 
8800   const size_t NumFields = 5;
8801   QualType FieldTypes[NumFields];
8802   const char *FieldNames[NumFields];
8803 
8804   // void *__stack;
8805   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8806   FieldNames[0] = "__stack";
8807 
8808   // void *__gr_top;
8809   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8810   FieldNames[1] = "__gr_top";
8811 
8812   // void *__vr_top;
8813   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8814   FieldNames[2] = "__vr_top";
8815 
8816   // int __gr_offs;
8817   FieldTypes[3] = Context->IntTy;
8818   FieldNames[3] = "__gr_offs";
8819 
8820   // int __vr_offs;
8821   FieldTypes[4] = Context->IntTy;
8822   FieldNames[4] = "__vr_offs";
8823 
8824   // Create fields
8825   for (unsigned i = 0; i < NumFields; ++i) {
8826     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8827                                          VaListTagDecl,
8828                                          SourceLocation(),
8829                                          SourceLocation(),
8830                                          &Context->Idents.get(FieldNames[i]),
8831                                          FieldTypes[i], /*TInfo=*/nullptr,
8832                                          /*BitWidth=*/nullptr,
8833                                          /*Mutable=*/false,
8834                                          ICIS_NoInit);
8835     Field->setAccess(AS_public);
8836     VaListTagDecl->addDecl(Field);
8837   }
8838   VaListTagDecl->completeDefinition();
8839   Context->VaListTagDecl = VaListTagDecl;
8840   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8841 
8842   // } __builtin_va_list;
8843   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8844 }
8845 
8846 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8847   // typedef struct __va_list_tag {
8848   RecordDecl *VaListTagDecl;
8849 
8850   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8851   VaListTagDecl->startDefinition();
8852 
8853   const size_t NumFields = 5;
8854   QualType FieldTypes[NumFields];
8855   const char *FieldNames[NumFields];
8856 
8857   //   unsigned char gpr;
8858   FieldTypes[0] = Context->UnsignedCharTy;
8859   FieldNames[0] = "gpr";
8860 
8861   //   unsigned char fpr;
8862   FieldTypes[1] = Context->UnsignedCharTy;
8863   FieldNames[1] = "fpr";
8864 
8865   //   unsigned short reserved;
8866   FieldTypes[2] = Context->UnsignedShortTy;
8867   FieldNames[2] = "reserved";
8868 
8869   //   void* overflow_arg_area;
8870   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8871   FieldNames[3] = "overflow_arg_area";
8872 
8873   //   void* reg_save_area;
8874   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8875   FieldNames[4] = "reg_save_area";
8876 
8877   // Create fields
8878   for (unsigned i = 0; i < NumFields; ++i) {
8879     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8880                                          SourceLocation(),
8881                                          SourceLocation(),
8882                                          &Context->Idents.get(FieldNames[i]),
8883                                          FieldTypes[i], /*TInfo=*/nullptr,
8884                                          /*BitWidth=*/nullptr,
8885                                          /*Mutable=*/false,
8886                                          ICIS_NoInit);
8887     Field->setAccess(AS_public);
8888     VaListTagDecl->addDecl(Field);
8889   }
8890   VaListTagDecl->completeDefinition();
8891   Context->VaListTagDecl = VaListTagDecl;
8892   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8893 
8894   // } __va_list_tag;
8895   TypedefDecl *VaListTagTypedefDecl =
8896       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8897 
8898   QualType VaListTagTypedefType =
8899     Context->getTypedefType(VaListTagTypedefDecl);
8900 
8901   // typedef __va_list_tag __builtin_va_list[1];
8902   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8903   QualType VaListTagArrayType
8904     = Context->getConstantArrayType(VaListTagTypedefType,
8905                                     Size, nullptr, ArrayType::Normal, 0);
8906   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8907 }
8908 
8909 static TypedefDecl *
8910 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8911   // struct __va_list_tag {
8912   RecordDecl *VaListTagDecl;
8913   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8914   VaListTagDecl->startDefinition();
8915 
8916   const size_t NumFields = 4;
8917   QualType FieldTypes[NumFields];
8918   const char *FieldNames[NumFields];
8919 
8920   //   unsigned gp_offset;
8921   FieldTypes[0] = Context->UnsignedIntTy;
8922   FieldNames[0] = "gp_offset";
8923 
8924   //   unsigned fp_offset;
8925   FieldTypes[1] = Context->UnsignedIntTy;
8926   FieldNames[1] = "fp_offset";
8927 
8928   //   void* overflow_arg_area;
8929   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8930   FieldNames[2] = "overflow_arg_area";
8931 
8932   //   void* reg_save_area;
8933   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8934   FieldNames[3] = "reg_save_area";
8935 
8936   // Create fields
8937   for (unsigned i = 0; i < NumFields; ++i) {
8938     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8939                                          VaListTagDecl,
8940                                          SourceLocation(),
8941                                          SourceLocation(),
8942                                          &Context->Idents.get(FieldNames[i]),
8943                                          FieldTypes[i], /*TInfo=*/nullptr,
8944                                          /*BitWidth=*/nullptr,
8945                                          /*Mutable=*/false,
8946                                          ICIS_NoInit);
8947     Field->setAccess(AS_public);
8948     VaListTagDecl->addDecl(Field);
8949   }
8950   VaListTagDecl->completeDefinition();
8951   Context->VaListTagDecl = VaListTagDecl;
8952   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8953 
8954   // };
8955 
8956   // typedef struct __va_list_tag __builtin_va_list[1];
8957   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8958   QualType VaListTagArrayType = Context->getConstantArrayType(
8959       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8960   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8961 }
8962 
8963 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8964   // typedef int __builtin_va_list[4];
8965   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8966   QualType IntArrayType = Context->getConstantArrayType(
8967       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8968   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8969 }
8970 
8971 static TypedefDecl *
8972 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8973   // struct __va_list
8974   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8975   if (Context->getLangOpts().CPlusPlus) {
8976     // namespace std { struct __va_list {
8977     NamespaceDecl *NS;
8978     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8979                                Context->getTranslationUnitDecl(),
8980                                /*Inline=*/false, SourceLocation(),
8981                                SourceLocation(), &Context->Idents.get("std"),
8982                                /*PrevDecl=*/nullptr, /*Nested=*/false);
8983     NS->setImplicit();
8984     VaListDecl->setDeclContext(NS);
8985   }
8986 
8987   VaListDecl->startDefinition();
8988 
8989   // void * __ap;
8990   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8991                                        VaListDecl,
8992                                        SourceLocation(),
8993                                        SourceLocation(),
8994                                        &Context->Idents.get("__ap"),
8995                                        Context->getPointerType(Context->VoidTy),
8996                                        /*TInfo=*/nullptr,
8997                                        /*BitWidth=*/nullptr,
8998                                        /*Mutable=*/false,
8999                                        ICIS_NoInit);
9000   Field->setAccess(AS_public);
9001   VaListDecl->addDecl(Field);
9002 
9003   // };
9004   VaListDecl->completeDefinition();
9005   Context->VaListTagDecl = VaListDecl;
9006 
9007   // typedef struct __va_list __builtin_va_list;
9008   QualType T = Context->getRecordType(VaListDecl);
9009   return Context->buildImplicitTypedef(T, "__builtin_va_list");
9010 }
9011 
9012 static TypedefDecl *
9013 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
9014   // struct __va_list_tag {
9015   RecordDecl *VaListTagDecl;
9016   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
9017   VaListTagDecl->startDefinition();
9018 
9019   const size_t NumFields = 4;
9020   QualType FieldTypes[NumFields];
9021   const char *FieldNames[NumFields];
9022 
9023   //   long __gpr;
9024   FieldTypes[0] = Context->LongTy;
9025   FieldNames[0] = "__gpr";
9026 
9027   //   long __fpr;
9028   FieldTypes[1] = Context->LongTy;
9029   FieldNames[1] = "__fpr";
9030 
9031   //   void *__overflow_arg_area;
9032   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
9033   FieldNames[2] = "__overflow_arg_area";
9034 
9035   //   void *__reg_save_area;
9036   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
9037   FieldNames[3] = "__reg_save_area";
9038 
9039   // Create fields
9040   for (unsigned i = 0; i < NumFields; ++i) {
9041     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
9042                                          VaListTagDecl,
9043                                          SourceLocation(),
9044                                          SourceLocation(),
9045                                          &Context->Idents.get(FieldNames[i]),
9046                                          FieldTypes[i], /*TInfo=*/nullptr,
9047                                          /*BitWidth=*/nullptr,
9048                                          /*Mutable=*/false,
9049                                          ICIS_NoInit);
9050     Field->setAccess(AS_public);
9051     VaListTagDecl->addDecl(Field);
9052   }
9053   VaListTagDecl->completeDefinition();
9054   Context->VaListTagDecl = VaListTagDecl;
9055   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9056 
9057   // };
9058 
9059   // typedef __va_list_tag __builtin_va_list[1];
9060   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9061   QualType VaListTagArrayType = Context->getConstantArrayType(
9062       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
9063 
9064   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9065 }
9066 
9067 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
9068   // typedef struct __va_list_tag {
9069   RecordDecl *VaListTagDecl;
9070   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
9071   VaListTagDecl->startDefinition();
9072 
9073   const size_t NumFields = 3;
9074   QualType FieldTypes[NumFields];
9075   const char *FieldNames[NumFields];
9076 
9077   //   void *CurrentSavedRegisterArea;
9078   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
9079   FieldNames[0] = "__current_saved_reg_area_pointer";
9080 
9081   //   void *SavedRegAreaEnd;
9082   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
9083   FieldNames[1] = "__saved_reg_area_end_pointer";
9084 
9085   //   void *OverflowArea;
9086   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
9087   FieldNames[2] = "__overflow_area_pointer";
9088 
9089   // Create fields
9090   for (unsigned i = 0; i < NumFields; ++i) {
9091     FieldDecl *Field = FieldDecl::Create(
9092         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
9093         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
9094         /*TInfo=*/nullptr,
9095         /*BitWidth=*/nullptr,
9096         /*Mutable=*/false, ICIS_NoInit);
9097     Field->setAccess(AS_public);
9098     VaListTagDecl->addDecl(Field);
9099   }
9100   VaListTagDecl->completeDefinition();
9101   Context->VaListTagDecl = VaListTagDecl;
9102   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9103 
9104   // } __va_list_tag;
9105   TypedefDecl *VaListTagTypedefDecl =
9106       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
9107 
9108   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
9109 
9110   // typedef __va_list_tag __builtin_va_list[1];
9111   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9112   QualType VaListTagArrayType = Context->getConstantArrayType(
9113       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
9114 
9115   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9116 }
9117 
9118 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
9119                                      TargetInfo::BuiltinVaListKind Kind) {
9120   switch (Kind) {
9121   case TargetInfo::CharPtrBuiltinVaList:
9122     return CreateCharPtrBuiltinVaListDecl(Context);
9123   case TargetInfo::VoidPtrBuiltinVaList:
9124     return CreateVoidPtrBuiltinVaListDecl(Context);
9125   case TargetInfo::AArch64ABIBuiltinVaList:
9126     return CreateAArch64ABIBuiltinVaListDecl(Context);
9127   case TargetInfo::PowerABIBuiltinVaList:
9128     return CreatePowerABIBuiltinVaListDecl(Context);
9129   case TargetInfo::X86_64ABIBuiltinVaList:
9130     return CreateX86_64ABIBuiltinVaListDecl(Context);
9131   case TargetInfo::PNaClABIBuiltinVaList:
9132     return CreatePNaClABIBuiltinVaListDecl(Context);
9133   case TargetInfo::AAPCSABIBuiltinVaList:
9134     return CreateAAPCSABIBuiltinVaListDecl(Context);
9135   case TargetInfo::SystemZBuiltinVaList:
9136     return CreateSystemZBuiltinVaListDecl(Context);
9137   case TargetInfo::HexagonBuiltinVaList:
9138     return CreateHexagonBuiltinVaListDecl(Context);
9139   }
9140 
9141   llvm_unreachable("Unhandled __builtin_va_list type kind");
9142 }
9143 
9144 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
9145   if (!BuiltinVaListDecl) {
9146     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
9147     assert(BuiltinVaListDecl->isImplicit());
9148   }
9149 
9150   return BuiltinVaListDecl;
9151 }
9152 
9153 Decl *ASTContext::getVaListTagDecl() const {
9154   // Force the creation of VaListTagDecl by building the __builtin_va_list
9155   // declaration.
9156   if (!VaListTagDecl)
9157     (void)getBuiltinVaListDecl();
9158 
9159   return VaListTagDecl;
9160 }
9161 
9162 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
9163   if (!BuiltinMSVaListDecl)
9164     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
9165 
9166   return BuiltinMSVaListDecl;
9167 }
9168 
9169 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
9170   // Allow redecl custom type checking builtin for HLSL.
9171   if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin &&
9172       BuiltinInfo.hasCustomTypechecking(FD->getBuiltinID()))
9173     return true;
9174   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
9175 }
9176 
9177 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
9178   assert(ObjCConstantStringType.isNull() &&
9179          "'NSConstantString' type already set!");
9180 
9181   ObjCConstantStringType = getObjCInterfaceType(Decl);
9182 }
9183 
9184 /// Retrieve the template name that corresponds to a non-empty
9185 /// lookup.
9186 TemplateName
9187 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
9188                                       UnresolvedSetIterator End) const {
9189   unsigned size = End - Begin;
9190   assert(size > 1 && "set is not overloaded!");
9191 
9192   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
9193                           size * sizeof(FunctionTemplateDecl*));
9194   auto *OT = new (memory) OverloadedTemplateStorage(size);
9195 
9196   NamedDecl **Storage = OT->getStorage();
9197   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
9198     NamedDecl *D = *I;
9199     assert(isa<FunctionTemplateDecl>(D) ||
9200            isa<UnresolvedUsingValueDecl>(D) ||
9201            (isa<UsingShadowDecl>(D) &&
9202             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
9203     *Storage++ = D;
9204   }
9205 
9206   return TemplateName(OT);
9207 }
9208 
9209 /// Retrieve a template name representing an unqualified-id that has been
9210 /// assumed to name a template for ADL purposes.
9211 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
9212   auto *OT = new (*this) AssumedTemplateStorage(Name);
9213   return TemplateName(OT);
9214 }
9215 
9216 /// Retrieve the template name that represents a qualified
9217 /// template name such as \c std::vector.
9218 TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
9219                                                   bool TemplateKeyword,
9220                                                   TemplateName Template) const {
9221   assert(NNS && "Missing nested-name-specifier in qualified template name");
9222 
9223   // FIXME: Canonicalization?
9224   llvm::FoldingSetNodeID ID;
9225   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
9226 
9227   void *InsertPos = nullptr;
9228   QualifiedTemplateName *QTN =
9229     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9230   if (!QTN) {
9231     QTN = new (*this, alignof(QualifiedTemplateName))
9232         QualifiedTemplateName(NNS, TemplateKeyword, Template);
9233     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
9234   }
9235 
9236   return TemplateName(QTN);
9237 }
9238 
9239 /// Retrieve the template name that represents a dependent
9240 /// template name such as \c MetaFun::template apply.
9241 TemplateName
9242 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9243                                      const IdentifierInfo *Name) const {
9244   assert((!NNS || NNS->isDependent()) &&
9245          "Nested name specifier must be dependent");
9246 
9247   llvm::FoldingSetNodeID ID;
9248   DependentTemplateName::Profile(ID, NNS, Name);
9249 
9250   void *InsertPos = nullptr;
9251   DependentTemplateName *QTN =
9252     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9253 
9254   if (QTN)
9255     return TemplateName(QTN);
9256 
9257   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9258   if (CanonNNS == NNS) {
9259     QTN = new (*this, alignof(DependentTemplateName))
9260         DependentTemplateName(NNS, Name);
9261   } else {
9262     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
9263     QTN = new (*this, alignof(DependentTemplateName))
9264         DependentTemplateName(NNS, Name, Canon);
9265     DependentTemplateName *CheckQTN =
9266       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9267     assert(!CheckQTN && "Dependent type name canonicalization broken");
9268     (void)CheckQTN;
9269   }
9270 
9271   DependentTemplateNames.InsertNode(QTN, InsertPos);
9272   return TemplateName(QTN);
9273 }
9274 
9275 /// Retrieve the template name that represents a dependent
9276 /// template name such as \c MetaFun::template operator+.
9277 TemplateName
9278 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9279                                      OverloadedOperatorKind Operator) const {
9280   assert((!NNS || NNS->isDependent()) &&
9281          "Nested name specifier must be dependent");
9282 
9283   llvm::FoldingSetNodeID ID;
9284   DependentTemplateName::Profile(ID, NNS, Operator);
9285 
9286   void *InsertPos = nullptr;
9287   DependentTemplateName *QTN
9288     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9289 
9290   if (QTN)
9291     return TemplateName(QTN);
9292 
9293   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9294   if (CanonNNS == NNS) {
9295     QTN = new (*this, alignof(DependentTemplateName))
9296         DependentTemplateName(NNS, Operator);
9297   } else {
9298     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
9299     QTN = new (*this, alignof(DependentTemplateName))
9300         DependentTemplateName(NNS, Operator, Canon);
9301 
9302     DependentTemplateName *CheckQTN
9303       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9304     assert(!CheckQTN && "Dependent template name canonicalization broken");
9305     (void)CheckQTN;
9306   }
9307 
9308   DependentTemplateNames.InsertNode(QTN, InsertPos);
9309   return TemplateName(QTN);
9310 }
9311 
9312 TemplateName ASTContext::getSubstTemplateTemplateParm(
9313     TemplateName Replacement, Decl *AssociatedDecl, unsigned Index,
9314     std::optional<unsigned> PackIndex) const {
9315   llvm::FoldingSetNodeID ID;
9316   SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl,
9317                                             Index, PackIndex);
9318 
9319   void *insertPos = nullptr;
9320   SubstTemplateTemplateParmStorage *subst
9321     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
9322 
9323   if (!subst) {
9324     subst = new (*this) SubstTemplateTemplateParmStorage(
9325         Replacement, AssociatedDecl, Index, PackIndex);
9326     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
9327   }
9328 
9329   return TemplateName(subst);
9330 }
9331 
9332 TemplateName
9333 ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
9334                                              Decl *AssociatedDecl,
9335                                              unsigned Index, bool Final) const {
9336   auto &Self = const_cast<ASTContext &>(*this);
9337   llvm::FoldingSetNodeID ID;
9338   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, ArgPack,
9339                                                 AssociatedDecl, Index, Final);
9340 
9341   void *InsertPos = nullptr;
9342   SubstTemplateTemplateParmPackStorage *Subst
9343     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
9344 
9345   if (!Subst) {
9346     Subst = new (*this) SubstTemplateTemplateParmPackStorage(
9347         ArgPack.pack_elements(), AssociatedDecl, Index, Final);
9348     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
9349   }
9350 
9351   return TemplateName(Subst);
9352 }
9353 
9354 /// getFromTargetType - Given one of the integer types provided by
9355 /// TargetInfo, produce the corresponding type. The unsigned @p Type
9356 /// is actually a value of type @c TargetInfo::IntType.
9357 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
9358   switch (Type) {
9359   case TargetInfo::NoInt: return {};
9360   case TargetInfo::SignedChar: return SignedCharTy;
9361   case TargetInfo::UnsignedChar: return UnsignedCharTy;
9362   case TargetInfo::SignedShort: return ShortTy;
9363   case TargetInfo::UnsignedShort: return UnsignedShortTy;
9364   case TargetInfo::SignedInt: return IntTy;
9365   case TargetInfo::UnsignedInt: return UnsignedIntTy;
9366   case TargetInfo::SignedLong: return LongTy;
9367   case TargetInfo::UnsignedLong: return UnsignedLongTy;
9368   case TargetInfo::SignedLongLong: return LongLongTy;
9369   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
9370   }
9371 
9372   llvm_unreachable("Unhandled TargetInfo::IntType value");
9373 }
9374 
9375 //===----------------------------------------------------------------------===//
9376 //                        Type Predicates.
9377 //===----------------------------------------------------------------------===//
9378 
9379 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
9380 /// garbage collection attribute.
9381 ///
9382 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
9383   if (getLangOpts().getGC() == LangOptions::NonGC)
9384     return Qualifiers::GCNone;
9385 
9386   assert(getLangOpts().ObjC);
9387   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
9388 
9389   // Default behaviour under objective-C's gc is for ObjC pointers
9390   // (or pointers to them) be treated as though they were declared
9391   // as __strong.
9392   if (GCAttrs == Qualifiers::GCNone) {
9393     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
9394       return Qualifiers::Strong;
9395     else if (Ty->isPointerType())
9396       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
9397   } else {
9398     // It's not valid to set GC attributes on anything that isn't a
9399     // pointer.
9400 #ifndef NDEBUG
9401     QualType CT = Ty->getCanonicalTypeInternal();
9402     while (const auto *AT = dyn_cast<ArrayType>(CT))
9403       CT = AT->getElementType();
9404     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
9405 #endif
9406   }
9407   return GCAttrs;
9408 }
9409 
9410 //===----------------------------------------------------------------------===//
9411 //                        Type Compatibility Testing
9412 //===----------------------------------------------------------------------===//
9413 
9414 /// areCompatVectorTypes - Return true if the two specified vector types are
9415 /// compatible.
9416 static bool areCompatVectorTypes(const VectorType *LHS,
9417                                  const VectorType *RHS) {
9418   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9419   return LHS->getElementType() == RHS->getElementType() &&
9420          LHS->getNumElements() == RHS->getNumElements();
9421 }
9422 
9423 /// areCompatMatrixTypes - Return true if the two specified matrix types are
9424 /// compatible.
9425 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
9426                                  const ConstantMatrixType *RHS) {
9427   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9428   return LHS->getElementType() == RHS->getElementType() &&
9429          LHS->getNumRows() == RHS->getNumRows() &&
9430          LHS->getNumColumns() == RHS->getNumColumns();
9431 }
9432 
9433 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
9434                                           QualType SecondVec) {
9435   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
9436   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
9437 
9438   if (hasSameUnqualifiedType(FirstVec, SecondVec))
9439     return true;
9440 
9441   // Treat Neon vector types and most AltiVec vector types as if they are the
9442   // equivalent GCC vector types.
9443   const auto *First = FirstVec->castAs<VectorType>();
9444   const auto *Second = SecondVec->castAs<VectorType>();
9445   if (First->getNumElements() == Second->getNumElements() &&
9446       hasSameType(First->getElementType(), Second->getElementType()) &&
9447       First->getVectorKind() != VectorType::AltiVecPixel &&
9448       First->getVectorKind() != VectorType::AltiVecBool &&
9449       Second->getVectorKind() != VectorType::AltiVecPixel &&
9450       Second->getVectorKind() != VectorType::AltiVecBool &&
9451       First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9452       First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
9453       Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9454       Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
9455       First->getVectorKind() != VectorType::RVVFixedLengthDataVector &&
9456       Second->getVectorKind() != VectorType::RVVFixedLengthDataVector)
9457     return true;
9458 
9459   return false;
9460 }
9461 
9462 /// getSVETypeSize - Return SVE vector or predicate register size.
9463 static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
9464   assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type");
9465   if (Ty->getKind() == BuiltinType::SveBool ||
9466       Ty->getKind() == BuiltinType::SveCount)
9467     return (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth();
9468   return Context.getLangOpts().VScaleMin * 128;
9469 }
9470 
9471 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
9472                                        QualType SecondType) {
9473   assert(
9474       ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) ||
9475        (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) &&
9476       "Expected SVE builtin type and vector type!");
9477 
9478   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9479     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9480       if (const auto *VT = SecondType->getAs<VectorType>()) {
9481         // Predicates have the same representation as uint8 so we also have to
9482         // check the kind to make these types incompatible.
9483         if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
9484           return BT->getKind() == BuiltinType::SveBool;
9485         else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
9486           return VT->getElementType().getCanonicalType() ==
9487                  FirstType->getSveEltType(*this);
9488         else if (VT->getVectorKind() == VectorType::GenericVector)
9489           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
9490                  hasSameType(VT->getElementType(),
9491                              getBuiltinVectorTypeInfo(BT).ElementType);
9492       }
9493     }
9494     return false;
9495   };
9496 
9497   return IsValidCast(FirstType, SecondType) ||
9498          IsValidCast(SecondType, FirstType);
9499 }
9500 
9501 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
9502                                           QualType SecondType) {
9503   assert(
9504       ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) ||
9505        (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) &&
9506       "Expected SVE builtin type and vector type!");
9507 
9508   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9509     const auto *BT = FirstType->getAs<BuiltinType>();
9510     if (!BT)
9511       return false;
9512 
9513     const auto *VecTy = SecondType->getAs<VectorType>();
9514     if (VecTy &&
9515         (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
9516          VecTy->getVectorKind() == VectorType::GenericVector)) {
9517       const LangOptions::LaxVectorConversionKind LVCKind =
9518           getLangOpts().getLaxVectorConversions();
9519 
9520       // Can not convert between sve predicates and sve vectors because of
9521       // different size.
9522       if (BT->getKind() == BuiltinType::SveBool &&
9523           VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector)
9524         return false;
9525 
9526       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
9527       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
9528       // converts to VLAT and VLAT implicitly converts to GNUT."
9529       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
9530       // predicates.
9531       if (VecTy->getVectorKind() == VectorType::GenericVector &&
9532           getTypeSize(SecondType) != getSVETypeSize(*this, BT))
9533         return false;
9534 
9535       // If -flax-vector-conversions=all is specified, the types are
9536       // certainly compatible.
9537       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9538         return true;
9539 
9540       // If -flax-vector-conversions=integer is specified, the types are
9541       // compatible if the elements are integer types.
9542       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9543         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9544                FirstType->getSveEltType(*this)->isIntegerType();
9545     }
9546 
9547     return false;
9548   };
9549 
9550   return IsLaxCompatible(FirstType, SecondType) ||
9551          IsLaxCompatible(SecondType, FirstType);
9552 }
9553 
9554 /// getRVVTypeSize - Return RVV vector register size.
9555 static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) {
9556   assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type");
9557   auto VScale = Context.getTargetInfo().getVScaleRange(Context.getLangOpts());
9558   if (!VScale)
9559     return 0;
9560 
9561   ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(Ty);
9562 
9563   uint64_t EltSize = Context.getTypeSize(Info.ElementType);
9564   uint64_t MinElts = Info.EC.getKnownMinValue();
9565   return VScale->first * MinElts * EltSize;
9566 }
9567 
9568 bool ASTContext::areCompatibleRVVTypes(QualType FirstType,
9569                                        QualType SecondType) {
9570   assert(
9571       ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) ||
9572        (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) &&
9573       "Expected RVV builtin type and vector type!");
9574 
9575   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9576     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9577       if (const auto *VT = SecondType->getAs<VectorType>()) {
9578         if (VT->getVectorKind() == VectorType::RVVFixedLengthDataVector ||
9579             VT->getVectorKind() == VectorType::GenericVector)
9580           return FirstType->isRVVVLSBuiltinType() &&
9581                  getTypeSize(SecondType) == getRVVTypeSize(*this, BT) &&
9582                  hasSameType(VT->getElementType(),
9583                              getBuiltinVectorTypeInfo(BT).ElementType);
9584       }
9585     }
9586     return false;
9587   };
9588 
9589   return IsValidCast(FirstType, SecondType) ||
9590          IsValidCast(SecondType, FirstType);
9591 }
9592 
9593 bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType,
9594                                           QualType SecondType) {
9595   assert(
9596       ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) ||
9597        (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) &&
9598       "Expected RVV builtin type and vector type!");
9599 
9600   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9601     const auto *BT = FirstType->getAs<BuiltinType>();
9602     if (!BT)
9603       return false;
9604 
9605     if (!BT->isRVVVLSBuiltinType())
9606       return false;
9607 
9608     const auto *VecTy = SecondType->getAs<VectorType>();
9609     if (VecTy &&
9610         (VecTy->getVectorKind() == VectorType::RVVFixedLengthDataVector ||
9611          VecTy->getVectorKind() == VectorType::GenericVector)) {
9612       const LangOptions::LaxVectorConversionKind LVCKind =
9613           getLangOpts().getLaxVectorConversions();
9614 
9615       // If __riscv_v_fixed_vlen != N do not allow vector lax conversion.
9616       if (getTypeSize(SecondType) != getRVVTypeSize(*this, BT))
9617         return false;
9618 
9619       // If -flax-vector-conversions=all is specified, the types are
9620       // certainly compatible.
9621       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9622         return true;
9623 
9624       // If -flax-vector-conversions=integer is specified, the types are
9625       // compatible if the elements are integer types.
9626       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9627         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9628                FirstType->getRVVEltType(*this)->isIntegerType();
9629     }
9630 
9631     return false;
9632   };
9633 
9634   return IsLaxCompatible(FirstType, SecondType) ||
9635          IsLaxCompatible(SecondType, FirstType);
9636 }
9637 
9638 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
9639   while (true) {
9640     // __strong id
9641     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
9642       if (Attr->getAttrKind() == attr::ObjCOwnership)
9643         return true;
9644 
9645       Ty = Attr->getModifiedType();
9646 
9647     // X *__strong (...)
9648     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
9649       Ty = Paren->getInnerType();
9650 
9651     // We do not want to look through typedefs, typeof(expr),
9652     // typeof(type), or any other way that the type is somehow
9653     // abstracted.
9654     } else {
9655       return false;
9656     }
9657   }
9658 }
9659 
9660 //===----------------------------------------------------------------------===//
9661 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
9662 //===----------------------------------------------------------------------===//
9663 
9664 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
9665 /// inheritance hierarchy of 'rProto'.
9666 bool
9667 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
9668                                            ObjCProtocolDecl *rProto) const {
9669   if (declaresSameEntity(lProto, rProto))
9670     return true;
9671   for (auto *PI : rProto->protocols())
9672     if (ProtocolCompatibleWithProtocol(lProto, PI))
9673       return true;
9674   return false;
9675 }
9676 
9677 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
9678 /// Class<pr1, ...>.
9679 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
9680     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
9681   for (auto *lhsProto : lhs->quals()) {
9682     bool match = false;
9683     for (auto *rhsProto : rhs->quals()) {
9684       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
9685         match = true;
9686         break;
9687       }
9688     }
9689     if (!match)
9690       return false;
9691   }
9692   return true;
9693 }
9694 
9695 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
9696 /// ObjCQualifiedIDType.
9697 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
9698     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
9699     bool compare) {
9700   // Allow id<P..> and an 'id' in all cases.
9701   if (lhs->isObjCIdType() || rhs->isObjCIdType())
9702     return true;
9703 
9704   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
9705   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
9706       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
9707     return false;
9708 
9709   if (lhs->isObjCQualifiedIdType()) {
9710     if (rhs->qual_empty()) {
9711       // If the RHS is a unqualified interface pointer "NSString*",
9712       // make sure we check the class hierarchy.
9713       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9714         for (auto *I : lhs->quals()) {
9715           // when comparing an id<P> on lhs with a static type on rhs,
9716           // see if static class implements all of id's protocols, directly or
9717           // through its super class and categories.
9718           if (!rhsID->ClassImplementsProtocol(I, true))
9719             return false;
9720         }
9721       }
9722       // If there are no qualifiers and no interface, we have an 'id'.
9723       return true;
9724     }
9725     // Both the right and left sides have qualifiers.
9726     for (auto *lhsProto : lhs->quals()) {
9727       bool match = false;
9728 
9729       // when comparing an id<P> on lhs with a static type on rhs,
9730       // see if static class implements all of id's protocols, directly or
9731       // through its super class and categories.
9732       for (auto *rhsProto : rhs->quals()) {
9733         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9734             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9735           match = true;
9736           break;
9737         }
9738       }
9739       // If the RHS is a qualified interface pointer "NSString<P>*",
9740       // make sure we check the class hierarchy.
9741       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9742         for (auto *I : lhs->quals()) {
9743           // when comparing an id<P> on lhs with a static type on rhs,
9744           // see if static class implements all of id's protocols, directly or
9745           // through its super class and categories.
9746           if (rhsID->ClassImplementsProtocol(I, true)) {
9747             match = true;
9748             break;
9749           }
9750         }
9751       }
9752       if (!match)
9753         return false;
9754     }
9755 
9756     return true;
9757   }
9758 
9759   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
9760 
9761   if (lhs->getInterfaceType()) {
9762     // If both the right and left sides have qualifiers.
9763     for (auto *lhsProto : lhs->quals()) {
9764       bool match = false;
9765 
9766       // when comparing an id<P> on rhs with a static type on lhs,
9767       // see if static class implements all of id's protocols, directly or
9768       // through its super class and categories.
9769       // First, lhs protocols in the qualifier list must be found, direct
9770       // or indirect in rhs's qualifier list or it is a mismatch.
9771       for (auto *rhsProto : rhs->quals()) {
9772         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9773             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9774           match = true;
9775           break;
9776         }
9777       }
9778       if (!match)
9779         return false;
9780     }
9781 
9782     // Static class's protocols, or its super class or category protocols
9783     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
9784     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
9785       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
9786       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
9787       // This is rather dubious but matches gcc's behavior. If lhs has
9788       // no type qualifier and its class has no static protocol(s)
9789       // assume that it is mismatch.
9790       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
9791         return false;
9792       for (auto *lhsProto : LHSInheritedProtocols) {
9793         bool match = false;
9794         for (auto *rhsProto : rhs->quals()) {
9795           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9796               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9797             match = true;
9798             break;
9799           }
9800         }
9801         if (!match)
9802           return false;
9803       }
9804     }
9805     return true;
9806   }
9807   return false;
9808 }
9809 
9810 /// canAssignObjCInterfaces - Return true if the two interface types are
9811 /// compatible for assignment from RHS to LHS.  This handles validation of any
9812 /// protocol qualifiers on the LHS or RHS.
9813 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
9814                                          const ObjCObjectPointerType *RHSOPT) {
9815   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9816   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9817 
9818   // If either type represents the built-in 'id' type, return true.
9819   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
9820     return true;
9821 
9822   // Function object that propagates a successful result or handles
9823   // __kindof types.
9824   auto finish = [&](bool succeeded) -> bool {
9825     if (succeeded)
9826       return true;
9827 
9828     if (!RHS->isKindOfType())
9829       return false;
9830 
9831     // Strip off __kindof and protocol qualifiers, then check whether
9832     // we can assign the other way.
9833     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9834                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
9835   };
9836 
9837   // Casts from or to id<P> are allowed when the other side has compatible
9838   // protocols.
9839   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
9840     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
9841   }
9842 
9843   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
9844   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
9845     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
9846   }
9847 
9848   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
9849   if (LHS->isObjCClass() && RHS->isObjCClass()) {
9850     return true;
9851   }
9852 
9853   // If we have 2 user-defined types, fall into that path.
9854   if (LHS->getInterface() && RHS->getInterface()) {
9855     return finish(canAssignObjCInterfaces(LHS, RHS));
9856   }
9857 
9858   return false;
9859 }
9860 
9861 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
9862 /// for providing type-safety for objective-c pointers used to pass/return
9863 /// arguments in block literals. When passed as arguments, passing 'A*' where
9864 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
9865 /// not OK. For the return type, the opposite is not OK.
9866 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
9867                                          const ObjCObjectPointerType *LHSOPT,
9868                                          const ObjCObjectPointerType *RHSOPT,
9869                                          bool BlockReturnType) {
9870 
9871   // Function object that propagates a successful result or handles
9872   // __kindof types.
9873   auto finish = [&](bool succeeded) -> bool {
9874     if (succeeded)
9875       return true;
9876 
9877     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9878     if (!Expected->isKindOfType())
9879       return false;
9880 
9881     // Strip off __kindof and protocol qualifiers, then check whether
9882     // we can assign the other way.
9883     return canAssignObjCInterfacesInBlockPointer(
9884              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9885              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9886              BlockReturnType);
9887   };
9888 
9889   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9890     return true;
9891 
9892   if (LHSOPT->isObjCBuiltinType()) {
9893     return finish(RHSOPT->isObjCBuiltinType() ||
9894                   RHSOPT->isObjCQualifiedIdType());
9895   }
9896 
9897   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9898     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9899       // Use for block parameters previous type checking for compatibility.
9900       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9901                     // Or corrected type checking as in non-compat mode.
9902                     (!BlockReturnType &&
9903                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9904     else
9905       return finish(ObjCQualifiedIdTypesAreCompatible(
9906           (BlockReturnType ? LHSOPT : RHSOPT),
9907           (BlockReturnType ? RHSOPT : LHSOPT), false));
9908   }
9909 
9910   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9911   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9912   if (LHS && RHS)  { // We have 2 user-defined types.
9913     if (LHS != RHS) {
9914       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9915         return finish(BlockReturnType);
9916       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9917         return finish(!BlockReturnType);
9918     }
9919     else
9920       return true;
9921   }
9922   return false;
9923 }
9924 
9925 /// Comparison routine for Objective-C protocols to be used with
9926 /// llvm::array_pod_sort.
9927 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9928                                       ObjCProtocolDecl * const *rhs) {
9929   return (*lhs)->getName().compare((*rhs)->getName());
9930 }
9931 
9932 /// getIntersectionOfProtocols - This routine finds the intersection of set
9933 /// of protocols inherited from two distinct objective-c pointer objects with
9934 /// the given common base.
9935 /// It is used to build composite qualifier list of the composite type of
9936 /// the conditional expression involving two objective-c pointer objects.
9937 static
9938 void getIntersectionOfProtocols(ASTContext &Context,
9939                                 const ObjCInterfaceDecl *CommonBase,
9940                                 const ObjCObjectPointerType *LHSOPT,
9941                                 const ObjCObjectPointerType *RHSOPT,
9942       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9943 
9944   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9945   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9946   assert(LHS->getInterface() && "LHS must have an interface base");
9947   assert(RHS->getInterface() && "RHS must have an interface base");
9948 
9949   // Add all of the protocols for the LHS.
9950   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9951 
9952   // Start with the protocol qualifiers.
9953   for (auto *proto : LHS->quals()) {
9954     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9955   }
9956 
9957   // Also add the protocols associated with the LHS interface.
9958   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9959 
9960   // Add all of the protocols for the RHS.
9961   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9962 
9963   // Start with the protocol qualifiers.
9964   for (auto *proto : RHS->quals()) {
9965     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9966   }
9967 
9968   // Also add the protocols associated with the RHS interface.
9969   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9970 
9971   // Compute the intersection of the collected protocol sets.
9972   for (auto *proto : LHSProtocolSet) {
9973     if (RHSProtocolSet.count(proto))
9974       IntersectionSet.push_back(proto);
9975   }
9976 
9977   // Compute the set of protocols that is implied by either the common type or
9978   // the protocols within the intersection.
9979   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9980   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9981 
9982   // Remove any implied protocols from the list of inherited protocols.
9983   if (!ImpliedProtocols.empty()) {
9984     llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool {
9985       return ImpliedProtocols.contains(proto);
9986     });
9987   }
9988 
9989   // Sort the remaining protocols by name.
9990   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9991                        compareObjCProtocolsByName);
9992 }
9993 
9994 /// Determine whether the first type is a subtype of the second.
9995 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9996                                      QualType rhs) {
9997   // Common case: two object pointers.
9998   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9999   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
10000   if (lhsOPT && rhsOPT)
10001     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
10002 
10003   // Two block pointers.
10004   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
10005   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
10006   if (lhsBlock && rhsBlock)
10007     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
10008 
10009   // If either is an unqualified 'id' and the other is a block, it's
10010   // acceptable.
10011   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
10012       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
10013     return true;
10014 
10015   return false;
10016 }
10017 
10018 // Check that the given Objective-C type argument lists are equivalent.
10019 static bool sameObjCTypeArgs(ASTContext &ctx,
10020                              const ObjCInterfaceDecl *iface,
10021                              ArrayRef<QualType> lhsArgs,
10022                              ArrayRef<QualType> rhsArgs,
10023                              bool stripKindOf) {
10024   if (lhsArgs.size() != rhsArgs.size())
10025     return false;
10026 
10027   ObjCTypeParamList *typeParams = iface->getTypeParamList();
10028   if (!typeParams)
10029     return false;
10030 
10031   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
10032     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
10033       continue;
10034 
10035     switch (typeParams->begin()[i]->getVariance()) {
10036     case ObjCTypeParamVariance::Invariant:
10037       if (!stripKindOf ||
10038           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
10039                            rhsArgs[i].stripObjCKindOfType(ctx))) {
10040         return false;
10041       }
10042       break;
10043 
10044     case ObjCTypeParamVariance::Covariant:
10045       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
10046         return false;
10047       break;
10048 
10049     case ObjCTypeParamVariance::Contravariant:
10050       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
10051         return false;
10052       break;
10053     }
10054   }
10055 
10056   return true;
10057 }
10058 
10059 QualType ASTContext::areCommonBaseCompatible(
10060            const ObjCObjectPointerType *Lptr,
10061            const ObjCObjectPointerType *Rptr) {
10062   const ObjCObjectType *LHS = Lptr->getObjectType();
10063   const ObjCObjectType *RHS = Rptr->getObjectType();
10064   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
10065   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
10066 
10067   if (!LDecl || !RDecl)
10068     return {};
10069 
10070   // When either LHS or RHS is a kindof type, we should return a kindof type.
10071   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
10072   // kindof(A).
10073   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
10074 
10075   // Follow the left-hand side up the class hierarchy until we either hit a
10076   // root or find the RHS. Record the ancestors in case we don't find it.
10077   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
10078     LHSAncestors;
10079   while (true) {
10080     // Record this ancestor. We'll need this if the common type isn't in the
10081     // path from the LHS to the root.
10082     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
10083 
10084     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
10085       // Get the type arguments.
10086       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
10087       bool anyChanges = false;
10088       if (LHS->isSpecialized() && RHS->isSpecialized()) {
10089         // Both have type arguments, compare them.
10090         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
10091                               LHS->getTypeArgs(), RHS->getTypeArgs(),
10092                               /*stripKindOf=*/true))
10093           return {};
10094       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
10095         // If only one has type arguments, the result will not have type
10096         // arguments.
10097         LHSTypeArgs = {};
10098         anyChanges = true;
10099       }
10100 
10101       // Compute the intersection of protocols.
10102       SmallVector<ObjCProtocolDecl *, 8> Protocols;
10103       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
10104                                  Protocols);
10105       if (!Protocols.empty())
10106         anyChanges = true;
10107 
10108       // If anything in the LHS will have changed, build a new result type.
10109       // If we need to return a kindof type but LHS is not a kindof type, we
10110       // build a new result type.
10111       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
10112         QualType Result = getObjCInterfaceType(LHS->getInterface());
10113         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
10114                                    anyKindOf || LHS->isKindOfType());
10115         return getObjCObjectPointerType(Result);
10116       }
10117 
10118       return getObjCObjectPointerType(QualType(LHS, 0));
10119     }
10120 
10121     // Find the superclass.
10122     QualType LHSSuperType = LHS->getSuperClassType();
10123     if (LHSSuperType.isNull())
10124       break;
10125 
10126     LHS = LHSSuperType->castAs<ObjCObjectType>();
10127   }
10128 
10129   // We didn't find anything by following the LHS to its root; now check
10130   // the RHS against the cached set of ancestors.
10131   while (true) {
10132     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
10133     if (KnownLHS != LHSAncestors.end()) {
10134       LHS = KnownLHS->second;
10135 
10136       // Get the type arguments.
10137       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
10138       bool anyChanges = false;
10139       if (LHS->isSpecialized() && RHS->isSpecialized()) {
10140         // Both have type arguments, compare them.
10141         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
10142                               LHS->getTypeArgs(), RHS->getTypeArgs(),
10143                               /*stripKindOf=*/true))
10144           return {};
10145       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
10146         // If only one has type arguments, the result will not have type
10147         // arguments.
10148         RHSTypeArgs = {};
10149         anyChanges = true;
10150       }
10151 
10152       // Compute the intersection of protocols.
10153       SmallVector<ObjCProtocolDecl *, 8> Protocols;
10154       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
10155                                  Protocols);
10156       if (!Protocols.empty())
10157         anyChanges = true;
10158 
10159       // If we need to return a kindof type but RHS is not a kindof type, we
10160       // build a new result type.
10161       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
10162         QualType Result = getObjCInterfaceType(RHS->getInterface());
10163         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
10164                                    anyKindOf || RHS->isKindOfType());
10165         return getObjCObjectPointerType(Result);
10166       }
10167 
10168       return getObjCObjectPointerType(QualType(RHS, 0));
10169     }
10170 
10171     // Find the superclass of the RHS.
10172     QualType RHSSuperType = RHS->getSuperClassType();
10173     if (RHSSuperType.isNull())
10174       break;
10175 
10176     RHS = RHSSuperType->castAs<ObjCObjectType>();
10177   }
10178 
10179   return {};
10180 }
10181 
10182 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
10183                                          const ObjCObjectType *RHS) {
10184   assert(LHS->getInterface() && "LHS is not an interface type");
10185   assert(RHS->getInterface() && "RHS is not an interface type");
10186 
10187   // Verify that the base decls are compatible: the RHS must be a subclass of
10188   // the LHS.
10189   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
10190   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
10191   if (!IsSuperClass)
10192     return false;
10193 
10194   // If the LHS has protocol qualifiers, determine whether all of them are
10195   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
10196   // LHS).
10197   if (LHS->getNumProtocols() > 0) {
10198     // OK if conversion of LHS to SuperClass results in narrowing of types
10199     // ; i.e., SuperClass may implement at least one of the protocols
10200     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
10201     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
10202     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
10203     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
10204     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
10205     // qualifiers.
10206     for (auto *RHSPI : RHS->quals())
10207       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
10208     // If there is no protocols associated with RHS, it is not a match.
10209     if (SuperClassInheritedProtocols.empty())
10210       return false;
10211 
10212     for (const auto *LHSProto : LHS->quals()) {
10213       bool SuperImplementsProtocol = false;
10214       for (auto *SuperClassProto : SuperClassInheritedProtocols)
10215         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
10216           SuperImplementsProtocol = true;
10217           break;
10218         }
10219       if (!SuperImplementsProtocol)
10220         return false;
10221     }
10222   }
10223 
10224   // If the LHS is specialized, we may need to check type arguments.
10225   if (LHS->isSpecialized()) {
10226     // Follow the superclass chain until we've matched the LHS class in the
10227     // hierarchy. This substitutes type arguments through.
10228     const ObjCObjectType *RHSSuper = RHS;
10229     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
10230       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
10231 
10232     // If the RHS is specializd, compare type arguments.
10233     if (RHSSuper->isSpecialized() &&
10234         !sameObjCTypeArgs(*this, LHS->getInterface(),
10235                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
10236                           /*stripKindOf=*/true)) {
10237       return false;
10238     }
10239   }
10240 
10241   return true;
10242 }
10243 
10244 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
10245   // get the "pointed to" types
10246   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
10247   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
10248 
10249   if (!LHSOPT || !RHSOPT)
10250     return false;
10251 
10252   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
10253          canAssignObjCInterfaces(RHSOPT, LHSOPT);
10254 }
10255 
10256 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
10257   return canAssignObjCInterfaces(
10258       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
10259       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
10260 }
10261 
10262 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
10263 /// both shall have the identically qualified version of a compatible type.
10264 /// C99 6.2.7p1: Two types have compatible types if their types are the
10265 /// same. See 6.7.[2,3,5] for additional rules.
10266 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
10267                                     bool CompareUnqualified) {
10268   if (getLangOpts().CPlusPlus)
10269     return hasSameType(LHS, RHS);
10270 
10271   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
10272 }
10273 
10274 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
10275   return typesAreCompatible(LHS, RHS);
10276 }
10277 
10278 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
10279   return !mergeTypes(LHS, RHS, true).isNull();
10280 }
10281 
10282 /// mergeTransparentUnionType - if T is a transparent union type and a member
10283 /// of T is compatible with SubType, return the merged type, else return
10284 /// QualType()
10285 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
10286                                                bool OfBlockPointer,
10287                                                bool Unqualified) {
10288   if (const RecordType *UT = T->getAsUnionType()) {
10289     RecordDecl *UD = UT->getDecl();
10290     if (UD->hasAttr<TransparentUnionAttr>()) {
10291       for (const auto *I : UD->fields()) {
10292         QualType ET = I->getType().getUnqualifiedType();
10293         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
10294         if (!MT.isNull())
10295           return MT;
10296       }
10297     }
10298   }
10299 
10300   return {};
10301 }
10302 
10303 /// mergeFunctionParameterTypes - merge two types which appear as function
10304 /// parameter types
10305 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
10306                                                  bool OfBlockPointer,
10307                                                  bool Unqualified) {
10308   // GNU extension: two types are compatible if they appear as a function
10309   // argument, one of the types is a transparent union type and the other
10310   // type is compatible with a union member
10311   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
10312                                               Unqualified);
10313   if (!lmerge.isNull())
10314     return lmerge;
10315 
10316   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
10317                                               Unqualified);
10318   if (!rmerge.isNull())
10319     return rmerge;
10320 
10321   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
10322 }
10323 
10324 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
10325                                         bool OfBlockPointer, bool Unqualified,
10326                                         bool AllowCXX,
10327                                         bool IsConditionalOperator) {
10328   const auto *lbase = lhs->castAs<FunctionType>();
10329   const auto *rbase = rhs->castAs<FunctionType>();
10330   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
10331   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
10332   bool allLTypes = true;
10333   bool allRTypes = true;
10334 
10335   // Check return type
10336   QualType retType;
10337   if (OfBlockPointer) {
10338     QualType RHS = rbase->getReturnType();
10339     QualType LHS = lbase->getReturnType();
10340     bool UnqualifiedResult = Unqualified;
10341     if (!UnqualifiedResult)
10342       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
10343     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
10344   }
10345   else
10346     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
10347                          Unqualified);
10348   if (retType.isNull())
10349     return {};
10350 
10351   if (Unqualified)
10352     retType = retType.getUnqualifiedType();
10353 
10354   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
10355   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
10356   if (Unqualified) {
10357     LRetType = LRetType.getUnqualifiedType();
10358     RRetType = RRetType.getUnqualifiedType();
10359   }
10360 
10361   if (getCanonicalType(retType) != LRetType)
10362     allLTypes = false;
10363   if (getCanonicalType(retType) != RRetType)
10364     allRTypes = false;
10365 
10366   // FIXME: double check this
10367   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
10368   //                           rbase->getRegParmAttr() != 0 &&
10369   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
10370   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
10371   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
10372 
10373   // Compatible functions must have compatible calling conventions
10374   if (lbaseInfo.getCC() != rbaseInfo.getCC())
10375     return {};
10376 
10377   // Regparm is part of the calling convention.
10378   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
10379     return {};
10380   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
10381     return {};
10382 
10383   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
10384     return {};
10385   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
10386     return {};
10387   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
10388     return {};
10389 
10390   // When merging declarations, it's common for supplemental information like
10391   // attributes to only be present in one of the declarations, and we generally
10392   // want type merging to preserve the union of information.  So a merged
10393   // function type should be noreturn if it was noreturn in *either* operand
10394   // type.
10395   //
10396   // But for the conditional operator, this is backwards.  The result of the
10397   // operator could be either operand, and its type should conservatively
10398   // reflect that.  So a function type in a composite type is noreturn only
10399   // if it's noreturn in *both* operand types.
10400   //
10401   // Arguably, noreturn is a kind of subtype, and the conditional operator
10402   // ought to produce the most specific common supertype of its operand types.
10403   // That would differ from this rule in contravariant positions.  However,
10404   // neither C nor C++ generally uses this kind of subtype reasoning.  Also,
10405   // as a practical matter, it would only affect C code that does abstraction of
10406   // higher-order functions (taking noreturn callbacks!), which is uncommon to
10407   // say the least.  So we use the simpler rule.
10408   bool NoReturn = IsConditionalOperator
10409                       ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn()
10410                       : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
10411   if (lbaseInfo.getNoReturn() != NoReturn)
10412     allLTypes = false;
10413   if (rbaseInfo.getNoReturn() != NoReturn)
10414     allRTypes = false;
10415 
10416   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
10417 
10418   if (lproto && rproto) { // two C99 style function prototypes
10419     assert((AllowCXX ||
10420             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
10421            "C++ shouldn't be here");
10422     // Compatible functions must have the same number of parameters
10423     if (lproto->getNumParams() != rproto->getNumParams())
10424       return {};
10425 
10426     // Variadic and non-variadic functions aren't compatible
10427     if (lproto->isVariadic() != rproto->isVariadic())
10428       return {};
10429 
10430     if (lproto->getMethodQuals() != rproto->getMethodQuals())
10431       return {};
10432 
10433     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
10434     bool canUseLeft, canUseRight;
10435     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
10436                                newParamInfos))
10437       return {};
10438 
10439     if (!canUseLeft)
10440       allLTypes = false;
10441     if (!canUseRight)
10442       allRTypes = false;
10443 
10444     // Check parameter type compatibility
10445     SmallVector<QualType, 10> types;
10446     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
10447       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
10448       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
10449       QualType paramType = mergeFunctionParameterTypes(
10450           lParamType, rParamType, OfBlockPointer, Unqualified);
10451       if (paramType.isNull())
10452         return {};
10453 
10454       if (Unqualified)
10455         paramType = paramType.getUnqualifiedType();
10456 
10457       types.push_back(paramType);
10458       if (Unqualified) {
10459         lParamType = lParamType.getUnqualifiedType();
10460         rParamType = rParamType.getUnqualifiedType();
10461       }
10462 
10463       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
10464         allLTypes = false;
10465       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
10466         allRTypes = false;
10467     }
10468 
10469     if (allLTypes) return lhs;
10470     if (allRTypes) return rhs;
10471 
10472     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
10473     EPI.ExtInfo = einfo;
10474     EPI.ExtParameterInfos =
10475         newParamInfos.empty() ? nullptr : newParamInfos.data();
10476     return getFunctionType(retType, types, EPI);
10477   }
10478 
10479   if (lproto) allRTypes = false;
10480   if (rproto) allLTypes = false;
10481 
10482   const FunctionProtoType *proto = lproto ? lproto : rproto;
10483   if (proto) {
10484     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
10485     if (proto->isVariadic())
10486       return {};
10487     // Check that the types are compatible with the types that
10488     // would result from default argument promotions (C99 6.7.5.3p15).
10489     // The only types actually affected are promotable integer
10490     // types and floats, which would be passed as a different
10491     // type depending on whether the prototype is visible.
10492     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
10493       QualType paramTy = proto->getParamType(i);
10494 
10495       // Look at the converted type of enum types, since that is the type used
10496       // to pass enum values.
10497       if (const auto *Enum = paramTy->getAs<EnumType>()) {
10498         paramTy = Enum->getDecl()->getIntegerType();
10499         if (paramTy.isNull())
10500           return {};
10501       }
10502 
10503       if (isPromotableIntegerType(paramTy) ||
10504           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
10505         return {};
10506     }
10507 
10508     if (allLTypes) return lhs;
10509     if (allRTypes) return rhs;
10510 
10511     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
10512     EPI.ExtInfo = einfo;
10513     return getFunctionType(retType, proto->getParamTypes(), EPI);
10514   }
10515 
10516   if (allLTypes) return lhs;
10517   if (allRTypes) return rhs;
10518   return getFunctionNoProtoType(retType, einfo);
10519 }
10520 
10521 /// Given that we have an enum type and a non-enum type, try to merge them.
10522 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
10523                                      QualType other, bool isBlockReturnType) {
10524   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
10525   // a signed integer type, or an unsigned integer type.
10526   // Compatibility is based on the underlying type, not the promotion
10527   // type.
10528   QualType underlyingType = ET->getDecl()->getIntegerType();
10529   if (underlyingType.isNull())
10530     return {};
10531   if (Context.hasSameType(underlyingType, other))
10532     return other;
10533 
10534   // In block return types, we're more permissive and accept any
10535   // integral type of the same size.
10536   if (isBlockReturnType && other->isIntegerType() &&
10537       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
10538     return other;
10539 
10540   return {};
10541 }
10542 
10543 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer,
10544                                 bool Unqualified, bool BlockReturnType,
10545                                 bool IsConditionalOperator) {
10546   // For C++ we will not reach this code with reference types (see below),
10547   // for OpenMP variant call overloading we might.
10548   //
10549   // C++ [expr]: If an expression initially has the type "reference to T", the
10550   // type is adjusted to "T" prior to any further analysis, the expression
10551   // designates the object or function denoted by the reference, and the
10552   // expression is an lvalue unless the reference is an rvalue reference and
10553   // the expression is a function call (possibly inside parentheses).
10554   auto *LHSRefTy = LHS->getAs<ReferenceType>();
10555   auto *RHSRefTy = RHS->getAs<ReferenceType>();
10556   if (LangOpts.OpenMP && LHSRefTy && RHSRefTy &&
10557       LHS->getTypeClass() == RHS->getTypeClass())
10558     return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(),
10559                       OfBlockPointer, Unqualified, BlockReturnType);
10560   if (LHSRefTy || RHSRefTy)
10561     return {};
10562 
10563   if (Unqualified) {
10564     LHS = LHS.getUnqualifiedType();
10565     RHS = RHS.getUnqualifiedType();
10566   }
10567 
10568   QualType LHSCan = getCanonicalType(LHS),
10569            RHSCan = getCanonicalType(RHS);
10570 
10571   // If two types are identical, they are compatible.
10572   if (LHSCan == RHSCan)
10573     return LHS;
10574 
10575   // If the qualifiers are different, the types aren't compatible... mostly.
10576   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10577   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10578   if (LQuals != RQuals) {
10579     // If any of these qualifiers are different, we have a type
10580     // mismatch.
10581     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10582         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
10583         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
10584         LQuals.hasUnaligned() != RQuals.hasUnaligned())
10585       return {};
10586 
10587     // Exactly one GC qualifier difference is allowed: __strong is
10588     // okay if the other type has no GC qualifier but is an Objective
10589     // C object pointer (i.e. implicitly strong by default).  We fix
10590     // this by pretending that the unqualified type was actually
10591     // qualified __strong.
10592     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10593     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10594     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10595 
10596     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10597       return {};
10598 
10599     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
10600       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
10601     }
10602     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
10603       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
10604     }
10605     return {};
10606   }
10607 
10608   // Okay, qualifiers are equal.
10609 
10610   Type::TypeClass LHSClass = LHSCan->getTypeClass();
10611   Type::TypeClass RHSClass = RHSCan->getTypeClass();
10612 
10613   // We want to consider the two function types to be the same for these
10614   // comparisons, just force one to the other.
10615   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
10616   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
10617 
10618   // Same as above for arrays
10619   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
10620     LHSClass = Type::ConstantArray;
10621   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
10622     RHSClass = Type::ConstantArray;
10623 
10624   // ObjCInterfaces are just specialized ObjCObjects.
10625   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
10626   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
10627 
10628   // Canonicalize ExtVector -> Vector.
10629   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
10630   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
10631 
10632   // If the canonical type classes don't match.
10633   if (LHSClass != RHSClass) {
10634     // Note that we only have special rules for turning block enum
10635     // returns into block int returns, not vice-versa.
10636     if (const auto *ETy = LHS->getAs<EnumType>()) {
10637       return mergeEnumWithInteger(*this, ETy, RHS, false);
10638     }
10639     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
10640       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
10641     }
10642     // allow block pointer type to match an 'id' type.
10643     if (OfBlockPointer && !BlockReturnType) {
10644        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
10645          return LHS;
10646       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
10647         return RHS;
10648     }
10649     // Allow __auto_type to match anything; it merges to the type with more
10650     // information.
10651     if (const auto *AT = LHS->getAs<AutoType>()) {
10652       if (!AT->isDeduced() && AT->isGNUAutoType())
10653         return RHS;
10654     }
10655     if (const auto *AT = RHS->getAs<AutoType>()) {
10656       if (!AT->isDeduced() && AT->isGNUAutoType())
10657         return LHS;
10658     }
10659     return {};
10660   }
10661 
10662   // The canonical type classes match.
10663   switch (LHSClass) {
10664 #define TYPE(Class, Base)
10665 #define ABSTRACT_TYPE(Class, Base)
10666 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
10667 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
10668 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
10669 #include "clang/AST/TypeNodes.inc"
10670     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
10671 
10672   case Type::Auto:
10673   case Type::DeducedTemplateSpecialization:
10674   case Type::LValueReference:
10675   case Type::RValueReference:
10676   case Type::MemberPointer:
10677     llvm_unreachable("C++ should never be in mergeTypes");
10678 
10679   case Type::ObjCInterface:
10680   case Type::IncompleteArray:
10681   case Type::VariableArray:
10682   case Type::FunctionProto:
10683   case Type::ExtVector:
10684     llvm_unreachable("Types are eliminated above");
10685 
10686   case Type::Pointer:
10687   {
10688     // Merge two pointer types, while trying to preserve typedef info
10689     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
10690     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
10691     if (Unqualified) {
10692       LHSPointee = LHSPointee.getUnqualifiedType();
10693       RHSPointee = RHSPointee.getUnqualifiedType();
10694     }
10695     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
10696                                      Unqualified);
10697     if (ResultType.isNull())
10698       return {};
10699     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10700       return LHS;
10701     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10702       return RHS;
10703     return getPointerType(ResultType);
10704   }
10705   case Type::BlockPointer:
10706   {
10707     // Merge two block pointer types, while trying to preserve typedef info
10708     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
10709     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
10710     if (Unqualified) {
10711       LHSPointee = LHSPointee.getUnqualifiedType();
10712       RHSPointee = RHSPointee.getUnqualifiedType();
10713     }
10714     if (getLangOpts().OpenCL) {
10715       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
10716       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
10717       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
10718       // 6.12.5) thus the following check is asymmetric.
10719       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
10720         return {};
10721       LHSPteeQual.removeAddressSpace();
10722       RHSPteeQual.removeAddressSpace();
10723       LHSPointee =
10724           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
10725       RHSPointee =
10726           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
10727     }
10728     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
10729                                      Unqualified);
10730     if (ResultType.isNull())
10731       return {};
10732     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10733       return LHS;
10734     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10735       return RHS;
10736     return getBlockPointerType(ResultType);
10737   }
10738   case Type::Atomic:
10739   {
10740     // Merge two pointer types, while trying to preserve typedef info
10741     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
10742     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
10743     if (Unqualified) {
10744       LHSValue = LHSValue.getUnqualifiedType();
10745       RHSValue = RHSValue.getUnqualifiedType();
10746     }
10747     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
10748                                      Unqualified);
10749     if (ResultType.isNull())
10750       return {};
10751     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
10752       return LHS;
10753     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
10754       return RHS;
10755     return getAtomicType(ResultType);
10756   }
10757   case Type::ConstantArray:
10758   {
10759     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
10760     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
10761     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
10762       return {};
10763 
10764     QualType LHSElem = getAsArrayType(LHS)->getElementType();
10765     QualType RHSElem = getAsArrayType(RHS)->getElementType();
10766     if (Unqualified) {
10767       LHSElem = LHSElem.getUnqualifiedType();
10768       RHSElem = RHSElem.getUnqualifiedType();
10769     }
10770 
10771     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
10772     if (ResultType.isNull())
10773       return {};
10774 
10775     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
10776     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
10777 
10778     // If either side is a variable array, and both are complete, check whether
10779     // the current dimension is definite.
10780     if (LVAT || RVAT) {
10781       auto SizeFetch = [this](const VariableArrayType* VAT,
10782           const ConstantArrayType* CAT)
10783           -> std::pair<bool,llvm::APInt> {
10784         if (VAT) {
10785           std::optional<llvm::APSInt> TheInt;
10786           Expr *E = VAT->getSizeExpr();
10787           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
10788             return std::make_pair(true, *TheInt);
10789           return std::make_pair(false, llvm::APSInt());
10790         }
10791         if (CAT)
10792           return std::make_pair(true, CAT->getSize());
10793         return std::make_pair(false, llvm::APInt());
10794       };
10795 
10796       bool HaveLSize, HaveRSize;
10797       llvm::APInt LSize, RSize;
10798       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
10799       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
10800       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
10801         return {}; // Definite, but unequal, array dimension
10802     }
10803 
10804     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10805       return LHS;
10806     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10807       return RHS;
10808     if (LCAT)
10809       return getConstantArrayType(ResultType, LCAT->getSize(),
10810                                   LCAT->getSizeExpr(),
10811                                   ArrayType::ArraySizeModifier(), 0);
10812     if (RCAT)
10813       return getConstantArrayType(ResultType, RCAT->getSize(),
10814                                   RCAT->getSizeExpr(),
10815                                   ArrayType::ArraySizeModifier(), 0);
10816     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10817       return LHS;
10818     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10819       return RHS;
10820     if (LVAT) {
10821       // FIXME: This isn't correct! But tricky to implement because
10822       // the array's size has to be the size of LHS, but the type
10823       // has to be different.
10824       return LHS;
10825     }
10826     if (RVAT) {
10827       // FIXME: This isn't correct! But tricky to implement because
10828       // the array's size has to be the size of RHS, but the type
10829       // has to be different.
10830       return RHS;
10831     }
10832     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
10833     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
10834     return getIncompleteArrayType(ResultType,
10835                                   ArrayType::ArraySizeModifier(), 0);
10836   }
10837   case Type::FunctionNoProto:
10838     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified,
10839                               /*AllowCXX=*/false, IsConditionalOperator);
10840   case Type::Record:
10841   case Type::Enum:
10842     return {};
10843   case Type::Builtin:
10844     // Only exactly equal builtin types are compatible, which is tested above.
10845     return {};
10846   case Type::Complex:
10847     // Distinct complex types are incompatible.
10848     return {};
10849   case Type::Vector:
10850     // FIXME: The merged type should be an ExtVector!
10851     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
10852                              RHSCan->castAs<VectorType>()))
10853       return LHS;
10854     return {};
10855   case Type::ConstantMatrix:
10856     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
10857                              RHSCan->castAs<ConstantMatrixType>()))
10858       return LHS;
10859     return {};
10860   case Type::ObjCObject: {
10861     // Check if the types are assignment compatible.
10862     // FIXME: This should be type compatibility, e.g. whether
10863     // "LHS x; RHS x;" at global scope is legal.
10864     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
10865                                 RHS->castAs<ObjCObjectType>()))
10866       return LHS;
10867     return {};
10868   }
10869   case Type::ObjCObjectPointer:
10870     if (OfBlockPointer) {
10871       if (canAssignObjCInterfacesInBlockPointer(
10872               LHS->castAs<ObjCObjectPointerType>(),
10873               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
10874         return LHS;
10875       return {};
10876     }
10877     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
10878                                 RHS->castAs<ObjCObjectPointerType>()))
10879       return LHS;
10880     return {};
10881   case Type::Pipe:
10882     assert(LHS != RHS &&
10883            "Equivalent pipe types should have already been handled!");
10884     return {};
10885   case Type::BitInt: {
10886     // Merge two bit-precise int types, while trying to preserve typedef info.
10887     bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned();
10888     bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned();
10889     unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits();
10890     unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits();
10891 
10892     // Like unsigned/int, shouldn't have a type if they don't match.
10893     if (LHSUnsigned != RHSUnsigned)
10894       return {};
10895 
10896     if (LHSBits != RHSBits)
10897       return {};
10898     return LHS;
10899   }
10900   }
10901 
10902   llvm_unreachable("Invalid Type::Class!");
10903 }
10904 
10905 bool ASTContext::mergeExtParameterInfo(
10906     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10907     bool &CanUseFirst, bool &CanUseSecond,
10908     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10909   assert(NewParamInfos.empty() && "param info list not empty");
10910   CanUseFirst = CanUseSecond = true;
10911   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10912   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10913 
10914   // Fast path: if the first type doesn't have ext parameter infos,
10915   // we match if and only if the second type also doesn't have them.
10916   if (!FirstHasInfo && !SecondHasInfo)
10917     return true;
10918 
10919   bool NeedParamInfo = false;
10920   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10921                           : SecondFnType->getExtParameterInfos().size();
10922 
10923   for (size_t I = 0; I < E; ++I) {
10924     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10925     if (FirstHasInfo)
10926       FirstParam = FirstFnType->getExtParameterInfo(I);
10927     if (SecondHasInfo)
10928       SecondParam = SecondFnType->getExtParameterInfo(I);
10929 
10930     // Cannot merge unless everything except the noescape flag matches.
10931     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10932       return false;
10933 
10934     bool FirstNoEscape = FirstParam.isNoEscape();
10935     bool SecondNoEscape = SecondParam.isNoEscape();
10936     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10937     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10938     if (NewParamInfos.back().getOpaqueValue())
10939       NeedParamInfo = true;
10940     if (FirstNoEscape != IsNoEscape)
10941       CanUseFirst = false;
10942     if (SecondNoEscape != IsNoEscape)
10943       CanUseSecond = false;
10944   }
10945 
10946   if (!NeedParamInfo)
10947     NewParamInfos.clear();
10948 
10949   return true;
10950 }
10951 
10952 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10953   ObjCLayouts[CD] = nullptr;
10954 }
10955 
10956 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10957 /// 'RHS' attributes and returns the merged version; including for function
10958 /// return types.
10959 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10960   QualType LHSCan = getCanonicalType(LHS),
10961   RHSCan = getCanonicalType(RHS);
10962   // If two types are identical, they are compatible.
10963   if (LHSCan == RHSCan)
10964     return LHS;
10965   if (RHSCan->isFunctionType()) {
10966     if (!LHSCan->isFunctionType())
10967       return {};
10968     QualType OldReturnType =
10969         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10970     QualType NewReturnType =
10971         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10972     QualType ResReturnType =
10973       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10974     if (ResReturnType.isNull())
10975       return {};
10976     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10977       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10978       // In either case, use OldReturnType to build the new function type.
10979       const auto *F = LHS->castAs<FunctionType>();
10980       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10981         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10982         EPI.ExtInfo = getFunctionExtInfo(LHS);
10983         QualType ResultType =
10984             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10985         return ResultType;
10986       }
10987     }
10988     return {};
10989   }
10990 
10991   // If the qualifiers are different, the types can still be merged.
10992   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10993   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10994   if (LQuals != RQuals) {
10995     // If any of these qualifiers are different, we have a type mismatch.
10996     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10997         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10998       return {};
10999 
11000     // Exactly one GC qualifier difference is allowed: __strong is
11001     // okay if the other type has no GC qualifier but is an Objective
11002     // C object pointer (i.e. implicitly strong by default).  We fix
11003     // this by pretending that the unqualified type was actually
11004     // qualified __strong.
11005     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
11006     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
11007     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
11008 
11009     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
11010       return {};
11011 
11012     if (GC_L == Qualifiers::Strong)
11013       return LHS;
11014     if (GC_R == Qualifiers::Strong)
11015       return RHS;
11016     return {};
11017   }
11018 
11019   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
11020     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
11021     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
11022     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
11023     if (ResQT == LHSBaseQT)
11024       return LHS;
11025     if (ResQT == RHSBaseQT)
11026       return RHS;
11027   }
11028   return {};
11029 }
11030 
11031 //===----------------------------------------------------------------------===//
11032 //                         Integer Predicates
11033 //===----------------------------------------------------------------------===//
11034 
11035 unsigned ASTContext::getIntWidth(QualType T) const {
11036   if (const auto *ET = T->getAs<EnumType>())
11037     T = ET->getDecl()->getIntegerType();
11038   if (T->isBooleanType())
11039     return 1;
11040   if (const auto *EIT = T->getAs<BitIntType>())
11041     return EIT->getNumBits();
11042   // For builtin types, just use the standard type sizing method
11043   return (unsigned)getTypeSize(T);
11044 }
11045 
11046 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
11047   assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||
11048           T->isFixedPointType()) &&
11049          "Unexpected type");
11050 
11051   // Turn <4 x signed int> -> <4 x unsigned int>
11052   if (const auto *VTy = T->getAs<VectorType>())
11053     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
11054                          VTy->getNumElements(), VTy->getVectorKind());
11055 
11056   // For _BitInt, return an unsigned _BitInt with same width.
11057   if (const auto *EITy = T->getAs<BitIntType>())
11058     return getBitIntType(/*Unsigned=*/true, EITy->getNumBits());
11059 
11060   // For enums, get the underlying integer type of the enum, and let the general
11061   // integer type signchanging code handle it.
11062   if (const auto *ETy = T->getAs<EnumType>())
11063     T = ETy->getDecl()->getIntegerType();
11064 
11065   switch (T->castAs<BuiltinType>()->getKind()) {
11066   case BuiltinType::Char_U:
11067     // Plain `char` is mapped to `unsigned char` even if it's already unsigned
11068   case BuiltinType::Char_S:
11069   case BuiltinType::SChar:
11070   case BuiltinType::Char8:
11071     return UnsignedCharTy;
11072   case BuiltinType::Short:
11073     return UnsignedShortTy;
11074   case BuiltinType::Int:
11075     return UnsignedIntTy;
11076   case BuiltinType::Long:
11077     return UnsignedLongTy;
11078   case BuiltinType::LongLong:
11079     return UnsignedLongLongTy;
11080   case BuiltinType::Int128:
11081     return UnsignedInt128Ty;
11082   // wchar_t is special. It is either signed or not, but when it's signed,
11083   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
11084   // version of its underlying type instead.
11085   case BuiltinType::WChar_S:
11086     return getUnsignedWCharType();
11087 
11088   case BuiltinType::ShortAccum:
11089     return UnsignedShortAccumTy;
11090   case BuiltinType::Accum:
11091     return UnsignedAccumTy;
11092   case BuiltinType::LongAccum:
11093     return UnsignedLongAccumTy;
11094   case BuiltinType::SatShortAccum:
11095     return SatUnsignedShortAccumTy;
11096   case BuiltinType::SatAccum:
11097     return SatUnsignedAccumTy;
11098   case BuiltinType::SatLongAccum:
11099     return SatUnsignedLongAccumTy;
11100   case BuiltinType::ShortFract:
11101     return UnsignedShortFractTy;
11102   case BuiltinType::Fract:
11103     return UnsignedFractTy;
11104   case BuiltinType::LongFract:
11105     return UnsignedLongFractTy;
11106   case BuiltinType::SatShortFract:
11107     return SatUnsignedShortFractTy;
11108   case BuiltinType::SatFract:
11109     return SatUnsignedFractTy;
11110   case BuiltinType::SatLongFract:
11111     return SatUnsignedLongFractTy;
11112   default:
11113     assert((T->hasUnsignedIntegerRepresentation() ||
11114             T->isUnsignedFixedPointType()) &&
11115            "Unexpected signed integer or fixed point type");
11116     return T;
11117   }
11118 }
11119 
11120 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
11121   assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||
11122           T->isFixedPointType()) &&
11123          "Unexpected type");
11124 
11125   // Turn <4 x unsigned int> -> <4 x signed int>
11126   if (const auto *VTy = T->getAs<VectorType>())
11127     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
11128                          VTy->getNumElements(), VTy->getVectorKind());
11129 
11130   // For _BitInt, return a signed _BitInt with same width.
11131   if (const auto *EITy = T->getAs<BitIntType>())
11132     return getBitIntType(/*Unsigned=*/false, EITy->getNumBits());
11133 
11134   // For enums, get the underlying integer type of the enum, and let the general
11135   // integer type signchanging code handle it.
11136   if (const auto *ETy = T->getAs<EnumType>())
11137     T = ETy->getDecl()->getIntegerType();
11138 
11139   switch (T->castAs<BuiltinType>()->getKind()) {
11140   case BuiltinType::Char_S:
11141     // Plain `char` is mapped to `signed char` even if it's already signed
11142   case BuiltinType::Char_U:
11143   case BuiltinType::UChar:
11144   case BuiltinType::Char8:
11145     return SignedCharTy;
11146   case BuiltinType::UShort:
11147     return ShortTy;
11148   case BuiltinType::UInt:
11149     return IntTy;
11150   case BuiltinType::ULong:
11151     return LongTy;
11152   case BuiltinType::ULongLong:
11153     return LongLongTy;
11154   case BuiltinType::UInt128:
11155     return Int128Ty;
11156   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
11157   // there's no matching "signed wchar_t". Therefore we return the signed
11158   // version of its underlying type instead.
11159   case BuiltinType::WChar_U:
11160     return getSignedWCharType();
11161 
11162   case BuiltinType::UShortAccum:
11163     return ShortAccumTy;
11164   case BuiltinType::UAccum:
11165     return AccumTy;
11166   case BuiltinType::ULongAccum:
11167     return LongAccumTy;
11168   case BuiltinType::SatUShortAccum:
11169     return SatShortAccumTy;
11170   case BuiltinType::SatUAccum:
11171     return SatAccumTy;
11172   case BuiltinType::SatULongAccum:
11173     return SatLongAccumTy;
11174   case BuiltinType::UShortFract:
11175     return ShortFractTy;
11176   case BuiltinType::UFract:
11177     return FractTy;
11178   case BuiltinType::ULongFract:
11179     return LongFractTy;
11180   case BuiltinType::SatUShortFract:
11181     return SatShortFractTy;
11182   case BuiltinType::SatUFract:
11183     return SatFractTy;
11184   case BuiltinType::SatULongFract:
11185     return SatLongFractTy;
11186   default:
11187     assert(
11188         (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
11189         "Unexpected signed integer or fixed point type");
11190     return T;
11191   }
11192 }
11193 
11194 ASTMutationListener::~ASTMutationListener() = default;
11195 
11196 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
11197                                             QualType ReturnType) {}
11198 
11199 //===----------------------------------------------------------------------===//
11200 //                          Builtin Type Computation
11201 //===----------------------------------------------------------------------===//
11202 
11203 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
11204 /// pointer over the consumed characters.  This returns the resultant type.  If
11205 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
11206 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
11207 /// a vector of "i*".
11208 ///
11209 /// RequiresICE is filled in on return to indicate whether the value is required
11210 /// to be an Integer Constant Expression.
11211 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
11212                                   ASTContext::GetBuiltinTypeError &Error,
11213                                   bool &RequiresICE,
11214                                   bool AllowTypeModifiers) {
11215   // Modifiers.
11216   int HowLong = 0;
11217   bool Signed = false, Unsigned = false;
11218   RequiresICE = false;
11219 
11220   // Read the prefixed modifiers first.
11221   bool Done = false;
11222   #ifndef NDEBUG
11223   bool IsSpecial = false;
11224   #endif
11225   while (!Done) {
11226     switch (*Str++) {
11227     default: Done = true; --Str; break;
11228     case 'I':
11229       RequiresICE = true;
11230       break;
11231     case 'S':
11232       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
11233       assert(!Signed && "Can't use 'S' modifier multiple times!");
11234       Signed = true;
11235       break;
11236     case 'U':
11237       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
11238       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
11239       Unsigned = true;
11240       break;
11241     case 'L':
11242       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
11243       assert(HowLong <= 2 && "Can't have LLLL modifier");
11244       ++HowLong;
11245       break;
11246     case 'N':
11247       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
11248       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11249       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
11250       #ifndef NDEBUG
11251       IsSpecial = true;
11252       #endif
11253       if (Context.getTargetInfo().getLongWidth() == 32)
11254         ++HowLong;
11255       break;
11256     case 'W':
11257       // This modifier represents int64 type.
11258       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11259       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
11260       #ifndef NDEBUG
11261       IsSpecial = true;
11262       #endif
11263       switch (Context.getTargetInfo().getInt64Type()) {
11264       default:
11265         llvm_unreachable("Unexpected integer type");
11266       case TargetInfo::SignedLong:
11267         HowLong = 1;
11268         break;
11269       case TargetInfo::SignedLongLong:
11270         HowLong = 2;
11271         break;
11272       }
11273       break;
11274     case 'Z':
11275       // This modifier represents int32 type.
11276       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11277       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
11278       #ifndef NDEBUG
11279       IsSpecial = true;
11280       #endif
11281       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
11282       default:
11283         llvm_unreachable("Unexpected integer type");
11284       case TargetInfo::SignedInt:
11285         HowLong = 0;
11286         break;
11287       case TargetInfo::SignedLong:
11288         HowLong = 1;
11289         break;
11290       case TargetInfo::SignedLongLong:
11291         HowLong = 2;
11292         break;
11293       }
11294       break;
11295     case 'O':
11296       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11297       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
11298       #ifndef NDEBUG
11299       IsSpecial = true;
11300       #endif
11301       if (Context.getLangOpts().OpenCL)
11302         HowLong = 1;
11303       else
11304         HowLong = 2;
11305       break;
11306     }
11307   }
11308 
11309   QualType Type;
11310 
11311   // Read the base type.
11312   switch (*Str++) {
11313   default: llvm_unreachable("Unknown builtin type letter!");
11314   case 'x':
11315     assert(HowLong == 0 && !Signed && !Unsigned &&
11316            "Bad modifiers used with 'x'!");
11317     Type = Context.Float16Ty;
11318     break;
11319   case 'y':
11320     assert(HowLong == 0 && !Signed && !Unsigned &&
11321            "Bad modifiers used with 'y'!");
11322     Type = Context.BFloat16Ty;
11323     break;
11324   case 'v':
11325     assert(HowLong == 0 && !Signed && !Unsigned &&
11326            "Bad modifiers used with 'v'!");
11327     Type = Context.VoidTy;
11328     break;
11329   case 'h':
11330     assert(HowLong == 0 && !Signed && !Unsigned &&
11331            "Bad modifiers used with 'h'!");
11332     Type = Context.HalfTy;
11333     break;
11334   case 'f':
11335     assert(HowLong == 0 && !Signed && !Unsigned &&
11336            "Bad modifiers used with 'f'!");
11337     Type = Context.FloatTy;
11338     break;
11339   case 'd':
11340     assert(HowLong < 3 && !Signed && !Unsigned &&
11341            "Bad modifiers used with 'd'!");
11342     if (HowLong == 1)
11343       Type = Context.LongDoubleTy;
11344     else if (HowLong == 2)
11345       Type = Context.Float128Ty;
11346     else
11347       Type = Context.DoubleTy;
11348     break;
11349   case 's':
11350     assert(HowLong == 0 && "Bad modifiers used with 's'!");
11351     if (Unsigned)
11352       Type = Context.UnsignedShortTy;
11353     else
11354       Type = Context.ShortTy;
11355     break;
11356   case 'i':
11357     if (HowLong == 3)
11358       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
11359     else if (HowLong == 2)
11360       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
11361     else if (HowLong == 1)
11362       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
11363     else
11364       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
11365     break;
11366   case 'c':
11367     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
11368     if (Signed)
11369       Type = Context.SignedCharTy;
11370     else if (Unsigned)
11371       Type = Context.UnsignedCharTy;
11372     else
11373       Type = Context.CharTy;
11374     break;
11375   case 'b': // boolean
11376     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
11377     Type = Context.BoolTy;
11378     break;
11379   case 'z':  // size_t.
11380     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
11381     Type = Context.getSizeType();
11382     break;
11383   case 'w':  // wchar_t.
11384     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
11385     Type = Context.getWideCharType();
11386     break;
11387   case 'F':
11388     Type = Context.getCFConstantStringType();
11389     break;
11390   case 'G':
11391     Type = Context.getObjCIdType();
11392     break;
11393   case 'H':
11394     Type = Context.getObjCSelType();
11395     break;
11396   case 'M':
11397     Type = Context.getObjCSuperType();
11398     break;
11399   case 'a':
11400     Type = Context.getBuiltinVaListType();
11401     assert(!Type.isNull() && "builtin va list type not initialized!");
11402     break;
11403   case 'A':
11404     // This is a "reference" to a va_list; however, what exactly
11405     // this means depends on how va_list is defined. There are two
11406     // different kinds of va_list: ones passed by value, and ones
11407     // passed by reference.  An example of a by-value va_list is
11408     // x86, where va_list is a char*. An example of by-ref va_list
11409     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
11410     // we want this argument to be a char*&; for x86-64, we want
11411     // it to be a __va_list_tag*.
11412     Type = Context.getBuiltinVaListType();
11413     assert(!Type.isNull() && "builtin va list type not initialized!");
11414     if (Type->isArrayType())
11415       Type = Context.getArrayDecayedType(Type);
11416     else
11417       Type = Context.getLValueReferenceType(Type);
11418     break;
11419   case 'q': {
11420     char *End;
11421     unsigned NumElements = strtoul(Str, &End, 10);
11422     assert(End != Str && "Missing vector size");
11423     Str = End;
11424 
11425     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11426                                              RequiresICE, false);
11427     assert(!RequiresICE && "Can't require vector ICE");
11428 
11429     Type = Context.getScalableVectorType(ElementType, NumElements);
11430     break;
11431   }
11432   case 'Q': {
11433     switch (*Str++) {
11434     case 'a': {
11435       Type = Context.SveCountTy;
11436       break;
11437     }
11438     default:
11439       llvm_unreachable("Unexpected target builtin type");
11440     }
11441     break;
11442   }
11443   case 'V': {
11444     char *End;
11445     unsigned NumElements = strtoul(Str, &End, 10);
11446     assert(End != Str && "Missing vector size");
11447     Str = End;
11448 
11449     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11450                                              RequiresICE, false);
11451     assert(!RequiresICE && "Can't require vector ICE");
11452 
11453     // TODO: No way to make AltiVec vectors in builtins yet.
11454     Type = Context.getVectorType(ElementType, NumElements,
11455                                  VectorType::GenericVector);
11456     break;
11457   }
11458   case 'E': {
11459     char *End;
11460 
11461     unsigned NumElements = strtoul(Str, &End, 10);
11462     assert(End != Str && "Missing vector size");
11463 
11464     Str = End;
11465 
11466     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11467                                              false);
11468     Type = Context.getExtVectorType(ElementType, NumElements);
11469     break;
11470   }
11471   case 'X': {
11472     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11473                                              false);
11474     assert(!RequiresICE && "Can't require complex ICE");
11475     Type = Context.getComplexType(ElementType);
11476     break;
11477   }
11478   case 'Y':
11479     Type = Context.getPointerDiffType();
11480     break;
11481   case 'P':
11482     Type = Context.getFILEType();
11483     if (Type.isNull()) {
11484       Error = ASTContext::GE_Missing_stdio;
11485       return {};
11486     }
11487     break;
11488   case 'J':
11489     if (Signed)
11490       Type = Context.getsigjmp_bufType();
11491     else
11492       Type = Context.getjmp_bufType();
11493 
11494     if (Type.isNull()) {
11495       Error = ASTContext::GE_Missing_setjmp;
11496       return {};
11497     }
11498     break;
11499   case 'K':
11500     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
11501     Type = Context.getucontext_tType();
11502 
11503     if (Type.isNull()) {
11504       Error = ASTContext::GE_Missing_ucontext;
11505       return {};
11506     }
11507     break;
11508   case 'p':
11509     Type = Context.getProcessIDType();
11510     break;
11511   }
11512 
11513   // If there are modifiers and if we're allowed to parse them, go for it.
11514   Done = !AllowTypeModifiers;
11515   while (!Done) {
11516     switch (char c = *Str++) {
11517     default: Done = true; --Str; break;
11518     case '*':
11519     case '&': {
11520       // Both pointers and references can have their pointee types
11521       // qualified with an address space.
11522       char *End;
11523       unsigned AddrSpace = strtoul(Str, &End, 10);
11524       if (End != Str) {
11525         // Note AddrSpace == 0 is not the same as an unspecified address space.
11526         Type = Context.getAddrSpaceQualType(
11527           Type,
11528           Context.getLangASForBuiltinAddressSpace(AddrSpace));
11529         Str = End;
11530       }
11531       if (c == '*')
11532         Type = Context.getPointerType(Type);
11533       else
11534         Type = Context.getLValueReferenceType(Type);
11535       break;
11536     }
11537     // FIXME: There's no way to have a built-in with an rvalue ref arg.
11538     case 'C':
11539       Type = Type.withConst();
11540       break;
11541     case 'D':
11542       Type = Context.getVolatileType(Type);
11543       break;
11544     case 'R':
11545       Type = Type.withRestrict();
11546       break;
11547     }
11548   }
11549 
11550   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
11551          "Integer constant 'I' type must be an integer");
11552 
11553   return Type;
11554 }
11555 
11556 // On some targets such as PowerPC, some of the builtins are defined with custom
11557 // type descriptors for target-dependent types. These descriptors are decoded in
11558 // other functions, but it may be useful to be able to fall back to default
11559 // descriptor decoding to define builtins mixing target-dependent and target-
11560 // independent types. This function allows decoding one type descriptor with
11561 // default decoding.
11562 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
11563                                    GetBuiltinTypeError &Error, bool &RequireICE,
11564                                    bool AllowTypeModifiers) const {
11565   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
11566 }
11567 
11568 /// GetBuiltinType - Return the type for the specified builtin.
11569 QualType ASTContext::GetBuiltinType(unsigned Id,
11570                                     GetBuiltinTypeError &Error,
11571                                     unsigned *IntegerConstantArgs) const {
11572   const char *TypeStr = BuiltinInfo.getTypeString(Id);
11573   if (TypeStr[0] == '\0') {
11574     Error = GE_Missing_type;
11575     return {};
11576   }
11577 
11578   SmallVector<QualType, 8> ArgTypes;
11579 
11580   bool RequiresICE = false;
11581   Error = GE_None;
11582   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
11583                                        RequiresICE, true);
11584   if (Error != GE_None)
11585     return {};
11586 
11587   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
11588 
11589   while (TypeStr[0] && TypeStr[0] != '.') {
11590     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
11591     if (Error != GE_None)
11592       return {};
11593 
11594     // If this argument is required to be an IntegerConstantExpression and the
11595     // caller cares, fill in the bitmask we return.
11596     if (RequiresICE && IntegerConstantArgs)
11597       *IntegerConstantArgs |= 1 << ArgTypes.size();
11598 
11599     // Do array -> pointer decay.  The builtin should use the decayed type.
11600     if (Ty->isArrayType())
11601       Ty = getArrayDecayedType(Ty);
11602 
11603     ArgTypes.push_back(Ty);
11604   }
11605 
11606   if (Id == Builtin::BI__GetExceptionInfo)
11607     return {};
11608 
11609   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
11610          "'.' should only occur at end of builtin type list!");
11611 
11612   bool Variadic = (TypeStr[0] == '.');
11613 
11614   FunctionType::ExtInfo EI(getDefaultCallingConvention(
11615       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
11616   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
11617 
11618 
11619   // We really shouldn't be making a no-proto type here.
11620   if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes())
11621     return getFunctionNoProtoType(ResType, EI);
11622 
11623   FunctionProtoType::ExtProtoInfo EPI;
11624   EPI.ExtInfo = EI;
11625   EPI.Variadic = Variadic;
11626   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
11627     EPI.ExceptionSpec.Type =
11628         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
11629 
11630   return getFunctionType(ResType, ArgTypes, EPI);
11631 }
11632 
11633 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
11634                                              const FunctionDecl *FD) {
11635   if (!FD->isExternallyVisible())
11636     return GVA_Internal;
11637 
11638   // Non-user-provided functions get emitted as weak definitions with every
11639   // use, no matter whether they've been explicitly instantiated etc.
11640   if (!FD->isUserProvided())
11641     return GVA_DiscardableODR;
11642 
11643   GVALinkage External;
11644   switch (FD->getTemplateSpecializationKind()) {
11645   case TSK_Undeclared:
11646   case TSK_ExplicitSpecialization:
11647     External = GVA_StrongExternal;
11648     break;
11649 
11650   case TSK_ExplicitInstantiationDefinition:
11651     return GVA_StrongODR;
11652 
11653   // C++11 [temp.explicit]p10:
11654   //   [ Note: The intent is that an inline function that is the subject of
11655   //   an explicit instantiation declaration will still be implicitly
11656   //   instantiated when used so that the body can be considered for
11657   //   inlining, but that no out-of-line copy of the inline function would be
11658   //   generated in the translation unit. -- end note ]
11659   case TSK_ExplicitInstantiationDeclaration:
11660     return GVA_AvailableExternally;
11661 
11662   case TSK_ImplicitInstantiation:
11663     External = GVA_DiscardableODR;
11664     break;
11665   }
11666 
11667   if (!FD->isInlined())
11668     return External;
11669 
11670   if ((!Context.getLangOpts().CPlusPlus &&
11671        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11672        !FD->hasAttr<DLLExportAttr>()) ||
11673       FD->hasAttr<GNUInlineAttr>()) {
11674     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
11675 
11676     // GNU or C99 inline semantics. Determine whether this symbol should be
11677     // externally visible.
11678     if (FD->isInlineDefinitionExternallyVisible())
11679       return External;
11680 
11681     // C99 inline semantics, where the symbol is not externally visible.
11682     return GVA_AvailableExternally;
11683   }
11684 
11685   // Functions specified with extern and inline in -fms-compatibility mode
11686   // forcibly get emitted.  While the body of the function cannot be later
11687   // replaced, the function definition cannot be discarded.
11688   if (FD->isMSExternInline())
11689     return GVA_StrongODR;
11690 
11691   return GVA_DiscardableODR;
11692 }
11693 
11694 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
11695                                                 const Decl *D, GVALinkage L) {
11696   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
11697   // dllexport/dllimport on inline functions.
11698   if (D->hasAttr<DLLImportAttr>()) {
11699     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
11700       return GVA_AvailableExternally;
11701   } else if (D->hasAttr<DLLExportAttr>()) {
11702     if (L == GVA_DiscardableODR)
11703       return GVA_StrongODR;
11704   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
11705     // Device-side functions with __global__ attribute must always be
11706     // visible externally so they can be launched from host.
11707     if (D->hasAttr<CUDAGlobalAttr>() &&
11708         (L == GVA_DiscardableODR || L == GVA_Internal))
11709       return GVA_StrongODR;
11710     // Single source offloading languages like CUDA/HIP need to be able to
11711     // access static device variables from host code of the same compilation
11712     // unit. This is done by externalizing the static variable with a shared
11713     // name between the host and device compilation which is the same for the
11714     // same compilation unit whereas different among different compilation
11715     // units.
11716     if (Context.shouldExternalize(D))
11717       return GVA_StrongExternal;
11718   }
11719   return L;
11720 }
11721 
11722 /// Adjust the GVALinkage for a declaration based on what an external AST source
11723 /// knows about whether there can be other definitions of this declaration.
11724 static GVALinkage
11725 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
11726                                           GVALinkage L) {
11727   ExternalASTSource *Source = Ctx.getExternalSource();
11728   if (!Source)
11729     return L;
11730 
11731   switch (Source->hasExternalDefinitions(D)) {
11732   case ExternalASTSource::EK_Never:
11733     // Other translation units rely on us to provide the definition.
11734     if (L == GVA_DiscardableODR)
11735       return GVA_StrongODR;
11736     break;
11737 
11738   case ExternalASTSource::EK_Always:
11739     return GVA_AvailableExternally;
11740 
11741   case ExternalASTSource::EK_ReplyHazy:
11742     break;
11743   }
11744   return L;
11745 }
11746 
11747 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
11748   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
11749            adjustGVALinkageForAttributes(*this, FD,
11750              basicGVALinkageForFunction(*this, FD)));
11751 }
11752 
11753 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
11754                                              const VarDecl *VD) {
11755   if (!VD->isExternallyVisible())
11756     return GVA_Internal;
11757 
11758   if (VD->isStaticLocal()) {
11759     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
11760     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
11761       LexicalContext = LexicalContext->getLexicalParent();
11762 
11763     // ObjC Blocks can create local variables that don't have a FunctionDecl
11764     // LexicalContext.
11765     if (!LexicalContext)
11766       return GVA_DiscardableODR;
11767 
11768     // Otherwise, let the static local variable inherit its linkage from the
11769     // nearest enclosing function.
11770     auto StaticLocalLinkage =
11771         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
11772 
11773     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
11774     // be emitted in any object with references to the symbol for the object it
11775     // contains, whether inline or out-of-line."
11776     // Similar behavior is observed with MSVC. An alternative ABI could use
11777     // StrongODR/AvailableExternally to match the function, but none are
11778     // known/supported currently.
11779     if (StaticLocalLinkage == GVA_StrongODR ||
11780         StaticLocalLinkage == GVA_AvailableExternally)
11781       return GVA_DiscardableODR;
11782     return StaticLocalLinkage;
11783   }
11784 
11785   // MSVC treats in-class initialized static data members as definitions.
11786   // By giving them non-strong linkage, out-of-line definitions won't
11787   // cause link errors.
11788   if (Context.isMSStaticDataMemberInlineDefinition(VD))
11789     return GVA_DiscardableODR;
11790 
11791   // Most non-template variables have strong linkage; inline variables are
11792   // linkonce_odr or (occasionally, for compatibility) weak_odr.
11793   GVALinkage StrongLinkage;
11794   switch (Context.getInlineVariableDefinitionKind(VD)) {
11795   case ASTContext::InlineVariableDefinitionKind::None:
11796     StrongLinkage = GVA_StrongExternal;
11797     break;
11798   case ASTContext::InlineVariableDefinitionKind::Weak:
11799   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
11800     StrongLinkage = GVA_DiscardableODR;
11801     break;
11802   case ASTContext::InlineVariableDefinitionKind::Strong:
11803     StrongLinkage = GVA_StrongODR;
11804     break;
11805   }
11806 
11807   switch (VD->getTemplateSpecializationKind()) {
11808   case TSK_Undeclared:
11809     return StrongLinkage;
11810 
11811   case TSK_ExplicitSpecialization:
11812     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11813                    VD->isStaticDataMember()
11814                ? GVA_StrongODR
11815                : StrongLinkage;
11816 
11817   case TSK_ExplicitInstantiationDefinition:
11818     return GVA_StrongODR;
11819 
11820   case TSK_ExplicitInstantiationDeclaration:
11821     return GVA_AvailableExternally;
11822 
11823   case TSK_ImplicitInstantiation:
11824     return GVA_DiscardableODR;
11825   }
11826 
11827   llvm_unreachable("Invalid Linkage!");
11828 }
11829 
11830 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const {
11831   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
11832            adjustGVALinkageForAttributes(*this, VD,
11833              basicGVALinkageForVariable(*this, VD)));
11834 }
11835 
11836 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
11837   if (const auto *VD = dyn_cast<VarDecl>(D)) {
11838     if (!VD->isFileVarDecl())
11839       return false;
11840     // Global named register variables (GNU extension) are never emitted.
11841     if (VD->getStorageClass() == SC_Register)
11842       return false;
11843     if (VD->getDescribedVarTemplate() ||
11844         isa<VarTemplatePartialSpecializationDecl>(VD))
11845       return false;
11846   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11847     // We never need to emit an uninstantiated function template.
11848     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11849       return false;
11850   } else if (isa<PragmaCommentDecl>(D))
11851     return true;
11852   else if (isa<PragmaDetectMismatchDecl>(D))
11853     return true;
11854   else if (isa<OMPRequiresDecl>(D))
11855     return true;
11856   else if (isa<OMPThreadPrivateDecl>(D))
11857     return !D->getDeclContext()->isDependentContext();
11858   else if (isa<OMPAllocateDecl>(D))
11859     return !D->getDeclContext()->isDependentContext();
11860   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
11861     return !D->getDeclContext()->isDependentContext();
11862   else if (isa<ImportDecl>(D))
11863     return true;
11864   else
11865     return false;
11866 
11867   // If this is a member of a class template, we do not need to emit it.
11868   if (D->getDeclContext()->isDependentContext())
11869     return false;
11870 
11871   // Weak references don't produce any output by themselves.
11872   if (D->hasAttr<WeakRefAttr>())
11873     return false;
11874 
11875   // Aliases and used decls are required.
11876   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
11877     return true;
11878 
11879   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11880     // Forward declarations aren't required.
11881     if (!FD->doesThisDeclarationHaveABody())
11882       return FD->doesDeclarationForceExternallyVisibleDefinition();
11883 
11884     // Constructors and destructors are required.
11885     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
11886       return true;
11887 
11888     // The key function for a class is required.  This rule only comes
11889     // into play when inline functions can be key functions, though.
11890     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11891       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11892         const CXXRecordDecl *RD = MD->getParent();
11893         if (MD->isOutOfLine() && RD->isDynamicClass()) {
11894           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
11895           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
11896             return true;
11897         }
11898       }
11899     }
11900 
11901     GVALinkage Linkage = GetGVALinkageForFunction(FD);
11902 
11903     // static, static inline, always_inline, and extern inline functions can
11904     // always be deferred.  Normal inline functions can be deferred in C99/C++.
11905     // Implicit template instantiations can also be deferred in C++.
11906     return !isDiscardableGVALinkage(Linkage);
11907   }
11908 
11909   const auto *VD = cast<VarDecl>(D);
11910   assert(VD->isFileVarDecl() && "Expected file scoped var");
11911 
11912   // If the decl is marked as `declare target to`, it should be emitted for the
11913   // host and for the device.
11914   if (LangOpts.OpenMP &&
11915       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
11916     return true;
11917 
11918   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
11919       !isMSStaticDataMemberInlineDefinition(VD))
11920     return false;
11921 
11922   // Variables in other module units shouldn't be forced to be emitted.
11923   if (VD->isInAnotherModuleUnit())
11924     return false;
11925 
11926   // Variables that can be needed in other TUs are required.
11927   auto Linkage = GetGVALinkageForVariable(VD);
11928   if (!isDiscardableGVALinkage(Linkage))
11929     return true;
11930 
11931   // We never need to emit a variable that is available in another TU.
11932   if (Linkage == GVA_AvailableExternally)
11933     return false;
11934 
11935   // Variables that have destruction with side-effects are required.
11936   if (VD->needsDestruction(*this))
11937     return true;
11938 
11939   // Variables that have initialization with side-effects are required.
11940   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11941       // We can get a value-dependent initializer during error recovery.
11942       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11943     return true;
11944 
11945   // Likewise, variables with tuple-like bindings are required if their
11946   // bindings have side-effects.
11947   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11948     for (const auto *BD : DD->bindings())
11949       if (const auto *BindingVD = BD->getHoldingVar())
11950         if (DeclMustBeEmitted(BindingVD))
11951           return true;
11952 
11953   return false;
11954 }
11955 
11956 void ASTContext::forEachMultiversionedFunctionVersion(
11957     const FunctionDecl *FD,
11958     llvm::function_ref<void(FunctionDecl *)> Pred) const {
11959   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
11960   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11961   FD = FD->getMostRecentDecl();
11962   // FIXME: The order of traversal here matters and depends on the order of
11963   // lookup results, which happens to be (mostly) oldest-to-newest, but we
11964   // shouldn't rely on that.
11965   for (auto *CurDecl :
11966        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11967     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11968     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11969         !SeenDecls.contains(CurFD)) {
11970       SeenDecls.insert(CurFD);
11971       Pred(CurFD);
11972     }
11973   }
11974 }
11975 
11976 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11977                                                     bool IsCXXMethod,
11978                                                     bool IsBuiltin) const {
11979   // Pass through to the C++ ABI object
11980   if (IsCXXMethod)
11981     return ABI->getDefaultMethodCallConv(IsVariadic);
11982 
11983   // Builtins ignore user-specified default calling convention and remain the
11984   // Target's default calling convention.
11985   if (!IsBuiltin) {
11986     switch (LangOpts.getDefaultCallingConv()) {
11987     case LangOptions::DCC_None:
11988       break;
11989     case LangOptions::DCC_CDecl:
11990       return CC_C;
11991     case LangOptions::DCC_FastCall:
11992       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11993         return CC_X86FastCall;
11994       break;
11995     case LangOptions::DCC_StdCall:
11996       if (!IsVariadic)
11997         return CC_X86StdCall;
11998       break;
11999     case LangOptions::DCC_VectorCall:
12000       // __vectorcall cannot be applied to variadic functions.
12001       if (!IsVariadic)
12002         return CC_X86VectorCall;
12003       break;
12004     case LangOptions::DCC_RegCall:
12005       // __regcall cannot be applied to variadic functions.
12006       if (!IsVariadic)
12007         return CC_X86RegCall;
12008       break;
12009     }
12010   }
12011   return Target->getDefaultCallingConv();
12012 }
12013 
12014 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
12015   // Pass through to the C++ ABI object
12016   return ABI->isNearlyEmpty(RD);
12017 }
12018 
12019 VTableContextBase *ASTContext::getVTableContext() {
12020   if (!VTContext.get()) {
12021     auto ABI = Target->getCXXABI();
12022     if (ABI.isMicrosoft())
12023       VTContext.reset(new MicrosoftVTableContext(*this));
12024     else {
12025       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
12026                                  ? ItaniumVTableContext::Relative
12027                                  : ItaniumVTableContext::Pointer;
12028       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
12029     }
12030   }
12031   return VTContext.get();
12032 }
12033 
12034 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
12035   if (!T)
12036     T = Target;
12037   switch (T->getCXXABI().getKind()) {
12038   case TargetCXXABI::AppleARM64:
12039   case TargetCXXABI::Fuchsia:
12040   case TargetCXXABI::GenericAArch64:
12041   case TargetCXXABI::GenericItanium:
12042   case TargetCXXABI::GenericARM:
12043   case TargetCXXABI::GenericMIPS:
12044   case TargetCXXABI::iOS:
12045   case TargetCXXABI::WebAssembly:
12046   case TargetCXXABI::WatchOS:
12047   case TargetCXXABI::XL:
12048     return ItaniumMangleContext::create(*this, getDiagnostics());
12049   case TargetCXXABI::Microsoft:
12050     return MicrosoftMangleContext::create(*this, getDiagnostics());
12051   }
12052   llvm_unreachable("Unsupported ABI");
12053 }
12054 
12055 MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
12056   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&
12057          "Device mangle context does not support Microsoft mangling.");
12058   switch (T.getCXXABI().getKind()) {
12059   case TargetCXXABI::AppleARM64:
12060   case TargetCXXABI::Fuchsia:
12061   case TargetCXXABI::GenericAArch64:
12062   case TargetCXXABI::GenericItanium:
12063   case TargetCXXABI::GenericARM:
12064   case TargetCXXABI::GenericMIPS:
12065   case TargetCXXABI::iOS:
12066   case TargetCXXABI::WebAssembly:
12067   case TargetCXXABI::WatchOS:
12068   case TargetCXXABI::XL:
12069     return ItaniumMangleContext::create(
12070         *this, getDiagnostics(),
12071         [](ASTContext &, const NamedDecl *ND) -> std::optional<unsigned> {
12072           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
12073             return RD->getDeviceLambdaManglingNumber();
12074           return std::nullopt;
12075         },
12076         /*IsAux=*/true);
12077   case TargetCXXABI::Microsoft:
12078     return MicrosoftMangleContext::create(*this, getDiagnostics(),
12079                                           /*IsAux=*/true);
12080   }
12081   llvm_unreachable("Unsupported ABI");
12082 }
12083 
12084 CXXABI::~CXXABI() = default;
12085 
12086 size_t ASTContext::getSideTableAllocatedMemory() const {
12087   return ASTRecordLayouts.getMemorySize() +
12088          llvm::capacity_in_bytes(ObjCLayouts) +
12089          llvm::capacity_in_bytes(KeyFunctions) +
12090          llvm::capacity_in_bytes(ObjCImpls) +
12091          llvm::capacity_in_bytes(BlockVarCopyInits) +
12092          llvm::capacity_in_bytes(DeclAttrs) +
12093          llvm::capacity_in_bytes(TemplateOrInstantiation) +
12094          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
12095          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
12096          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
12097          llvm::capacity_in_bytes(OverriddenMethods) +
12098          llvm::capacity_in_bytes(Types) +
12099          llvm::capacity_in_bytes(VariableArrayTypes);
12100 }
12101 
12102 /// getIntTypeForBitwidth -
12103 /// sets integer QualTy according to specified details:
12104 /// bitwidth, signed/unsigned.
12105 /// Returns empty type if there is no appropriate target types.
12106 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
12107                                            unsigned Signed) const {
12108   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
12109   CanQualType QualTy = getFromTargetType(Ty);
12110   if (!QualTy && DestWidth == 128)
12111     return Signed ? Int128Ty : UnsignedInt128Ty;
12112   return QualTy;
12113 }
12114 
12115 /// getRealTypeForBitwidth -
12116 /// sets floating point QualTy according to specified bitwidth.
12117 /// Returns empty type if there is no appropriate target types.
12118 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
12119                                             FloatModeKind ExplicitType) const {
12120   FloatModeKind Ty =
12121       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType);
12122   switch (Ty) {
12123   case FloatModeKind::Half:
12124     return HalfTy;
12125   case FloatModeKind::Float:
12126     return FloatTy;
12127   case FloatModeKind::Double:
12128     return DoubleTy;
12129   case FloatModeKind::LongDouble:
12130     return LongDoubleTy;
12131   case FloatModeKind::Float128:
12132     return Float128Ty;
12133   case FloatModeKind::Ibm128:
12134     return Ibm128Ty;
12135   case FloatModeKind::NoFloat:
12136     return {};
12137   }
12138 
12139   llvm_unreachable("Unhandled TargetInfo::RealType value");
12140 }
12141 
12142 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
12143   if (Number > 1)
12144     MangleNumbers[ND] = Number;
12145 }
12146 
12147 unsigned ASTContext::getManglingNumber(const NamedDecl *ND,
12148                                        bool ForAuxTarget) const {
12149   auto I = MangleNumbers.find(ND);
12150   unsigned Res = I != MangleNumbers.end() ? I->second : 1;
12151   // CUDA/HIP host compilation encodes host and device mangling numbers
12152   // as lower and upper half of 32 bit integer.
12153   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) {
12154     Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF;
12155   } else {
12156     assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling "
12157                             "number for aux target");
12158   }
12159   return Res > 1 ? Res : 1;
12160 }
12161 
12162 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
12163   if (Number > 1)
12164     StaticLocalNumbers[VD] = Number;
12165 }
12166 
12167 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
12168   auto I = StaticLocalNumbers.find(VD);
12169   return I != StaticLocalNumbers.end() ? I->second : 1;
12170 }
12171 
12172 MangleNumberingContext &
12173 ASTContext::getManglingNumberContext(const DeclContext *DC) {
12174   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
12175   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
12176   if (!MCtx)
12177     MCtx = createMangleNumberingContext();
12178   return *MCtx;
12179 }
12180 
12181 MangleNumberingContext &
12182 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
12183   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
12184   std::unique_ptr<MangleNumberingContext> &MCtx =
12185       ExtraMangleNumberingContexts[D];
12186   if (!MCtx)
12187     MCtx = createMangleNumberingContext();
12188   return *MCtx;
12189 }
12190 
12191 std::unique_ptr<MangleNumberingContext>
12192 ASTContext::createMangleNumberingContext() const {
12193   return ABI->createMangleNumberingContext();
12194 }
12195 
12196 const CXXConstructorDecl *
12197 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
12198   return ABI->getCopyConstructorForExceptionObject(
12199       cast<CXXRecordDecl>(RD->getFirstDecl()));
12200 }
12201 
12202 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
12203                                                       CXXConstructorDecl *CD) {
12204   return ABI->addCopyConstructorForExceptionObject(
12205       cast<CXXRecordDecl>(RD->getFirstDecl()),
12206       cast<CXXConstructorDecl>(CD->getFirstDecl()));
12207 }
12208 
12209 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
12210                                                  TypedefNameDecl *DD) {
12211   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
12212 }
12213 
12214 TypedefNameDecl *
12215 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
12216   return ABI->getTypedefNameForUnnamedTagDecl(TD);
12217 }
12218 
12219 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
12220                                                 DeclaratorDecl *DD) {
12221   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
12222 }
12223 
12224 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
12225   return ABI->getDeclaratorForUnnamedTagDecl(TD);
12226 }
12227 
12228 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
12229   ParamIndices[D] = index;
12230 }
12231 
12232 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
12233   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
12234   assert(I != ParamIndices.end() &&
12235          "ParmIndices lacks entry set by ParmVarDecl");
12236   return I->second;
12237 }
12238 
12239 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
12240                                                unsigned Length) const {
12241   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
12242   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
12243     EltTy = EltTy.withConst();
12244 
12245   EltTy = adjustStringLiteralBaseType(EltTy);
12246 
12247   // Get an array type for the string, according to C99 6.4.5. This includes
12248   // the null terminator character.
12249   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
12250                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
12251 }
12252 
12253 StringLiteral *
12254 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
12255   StringLiteral *&Result = StringLiteralCache[Key];
12256   if (!Result)
12257     Result = StringLiteral::Create(
12258         *this, Key, StringLiteral::Ordinary,
12259         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
12260         SourceLocation());
12261   return Result;
12262 }
12263 
12264 MSGuidDecl *
12265 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
12266   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
12267 
12268   llvm::FoldingSetNodeID ID;
12269   MSGuidDecl::Profile(ID, Parts);
12270 
12271   void *InsertPos;
12272   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
12273     return Existing;
12274 
12275   QualType GUIDType = getMSGuidType().withConst();
12276   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
12277   MSGuidDecls.InsertNode(New, InsertPos);
12278   return New;
12279 }
12280 
12281 UnnamedGlobalConstantDecl *
12282 ASTContext::getUnnamedGlobalConstantDecl(QualType Ty,
12283                                          const APValue &APVal) const {
12284   llvm::FoldingSetNodeID ID;
12285   UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal);
12286 
12287   void *InsertPos;
12288   if (UnnamedGlobalConstantDecl *Existing =
12289           UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos))
12290     return Existing;
12291 
12292   UnnamedGlobalConstantDecl *New =
12293       UnnamedGlobalConstantDecl::Create(*this, Ty, APVal);
12294   UnnamedGlobalConstantDecls.InsertNode(New, InsertPos);
12295   return New;
12296 }
12297 
12298 TemplateParamObjectDecl *
12299 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
12300   assert(T->isRecordType() && "template param object of unexpected type");
12301 
12302   // C++ [temp.param]p8:
12303   //   [...] a static storage duration object of type 'const T' [...]
12304   T.addConst();
12305 
12306   llvm::FoldingSetNodeID ID;
12307   TemplateParamObjectDecl::Profile(ID, T, V);
12308 
12309   void *InsertPos;
12310   if (TemplateParamObjectDecl *Existing =
12311           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
12312     return Existing;
12313 
12314   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
12315   TemplateParamObjectDecls.InsertNode(New, InsertPos);
12316   return New;
12317 }
12318 
12319 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
12320   const llvm::Triple &T = getTargetInfo().getTriple();
12321   if (!T.isOSDarwin())
12322     return false;
12323 
12324   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
12325       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
12326     return false;
12327 
12328   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
12329   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
12330   uint64_t Size = sizeChars.getQuantity();
12331   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
12332   unsigned Align = alignChars.getQuantity();
12333   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
12334   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
12335 }
12336 
12337 bool
12338 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
12339                                 const ObjCMethodDecl *MethodImpl) {
12340   // No point trying to match an unavailable/deprecated mothod.
12341   if (MethodDecl->hasAttr<UnavailableAttr>()
12342       || MethodDecl->hasAttr<DeprecatedAttr>())
12343     return false;
12344   if (MethodDecl->getObjCDeclQualifier() !=
12345       MethodImpl->getObjCDeclQualifier())
12346     return false;
12347   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
12348     return false;
12349 
12350   if (MethodDecl->param_size() != MethodImpl->param_size())
12351     return false;
12352 
12353   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
12354        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
12355        EF = MethodDecl->param_end();
12356        IM != EM && IF != EF; ++IM, ++IF) {
12357     const ParmVarDecl *DeclVar = (*IF);
12358     const ParmVarDecl *ImplVar = (*IM);
12359     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
12360       return false;
12361     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
12362       return false;
12363   }
12364 
12365   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
12366 }
12367 
12368 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
12369   LangAS AS;
12370   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
12371     AS = LangAS::Default;
12372   else
12373     AS = QT->getPointeeType().getAddressSpace();
12374 
12375   return getTargetInfo().getNullPointerValue(AS);
12376 }
12377 
12378 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
12379   return getTargetInfo().getTargetAddressSpace(AS);
12380 }
12381 
12382 bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const {
12383   if (X == Y)
12384     return true;
12385   if (!X || !Y)
12386     return false;
12387   llvm::FoldingSetNodeID IDX, IDY;
12388   X->Profile(IDX, *this, /*Canonical=*/true);
12389   Y->Profile(IDY, *this, /*Canonical=*/true);
12390   return IDX == IDY;
12391 }
12392 
12393 // The getCommon* helpers return, for given 'same' X and Y entities given as
12394 // inputs, another entity which is also the 'same' as the inputs, but which
12395 // is closer to the canonical form of the inputs, each according to a given
12396 // criteria.
12397 // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of
12398 // the regular ones.
12399 
12400 static Decl *getCommonDecl(Decl *X, Decl *Y) {
12401   if (!declaresSameEntity(X, Y))
12402     return nullptr;
12403   for (const Decl *DX : X->redecls()) {
12404     // If we reach Y before reaching the first decl, that means X is older.
12405     if (DX == Y)
12406       return X;
12407     // If we reach the first decl, then Y is older.
12408     if (DX->isFirstDecl())
12409       return Y;
12410   }
12411   llvm_unreachable("Corrupt redecls chain");
12412 }
12413 
12414 template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12415 static T *getCommonDecl(T *X, T *Y) {
12416   return cast_or_null<T>(
12417       getCommonDecl(const_cast<Decl *>(cast_or_null<Decl>(X)),
12418                     const_cast<Decl *>(cast_or_null<Decl>(Y))));
12419 }
12420 
12421 template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12422 static T *getCommonDeclChecked(T *X, T *Y) {
12423   return cast<T>(getCommonDecl(const_cast<Decl *>(cast<Decl>(X)),
12424                                const_cast<Decl *>(cast<Decl>(Y))));
12425 }
12426 
12427 static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X,
12428                                           TemplateName Y) {
12429   if (X.getAsVoidPointer() == Y.getAsVoidPointer())
12430     return X;
12431   // FIXME: There are cases here where we could find a common template name
12432   //        with more sugar. For example one could be a SubstTemplateTemplate*
12433   //        replacing the other.
12434   TemplateName CX = Ctx.getCanonicalTemplateName(X);
12435   if (CX.getAsVoidPointer() !=
12436       Ctx.getCanonicalTemplateName(Y).getAsVoidPointer())
12437     return TemplateName();
12438   return CX;
12439 }
12440 
12441 static TemplateName
12442 getCommonTemplateNameChecked(ASTContext &Ctx, TemplateName X, TemplateName Y) {
12443   TemplateName R = getCommonTemplateName(Ctx, X, Y);
12444   assert(R.getAsVoidPointer() != nullptr);
12445   return R;
12446 }
12447 
12448 static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs,
12449                            ArrayRef<QualType> Ys, bool Unqualified = false) {
12450   assert(Xs.size() == Ys.size());
12451   SmallVector<QualType, 8> Rs(Xs.size());
12452   for (size_t I = 0; I < Rs.size(); ++I)
12453     Rs[I] = Ctx.getCommonSugaredType(Xs[I], Ys[I], Unqualified);
12454   return Rs;
12455 }
12456 
12457 template <class T>
12458 static SourceLocation getCommonAttrLoc(const T *X, const T *Y) {
12459   return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc()
12460                                                       : SourceLocation();
12461 }
12462 
12463 static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx,
12464                                                   const TemplateArgument &X,
12465                                                   const TemplateArgument &Y) {
12466   if (X.getKind() != Y.getKind())
12467     return TemplateArgument();
12468 
12469   switch (X.getKind()) {
12470   case TemplateArgument::ArgKind::Type:
12471     if (!Ctx.hasSameType(X.getAsType(), Y.getAsType()))
12472       return TemplateArgument();
12473     return TemplateArgument(
12474         Ctx.getCommonSugaredType(X.getAsType(), Y.getAsType()));
12475   case TemplateArgument::ArgKind::NullPtr:
12476     if (!Ctx.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
12477       return TemplateArgument();
12478     return TemplateArgument(
12479         Ctx.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
12480         /*Unqualified=*/true);
12481   case TemplateArgument::ArgKind::Expression:
12482     if (!Ctx.hasSameType(X.getAsExpr()->getType(), Y.getAsExpr()->getType()))
12483       return TemplateArgument();
12484     // FIXME: Try to keep the common sugar.
12485     return X;
12486   case TemplateArgument::ArgKind::Template: {
12487     TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate();
12488     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12489     if (!CTN.getAsVoidPointer())
12490       return TemplateArgument();
12491     return TemplateArgument(CTN);
12492   }
12493   case TemplateArgument::ArgKind::TemplateExpansion: {
12494     TemplateName TX = X.getAsTemplateOrTemplatePattern(),
12495                  TY = Y.getAsTemplateOrTemplatePattern();
12496     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12497     if (!CTN.getAsVoidPointer())
12498       return TemplateName();
12499     auto NExpX = X.getNumTemplateExpansions();
12500     assert(NExpX == Y.getNumTemplateExpansions());
12501     return TemplateArgument(CTN, NExpX);
12502   }
12503   default:
12504     // FIXME: Handle the other argument kinds.
12505     return X;
12506   }
12507 }
12508 
12509 static bool getCommonTemplateArguments(ASTContext &Ctx,
12510                                        SmallVectorImpl<TemplateArgument> &R,
12511                                        ArrayRef<TemplateArgument> Xs,
12512                                        ArrayRef<TemplateArgument> Ys) {
12513   if (Xs.size() != Ys.size())
12514     return true;
12515   R.resize(Xs.size());
12516   for (size_t I = 0; I < R.size(); ++I) {
12517     R[I] = getCommonTemplateArgument(Ctx, Xs[I], Ys[I]);
12518     if (R[I].isNull())
12519       return true;
12520   }
12521   return false;
12522 }
12523 
12524 static auto getCommonTemplateArguments(ASTContext &Ctx,
12525                                        ArrayRef<TemplateArgument> Xs,
12526                                        ArrayRef<TemplateArgument> Ys) {
12527   SmallVector<TemplateArgument, 8> R;
12528   bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys);
12529   assert(!Different);
12530   (void)Different;
12531   return R;
12532 }
12533 
12534 template <class T>
12535 static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) {
12536   return X->getKeyword() == Y->getKeyword() ? X->getKeyword()
12537                                             : ElaboratedTypeKeyword::ETK_None;
12538 }
12539 
12540 template <class T>
12541 static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, const T *X,
12542                                          const T *Y) {
12543   // FIXME: Try to keep the common NNS sugar.
12544   return X->getQualifier() == Y->getQualifier()
12545              ? X->getQualifier()
12546              : Ctx.getCanonicalNestedNameSpecifier(X->getQualifier());
12547 }
12548 
12549 template <class T>
12550 static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) {
12551   return Ctx.getCommonSugaredType(X->getElementType(), Y->getElementType());
12552 }
12553 
12554 template <class T>
12555 static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X,
12556                                           Qualifiers &QX, const T *Y,
12557                                           Qualifiers &QY) {
12558   QualType EX = X->getElementType(), EY = Y->getElementType();
12559   QualType R = Ctx.getCommonSugaredType(EX, EY,
12560                                         /*Unqualified=*/true);
12561   Qualifiers RQ = R.getQualifiers();
12562   QX += EX.getQualifiers() - RQ;
12563   QY += EY.getQualifiers() - RQ;
12564   return R;
12565 }
12566 
12567 template <class T>
12568 static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) {
12569   return Ctx.getCommonSugaredType(X->getPointeeType(), Y->getPointeeType());
12570 }
12571 
12572 template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) {
12573   assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr()));
12574   return X->getSizeExpr();
12575 }
12576 
12577 static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) {
12578   assert(X->getSizeModifier() == Y->getSizeModifier());
12579   return X->getSizeModifier();
12580 }
12581 
12582 static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X,
12583                                             const ArrayType *Y) {
12584   assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers());
12585   return X->getIndexTypeCVRQualifiers();
12586 }
12587 
12588 // Merges two type lists such that the resulting vector will contain
12589 // each type (in a canonical sense) only once, in the order they appear
12590 // from X to Y. If they occur in both X and Y, the result will contain
12591 // the common sugared type between them.
12592 static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out,
12593                            ArrayRef<QualType> X, ArrayRef<QualType> Y) {
12594   llvm::DenseMap<QualType, unsigned> Found;
12595   for (auto Ts : {X, Y}) {
12596     for (QualType T : Ts) {
12597       auto Res = Found.try_emplace(Ctx.getCanonicalType(T), Out.size());
12598       if (!Res.second) {
12599         QualType &U = Out[Res.first->second];
12600         U = Ctx.getCommonSugaredType(U, T);
12601       } else {
12602         Out.emplace_back(T);
12603       }
12604     }
12605   }
12606 }
12607 
12608 FunctionProtoType::ExceptionSpecInfo
12609 ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
12610                                 FunctionProtoType::ExceptionSpecInfo ESI2,
12611                                 SmallVectorImpl<QualType> &ExceptionTypeStorage,
12612                                 bool AcceptDependent) {
12613   ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type;
12614 
12615   // If either of them can throw anything, that is the result.
12616   for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) {
12617     if (EST1 == I)
12618       return ESI1;
12619     if (EST2 == I)
12620       return ESI2;
12621   }
12622 
12623   // If either of them is non-throwing, the result is the other.
12624   for (auto I :
12625        {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) {
12626     if (EST1 == I)
12627       return ESI2;
12628     if (EST2 == I)
12629       return ESI1;
12630   }
12631 
12632   // If we're left with value-dependent computed noexcept expressions, we're
12633   // stuck. Before C++17, we can just drop the exception specification entirely,
12634   // since it's not actually part of the canonical type. And this should never
12635   // happen in C++17, because it would mean we were computing the composite
12636   // pointer type of dependent types, which should never happen.
12637   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
12638     assert(AcceptDependent &&
12639            "computing composite pointer type of dependent types");
12640     return FunctionProtoType::ExceptionSpecInfo();
12641   }
12642 
12643   // Switch over the possibilities so that people adding new values know to
12644   // update this function.
12645   switch (EST1) {
12646   case EST_None:
12647   case EST_DynamicNone:
12648   case EST_MSAny:
12649   case EST_BasicNoexcept:
12650   case EST_DependentNoexcept:
12651   case EST_NoexceptFalse:
12652   case EST_NoexceptTrue:
12653   case EST_NoThrow:
12654     llvm_unreachable("These ESTs should be handled above");
12655 
12656   case EST_Dynamic: {
12657     // This is the fun case: both exception specifications are dynamic. Form
12658     // the union of the two lists.
12659     assert(EST2 == EST_Dynamic && "other cases should already be handled");
12660     mergeTypeLists(*this, ExceptionTypeStorage, ESI1.Exceptions,
12661                    ESI2.Exceptions);
12662     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
12663     Result.Exceptions = ExceptionTypeStorage;
12664     return Result;
12665   }
12666 
12667   case EST_Unevaluated:
12668   case EST_Uninstantiated:
12669   case EST_Unparsed:
12670     llvm_unreachable("shouldn't see unresolved exception specifications here");
12671   }
12672 
12673   llvm_unreachable("invalid ExceptionSpecificationType");
12674 }
12675 
12676 static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X,
12677                                           Qualifiers &QX, const Type *Y,
12678                                           Qualifiers &QY) {
12679   Type::TypeClass TC = X->getTypeClass();
12680   assert(TC == Y->getTypeClass());
12681   switch (TC) {
12682 #define UNEXPECTED_TYPE(Class, Kind)                                           \
12683   case Type::Class:                                                            \
12684     llvm_unreachable("Unexpected " Kind ": " #Class);
12685 
12686 #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical")
12687 #define TYPE(Class, Base)
12688 #include "clang/AST/TypeNodes.inc"
12689 
12690 #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free")
12691     SUGAR_FREE_TYPE(Builtin)
12692     SUGAR_FREE_TYPE(Decltype)
12693     SUGAR_FREE_TYPE(DeducedTemplateSpecialization)
12694     SUGAR_FREE_TYPE(DependentBitInt)
12695     SUGAR_FREE_TYPE(Enum)
12696     SUGAR_FREE_TYPE(BitInt)
12697     SUGAR_FREE_TYPE(ObjCInterface)
12698     SUGAR_FREE_TYPE(Record)
12699     SUGAR_FREE_TYPE(SubstTemplateTypeParmPack)
12700     SUGAR_FREE_TYPE(UnresolvedUsing)
12701 #undef SUGAR_FREE_TYPE
12702 #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique")
12703     NON_UNIQUE_TYPE(TypeOfExpr)
12704     NON_UNIQUE_TYPE(VariableArray)
12705 #undef NON_UNIQUE_TYPE
12706 
12707     UNEXPECTED_TYPE(TypeOf, "sugar")
12708 
12709 #undef UNEXPECTED_TYPE
12710 
12711   case Type::Auto: {
12712     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
12713     assert(AX->getDeducedType().isNull());
12714     assert(AY->getDeducedType().isNull());
12715     assert(AX->getKeyword() == AY->getKeyword());
12716     assert(AX->isInstantiationDependentType() ==
12717            AY->isInstantiationDependentType());
12718     auto As = getCommonTemplateArguments(Ctx, AX->getTypeConstraintArguments(),
12719                                          AY->getTypeConstraintArguments());
12720     return Ctx.getAutoType(QualType(), AX->getKeyword(),
12721                            AX->isInstantiationDependentType(),
12722                            AX->containsUnexpandedParameterPack(),
12723                            getCommonDeclChecked(AX->getTypeConstraintConcept(),
12724                                                 AY->getTypeConstraintConcept()),
12725                            As);
12726   }
12727   case Type::IncompleteArray: {
12728     const auto *AX = cast<IncompleteArrayType>(X),
12729                *AY = cast<IncompleteArrayType>(Y);
12730     return Ctx.getIncompleteArrayType(
12731         getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12732         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12733   }
12734   case Type::DependentSizedArray: {
12735     const auto *AX = cast<DependentSizedArrayType>(X),
12736                *AY = cast<DependentSizedArrayType>(Y);
12737     return Ctx.getDependentSizedArrayType(
12738         getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12739         getCommonSizeExpr(Ctx, AX, AY), getCommonSizeModifier(AX, AY),
12740         getCommonIndexTypeCVRQualifiers(AX, AY),
12741         AX->getBracketsRange() == AY->getBracketsRange()
12742             ? AX->getBracketsRange()
12743             : SourceRange());
12744   }
12745   case Type::ConstantArray: {
12746     const auto *AX = cast<ConstantArrayType>(X),
12747                *AY = cast<ConstantArrayType>(Y);
12748     assert(AX->getSize() == AY->getSize());
12749     const Expr *SizeExpr = Ctx.hasSameExpr(AX->getSizeExpr(), AY->getSizeExpr())
12750                                ? AX->getSizeExpr()
12751                                : nullptr;
12752     return Ctx.getConstantArrayType(
12753         getCommonArrayElementType(Ctx, AX, QX, AY, QY), AX->getSize(), SizeExpr,
12754         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12755   }
12756   case Type::Atomic: {
12757     const auto *AX = cast<AtomicType>(X), *AY = cast<AtomicType>(Y);
12758     return Ctx.getAtomicType(
12759         Ctx.getCommonSugaredType(AX->getValueType(), AY->getValueType()));
12760   }
12761   case Type::Complex: {
12762     const auto *CX = cast<ComplexType>(X), *CY = cast<ComplexType>(Y);
12763     return Ctx.getComplexType(getCommonArrayElementType(Ctx, CX, QX, CY, QY));
12764   }
12765   case Type::Pointer: {
12766     const auto *PX = cast<PointerType>(X), *PY = cast<PointerType>(Y);
12767     return Ctx.getPointerType(getCommonPointeeType(Ctx, PX, PY));
12768   }
12769   case Type::BlockPointer: {
12770     const auto *PX = cast<BlockPointerType>(X), *PY = cast<BlockPointerType>(Y);
12771     return Ctx.getBlockPointerType(getCommonPointeeType(Ctx, PX, PY));
12772   }
12773   case Type::ObjCObjectPointer: {
12774     const auto *PX = cast<ObjCObjectPointerType>(X),
12775                *PY = cast<ObjCObjectPointerType>(Y);
12776     return Ctx.getObjCObjectPointerType(getCommonPointeeType(Ctx, PX, PY));
12777   }
12778   case Type::MemberPointer: {
12779     const auto *PX = cast<MemberPointerType>(X),
12780                *PY = cast<MemberPointerType>(Y);
12781     return Ctx.getMemberPointerType(
12782         getCommonPointeeType(Ctx, PX, PY),
12783         Ctx.getCommonSugaredType(QualType(PX->getClass(), 0),
12784                                  QualType(PY->getClass(), 0))
12785             .getTypePtr());
12786   }
12787   case Type::LValueReference: {
12788     const auto *PX = cast<LValueReferenceType>(X),
12789                *PY = cast<LValueReferenceType>(Y);
12790     // FIXME: Preserve PointeeTypeAsWritten.
12791     return Ctx.getLValueReferenceType(getCommonPointeeType(Ctx, PX, PY),
12792                                       PX->isSpelledAsLValue() ||
12793                                           PY->isSpelledAsLValue());
12794   }
12795   case Type::RValueReference: {
12796     const auto *PX = cast<RValueReferenceType>(X),
12797                *PY = cast<RValueReferenceType>(Y);
12798     // FIXME: Preserve PointeeTypeAsWritten.
12799     return Ctx.getRValueReferenceType(getCommonPointeeType(Ctx, PX, PY));
12800   }
12801   case Type::DependentAddressSpace: {
12802     const auto *PX = cast<DependentAddressSpaceType>(X),
12803                *PY = cast<DependentAddressSpaceType>(Y);
12804     assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr()));
12805     return Ctx.getDependentAddressSpaceType(getCommonPointeeType(Ctx, PX, PY),
12806                                             PX->getAddrSpaceExpr(),
12807                                             getCommonAttrLoc(PX, PY));
12808   }
12809   case Type::FunctionNoProto: {
12810     const auto *FX = cast<FunctionNoProtoType>(X),
12811                *FY = cast<FunctionNoProtoType>(Y);
12812     assert(FX->getExtInfo() == FY->getExtInfo());
12813     return Ctx.getFunctionNoProtoType(
12814         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()),
12815         FX->getExtInfo());
12816   }
12817   case Type::FunctionProto: {
12818     const auto *FX = cast<FunctionProtoType>(X),
12819                *FY = cast<FunctionProtoType>(Y);
12820     FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(),
12821                                     EPIY = FY->getExtProtoInfo();
12822     assert(EPIX.ExtInfo == EPIY.ExtInfo);
12823     assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos);
12824     assert(EPIX.RefQualifier == EPIY.RefQualifier);
12825     assert(EPIX.TypeQuals == EPIY.TypeQuals);
12826     assert(EPIX.Variadic == EPIY.Variadic);
12827 
12828     // FIXME: Can we handle an empty EllipsisLoc?
12829     //        Use emtpy EllipsisLoc if X and Y differ.
12830 
12831     EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn;
12832 
12833     QualType R =
12834         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType());
12835     auto P = getCommonTypes(Ctx, FX->param_types(), FY->param_types(),
12836                             /*Unqualified=*/true);
12837 
12838     SmallVector<QualType, 8> Exceptions;
12839     EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs(
12840         EPIX.ExceptionSpec, EPIY.ExceptionSpec, Exceptions, true);
12841     return Ctx.getFunctionType(R, P, EPIX);
12842   }
12843   case Type::ObjCObject: {
12844     const auto *OX = cast<ObjCObjectType>(X), *OY = cast<ObjCObjectType>(Y);
12845     assert(
12846         std::equal(OX->getProtocols().begin(), OX->getProtocols().end(),
12847                    OY->getProtocols().begin(), OY->getProtocols().end(),
12848                    [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) {
12849                      return P0->getCanonicalDecl() == P1->getCanonicalDecl();
12850                    }) &&
12851         "protocol lists must be the same");
12852     auto TAs = getCommonTypes(Ctx, OX->getTypeArgsAsWritten(),
12853                               OY->getTypeArgsAsWritten());
12854     return Ctx.getObjCObjectType(
12855         Ctx.getCommonSugaredType(OX->getBaseType(), OY->getBaseType()), TAs,
12856         OX->getProtocols(),
12857         OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten());
12858   }
12859   case Type::ConstantMatrix: {
12860     const auto *MX = cast<ConstantMatrixType>(X),
12861                *MY = cast<ConstantMatrixType>(Y);
12862     assert(MX->getNumRows() == MY->getNumRows());
12863     assert(MX->getNumColumns() == MY->getNumColumns());
12864     return Ctx.getConstantMatrixType(getCommonElementType(Ctx, MX, MY),
12865                                      MX->getNumRows(), MX->getNumColumns());
12866   }
12867   case Type::DependentSizedMatrix: {
12868     const auto *MX = cast<DependentSizedMatrixType>(X),
12869                *MY = cast<DependentSizedMatrixType>(Y);
12870     assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr()));
12871     assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr()));
12872     return Ctx.getDependentSizedMatrixType(
12873         getCommonElementType(Ctx, MX, MY), MX->getRowExpr(),
12874         MX->getColumnExpr(), getCommonAttrLoc(MX, MY));
12875   }
12876   case Type::Vector: {
12877     const auto *VX = cast<VectorType>(X), *VY = cast<VectorType>(Y);
12878     assert(VX->getNumElements() == VY->getNumElements());
12879     assert(VX->getVectorKind() == VY->getVectorKind());
12880     return Ctx.getVectorType(getCommonElementType(Ctx, VX, VY),
12881                              VX->getNumElements(), VX->getVectorKind());
12882   }
12883   case Type::ExtVector: {
12884     const auto *VX = cast<ExtVectorType>(X), *VY = cast<ExtVectorType>(Y);
12885     assert(VX->getNumElements() == VY->getNumElements());
12886     return Ctx.getExtVectorType(getCommonElementType(Ctx, VX, VY),
12887                                 VX->getNumElements());
12888   }
12889   case Type::DependentSizedExtVector: {
12890     const auto *VX = cast<DependentSizedExtVectorType>(X),
12891                *VY = cast<DependentSizedExtVectorType>(Y);
12892     return Ctx.getDependentSizedExtVectorType(getCommonElementType(Ctx, VX, VY),
12893                                               getCommonSizeExpr(Ctx, VX, VY),
12894                                               getCommonAttrLoc(VX, VY));
12895   }
12896   case Type::DependentVector: {
12897     const auto *VX = cast<DependentVectorType>(X),
12898                *VY = cast<DependentVectorType>(Y);
12899     assert(VX->getVectorKind() == VY->getVectorKind());
12900     return Ctx.getDependentVectorType(
12901         getCommonElementType(Ctx, VX, VY), getCommonSizeExpr(Ctx, VX, VY),
12902         getCommonAttrLoc(VX, VY), VX->getVectorKind());
12903   }
12904   case Type::InjectedClassName: {
12905     const auto *IX = cast<InjectedClassNameType>(X),
12906                *IY = cast<InjectedClassNameType>(Y);
12907     return Ctx.getInjectedClassNameType(
12908         getCommonDeclChecked(IX->getDecl(), IY->getDecl()),
12909         Ctx.getCommonSugaredType(IX->getInjectedSpecializationType(),
12910                                  IY->getInjectedSpecializationType()));
12911   }
12912   case Type::TemplateSpecialization: {
12913     const auto *TX = cast<TemplateSpecializationType>(X),
12914                *TY = cast<TemplateSpecializationType>(Y);
12915     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12916                                          TY->template_arguments());
12917     return Ctx.getTemplateSpecializationType(
12918         ::getCommonTemplateNameChecked(Ctx, TX->getTemplateName(),
12919                                        TY->getTemplateName()),
12920         As, X->getCanonicalTypeInternal());
12921   }
12922   case Type::DependentName: {
12923     const auto *NX = cast<DependentNameType>(X),
12924                *NY = cast<DependentNameType>(Y);
12925     assert(NX->getIdentifier() == NY->getIdentifier());
12926     return Ctx.getDependentNameType(
12927         getCommonTypeKeyword(NX, NY), getCommonNNS(Ctx, NX, NY),
12928         NX->getIdentifier(), NX->getCanonicalTypeInternal());
12929   }
12930   case Type::DependentTemplateSpecialization: {
12931     const auto *TX = cast<DependentTemplateSpecializationType>(X),
12932                *TY = cast<DependentTemplateSpecializationType>(Y);
12933     assert(TX->getIdentifier() == TY->getIdentifier());
12934     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12935                                          TY->template_arguments());
12936     return Ctx.getDependentTemplateSpecializationType(
12937         getCommonTypeKeyword(TX, TY), getCommonNNS(Ctx, TX, TY),
12938         TX->getIdentifier(), As);
12939   }
12940   case Type::UnaryTransform: {
12941     const auto *TX = cast<UnaryTransformType>(X),
12942                *TY = cast<UnaryTransformType>(Y);
12943     assert(TX->getUTTKind() == TY->getUTTKind());
12944     return Ctx.getUnaryTransformType(
12945         Ctx.getCommonSugaredType(TX->getBaseType(), TY->getBaseType()),
12946         Ctx.getCommonSugaredType(TX->getUnderlyingType(),
12947                                  TY->getUnderlyingType()),
12948         TX->getUTTKind());
12949   }
12950   case Type::PackExpansion: {
12951     const auto *PX = cast<PackExpansionType>(X),
12952                *PY = cast<PackExpansionType>(Y);
12953     assert(PX->getNumExpansions() == PY->getNumExpansions());
12954     return Ctx.getPackExpansionType(
12955         Ctx.getCommonSugaredType(PX->getPattern(), PY->getPattern()),
12956         PX->getNumExpansions(), false);
12957   }
12958   case Type::Pipe: {
12959     const auto *PX = cast<PipeType>(X), *PY = cast<PipeType>(Y);
12960     assert(PX->isReadOnly() == PY->isReadOnly());
12961     auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType
12962                                : &ASTContext::getWritePipeType;
12963     return (Ctx.*MP)(getCommonElementType(Ctx, PX, PY));
12964   }
12965   case Type::TemplateTypeParm: {
12966     const auto *TX = cast<TemplateTypeParmType>(X),
12967                *TY = cast<TemplateTypeParmType>(Y);
12968     assert(TX->getDepth() == TY->getDepth());
12969     assert(TX->getIndex() == TY->getIndex());
12970     assert(TX->isParameterPack() == TY->isParameterPack());
12971     return Ctx.getTemplateTypeParmType(
12972         TX->getDepth(), TX->getIndex(), TX->isParameterPack(),
12973         getCommonDecl(TX->getDecl(), TY->getDecl()));
12974   }
12975   }
12976   llvm_unreachable("Unknown Type Class");
12977 }
12978 
12979 static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X,
12980                                        const Type *Y,
12981                                        SplitQualType Underlying) {
12982   Type::TypeClass TC = X->getTypeClass();
12983   if (TC != Y->getTypeClass())
12984     return QualType();
12985   switch (TC) {
12986 #define UNEXPECTED_TYPE(Class, Kind)                                           \
12987   case Type::Class:                                                            \
12988     llvm_unreachable("Unexpected " Kind ": " #Class);
12989 #define TYPE(Class, Base)
12990 #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent")
12991 #include "clang/AST/TypeNodes.inc"
12992 
12993 #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical")
12994     CANONICAL_TYPE(Atomic)
12995     CANONICAL_TYPE(BitInt)
12996     CANONICAL_TYPE(BlockPointer)
12997     CANONICAL_TYPE(Builtin)
12998     CANONICAL_TYPE(Complex)
12999     CANONICAL_TYPE(ConstantArray)
13000     CANONICAL_TYPE(ConstantMatrix)
13001     CANONICAL_TYPE(Enum)
13002     CANONICAL_TYPE(ExtVector)
13003     CANONICAL_TYPE(FunctionNoProto)
13004     CANONICAL_TYPE(FunctionProto)
13005     CANONICAL_TYPE(IncompleteArray)
13006     CANONICAL_TYPE(LValueReference)
13007     CANONICAL_TYPE(MemberPointer)
13008     CANONICAL_TYPE(ObjCInterface)
13009     CANONICAL_TYPE(ObjCObject)
13010     CANONICAL_TYPE(ObjCObjectPointer)
13011     CANONICAL_TYPE(Pipe)
13012     CANONICAL_TYPE(Pointer)
13013     CANONICAL_TYPE(Record)
13014     CANONICAL_TYPE(RValueReference)
13015     CANONICAL_TYPE(VariableArray)
13016     CANONICAL_TYPE(Vector)
13017 #undef CANONICAL_TYPE
13018 
13019 #undef UNEXPECTED_TYPE
13020 
13021   case Type::Adjusted: {
13022     const auto *AX = cast<AdjustedType>(X), *AY = cast<AdjustedType>(Y);
13023     QualType OX = AX->getOriginalType(), OY = AY->getOriginalType();
13024     if (!Ctx.hasSameType(OX, OY))
13025       return QualType();
13026     // FIXME: It's inefficient to have to unify the original types.
13027     return Ctx.getAdjustedType(Ctx.getCommonSugaredType(OX, OY),
13028                                Ctx.getQualifiedType(Underlying));
13029   }
13030   case Type::Decayed: {
13031     const auto *DX = cast<DecayedType>(X), *DY = cast<DecayedType>(Y);
13032     QualType OX = DX->getOriginalType(), OY = DY->getOriginalType();
13033     if (!Ctx.hasSameType(OX, OY))
13034       return QualType();
13035     // FIXME: It's inefficient to have to unify the original types.
13036     return Ctx.getDecayedType(Ctx.getCommonSugaredType(OX, OY),
13037                               Ctx.getQualifiedType(Underlying));
13038   }
13039   case Type::Attributed: {
13040     const auto *AX = cast<AttributedType>(X), *AY = cast<AttributedType>(Y);
13041     AttributedType::Kind Kind = AX->getAttrKind();
13042     if (Kind != AY->getAttrKind())
13043       return QualType();
13044     QualType MX = AX->getModifiedType(), MY = AY->getModifiedType();
13045     if (!Ctx.hasSameType(MX, MY))
13046       return QualType();
13047     // FIXME: It's inefficient to have to unify the modified types.
13048     return Ctx.getAttributedType(Kind, Ctx.getCommonSugaredType(MX, MY),
13049                                  Ctx.getQualifiedType(Underlying));
13050   }
13051   case Type::BTFTagAttributed: {
13052     const auto *BX = cast<BTFTagAttributedType>(X);
13053     const BTFTypeTagAttr *AX = BX->getAttr();
13054     // The attribute is not uniqued, so just compare the tag.
13055     if (AX->getBTFTypeTag() !=
13056         cast<BTFTagAttributedType>(Y)->getAttr()->getBTFTypeTag())
13057       return QualType();
13058     return Ctx.getBTFTagAttributedType(AX, Ctx.getQualifiedType(Underlying));
13059   }
13060   case Type::Auto: {
13061     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
13062 
13063     AutoTypeKeyword KW = AX->getKeyword();
13064     if (KW != AY->getKeyword())
13065       return QualType();
13066 
13067     ConceptDecl *CD = ::getCommonDecl(AX->getTypeConstraintConcept(),
13068                                       AY->getTypeConstraintConcept());
13069     SmallVector<TemplateArgument, 8> As;
13070     if (CD &&
13071         getCommonTemplateArguments(Ctx, As, AX->getTypeConstraintArguments(),
13072                                    AY->getTypeConstraintArguments())) {
13073       CD = nullptr; // The arguments differ, so make it unconstrained.
13074       As.clear();
13075     }
13076 
13077     // Both auto types can't be dependent, otherwise they wouldn't have been
13078     // sugar. This implies they can't contain unexpanded packs either.
13079     return Ctx.getAutoType(Ctx.getQualifiedType(Underlying), AX->getKeyword(),
13080                            /*IsDependent=*/false, /*IsPack=*/false, CD, As);
13081   }
13082   case Type::Decltype:
13083     return QualType();
13084   case Type::DeducedTemplateSpecialization:
13085     // FIXME: Try to merge these.
13086     return QualType();
13087 
13088   case Type::Elaborated: {
13089     const auto *EX = cast<ElaboratedType>(X), *EY = cast<ElaboratedType>(Y);
13090     return Ctx.getElaboratedType(
13091         ::getCommonTypeKeyword(EX, EY), ::getCommonNNS(Ctx, EX, EY),
13092         Ctx.getQualifiedType(Underlying),
13093         ::getCommonDecl(EX->getOwnedTagDecl(), EY->getOwnedTagDecl()));
13094   }
13095   case Type::MacroQualified: {
13096     const auto *MX = cast<MacroQualifiedType>(X),
13097                *MY = cast<MacroQualifiedType>(Y);
13098     const IdentifierInfo *IX = MX->getMacroIdentifier();
13099     if (IX != MY->getMacroIdentifier())
13100       return QualType();
13101     return Ctx.getMacroQualifiedType(Ctx.getQualifiedType(Underlying), IX);
13102   }
13103   case Type::SubstTemplateTypeParm: {
13104     const auto *SX = cast<SubstTemplateTypeParmType>(X),
13105                *SY = cast<SubstTemplateTypeParmType>(Y);
13106     Decl *CD =
13107         ::getCommonDecl(SX->getAssociatedDecl(), SY->getAssociatedDecl());
13108     if (!CD)
13109       return QualType();
13110     unsigned Index = SX->getIndex();
13111     if (Index != SY->getIndex())
13112       return QualType();
13113     auto PackIndex = SX->getPackIndex();
13114     if (PackIndex != SY->getPackIndex())
13115       return QualType();
13116     return Ctx.getSubstTemplateTypeParmType(Ctx.getQualifiedType(Underlying),
13117                                             CD, Index, PackIndex);
13118   }
13119   case Type::ObjCTypeParam:
13120     // FIXME: Try to merge these.
13121     return QualType();
13122   case Type::Paren:
13123     return Ctx.getParenType(Ctx.getQualifiedType(Underlying));
13124 
13125   case Type::TemplateSpecialization: {
13126     const auto *TX = cast<TemplateSpecializationType>(X),
13127                *TY = cast<TemplateSpecializationType>(Y);
13128     TemplateName CTN = ::getCommonTemplateName(Ctx, TX->getTemplateName(),
13129                                                TY->getTemplateName());
13130     if (!CTN.getAsVoidPointer())
13131       return QualType();
13132     SmallVector<TemplateArgument, 8> Args;
13133     if (getCommonTemplateArguments(Ctx, Args, TX->template_arguments(),
13134                                    TY->template_arguments()))
13135       return QualType();
13136     return Ctx.getTemplateSpecializationType(CTN, Args,
13137                                              Ctx.getQualifiedType(Underlying));
13138   }
13139   case Type::Typedef: {
13140     const auto *TX = cast<TypedefType>(X), *TY = cast<TypedefType>(Y);
13141     const TypedefNameDecl *CD = ::getCommonDecl(TX->getDecl(), TY->getDecl());
13142     if (!CD)
13143       return QualType();
13144     return Ctx.getTypedefType(CD, Ctx.getQualifiedType(Underlying));
13145   }
13146   case Type::TypeOf: {
13147     // The common sugar between two typeof expressions, where one is
13148     // potentially a typeof_unqual and the other is not, we unify to the
13149     // qualified type as that retains the most information along with the type.
13150     // We only return a typeof_unqual type when both types are unqual types.
13151     TypeOfKind Kind = TypeOfKind::Qualified;
13152     if (cast<TypeOfType>(X)->getKind() == cast<TypeOfType>(Y)->getKind() &&
13153         cast<TypeOfType>(X)->getKind() == TypeOfKind::Unqualified)
13154       Kind = TypeOfKind::Unqualified;
13155     return Ctx.getTypeOfType(Ctx.getQualifiedType(Underlying), Kind);
13156   }
13157   case Type::TypeOfExpr:
13158     return QualType();
13159 
13160   case Type::UnaryTransform: {
13161     const auto *UX = cast<UnaryTransformType>(X),
13162                *UY = cast<UnaryTransformType>(Y);
13163     UnaryTransformType::UTTKind KX = UX->getUTTKind();
13164     if (KX != UY->getUTTKind())
13165       return QualType();
13166     QualType BX = UX->getBaseType(), BY = UY->getBaseType();
13167     if (!Ctx.hasSameType(BX, BY))
13168       return QualType();
13169     // FIXME: It's inefficient to have to unify the base types.
13170     return Ctx.getUnaryTransformType(Ctx.getCommonSugaredType(BX, BY),
13171                                      Ctx.getQualifiedType(Underlying), KX);
13172   }
13173   case Type::Using: {
13174     const auto *UX = cast<UsingType>(X), *UY = cast<UsingType>(Y);
13175     const UsingShadowDecl *CD =
13176         ::getCommonDecl(UX->getFoundDecl(), UY->getFoundDecl());
13177     if (!CD)
13178       return QualType();
13179     return Ctx.getUsingType(CD, Ctx.getQualifiedType(Underlying));
13180   }
13181   }
13182   llvm_unreachable("Unhandled Type Class");
13183 }
13184 
13185 static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) {
13186   SmallVector<SplitQualType, 8> R;
13187   while (true) {
13188     QTotal.addConsistentQualifiers(T.Quals);
13189     QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
13190     if (NT == QualType(T.Ty, 0))
13191       break;
13192     R.push_back(T);
13193     T = NT.split();
13194   }
13195   return R;
13196 }
13197 
13198 QualType ASTContext::getCommonSugaredType(QualType X, QualType Y,
13199                                           bool Unqualified) {
13200   assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y));
13201   if (X == Y)
13202     return X;
13203   if (!Unqualified) {
13204     if (X.isCanonical())
13205       return X;
13206     if (Y.isCanonical())
13207       return Y;
13208   }
13209 
13210   SplitQualType SX = X.split(), SY = Y.split();
13211   Qualifiers QX, QY;
13212   // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys,
13213   // until we reach their underlying "canonical nodes". Note these are not
13214   // necessarily canonical types, as they may still have sugared properties.
13215   // QX and QY will store the sum of all qualifiers in Xs and Ys respectively.
13216   auto Xs = ::unwrapSugar(SX, QX), Ys = ::unwrapSugar(SY, QY);
13217   if (SX.Ty != SY.Ty) {
13218     // The canonical nodes differ. Build a common canonical node out of the two,
13219     // unifying their sugar. This may recurse back here.
13220     SX.Ty =
13221         ::getCommonNonSugarTypeNode(*this, SX.Ty, QX, SY.Ty, QY).getTypePtr();
13222   } else {
13223     // The canonical nodes were identical: We may have desugared too much.
13224     // Add any common sugar back in.
13225     while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) {
13226       QX -= SX.Quals;
13227       QY -= SY.Quals;
13228       SX = Xs.pop_back_val();
13229       SY = Ys.pop_back_val();
13230     }
13231   }
13232   if (Unqualified)
13233     QX = Qualifiers::removeCommonQualifiers(QX, QY);
13234   else
13235     assert(QX == QY);
13236 
13237   // Even though the remaining sugar nodes in Xs and Ys differ, some may be
13238   // related. Walk up these nodes, unifying them and adding the result.
13239   while (!Xs.empty() && !Ys.empty()) {
13240     auto Underlying = SplitQualType(
13241         SX.Ty, Qualifiers::removeCommonQualifiers(SX.Quals, SY.Quals));
13242     SX = Xs.pop_back_val();
13243     SY = Ys.pop_back_val();
13244     SX.Ty = ::getCommonSugarTypeNode(*this, SX.Ty, SY.Ty, Underlying)
13245                 .getTypePtrOrNull();
13246     // Stop at the first pair which is unrelated.
13247     if (!SX.Ty) {
13248       SX.Ty = Underlying.Ty;
13249       break;
13250     }
13251     QX -= Underlying.Quals;
13252   };
13253 
13254   // Add back the missing accumulated qualifiers, which were stripped off
13255   // with the sugar nodes we could not unify.
13256   QualType R = getQualifiedType(SX.Ty, QX);
13257   assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X));
13258   return R;
13259 }
13260 
13261 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
13262   assert(Ty->isFixedPointType());
13263 
13264   if (Ty->isSaturatedFixedPointType()) return Ty;
13265 
13266   switch (Ty->castAs<BuiltinType>()->getKind()) {
13267     default:
13268       llvm_unreachable("Not a fixed point type!");
13269     case BuiltinType::ShortAccum:
13270       return SatShortAccumTy;
13271     case BuiltinType::Accum:
13272       return SatAccumTy;
13273     case BuiltinType::LongAccum:
13274       return SatLongAccumTy;
13275     case BuiltinType::UShortAccum:
13276       return SatUnsignedShortAccumTy;
13277     case BuiltinType::UAccum:
13278       return SatUnsignedAccumTy;
13279     case BuiltinType::ULongAccum:
13280       return SatUnsignedLongAccumTy;
13281     case BuiltinType::ShortFract:
13282       return SatShortFractTy;
13283     case BuiltinType::Fract:
13284       return SatFractTy;
13285     case BuiltinType::LongFract:
13286       return SatLongFractTy;
13287     case BuiltinType::UShortFract:
13288       return SatUnsignedShortFractTy;
13289     case BuiltinType::UFract:
13290       return SatUnsignedFractTy;
13291     case BuiltinType::ULongFract:
13292       return SatUnsignedLongFractTy;
13293   }
13294 }
13295 
13296 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
13297   if (LangOpts.OpenCL)
13298     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
13299 
13300   if (LangOpts.CUDA)
13301     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
13302 
13303   return getLangASFromTargetAS(AS);
13304 }
13305 
13306 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
13307 // doesn't include ASTContext.h
13308 template
13309 clang::LazyGenerationalUpdatePtr<
13310     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
13311 clang::LazyGenerationalUpdatePtr<
13312     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
13313         const clang::ASTContext &Ctx, Decl *Value);
13314 
13315 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
13316   assert(Ty->isFixedPointType());
13317 
13318   const TargetInfo &Target = getTargetInfo();
13319   switch (Ty->castAs<BuiltinType>()->getKind()) {
13320     default:
13321       llvm_unreachable("Not a fixed point type!");
13322     case BuiltinType::ShortAccum:
13323     case BuiltinType::SatShortAccum:
13324       return Target.getShortAccumScale();
13325     case BuiltinType::Accum:
13326     case BuiltinType::SatAccum:
13327       return Target.getAccumScale();
13328     case BuiltinType::LongAccum:
13329     case BuiltinType::SatLongAccum:
13330       return Target.getLongAccumScale();
13331     case BuiltinType::UShortAccum:
13332     case BuiltinType::SatUShortAccum:
13333       return Target.getUnsignedShortAccumScale();
13334     case BuiltinType::UAccum:
13335     case BuiltinType::SatUAccum:
13336       return Target.getUnsignedAccumScale();
13337     case BuiltinType::ULongAccum:
13338     case BuiltinType::SatULongAccum:
13339       return Target.getUnsignedLongAccumScale();
13340     case BuiltinType::ShortFract:
13341     case BuiltinType::SatShortFract:
13342       return Target.getShortFractScale();
13343     case BuiltinType::Fract:
13344     case BuiltinType::SatFract:
13345       return Target.getFractScale();
13346     case BuiltinType::LongFract:
13347     case BuiltinType::SatLongFract:
13348       return Target.getLongFractScale();
13349     case BuiltinType::UShortFract:
13350     case BuiltinType::SatUShortFract:
13351       return Target.getUnsignedShortFractScale();
13352     case BuiltinType::UFract:
13353     case BuiltinType::SatUFract:
13354       return Target.getUnsignedFractScale();
13355     case BuiltinType::ULongFract:
13356     case BuiltinType::SatULongFract:
13357       return Target.getUnsignedLongFractScale();
13358   }
13359 }
13360 
13361 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
13362   assert(Ty->isFixedPointType());
13363 
13364   const TargetInfo &Target = getTargetInfo();
13365   switch (Ty->castAs<BuiltinType>()->getKind()) {
13366     default:
13367       llvm_unreachable("Not a fixed point type!");
13368     case BuiltinType::ShortAccum:
13369     case BuiltinType::SatShortAccum:
13370       return Target.getShortAccumIBits();
13371     case BuiltinType::Accum:
13372     case BuiltinType::SatAccum:
13373       return Target.getAccumIBits();
13374     case BuiltinType::LongAccum:
13375     case BuiltinType::SatLongAccum:
13376       return Target.getLongAccumIBits();
13377     case BuiltinType::UShortAccum:
13378     case BuiltinType::SatUShortAccum:
13379       return Target.getUnsignedShortAccumIBits();
13380     case BuiltinType::UAccum:
13381     case BuiltinType::SatUAccum:
13382       return Target.getUnsignedAccumIBits();
13383     case BuiltinType::ULongAccum:
13384     case BuiltinType::SatULongAccum:
13385       return Target.getUnsignedLongAccumIBits();
13386     case BuiltinType::ShortFract:
13387     case BuiltinType::SatShortFract:
13388     case BuiltinType::Fract:
13389     case BuiltinType::SatFract:
13390     case BuiltinType::LongFract:
13391     case BuiltinType::SatLongFract:
13392     case BuiltinType::UShortFract:
13393     case BuiltinType::SatUShortFract:
13394     case BuiltinType::UFract:
13395     case BuiltinType::SatUFract:
13396     case BuiltinType::ULongFract:
13397     case BuiltinType::SatULongFract:
13398       return 0;
13399   }
13400 }
13401 
13402 llvm::FixedPointSemantics
13403 ASTContext::getFixedPointSemantics(QualType Ty) const {
13404   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
13405          "Can only get the fixed point semantics for a "
13406          "fixed point or integer type.");
13407   if (Ty->isIntegerType())
13408     return llvm::FixedPointSemantics::GetIntegerSemantics(
13409         getIntWidth(Ty), Ty->isSignedIntegerType());
13410 
13411   bool isSigned = Ty->isSignedFixedPointType();
13412   return llvm::FixedPointSemantics(
13413       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
13414       Ty->isSaturatedFixedPointType(),
13415       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
13416 }
13417 
13418 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
13419   assert(Ty->isFixedPointType());
13420   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
13421 }
13422 
13423 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
13424   assert(Ty->isFixedPointType());
13425   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
13426 }
13427 
13428 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
13429   assert(Ty->isUnsignedFixedPointType() &&
13430          "Expected unsigned fixed point type");
13431 
13432   switch (Ty->castAs<BuiltinType>()->getKind()) {
13433   case BuiltinType::UShortAccum:
13434     return ShortAccumTy;
13435   case BuiltinType::UAccum:
13436     return AccumTy;
13437   case BuiltinType::ULongAccum:
13438     return LongAccumTy;
13439   case BuiltinType::SatUShortAccum:
13440     return SatShortAccumTy;
13441   case BuiltinType::SatUAccum:
13442     return SatAccumTy;
13443   case BuiltinType::SatULongAccum:
13444     return SatLongAccumTy;
13445   case BuiltinType::UShortFract:
13446     return ShortFractTy;
13447   case BuiltinType::UFract:
13448     return FractTy;
13449   case BuiltinType::ULongFract:
13450     return LongFractTy;
13451   case BuiltinType::SatUShortFract:
13452     return SatShortFractTy;
13453   case BuiltinType::SatUFract:
13454     return SatFractTy;
13455   case BuiltinType::SatULongFract:
13456     return SatLongFractTy;
13457   default:
13458     llvm_unreachable("Unexpected unsigned fixed point type");
13459   }
13460 }
13461 
13462 std::vector<std::string> ASTContext::filterFunctionTargetVersionAttrs(
13463     const TargetVersionAttr *TV) const {
13464   assert(TV != nullptr);
13465   llvm::SmallVector<StringRef, 8> Feats;
13466   std::vector<std::string> ResFeats;
13467   TV->getFeatures(Feats);
13468   for (auto &Feature : Feats)
13469     if (Target->validateCpuSupports(Feature.str()))
13470       // Use '?' to mark features that came from TargetVersion.
13471       ResFeats.push_back("?" + Feature.str());
13472   return ResFeats;
13473 }
13474 
13475 ParsedTargetAttr
13476 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
13477   assert(TD != nullptr);
13478   ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(TD->getFeaturesStr());
13479 
13480   llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) {
13481     return !Target->isValidFeatureName(StringRef{Feat}.substr(1));
13482   });
13483   return ParsedAttr;
13484 }
13485 
13486 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13487                                        const FunctionDecl *FD) const {
13488   if (FD)
13489     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
13490   else
13491     Target->initFeatureMap(FeatureMap, getDiagnostics(),
13492                            Target->getTargetOpts().CPU,
13493                            Target->getTargetOpts().Features);
13494 }
13495 
13496 // Fills in the supplied string map with the set of target features for the
13497 // passed in function.
13498 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13499                                        GlobalDecl GD) const {
13500   StringRef TargetCPU = Target->getTargetOpts().CPU;
13501   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
13502   if (const auto *TD = FD->getAttr<TargetAttr>()) {
13503     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
13504 
13505     // Make a copy of the features as passed on the command line into the
13506     // beginning of the additional features from the function to override.
13507     ParsedAttr.Features.insert(
13508         ParsedAttr.Features.begin(),
13509         Target->getTargetOpts().FeaturesAsWritten.begin(),
13510         Target->getTargetOpts().FeaturesAsWritten.end());
13511 
13512     if (ParsedAttr.CPU != "" && Target->isValidCPUName(ParsedAttr.CPU))
13513       TargetCPU = ParsedAttr.CPU;
13514 
13515     // Now populate the feature map, first with the TargetCPU which is either
13516     // the default or a new one from the target attribute string. Then we'll use
13517     // the passed in features (FeaturesAsWritten) along with the new ones from
13518     // the attribute.
13519     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
13520                            ParsedAttr.Features);
13521   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
13522     llvm::SmallVector<StringRef, 32> FeaturesTmp;
13523     Target->getCPUSpecificCPUDispatchFeatures(
13524         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
13525     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
13526     Features.insert(Features.begin(),
13527                     Target->getTargetOpts().FeaturesAsWritten.begin(),
13528                     Target->getTargetOpts().FeaturesAsWritten.end());
13529     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13530   } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) {
13531     std::vector<std::string> Features;
13532     StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex());
13533     if (Target->getTriple().isAArch64()) {
13534       // TargetClones for AArch64
13535       if (VersionStr != "default") {
13536         SmallVector<StringRef, 1> VersionFeatures;
13537         VersionStr.split(VersionFeatures, "+");
13538         for (auto &VFeature : VersionFeatures) {
13539           VFeature = VFeature.trim();
13540           // Use '?' to mark features that came from AArch64 TargetClones.
13541           Features.push_back((StringRef{"?"} + VFeature).str());
13542         }
13543       }
13544       Features.insert(Features.begin(),
13545                       Target->getTargetOpts().FeaturesAsWritten.begin(),
13546                       Target->getTargetOpts().FeaturesAsWritten.end());
13547     } else {
13548       if (VersionStr.startswith("arch="))
13549         TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1);
13550       else if (VersionStr != "default")
13551         Features.push_back((StringRef{"+"} + VersionStr).str());
13552     }
13553     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13554   } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) {
13555     std::vector<std::string> Feats = filterFunctionTargetVersionAttrs(TV);
13556     Feats.insert(Feats.begin(),
13557                  Target->getTargetOpts().FeaturesAsWritten.begin(),
13558                  Target->getTargetOpts().FeaturesAsWritten.end());
13559     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Feats);
13560   } else {
13561     FeatureMap = Target->getTargetOpts().FeatureMap;
13562   }
13563 }
13564 
13565 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
13566   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
13567   return *OMPTraitInfoVector.back();
13568 }
13569 
13570 const StreamingDiagnostic &clang::
13571 operator<<(const StreamingDiagnostic &DB,
13572            const ASTContext::SectionInfo &Section) {
13573   if (Section.Decl)
13574     return DB << Section.Decl;
13575   return DB << "a prior #pragma section";
13576 }
13577 
13578 bool ASTContext::mayExternalize(const Decl *D) const {
13579   bool IsInternalVar =
13580       isa<VarDecl>(D) &&
13581       basicGVALinkageForVariable(*this, cast<VarDecl>(D)) == GVA_Internal;
13582   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
13583                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
13584                              (D->hasAttr<CUDAConstantAttr>() &&
13585                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
13586   // CUDA/HIP: managed variables need to be externalized since it is
13587   // a declaration in IR, therefore cannot have internal linkage. Kernels in
13588   // anonymous name space needs to be externalized to avoid duplicate symbols.
13589   return (IsInternalVar &&
13590           (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) ||
13591          (D->hasAttr<CUDAGlobalAttr>() &&
13592           basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) ==
13593               GVA_Internal);
13594 }
13595 
13596 bool ASTContext::shouldExternalize(const Decl *D) const {
13597   return mayExternalize(D) &&
13598          (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() ||
13599           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
13600 }
13601 
13602 StringRef ASTContext::getCUIDHash() const {
13603   if (!CUIDHash.empty())
13604     return CUIDHash;
13605   if (LangOpts.CUID.empty())
13606     return StringRef();
13607   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
13608   return CUIDHash;
13609 }
13610