1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ASTContext interface. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "CXXABI.h" 15 #include "Interp/Context.h" 16 #include "clang/AST/APValue.h" 17 #include "clang/AST/ASTConcept.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/ASTTypeTraits.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/AttrIterator.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/Comment.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclBase.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclContextInternals.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/DeclarationName.h" 32 #include "clang/AST/DependenceFlags.h" 33 #include "clang/AST/Expr.h" 34 #include "clang/AST/ExprCXX.h" 35 #include "clang/AST/ExprConcepts.h" 36 #include "clang/AST/ExternalASTSource.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/MangleNumberingContext.h" 39 #include "clang/AST/NestedNameSpecifier.h" 40 #include "clang/AST/ParentMapContext.h" 41 #include "clang/AST/RawCommentList.h" 42 #include "clang/AST/RecordLayout.h" 43 #include "clang/AST/Stmt.h" 44 #include "clang/AST/TemplateBase.h" 45 #include "clang/AST/TemplateName.h" 46 #include "clang/AST/Type.h" 47 #include "clang/AST/TypeLoc.h" 48 #include "clang/AST/UnresolvedSet.h" 49 #include "clang/AST/VTableBuilder.h" 50 #include "clang/Basic/AddressSpaces.h" 51 #include "clang/Basic/Builtins.h" 52 #include "clang/Basic/CommentOptions.h" 53 #include "clang/Basic/ExceptionSpecificationType.h" 54 #include "clang/Basic/IdentifierTable.h" 55 #include "clang/Basic/LLVM.h" 56 #include "clang/Basic/LangOptions.h" 57 #include "clang/Basic/Linkage.h" 58 #include "clang/Basic/Module.h" 59 #include "clang/Basic/ObjCRuntime.h" 60 #include "clang/Basic/SanitizerBlacklist.h" 61 #include "clang/Basic/SourceLocation.h" 62 #include "clang/Basic/SourceManager.h" 63 #include "clang/Basic/Specifiers.h" 64 #include "clang/Basic/TargetCXXABI.h" 65 #include "clang/Basic/TargetInfo.h" 66 #include "clang/Basic/XRayLists.h" 67 #include "llvm/ADT/APFixedPoint.h" 68 #include "llvm/ADT/APInt.h" 69 #include "llvm/ADT/APSInt.h" 70 #include "llvm/ADT/ArrayRef.h" 71 #include "llvm/ADT/DenseMap.h" 72 #include "llvm/ADT/DenseSet.h" 73 #include "llvm/ADT/FoldingSet.h" 74 #include "llvm/ADT/None.h" 75 #include "llvm/ADT/Optional.h" 76 #include "llvm/ADT/PointerUnion.h" 77 #include "llvm/ADT/STLExtras.h" 78 #include "llvm/ADT/SmallPtrSet.h" 79 #include "llvm/ADT/SmallVector.h" 80 #include "llvm/ADT/StringExtras.h" 81 #include "llvm/ADT/StringRef.h" 82 #include "llvm/ADT/Triple.h" 83 #include "llvm/Support/Capacity.h" 84 #include "llvm/Support/Casting.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstddef> 92 #include <cstdint> 93 #include <cstdlib> 94 #include <map> 95 #include <memory> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 100 using namespace clang; 101 102 enum FloatingRank { 103 BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank 104 }; 105 106 /// \returns location that is relevant when searching for Doc comments related 107 /// to \p D. 108 static SourceLocation getDeclLocForCommentSearch(const Decl *D, 109 SourceManager &SourceMgr) { 110 assert(D); 111 112 // User can not attach documentation to implicit declarations. 113 if (D->isImplicit()) 114 return {}; 115 116 // User can not attach documentation to implicit instantiations. 117 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 118 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 119 return {}; 120 } 121 122 if (const auto *VD = dyn_cast<VarDecl>(D)) { 123 if (VD->isStaticDataMember() && 124 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 125 return {}; 126 } 127 128 if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) { 129 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 130 return {}; 131 } 132 133 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 134 TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); 135 if (TSK == TSK_ImplicitInstantiation || 136 TSK == TSK_Undeclared) 137 return {}; 138 } 139 140 if (const auto *ED = dyn_cast<EnumDecl>(D)) { 141 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 142 return {}; 143 } 144 if (const auto *TD = dyn_cast<TagDecl>(D)) { 145 // When tag declaration (but not definition!) is part of the 146 // decl-specifier-seq of some other declaration, it doesn't get comment 147 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) 148 return {}; 149 } 150 // TODO: handle comments for function parameters properly. 151 if (isa<ParmVarDecl>(D)) 152 return {}; 153 154 // TODO: we could look up template parameter documentation in the template 155 // documentation. 156 if (isa<TemplateTypeParmDecl>(D) || 157 isa<NonTypeTemplateParmDecl>(D) || 158 isa<TemplateTemplateParmDecl>(D)) 159 return {}; 160 161 // Find declaration location. 162 // For Objective-C declarations we generally don't expect to have multiple 163 // declarators, thus use declaration starting location as the "declaration 164 // location". 165 // For all other declarations multiple declarators are used quite frequently, 166 // so we use the location of the identifier as the "declaration location". 167 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || 168 isa<ObjCPropertyDecl>(D) || 169 isa<RedeclarableTemplateDecl>(D) || 170 isa<ClassTemplateSpecializationDecl>(D) || 171 // Allow association with Y across {} in `typedef struct X {} Y`. 172 isa<TypedefDecl>(D)) 173 return D->getBeginLoc(); 174 else { 175 const SourceLocation DeclLoc = D->getLocation(); 176 if (DeclLoc.isMacroID()) { 177 if (isa<TypedefDecl>(D)) { 178 // If location of the typedef name is in a macro, it is because being 179 // declared via a macro. Try using declaration's starting location as 180 // the "declaration location". 181 return D->getBeginLoc(); 182 } else if (const auto *TD = dyn_cast<TagDecl>(D)) { 183 // If location of the tag decl is inside a macro, but the spelling of 184 // the tag name comes from a macro argument, it looks like a special 185 // macro like NS_ENUM is being used to define the tag decl. In that 186 // case, adjust the source location to the expansion loc so that we can 187 // attach the comment to the tag decl. 188 if (SourceMgr.isMacroArgExpansion(DeclLoc) && 189 TD->isCompleteDefinition()) 190 return SourceMgr.getExpansionLoc(DeclLoc); 191 } 192 } 193 return DeclLoc; 194 } 195 196 return {}; 197 } 198 199 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl( 200 const Decl *D, const SourceLocation RepresentativeLocForDecl, 201 const std::map<unsigned, RawComment *> &CommentsInTheFile) const { 202 // If the declaration doesn't map directly to a location in a file, we 203 // can't find the comment. 204 if (RepresentativeLocForDecl.isInvalid() || 205 !RepresentativeLocForDecl.isFileID()) 206 return nullptr; 207 208 // If there are no comments anywhere, we won't find anything. 209 if (CommentsInTheFile.empty()) 210 return nullptr; 211 212 // Decompose the location for the declaration and find the beginning of the 213 // file buffer. 214 const std::pair<FileID, unsigned> DeclLocDecomp = 215 SourceMgr.getDecomposedLoc(RepresentativeLocForDecl); 216 217 // Slow path. 218 auto OffsetCommentBehindDecl = 219 CommentsInTheFile.lower_bound(DeclLocDecomp.second); 220 221 // First check whether we have a trailing comment. 222 if (OffsetCommentBehindDecl != CommentsInTheFile.end()) { 223 RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second; 224 if ((CommentBehindDecl->isDocumentation() || 225 LangOpts.CommentOpts.ParseAllComments) && 226 CommentBehindDecl->isTrailingComment() && 227 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || 228 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { 229 230 // Check that Doxygen trailing comment comes after the declaration, starts 231 // on the same line and in the same file as the declaration. 232 if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) == 233 Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first, 234 OffsetCommentBehindDecl->first)) { 235 return CommentBehindDecl; 236 } 237 } 238 } 239 240 // The comment just after the declaration was not a trailing comment. 241 // Let's look at the previous comment. 242 if (OffsetCommentBehindDecl == CommentsInTheFile.begin()) 243 return nullptr; 244 245 auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl; 246 RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second; 247 248 // Check that we actually have a non-member Doxygen comment. 249 if (!(CommentBeforeDecl->isDocumentation() || 250 LangOpts.CommentOpts.ParseAllComments) || 251 CommentBeforeDecl->isTrailingComment()) 252 return nullptr; 253 254 // Decompose the end of the comment. 255 const unsigned CommentEndOffset = 256 Comments.getCommentEndOffset(CommentBeforeDecl); 257 258 // Get the corresponding buffer. 259 bool Invalid = false; 260 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, 261 &Invalid).data(); 262 if (Invalid) 263 return nullptr; 264 265 // Extract text between the comment and declaration. 266 StringRef Text(Buffer + CommentEndOffset, 267 DeclLocDecomp.second - CommentEndOffset); 268 269 // There should be no other declarations or preprocessor directives between 270 // comment and declaration. 271 if (Text.find_first_of(";{}#@") != StringRef::npos) 272 return nullptr; 273 274 return CommentBeforeDecl; 275 } 276 277 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { 278 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr); 279 280 // If the declaration doesn't map directly to a location in a file, we 281 // can't find the comment. 282 if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) 283 return nullptr; 284 285 if (ExternalSource && !CommentsLoaded) { 286 ExternalSource->ReadComments(); 287 CommentsLoaded = true; 288 } 289 290 if (Comments.empty()) 291 return nullptr; 292 293 const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first; 294 const auto CommentsInThisFile = Comments.getCommentsInFile(File); 295 if (!CommentsInThisFile || CommentsInThisFile->empty()) 296 return nullptr; 297 298 return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile); 299 } 300 301 void ASTContext::addComment(const RawComment &RC) { 302 assert(LangOpts.RetainCommentsFromSystemHeaders || 303 !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())); 304 Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc); 305 } 306 307 /// If we have a 'templated' declaration for a template, adjust 'D' to 308 /// refer to the actual template. 309 /// If we have an implicit instantiation, adjust 'D' to refer to template. 310 static const Decl &adjustDeclToTemplate(const Decl &D) { 311 if (const auto *FD = dyn_cast<FunctionDecl>(&D)) { 312 // Is this function declaration part of a function template? 313 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 314 return *FTD; 315 316 // Nothing to do if function is not an implicit instantiation. 317 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 318 return D; 319 320 // Function is an implicit instantiation of a function template? 321 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) 322 return *FTD; 323 324 // Function is instantiated from a member definition of a class template? 325 if (const FunctionDecl *MemberDecl = 326 FD->getInstantiatedFromMemberFunction()) 327 return *MemberDecl; 328 329 return D; 330 } 331 if (const auto *VD = dyn_cast<VarDecl>(&D)) { 332 // Static data member is instantiated from a member definition of a class 333 // template? 334 if (VD->isStaticDataMember()) 335 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) 336 return *MemberDecl; 337 338 return D; 339 } 340 if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) { 341 // Is this class declaration part of a class template? 342 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) 343 return *CTD; 344 345 // Class is an implicit instantiation of a class template or partial 346 // specialization? 347 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { 348 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) 349 return D; 350 llvm::PointerUnion<ClassTemplateDecl *, 351 ClassTemplatePartialSpecializationDecl *> 352 PU = CTSD->getSpecializedTemplateOrPartial(); 353 return PU.is<ClassTemplateDecl *>() 354 ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>()) 355 : *static_cast<const Decl *>( 356 PU.get<ClassTemplatePartialSpecializationDecl *>()); 357 } 358 359 // Class is instantiated from a member definition of a class template? 360 if (const MemberSpecializationInfo *Info = 361 CRD->getMemberSpecializationInfo()) 362 return *Info->getInstantiatedFrom(); 363 364 return D; 365 } 366 if (const auto *ED = dyn_cast<EnumDecl>(&D)) { 367 // Enum is instantiated from a member definition of a class template? 368 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) 369 return *MemberDecl; 370 371 return D; 372 } 373 // FIXME: Adjust alias templates? 374 return D; 375 } 376 377 const RawComment *ASTContext::getRawCommentForAnyRedecl( 378 const Decl *D, 379 const Decl **OriginalDecl) const { 380 if (!D) { 381 if (OriginalDecl) 382 OriginalDecl = nullptr; 383 return nullptr; 384 } 385 386 D = &adjustDeclToTemplate(*D); 387 388 // Any comment directly attached to D? 389 { 390 auto DeclComment = DeclRawComments.find(D); 391 if (DeclComment != DeclRawComments.end()) { 392 if (OriginalDecl) 393 *OriginalDecl = D; 394 return DeclComment->second; 395 } 396 } 397 398 // Any comment attached to any redeclaration of D? 399 const Decl *CanonicalD = D->getCanonicalDecl(); 400 if (!CanonicalD) 401 return nullptr; 402 403 { 404 auto RedeclComment = RedeclChainComments.find(CanonicalD); 405 if (RedeclComment != RedeclChainComments.end()) { 406 if (OriginalDecl) 407 *OriginalDecl = RedeclComment->second; 408 auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second); 409 assert(CommentAtRedecl != DeclRawComments.end() && 410 "This decl is supposed to have comment attached."); 411 return CommentAtRedecl->second; 412 } 413 } 414 415 // Any redeclarations of D that we haven't checked for comments yet? 416 // We can't use DenseMap::iterator directly since it'd get invalid. 417 auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * { 418 auto LookupRes = CommentlessRedeclChains.find(CanonicalD); 419 if (LookupRes != CommentlessRedeclChains.end()) 420 return LookupRes->second; 421 return nullptr; 422 }(); 423 424 for (const auto Redecl : D->redecls()) { 425 assert(Redecl); 426 // Skip all redeclarations that have been checked previously. 427 if (LastCheckedRedecl) { 428 if (LastCheckedRedecl == Redecl) { 429 LastCheckedRedecl = nullptr; 430 } 431 continue; 432 } 433 const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl); 434 if (RedeclComment) { 435 cacheRawCommentForDecl(*Redecl, *RedeclComment); 436 if (OriginalDecl) 437 *OriginalDecl = Redecl; 438 return RedeclComment; 439 } 440 CommentlessRedeclChains[CanonicalD] = Redecl; 441 } 442 443 if (OriginalDecl) 444 *OriginalDecl = nullptr; 445 return nullptr; 446 } 447 448 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD, 449 const RawComment &Comment) const { 450 assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments); 451 DeclRawComments.try_emplace(&OriginalD, &Comment); 452 const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl(); 453 RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD); 454 CommentlessRedeclChains.erase(CanonicalDecl); 455 } 456 457 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, 458 SmallVectorImpl<const NamedDecl *> &Redeclared) { 459 const DeclContext *DC = ObjCMethod->getDeclContext(); 460 if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) { 461 const ObjCInterfaceDecl *ID = IMD->getClassInterface(); 462 if (!ID) 463 return; 464 // Add redeclared method here. 465 for (const auto *Ext : ID->known_extensions()) { 466 if (ObjCMethodDecl *RedeclaredMethod = 467 Ext->getMethod(ObjCMethod->getSelector(), 468 ObjCMethod->isInstanceMethod())) 469 Redeclared.push_back(RedeclaredMethod); 470 } 471 } 472 } 473 474 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls, 475 const Preprocessor *PP) { 476 if (Comments.empty() || Decls.empty()) 477 return; 478 479 FileID File; 480 for (Decl *D : Decls) { 481 SourceLocation Loc = D->getLocation(); 482 if (Loc.isValid()) { 483 // See if there are any new comments that are not attached to a decl. 484 // The location doesn't have to be precise - we care only about the file. 485 File = SourceMgr.getDecomposedLoc(Loc).first; 486 break; 487 } 488 } 489 490 if (File.isInvalid()) 491 return; 492 493 auto CommentsInThisFile = Comments.getCommentsInFile(File); 494 if (!CommentsInThisFile || CommentsInThisFile->empty() || 495 CommentsInThisFile->rbegin()->second->isAttached()) 496 return; 497 498 // There is at least one comment not attached to a decl. 499 // Maybe it should be attached to one of Decls? 500 // 501 // Note that this way we pick up not only comments that precede the 502 // declaration, but also comments that *follow* the declaration -- thanks to 503 // the lookahead in the lexer: we've consumed the semicolon and looked 504 // ahead through comments. 505 506 for (const Decl *D : Decls) { 507 assert(D); 508 if (D->isInvalidDecl()) 509 continue; 510 511 D = &adjustDeclToTemplate(*D); 512 513 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr); 514 515 if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) 516 continue; 517 518 if (DeclRawComments.count(D) > 0) 519 continue; 520 521 if (RawComment *const DocComment = 522 getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) { 523 cacheRawCommentForDecl(*D, *DocComment); 524 comments::FullComment *FC = DocComment->parse(*this, PP, D); 525 ParsedComments[D->getCanonicalDecl()] = FC; 526 } 527 } 528 } 529 530 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, 531 const Decl *D) const { 532 auto *ThisDeclInfo = new (*this) comments::DeclInfo; 533 ThisDeclInfo->CommentDecl = D; 534 ThisDeclInfo->IsFilled = false; 535 ThisDeclInfo->fill(); 536 ThisDeclInfo->CommentDecl = FC->getDecl(); 537 if (!ThisDeclInfo->TemplateParameters) 538 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; 539 comments::FullComment *CFC = 540 new (*this) comments::FullComment(FC->getBlocks(), 541 ThisDeclInfo); 542 return CFC; 543 } 544 545 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { 546 const RawComment *RC = getRawCommentForDeclNoCache(D); 547 return RC ? RC->parse(*this, nullptr, D) : nullptr; 548 } 549 550 comments::FullComment *ASTContext::getCommentForDecl( 551 const Decl *D, 552 const Preprocessor *PP) const { 553 if (!D || D->isInvalidDecl()) 554 return nullptr; 555 D = &adjustDeclToTemplate(*D); 556 557 const Decl *Canonical = D->getCanonicalDecl(); 558 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = 559 ParsedComments.find(Canonical); 560 561 if (Pos != ParsedComments.end()) { 562 if (Canonical != D) { 563 comments::FullComment *FC = Pos->second; 564 comments::FullComment *CFC = cloneFullComment(FC, D); 565 return CFC; 566 } 567 return Pos->second; 568 } 569 570 const Decl *OriginalDecl = nullptr; 571 572 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); 573 if (!RC) { 574 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { 575 SmallVector<const NamedDecl*, 8> Overridden; 576 const auto *OMD = dyn_cast<ObjCMethodDecl>(D); 577 if (OMD && OMD->isPropertyAccessor()) 578 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) 579 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) 580 return cloneFullComment(FC, D); 581 if (OMD) 582 addRedeclaredMethods(OMD, Overridden); 583 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); 584 for (unsigned i = 0, e = Overridden.size(); i < e; i++) 585 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) 586 return cloneFullComment(FC, D); 587 } 588 else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { 589 // Attach any tag type's documentation to its typedef if latter 590 // does not have one of its own. 591 QualType QT = TD->getUnderlyingType(); 592 if (const auto *TT = QT->getAs<TagType>()) 593 if (const Decl *TD = TT->getDecl()) 594 if (comments::FullComment *FC = getCommentForDecl(TD, PP)) 595 return cloneFullComment(FC, D); 596 } 597 else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) { 598 while (IC->getSuperClass()) { 599 IC = IC->getSuperClass(); 600 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 601 return cloneFullComment(FC, D); 602 } 603 } 604 else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) { 605 if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) 606 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 607 return cloneFullComment(FC, D); 608 } 609 else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 610 if (!(RD = RD->getDefinition())) 611 return nullptr; 612 // Check non-virtual bases. 613 for (const auto &I : RD->bases()) { 614 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) 615 continue; 616 QualType Ty = I.getType(); 617 if (Ty.isNull()) 618 continue; 619 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { 620 if (!(NonVirtualBase= NonVirtualBase->getDefinition())) 621 continue; 622 623 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) 624 return cloneFullComment(FC, D); 625 } 626 } 627 // Check virtual bases. 628 for (const auto &I : RD->vbases()) { 629 if (I.getAccessSpecifier() != AS_public) 630 continue; 631 QualType Ty = I.getType(); 632 if (Ty.isNull()) 633 continue; 634 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { 635 if (!(VirtualBase= VirtualBase->getDefinition())) 636 continue; 637 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) 638 return cloneFullComment(FC, D); 639 } 640 } 641 } 642 return nullptr; 643 } 644 645 // If the RawComment was attached to other redeclaration of this Decl, we 646 // should parse the comment in context of that other Decl. This is important 647 // because comments can contain references to parameter names which can be 648 // different across redeclarations. 649 if (D != OriginalDecl && OriginalDecl) 650 return getCommentForDecl(OriginalDecl, PP); 651 652 comments::FullComment *FC = RC->parse(*this, PP, D); 653 ParsedComments[Canonical] = FC; 654 return FC; 655 } 656 657 void 658 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, 659 const ASTContext &C, 660 TemplateTemplateParmDecl *Parm) { 661 ID.AddInteger(Parm->getDepth()); 662 ID.AddInteger(Parm->getPosition()); 663 ID.AddBoolean(Parm->isParameterPack()); 664 665 TemplateParameterList *Params = Parm->getTemplateParameters(); 666 ID.AddInteger(Params->size()); 667 for (TemplateParameterList::const_iterator P = Params->begin(), 668 PEnd = Params->end(); 669 P != PEnd; ++P) { 670 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { 671 ID.AddInteger(0); 672 ID.AddBoolean(TTP->isParameterPack()); 673 const TypeConstraint *TC = TTP->getTypeConstraint(); 674 ID.AddBoolean(TC != nullptr); 675 if (TC) 676 TC->getImmediatelyDeclaredConstraint()->Profile(ID, C, 677 /*Canonical=*/true); 678 if (TTP->isExpandedParameterPack()) { 679 ID.AddBoolean(true); 680 ID.AddInteger(TTP->getNumExpansionParameters()); 681 } else 682 ID.AddBoolean(false); 683 continue; 684 } 685 686 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 687 ID.AddInteger(1); 688 ID.AddBoolean(NTTP->isParameterPack()); 689 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); 690 if (NTTP->isExpandedParameterPack()) { 691 ID.AddBoolean(true); 692 ID.AddInteger(NTTP->getNumExpansionTypes()); 693 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 694 QualType T = NTTP->getExpansionType(I); 695 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); 696 } 697 } else 698 ID.AddBoolean(false); 699 continue; 700 } 701 702 auto *TTP = cast<TemplateTemplateParmDecl>(*P); 703 ID.AddInteger(2); 704 Profile(ID, C, TTP); 705 } 706 Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause(); 707 ID.AddBoolean(RequiresClause != nullptr); 708 if (RequiresClause) 709 RequiresClause->Profile(ID, C, /*Canonical=*/true); 710 } 711 712 static Expr * 713 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC, 714 QualType ConstrainedType) { 715 // This is a bit ugly - we need to form a new immediately-declared 716 // constraint that references the new parameter; this would ideally 717 // require semantic analysis (e.g. template<C T> struct S {}; - the 718 // converted arguments of C<T> could be an argument pack if C is 719 // declared as template<typename... T> concept C = ...). 720 // We don't have semantic analysis here so we dig deep into the 721 // ready-made constraint expr and change the thing manually. 722 ConceptSpecializationExpr *CSE; 723 if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC)) 724 CSE = cast<ConceptSpecializationExpr>(Fold->getLHS()); 725 else 726 CSE = cast<ConceptSpecializationExpr>(IDC); 727 ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments(); 728 SmallVector<TemplateArgument, 3> NewConverted; 729 NewConverted.reserve(OldConverted.size()); 730 if (OldConverted.front().getKind() == TemplateArgument::Pack) { 731 // The case: 732 // template<typename... T> concept C = true; 733 // template<C<int> T> struct S; -> constraint is C<{T, int}> 734 NewConverted.push_back(ConstrainedType); 735 for (auto &Arg : OldConverted.front().pack_elements().drop_front(1)) 736 NewConverted.push_back(Arg); 737 TemplateArgument NewPack(NewConverted); 738 739 NewConverted.clear(); 740 NewConverted.push_back(NewPack); 741 assert(OldConverted.size() == 1 && 742 "Template parameter pack should be the last parameter"); 743 } else { 744 assert(OldConverted.front().getKind() == TemplateArgument::Type && 745 "Unexpected first argument kind for immediately-declared " 746 "constraint"); 747 NewConverted.push_back(ConstrainedType); 748 for (auto &Arg : OldConverted.drop_front(1)) 749 NewConverted.push_back(Arg); 750 } 751 Expr *NewIDC = ConceptSpecializationExpr::Create( 752 C, CSE->getNamedConcept(), NewConverted, nullptr, 753 CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack()); 754 755 if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC)) 756 NewIDC = new (C) CXXFoldExpr( 757 OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC, 758 BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr, 759 SourceLocation(), /*NumExpansions=*/None); 760 return NewIDC; 761 } 762 763 TemplateTemplateParmDecl * 764 ASTContext::getCanonicalTemplateTemplateParmDecl( 765 TemplateTemplateParmDecl *TTP) const { 766 // Check if we already have a canonical template template parameter. 767 llvm::FoldingSetNodeID ID; 768 CanonicalTemplateTemplateParm::Profile(ID, *this, TTP); 769 void *InsertPos = nullptr; 770 CanonicalTemplateTemplateParm *Canonical 771 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 772 if (Canonical) 773 return Canonical->getParam(); 774 775 // Build a canonical template parameter list. 776 TemplateParameterList *Params = TTP->getTemplateParameters(); 777 SmallVector<NamedDecl *, 4> CanonParams; 778 CanonParams.reserve(Params->size()); 779 for (TemplateParameterList::const_iterator P = Params->begin(), 780 PEnd = Params->end(); 781 P != PEnd; ++P) { 782 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { 783 TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this, 784 getTranslationUnitDecl(), SourceLocation(), SourceLocation(), 785 TTP->getDepth(), TTP->getIndex(), nullptr, false, 786 TTP->isParameterPack(), TTP->hasTypeConstraint(), 787 TTP->isExpandedParameterPack() ? 788 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None); 789 if (const auto *TC = TTP->getTypeConstraint()) { 790 QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0); 791 Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint( 792 *this, TC->getImmediatelyDeclaredConstraint(), 793 ParamAsArgument); 794 TemplateArgumentListInfo CanonArgsAsWritten; 795 if (auto *Args = TC->getTemplateArgsAsWritten()) 796 for (const auto &ArgLoc : Args->arguments()) 797 CanonArgsAsWritten.addArgument( 798 TemplateArgumentLoc(ArgLoc.getArgument(), 799 TemplateArgumentLocInfo())); 800 NewTTP->setTypeConstraint( 801 NestedNameSpecifierLoc(), 802 DeclarationNameInfo(TC->getNamedConcept()->getDeclName(), 803 SourceLocation()), /*FoundDecl=*/nullptr, 804 // Actually canonicalizing a TemplateArgumentLoc is difficult so we 805 // simply omit the ArgsAsWritten 806 TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC); 807 } 808 CanonParams.push_back(NewTTP); 809 } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 810 QualType T = getCanonicalType(NTTP->getType()); 811 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 812 NonTypeTemplateParmDecl *Param; 813 if (NTTP->isExpandedParameterPack()) { 814 SmallVector<QualType, 2> ExpandedTypes; 815 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; 816 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 817 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); 818 ExpandedTInfos.push_back( 819 getTrivialTypeSourceInfo(ExpandedTypes.back())); 820 } 821 822 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 823 SourceLocation(), 824 SourceLocation(), 825 NTTP->getDepth(), 826 NTTP->getPosition(), nullptr, 827 T, 828 TInfo, 829 ExpandedTypes, 830 ExpandedTInfos); 831 } else { 832 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 833 SourceLocation(), 834 SourceLocation(), 835 NTTP->getDepth(), 836 NTTP->getPosition(), nullptr, 837 T, 838 NTTP->isParameterPack(), 839 TInfo); 840 } 841 if (AutoType *AT = T->getContainedAutoType()) { 842 if (AT->isConstrained()) { 843 Param->setPlaceholderTypeConstraint( 844 canonicalizeImmediatelyDeclaredConstraint( 845 *this, NTTP->getPlaceholderTypeConstraint(), T)); 846 } 847 } 848 CanonParams.push_back(Param); 849 850 } else 851 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( 852 cast<TemplateTemplateParmDecl>(*P))); 853 } 854 855 Expr *CanonRequiresClause = nullptr; 856 if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause()) 857 CanonRequiresClause = RequiresClause; 858 859 TemplateTemplateParmDecl *CanonTTP 860 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 861 SourceLocation(), TTP->getDepth(), 862 TTP->getPosition(), 863 TTP->isParameterPack(), 864 nullptr, 865 TemplateParameterList::Create(*this, SourceLocation(), 866 SourceLocation(), 867 CanonParams, 868 SourceLocation(), 869 CanonRequiresClause)); 870 871 // Get the new insert position for the node we care about. 872 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 873 assert(!Canonical && "Shouldn't be in the map!"); 874 (void)Canonical; 875 876 // Create the canonical template template parameter entry. 877 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); 878 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); 879 return CanonTTP; 880 } 881 882 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { 883 if (!LangOpts.CPlusPlus) return nullptr; 884 885 switch (T.getCXXABI().getKind()) { 886 case TargetCXXABI::AppleARM64: 887 case TargetCXXABI::Fuchsia: 888 case TargetCXXABI::GenericARM: // Same as Itanium at this level 889 case TargetCXXABI::iOS: 890 case TargetCXXABI::WatchOS: 891 case TargetCXXABI::GenericAArch64: 892 case TargetCXXABI::GenericMIPS: 893 case TargetCXXABI::GenericItanium: 894 case TargetCXXABI::WebAssembly: 895 case TargetCXXABI::XL: 896 return CreateItaniumCXXABI(*this); 897 case TargetCXXABI::Microsoft: 898 return CreateMicrosoftCXXABI(*this); 899 } 900 llvm_unreachable("Invalid CXXABI type!"); 901 } 902 903 interp::Context &ASTContext::getInterpContext() { 904 if (!InterpContext) { 905 InterpContext.reset(new interp::Context(*this)); 906 } 907 return *InterpContext.get(); 908 } 909 910 ParentMapContext &ASTContext::getParentMapContext() { 911 if (!ParentMapCtx) 912 ParentMapCtx.reset(new ParentMapContext(*this)); 913 return *ParentMapCtx.get(); 914 } 915 916 static const LangASMap *getAddressSpaceMap(const TargetInfo &T, 917 const LangOptions &LOpts) { 918 if (LOpts.FakeAddressSpaceMap) { 919 // The fake address space map must have a distinct entry for each 920 // language-specific address space. 921 static const unsigned FakeAddrSpaceMap[] = { 922 0, // Default 923 1, // opencl_global 924 3, // opencl_local 925 2, // opencl_constant 926 0, // opencl_private 927 4, // opencl_generic 928 5, // opencl_global_device 929 6, // opencl_global_host 930 7, // cuda_device 931 8, // cuda_constant 932 9, // cuda_shared 933 10, // ptr32_sptr 934 11, // ptr32_uptr 935 12 // ptr64 936 }; 937 return &FakeAddrSpaceMap; 938 } else { 939 return &T.getAddressSpaceMap(); 940 } 941 } 942 943 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, 944 const LangOptions &LangOpts) { 945 switch (LangOpts.getAddressSpaceMapMangling()) { 946 case LangOptions::ASMM_Target: 947 return TI.useAddressSpaceMapMangling(); 948 case LangOptions::ASMM_On: 949 return true; 950 case LangOptions::ASMM_Off: 951 return false; 952 } 953 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); 954 } 955 956 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, 957 IdentifierTable &idents, SelectorTable &sels, 958 Builtin::Context &builtins) 959 : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()), 960 TemplateSpecializationTypes(this_()), 961 DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()), 962 SubstTemplateTemplateParmPacks(this_()), 963 CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts), 964 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)), 965 XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, 966 LangOpts.XRayNeverInstrumentFiles, 967 LangOpts.XRayAttrListFiles, SM)), 968 ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)), 969 PrintingPolicy(LOpts), Idents(idents), Selectors(sels), 970 BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM), 971 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), 972 CompCategories(this_()), LastSDM(nullptr, 0) { 973 TUDecl = TranslationUnitDecl::Create(*this); 974 TraversalScope = {TUDecl}; 975 } 976 977 ASTContext::~ASTContext() { 978 // Release the DenseMaps associated with DeclContext objects. 979 // FIXME: Is this the ideal solution? 980 ReleaseDeclContextMaps(); 981 982 // Call all of the deallocation functions on all of their targets. 983 for (auto &Pair : Deallocations) 984 (Pair.first)(Pair.second); 985 986 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed 987 // because they can contain DenseMaps. 988 for (llvm::DenseMap<const ObjCContainerDecl*, 989 const ASTRecordLayout*>::iterator 990 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) 991 // Increment in loop to prevent using deallocated memory. 992 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) 993 R->Destroy(*this); 994 995 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator 996 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { 997 // Increment in loop to prevent using deallocated memory. 998 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) 999 R->Destroy(*this); 1000 } 1001 1002 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), 1003 AEnd = DeclAttrs.end(); 1004 A != AEnd; ++A) 1005 A->second->~AttrVec(); 1006 1007 for (const auto &Value : ModuleInitializers) 1008 Value.second->~PerModuleInitializers(); 1009 } 1010 1011 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) { 1012 TraversalScope = TopLevelDecls; 1013 getParentMapContext().clear(); 1014 } 1015 1016 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const { 1017 Deallocations.push_back({Callback, Data}); 1018 } 1019 1020 void 1021 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { 1022 ExternalSource = std::move(Source); 1023 } 1024 1025 void ASTContext::PrintStats() const { 1026 llvm::errs() << "\n*** AST Context Stats:\n"; 1027 llvm::errs() << " " << Types.size() << " types total.\n"; 1028 1029 unsigned counts[] = { 1030 #define TYPE(Name, Parent) 0, 1031 #define ABSTRACT_TYPE(Name, Parent) 1032 #include "clang/AST/TypeNodes.inc" 1033 0 // Extra 1034 }; 1035 1036 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1037 Type *T = Types[i]; 1038 counts[(unsigned)T->getTypeClass()]++; 1039 } 1040 1041 unsigned Idx = 0; 1042 unsigned TotalBytes = 0; 1043 #define TYPE(Name, Parent) \ 1044 if (counts[Idx]) \ 1045 llvm::errs() << " " << counts[Idx] << " " << #Name \ 1046 << " types, " << sizeof(Name##Type) << " each " \ 1047 << "(" << counts[Idx] * sizeof(Name##Type) \ 1048 << " bytes)\n"; \ 1049 TotalBytes += counts[Idx] * sizeof(Name##Type); \ 1050 ++Idx; 1051 #define ABSTRACT_TYPE(Name, Parent) 1052 #include "clang/AST/TypeNodes.inc" 1053 1054 llvm::errs() << "Total bytes = " << TotalBytes << "\n"; 1055 1056 // Implicit special member functions. 1057 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" 1058 << NumImplicitDefaultConstructors 1059 << " implicit default constructors created\n"; 1060 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" 1061 << NumImplicitCopyConstructors 1062 << " implicit copy constructors created\n"; 1063 if (getLangOpts().CPlusPlus) 1064 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" 1065 << NumImplicitMoveConstructors 1066 << " implicit move constructors created\n"; 1067 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" 1068 << NumImplicitCopyAssignmentOperators 1069 << " implicit copy assignment operators created\n"; 1070 if (getLangOpts().CPlusPlus) 1071 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" 1072 << NumImplicitMoveAssignmentOperators 1073 << " implicit move assignment operators created\n"; 1074 llvm::errs() << NumImplicitDestructorsDeclared << "/" 1075 << NumImplicitDestructors 1076 << " implicit destructors created\n"; 1077 1078 if (ExternalSource) { 1079 llvm::errs() << "\n"; 1080 ExternalSource->PrintStats(); 1081 } 1082 1083 BumpAlloc.PrintStats(); 1084 } 1085 1086 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, 1087 bool NotifyListeners) { 1088 if (NotifyListeners) 1089 if (auto *Listener = getASTMutationListener()) 1090 Listener->RedefinedHiddenDefinition(ND, M); 1091 1092 MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M); 1093 } 1094 1095 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) { 1096 auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl())); 1097 if (It == MergedDefModules.end()) 1098 return; 1099 1100 auto &Merged = It->second; 1101 llvm::DenseSet<Module*> Found; 1102 for (Module *&M : Merged) 1103 if (!Found.insert(M).second) 1104 M = nullptr; 1105 Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end()); 1106 } 1107 1108 ArrayRef<Module *> 1109 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) { 1110 auto MergedIt = 1111 MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl())); 1112 if (MergedIt == MergedDefModules.end()) 1113 return None; 1114 return MergedIt->second; 1115 } 1116 1117 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { 1118 if (LazyInitializers.empty()) 1119 return; 1120 1121 auto *Source = Ctx.getExternalSource(); 1122 assert(Source && "lazy initializers but no external source"); 1123 1124 auto LazyInits = std::move(LazyInitializers); 1125 LazyInitializers.clear(); 1126 1127 for (auto ID : LazyInits) 1128 Initializers.push_back(Source->GetExternalDecl(ID)); 1129 1130 assert(LazyInitializers.empty() && 1131 "GetExternalDecl for lazy module initializer added more inits"); 1132 } 1133 1134 void ASTContext::addModuleInitializer(Module *M, Decl *D) { 1135 // One special case: if we add a module initializer that imports another 1136 // module, and that module's only initializer is an ImportDecl, simplify. 1137 if (const auto *ID = dyn_cast<ImportDecl>(D)) { 1138 auto It = ModuleInitializers.find(ID->getImportedModule()); 1139 1140 // Maybe the ImportDecl does nothing at all. (Common case.) 1141 if (It == ModuleInitializers.end()) 1142 return; 1143 1144 // Maybe the ImportDecl only imports another ImportDecl. 1145 auto &Imported = *It->second; 1146 if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { 1147 Imported.resolve(*this); 1148 auto *OnlyDecl = Imported.Initializers.front(); 1149 if (isa<ImportDecl>(OnlyDecl)) 1150 D = OnlyDecl; 1151 } 1152 } 1153 1154 auto *&Inits = ModuleInitializers[M]; 1155 if (!Inits) 1156 Inits = new (*this) PerModuleInitializers; 1157 Inits->Initializers.push_back(D); 1158 } 1159 1160 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) { 1161 auto *&Inits = ModuleInitializers[M]; 1162 if (!Inits) 1163 Inits = new (*this) PerModuleInitializers; 1164 Inits->LazyInitializers.insert(Inits->LazyInitializers.end(), 1165 IDs.begin(), IDs.end()); 1166 } 1167 1168 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { 1169 auto It = ModuleInitializers.find(M); 1170 if (It == ModuleInitializers.end()) 1171 return None; 1172 1173 auto *Inits = It->second; 1174 Inits->resolve(*this); 1175 return Inits->Initializers; 1176 } 1177 1178 ExternCContextDecl *ASTContext::getExternCContextDecl() const { 1179 if (!ExternCContext) 1180 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); 1181 1182 return ExternCContext; 1183 } 1184 1185 BuiltinTemplateDecl * 1186 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, 1187 const IdentifierInfo *II) const { 1188 auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK); 1189 BuiltinTemplate->setImplicit(); 1190 TUDecl->addDecl(BuiltinTemplate); 1191 1192 return BuiltinTemplate; 1193 } 1194 1195 BuiltinTemplateDecl * 1196 ASTContext::getMakeIntegerSeqDecl() const { 1197 if (!MakeIntegerSeqDecl) 1198 MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq, 1199 getMakeIntegerSeqName()); 1200 return MakeIntegerSeqDecl; 1201 } 1202 1203 BuiltinTemplateDecl * 1204 ASTContext::getTypePackElementDecl() const { 1205 if (!TypePackElementDecl) 1206 TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element, 1207 getTypePackElementName()); 1208 return TypePackElementDecl; 1209 } 1210 1211 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, 1212 RecordDecl::TagKind TK) const { 1213 SourceLocation Loc; 1214 RecordDecl *NewDecl; 1215 if (getLangOpts().CPlusPlus) 1216 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, 1217 Loc, &Idents.get(Name)); 1218 else 1219 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, 1220 &Idents.get(Name)); 1221 NewDecl->setImplicit(); 1222 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( 1223 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); 1224 return NewDecl; 1225 } 1226 1227 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, 1228 StringRef Name) const { 1229 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 1230 TypedefDecl *NewDecl = TypedefDecl::Create( 1231 const_cast<ASTContext &>(*this), getTranslationUnitDecl(), 1232 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); 1233 NewDecl->setImplicit(); 1234 return NewDecl; 1235 } 1236 1237 TypedefDecl *ASTContext::getInt128Decl() const { 1238 if (!Int128Decl) 1239 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); 1240 return Int128Decl; 1241 } 1242 1243 TypedefDecl *ASTContext::getUInt128Decl() const { 1244 if (!UInt128Decl) 1245 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); 1246 return UInt128Decl; 1247 } 1248 1249 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { 1250 auto *Ty = new (*this, TypeAlignment) BuiltinType(K); 1251 R = CanQualType::CreateUnsafe(QualType(Ty, 0)); 1252 Types.push_back(Ty); 1253 } 1254 1255 void ASTContext::InitBuiltinTypes(const TargetInfo &Target, 1256 const TargetInfo *AuxTarget) { 1257 assert((!this->Target || this->Target == &Target) && 1258 "Incorrect target reinitialization"); 1259 assert(VoidTy.isNull() && "Context reinitialized?"); 1260 1261 this->Target = &Target; 1262 this->AuxTarget = AuxTarget; 1263 1264 ABI.reset(createCXXABI(Target)); 1265 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); 1266 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); 1267 1268 // C99 6.2.5p19. 1269 InitBuiltinType(VoidTy, BuiltinType::Void); 1270 1271 // C99 6.2.5p2. 1272 InitBuiltinType(BoolTy, BuiltinType::Bool); 1273 // C99 6.2.5p3. 1274 if (LangOpts.CharIsSigned) 1275 InitBuiltinType(CharTy, BuiltinType::Char_S); 1276 else 1277 InitBuiltinType(CharTy, BuiltinType::Char_U); 1278 // C99 6.2.5p4. 1279 InitBuiltinType(SignedCharTy, BuiltinType::SChar); 1280 InitBuiltinType(ShortTy, BuiltinType::Short); 1281 InitBuiltinType(IntTy, BuiltinType::Int); 1282 InitBuiltinType(LongTy, BuiltinType::Long); 1283 InitBuiltinType(LongLongTy, BuiltinType::LongLong); 1284 1285 // C99 6.2.5p6. 1286 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); 1287 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); 1288 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); 1289 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); 1290 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); 1291 1292 // C99 6.2.5p10. 1293 InitBuiltinType(FloatTy, BuiltinType::Float); 1294 InitBuiltinType(DoubleTy, BuiltinType::Double); 1295 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); 1296 1297 // GNU extension, __float128 for IEEE quadruple precision 1298 InitBuiltinType(Float128Ty, BuiltinType::Float128); 1299 1300 // C11 extension ISO/IEC TS 18661-3 1301 InitBuiltinType(Float16Ty, BuiltinType::Float16); 1302 1303 // ISO/IEC JTC1 SC22 WG14 N1169 Extension 1304 InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum); 1305 InitBuiltinType(AccumTy, BuiltinType::Accum); 1306 InitBuiltinType(LongAccumTy, BuiltinType::LongAccum); 1307 InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum); 1308 InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum); 1309 InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum); 1310 InitBuiltinType(ShortFractTy, BuiltinType::ShortFract); 1311 InitBuiltinType(FractTy, BuiltinType::Fract); 1312 InitBuiltinType(LongFractTy, BuiltinType::LongFract); 1313 InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract); 1314 InitBuiltinType(UnsignedFractTy, BuiltinType::UFract); 1315 InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract); 1316 InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum); 1317 InitBuiltinType(SatAccumTy, BuiltinType::SatAccum); 1318 InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum); 1319 InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum); 1320 InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum); 1321 InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum); 1322 InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract); 1323 InitBuiltinType(SatFractTy, BuiltinType::SatFract); 1324 InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract); 1325 InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract); 1326 InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract); 1327 InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract); 1328 1329 // GNU extension, 128-bit integers. 1330 InitBuiltinType(Int128Ty, BuiltinType::Int128); 1331 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); 1332 1333 // C++ 3.9.1p5 1334 if (TargetInfo::isTypeSigned(Target.getWCharType())) 1335 InitBuiltinType(WCharTy, BuiltinType::WChar_S); 1336 else // -fshort-wchar makes wchar_t be unsigned. 1337 InitBuiltinType(WCharTy, BuiltinType::WChar_U); 1338 if (LangOpts.CPlusPlus && LangOpts.WChar) 1339 WideCharTy = WCharTy; 1340 else { 1341 // C99 (or C++ using -fno-wchar). 1342 WideCharTy = getFromTargetType(Target.getWCharType()); 1343 } 1344 1345 WIntTy = getFromTargetType(Target.getWIntType()); 1346 1347 // C++20 (proposed) 1348 InitBuiltinType(Char8Ty, BuiltinType::Char8); 1349 1350 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 1351 InitBuiltinType(Char16Ty, BuiltinType::Char16); 1352 else // C99 1353 Char16Ty = getFromTargetType(Target.getChar16Type()); 1354 1355 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 1356 InitBuiltinType(Char32Ty, BuiltinType::Char32); 1357 else // C99 1358 Char32Ty = getFromTargetType(Target.getChar32Type()); 1359 1360 // Placeholder type for type-dependent expressions whose type is 1361 // completely unknown. No code should ever check a type against 1362 // DependentTy and users should never see it; however, it is here to 1363 // help diagnose failures to properly check for type-dependent 1364 // expressions. 1365 InitBuiltinType(DependentTy, BuiltinType::Dependent); 1366 1367 // Placeholder type for functions. 1368 InitBuiltinType(OverloadTy, BuiltinType::Overload); 1369 1370 // Placeholder type for bound members. 1371 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); 1372 1373 // Placeholder type for pseudo-objects. 1374 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); 1375 1376 // "any" type; useful for debugger-like clients. 1377 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); 1378 1379 // Placeholder type for unbridged ARC casts. 1380 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); 1381 1382 // Placeholder type for builtin functions. 1383 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); 1384 1385 // Placeholder type for OMP array sections. 1386 if (LangOpts.OpenMP) { 1387 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection); 1388 InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping); 1389 InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator); 1390 } 1391 if (LangOpts.MatrixTypes) 1392 InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx); 1393 1394 // C99 6.2.5p11. 1395 FloatComplexTy = getComplexType(FloatTy); 1396 DoubleComplexTy = getComplexType(DoubleTy); 1397 LongDoubleComplexTy = getComplexType(LongDoubleTy); 1398 Float128ComplexTy = getComplexType(Float128Ty); 1399 1400 // Builtin types for 'id', 'Class', and 'SEL'. 1401 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); 1402 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); 1403 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); 1404 1405 if (LangOpts.OpenCL) { 1406 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 1407 InitBuiltinType(SingletonId, BuiltinType::Id); 1408 #include "clang/Basic/OpenCLImageTypes.def" 1409 1410 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); 1411 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); 1412 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); 1413 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); 1414 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); 1415 1416 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 1417 InitBuiltinType(Id##Ty, BuiltinType::Id); 1418 #include "clang/Basic/OpenCLExtensionTypes.def" 1419 } 1420 1421 if (Target.hasAArch64SVETypes()) { 1422 #define SVE_TYPE(Name, Id, SingletonId) \ 1423 InitBuiltinType(SingletonId, BuiltinType::Id); 1424 #include "clang/Basic/AArch64SVEACLETypes.def" 1425 } 1426 1427 if (Target.getTriple().isPPC64() && 1428 Target.hasFeature("paired-vector-memops")) { 1429 if (Target.hasFeature("mma")) { 1430 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ 1431 InitBuiltinType(Id##Ty, BuiltinType::Id); 1432 #include "clang/Basic/PPCTypes.def" 1433 } 1434 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ 1435 InitBuiltinType(Id##Ty, BuiltinType::Id); 1436 #include "clang/Basic/PPCTypes.def" 1437 } 1438 1439 // Builtin type for __objc_yes and __objc_no 1440 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? 1441 SignedCharTy : BoolTy); 1442 1443 ObjCConstantStringType = QualType(); 1444 1445 ObjCSuperType = QualType(); 1446 1447 // void * type 1448 if (LangOpts.OpenCLVersion >= 200) { 1449 auto Q = VoidTy.getQualifiers(); 1450 Q.setAddressSpace(LangAS::opencl_generic); 1451 VoidPtrTy = getPointerType(getCanonicalType( 1452 getQualifiedType(VoidTy.getUnqualifiedType(), Q))); 1453 } else { 1454 VoidPtrTy = getPointerType(VoidTy); 1455 } 1456 1457 // nullptr type (C++0x 2.14.7) 1458 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); 1459 1460 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 1461 InitBuiltinType(HalfTy, BuiltinType::Half); 1462 1463 InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16); 1464 1465 // Builtin type used to help define __builtin_va_list. 1466 VaListTagDecl = nullptr; 1467 1468 // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls. 1469 if (LangOpts.MicrosoftExt || LangOpts.Borland) { 1470 MSGuidTagDecl = buildImplicitRecord("_GUID"); 1471 TUDecl->addDecl(MSGuidTagDecl); 1472 } 1473 } 1474 1475 DiagnosticsEngine &ASTContext::getDiagnostics() const { 1476 return SourceMgr.getDiagnostics(); 1477 } 1478 1479 AttrVec& ASTContext::getDeclAttrs(const Decl *D) { 1480 AttrVec *&Result = DeclAttrs[D]; 1481 if (!Result) { 1482 void *Mem = Allocate(sizeof(AttrVec)); 1483 Result = new (Mem) AttrVec; 1484 } 1485 1486 return *Result; 1487 } 1488 1489 /// Erase the attributes corresponding to the given declaration. 1490 void ASTContext::eraseDeclAttrs(const Decl *D) { 1491 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); 1492 if (Pos != DeclAttrs.end()) { 1493 Pos->second->~AttrVec(); 1494 DeclAttrs.erase(Pos); 1495 } 1496 } 1497 1498 // FIXME: Remove ? 1499 MemberSpecializationInfo * 1500 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { 1501 assert(Var->isStaticDataMember() && "Not a static data member"); 1502 return getTemplateOrSpecializationInfo(Var) 1503 .dyn_cast<MemberSpecializationInfo *>(); 1504 } 1505 1506 ASTContext::TemplateOrSpecializationInfo 1507 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { 1508 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = 1509 TemplateOrInstantiation.find(Var); 1510 if (Pos == TemplateOrInstantiation.end()) 1511 return {}; 1512 1513 return Pos->second; 1514 } 1515 1516 void 1517 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, 1518 TemplateSpecializationKind TSK, 1519 SourceLocation PointOfInstantiation) { 1520 assert(Inst->isStaticDataMember() && "Not a static data member"); 1521 assert(Tmpl->isStaticDataMember() && "Not a static data member"); 1522 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( 1523 Tmpl, TSK, PointOfInstantiation)); 1524 } 1525 1526 void 1527 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, 1528 TemplateOrSpecializationInfo TSI) { 1529 assert(!TemplateOrInstantiation[Inst] && 1530 "Already noted what the variable was instantiated from"); 1531 TemplateOrInstantiation[Inst] = TSI; 1532 } 1533 1534 NamedDecl * 1535 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { 1536 auto Pos = InstantiatedFromUsingDecl.find(UUD); 1537 if (Pos == InstantiatedFromUsingDecl.end()) 1538 return nullptr; 1539 1540 return Pos->second; 1541 } 1542 1543 void 1544 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { 1545 assert((isa<UsingDecl>(Pattern) || 1546 isa<UnresolvedUsingValueDecl>(Pattern) || 1547 isa<UnresolvedUsingTypenameDecl>(Pattern)) && 1548 "pattern decl is not a using decl"); 1549 assert((isa<UsingDecl>(Inst) || 1550 isa<UnresolvedUsingValueDecl>(Inst) || 1551 isa<UnresolvedUsingTypenameDecl>(Inst)) && 1552 "instantiation did not produce a using decl"); 1553 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); 1554 InstantiatedFromUsingDecl[Inst] = Pattern; 1555 } 1556 1557 UsingShadowDecl * 1558 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { 1559 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos 1560 = InstantiatedFromUsingShadowDecl.find(Inst); 1561 if (Pos == InstantiatedFromUsingShadowDecl.end()) 1562 return nullptr; 1563 1564 return Pos->second; 1565 } 1566 1567 void 1568 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, 1569 UsingShadowDecl *Pattern) { 1570 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); 1571 InstantiatedFromUsingShadowDecl[Inst] = Pattern; 1572 } 1573 1574 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { 1575 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos 1576 = InstantiatedFromUnnamedFieldDecl.find(Field); 1577 if (Pos == InstantiatedFromUnnamedFieldDecl.end()) 1578 return nullptr; 1579 1580 return Pos->second; 1581 } 1582 1583 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, 1584 FieldDecl *Tmpl) { 1585 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); 1586 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); 1587 assert(!InstantiatedFromUnnamedFieldDecl[Inst] && 1588 "Already noted what unnamed field was instantiated from"); 1589 1590 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; 1591 } 1592 1593 ASTContext::overridden_cxx_method_iterator 1594 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { 1595 return overridden_methods(Method).begin(); 1596 } 1597 1598 ASTContext::overridden_cxx_method_iterator 1599 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { 1600 return overridden_methods(Method).end(); 1601 } 1602 1603 unsigned 1604 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { 1605 auto Range = overridden_methods(Method); 1606 return Range.end() - Range.begin(); 1607 } 1608 1609 ASTContext::overridden_method_range 1610 ASTContext::overridden_methods(const CXXMethodDecl *Method) const { 1611 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = 1612 OverriddenMethods.find(Method->getCanonicalDecl()); 1613 if (Pos == OverriddenMethods.end()) 1614 return overridden_method_range(nullptr, nullptr); 1615 return overridden_method_range(Pos->second.begin(), Pos->second.end()); 1616 } 1617 1618 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, 1619 const CXXMethodDecl *Overridden) { 1620 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); 1621 OverriddenMethods[Method].push_back(Overridden); 1622 } 1623 1624 void ASTContext::getOverriddenMethods( 1625 const NamedDecl *D, 1626 SmallVectorImpl<const NamedDecl *> &Overridden) const { 1627 assert(D); 1628 1629 if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { 1630 Overridden.append(overridden_methods_begin(CXXMethod), 1631 overridden_methods_end(CXXMethod)); 1632 return; 1633 } 1634 1635 const auto *Method = dyn_cast<ObjCMethodDecl>(D); 1636 if (!Method) 1637 return; 1638 1639 SmallVector<const ObjCMethodDecl *, 8> OverDecls; 1640 Method->getOverriddenMethods(OverDecls); 1641 Overridden.append(OverDecls.begin(), OverDecls.end()); 1642 } 1643 1644 void ASTContext::addedLocalImportDecl(ImportDecl *Import) { 1645 assert(!Import->getNextLocalImport() && 1646 "Import declaration already in the chain"); 1647 assert(!Import->isFromASTFile() && "Non-local import declaration"); 1648 if (!FirstLocalImport) { 1649 FirstLocalImport = Import; 1650 LastLocalImport = Import; 1651 return; 1652 } 1653 1654 LastLocalImport->setNextLocalImport(Import); 1655 LastLocalImport = Import; 1656 } 1657 1658 //===----------------------------------------------------------------------===// 1659 // Type Sizing and Analysis 1660 //===----------------------------------------------------------------------===// 1661 1662 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified 1663 /// scalar floating point type. 1664 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { 1665 switch (T->castAs<BuiltinType>()->getKind()) { 1666 default: 1667 llvm_unreachable("Not a floating point type!"); 1668 case BuiltinType::BFloat16: 1669 return Target->getBFloat16Format(); 1670 case BuiltinType::Float16: 1671 case BuiltinType::Half: 1672 return Target->getHalfFormat(); 1673 case BuiltinType::Float: return Target->getFloatFormat(); 1674 case BuiltinType::Double: return Target->getDoubleFormat(); 1675 case BuiltinType::LongDouble: 1676 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) 1677 return AuxTarget->getLongDoubleFormat(); 1678 return Target->getLongDoubleFormat(); 1679 case BuiltinType::Float128: 1680 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) 1681 return AuxTarget->getFloat128Format(); 1682 return Target->getFloat128Format(); 1683 } 1684 } 1685 1686 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { 1687 unsigned Align = Target->getCharWidth(); 1688 1689 bool UseAlignAttrOnly = false; 1690 if (unsigned AlignFromAttr = D->getMaxAlignment()) { 1691 Align = AlignFromAttr; 1692 1693 // __attribute__((aligned)) can increase or decrease alignment 1694 // *except* on a struct or struct member, where it only increases 1695 // alignment unless 'packed' is also specified. 1696 // 1697 // It is an error for alignas to decrease alignment, so we can 1698 // ignore that possibility; Sema should diagnose it. 1699 if (isa<FieldDecl>(D)) { 1700 UseAlignAttrOnly = D->hasAttr<PackedAttr>() || 1701 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1702 } else { 1703 UseAlignAttrOnly = true; 1704 } 1705 } 1706 else if (isa<FieldDecl>(D)) 1707 UseAlignAttrOnly = 1708 D->hasAttr<PackedAttr>() || 1709 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1710 1711 // If we're using the align attribute only, just ignore everything 1712 // else about the declaration and its type. 1713 if (UseAlignAttrOnly) { 1714 // do nothing 1715 } else if (const auto *VD = dyn_cast<ValueDecl>(D)) { 1716 QualType T = VD->getType(); 1717 if (const auto *RT = T->getAs<ReferenceType>()) { 1718 if (ForAlignof) 1719 T = RT->getPointeeType(); 1720 else 1721 T = getPointerType(RT->getPointeeType()); 1722 } 1723 QualType BaseT = getBaseElementType(T); 1724 if (T->isFunctionType()) 1725 Align = getTypeInfoImpl(T.getTypePtr()).Align; 1726 else if (!BaseT->isIncompleteType()) { 1727 // Adjust alignments of declarations with array type by the 1728 // large-array alignment on the target. 1729 if (const ArrayType *arrayType = getAsArrayType(T)) { 1730 unsigned MinWidth = Target->getLargeArrayMinWidth(); 1731 if (!ForAlignof && MinWidth) { 1732 if (isa<VariableArrayType>(arrayType)) 1733 Align = std::max(Align, Target->getLargeArrayAlign()); 1734 else if (isa<ConstantArrayType>(arrayType) && 1735 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) 1736 Align = std::max(Align, Target->getLargeArrayAlign()); 1737 } 1738 } 1739 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); 1740 if (BaseT.getQualifiers().hasUnaligned()) 1741 Align = Target->getCharWidth(); 1742 if (const auto *VD = dyn_cast<VarDecl>(D)) { 1743 if (VD->hasGlobalStorage() && !ForAlignof) { 1744 uint64_t TypeSize = getTypeSize(T.getTypePtr()); 1745 Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize)); 1746 } 1747 } 1748 } 1749 1750 // Fields can be subject to extra alignment constraints, like if 1751 // the field is packed, the struct is packed, or the struct has a 1752 // a max-field-alignment constraint (#pragma pack). So calculate 1753 // the actual alignment of the field within the struct, and then 1754 // (as we're expected to) constrain that by the alignment of the type. 1755 if (const auto *Field = dyn_cast<FieldDecl>(VD)) { 1756 const RecordDecl *Parent = Field->getParent(); 1757 // We can only produce a sensible answer if the record is valid. 1758 if (!Parent->isInvalidDecl()) { 1759 const ASTRecordLayout &Layout = getASTRecordLayout(Parent); 1760 1761 // Start with the record's overall alignment. 1762 unsigned FieldAlign = toBits(Layout.getAlignment()); 1763 1764 // Use the GCD of that and the offset within the record. 1765 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); 1766 if (Offset > 0) { 1767 // Alignment is always a power of 2, so the GCD will be a power of 2, 1768 // which means we get to do this crazy thing instead of Euclid's. 1769 uint64_t LowBitOfOffset = Offset & (~Offset + 1); 1770 if (LowBitOfOffset < FieldAlign) 1771 FieldAlign = static_cast<unsigned>(LowBitOfOffset); 1772 } 1773 1774 Align = std::min(Align, FieldAlign); 1775 } 1776 } 1777 } 1778 1779 return toCharUnitsFromBits(Align); 1780 } 1781 1782 CharUnits ASTContext::getExnObjectAlignment() const { 1783 return toCharUnitsFromBits(Target->getExnObjectAlignment()); 1784 } 1785 1786 // getTypeInfoDataSizeInChars - Return the size of a type, in 1787 // chars. If the type is a record, its data size is returned. This is 1788 // the size of the memcpy that's performed when assigning this type 1789 // using a trivial copy/move assignment operator. 1790 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const { 1791 TypeInfoChars Info = getTypeInfoInChars(T); 1792 1793 // In C++, objects can sometimes be allocated into the tail padding 1794 // of a base-class subobject. We decide whether that's possible 1795 // during class layout, so here we can just trust the layout results. 1796 if (getLangOpts().CPlusPlus) { 1797 if (const auto *RT = T->getAs<RecordType>()) { 1798 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); 1799 Info.Width = layout.getDataSize(); 1800 } 1801 } 1802 1803 return Info; 1804 } 1805 1806 /// getConstantArrayInfoInChars - Performing the computation in CharUnits 1807 /// instead of in bits prevents overflowing the uint64_t for some large arrays. 1808 TypeInfoChars 1809 static getConstantArrayInfoInChars(const ASTContext &Context, 1810 const ConstantArrayType *CAT) { 1811 TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType()); 1812 uint64_t Size = CAT->getSize().getZExtValue(); 1813 assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= 1814 (uint64_t)(-1)/Size) && 1815 "Overflow in array type char size evaluation"); 1816 uint64_t Width = EltInfo.Width.getQuantity() * Size; 1817 unsigned Align = EltInfo.Align.getQuantity(); 1818 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || 1819 Context.getTargetInfo().getPointerWidth(0) == 64) 1820 Width = llvm::alignTo(Width, Align); 1821 return TypeInfoChars(CharUnits::fromQuantity(Width), 1822 CharUnits::fromQuantity(Align), 1823 EltInfo.AlignIsRequired); 1824 } 1825 1826 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const { 1827 if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) 1828 return getConstantArrayInfoInChars(*this, CAT); 1829 TypeInfo Info = getTypeInfo(T); 1830 return TypeInfoChars(toCharUnitsFromBits(Info.Width), 1831 toCharUnitsFromBits(Info.Align), 1832 Info.AlignIsRequired); 1833 } 1834 1835 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const { 1836 return getTypeInfoInChars(T.getTypePtr()); 1837 } 1838 1839 bool ASTContext::isAlignmentRequired(const Type *T) const { 1840 return getTypeInfo(T).AlignIsRequired; 1841 } 1842 1843 bool ASTContext::isAlignmentRequired(QualType T) const { 1844 return isAlignmentRequired(T.getTypePtr()); 1845 } 1846 1847 unsigned ASTContext::getTypeAlignIfKnown(QualType T, 1848 bool NeedsPreferredAlignment) const { 1849 // An alignment on a typedef overrides anything else. 1850 if (const auto *TT = T->getAs<TypedefType>()) 1851 if (unsigned Align = TT->getDecl()->getMaxAlignment()) 1852 return Align; 1853 1854 // If we have an (array of) complete type, we're done. 1855 T = getBaseElementType(T); 1856 if (!T->isIncompleteType()) 1857 return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T); 1858 1859 // If we had an array type, its element type might be a typedef 1860 // type with an alignment attribute. 1861 if (const auto *TT = T->getAs<TypedefType>()) 1862 if (unsigned Align = TT->getDecl()->getMaxAlignment()) 1863 return Align; 1864 1865 // Otherwise, see if the declaration of the type had an attribute. 1866 if (const auto *TT = T->getAs<TagType>()) 1867 return TT->getDecl()->getMaxAlignment(); 1868 1869 return 0; 1870 } 1871 1872 TypeInfo ASTContext::getTypeInfo(const Type *T) const { 1873 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); 1874 if (I != MemoizedTypeInfo.end()) 1875 return I->second; 1876 1877 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. 1878 TypeInfo TI = getTypeInfoImpl(T); 1879 MemoizedTypeInfo[T] = TI; 1880 return TI; 1881 } 1882 1883 /// getTypeInfoImpl - Return the size of the specified type, in bits. This 1884 /// method does not work on incomplete types. 1885 /// 1886 /// FIXME: Pointers into different addr spaces could have different sizes and 1887 /// alignment requirements: getPointerInfo should take an AddrSpace, this 1888 /// should take a QualType, &c. 1889 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { 1890 uint64_t Width = 0; 1891 unsigned Align = 8; 1892 bool AlignIsRequired = false; 1893 unsigned AS = 0; 1894 switch (T->getTypeClass()) { 1895 #define TYPE(Class, Base) 1896 #define ABSTRACT_TYPE(Class, Base) 1897 #define NON_CANONICAL_TYPE(Class, Base) 1898 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1899 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ 1900 case Type::Class: \ 1901 assert(!T->isDependentType() && "should not see dependent types here"); \ 1902 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); 1903 #include "clang/AST/TypeNodes.inc" 1904 llvm_unreachable("Should not see dependent types"); 1905 1906 case Type::FunctionNoProto: 1907 case Type::FunctionProto: 1908 // GCC extension: alignof(function) = 32 bits 1909 Width = 0; 1910 Align = 32; 1911 break; 1912 1913 case Type::IncompleteArray: 1914 case Type::VariableArray: 1915 case Type::ConstantArray: { 1916 // Model non-constant sized arrays as size zero, but track the alignment. 1917 uint64_t Size = 0; 1918 if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) 1919 Size = CAT->getSize().getZExtValue(); 1920 1921 TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType()); 1922 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && 1923 "Overflow in array type bit size evaluation"); 1924 Width = EltInfo.Width * Size; 1925 Align = EltInfo.Align; 1926 AlignIsRequired = EltInfo.AlignIsRequired; 1927 if (!getTargetInfo().getCXXABI().isMicrosoft() || 1928 getTargetInfo().getPointerWidth(0) == 64) 1929 Width = llvm::alignTo(Width, Align); 1930 break; 1931 } 1932 1933 case Type::ExtVector: 1934 case Type::Vector: { 1935 const auto *VT = cast<VectorType>(T); 1936 TypeInfo EltInfo = getTypeInfo(VT->getElementType()); 1937 Width = EltInfo.Width * VT->getNumElements(); 1938 Align = Width; 1939 // If the alignment is not a power of 2, round up to the next power of 2. 1940 // This happens for non-power-of-2 length vectors. 1941 if (Align & (Align-1)) { 1942 Align = llvm::NextPowerOf2(Align); 1943 Width = llvm::alignTo(Width, Align); 1944 } 1945 // Adjust the alignment based on the target max. 1946 uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); 1947 if (TargetVectorAlign && TargetVectorAlign < Align) 1948 Align = TargetVectorAlign; 1949 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) 1950 // Adjust the alignment for fixed-length SVE vectors. This is important 1951 // for non-power-of-2 vector lengths. 1952 Align = 128; 1953 else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 1954 // Adjust the alignment for fixed-length SVE predicates. 1955 Align = 16; 1956 break; 1957 } 1958 1959 case Type::ConstantMatrix: { 1960 const auto *MT = cast<ConstantMatrixType>(T); 1961 TypeInfo ElementInfo = getTypeInfo(MT->getElementType()); 1962 // The internal layout of a matrix value is implementation defined. 1963 // Initially be ABI compatible with arrays with respect to alignment and 1964 // size. 1965 Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns(); 1966 Align = ElementInfo.Align; 1967 break; 1968 } 1969 1970 case Type::Builtin: 1971 switch (cast<BuiltinType>(T)->getKind()) { 1972 default: llvm_unreachable("Unknown builtin type!"); 1973 case BuiltinType::Void: 1974 // GCC extension: alignof(void) = 8 bits. 1975 Width = 0; 1976 Align = 8; 1977 break; 1978 case BuiltinType::Bool: 1979 Width = Target->getBoolWidth(); 1980 Align = Target->getBoolAlign(); 1981 break; 1982 case BuiltinType::Char_S: 1983 case BuiltinType::Char_U: 1984 case BuiltinType::UChar: 1985 case BuiltinType::SChar: 1986 case BuiltinType::Char8: 1987 Width = Target->getCharWidth(); 1988 Align = Target->getCharAlign(); 1989 break; 1990 case BuiltinType::WChar_S: 1991 case BuiltinType::WChar_U: 1992 Width = Target->getWCharWidth(); 1993 Align = Target->getWCharAlign(); 1994 break; 1995 case BuiltinType::Char16: 1996 Width = Target->getChar16Width(); 1997 Align = Target->getChar16Align(); 1998 break; 1999 case BuiltinType::Char32: 2000 Width = Target->getChar32Width(); 2001 Align = Target->getChar32Align(); 2002 break; 2003 case BuiltinType::UShort: 2004 case BuiltinType::Short: 2005 Width = Target->getShortWidth(); 2006 Align = Target->getShortAlign(); 2007 break; 2008 case BuiltinType::UInt: 2009 case BuiltinType::Int: 2010 Width = Target->getIntWidth(); 2011 Align = Target->getIntAlign(); 2012 break; 2013 case BuiltinType::ULong: 2014 case BuiltinType::Long: 2015 Width = Target->getLongWidth(); 2016 Align = Target->getLongAlign(); 2017 break; 2018 case BuiltinType::ULongLong: 2019 case BuiltinType::LongLong: 2020 Width = Target->getLongLongWidth(); 2021 Align = Target->getLongLongAlign(); 2022 break; 2023 case BuiltinType::Int128: 2024 case BuiltinType::UInt128: 2025 Width = 128; 2026 Align = 128; // int128_t is 128-bit aligned on all targets. 2027 break; 2028 case BuiltinType::ShortAccum: 2029 case BuiltinType::UShortAccum: 2030 case BuiltinType::SatShortAccum: 2031 case BuiltinType::SatUShortAccum: 2032 Width = Target->getShortAccumWidth(); 2033 Align = Target->getShortAccumAlign(); 2034 break; 2035 case BuiltinType::Accum: 2036 case BuiltinType::UAccum: 2037 case BuiltinType::SatAccum: 2038 case BuiltinType::SatUAccum: 2039 Width = Target->getAccumWidth(); 2040 Align = Target->getAccumAlign(); 2041 break; 2042 case BuiltinType::LongAccum: 2043 case BuiltinType::ULongAccum: 2044 case BuiltinType::SatLongAccum: 2045 case BuiltinType::SatULongAccum: 2046 Width = Target->getLongAccumWidth(); 2047 Align = Target->getLongAccumAlign(); 2048 break; 2049 case BuiltinType::ShortFract: 2050 case BuiltinType::UShortFract: 2051 case BuiltinType::SatShortFract: 2052 case BuiltinType::SatUShortFract: 2053 Width = Target->getShortFractWidth(); 2054 Align = Target->getShortFractAlign(); 2055 break; 2056 case BuiltinType::Fract: 2057 case BuiltinType::UFract: 2058 case BuiltinType::SatFract: 2059 case BuiltinType::SatUFract: 2060 Width = Target->getFractWidth(); 2061 Align = Target->getFractAlign(); 2062 break; 2063 case BuiltinType::LongFract: 2064 case BuiltinType::ULongFract: 2065 case BuiltinType::SatLongFract: 2066 case BuiltinType::SatULongFract: 2067 Width = Target->getLongFractWidth(); 2068 Align = Target->getLongFractAlign(); 2069 break; 2070 case BuiltinType::BFloat16: 2071 Width = Target->getBFloat16Width(); 2072 Align = Target->getBFloat16Align(); 2073 break; 2074 case BuiltinType::Float16: 2075 case BuiltinType::Half: 2076 if (Target->hasFloat16Type() || !getLangOpts().OpenMP || 2077 !getLangOpts().OpenMPIsDevice) { 2078 Width = Target->getHalfWidth(); 2079 Align = Target->getHalfAlign(); 2080 } else { 2081 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2082 "Expected OpenMP device compilation."); 2083 Width = AuxTarget->getHalfWidth(); 2084 Align = AuxTarget->getHalfAlign(); 2085 } 2086 break; 2087 case BuiltinType::Float: 2088 Width = Target->getFloatWidth(); 2089 Align = Target->getFloatAlign(); 2090 break; 2091 case BuiltinType::Double: 2092 Width = Target->getDoubleWidth(); 2093 Align = Target->getDoubleAlign(); 2094 break; 2095 case BuiltinType::LongDouble: 2096 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2097 (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() || 2098 Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) { 2099 Width = AuxTarget->getLongDoubleWidth(); 2100 Align = AuxTarget->getLongDoubleAlign(); 2101 } else { 2102 Width = Target->getLongDoubleWidth(); 2103 Align = Target->getLongDoubleAlign(); 2104 } 2105 break; 2106 case BuiltinType::Float128: 2107 if (Target->hasFloat128Type() || !getLangOpts().OpenMP || 2108 !getLangOpts().OpenMPIsDevice) { 2109 Width = Target->getFloat128Width(); 2110 Align = Target->getFloat128Align(); 2111 } else { 2112 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2113 "Expected OpenMP device compilation."); 2114 Width = AuxTarget->getFloat128Width(); 2115 Align = AuxTarget->getFloat128Align(); 2116 } 2117 break; 2118 case BuiltinType::NullPtr: 2119 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) 2120 Align = Target->getPointerAlign(0); // == sizeof(void*) 2121 break; 2122 case BuiltinType::ObjCId: 2123 case BuiltinType::ObjCClass: 2124 case BuiltinType::ObjCSel: 2125 Width = Target->getPointerWidth(0); 2126 Align = Target->getPointerAlign(0); 2127 break; 2128 case BuiltinType::OCLSampler: 2129 case BuiltinType::OCLEvent: 2130 case BuiltinType::OCLClkEvent: 2131 case BuiltinType::OCLQueue: 2132 case BuiltinType::OCLReserveID: 2133 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2134 case BuiltinType::Id: 2135 #include "clang/Basic/OpenCLImageTypes.def" 2136 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2137 case BuiltinType::Id: 2138 #include "clang/Basic/OpenCLExtensionTypes.def" 2139 AS = getTargetAddressSpace( 2140 Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T))); 2141 Width = Target->getPointerWidth(AS); 2142 Align = Target->getPointerAlign(AS); 2143 break; 2144 // The SVE types are effectively target-specific. The length of an 2145 // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple 2146 // of 128 bits. There is one predicate bit for each vector byte, so the 2147 // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits. 2148 // 2149 // Because the length is only known at runtime, we use a dummy value 2150 // of 0 for the static length. The alignment values are those defined 2151 // by the Procedure Call Standard for the Arm Architecture. 2152 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ 2153 IsSigned, IsFP, IsBF) \ 2154 case BuiltinType::Id: \ 2155 Width = 0; \ 2156 Align = 128; \ 2157 break; 2158 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ 2159 case BuiltinType::Id: \ 2160 Width = 0; \ 2161 Align = 16; \ 2162 break; 2163 #include "clang/Basic/AArch64SVEACLETypes.def" 2164 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 2165 case BuiltinType::Id: \ 2166 Width = Size; \ 2167 Align = Size; \ 2168 break; 2169 #include "clang/Basic/PPCTypes.def" 2170 } 2171 break; 2172 case Type::ObjCObjectPointer: 2173 Width = Target->getPointerWidth(0); 2174 Align = Target->getPointerAlign(0); 2175 break; 2176 case Type::BlockPointer: 2177 AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType()); 2178 Width = Target->getPointerWidth(AS); 2179 Align = Target->getPointerAlign(AS); 2180 break; 2181 case Type::LValueReference: 2182 case Type::RValueReference: 2183 // alignof and sizeof should never enter this code path here, so we go 2184 // the pointer route. 2185 AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType()); 2186 Width = Target->getPointerWidth(AS); 2187 Align = Target->getPointerAlign(AS); 2188 break; 2189 case Type::Pointer: 2190 AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); 2191 Width = Target->getPointerWidth(AS); 2192 Align = Target->getPointerAlign(AS); 2193 break; 2194 case Type::MemberPointer: { 2195 const auto *MPT = cast<MemberPointerType>(T); 2196 CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); 2197 Width = MPI.Width; 2198 Align = MPI.Align; 2199 break; 2200 } 2201 case Type::Complex: { 2202 // Complex types have the same alignment as their elements, but twice the 2203 // size. 2204 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); 2205 Width = EltInfo.Width * 2; 2206 Align = EltInfo.Align; 2207 break; 2208 } 2209 case Type::ObjCObject: 2210 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); 2211 case Type::Adjusted: 2212 case Type::Decayed: 2213 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); 2214 case Type::ObjCInterface: { 2215 const auto *ObjCI = cast<ObjCInterfaceType>(T); 2216 if (ObjCI->getDecl()->isInvalidDecl()) { 2217 Width = 8; 2218 Align = 8; 2219 break; 2220 } 2221 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); 2222 Width = toBits(Layout.getSize()); 2223 Align = toBits(Layout.getAlignment()); 2224 break; 2225 } 2226 case Type::ExtInt: { 2227 const auto *EIT = cast<ExtIntType>(T); 2228 Align = 2229 std::min(static_cast<unsigned>(std::max( 2230 getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))), 2231 Target->getLongLongAlign()); 2232 Width = llvm::alignTo(EIT->getNumBits(), Align); 2233 break; 2234 } 2235 case Type::Record: 2236 case Type::Enum: { 2237 const auto *TT = cast<TagType>(T); 2238 2239 if (TT->getDecl()->isInvalidDecl()) { 2240 Width = 8; 2241 Align = 8; 2242 break; 2243 } 2244 2245 if (const auto *ET = dyn_cast<EnumType>(TT)) { 2246 const EnumDecl *ED = ET->getDecl(); 2247 TypeInfo Info = 2248 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); 2249 if (unsigned AttrAlign = ED->getMaxAlignment()) { 2250 Info.Align = AttrAlign; 2251 Info.AlignIsRequired = true; 2252 } 2253 return Info; 2254 } 2255 2256 const auto *RT = cast<RecordType>(TT); 2257 const RecordDecl *RD = RT->getDecl(); 2258 const ASTRecordLayout &Layout = getASTRecordLayout(RD); 2259 Width = toBits(Layout.getSize()); 2260 Align = toBits(Layout.getAlignment()); 2261 AlignIsRequired = RD->hasAttr<AlignedAttr>(); 2262 break; 2263 } 2264 2265 case Type::SubstTemplateTypeParm: 2266 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> 2267 getReplacementType().getTypePtr()); 2268 2269 case Type::Auto: 2270 case Type::DeducedTemplateSpecialization: { 2271 const auto *A = cast<DeducedType>(T); 2272 assert(!A->getDeducedType().isNull() && 2273 "cannot request the size of an undeduced or dependent auto type"); 2274 return getTypeInfo(A->getDeducedType().getTypePtr()); 2275 } 2276 2277 case Type::Paren: 2278 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); 2279 2280 case Type::MacroQualified: 2281 return getTypeInfo( 2282 cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr()); 2283 2284 case Type::ObjCTypeParam: 2285 return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr()); 2286 2287 case Type::Typedef: { 2288 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); 2289 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); 2290 // If the typedef has an aligned attribute on it, it overrides any computed 2291 // alignment we have. This violates the GCC documentation (which says that 2292 // attribute(aligned) can only round up) but matches its implementation. 2293 if (unsigned AttrAlign = Typedef->getMaxAlignment()) { 2294 Align = AttrAlign; 2295 AlignIsRequired = true; 2296 } else { 2297 Align = Info.Align; 2298 AlignIsRequired = Info.AlignIsRequired; 2299 } 2300 Width = Info.Width; 2301 break; 2302 } 2303 2304 case Type::Elaborated: 2305 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); 2306 2307 case Type::Attributed: 2308 return getTypeInfo( 2309 cast<AttributedType>(T)->getEquivalentType().getTypePtr()); 2310 2311 case Type::Atomic: { 2312 // Start with the base type information. 2313 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); 2314 Width = Info.Width; 2315 Align = Info.Align; 2316 2317 if (!Width) { 2318 // An otherwise zero-sized type should still generate an 2319 // atomic operation. 2320 Width = Target->getCharWidth(); 2321 assert(Align); 2322 } else if (Width <= Target->getMaxAtomicPromoteWidth()) { 2323 // If the size of the type doesn't exceed the platform's max 2324 // atomic promotion width, make the size and alignment more 2325 // favorable to atomic operations: 2326 2327 // Round the size up to a power of 2. 2328 if (!llvm::isPowerOf2_64(Width)) 2329 Width = llvm::NextPowerOf2(Width); 2330 2331 // Set the alignment equal to the size. 2332 Align = static_cast<unsigned>(Width); 2333 } 2334 } 2335 break; 2336 2337 case Type::Pipe: 2338 Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global)); 2339 Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global)); 2340 break; 2341 } 2342 2343 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); 2344 return TypeInfo(Width, Align, AlignIsRequired); 2345 } 2346 2347 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { 2348 UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T); 2349 if (I != MemoizedUnadjustedAlign.end()) 2350 return I->second; 2351 2352 unsigned UnadjustedAlign; 2353 if (const auto *RT = T->getAs<RecordType>()) { 2354 const RecordDecl *RD = RT->getDecl(); 2355 const ASTRecordLayout &Layout = getASTRecordLayout(RD); 2356 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); 2357 } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) { 2358 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); 2359 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); 2360 } else { 2361 UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType()); 2362 } 2363 2364 MemoizedUnadjustedAlign[T] = UnadjustedAlign; 2365 return UnadjustedAlign; 2366 } 2367 2368 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { 2369 unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign(); 2370 return SimdAlign; 2371 } 2372 2373 /// toCharUnitsFromBits - Convert a size in bits to a size in characters. 2374 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { 2375 return CharUnits::fromQuantity(BitSize / getCharWidth()); 2376 } 2377 2378 /// toBits - Convert a size in characters to a size in characters. 2379 int64_t ASTContext::toBits(CharUnits CharSize) const { 2380 return CharSize.getQuantity() * getCharWidth(); 2381 } 2382 2383 /// getTypeSizeInChars - Return the size of the specified type, in characters. 2384 /// This method does not work on incomplete types. 2385 CharUnits ASTContext::getTypeSizeInChars(QualType T) const { 2386 return getTypeInfoInChars(T).Width; 2387 } 2388 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { 2389 return getTypeInfoInChars(T).Width; 2390 } 2391 2392 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in 2393 /// characters. This method does not work on incomplete types. 2394 CharUnits ASTContext::getTypeAlignInChars(QualType T) const { 2395 return toCharUnitsFromBits(getTypeAlign(T)); 2396 } 2397 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { 2398 return toCharUnitsFromBits(getTypeAlign(T)); 2399 } 2400 2401 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a 2402 /// type, in characters, before alignment adustments. This method does 2403 /// not work on incomplete types. 2404 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { 2405 return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); 2406 } 2407 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { 2408 return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); 2409 } 2410 2411 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified 2412 /// type for the current target in bits. This can be different than the ABI 2413 /// alignment in cases where it is beneficial for performance or backwards 2414 /// compatibility preserving to overalign a data type. (Note: despite the name, 2415 /// the preferred alignment is ABI-impacting, and not an optimization.) 2416 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { 2417 TypeInfo TI = getTypeInfo(T); 2418 unsigned ABIAlign = TI.Align; 2419 2420 T = T->getBaseElementTypeUnsafe(); 2421 2422 // The preferred alignment of member pointers is that of a pointer. 2423 if (T->isMemberPointerType()) 2424 return getPreferredTypeAlign(getPointerDiffType().getTypePtr()); 2425 2426 if (!Target->allowsLargerPreferedTypeAlignment()) 2427 return ABIAlign; 2428 2429 if (const auto *RT = T->getAs<RecordType>()) { 2430 if (TI.AlignIsRequired || RT->getDecl()->isInvalidDecl()) 2431 return ABIAlign; 2432 2433 unsigned PreferredAlign = static_cast<unsigned>( 2434 toBits(getASTRecordLayout(RT->getDecl()).PreferredAlignment)); 2435 assert(PreferredAlign >= ABIAlign && 2436 "PreferredAlign should be at least as large as ABIAlign."); 2437 return PreferredAlign; 2438 } 2439 2440 // Double (and, for targets supporting AIX `power` alignment, long double) and 2441 // long long should be naturally aligned (despite requiring less alignment) if 2442 // possible. 2443 if (const auto *CT = T->getAs<ComplexType>()) 2444 T = CT->getElementType().getTypePtr(); 2445 if (const auto *ET = T->getAs<EnumType>()) 2446 T = ET->getDecl()->getIntegerType().getTypePtr(); 2447 if (T->isSpecificBuiltinType(BuiltinType::Double) || 2448 T->isSpecificBuiltinType(BuiltinType::LongLong) || 2449 T->isSpecificBuiltinType(BuiltinType::ULongLong) || 2450 (T->isSpecificBuiltinType(BuiltinType::LongDouble) && 2451 Target->defaultsToAIXPowerAlignment())) 2452 // Don't increase the alignment if an alignment attribute was specified on a 2453 // typedef declaration. 2454 if (!TI.AlignIsRequired) 2455 return std::max(ABIAlign, (unsigned)getTypeSize(T)); 2456 2457 return ABIAlign; 2458 } 2459 2460 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment 2461 /// for __attribute__((aligned)) on this target, to be used if no alignment 2462 /// value is specified. 2463 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { 2464 return getTargetInfo().getDefaultAlignForAttributeAligned(); 2465 } 2466 2467 /// getAlignOfGlobalVar - Return the alignment in bits that should be given 2468 /// to a global variable of the specified type. 2469 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { 2470 uint64_t TypeSize = getTypeSize(T.getTypePtr()); 2471 return std::max(getPreferredTypeAlign(T), 2472 getTargetInfo().getMinGlobalAlign(TypeSize)); 2473 } 2474 2475 /// getAlignOfGlobalVarInChars - Return the alignment in characters that 2476 /// should be given to a global variable of the specified type. 2477 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { 2478 return toCharUnitsFromBits(getAlignOfGlobalVar(T)); 2479 } 2480 2481 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { 2482 CharUnits Offset = CharUnits::Zero(); 2483 const ASTRecordLayout *Layout = &getASTRecordLayout(RD); 2484 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { 2485 Offset += Layout->getBaseClassOffset(Base); 2486 Layout = &getASTRecordLayout(Base); 2487 } 2488 return Offset; 2489 } 2490 2491 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const { 2492 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2493 CharUnits ThisAdjustment = CharUnits::Zero(); 2494 ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); 2495 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2496 const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2497 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 2498 const CXXRecordDecl *Base = RD; 2499 const CXXRecordDecl *Derived = Path[I]; 2500 if (DerivedMember) 2501 std::swap(Base, Derived); 2502 ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base); 2503 RD = Path[I]; 2504 } 2505 if (DerivedMember) 2506 ThisAdjustment = -ThisAdjustment; 2507 return ThisAdjustment; 2508 } 2509 2510 /// DeepCollectObjCIvars - 2511 /// This routine first collects all declared, but not synthesized, ivars in 2512 /// super class and then collects all ivars, including those synthesized for 2513 /// current class. This routine is used for implementation of current class 2514 /// when all ivars, declared and synthesized are known. 2515 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, 2516 bool leafClass, 2517 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { 2518 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) 2519 DeepCollectObjCIvars(SuperClass, false, Ivars); 2520 if (!leafClass) { 2521 for (const auto *I : OI->ivars()) 2522 Ivars.push_back(I); 2523 } else { 2524 auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); 2525 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; 2526 Iv= Iv->getNextIvar()) 2527 Ivars.push_back(Iv); 2528 } 2529 } 2530 2531 /// CollectInheritedProtocols - Collect all protocols in current class and 2532 /// those inherited by it. 2533 void ASTContext::CollectInheritedProtocols(const Decl *CDecl, 2534 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { 2535 if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 2536 // We can use protocol_iterator here instead of 2537 // all_referenced_protocol_iterator since we are walking all categories. 2538 for (auto *Proto : OI->all_referenced_protocols()) { 2539 CollectInheritedProtocols(Proto, Protocols); 2540 } 2541 2542 // Categories of this Interface. 2543 for (const auto *Cat : OI->visible_categories()) 2544 CollectInheritedProtocols(Cat, Protocols); 2545 2546 if (ObjCInterfaceDecl *SD = OI->getSuperClass()) 2547 while (SD) { 2548 CollectInheritedProtocols(SD, Protocols); 2549 SD = SD->getSuperClass(); 2550 } 2551 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { 2552 for (auto *Proto : OC->protocols()) { 2553 CollectInheritedProtocols(Proto, Protocols); 2554 } 2555 } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { 2556 // Insert the protocol. 2557 if (!Protocols.insert( 2558 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) 2559 return; 2560 2561 for (auto *Proto : OP->protocols()) 2562 CollectInheritedProtocols(Proto, Protocols); 2563 } 2564 } 2565 2566 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, 2567 const RecordDecl *RD) { 2568 assert(RD->isUnion() && "Must be union type"); 2569 CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl()); 2570 2571 for (const auto *Field : RD->fields()) { 2572 if (!Context.hasUniqueObjectRepresentations(Field->getType())) 2573 return false; 2574 CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType()); 2575 if (FieldSize != UnionSize) 2576 return false; 2577 } 2578 return !RD->field_empty(); 2579 } 2580 2581 static bool isStructEmpty(QualType Ty) { 2582 const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl(); 2583 2584 if (!RD->field_empty()) 2585 return false; 2586 2587 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) 2588 return ClassDecl->isEmpty(); 2589 2590 return true; 2591 } 2592 2593 static llvm::Optional<int64_t> 2594 structHasUniqueObjectRepresentations(const ASTContext &Context, 2595 const RecordDecl *RD) { 2596 assert(!RD->isUnion() && "Must be struct/class type"); 2597 const auto &Layout = Context.getASTRecordLayout(RD); 2598 2599 int64_t CurOffsetInBits = 0; 2600 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) { 2601 if (ClassDecl->isDynamicClass()) 2602 return llvm::None; 2603 2604 SmallVector<std::pair<QualType, int64_t>, 4> Bases; 2605 for (const auto &Base : ClassDecl->bases()) { 2606 // Empty types can be inherited from, and non-empty types can potentially 2607 // have tail padding, so just make sure there isn't an error. 2608 if (!isStructEmpty(Base.getType())) { 2609 llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations( 2610 Context, Base.getType()->castAs<RecordType>()->getDecl()); 2611 if (!Size) 2612 return llvm::None; 2613 Bases.emplace_back(Base.getType(), Size.getValue()); 2614 } 2615 } 2616 2617 llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L, 2618 const std::pair<QualType, int64_t> &R) { 2619 return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) < 2620 Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl()); 2621 }); 2622 2623 for (const auto &Base : Bases) { 2624 int64_t BaseOffset = Context.toBits( 2625 Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl())); 2626 int64_t BaseSize = Base.second; 2627 if (BaseOffset != CurOffsetInBits) 2628 return llvm::None; 2629 CurOffsetInBits = BaseOffset + BaseSize; 2630 } 2631 } 2632 2633 for (const auto *Field : RD->fields()) { 2634 if (!Field->getType()->isReferenceType() && 2635 !Context.hasUniqueObjectRepresentations(Field->getType())) 2636 return llvm::None; 2637 2638 int64_t FieldSizeInBits = 2639 Context.toBits(Context.getTypeSizeInChars(Field->getType())); 2640 if (Field->isBitField()) { 2641 int64_t BitfieldSize = Field->getBitWidthValue(Context); 2642 2643 if (BitfieldSize > FieldSizeInBits) 2644 return llvm::None; 2645 FieldSizeInBits = BitfieldSize; 2646 } 2647 2648 int64_t FieldOffsetInBits = Context.getFieldOffset(Field); 2649 2650 if (FieldOffsetInBits != CurOffsetInBits) 2651 return llvm::None; 2652 2653 CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits; 2654 } 2655 2656 return CurOffsetInBits; 2657 } 2658 2659 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const { 2660 // C++17 [meta.unary.prop]: 2661 // The predicate condition for a template specialization 2662 // has_unique_object_representations<T> shall be 2663 // satisfied if and only if: 2664 // (9.1) - T is trivially copyable, and 2665 // (9.2) - any two objects of type T with the same value have the same 2666 // object representation, where two objects 2667 // of array or non-union class type are considered to have the same value 2668 // if their respective sequences of 2669 // direct subobjects have the same values, and two objects of union type 2670 // are considered to have the same 2671 // value if they have the same active member and the corresponding members 2672 // have the same value. 2673 // The set of scalar types for which this condition holds is 2674 // implementation-defined. [ Note: If a type has padding 2675 // bits, the condition does not hold; otherwise, the condition holds true 2676 // for unsigned integral types. -- end note ] 2677 assert(!Ty.isNull() && "Null QualType sent to unique object rep check"); 2678 2679 // Arrays are unique only if their element type is unique. 2680 if (Ty->isArrayType()) 2681 return hasUniqueObjectRepresentations(getBaseElementType(Ty)); 2682 2683 // (9.1) - T is trivially copyable... 2684 if (!Ty.isTriviallyCopyableType(*this)) 2685 return false; 2686 2687 // All integrals and enums are unique. 2688 if (Ty->isIntegralOrEnumerationType()) 2689 return true; 2690 2691 // All other pointers are unique. 2692 if (Ty->isPointerType()) 2693 return true; 2694 2695 if (Ty->isMemberPointerType()) { 2696 const auto *MPT = Ty->getAs<MemberPointerType>(); 2697 return !ABI->getMemberPointerInfo(MPT).HasPadding; 2698 } 2699 2700 if (Ty->isRecordType()) { 2701 const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl(); 2702 2703 if (Record->isInvalidDecl()) 2704 return false; 2705 2706 if (Record->isUnion()) 2707 return unionHasUniqueObjectRepresentations(*this, Record); 2708 2709 Optional<int64_t> StructSize = 2710 structHasUniqueObjectRepresentations(*this, Record); 2711 2712 return StructSize && 2713 StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty)); 2714 } 2715 2716 // FIXME: More cases to handle here (list by rsmith): 2717 // vectors (careful about, eg, vector of 3 foo) 2718 // _Complex int and friends 2719 // _Atomic T 2720 // Obj-C block pointers 2721 // Obj-C object pointers 2722 // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, 2723 // clk_event_t, queue_t, reserve_id_t) 2724 // There're also Obj-C class types and the Obj-C selector type, but I think it 2725 // makes sense for those to return false here. 2726 2727 return false; 2728 } 2729 2730 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { 2731 unsigned count = 0; 2732 // Count ivars declared in class extension. 2733 for (const auto *Ext : OI->known_extensions()) 2734 count += Ext->ivar_size(); 2735 2736 // Count ivar defined in this class's implementation. This 2737 // includes synthesized ivars. 2738 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) 2739 count += ImplDecl->ivar_size(); 2740 2741 return count; 2742 } 2743 2744 bool ASTContext::isSentinelNullExpr(const Expr *E) { 2745 if (!E) 2746 return false; 2747 2748 // nullptr_t is always treated as null. 2749 if (E->getType()->isNullPtrType()) return true; 2750 2751 if (E->getType()->isAnyPointerType() && 2752 E->IgnoreParenCasts()->isNullPointerConstant(*this, 2753 Expr::NPC_ValueDependentIsNull)) 2754 return true; 2755 2756 // Unfortunately, __null has type 'int'. 2757 if (isa<GNUNullExpr>(E)) return true; 2758 2759 return false; 2760 } 2761 2762 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none 2763 /// exists. 2764 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { 2765 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 2766 I = ObjCImpls.find(D); 2767 if (I != ObjCImpls.end()) 2768 return cast<ObjCImplementationDecl>(I->second); 2769 return nullptr; 2770 } 2771 2772 /// Get the implementation of ObjCCategoryDecl, or nullptr if none 2773 /// exists. 2774 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { 2775 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 2776 I = ObjCImpls.find(D); 2777 if (I != ObjCImpls.end()) 2778 return cast<ObjCCategoryImplDecl>(I->second); 2779 return nullptr; 2780 } 2781 2782 /// Set the implementation of ObjCInterfaceDecl. 2783 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, 2784 ObjCImplementationDecl *ImplD) { 2785 assert(IFaceD && ImplD && "Passed null params"); 2786 ObjCImpls[IFaceD] = ImplD; 2787 } 2788 2789 /// Set the implementation of ObjCCategoryDecl. 2790 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, 2791 ObjCCategoryImplDecl *ImplD) { 2792 assert(CatD && ImplD && "Passed null params"); 2793 ObjCImpls[CatD] = ImplD; 2794 } 2795 2796 const ObjCMethodDecl * 2797 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { 2798 return ObjCMethodRedecls.lookup(MD); 2799 } 2800 2801 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, 2802 const ObjCMethodDecl *Redecl) { 2803 assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration"); 2804 ObjCMethodRedecls[MD] = Redecl; 2805 } 2806 2807 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( 2808 const NamedDecl *ND) const { 2809 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) 2810 return ID; 2811 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) 2812 return CD->getClassInterface(); 2813 if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext())) 2814 return IMD->getClassInterface(); 2815 2816 return nullptr; 2817 } 2818 2819 /// Get the copy initialization expression of VarDecl, or nullptr if 2820 /// none exists. 2821 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const { 2822 assert(VD && "Passed null params"); 2823 assert(VD->hasAttr<BlocksAttr>() && 2824 "getBlockVarCopyInits - not __block var"); 2825 auto I = BlockVarCopyInits.find(VD); 2826 if (I != BlockVarCopyInits.end()) 2827 return I->second; 2828 return {nullptr, false}; 2829 } 2830 2831 /// Set the copy initialization expression of a block var decl. 2832 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr, 2833 bool CanThrow) { 2834 assert(VD && CopyExpr && "Passed null params"); 2835 assert(VD->hasAttr<BlocksAttr>() && 2836 "setBlockVarCopyInits - not __block var"); 2837 BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow); 2838 } 2839 2840 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, 2841 unsigned DataSize) const { 2842 if (!DataSize) 2843 DataSize = TypeLoc::getFullDataSizeForType(T); 2844 else 2845 assert(DataSize == TypeLoc::getFullDataSizeForType(T) && 2846 "incorrect data size provided to CreateTypeSourceInfo!"); 2847 2848 auto *TInfo = 2849 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); 2850 new (TInfo) TypeSourceInfo(T); 2851 return TInfo; 2852 } 2853 2854 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, 2855 SourceLocation L) const { 2856 TypeSourceInfo *DI = CreateTypeSourceInfo(T); 2857 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); 2858 return DI; 2859 } 2860 2861 const ASTRecordLayout & 2862 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { 2863 return getObjCLayout(D, nullptr); 2864 } 2865 2866 const ASTRecordLayout & 2867 ASTContext::getASTObjCImplementationLayout( 2868 const ObjCImplementationDecl *D) const { 2869 return getObjCLayout(D->getClassInterface(), D); 2870 } 2871 2872 //===----------------------------------------------------------------------===// 2873 // Type creation/memoization methods 2874 //===----------------------------------------------------------------------===// 2875 2876 QualType 2877 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { 2878 unsigned fastQuals = quals.getFastQualifiers(); 2879 quals.removeFastQualifiers(); 2880 2881 // Check if we've already instantiated this type. 2882 llvm::FoldingSetNodeID ID; 2883 ExtQuals::Profile(ID, baseType, quals); 2884 void *insertPos = nullptr; 2885 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { 2886 assert(eq->getQualifiers() == quals); 2887 return QualType(eq, fastQuals); 2888 } 2889 2890 // If the base type is not canonical, make the appropriate canonical type. 2891 QualType canon; 2892 if (!baseType->isCanonicalUnqualified()) { 2893 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); 2894 canonSplit.Quals.addConsistentQualifiers(quals); 2895 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); 2896 2897 // Re-find the insert position. 2898 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); 2899 } 2900 2901 auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); 2902 ExtQualNodes.InsertNode(eq, insertPos); 2903 return QualType(eq, fastQuals); 2904 } 2905 2906 QualType ASTContext::getAddrSpaceQualType(QualType T, 2907 LangAS AddressSpace) const { 2908 QualType CanT = getCanonicalType(T); 2909 if (CanT.getAddressSpace() == AddressSpace) 2910 return T; 2911 2912 // If we are composing extended qualifiers together, merge together 2913 // into one ExtQuals node. 2914 QualifierCollector Quals; 2915 const Type *TypeNode = Quals.strip(T); 2916 2917 // If this type already has an address space specified, it cannot get 2918 // another one. 2919 assert(!Quals.hasAddressSpace() && 2920 "Type cannot be in multiple addr spaces!"); 2921 Quals.addAddressSpace(AddressSpace); 2922 2923 return getExtQualType(TypeNode, Quals); 2924 } 2925 2926 QualType ASTContext::removeAddrSpaceQualType(QualType T) const { 2927 // If the type is not qualified with an address space, just return it 2928 // immediately. 2929 if (!T.hasAddressSpace()) 2930 return T; 2931 2932 // If we are composing extended qualifiers together, merge together 2933 // into one ExtQuals node. 2934 QualifierCollector Quals; 2935 const Type *TypeNode; 2936 2937 while (T.hasAddressSpace()) { 2938 TypeNode = Quals.strip(T); 2939 2940 // If the type no longer has an address space after stripping qualifiers, 2941 // jump out. 2942 if (!QualType(TypeNode, 0).hasAddressSpace()) 2943 break; 2944 2945 // There might be sugar in the way. Strip it and try again. 2946 T = T.getSingleStepDesugaredType(*this); 2947 } 2948 2949 Quals.removeAddressSpace(); 2950 2951 // Removal of the address space can mean there are no longer any 2952 // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) 2953 // or required. 2954 if (Quals.hasNonFastQualifiers()) 2955 return getExtQualType(TypeNode, Quals); 2956 else 2957 return QualType(TypeNode, Quals.getFastQualifiers()); 2958 } 2959 2960 QualType ASTContext::getObjCGCQualType(QualType T, 2961 Qualifiers::GC GCAttr) const { 2962 QualType CanT = getCanonicalType(T); 2963 if (CanT.getObjCGCAttr() == GCAttr) 2964 return T; 2965 2966 if (const auto *ptr = T->getAs<PointerType>()) { 2967 QualType Pointee = ptr->getPointeeType(); 2968 if (Pointee->isAnyPointerType()) { 2969 QualType ResultType = getObjCGCQualType(Pointee, GCAttr); 2970 return getPointerType(ResultType); 2971 } 2972 } 2973 2974 // If we are composing extended qualifiers together, merge together 2975 // into one ExtQuals node. 2976 QualifierCollector Quals; 2977 const Type *TypeNode = Quals.strip(T); 2978 2979 // If this type already has an ObjCGC specified, it cannot get 2980 // another one. 2981 assert(!Quals.hasObjCGCAttr() && 2982 "Type cannot have multiple ObjCGCs!"); 2983 Quals.addObjCGCAttr(GCAttr); 2984 2985 return getExtQualType(TypeNode, Quals); 2986 } 2987 2988 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const { 2989 if (const PointerType *Ptr = T->getAs<PointerType>()) { 2990 QualType Pointee = Ptr->getPointeeType(); 2991 if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) { 2992 return getPointerType(removeAddrSpaceQualType(Pointee)); 2993 } 2994 } 2995 return T; 2996 } 2997 2998 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, 2999 FunctionType::ExtInfo Info) { 3000 if (T->getExtInfo() == Info) 3001 return T; 3002 3003 QualType Result; 3004 if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) { 3005 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); 3006 } else { 3007 const auto *FPT = cast<FunctionProtoType>(T); 3008 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 3009 EPI.ExtInfo = Info; 3010 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); 3011 } 3012 3013 return cast<FunctionType>(Result.getTypePtr()); 3014 } 3015 3016 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, 3017 QualType ResultType) { 3018 FD = FD->getMostRecentDecl(); 3019 while (true) { 3020 const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 3021 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 3022 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); 3023 if (FunctionDecl *Next = FD->getPreviousDecl()) 3024 FD = Next; 3025 else 3026 break; 3027 } 3028 if (ASTMutationListener *L = getASTMutationListener()) 3029 L->DeducedReturnType(FD, ResultType); 3030 } 3031 3032 /// Get a function type and produce the equivalent function type with the 3033 /// specified exception specification. Type sugar that can be present on a 3034 /// declaration of a function with an exception specification is permitted 3035 /// and preserved. Other type sugar (for instance, typedefs) is not. 3036 QualType ASTContext::getFunctionTypeWithExceptionSpec( 3037 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) { 3038 // Might have some parens. 3039 if (const auto *PT = dyn_cast<ParenType>(Orig)) 3040 return getParenType( 3041 getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI)); 3042 3043 // Might be wrapped in a macro qualified type. 3044 if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig)) 3045 return getMacroQualifiedType( 3046 getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI), 3047 MQT->getMacroIdentifier()); 3048 3049 // Might have a calling-convention attribute. 3050 if (const auto *AT = dyn_cast<AttributedType>(Orig)) 3051 return getAttributedType( 3052 AT->getAttrKind(), 3053 getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI), 3054 getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI)); 3055 3056 // Anything else must be a function type. Rebuild it with the new exception 3057 // specification. 3058 const auto *Proto = Orig->castAs<FunctionProtoType>(); 3059 return getFunctionType( 3060 Proto->getReturnType(), Proto->getParamTypes(), 3061 Proto->getExtProtoInfo().withExceptionSpec(ESI)); 3062 } 3063 3064 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, 3065 QualType U) { 3066 return hasSameType(T, U) || 3067 (getLangOpts().CPlusPlus17 && 3068 hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None), 3069 getFunctionTypeWithExceptionSpec(U, EST_None))); 3070 } 3071 3072 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) { 3073 if (const auto *Proto = T->getAs<FunctionProtoType>()) { 3074 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); 3075 SmallVector<QualType, 16> Args(Proto->param_types()); 3076 for (unsigned i = 0, n = Args.size(); i != n; ++i) 3077 Args[i] = removePtrSizeAddrSpace(Args[i]); 3078 return getFunctionType(RetTy, Args, Proto->getExtProtoInfo()); 3079 } 3080 3081 if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) { 3082 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); 3083 return getFunctionNoProtoType(RetTy, Proto->getExtInfo()); 3084 } 3085 3086 return T; 3087 } 3088 3089 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) { 3090 return hasSameType(T, U) || 3091 hasSameType(getFunctionTypeWithoutPtrSizes(T), 3092 getFunctionTypeWithoutPtrSizes(U)); 3093 } 3094 3095 void ASTContext::adjustExceptionSpec( 3096 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, 3097 bool AsWritten) { 3098 // Update the type. 3099 QualType Updated = 3100 getFunctionTypeWithExceptionSpec(FD->getType(), ESI); 3101 FD->setType(Updated); 3102 3103 if (!AsWritten) 3104 return; 3105 3106 // Update the type in the type source information too. 3107 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { 3108 // If the type and the type-as-written differ, we may need to update 3109 // the type-as-written too. 3110 if (TSInfo->getType() != FD->getType()) 3111 Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI); 3112 3113 // FIXME: When we get proper type location information for exceptions, 3114 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch 3115 // up the TypeSourceInfo; 3116 assert(TypeLoc::getFullDataSizeForType(Updated) == 3117 TypeLoc::getFullDataSizeForType(TSInfo->getType()) && 3118 "TypeLoc size mismatch from updating exception specification"); 3119 TSInfo->overrideType(Updated); 3120 } 3121 } 3122 3123 /// getComplexType - Return the uniqued reference to the type for a complex 3124 /// number with the specified element type. 3125 QualType ASTContext::getComplexType(QualType T) const { 3126 // Unique pointers, to guarantee there is only one pointer of a particular 3127 // structure. 3128 llvm::FoldingSetNodeID ID; 3129 ComplexType::Profile(ID, T); 3130 3131 void *InsertPos = nullptr; 3132 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) 3133 return QualType(CT, 0); 3134 3135 // If the pointee type isn't canonical, this won't be a canonical type either, 3136 // so fill in the canonical type field. 3137 QualType Canonical; 3138 if (!T.isCanonical()) { 3139 Canonical = getComplexType(getCanonicalType(T)); 3140 3141 // Get the new insert position for the node we care about. 3142 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); 3143 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3144 } 3145 auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical); 3146 Types.push_back(New); 3147 ComplexTypes.InsertNode(New, InsertPos); 3148 return QualType(New, 0); 3149 } 3150 3151 /// getPointerType - Return the uniqued reference to the type for a pointer to 3152 /// the specified type. 3153 QualType ASTContext::getPointerType(QualType T) const { 3154 // Unique pointers, to guarantee there is only one pointer of a particular 3155 // structure. 3156 llvm::FoldingSetNodeID ID; 3157 PointerType::Profile(ID, T); 3158 3159 void *InsertPos = nullptr; 3160 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 3161 return QualType(PT, 0); 3162 3163 // If the pointee type isn't canonical, this won't be a canonical type either, 3164 // so fill in the canonical type field. 3165 QualType Canonical; 3166 if (!T.isCanonical()) { 3167 Canonical = getPointerType(getCanonicalType(T)); 3168 3169 // Get the new insert position for the node we care about. 3170 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); 3171 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3172 } 3173 auto *New = new (*this, TypeAlignment) PointerType(T, Canonical); 3174 Types.push_back(New); 3175 PointerTypes.InsertNode(New, InsertPos); 3176 return QualType(New, 0); 3177 } 3178 3179 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { 3180 llvm::FoldingSetNodeID ID; 3181 AdjustedType::Profile(ID, Orig, New); 3182 void *InsertPos = nullptr; 3183 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 3184 if (AT) 3185 return QualType(AT, 0); 3186 3187 QualType Canonical = getCanonicalType(New); 3188 3189 // Get the new insert position for the node we care about. 3190 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 3191 assert(!AT && "Shouldn't be in the map!"); 3192 3193 AT = new (*this, TypeAlignment) 3194 AdjustedType(Type::Adjusted, Orig, New, Canonical); 3195 Types.push_back(AT); 3196 AdjustedTypes.InsertNode(AT, InsertPos); 3197 return QualType(AT, 0); 3198 } 3199 3200 QualType ASTContext::getDecayedType(QualType T) const { 3201 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); 3202 3203 QualType Decayed; 3204 3205 // C99 6.7.5.3p7: 3206 // A declaration of a parameter as "array of type" shall be 3207 // adjusted to "qualified pointer to type", where the type 3208 // qualifiers (if any) are those specified within the [ and ] of 3209 // the array type derivation. 3210 if (T->isArrayType()) 3211 Decayed = getArrayDecayedType(T); 3212 3213 // C99 6.7.5.3p8: 3214 // A declaration of a parameter as "function returning type" 3215 // shall be adjusted to "pointer to function returning type", as 3216 // in 6.3.2.1. 3217 if (T->isFunctionType()) 3218 Decayed = getPointerType(T); 3219 3220 llvm::FoldingSetNodeID ID; 3221 AdjustedType::Profile(ID, T, Decayed); 3222 void *InsertPos = nullptr; 3223 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 3224 if (AT) 3225 return QualType(AT, 0); 3226 3227 QualType Canonical = getCanonicalType(Decayed); 3228 3229 // Get the new insert position for the node we care about. 3230 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 3231 assert(!AT && "Shouldn't be in the map!"); 3232 3233 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); 3234 Types.push_back(AT); 3235 AdjustedTypes.InsertNode(AT, InsertPos); 3236 return QualType(AT, 0); 3237 } 3238 3239 /// getBlockPointerType - Return the uniqued reference to the type for 3240 /// a pointer to the specified block. 3241 QualType ASTContext::getBlockPointerType(QualType T) const { 3242 assert(T->isFunctionType() && "block of function types only"); 3243 // Unique pointers, to guarantee there is only one block of a particular 3244 // structure. 3245 llvm::FoldingSetNodeID ID; 3246 BlockPointerType::Profile(ID, T); 3247 3248 void *InsertPos = nullptr; 3249 if (BlockPointerType *PT = 3250 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 3251 return QualType(PT, 0); 3252 3253 // If the block pointee type isn't canonical, this won't be a canonical 3254 // type either so fill in the canonical type field. 3255 QualType Canonical; 3256 if (!T.isCanonical()) { 3257 Canonical = getBlockPointerType(getCanonicalType(T)); 3258 3259 // Get the new insert position for the node we care about. 3260 BlockPointerType *NewIP = 3261 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 3262 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3263 } 3264 auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical); 3265 Types.push_back(New); 3266 BlockPointerTypes.InsertNode(New, InsertPos); 3267 return QualType(New, 0); 3268 } 3269 3270 /// getLValueReferenceType - Return the uniqued reference to the type for an 3271 /// lvalue reference to the specified type. 3272 QualType 3273 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { 3274 assert(getCanonicalType(T) != OverloadTy && 3275 "Unresolved overloaded function type"); 3276 3277 // Unique pointers, to guarantee there is only one pointer of a particular 3278 // structure. 3279 llvm::FoldingSetNodeID ID; 3280 ReferenceType::Profile(ID, T, SpelledAsLValue); 3281 3282 void *InsertPos = nullptr; 3283 if (LValueReferenceType *RT = 3284 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 3285 return QualType(RT, 0); 3286 3287 const auto *InnerRef = T->getAs<ReferenceType>(); 3288 3289 // If the referencee type isn't canonical, this won't be a canonical type 3290 // either, so fill in the canonical type field. 3291 QualType Canonical; 3292 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { 3293 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 3294 Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); 3295 3296 // Get the new insert position for the node we care about. 3297 LValueReferenceType *NewIP = 3298 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 3299 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3300 } 3301 3302 auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, 3303 SpelledAsLValue); 3304 Types.push_back(New); 3305 LValueReferenceTypes.InsertNode(New, InsertPos); 3306 3307 return QualType(New, 0); 3308 } 3309 3310 /// getRValueReferenceType - Return the uniqued reference to the type for an 3311 /// rvalue reference to the specified type. 3312 QualType ASTContext::getRValueReferenceType(QualType T) const { 3313 // Unique pointers, to guarantee there is only one pointer of a particular 3314 // structure. 3315 llvm::FoldingSetNodeID ID; 3316 ReferenceType::Profile(ID, T, false); 3317 3318 void *InsertPos = nullptr; 3319 if (RValueReferenceType *RT = 3320 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 3321 return QualType(RT, 0); 3322 3323 const auto *InnerRef = T->getAs<ReferenceType>(); 3324 3325 // If the referencee type isn't canonical, this won't be a canonical type 3326 // either, so fill in the canonical type field. 3327 QualType Canonical; 3328 if (InnerRef || !T.isCanonical()) { 3329 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 3330 Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); 3331 3332 // Get the new insert position for the node we care about. 3333 RValueReferenceType *NewIP = 3334 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 3335 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3336 } 3337 3338 auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); 3339 Types.push_back(New); 3340 RValueReferenceTypes.InsertNode(New, InsertPos); 3341 return QualType(New, 0); 3342 } 3343 3344 /// getMemberPointerType - Return the uniqued reference to the type for a 3345 /// member pointer to the specified type, in the specified class. 3346 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { 3347 // Unique pointers, to guarantee there is only one pointer of a particular 3348 // structure. 3349 llvm::FoldingSetNodeID ID; 3350 MemberPointerType::Profile(ID, T, Cls); 3351 3352 void *InsertPos = nullptr; 3353 if (MemberPointerType *PT = 3354 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 3355 return QualType(PT, 0); 3356 3357 // If the pointee or class type isn't canonical, this won't be a canonical 3358 // type either, so fill in the canonical type field. 3359 QualType Canonical; 3360 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { 3361 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); 3362 3363 // Get the new insert position for the node we care about. 3364 MemberPointerType *NewIP = 3365 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 3366 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3367 } 3368 auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); 3369 Types.push_back(New); 3370 MemberPointerTypes.InsertNode(New, InsertPos); 3371 return QualType(New, 0); 3372 } 3373 3374 /// getConstantArrayType - Return the unique reference to the type for an 3375 /// array of the specified element type. 3376 QualType ASTContext::getConstantArrayType(QualType EltTy, 3377 const llvm::APInt &ArySizeIn, 3378 const Expr *SizeExpr, 3379 ArrayType::ArraySizeModifier ASM, 3380 unsigned IndexTypeQuals) const { 3381 assert((EltTy->isDependentType() || 3382 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && 3383 "Constant array of VLAs is illegal!"); 3384 3385 // We only need the size as part of the type if it's instantiation-dependent. 3386 if (SizeExpr && !SizeExpr->isInstantiationDependent()) 3387 SizeExpr = nullptr; 3388 3389 // Convert the array size into a canonical width matching the pointer size for 3390 // the target. 3391 llvm::APInt ArySize(ArySizeIn); 3392 ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth()); 3393 3394 llvm::FoldingSetNodeID ID; 3395 ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM, 3396 IndexTypeQuals); 3397 3398 void *InsertPos = nullptr; 3399 if (ConstantArrayType *ATP = 3400 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) 3401 return QualType(ATP, 0); 3402 3403 // If the element type isn't canonical or has qualifiers, or the array bound 3404 // is instantiation-dependent, this won't be a canonical type either, so fill 3405 // in the canonical type field. 3406 QualType Canon; 3407 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) { 3408 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 3409 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr, 3410 ASM, IndexTypeQuals); 3411 Canon = getQualifiedType(Canon, canonSplit.Quals); 3412 3413 // Get the new insert position for the node we care about. 3414 ConstantArrayType *NewIP = 3415 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); 3416 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3417 } 3418 3419 void *Mem = Allocate( 3420 ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0), 3421 TypeAlignment); 3422 auto *New = new (Mem) 3423 ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals); 3424 ConstantArrayTypes.InsertNode(New, InsertPos); 3425 Types.push_back(New); 3426 return QualType(New, 0); 3427 } 3428 3429 /// getVariableArrayDecayedType - Turns the given type, which may be 3430 /// variably-modified, into the corresponding type with all the known 3431 /// sizes replaced with [*]. 3432 QualType ASTContext::getVariableArrayDecayedType(QualType type) const { 3433 // Vastly most common case. 3434 if (!type->isVariablyModifiedType()) return type; 3435 3436 QualType result; 3437 3438 SplitQualType split = type.getSplitDesugaredType(); 3439 const Type *ty = split.Ty; 3440 switch (ty->getTypeClass()) { 3441 #define TYPE(Class, Base) 3442 #define ABSTRACT_TYPE(Class, Base) 3443 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 3444 #include "clang/AST/TypeNodes.inc" 3445 llvm_unreachable("didn't desugar past all non-canonical types?"); 3446 3447 // These types should never be variably-modified. 3448 case Type::Builtin: 3449 case Type::Complex: 3450 case Type::Vector: 3451 case Type::DependentVector: 3452 case Type::ExtVector: 3453 case Type::DependentSizedExtVector: 3454 case Type::ConstantMatrix: 3455 case Type::DependentSizedMatrix: 3456 case Type::DependentAddressSpace: 3457 case Type::ObjCObject: 3458 case Type::ObjCInterface: 3459 case Type::ObjCObjectPointer: 3460 case Type::Record: 3461 case Type::Enum: 3462 case Type::UnresolvedUsing: 3463 case Type::TypeOfExpr: 3464 case Type::TypeOf: 3465 case Type::Decltype: 3466 case Type::UnaryTransform: 3467 case Type::DependentName: 3468 case Type::InjectedClassName: 3469 case Type::TemplateSpecialization: 3470 case Type::DependentTemplateSpecialization: 3471 case Type::TemplateTypeParm: 3472 case Type::SubstTemplateTypeParmPack: 3473 case Type::Auto: 3474 case Type::DeducedTemplateSpecialization: 3475 case Type::PackExpansion: 3476 case Type::ExtInt: 3477 case Type::DependentExtInt: 3478 llvm_unreachable("type should never be variably-modified"); 3479 3480 // These types can be variably-modified but should never need to 3481 // further decay. 3482 case Type::FunctionNoProto: 3483 case Type::FunctionProto: 3484 case Type::BlockPointer: 3485 case Type::MemberPointer: 3486 case Type::Pipe: 3487 return type; 3488 3489 // These types can be variably-modified. All these modifications 3490 // preserve structure except as noted by comments. 3491 // TODO: if we ever care about optimizing VLAs, there are no-op 3492 // optimizations available here. 3493 case Type::Pointer: 3494 result = getPointerType(getVariableArrayDecayedType( 3495 cast<PointerType>(ty)->getPointeeType())); 3496 break; 3497 3498 case Type::LValueReference: { 3499 const auto *lv = cast<LValueReferenceType>(ty); 3500 result = getLValueReferenceType( 3501 getVariableArrayDecayedType(lv->getPointeeType()), 3502 lv->isSpelledAsLValue()); 3503 break; 3504 } 3505 3506 case Type::RValueReference: { 3507 const auto *lv = cast<RValueReferenceType>(ty); 3508 result = getRValueReferenceType( 3509 getVariableArrayDecayedType(lv->getPointeeType())); 3510 break; 3511 } 3512 3513 case Type::Atomic: { 3514 const auto *at = cast<AtomicType>(ty); 3515 result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); 3516 break; 3517 } 3518 3519 case Type::ConstantArray: { 3520 const auto *cat = cast<ConstantArrayType>(ty); 3521 result = getConstantArrayType( 3522 getVariableArrayDecayedType(cat->getElementType()), 3523 cat->getSize(), 3524 cat->getSizeExpr(), 3525 cat->getSizeModifier(), 3526 cat->getIndexTypeCVRQualifiers()); 3527 break; 3528 } 3529 3530 case Type::DependentSizedArray: { 3531 const auto *dat = cast<DependentSizedArrayType>(ty); 3532 result = getDependentSizedArrayType( 3533 getVariableArrayDecayedType(dat->getElementType()), 3534 dat->getSizeExpr(), 3535 dat->getSizeModifier(), 3536 dat->getIndexTypeCVRQualifiers(), 3537 dat->getBracketsRange()); 3538 break; 3539 } 3540 3541 // Turn incomplete types into [*] types. 3542 case Type::IncompleteArray: { 3543 const auto *iat = cast<IncompleteArrayType>(ty); 3544 result = getVariableArrayType( 3545 getVariableArrayDecayedType(iat->getElementType()), 3546 /*size*/ nullptr, 3547 ArrayType::Normal, 3548 iat->getIndexTypeCVRQualifiers(), 3549 SourceRange()); 3550 break; 3551 } 3552 3553 // Turn VLA types into [*] types. 3554 case Type::VariableArray: { 3555 const auto *vat = cast<VariableArrayType>(ty); 3556 result = getVariableArrayType( 3557 getVariableArrayDecayedType(vat->getElementType()), 3558 /*size*/ nullptr, 3559 ArrayType::Star, 3560 vat->getIndexTypeCVRQualifiers(), 3561 vat->getBracketsRange()); 3562 break; 3563 } 3564 } 3565 3566 // Apply the top-level qualifiers from the original. 3567 return getQualifiedType(result, split.Quals); 3568 } 3569 3570 /// getVariableArrayType - Returns a non-unique reference to the type for a 3571 /// variable array of the specified element type. 3572 QualType ASTContext::getVariableArrayType(QualType EltTy, 3573 Expr *NumElts, 3574 ArrayType::ArraySizeModifier ASM, 3575 unsigned IndexTypeQuals, 3576 SourceRange Brackets) const { 3577 // Since we don't unique expressions, it isn't possible to unique VLA's 3578 // that have an expression provided for their size. 3579 QualType Canon; 3580 3581 // Be sure to pull qualifiers off the element type. 3582 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 3583 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 3584 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, 3585 IndexTypeQuals, Brackets); 3586 Canon = getQualifiedType(Canon, canonSplit.Quals); 3587 } 3588 3589 auto *New = new (*this, TypeAlignment) 3590 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); 3591 3592 VariableArrayTypes.push_back(New); 3593 Types.push_back(New); 3594 return QualType(New, 0); 3595 } 3596 3597 /// getDependentSizedArrayType - Returns a non-unique reference to 3598 /// the type for a dependently-sized array of the specified element 3599 /// type. 3600 QualType ASTContext::getDependentSizedArrayType(QualType elementType, 3601 Expr *numElements, 3602 ArrayType::ArraySizeModifier ASM, 3603 unsigned elementTypeQuals, 3604 SourceRange brackets) const { 3605 assert((!numElements || numElements->isTypeDependent() || 3606 numElements->isValueDependent()) && 3607 "Size must be type- or value-dependent!"); 3608 3609 // Dependently-sized array types that do not have a specified number 3610 // of elements will have their sizes deduced from a dependent 3611 // initializer. We do no canonicalization here at all, which is okay 3612 // because they can't be used in most locations. 3613 if (!numElements) { 3614 auto *newType 3615 = new (*this, TypeAlignment) 3616 DependentSizedArrayType(*this, elementType, QualType(), 3617 numElements, ASM, elementTypeQuals, 3618 brackets); 3619 Types.push_back(newType); 3620 return QualType(newType, 0); 3621 } 3622 3623 // Otherwise, we actually build a new type every time, but we 3624 // also build a canonical type. 3625 3626 SplitQualType canonElementType = getCanonicalType(elementType).split(); 3627 3628 void *insertPos = nullptr; 3629 llvm::FoldingSetNodeID ID; 3630 DependentSizedArrayType::Profile(ID, *this, 3631 QualType(canonElementType.Ty, 0), 3632 ASM, elementTypeQuals, numElements); 3633 3634 // Look for an existing type with these properties. 3635 DependentSizedArrayType *canonTy = 3636 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); 3637 3638 // If we don't have one, build one. 3639 if (!canonTy) { 3640 canonTy = new (*this, TypeAlignment) 3641 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), 3642 QualType(), numElements, ASM, elementTypeQuals, 3643 brackets); 3644 DependentSizedArrayTypes.InsertNode(canonTy, insertPos); 3645 Types.push_back(canonTy); 3646 } 3647 3648 // Apply qualifiers from the element type to the array. 3649 QualType canon = getQualifiedType(QualType(canonTy,0), 3650 canonElementType.Quals); 3651 3652 // If we didn't need extra canonicalization for the element type or the size 3653 // expression, then just use that as our result. 3654 if (QualType(canonElementType.Ty, 0) == elementType && 3655 canonTy->getSizeExpr() == numElements) 3656 return canon; 3657 3658 // Otherwise, we need to build a type which follows the spelling 3659 // of the element type. 3660 auto *sugaredType 3661 = new (*this, TypeAlignment) 3662 DependentSizedArrayType(*this, elementType, canon, numElements, 3663 ASM, elementTypeQuals, brackets); 3664 Types.push_back(sugaredType); 3665 return QualType(sugaredType, 0); 3666 } 3667 3668 QualType ASTContext::getIncompleteArrayType(QualType elementType, 3669 ArrayType::ArraySizeModifier ASM, 3670 unsigned elementTypeQuals) const { 3671 llvm::FoldingSetNodeID ID; 3672 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); 3673 3674 void *insertPos = nullptr; 3675 if (IncompleteArrayType *iat = 3676 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) 3677 return QualType(iat, 0); 3678 3679 // If the element type isn't canonical, this won't be a canonical type 3680 // either, so fill in the canonical type field. We also have to pull 3681 // qualifiers off the element type. 3682 QualType canon; 3683 3684 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { 3685 SplitQualType canonSplit = getCanonicalType(elementType).split(); 3686 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), 3687 ASM, elementTypeQuals); 3688 canon = getQualifiedType(canon, canonSplit.Quals); 3689 3690 // Get the new insert position for the node we care about. 3691 IncompleteArrayType *existing = 3692 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); 3693 assert(!existing && "Shouldn't be in the map!"); (void) existing; 3694 } 3695 3696 auto *newType = new (*this, TypeAlignment) 3697 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); 3698 3699 IncompleteArrayTypes.InsertNode(newType, insertPos); 3700 Types.push_back(newType); 3701 return QualType(newType, 0); 3702 } 3703 3704 ASTContext::BuiltinVectorTypeInfo 3705 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const { 3706 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS) \ 3707 {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \ 3708 NUMVECTORS}; 3709 3710 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS) \ 3711 {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; 3712 3713 switch (Ty->getKind()) { 3714 default: 3715 llvm_unreachable("Unsupported builtin vector type"); 3716 case BuiltinType::SveInt8: 3717 return SVE_INT_ELTTY(8, 16, true, 1); 3718 case BuiltinType::SveUint8: 3719 return SVE_INT_ELTTY(8, 16, false, 1); 3720 case BuiltinType::SveInt8x2: 3721 return SVE_INT_ELTTY(8, 16, true, 2); 3722 case BuiltinType::SveUint8x2: 3723 return SVE_INT_ELTTY(8, 16, false, 2); 3724 case BuiltinType::SveInt8x3: 3725 return SVE_INT_ELTTY(8, 16, true, 3); 3726 case BuiltinType::SveUint8x3: 3727 return SVE_INT_ELTTY(8, 16, false, 3); 3728 case BuiltinType::SveInt8x4: 3729 return SVE_INT_ELTTY(8, 16, true, 4); 3730 case BuiltinType::SveUint8x4: 3731 return SVE_INT_ELTTY(8, 16, false, 4); 3732 case BuiltinType::SveInt16: 3733 return SVE_INT_ELTTY(16, 8, true, 1); 3734 case BuiltinType::SveUint16: 3735 return SVE_INT_ELTTY(16, 8, false, 1); 3736 case BuiltinType::SveInt16x2: 3737 return SVE_INT_ELTTY(16, 8, true, 2); 3738 case BuiltinType::SveUint16x2: 3739 return SVE_INT_ELTTY(16, 8, false, 2); 3740 case BuiltinType::SveInt16x3: 3741 return SVE_INT_ELTTY(16, 8, true, 3); 3742 case BuiltinType::SveUint16x3: 3743 return SVE_INT_ELTTY(16, 8, false, 3); 3744 case BuiltinType::SveInt16x4: 3745 return SVE_INT_ELTTY(16, 8, true, 4); 3746 case BuiltinType::SveUint16x4: 3747 return SVE_INT_ELTTY(16, 8, false, 4); 3748 case BuiltinType::SveInt32: 3749 return SVE_INT_ELTTY(32, 4, true, 1); 3750 case BuiltinType::SveUint32: 3751 return SVE_INT_ELTTY(32, 4, false, 1); 3752 case BuiltinType::SveInt32x2: 3753 return SVE_INT_ELTTY(32, 4, true, 2); 3754 case BuiltinType::SveUint32x2: 3755 return SVE_INT_ELTTY(32, 4, false, 2); 3756 case BuiltinType::SveInt32x3: 3757 return SVE_INT_ELTTY(32, 4, true, 3); 3758 case BuiltinType::SveUint32x3: 3759 return SVE_INT_ELTTY(32, 4, false, 3); 3760 case BuiltinType::SveInt32x4: 3761 return SVE_INT_ELTTY(32, 4, true, 4); 3762 case BuiltinType::SveUint32x4: 3763 return SVE_INT_ELTTY(32, 4, false, 4); 3764 case BuiltinType::SveInt64: 3765 return SVE_INT_ELTTY(64, 2, true, 1); 3766 case BuiltinType::SveUint64: 3767 return SVE_INT_ELTTY(64, 2, false, 1); 3768 case BuiltinType::SveInt64x2: 3769 return SVE_INT_ELTTY(64, 2, true, 2); 3770 case BuiltinType::SveUint64x2: 3771 return SVE_INT_ELTTY(64, 2, false, 2); 3772 case BuiltinType::SveInt64x3: 3773 return SVE_INT_ELTTY(64, 2, true, 3); 3774 case BuiltinType::SveUint64x3: 3775 return SVE_INT_ELTTY(64, 2, false, 3); 3776 case BuiltinType::SveInt64x4: 3777 return SVE_INT_ELTTY(64, 2, true, 4); 3778 case BuiltinType::SveUint64x4: 3779 return SVE_INT_ELTTY(64, 2, false, 4); 3780 case BuiltinType::SveBool: 3781 return SVE_ELTTY(BoolTy, 16, 1); 3782 case BuiltinType::SveFloat16: 3783 return SVE_ELTTY(HalfTy, 8, 1); 3784 case BuiltinType::SveFloat16x2: 3785 return SVE_ELTTY(HalfTy, 8, 2); 3786 case BuiltinType::SveFloat16x3: 3787 return SVE_ELTTY(HalfTy, 8, 3); 3788 case BuiltinType::SveFloat16x4: 3789 return SVE_ELTTY(HalfTy, 8, 4); 3790 case BuiltinType::SveFloat32: 3791 return SVE_ELTTY(FloatTy, 4, 1); 3792 case BuiltinType::SveFloat32x2: 3793 return SVE_ELTTY(FloatTy, 4, 2); 3794 case BuiltinType::SveFloat32x3: 3795 return SVE_ELTTY(FloatTy, 4, 3); 3796 case BuiltinType::SveFloat32x4: 3797 return SVE_ELTTY(FloatTy, 4, 4); 3798 case BuiltinType::SveFloat64: 3799 return SVE_ELTTY(DoubleTy, 2, 1); 3800 case BuiltinType::SveFloat64x2: 3801 return SVE_ELTTY(DoubleTy, 2, 2); 3802 case BuiltinType::SveFloat64x3: 3803 return SVE_ELTTY(DoubleTy, 2, 3); 3804 case BuiltinType::SveFloat64x4: 3805 return SVE_ELTTY(DoubleTy, 2, 4); 3806 case BuiltinType::SveBFloat16: 3807 return SVE_ELTTY(BFloat16Ty, 8, 1); 3808 case BuiltinType::SveBFloat16x2: 3809 return SVE_ELTTY(BFloat16Ty, 8, 2); 3810 case BuiltinType::SveBFloat16x3: 3811 return SVE_ELTTY(BFloat16Ty, 8, 3); 3812 case BuiltinType::SveBFloat16x4: 3813 return SVE_ELTTY(BFloat16Ty, 8, 4); 3814 } 3815 } 3816 3817 /// getScalableVectorType - Return the unique reference to a scalable vector 3818 /// type of the specified element type and size. VectorType must be a built-in 3819 /// type. 3820 QualType ASTContext::getScalableVectorType(QualType EltTy, 3821 unsigned NumElts) const { 3822 if (Target->hasAArch64SVETypes()) { 3823 uint64_t EltTySize = getTypeSize(EltTy); 3824 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ 3825 IsSigned, IsFP, IsBF) \ 3826 if (!EltTy->isBooleanType() && \ 3827 ((EltTy->hasIntegerRepresentation() && \ 3828 EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ 3829 (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ 3830 IsFP && !IsBF) || \ 3831 (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ 3832 IsBF && !IsFP)) && \ 3833 EltTySize == ElBits && NumElts == NumEls) { \ 3834 return SingletonId; \ 3835 } 3836 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ 3837 if (EltTy->isBooleanType() && NumElts == NumEls) \ 3838 return SingletonId; 3839 #include "clang/Basic/AArch64SVEACLETypes.def" 3840 } 3841 return QualType(); 3842 } 3843 3844 /// getVectorType - Return the unique reference to a vector type of 3845 /// the specified element type and size. VectorType must be a built-in type. 3846 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, 3847 VectorType::VectorKind VecKind) const { 3848 assert(vecType->isBuiltinType()); 3849 3850 // Check if we've already instantiated a vector of this type. 3851 llvm::FoldingSetNodeID ID; 3852 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); 3853 3854 void *InsertPos = nullptr; 3855 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 3856 return QualType(VTP, 0); 3857 3858 // If the element type isn't canonical, this won't be a canonical type either, 3859 // so fill in the canonical type field. 3860 QualType Canonical; 3861 if (!vecType.isCanonical()) { 3862 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); 3863 3864 // Get the new insert position for the node we care about. 3865 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3866 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3867 } 3868 auto *New = new (*this, TypeAlignment) 3869 VectorType(vecType, NumElts, Canonical, VecKind); 3870 VectorTypes.InsertNode(New, InsertPos); 3871 Types.push_back(New); 3872 return QualType(New, 0); 3873 } 3874 3875 QualType 3876 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, 3877 SourceLocation AttrLoc, 3878 VectorType::VectorKind VecKind) const { 3879 llvm::FoldingSetNodeID ID; 3880 DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr, 3881 VecKind); 3882 void *InsertPos = nullptr; 3883 DependentVectorType *Canon = 3884 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3885 DependentVectorType *New; 3886 3887 if (Canon) { 3888 New = new (*this, TypeAlignment) DependentVectorType( 3889 *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); 3890 } else { 3891 QualType CanonVecTy = getCanonicalType(VecType); 3892 if (CanonVecTy == VecType) { 3893 New = new (*this, TypeAlignment) DependentVectorType( 3894 *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind); 3895 3896 DependentVectorType *CanonCheck = 3897 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3898 assert(!CanonCheck && 3899 "Dependent-sized vector_size canonical type broken"); 3900 (void)CanonCheck; 3901 DependentVectorTypes.InsertNode(New, InsertPos); 3902 } else { 3903 QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr, 3904 SourceLocation(), VecKind); 3905 New = new (*this, TypeAlignment) DependentVectorType( 3906 *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind); 3907 } 3908 } 3909 3910 Types.push_back(New); 3911 return QualType(New, 0); 3912 } 3913 3914 /// getExtVectorType - Return the unique reference to an extended vector type of 3915 /// the specified element type and size. VectorType must be a built-in type. 3916 QualType 3917 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { 3918 assert(vecType->isBuiltinType() || vecType->isDependentType()); 3919 3920 // Check if we've already instantiated a vector of this type. 3921 llvm::FoldingSetNodeID ID; 3922 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, 3923 VectorType::GenericVector); 3924 void *InsertPos = nullptr; 3925 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 3926 return QualType(VTP, 0); 3927 3928 // If the element type isn't canonical, this won't be a canonical type either, 3929 // so fill in the canonical type field. 3930 QualType Canonical; 3931 if (!vecType.isCanonical()) { 3932 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); 3933 3934 // Get the new insert position for the node we care about. 3935 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3936 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3937 } 3938 auto *New = new (*this, TypeAlignment) 3939 ExtVectorType(vecType, NumElts, Canonical); 3940 VectorTypes.InsertNode(New, InsertPos); 3941 Types.push_back(New); 3942 return QualType(New, 0); 3943 } 3944 3945 QualType 3946 ASTContext::getDependentSizedExtVectorType(QualType vecType, 3947 Expr *SizeExpr, 3948 SourceLocation AttrLoc) const { 3949 llvm::FoldingSetNodeID ID; 3950 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), 3951 SizeExpr); 3952 3953 void *InsertPos = nullptr; 3954 DependentSizedExtVectorType *Canon 3955 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3956 DependentSizedExtVectorType *New; 3957 if (Canon) { 3958 // We already have a canonical version of this array type; use it as 3959 // the canonical type for a newly-built type. 3960 New = new (*this, TypeAlignment) 3961 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), 3962 SizeExpr, AttrLoc); 3963 } else { 3964 QualType CanonVecTy = getCanonicalType(vecType); 3965 if (CanonVecTy == vecType) { 3966 New = new (*this, TypeAlignment) 3967 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, 3968 AttrLoc); 3969 3970 DependentSizedExtVectorType *CanonCheck 3971 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 3972 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); 3973 (void)CanonCheck; 3974 DependentSizedExtVectorTypes.InsertNode(New, InsertPos); 3975 } else { 3976 QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, 3977 SourceLocation()); 3978 New = new (*this, TypeAlignment) DependentSizedExtVectorType( 3979 *this, vecType, CanonExtTy, SizeExpr, AttrLoc); 3980 } 3981 } 3982 3983 Types.push_back(New); 3984 return QualType(New, 0); 3985 } 3986 3987 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows, 3988 unsigned NumColumns) const { 3989 llvm::FoldingSetNodeID ID; 3990 ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns, 3991 Type::ConstantMatrix); 3992 3993 assert(MatrixType::isValidElementType(ElementTy) && 3994 "need a valid element type"); 3995 assert(ConstantMatrixType::isDimensionValid(NumRows) && 3996 ConstantMatrixType::isDimensionValid(NumColumns) && 3997 "need valid matrix dimensions"); 3998 void *InsertPos = nullptr; 3999 if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos)) 4000 return QualType(MTP, 0); 4001 4002 QualType Canonical; 4003 if (!ElementTy.isCanonical()) { 4004 Canonical = 4005 getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns); 4006 4007 ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos); 4008 assert(!NewIP && "Matrix type shouldn't already exist in the map"); 4009 (void)NewIP; 4010 } 4011 4012 auto *New = new (*this, TypeAlignment) 4013 ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical); 4014 MatrixTypes.InsertNode(New, InsertPos); 4015 Types.push_back(New); 4016 return QualType(New, 0); 4017 } 4018 4019 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy, 4020 Expr *RowExpr, 4021 Expr *ColumnExpr, 4022 SourceLocation AttrLoc) const { 4023 QualType CanonElementTy = getCanonicalType(ElementTy); 4024 llvm::FoldingSetNodeID ID; 4025 DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr, 4026 ColumnExpr); 4027 4028 void *InsertPos = nullptr; 4029 DependentSizedMatrixType *Canon = 4030 DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); 4031 4032 if (!Canon) { 4033 Canon = new (*this, TypeAlignment) DependentSizedMatrixType( 4034 *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc); 4035 #ifndef NDEBUG 4036 DependentSizedMatrixType *CanonCheck = 4037 DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); 4038 assert(!CanonCheck && "Dependent-sized matrix canonical type broken"); 4039 #endif 4040 DependentSizedMatrixTypes.InsertNode(Canon, InsertPos); 4041 Types.push_back(Canon); 4042 } 4043 4044 // Already have a canonical version of the matrix type 4045 // 4046 // If it exactly matches the requested type, use it directly. 4047 if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr && 4048 Canon->getRowExpr() == ColumnExpr) 4049 return QualType(Canon, 0); 4050 4051 // Use Canon as the canonical type for newly-built type. 4052 DependentSizedMatrixType *New = new (*this, TypeAlignment) 4053 DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr, 4054 ColumnExpr, AttrLoc); 4055 Types.push_back(New); 4056 return QualType(New, 0); 4057 } 4058 4059 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, 4060 Expr *AddrSpaceExpr, 4061 SourceLocation AttrLoc) const { 4062 assert(AddrSpaceExpr->isInstantiationDependent()); 4063 4064 QualType canonPointeeType = getCanonicalType(PointeeType); 4065 4066 void *insertPos = nullptr; 4067 llvm::FoldingSetNodeID ID; 4068 DependentAddressSpaceType::Profile(ID, *this, canonPointeeType, 4069 AddrSpaceExpr); 4070 4071 DependentAddressSpaceType *canonTy = 4072 DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos); 4073 4074 if (!canonTy) { 4075 canonTy = new (*this, TypeAlignment) 4076 DependentAddressSpaceType(*this, canonPointeeType, 4077 QualType(), AddrSpaceExpr, AttrLoc); 4078 DependentAddressSpaceTypes.InsertNode(canonTy, insertPos); 4079 Types.push_back(canonTy); 4080 } 4081 4082 if (canonPointeeType == PointeeType && 4083 canonTy->getAddrSpaceExpr() == AddrSpaceExpr) 4084 return QualType(canonTy, 0); 4085 4086 auto *sugaredType 4087 = new (*this, TypeAlignment) 4088 DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0), 4089 AddrSpaceExpr, AttrLoc); 4090 Types.push_back(sugaredType); 4091 return QualType(sugaredType, 0); 4092 } 4093 4094 /// Determine whether \p T is canonical as the result type of a function. 4095 static bool isCanonicalResultType(QualType T) { 4096 return T.isCanonical() && 4097 (T.getObjCLifetime() == Qualifiers::OCL_None || 4098 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); 4099 } 4100 4101 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. 4102 QualType 4103 ASTContext::getFunctionNoProtoType(QualType ResultTy, 4104 const FunctionType::ExtInfo &Info) const { 4105 // Unique functions, to guarantee there is only one function of a particular 4106 // structure. 4107 llvm::FoldingSetNodeID ID; 4108 FunctionNoProtoType::Profile(ID, ResultTy, Info); 4109 4110 void *InsertPos = nullptr; 4111 if (FunctionNoProtoType *FT = 4112 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 4113 return QualType(FT, 0); 4114 4115 QualType Canonical; 4116 if (!isCanonicalResultType(ResultTy)) { 4117 Canonical = 4118 getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info); 4119 4120 // Get the new insert position for the node we care about. 4121 FunctionNoProtoType *NewIP = 4122 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 4123 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 4124 } 4125 4126 auto *New = new (*this, TypeAlignment) 4127 FunctionNoProtoType(ResultTy, Canonical, Info); 4128 Types.push_back(New); 4129 FunctionNoProtoTypes.InsertNode(New, InsertPos); 4130 return QualType(New, 0); 4131 } 4132 4133 CanQualType 4134 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { 4135 CanQualType CanResultType = getCanonicalType(ResultType); 4136 4137 // Canonical result types do not have ARC lifetime qualifiers. 4138 if (CanResultType.getQualifiers().hasObjCLifetime()) { 4139 Qualifiers Qs = CanResultType.getQualifiers(); 4140 Qs.removeObjCLifetime(); 4141 return CanQualType::CreateUnsafe( 4142 getQualifiedType(CanResultType.getUnqualifiedType(), Qs)); 4143 } 4144 4145 return CanResultType; 4146 } 4147 4148 static bool isCanonicalExceptionSpecification( 4149 const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { 4150 if (ESI.Type == EST_None) 4151 return true; 4152 if (!NoexceptInType) 4153 return false; 4154 4155 // C++17 onwards: exception specification is part of the type, as a simple 4156 // boolean "can this function type throw". 4157 if (ESI.Type == EST_BasicNoexcept) 4158 return true; 4159 4160 // A noexcept(expr) specification is (possibly) canonical if expr is 4161 // value-dependent. 4162 if (ESI.Type == EST_DependentNoexcept) 4163 return true; 4164 4165 // A dynamic exception specification is canonical if it only contains pack 4166 // expansions (so we can't tell whether it's non-throwing) and all its 4167 // contained types are canonical. 4168 if (ESI.Type == EST_Dynamic) { 4169 bool AnyPackExpansions = false; 4170 for (QualType ET : ESI.Exceptions) { 4171 if (!ET.isCanonical()) 4172 return false; 4173 if (ET->getAs<PackExpansionType>()) 4174 AnyPackExpansions = true; 4175 } 4176 return AnyPackExpansions; 4177 } 4178 4179 return false; 4180 } 4181 4182 QualType ASTContext::getFunctionTypeInternal( 4183 QualType ResultTy, ArrayRef<QualType> ArgArray, 4184 const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { 4185 size_t NumArgs = ArgArray.size(); 4186 4187 // Unique functions, to guarantee there is only one function of a particular 4188 // structure. 4189 llvm::FoldingSetNodeID ID; 4190 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, 4191 *this, true); 4192 4193 QualType Canonical; 4194 bool Unique = false; 4195 4196 void *InsertPos = nullptr; 4197 if (FunctionProtoType *FPT = 4198 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { 4199 QualType Existing = QualType(FPT, 0); 4200 4201 // If we find a pre-existing equivalent FunctionProtoType, we can just reuse 4202 // it so long as our exception specification doesn't contain a dependent 4203 // noexcept expression, or we're just looking for a canonical type. 4204 // Otherwise, we're going to need to create a type 4205 // sugar node to hold the concrete expression. 4206 if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) || 4207 EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) 4208 return Existing; 4209 4210 // We need a new type sugar node for this one, to hold the new noexcept 4211 // expression. We do no canonicalization here, but that's OK since we don't 4212 // expect to see the same noexcept expression much more than once. 4213 Canonical = getCanonicalType(Existing); 4214 Unique = true; 4215 } 4216 4217 bool NoexceptInType = getLangOpts().CPlusPlus17; 4218 bool IsCanonicalExceptionSpec = 4219 isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType); 4220 4221 // Determine whether the type being created is already canonical or not. 4222 bool isCanonical = !Unique && IsCanonicalExceptionSpec && 4223 isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn; 4224 for (unsigned i = 0; i != NumArgs && isCanonical; ++i) 4225 if (!ArgArray[i].isCanonicalAsParam()) 4226 isCanonical = false; 4227 4228 if (OnlyWantCanonical) 4229 assert(isCanonical && 4230 "given non-canonical parameters constructing canonical type"); 4231 4232 // If this type isn't canonical, get the canonical version of it if we don't 4233 // already have it. The exception spec is only partially part of the 4234 // canonical type, and only in C++17 onwards. 4235 if (!isCanonical && Canonical.isNull()) { 4236 SmallVector<QualType, 16> CanonicalArgs; 4237 CanonicalArgs.reserve(NumArgs); 4238 for (unsigned i = 0; i != NumArgs; ++i) 4239 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); 4240 4241 llvm::SmallVector<QualType, 8> ExceptionTypeStorage; 4242 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; 4243 CanonicalEPI.HasTrailingReturn = false; 4244 4245 if (IsCanonicalExceptionSpec) { 4246 // Exception spec is already OK. 4247 } else if (NoexceptInType) { 4248 switch (EPI.ExceptionSpec.Type) { 4249 case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: 4250 // We don't know yet. It shouldn't matter what we pick here; no-one 4251 // should ever look at this. 4252 LLVM_FALLTHROUGH; 4253 case EST_None: case EST_MSAny: case EST_NoexceptFalse: 4254 CanonicalEPI.ExceptionSpec.Type = EST_None; 4255 break; 4256 4257 // A dynamic exception specification is almost always "not noexcept", 4258 // with the exception that a pack expansion might expand to no types. 4259 case EST_Dynamic: { 4260 bool AnyPacks = false; 4261 for (QualType ET : EPI.ExceptionSpec.Exceptions) { 4262 if (ET->getAs<PackExpansionType>()) 4263 AnyPacks = true; 4264 ExceptionTypeStorage.push_back(getCanonicalType(ET)); 4265 } 4266 if (!AnyPacks) 4267 CanonicalEPI.ExceptionSpec.Type = EST_None; 4268 else { 4269 CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; 4270 CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; 4271 } 4272 break; 4273 } 4274 4275 case EST_DynamicNone: 4276 case EST_BasicNoexcept: 4277 case EST_NoexceptTrue: 4278 case EST_NoThrow: 4279 CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; 4280 break; 4281 4282 case EST_DependentNoexcept: 4283 llvm_unreachable("dependent noexcept is already canonical"); 4284 } 4285 } else { 4286 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); 4287 } 4288 4289 // Adjust the canonical function result type. 4290 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy); 4291 Canonical = 4292 getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true); 4293 4294 // Get the new insert position for the node we care about. 4295 FunctionProtoType *NewIP = 4296 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 4297 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 4298 } 4299 4300 // Compute the needed size to hold this FunctionProtoType and the 4301 // various trailing objects. 4302 auto ESH = FunctionProtoType::getExceptionSpecSize( 4303 EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size()); 4304 size_t Size = FunctionProtoType::totalSizeToAlloc< 4305 QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields, 4306 FunctionType::ExceptionType, Expr *, FunctionDecl *, 4307 FunctionProtoType::ExtParameterInfo, Qualifiers>( 4308 NumArgs, EPI.Variadic, 4309 FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type), 4310 ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr, 4311 EPI.ExtParameterInfos ? NumArgs : 0, 4312 EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0); 4313 4314 auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment); 4315 FunctionProtoType::ExtProtoInfo newEPI = EPI; 4316 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); 4317 Types.push_back(FTP); 4318 if (!Unique) 4319 FunctionProtoTypes.InsertNode(FTP, InsertPos); 4320 return QualType(FTP, 0); 4321 } 4322 4323 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { 4324 llvm::FoldingSetNodeID ID; 4325 PipeType::Profile(ID, T, ReadOnly); 4326 4327 void *InsertPos = nullptr; 4328 if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) 4329 return QualType(PT, 0); 4330 4331 // If the pipe element type isn't canonical, this won't be a canonical type 4332 // either, so fill in the canonical type field. 4333 QualType Canonical; 4334 if (!T.isCanonical()) { 4335 Canonical = getPipeType(getCanonicalType(T), ReadOnly); 4336 4337 // Get the new insert position for the node we care about. 4338 PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); 4339 assert(!NewIP && "Shouldn't be in the map!"); 4340 (void)NewIP; 4341 } 4342 auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly); 4343 Types.push_back(New); 4344 PipeTypes.InsertNode(New, InsertPos); 4345 return QualType(New, 0); 4346 } 4347 4348 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { 4349 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. 4350 return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant) 4351 : Ty; 4352 } 4353 4354 QualType ASTContext::getReadPipeType(QualType T) const { 4355 return getPipeType(T, true); 4356 } 4357 4358 QualType ASTContext::getWritePipeType(QualType T) const { 4359 return getPipeType(T, false); 4360 } 4361 4362 QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const { 4363 llvm::FoldingSetNodeID ID; 4364 ExtIntType::Profile(ID, IsUnsigned, NumBits); 4365 4366 void *InsertPos = nullptr; 4367 if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos)) 4368 return QualType(EIT, 0); 4369 4370 auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits); 4371 ExtIntTypes.InsertNode(New, InsertPos); 4372 Types.push_back(New); 4373 return QualType(New, 0); 4374 } 4375 4376 QualType ASTContext::getDependentExtIntType(bool IsUnsigned, 4377 Expr *NumBitsExpr) const { 4378 assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent"); 4379 llvm::FoldingSetNodeID ID; 4380 DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr); 4381 4382 void *InsertPos = nullptr; 4383 if (DependentExtIntType *Existing = 4384 DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos)) 4385 return QualType(Existing, 0); 4386 4387 auto *New = new (*this, TypeAlignment) 4388 DependentExtIntType(*this, IsUnsigned, NumBitsExpr); 4389 DependentExtIntTypes.InsertNode(New, InsertPos); 4390 4391 Types.push_back(New); 4392 return QualType(New, 0); 4393 } 4394 4395 #ifndef NDEBUG 4396 static bool NeedsInjectedClassNameType(const RecordDecl *D) { 4397 if (!isa<CXXRecordDecl>(D)) return false; 4398 const auto *RD = cast<CXXRecordDecl>(D); 4399 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) 4400 return true; 4401 if (RD->getDescribedClassTemplate() && 4402 !isa<ClassTemplateSpecializationDecl>(RD)) 4403 return true; 4404 return false; 4405 } 4406 #endif 4407 4408 /// getInjectedClassNameType - Return the unique reference to the 4409 /// injected class name type for the specified templated declaration. 4410 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, 4411 QualType TST) const { 4412 assert(NeedsInjectedClassNameType(Decl)); 4413 if (Decl->TypeForDecl) { 4414 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 4415 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { 4416 assert(PrevDecl->TypeForDecl && "previous declaration has no type"); 4417 Decl->TypeForDecl = PrevDecl->TypeForDecl; 4418 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 4419 } else { 4420 Type *newType = 4421 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); 4422 Decl->TypeForDecl = newType; 4423 Types.push_back(newType); 4424 } 4425 return QualType(Decl->TypeForDecl, 0); 4426 } 4427 4428 /// getTypeDeclType - Return the unique reference to the type for the 4429 /// specified type declaration. 4430 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { 4431 assert(Decl && "Passed null for Decl param"); 4432 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); 4433 4434 if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl)) 4435 return getTypedefType(Typedef); 4436 4437 assert(!isa<TemplateTypeParmDecl>(Decl) && 4438 "Template type parameter types are always available."); 4439 4440 if (const auto *Record = dyn_cast<RecordDecl>(Decl)) { 4441 assert(Record->isFirstDecl() && "struct/union has previous declaration"); 4442 assert(!NeedsInjectedClassNameType(Record)); 4443 return getRecordType(Record); 4444 } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) { 4445 assert(Enum->isFirstDecl() && "enum has previous declaration"); 4446 return getEnumType(Enum); 4447 } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { 4448 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); 4449 Decl->TypeForDecl = newType; 4450 Types.push_back(newType); 4451 } else 4452 llvm_unreachable("TypeDecl without a type?"); 4453 4454 return QualType(Decl->TypeForDecl, 0); 4455 } 4456 4457 /// getTypedefType - Return the unique reference to the type for the 4458 /// specified typedef name decl. 4459 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl, 4460 QualType Underlying) const { 4461 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 4462 4463 if (Underlying.isNull()) 4464 Underlying = Decl->getUnderlyingType(); 4465 QualType Canonical = getCanonicalType(Underlying); 4466 auto *newType = new (*this, TypeAlignment) 4467 TypedefType(Type::Typedef, Decl, Underlying, Canonical); 4468 Decl->TypeForDecl = newType; 4469 Types.push_back(newType); 4470 return QualType(newType, 0); 4471 } 4472 4473 QualType ASTContext::getRecordType(const RecordDecl *Decl) const { 4474 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 4475 4476 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) 4477 if (PrevDecl->TypeForDecl) 4478 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 4479 4480 auto *newType = new (*this, TypeAlignment) RecordType(Decl); 4481 Decl->TypeForDecl = newType; 4482 Types.push_back(newType); 4483 return QualType(newType, 0); 4484 } 4485 4486 QualType ASTContext::getEnumType(const EnumDecl *Decl) const { 4487 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 4488 4489 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) 4490 if (PrevDecl->TypeForDecl) 4491 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 4492 4493 auto *newType = new (*this, TypeAlignment) EnumType(Decl); 4494 Decl->TypeForDecl = newType; 4495 Types.push_back(newType); 4496 return QualType(newType, 0); 4497 } 4498 4499 QualType ASTContext::getAttributedType(attr::Kind attrKind, 4500 QualType modifiedType, 4501 QualType equivalentType) { 4502 llvm::FoldingSetNodeID id; 4503 AttributedType::Profile(id, attrKind, modifiedType, equivalentType); 4504 4505 void *insertPos = nullptr; 4506 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); 4507 if (type) return QualType(type, 0); 4508 4509 QualType canon = getCanonicalType(equivalentType); 4510 type = new (*this, TypeAlignment) 4511 AttributedType(canon, attrKind, modifiedType, equivalentType); 4512 4513 Types.push_back(type); 4514 AttributedTypes.InsertNode(type, insertPos); 4515 4516 return QualType(type, 0); 4517 } 4518 4519 /// Retrieve a substitution-result type. 4520 QualType 4521 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, 4522 QualType Replacement) const { 4523 assert(Replacement.isCanonical() 4524 && "replacement types must always be canonical"); 4525 4526 llvm::FoldingSetNodeID ID; 4527 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); 4528 void *InsertPos = nullptr; 4529 SubstTemplateTypeParmType *SubstParm 4530 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 4531 4532 if (!SubstParm) { 4533 SubstParm = new (*this, TypeAlignment) 4534 SubstTemplateTypeParmType(Parm, Replacement); 4535 Types.push_back(SubstParm); 4536 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 4537 } 4538 4539 return QualType(SubstParm, 0); 4540 } 4541 4542 /// Retrieve a 4543 QualType ASTContext::getSubstTemplateTypeParmPackType( 4544 const TemplateTypeParmType *Parm, 4545 const TemplateArgument &ArgPack) { 4546 #ifndef NDEBUG 4547 for (const auto &P : ArgPack.pack_elements()) { 4548 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type"); 4549 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type"); 4550 } 4551 #endif 4552 4553 llvm::FoldingSetNodeID ID; 4554 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); 4555 void *InsertPos = nullptr; 4556 if (SubstTemplateTypeParmPackType *SubstParm 4557 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) 4558 return QualType(SubstParm, 0); 4559 4560 QualType Canon; 4561 if (!Parm->isCanonicalUnqualified()) { 4562 Canon = getCanonicalType(QualType(Parm, 0)); 4563 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), 4564 ArgPack); 4565 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); 4566 } 4567 4568 auto *SubstParm 4569 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, 4570 ArgPack); 4571 Types.push_back(SubstParm); 4572 SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos); 4573 return QualType(SubstParm, 0); 4574 } 4575 4576 /// Retrieve the template type parameter type for a template 4577 /// parameter or parameter pack with the given depth, index, and (optionally) 4578 /// name. 4579 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, 4580 bool ParameterPack, 4581 TemplateTypeParmDecl *TTPDecl) const { 4582 llvm::FoldingSetNodeID ID; 4583 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); 4584 void *InsertPos = nullptr; 4585 TemplateTypeParmType *TypeParm 4586 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 4587 4588 if (TypeParm) 4589 return QualType(TypeParm, 0); 4590 4591 if (TTPDecl) { 4592 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); 4593 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); 4594 4595 TemplateTypeParmType *TypeCheck 4596 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 4597 assert(!TypeCheck && "Template type parameter canonical type broken"); 4598 (void)TypeCheck; 4599 } else 4600 TypeParm = new (*this, TypeAlignment) 4601 TemplateTypeParmType(Depth, Index, ParameterPack); 4602 4603 Types.push_back(TypeParm); 4604 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); 4605 4606 return QualType(TypeParm, 0); 4607 } 4608 4609 TypeSourceInfo * 4610 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, 4611 SourceLocation NameLoc, 4612 const TemplateArgumentListInfo &Args, 4613 QualType Underlying) const { 4614 assert(!Name.getAsDependentTemplateName() && 4615 "No dependent template names here!"); 4616 QualType TST = getTemplateSpecializationType(Name, Args, Underlying); 4617 4618 TypeSourceInfo *DI = CreateTypeSourceInfo(TST); 4619 TemplateSpecializationTypeLoc TL = 4620 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); 4621 TL.setTemplateKeywordLoc(SourceLocation()); 4622 TL.setTemplateNameLoc(NameLoc); 4623 TL.setLAngleLoc(Args.getLAngleLoc()); 4624 TL.setRAngleLoc(Args.getRAngleLoc()); 4625 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 4626 TL.setArgLocInfo(i, Args[i].getLocInfo()); 4627 return DI; 4628 } 4629 4630 QualType 4631 ASTContext::getTemplateSpecializationType(TemplateName Template, 4632 const TemplateArgumentListInfo &Args, 4633 QualType Underlying) const { 4634 assert(!Template.getAsDependentTemplateName() && 4635 "No dependent template names here!"); 4636 4637 SmallVector<TemplateArgument, 4> ArgVec; 4638 ArgVec.reserve(Args.size()); 4639 for (const TemplateArgumentLoc &Arg : Args.arguments()) 4640 ArgVec.push_back(Arg.getArgument()); 4641 4642 return getTemplateSpecializationType(Template, ArgVec, Underlying); 4643 } 4644 4645 #ifndef NDEBUG 4646 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { 4647 for (const TemplateArgument &Arg : Args) 4648 if (Arg.isPackExpansion()) 4649 return true; 4650 4651 return true; 4652 } 4653 #endif 4654 4655 QualType 4656 ASTContext::getTemplateSpecializationType(TemplateName Template, 4657 ArrayRef<TemplateArgument> Args, 4658 QualType Underlying) const { 4659 assert(!Template.getAsDependentTemplateName() && 4660 "No dependent template names here!"); 4661 // Look through qualified template names. 4662 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 4663 Template = TemplateName(QTN->getTemplateDecl()); 4664 4665 bool IsTypeAlias = 4666 Template.getAsTemplateDecl() && 4667 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); 4668 QualType CanonType; 4669 if (!Underlying.isNull()) 4670 CanonType = getCanonicalType(Underlying); 4671 else { 4672 // We can get here with an alias template when the specialization contains 4673 // a pack expansion that does not match up with a parameter pack. 4674 assert((!IsTypeAlias || hasAnyPackExpansions(Args)) && 4675 "Caller must compute aliased type"); 4676 IsTypeAlias = false; 4677 CanonType = getCanonicalTemplateSpecializationType(Template, Args); 4678 } 4679 4680 // Allocate the (non-canonical) template specialization type, but don't 4681 // try to unique it: these types typically have location information that 4682 // we don't unique and don't want to lose. 4683 void *Mem = Allocate(sizeof(TemplateSpecializationType) + 4684 sizeof(TemplateArgument) * Args.size() + 4685 (IsTypeAlias? sizeof(QualType) : 0), 4686 TypeAlignment); 4687 auto *Spec 4688 = new (Mem) TemplateSpecializationType(Template, Args, CanonType, 4689 IsTypeAlias ? Underlying : QualType()); 4690 4691 Types.push_back(Spec); 4692 return QualType(Spec, 0); 4693 } 4694 4695 QualType ASTContext::getCanonicalTemplateSpecializationType( 4696 TemplateName Template, ArrayRef<TemplateArgument> Args) const { 4697 assert(!Template.getAsDependentTemplateName() && 4698 "No dependent template names here!"); 4699 4700 // Look through qualified template names. 4701 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 4702 Template = TemplateName(QTN->getTemplateDecl()); 4703 4704 // Build the canonical template specialization type. 4705 TemplateName CanonTemplate = getCanonicalTemplateName(Template); 4706 SmallVector<TemplateArgument, 4> CanonArgs; 4707 unsigned NumArgs = Args.size(); 4708 CanonArgs.reserve(NumArgs); 4709 for (const TemplateArgument &Arg : Args) 4710 CanonArgs.push_back(getCanonicalTemplateArgument(Arg)); 4711 4712 // Determine whether this canonical template specialization type already 4713 // exists. 4714 llvm::FoldingSetNodeID ID; 4715 TemplateSpecializationType::Profile(ID, CanonTemplate, 4716 CanonArgs, *this); 4717 4718 void *InsertPos = nullptr; 4719 TemplateSpecializationType *Spec 4720 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 4721 4722 if (!Spec) { 4723 // Allocate a new canonical template specialization type. 4724 void *Mem = Allocate((sizeof(TemplateSpecializationType) + 4725 sizeof(TemplateArgument) * NumArgs), 4726 TypeAlignment); 4727 Spec = new (Mem) TemplateSpecializationType(CanonTemplate, 4728 CanonArgs, 4729 QualType(), QualType()); 4730 Types.push_back(Spec); 4731 TemplateSpecializationTypes.InsertNode(Spec, InsertPos); 4732 } 4733 4734 assert(Spec->isDependentType() && 4735 "Non-dependent template-id type must have a canonical type"); 4736 return QualType(Spec, 0); 4737 } 4738 4739 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, 4740 NestedNameSpecifier *NNS, 4741 QualType NamedType, 4742 TagDecl *OwnedTagDecl) const { 4743 llvm::FoldingSetNodeID ID; 4744 ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl); 4745 4746 void *InsertPos = nullptr; 4747 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 4748 if (T) 4749 return QualType(T, 0); 4750 4751 QualType Canon = NamedType; 4752 if (!Canon.isCanonical()) { 4753 Canon = getCanonicalType(NamedType); 4754 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 4755 assert(!CheckT && "Elaborated canonical type broken"); 4756 (void)CheckT; 4757 } 4758 4759 void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl), 4760 TypeAlignment); 4761 T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl); 4762 4763 Types.push_back(T); 4764 ElaboratedTypes.InsertNode(T, InsertPos); 4765 return QualType(T, 0); 4766 } 4767 4768 QualType 4769 ASTContext::getParenType(QualType InnerType) const { 4770 llvm::FoldingSetNodeID ID; 4771 ParenType::Profile(ID, InnerType); 4772 4773 void *InsertPos = nullptr; 4774 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 4775 if (T) 4776 return QualType(T, 0); 4777 4778 QualType Canon = InnerType; 4779 if (!Canon.isCanonical()) { 4780 Canon = getCanonicalType(InnerType); 4781 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 4782 assert(!CheckT && "Paren canonical type broken"); 4783 (void)CheckT; 4784 } 4785 4786 T = new (*this, TypeAlignment) ParenType(InnerType, Canon); 4787 Types.push_back(T); 4788 ParenTypes.InsertNode(T, InsertPos); 4789 return QualType(T, 0); 4790 } 4791 4792 QualType 4793 ASTContext::getMacroQualifiedType(QualType UnderlyingTy, 4794 const IdentifierInfo *MacroII) const { 4795 QualType Canon = UnderlyingTy; 4796 if (!Canon.isCanonical()) 4797 Canon = getCanonicalType(UnderlyingTy); 4798 4799 auto *newType = new (*this, TypeAlignment) 4800 MacroQualifiedType(UnderlyingTy, Canon, MacroII); 4801 Types.push_back(newType); 4802 return QualType(newType, 0); 4803 } 4804 4805 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, 4806 NestedNameSpecifier *NNS, 4807 const IdentifierInfo *Name, 4808 QualType Canon) const { 4809 if (Canon.isNull()) { 4810 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 4811 if (CanonNNS != NNS) 4812 Canon = getDependentNameType(Keyword, CanonNNS, Name); 4813 } 4814 4815 llvm::FoldingSetNodeID ID; 4816 DependentNameType::Profile(ID, Keyword, NNS, Name); 4817 4818 void *InsertPos = nullptr; 4819 DependentNameType *T 4820 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); 4821 if (T) 4822 return QualType(T, 0); 4823 4824 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon); 4825 Types.push_back(T); 4826 DependentNameTypes.InsertNode(T, InsertPos); 4827 return QualType(T, 0); 4828 } 4829 4830 QualType 4831 ASTContext::getDependentTemplateSpecializationType( 4832 ElaboratedTypeKeyword Keyword, 4833 NestedNameSpecifier *NNS, 4834 const IdentifierInfo *Name, 4835 const TemplateArgumentListInfo &Args) const { 4836 // TODO: avoid this copy 4837 SmallVector<TemplateArgument, 16> ArgCopy; 4838 for (unsigned I = 0, E = Args.size(); I != E; ++I) 4839 ArgCopy.push_back(Args[I].getArgument()); 4840 return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy); 4841 } 4842 4843 QualType 4844 ASTContext::getDependentTemplateSpecializationType( 4845 ElaboratedTypeKeyword Keyword, 4846 NestedNameSpecifier *NNS, 4847 const IdentifierInfo *Name, 4848 ArrayRef<TemplateArgument> Args) const { 4849 assert((!NNS || NNS->isDependent()) && 4850 "nested-name-specifier must be dependent"); 4851 4852 llvm::FoldingSetNodeID ID; 4853 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, 4854 Name, Args); 4855 4856 void *InsertPos = nullptr; 4857 DependentTemplateSpecializationType *T 4858 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 4859 if (T) 4860 return QualType(T, 0); 4861 4862 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 4863 4864 ElaboratedTypeKeyword CanonKeyword = Keyword; 4865 if (Keyword == ETK_None) CanonKeyword = ETK_Typename; 4866 4867 bool AnyNonCanonArgs = false; 4868 unsigned NumArgs = Args.size(); 4869 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); 4870 for (unsigned I = 0; I != NumArgs; ++I) { 4871 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); 4872 if (!CanonArgs[I].structurallyEquals(Args[I])) 4873 AnyNonCanonArgs = true; 4874 } 4875 4876 QualType Canon; 4877 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { 4878 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, 4879 Name, 4880 CanonArgs); 4881 4882 // Find the insert position again. 4883 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 4884 } 4885 4886 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + 4887 sizeof(TemplateArgument) * NumArgs), 4888 TypeAlignment); 4889 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, 4890 Name, Args, Canon); 4891 Types.push_back(T); 4892 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); 4893 return QualType(T, 0); 4894 } 4895 4896 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) { 4897 TemplateArgument Arg; 4898 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4899 QualType ArgType = getTypeDeclType(TTP); 4900 if (TTP->isParameterPack()) 4901 ArgType = getPackExpansionType(ArgType, None); 4902 4903 Arg = TemplateArgument(ArgType); 4904 } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4905 QualType T = 4906 NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this); 4907 // For class NTTPs, ensure we include the 'const' so the type matches that 4908 // of a real template argument. 4909 // FIXME: It would be more faithful to model this as something like an 4910 // lvalue-to-rvalue conversion applied to a const-qualified lvalue. 4911 if (T->isRecordType()) 4912 T.addConst(); 4913 Expr *E = new (*this) DeclRefExpr( 4914 *this, NTTP, /*enclosing*/ false, T, 4915 Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation()); 4916 4917 if (NTTP->isParameterPack()) 4918 E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(), 4919 None); 4920 Arg = TemplateArgument(E); 4921 } else { 4922 auto *TTP = cast<TemplateTemplateParmDecl>(Param); 4923 if (TTP->isParameterPack()) 4924 Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>()); 4925 else 4926 Arg = TemplateArgument(TemplateName(TTP)); 4927 } 4928 4929 if (Param->isTemplateParameterPack()) 4930 Arg = TemplateArgument::CreatePackCopy(*this, Arg); 4931 4932 return Arg; 4933 } 4934 4935 void 4936 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params, 4937 SmallVectorImpl<TemplateArgument> &Args) { 4938 Args.reserve(Args.size() + Params->size()); 4939 4940 for (NamedDecl *Param : *Params) 4941 Args.push_back(getInjectedTemplateArg(Param)); 4942 } 4943 4944 QualType ASTContext::getPackExpansionType(QualType Pattern, 4945 Optional<unsigned> NumExpansions, 4946 bool ExpectPackInType) { 4947 assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && 4948 "Pack expansions must expand one or more parameter packs"); 4949 4950 llvm::FoldingSetNodeID ID; 4951 PackExpansionType::Profile(ID, Pattern, NumExpansions); 4952 4953 void *InsertPos = nullptr; 4954 PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 4955 if (T) 4956 return QualType(T, 0); 4957 4958 QualType Canon; 4959 if (!Pattern.isCanonical()) { 4960 Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions, 4961 /*ExpectPackInType=*/false); 4962 4963 // Find the insert position again, in case we inserted an element into 4964 // PackExpansionTypes and invalidated our insert position. 4965 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 4966 } 4967 4968 T = new (*this, TypeAlignment) 4969 PackExpansionType(Pattern, Canon, NumExpansions); 4970 Types.push_back(T); 4971 PackExpansionTypes.InsertNode(T, InsertPos); 4972 return QualType(T, 0); 4973 } 4974 4975 /// CmpProtocolNames - Comparison predicate for sorting protocols 4976 /// alphabetically. 4977 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, 4978 ObjCProtocolDecl *const *RHS) { 4979 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); 4980 } 4981 4982 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { 4983 if (Protocols.empty()) return true; 4984 4985 if (Protocols[0]->getCanonicalDecl() != Protocols[0]) 4986 return false; 4987 4988 for (unsigned i = 1; i != Protocols.size(); ++i) 4989 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || 4990 Protocols[i]->getCanonicalDecl() != Protocols[i]) 4991 return false; 4992 return true; 4993 } 4994 4995 static void 4996 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { 4997 // Sort protocols, keyed by name. 4998 llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames); 4999 5000 // Canonicalize. 5001 for (ObjCProtocolDecl *&P : Protocols) 5002 P = P->getCanonicalDecl(); 5003 5004 // Remove duplicates. 5005 auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end()); 5006 Protocols.erase(ProtocolsEnd, Protocols.end()); 5007 } 5008 5009 QualType ASTContext::getObjCObjectType(QualType BaseType, 5010 ObjCProtocolDecl * const *Protocols, 5011 unsigned NumProtocols) const { 5012 return getObjCObjectType(BaseType, {}, 5013 llvm::makeArrayRef(Protocols, NumProtocols), 5014 /*isKindOf=*/false); 5015 } 5016 5017 QualType ASTContext::getObjCObjectType( 5018 QualType baseType, 5019 ArrayRef<QualType> typeArgs, 5020 ArrayRef<ObjCProtocolDecl *> protocols, 5021 bool isKindOf) const { 5022 // If the base type is an interface and there aren't any protocols or 5023 // type arguments to add, then the interface type will do just fine. 5024 if (typeArgs.empty() && protocols.empty() && !isKindOf && 5025 isa<ObjCInterfaceType>(baseType)) 5026 return baseType; 5027 5028 // Look in the folding set for an existing type. 5029 llvm::FoldingSetNodeID ID; 5030 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf); 5031 void *InsertPos = nullptr; 5032 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) 5033 return QualType(QT, 0); 5034 5035 // Determine the type arguments to be used for canonicalization, 5036 // which may be explicitly specified here or written on the base 5037 // type. 5038 ArrayRef<QualType> effectiveTypeArgs = typeArgs; 5039 if (effectiveTypeArgs.empty()) { 5040 if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) 5041 effectiveTypeArgs = baseObject->getTypeArgs(); 5042 } 5043 5044 // Build the canonical type, which has the canonical base type and a 5045 // sorted-and-uniqued list of protocols and the type arguments 5046 // canonicalized. 5047 QualType canonical; 5048 bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(), 5049 effectiveTypeArgs.end(), 5050 [&](QualType type) { 5051 return type.isCanonical(); 5052 }); 5053 bool protocolsSorted = areSortedAndUniqued(protocols); 5054 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { 5055 // Determine the canonical type arguments. 5056 ArrayRef<QualType> canonTypeArgs; 5057 SmallVector<QualType, 4> canonTypeArgsVec; 5058 if (!typeArgsAreCanonical) { 5059 canonTypeArgsVec.reserve(effectiveTypeArgs.size()); 5060 for (auto typeArg : effectiveTypeArgs) 5061 canonTypeArgsVec.push_back(getCanonicalType(typeArg)); 5062 canonTypeArgs = canonTypeArgsVec; 5063 } else { 5064 canonTypeArgs = effectiveTypeArgs; 5065 } 5066 5067 ArrayRef<ObjCProtocolDecl *> canonProtocols; 5068 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; 5069 if (!protocolsSorted) { 5070 canonProtocolsVec.append(protocols.begin(), protocols.end()); 5071 SortAndUniqueProtocols(canonProtocolsVec); 5072 canonProtocols = canonProtocolsVec; 5073 } else { 5074 canonProtocols = protocols; 5075 } 5076 5077 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs, 5078 canonProtocols, isKindOf); 5079 5080 // Regenerate InsertPos. 5081 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); 5082 } 5083 5084 unsigned size = sizeof(ObjCObjectTypeImpl); 5085 size += typeArgs.size() * sizeof(QualType); 5086 size += protocols.size() * sizeof(ObjCProtocolDecl *); 5087 void *mem = Allocate(size, TypeAlignment); 5088 auto *T = 5089 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, 5090 isKindOf); 5091 5092 Types.push_back(T); 5093 ObjCObjectTypes.InsertNode(T, InsertPos); 5094 return QualType(T, 0); 5095 } 5096 5097 /// Apply Objective-C protocol qualifiers to the given type. 5098 /// If this is for the canonical type of a type parameter, we can apply 5099 /// protocol qualifiers on the ObjCObjectPointerType. 5100 QualType 5101 ASTContext::applyObjCProtocolQualifiers(QualType type, 5102 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, 5103 bool allowOnPointerType) const { 5104 hasError = false; 5105 5106 if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) { 5107 return getObjCTypeParamType(objT->getDecl(), protocols); 5108 } 5109 5110 // Apply protocol qualifiers to ObjCObjectPointerType. 5111 if (allowOnPointerType) { 5112 if (const auto *objPtr = 5113 dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) { 5114 const ObjCObjectType *objT = objPtr->getObjectType(); 5115 // Merge protocol lists and construct ObjCObjectType. 5116 SmallVector<ObjCProtocolDecl*, 8> protocolsVec; 5117 protocolsVec.append(objT->qual_begin(), 5118 objT->qual_end()); 5119 protocolsVec.append(protocols.begin(), protocols.end()); 5120 ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; 5121 type = getObjCObjectType( 5122 objT->getBaseType(), 5123 objT->getTypeArgsAsWritten(), 5124 protocols, 5125 objT->isKindOfTypeAsWritten()); 5126 return getObjCObjectPointerType(type); 5127 } 5128 } 5129 5130 // Apply protocol qualifiers to ObjCObjectType. 5131 if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){ 5132 // FIXME: Check for protocols to which the class type is already 5133 // known to conform. 5134 5135 return getObjCObjectType(objT->getBaseType(), 5136 objT->getTypeArgsAsWritten(), 5137 protocols, 5138 objT->isKindOfTypeAsWritten()); 5139 } 5140 5141 // If the canonical type is ObjCObjectType, ... 5142 if (type->isObjCObjectType()) { 5143 // Silently overwrite any existing protocol qualifiers. 5144 // TODO: determine whether that's the right thing to do. 5145 5146 // FIXME: Check for protocols to which the class type is already 5147 // known to conform. 5148 return getObjCObjectType(type, {}, protocols, false); 5149 } 5150 5151 // id<protocol-list> 5152 if (type->isObjCIdType()) { 5153 const auto *objPtr = type->castAs<ObjCObjectPointerType>(); 5154 type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols, 5155 objPtr->isKindOfType()); 5156 return getObjCObjectPointerType(type); 5157 } 5158 5159 // Class<protocol-list> 5160 if (type->isObjCClassType()) { 5161 const auto *objPtr = type->castAs<ObjCObjectPointerType>(); 5162 type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols, 5163 objPtr->isKindOfType()); 5164 return getObjCObjectPointerType(type); 5165 } 5166 5167 hasError = true; 5168 return type; 5169 } 5170 5171 QualType 5172 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, 5173 ArrayRef<ObjCProtocolDecl *> protocols) const { 5174 // Look in the folding set for an existing type. 5175 llvm::FoldingSetNodeID ID; 5176 ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols); 5177 void *InsertPos = nullptr; 5178 if (ObjCTypeParamType *TypeParam = 5179 ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) 5180 return QualType(TypeParam, 0); 5181 5182 // We canonicalize to the underlying type. 5183 QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); 5184 if (!protocols.empty()) { 5185 // Apply the protocol qualifers. 5186 bool hasError; 5187 Canonical = getCanonicalType(applyObjCProtocolQualifiers( 5188 Canonical, protocols, hasError, true /*allowOnPointerType*/)); 5189 assert(!hasError && "Error when apply protocol qualifier to bound type"); 5190 } 5191 5192 unsigned size = sizeof(ObjCTypeParamType); 5193 size += protocols.size() * sizeof(ObjCProtocolDecl *); 5194 void *mem = Allocate(size, TypeAlignment); 5195 auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); 5196 5197 Types.push_back(newType); 5198 ObjCTypeParamTypes.InsertNode(newType, InsertPos); 5199 return QualType(newType, 0); 5200 } 5201 5202 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, 5203 ObjCTypeParamDecl *New) const { 5204 New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType())); 5205 // Update TypeForDecl after updating TypeSourceInfo. 5206 auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl()); 5207 SmallVector<ObjCProtocolDecl *, 8> protocols; 5208 protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end()); 5209 QualType UpdatedTy = getObjCTypeParamType(New, protocols); 5210 New->setTypeForDecl(UpdatedTy.getTypePtr()); 5211 } 5212 5213 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's 5214 /// protocol list adopt all protocols in QT's qualified-id protocol 5215 /// list. 5216 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, 5217 ObjCInterfaceDecl *IC) { 5218 if (!QT->isObjCQualifiedIdType()) 5219 return false; 5220 5221 if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { 5222 // If both the right and left sides have qualifiers. 5223 for (auto *Proto : OPT->quals()) { 5224 if (!IC->ClassImplementsProtocol(Proto, false)) 5225 return false; 5226 } 5227 return true; 5228 } 5229 return false; 5230 } 5231 5232 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in 5233 /// QT's qualified-id protocol list adopt all protocols in IDecl's list 5234 /// of protocols. 5235 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, 5236 ObjCInterfaceDecl *IDecl) { 5237 if (!QT->isObjCQualifiedIdType()) 5238 return false; 5239 const auto *OPT = QT->getAs<ObjCObjectPointerType>(); 5240 if (!OPT) 5241 return false; 5242 if (!IDecl->hasDefinition()) 5243 return false; 5244 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; 5245 CollectInheritedProtocols(IDecl, InheritedProtocols); 5246 if (InheritedProtocols.empty()) 5247 return false; 5248 // Check that if every protocol in list of id<plist> conforms to a protocol 5249 // of IDecl's, then bridge casting is ok. 5250 bool Conforms = false; 5251 for (auto *Proto : OPT->quals()) { 5252 Conforms = false; 5253 for (auto *PI : InheritedProtocols) { 5254 if (ProtocolCompatibleWithProtocol(Proto, PI)) { 5255 Conforms = true; 5256 break; 5257 } 5258 } 5259 if (!Conforms) 5260 break; 5261 } 5262 if (Conforms) 5263 return true; 5264 5265 for (auto *PI : InheritedProtocols) { 5266 // If both the right and left sides have qualifiers. 5267 bool Adopts = false; 5268 for (auto *Proto : OPT->quals()) { 5269 // return 'true' if 'PI' is in the inheritance hierarchy of Proto 5270 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) 5271 break; 5272 } 5273 if (!Adopts) 5274 return false; 5275 } 5276 return true; 5277 } 5278 5279 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for 5280 /// the given object type. 5281 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { 5282 llvm::FoldingSetNodeID ID; 5283 ObjCObjectPointerType::Profile(ID, ObjectT); 5284 5285 void *InsertPos = nullptr; 5286 if (ObjCObjectPointerType *QT = 5287 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 5288 return QualType(QT, 0); 5289 5290 // Find the canonical object type. 5291 QualType Canonical; 5292 if (!ObjectT.isCanonical()) { 5293 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); 5294 5295 // Regenerate InsertPos. 5296 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 5297 } 5298 5299 // No match. 5300 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); 5301 auto *QType = 5302 new (Mem) ObjCObjectPointerType(Canonical, ObjectT); 5303 5304 Types.push_back(QType); 5305 ObjCObjectPointerTypes.InsertNode(QType, InsertPos); 5306 return QualType(QType, 0); 5307 } 5308 5309 /// getObjCInterfaceType - Return the unique reference to the type for the 5310 /// specified ObjC interface decl. The list of protocols is optional. 5311 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, 5312 ObjCInterfaceDecl *PrevDecl) const { 5313 if (Decl->TypeForDecl) 5314 return QualType(Decl->TypeForDecl, 0); 5315 5316 if (PrevDecl) { 5317 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); 5318 Decl->TypeForDecl = PrevDecl->TypeForDecl; 5319 return QualType(PrevDecl->TypeForDecl, 0); 5320 } 5321 5322 // Prefer the definition, if there is one. 5323 if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) 5324 Decl = Def; 5325 5326 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); 5327 auto *T = new (Mem) ObjCInterfaceType(Decl); 5328 Decl->TypeForDecl = T; 5329 Types.push_back(T); 5330 return QualType(T, 0); 5331 } 5332 5333 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique 5334 /// TypeOfExprType AST's (since expression's are never shared). For example, 5335 /// multiple declarations that refer to "typeof(x)" all contain different 5336 /// DeclRefExpr's. This doesn't effect the type checker, since it operates 5337 /// on canonical type's (which are always unique). 5338 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { 5339 TypeOfExprType *toe; 5340 if (tofExpr->isTypeDependent()) { 5341 llvm::FoldingSetNodeID ID; 5342 DependentTypeOfExprType::Profile(ID, *this, tofExpr); 5343 5344 void *InsertPos = nullptr; 5345 DependentTypeOfExprType *Canon 5346 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); 5347 if (Canon) { 5348 // We already have a "canonical" version of an identical, dependent 5349 // typeof(expr) type. Use that as our canonical type. 5350 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, 5351 QualType((TypeOfExprType*)Canon, 0)); 5352 } else { 5353 // Build a new, canonical typeof(expr) type. 5354 Canon 5355 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); 5356 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); 5357 toe = Canon; 5358 } 5359 } else { 5360 QualType Canonical = getCanonicalType(tofExpr->getType()); 5361 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); 5362 } 5363 Types.push_back(toe); 5364 return QualType(toe, 0); 5365 } 5366 5367 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique 5368 /// TypeOfType nodes. The only motivation to unique these nodes would be 5369 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be 5370 /// an issue. This doesn't affect the type checker, since it operates 5371 /// on canonical types (which are always unique). 5372 QualType ASTContext::getTypeOfType(QualType tofType) const { 5373 QualType Canonical = getCanonicalType(tofType); 5374 auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); 5375 Types.push_back(tot); 5376 return QualType(tot, 0); 5377 } 5378 5379 /// Unlike many "get<Type>" functions, we don't unique DecltypeType 5380 /// nodes. This would never be helpful, since each such type has its own 5381 /// expression, and would not give a significant memory saving, since there 5382 /// is an Expr tree under each such type. 5383 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { 5384 DecltypeType *dt; 5385 5386 // C++11 [temp.type]p2: 5387 // If an expression e involves a template parameter, decltype(e) denotes a 5388 // unique dependent type. Two such decltype-specifiers refer to the same 5389 // type only if their expressions are equivalent (14.5.6.1). 5390 if (e->isInstantiationDependent()) { 5391 llvm::FoldingSetNodeID ID; 5392 DependentDecltypeType::Profile(ID, *this, e); 5393 5394 void *InsertPos = nullptr; 5395 DependentDecltypeType *Canon 5396 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); 5397 if (!Canon) { 5398 // Build a new, canonical decltype(expr) type. 5399 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); 5400 DependentDecltypeTypes.InsertNode(Canon, InsertPos); 5401 } 5402 dt = new (*this, TypeAlignment) 5403 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); 5404 } else { 5405 dt = new (*this, TypeAlignment) 5406 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); 5407 } 5408 Types.push_back(dt); 5409 return QualType(dt, 0); 5410 } 5411 5412 /// getUnaryTransformationType - We don't unique these, since the memory 5413 /// savings are minimal and these are rare. 5414 QualType ASTContext::getUnaryTransformType(QualType BaseType, 5415 QualType UnderlyingType, 5416 UnaryTransformType::UTTKind Kind) 5417 const { 5418 UnaryTransformType *ut = nullptr; 5419 5420 if (BaseType->isDependentType()) { 5421 // Look in the folding set for an existing type. 5422 llvm::FoldingSetNodeID ID; 5423 DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind); 5424 5425 void *InsertPos = nullptr; 5426 DependentUnaryTransformType *Canon 5427 = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); 5428 5429 if (!Canon) { 5430 // Build a new, canonical __underlying_type(type) type. 5431 Canon = new (*this, TypeAlignment) 5432 DependentUnaryTransformType(*this, getCanonicalType(BaseType), 5433 Kind); 5434 DependentUnaryTransformTypes.InsertNode(Canon, InsertPos); 5435 } 5436 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, 5437 QualType(), Kind, 5438 QualType(Canon, 0)); 5439 } else { 5440 QualType CanonType = getCanonicalType(UnderlyingType); 5441 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, 5442 UnderlyingType, Kind, 5443 CanonType); 5444 } 5445 Types.push_back(ut); 5446 return QualType(ut, 0); 5447 } 5448 5449 /// getAutoType - Return the uniqued reference to the 'auto' type which has been 5450 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the 5451 /// canonical deduced-but-dependent 'auto' type. 5452 QualType 5453 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, 5454 bool IsDependent, bool IsPack, 5455 ConceptDecl *TypeConstraintConcept, 5456 ArrayRef<TemplateArgument> TypeConstraintArgs) const { 5457 assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack"); 5458 if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && 5459 !TypeConstraintConcept && !IsDependent) 5460 return getAutoDeductType(); 5461 5462 // Look in the folding set for an existing type. 5463 void *InsertPos = nullptr; 5464 llvm::FoldingSetNodeID ID; 5465 AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent, 5466 TypeConstraintConcept, TypeConstraintArgs); 5467 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) 5468 return QualType(AT, 0); 5469 5470 void *Mem = Allocate(sizeof(AutoType) + 5471 sizeof(TemplateArgument) * TypeConstraintArgs.size(), 5472 TypeAlignment); 5473 auto *AT = new (Mem) AutoType( 5474 DeducedType, Keyword, 5475 (IsDependent ? TypeDependence::DependentInstantiation 5476 : TypeDependence::None) | 5477 (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None), 5478 TypeConstraintConcept, TypeConstraintArgs); 5479 Types.push_back(AT); 5480 if (InsertPos) 5481 AutoTypes.InsertNode(AT, InsertPos); 5482 return QualType(AT, 0); 5483 } 5484 5485 /// Return the uniqued reference to the deduced template specialization type 5486 /// which has been deduced to the given type, or to the canonical undeduced 5487 /// such type, or the canonical deduced-but-dependent such type. 5488 QualType ASTContext::getDeducedTemplateSpecializationType( 5489 TemplateName Template, QualType DeducedType, bool IsDependent) const { 5490 // Look in the folding set for an existing type. 5491 void *InsertPos = nullptr; 5492 llvm::FoldingSetNodeID ID; 5493 DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType, 5494 IsDependent); 5495 if (DeducedTemplateSpecializationType *DTST = 5496 DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) 5497 return QualType(DTST, 0); 5498 5499 auto *DTST = new (*this, TypeAlignment) 5500 DeducedTemplateSpecializationType(Template, DeducedType, IsDependent); 5501 Types.push_back(DTST); 5502 if (InsertPos) 5503 DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos); 5504 return QualType(DTST, 0); 5505 } 5506 5507 /// getAtomicType - Return the uniqued reference to the atomic type for 5508 /// the given value type. 5509 QualType ASTContext::getAtomicType(QualType T) const { 5510 // Unique pointers, to guarantee there is only one pointer of a particular 5511 // structure. 5512 llvm::FoldingSetNodeID ID; 5513 AtomicType::Profile(ID, T); 5514 5515 void *InsertPos = nullptr; 5516 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) 5517 return QualType(AT, 0); 5518 5519 // If the atomic value type isn't canonical, this won't be a canonical type 5520 // either, so fill in the canonical type field. 5521 QualType Canonical; 5522 if (!T.isCanonical()) { 5523 Canonical = getAtomicType(getCanonicalType(T)); 5524 5525 // Get the new insert position for the node we care about. 5526 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); 5527 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 5528 } 5529 auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical); 5530 Types.push_back(New); 5531 AtomicTypes.InsertNode(New, InsertPos); 5532 return QualType(New, 0); 5533 } 5534 5535 /// getAutoDeductType - Get type pattern for deducing against 'auto'. 5536 QualType ASTContext::getAutoDeductType() const { 5537 if (AutoDeductTy.isNull()) 5538 AutoDeductTy = QualType(new (*this, TypeAlignment) 5539 AutoType(QualType(), AutoTypeKeyword::Auto, 5540 TypeDependence::None, 5541 /*concept*/ nullptr, /*args*/ {}), 5542 0); 5543 return AutoDeductTy; 5544 } 5545 5546 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. 5547 QualType ASTContext::getAutoRRefDeductType() const { 5548 if (AutoRRefDeductTy.isNull()) 5549 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); 5550 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); 5551 return AutoRRefDeductTy; 5552 } 5553 5554 /// getTagDeclType - Return the unique reference to the type for the 5555 /// specified TagDecl (struct/union/class/enum) decl. 5556 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { 5557 assert(Decl); 5558 // FIXME: What is the design on getTagDeclType when it requires casting 5559 // away const? mutable? 5560 return getTypeDeclType(const_cast<TagDecl*>(Decl)); 5561 } 5562 5563 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 5564 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 5565 /// needs to agree with the definition in <stddef.h>. 5566 CanQualType ASTContext::getSizeType() const { 5567 return getFromTargetType(Target->getSizeType()); 5568 } 5569 5570 /// Return the unique signed counterpart of the integer type 5571 /// corresponding to size_t. 5572 CanQualType ASTContext::getSignedSizeType() const { 5573 return getFromTargetType(Target->getSignedSizeType()); 5574 } 5575 5576 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). 5577 CanQualType ASTContext::getIntMaxType() const { 5578 return getFromTargetType(Target->getIntMaxType()); 5579 } 5580 5581 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). 5582 CanQualType ASTContext::getUIntMaxType() const { 5583 return getFromTargetType(Target->getUIntMaxType()); 5584 } 5585 5586 /// getSignedWCharType - Return the type of "signed wchar_t". 5587 /// Used when in C++, as a GCC extension. 5588 QualType ASTContext::getSignedWCharType() const { 5589 // FIXME: derive from "Target" ? 5590 return WCharTy; 5591 } 5592 5593 /// getUnsignedWCharType - Return the type of "unsigned wchar_t". 5594 /// Used when in C++, as a GCC extension. 5595 QualType ASTContext::getUnsignedWCharType() const { 5596 // FIXME: derive from "Target" ? 5597 return UnsignedIntTy; 5598 } 5599 5600 QualType ASTContext::getIntPtrType() const { 5601 return getFromTargetType(Target->getIntPtrType()); 5602 } 5603 5604 QualType ASTContext::getUIntPtrType() const { 5605 return getCorrespondingUnsignedType(getIntPtrType()); 5606 } 5607 5608 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) 5609 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). 5610 QualType ASTContext::getPointerDiffType() const { 5611 return getFromTargetType(Target->getPtrDiffType(0)); 5612 } 5613 5614 /// Return the unique unsigned counterpart of "ptrdiff_t" 5615 /// integer type. The standard (C11 7.21.6.1p7) refers to this type 5616 /// in the definition of %tu format specifier. 5617 QualType ASTContext::getUnsignedPointerDiffType() const { 5618 return getFromTargetType(Target->getUnsignedPtrDiffType(0)); 5619 } 5620 5621 /// Return the unique type for "pid_t" defined in 5622 /// <sys/types.h>. We need this to compute the correct type for vfork(). 5623 QualType ASTContext::getProcessIDType() const { 5624 return getFromTargetType(Target->getProcessIDType()); 5625 } 5626 5627 //===----------------------------------------------------------------------===// 5628 // Type Operators 5629 //===----------------------------------------------------------------------===// 5630 5631 CanQualType ASTContext::getCanonicalParamType(QualType T) const { 5632 // Push qualifiers into arrays, and then discard any remaining 5633 // qualifiers. 5634 T = getCanonicalType(T); 5635 T = getVariableArrayDecayedType(T); 5636 const Type *Ty = T.getTypePtr(); 5637 QualType Result; 5638 if (isa<ArrayType>(Ty)) { 5639 Result = getArrayDecayedType(QualType(Ty,0)); 5640 } else if (isa<FunctionType>(Ty)) { 5641 Result = getPointerType(QualType(Ty, 0)); 5642 } else { 5643 Result = QualType(Ty, 0); 5644 } 5645 5646 return CanQualType::CreateUnsafe(Result); 5647 } 5648 5649 QualType ASTContext::getUnqualifiedArrayType(QualType type, 5650 Qualifiers &quals) { 5651 SplitQualType splitType = type.getSplitUnqualifiedType(); 5652 5653 // FIXME: getSplitUnqualifiedType() actually walks all the way to 5654 // the unqualified desugared type and then drops it on the floor. 5655 // We then have to strip that sugar back off with 5656 // getUnqualifiedDesugaredType(), which is silly. 5657 const auto *AT = 5658 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); 5659 5660 // If we don't have an array, just use the results in splitType. 5661 if (!AT) { 5662 quals = splitType.Quals; 5663 return QualType(splitType.Ty, 0); 5664 } 5665 5666 // Otherwise, recurse on the array's element type. 5667 QualType elementType = AT->getElementType(); 5668 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); 5669 5670 // If that didn't change the element type, AT has no qualifiers, so we 5671 // can just use the results in splitType. 5672 if (elementType == unqualElementType) { 5673 assert(quals.empty()); // from the recursive call 5674 quals = splitType.Quals; 5675 return QualType(splitType.Ty, 0); 5676 } 5677 5678 // Otherwise, add in the qualifiers from the outermost type, then 5679 // build the type back up. 5680 quals.addConsistentQualifiers(splitType.Quals); 5681 5682 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 5683 return getConstantArrayType(unqualElementType, CAT->getSize(), 5684 CAT->getSizeExpr(), CAT->getSizeModifier(), 0); 5685 } 5686 5687 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) { 5688 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); 5689 } 5690 5691 if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) { 5692 return getVariableArrayType(unqualElementType, 5693 VAT->getSizeExpr(), 5694 VAT->getSizeModifier(), 5695 VAT->getIndexTypeCVRQualifiers(), 5696 VAT->getBracketsRange()); 5697 } 5698 5699 const auto *DSAT = cast<DependentSizedArrayType>(AT); 5700 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), 5701 DSAT->getSizeModifier(), 0, 5702 SourceRange()); 5703 } 5704 5705 /// Attempt to unwrap two types that may both be array types with the same bound 5706 /// (or both be array types of unknown bound) for the purpose of comparing the 5707 /// cv-decomposition of two types per C++ [conv.qual]. 5708 bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) { 5709 bool UnwrappedAny = false; 5710 while (true) { 5711 auto *AT1 = getAsArrayType(T1); 5712 if (!AT1) return UnwrappedAny; 5713 5714 auto *AT2 = getAsArrayType(T2); 5715 if (!AT2) return UnwrappedAny; 5716 5717 // If we don't have two array types with the same constant bound nor two 5718 // incomplete array types, we've unwrapped everything we can. 5719 if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) { 5720 auto *CAT2 = dyn_cast<ConstantArrayType>(AT2); 5721 if (!CAT2 || CAT1->getSize() != CAT2->getSize()) 5722 return UnwrappedAny; 5723 } else if (!isa<IncompleteArrayType>(AT1) || 5724 !isa<IncompleteArrayType>(AT2)) { 5725 return UnwrappedAny; 5726 } 5727 5728 T1 = AT1->getElementType(); 5729 T2 = AT2->getElementType(); 5730 UnwrappedAny = true; 5731 } 5732 } 5733 5734 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). 5735 /// 5736 /// If T1 and T2 are both pointer types of the same kind, or both array types 5737 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is 5738 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. 5739 /// 5740 /// This function will typically be called in a loop that successively 5741 /// "unwraps" pointer and pointer-to-member types to compare them at each 5742 /// level. 5743 /// 5744 /// \return \c true if a pointer type was unwrapped, \c false if we reached a 5745 /// pair of types that can't be unwrapped further. 5746 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) { 5747 UnwrapSimilarArrayTypes(T1, T2); 5748 5749 const auto *T1PtrType = T1->getAs<PointerType>(); 5750 const auto *T2PtrType = T2->getAs<PointerType>(); 5751 if (T1PtrType && T2PtrType) { 5752 T1 = T1PtrType->getPointeeType(); 5753 T2 = T2PtrType->getPointeeType(); 5754 return true; 5755 } 5756 5757 const auto *T1MPType = T1->getAs<MemberPointerType>(); 5758 const auto *T2MPType = T2->getAs<MemberPointerType>(); 5759 if (T1MPType && T2MPType && 5760 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), 5761 QualType(T2MPType->getClass(), 0))) { 5762 T1 = T1MPType->getPointeeType(); 5763 T2 = T2MPType->getPointeeType(); 5764 return true; 5765 } 5766 5767 if (getLangOpts().ObjC) { 5768 const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); 5769 const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); 5770 if (T1OPType && T2OPType) { 5771 T1 = T1OPType->getPointeeType(); 5772 T2 = T2OPType->getPointeeType(); 5773 return true; 5774 } 5775 } 5776 5777 // FIXME: Block pointers, too? 5778 5779 return false; 5780 } 5781 5782 bool ASTContext::hasSimilarType(QualType T1, QualType T2) { 5783 while (true) { 5784 Qualifiers Quals; 5785 T1 = getUnqualifiedArrayType(T1, Quals); 5786 T2 = getUnqualifiedArrayType(T2, Quals); 5787 if (hasSameType(T1, T2)) 5788 return true; 5789 if (!UnwrapSimilarTypes(T1, T2)) 5790 return false; 5791 } 5792 } 5793 5794 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { 5795 while (true) { 5796 Qualifiers Quals1, Quals2; 5797 T1 = getUnqualifiedArrayType(T1, Quals1); 5798 T2 = getUnqualifiedArrayType(T2, Quals2); 5799 5800 Quals1.removeCVRQualifiers(); 5801 Quals2.removeCVRQualifiers(); 5802 if (Quals1 != Quals2) 5803 return false; 5804 5805 if (hasSameType(T1, T2)) 5806 return true; 5807 5808 if (!UnwrapSimilarTypes(T1, T2)) 5809 return false; 5810 } 5811 } 5812 5813 DeclarationNameInfo 5814 ASTContext::getNameForTemplate(TemplateName Name, 5815 SourceLocation NameLoc) const { 5816 switch (Name.getKind()) { 5817 case TemplateName::QualifiedTemplate: 5818 case TemplateName::Template: 5819 // DNInfo work in progress: CHECKME: what about DNLoc? 5820 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), 5821 NameLoc); 5822 5823 case TemplateName::OverloadedTemplate: { 5824 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); 5825 // DNInfo work in progress: CHECKME: what about DNLoc? 5826 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); 5827 } 5828 5829 case TemplateName::AssumedTemplate: { 5830 AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName(); 5831 return DeclarationNameInfo(Storage->getDeclName(), NameLoc); 5832 } 5833 5834 case TemplateName::DependentTemplate: { 5835 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 5836 DeclarationName DName; 5837 if (DTN->isIdentifier()) { 5838 DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); 5839 return DeclarationNameInfo(DName, NameLoc); 5840 } else { 5841 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); 5842 // DNInfo work in progress: FIXME: source locations? 5843 DeclarationNameLoc DNLoc; 5844 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding(); 5845 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding(); 5846 return DeclarationNameInfo(DName, NameLoc, DNLoc); 5847 } 5848 } 5849 5850 case TemplateName::SubstTemplateTemplateParm: { 5851 SubstTemplateTemplateParmStorage *subst 5852 = Name.getAsSubstTemplateTemplateParm(); 5853 return DeclarationNameInfo(subst->getParameter()->getDeclName(), 5854 NameLoc); 5855 } 5856 5857 case TemplateName::SubstTemplateTemplateParmPack: { 5858 SubstTemplateTemplateParmPackStorage *subst 5859 = Name.getAsSubstTemplateTemplateParmPack(); 5860 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), 5861 NameLoc); 5862 } 5863 } 5864 5865 llvm_unreachable("bad template name kind!"); 5866 } 5867 5868 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { 5869 switch (Name.getKind()) { 5870 case TemplateName::QualifiedTemplate: 5871 case TemplateName::Template: { 5872 TemplateDecl *Template = Name.getAsTemplateDecl(); 5873 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template)) 5874 Template = getCanonicalTemplateTemplateParmDecl(TTP); 5875 5876 // The canonical template name is the canonical template declaration. 5877 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); 5878 } 5879 5880 case TemplateName::OverloadedTemplate: 5881 case TemplateName::AssumedTemplate: 5882 llvm_unreachable("cannot canonicalize unresolved template"); 5883 5884 case TemplateName::DependentTemplate: { 5885 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 5886 assert(DTN && "Non-dependent template names must refer to template decls."); 5887 return DTN->CanonicalTemplateName; 5888 } 5889 5890 case TemplateName::SubstTemplateTemplateParm: { 5891 SubstTemplateTemplateParmStorage *subst 5892 = Name.getAsSubstTemplateTemplateParm(); 5893 return getCanonicalTemplateName(subst->getReplacement()); 5894 } 5895 5896 case TemplateName::SubstTemplateTemplateParmPack: { 5897 SubstTemplateTemplateParmPackStorage *subst 5898 = Name.getAsSubstTemplateTemplateParmPack(); 5899 TemplateTemplateParmDecl *canonParameter 5900 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); 5901 TemplateArgument canonArgPack 5902 = getCanonicalTemplateArgument(subst->getArgumentPack()); 5903 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); 5904 } 5905 } 5906 5907 llvm_unreachable("bad template name!"); 5908 } 5909 5910 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { 5911 X = getCanonicalTemplateName(X); 5912 Y = getCanonicalTemplateName(Y); 5913 return X.getAsVoidPointer() == Y.getAsVoidPointer(); 5914 } 5915 5916 TemplateArgument 5917 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { 5918 switch (Arg.getKind()) { 5919 case TemplateArgument::Null: 5920 return Arg; 5921 5922 case TemplateArgument::Expression: 5923 return Arg; 5924 5925 case TemplateArgument::Declaration: { 5926 auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); 5927 return TemplateArgument(D, Arg.getParamTypeForDecl()); 5928 } 5929 5930 case TemplateArgument::NullPtr: 5931 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), 5932 /*isNullPtr*/true); 5933 5934 case TemplateArgument::Template: 5935 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); 5936 5937 case TemplateArgument::TemplateExpansion: 5938 return TemplateArgument(getCanonicalTemplateName( 5939 Arg.getAsTemplateOrTemplatePattern()), 5940 Arg.getNumTemplateExpansions()); 5941 5942 case TemplateArgument::Integral: 5943 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); 5944 5945 case TemplateArgument::Type: 5946 return TemplateArgument(getCanonicalType(Arg.getAsType())); 5947 5948 case TemplateArgument::Pack: { 5949 if (Arg.pack_size() == 0) 5950 return Arg; 5951 5952 auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()]; 5953 unsigned Idx = 0; 5954 for (TemplateArgument::pack_iterator A = Arg.pack_begin(), 5955 AEnd = Arg.pack_end(); 5956 A != AEnd; (void)++A, ++Idx) 5957 CanonArgs[Idx] = getCanonicalTemplateArgument(*A); 5958 5959 return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size())); 5960 } 5961 } 5962 5963 // Silence GCC warning 5964 llvm_unreachable("Unhandled template argument kind"); 5965 } 5966 5967 NestedNameSpecifier * 5968 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { 5969 if (!NNS) 5970 return nullptr; 5971 5972 switch (NNS->getKind()) { 5973 case NestedNameSpecifier::Identifier: 5974 // Canonicalize the prefix but keep the identifier the same. 5975 return NestedNameSpecifier::Create(*this, 5976 getCanonicalNestedNameSpecifier(NNS->getPrefix()), 5977 NNS->getAsIdentifier()); 5978 5979 case NestedNameSpecifier::Namespace: 5980 // A namespace is canonical; build a nested-name-specifier with 5981 // this namespace and no prefix. 5982 return NestedNameSpecifier::Create(*this, nullptr, 5983 NNS->getAsNamespace()->getOriginalNamespace()); 5984 5985 case NestedNameSpecifier::NamespaceAlias: 5986 // A namespace is canonical; build a nested-name-specifier with 5987 // this namespace and no prefix. 5988 return NestedNameSpecifier::Create(*this, nullptr, 5989 NNS->getAsNamespaceAlias()->getNamespace() 5990 ->getOriginalNamespace()); 5991 5992 case NestedNameSpecifier::TypeSpec: 5993 case NestedNameSpecifier::TypeSpecWithTemplate: { 5994 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); 5995 5996 // If we have some kind of dependent-named type (e.g., "typename T::type"), 5997 // break it apart into its prefix and identifier, then reconsititute those 5998 // as the canonical nested-name-specifier. This is required to canonicalize 5999 // a dependent nested-name-specifier involving typedefs of dependent-name 6000 // types, e.g., 6001 // typedef typename T::type T1; 6002 // typedef typename T1::type T2; 6003 if (const auto *DNT = T->getAs<DependentNameType>()) 6004 return NestedNameSpecifier::Create(*this, DNT->getQualifier(), 6005 const_cast<IdentifierInfo *>(DNT->getIdentifier())); 6006 6007 // Otherwise, just canonicalize the type, and force it to be a TypeSpec. 6008 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the 6009 // first place? 6010 return NestedNameSpecifier::Create(*this, nullptr, false, 6011 const_cast<Type *>(T.getTypePtr())); 6012 } 6013 6014 case NestedNameSpecifier::Global: 6015 case NestedNameSpecifier::Super: 6016 // The global specifier and __super specifer are canonical and unique. 6017 return NNS; 6018 } 6019 6020 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6021 } 6022 6023 const ArrayType *ASTContext::getAsArrayType(QualType T) const { 6024 // Handle the non-qualified case efficiently. 6025 if (!T.hasLocalQualifiers()) { 6026 // Handle the common positive case fast. 6027 if (const auto *AT = dyn_cast<ArrayType>(T)) 6028 return AT; 6029 } 6030 6031 // Handle the common negative case fast. 6032 if (!isa<ArrayType>(T.getCanonicalType())) 6033 return nullptr; 6034 6035 // Apply any qualifiers from the array type to the element type. This 6036 // implements C99 6.7.3p8: "If the specification of an array type includes 6037 // any type qualifiers, the element type is so qualified, not the array type." 6038 6039 // If we get here, we either have type qualifiers on the type, or we have 6040 // sugar such as a typedef in the way. If we have type qualifiers on the type 6041 // we must propagate them down into the element type. 6042 6043 SplitQualType split = T.getSplitDesugaredType(); 6044 Qualifiers qs = split.Quals; 6045 6046 // If we have a simple case, just return now. 6047 const auto *ATy = dyn_cast<ArrayType>(split.Ty); 6048 if (!ATy || qs.empty()) 6049 return ATy; 6050 6051 // Otherwise, we have an array and we have qualifiers on it. Push the 6052 // qualifiers into the array element type and return a new array type. 6053 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); 6054 6055 if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy)) 6056 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), 6057 CAT->getSizeExpr(), 6058 CAT->getSizeModifier(), 6059 CAT->getIndexTypeCVRQualifiers())); 6060 if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy)) 6061 return cast<ArrayType>(getIncompleteArrayType(NewEltTy, 6062 IAT->getSizeModifier(), 6063 IAT->getIndexTypeCVRQualifiers())); 6064 6065 if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy)) 6066 return cast<ArrayType>( 6067 getDependentSizedArrayType(NewEltTy, 6068 DSAT->getSizeExpr(), 6069 DSAT->getSizeModifier(), 6070 DSAT->getIndexTypeCVRQualifiers(), 6071 DSAT->getBracketsRange())); 6072 6073 const auto *VAT = cast<VariableArrayType>(ATy); 6074 return cast<ArrayType>(getVariableArrayType(NewEltTy, 6075 VAT->getSizeExpr(), 6076 VAT->getSizeModifier(), 6077 VAT->getIndexTypeCVRQualifiers(), 6078 VAT->getBracketsRange())); 6079 } 6080 6081 QualType ASTContext::getAdjustedParameterType(QualType T) const { 6082 if (T->isArrayType() || T->isFunctionType()) 6083 return getDecayedType(T); 6084 return T; 6085 } 6086 6087 QualType ASTContext::getSignatureParameterType(QualType T) const { 6088 T = getVariableArrayDecayedType(T); 6089 T = getAdjustedParameterType(T); 6090 return T.getUnqualifiedType(); 6091 } 6092 6093 QualType ASTContext::getExceptionObjectType(QualType T) const { 6094 // C++ [except.throw]p3: 6095 // A throw-expression initializes a temporary object, called the exception 6096 // object, the type of which is determined by removing any top-level 6097 // cv-qualifiers from the static type of the operand of throw and adjusting 6098 // the type from "array of T" or "function returning T" to "pointer to T" 6099 // or "pointer to function returning T", [...] 6100 T = getVariableArrayDecayedType(T); 6101 if (T->isArrayType() || T->isFunctionType()) 6102 T = getDecayedType(T); 6103 return T.getUnqualifiedType(); 6104 } 6105 6106 /// getArrayDecayedType - Return the properly qualified result of decaying the 6107 /// specified array type to a pointer. This operation is non-trivial when 6108 /// handling typedefs etc. The canonical type of "T" must be an array type, 6109 /// this returns a pointer to a properly qualified element of the array. 6110 /// 6111 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. 6112 QualType ASTContext::getArrayDecayedType(QualType Ty) const { 6113 // Get the element type with 'getAsArrayType' so that we don't lose any 6114 // typedefs in the element type of the array. This also handles propagation 6115 // of type qualifiers from the array type into the element type if present 6116 // (C99 6.7.3p8). 6117 const ArrayType *PrettyArrayType = getAsArrayType(Ty); 6118 assert(PrettyArrayType && "Not an array type!"); 6119 6120 QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); 6121 6122 // int x[restrict 4] -> int *restrict 6123 QualType Result = getQualifiedType(PtrTy, 6124 PrettyArrayType->getIndexTypeQualifiers()); 6125 6126 // int x[_Nullable] -> int * _Nullable 6127 if (auto Nullability = Ty->getNullability(*this)) { 6128 Result = const_cast<ASTContext *>(this)->getAttributedType( 6129 AttributedType::getNullabilityAttrKind(*Nullability), Result, Result); 6130 } 6131 return Result; 6132 } 6133 6134 QualType ASTContext::getBaseElementType(const ArrayType *array) const { 6135 return getBaseElementType(array->getElementType()); 6136 } 6137 6138 QualType ASTContext::getBaseElementType(QualType type) const { 6139 Qualifiers qs; 6140 while (true) { 6141 SplitQualType split = type.getSplitDesugaredType(); 6142 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); 6143 if (!array) break; 6144 6145 type = array->getElementType(); 6146 qs.addConsistentQualifiers(split.Quals); 6147 } 6148 6149 return getQualifiedType(type, qs); 6150 } 6151 6152 /// getConstantArrayElementCount - Returns number of constant array elements. 6153 uint64_t 6154 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { 6155 uint64_t ElementCount = 1; 6156 do { 6157 ElementCount *= CA->getSize().getZExtValue(); 6158 CA = dyn_cast_or_null<ConstantArrayType>( 6159 CA->getElementType()->getAsArrayTypeUnsafe()); 6160 } while (CA); 6161 return ElementCount; 6162 } 6163 6164 /// getFloatingRank - Return a relative rank for floating point types. 6165 /// This routine will assert if passed a built-in type that isn't a float. 6166 static FloatingRank getFloatingRank(QualType T) { 6167 if (const auto *CT = T->getAs<ComplexType>()) 6168 return getFloatingRank(CT->getElementType()); 6169 6170 switch (T->castAs<BuiltinType>()->getKind()) { 6171 default: llvm_unreachable("getFloatingRank(): not a floating type"); 6172 case BuiltinType::Float16: return Float16Rank; 6173 case BuiltinType::Half: return HalfRank; 6174 case BuiltinType::Float: return FloatRank; 6175 case BuiltinType::Double: return DoubleRank; 6176 case BuiltinType::LongDouble: return LongDoubleRank; 6177 case BuiltinType::Float128: return Float128Rank; 6178 case BuiltinType::BFloat16: return BFloat16Rank; 6179 } 6180 } 6181 6182 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating 6183 /// point or a complex type (based on typeDomain/typeSize). 6184 /// 'typeDomain' is a real floating point or complex type. 6185 /// 'typeSize' is a real floating point or complex type. 6186 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, 6187 QualType Domain) const { 6188 FloatingRank EltRank = getFloatingRank(Size); 6189 if (Domain->isComplexType()) { 6190 switch (EltRank) { 6191 case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported"); 6192 case Float16Rank: 6193 case HalfRank: llvm_unreachable("Complex half is not supported"); 6194 case FloatRank: return FloatComplexTy; 6195 case DoubleRank: return DoubleComplexTy; 6196 case LongDoubleRank: return LongDoubleComplexTy; 6197 case Float128Rank: return Float128ComplexTy; 6198 } 6199 } 6200 6201 assert(Domain->isRealFloatingType() && "Unknown domain!"); 6202 switch (EltRank) { 6203 case Float16Rank: return HalfTy; 6204 case BFloat16Rank: return BFloat16Ty; 6205 case HalfRank: return HalfTy; 6206 case FloatRank: return FloatTy; 6207 case DoubleRank: return DoubleTy; 6208 case LongDoubleRank: return LongDoubleTy; 6209 case Float128Rank: return Float128Ty; 6210 } 6211 llvm_unreachable("getFloatingRank(): illegal value for rank"); 6212 } 6213 6214 /// getFloatingTypeOrder - Compare the rank of the two specified floating 6215 /// point types, ignoring the domain of the type (i.e. 'double' == 6216 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If 6217 /// LHS < RHS, return -1. 6218 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { 6219 FloatingRank LHSR = getFloatingRank(LHS); 6220 FloatingRank RHSR = getFloatingRank(RHS); 6221 6222 if (LHSR == RHSR) 6223 return 0; 6224 if (LHSR > RHSR) 6225 return 1; 6226 return -1; 6227 } 6228 6229 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const { 6230 if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS)) 6231 return 0; 6232 return getFloatingTypeOrder(LHS, RHS); 6233 } 6234 6235 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This 6236 /// routine will assert if passed a built-in type that isn't an integer or enum, 6237 /// or if it is not canonicalized. 6238 unsigned ASTContext::getIntegerRank(const Type *T) const { 6239 assert(T->isCanonicalUnqualified() && "T should be canonicalized"); 6240 6241 // Results in this 'losing' to any type of the same size, but winning if 6242 // larger. 6243 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 6244 return 0 + (EIT->getNumBits() << 3); 6245 6246 switch (cast<BuiltinType>(T)->getKind()) { 6247 default: llvm_unreachable("getIntegerRank(): not a built-in integer"); 6248 case BuiltinType::Bool: 6249 return 1 + (getIntWidth(BoolTy) << 3); 6250 case BuiltinType::Char_S: 6251 case BuiltinType::Char_U: 6252 case BuiltinType::SChar: 6253 case BuiltinType::UChar: 6254 return 2 + (getIntWidth(CharTy) << 3); 6255 case BuiltinType::Short: 6256 case BuiltinType::UShort: 6257 return 3 + (getIntWidth(ShortTy) << 3); 6258 case BuiltinType::Int: 6259 case BuiltinType::UInt: 6260 return 4 + (getIntWidth(IntTy) << 3); 6261 case BuiltinType::Long: 6262 case BuiltinType::ULong: 6263 return 5 + (getIntWidth(LongTy) << 3); 6264 case BuiltinType::LongLong: 6265 case BuiltinType::ULongLong: 6266 return 6 + (getIntWidth(LongLongTy) << 3); 6267 case BuiltinType::Int128: 6268 case BuiltinType::UInt128: 6269 return 7 + (getIntWidth(Int128Ty) << 3); 6270 } 6271 } 6272 6273 /// Whether this is a promotable bitfield reference according 6274 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). 6275 /// 6276 /// \returns the type this bit-field will promote to, or NULL if no 6277 /// promotion occurs. 6278 QualType ASTContext::isPromotableBitField(Expr *E) const { 6279 if (E->isTypeDependent() || E->isValueDependent()) 6280 return {}; 6281 6282 // C++ [conv.prom]p5: 6283 // If the bit-field has an enumerated type, it is treated as any other 6284 // value of that type for promotion purposes. 6285 if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) 6286 return {}; 6287 6288 // FIXME: We should not do this unless E->refersToBitField() is true. This 6289 // matters in C where getSourceBitField() will find bit-fields for various 6290 // cases where the source expression is not a bit-field designator. 6291 6292 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? 6293 if (!Field) 6294 return {}; 6295 6296 QualType FT = Field->getType(); 6297 6298 uint64_t BitWidth = Field->getBitWidthValue(*this); 6299 uint64_t IntSize = getTypeSize(IntTy); 6300 // C++ [conv.prom]p5: 6301 // A prvalue for an integral bit-field can be converted to a prvalue of type 6302 // int if int can represent all the values of the bit-field; otherwise, it 6303 // can be converted to unsigned int if unsigned int can represent all the 6304 // values of the bit-field. If the bit-field is larger yet, no integral 6305 // promotion applies to it. 6306 // C11 6.3.1.1/2: 6307 // [For a bit-field of type _Bool, int, signed int, or unsigned int:] 6308 // If an int can represent all values of the original type (as restricted by 6309 // the width, for a bit-field), the value is converted to an int; otherwise, 6310 // it is converted to an unsigned int. 6311 // 6312 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. 6313 // We perform that promotion here to match GCC and C++. 6314 // FIXME: C does not permit promotion of an enum bit-field whose rank is 6315 // greater than that of 'int'. We perform that promotion to match GCC. 6316 if (BitWidth < IntSize) 6317 return IntTy; 6318 6319 if (BitWidth == IntSize) 6320 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; 6321 6322 // Bit-fields wider than int are not subject to promotions, and therefore act 6323 // like the base type. GCC has some weird bugs in this area that we 6324 // deliberately do not follow (GCC follows a pre-standard resolution to 6325 // C's DR315 which treats bit-width as being part of the type, and this leaks 6326 // into their semantics in some cases). 6327 return {}; 6328 } 6329 6330 /// getPromotedIntegerType - Returns the type that Promotable will 6331 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable 6332 /// integer type. 6333 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { 6334 assert(!Promotable.isNull()); 6335 assert(Promotable->isPromotableIntegerType()); 6336 if (const auto *ET = Promotable->getAs<EnumType>()) 6337 return ET->getDecl()->getPromotionType(); 6338 6339 if (const auto *BT = Promotable->getAs<BuiltinType>()) { 6340 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t 6341 // (3.9.1) can be converted to a prvalue of the first of the following 6342 // types that can represent all the values of its underlying type: 6343 // int, unsigned int, long int, unsigned long int, long long int, or 6344 // unsigned long long int [...] 6345 // FIXME: Is there some better way to compute this? 6346 if (BT->getKind() == BuiltinType::WChar_S || 6347 BT->getKind() == BuiltinType::WChar_U || 6348 BT->getKind() == BuiltinType::Char8 || 6349 BT->getKind() == BuiltinType::Char16 || 6350 BT->getKind() == BuiltinType::Char32) { 6351 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; 6352 uint64_t FromSize = getTypeSize(BT); 6353 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, 6354 LongLongTy, UnsignedLongLongTy }; 6355 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { 6356 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); 6357 if (FromSize < ToSize || 6358 (FromSize == ToSize && 6359 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) 6360 return PromoteTypes[Idx]; 6361 } 6362 llvm_unreachable("char type should fit into long long"); 6363 } 6364 } 6365 6366 // At this point, we should have a signed or unsigned integer type. 6367 if (Promotable->isSignedIntegerType()) 6368 return IntTy; 6369 uint64_t PromotableSize = getIntWidth(Promotable); 6370 uint64_t IntSize = getIntWidth(IntTy); 6371 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); 6372 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; 6373 } 6374 6375 /// Recurses in pointer/array types until it finds an objc retainable 6376 /// type and returns its ownership. 6377 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { 6378 while (!T.isNull()) { 6379 if (T.getObjCLifetime() != Qualifiers::OCL_None) 6380 return T.getObjCLifetime(); 6381 if (T->isArrayType()) 6382 T = getBaseElementType(T); 6383 else if (const auto *PT = T->getAs<PointerType>()) 6384 T = PT->getPointeeType(); 6385 else if (const auto *RT = T->getAs<ReferenceType>()) 6386 T = RT->getPointeeType(); 6387 else 6388 break; 6389 } 6390 6391 return Qualifiers::OCL_None; 6392 } 6393 6394 static const Type *getIntegerTypeForEnum(const EnumType *ET) { 6395 // Incomplete enum types are not treated as integer types. 6396 // FIXME: In C++, enum types are never integer types. 6397 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) 6398 return ET->getDecl()->getIntegerType().getTypePtr(); 6399 return nullptr; 6400 } 6401 6402 /// getIntegerTypeOrder - Returns the highest ranked integer type: 6403 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If 6404 /// LHS < RHS, return -1. 6405 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { 6406 const Type *LHSC = getCanonicalType(LHS).getTypePtr(); 6407 const Type *RHSC = getCanonicalType(RHS).getTypePtr(); 6408 6409 // Unwrap enums to their underlying type. 6410 if (const auto *ET = dyn_cast<EnumType>(LHSC)) 6411 LHSC = getIntegerTypeForEnum(ET); 6412 if (const auto *ET = dyn_cast<EnumType>(RHSC)) 6413 RHSC = getIntegerTypeForEnum(ET); 6414 6415 if (LHSC == RHSC) return 0; 6416 6417 bool LHSUnsigned = LHSC->isUnsignedIntegerType(); 6418 bool RHSUnsigned = RHSC->isUnsignedIntegerType(); 6419 6420 unsigned LHSRank = getIntegerRank(LHSC); 6421 unsigned RHSRank = getIntegerRank(RHSC); 6422 6423 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. 6424 if (LHSRank == RHSRank) return 0; 6425 return LHSRank > RHSRank ? 1 : -1; 6426 } 6427 6428 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. 6429 if (LHSUnsigned) { 6430 // If the unsigned [LHS] type is larger, return it. 6431 if (LHSRank >= RHSRank) 6432 return 1; 6433 6434 // If the signed type can represent all values of the unsigned type, it 6435 // wins. Because we are dealing with 2's complement and types that are 6436 // powers of two larger than each other, this is always safe. 6437 return -1; 6438 } 6439 6440 // If the unsigned [RHS] type is larger, return it. 6441 if (RHSRank >= LHSRank) 6442 return -1; 6443 6444 // If the signed type can represent all values of the unsigned type, it 6445 // wins. Because we are dealing with 2's complement and types that are 6446 // powers of two larger than each other, this is always safe. 6447 return 1; 6448 } 6449 6450 TypedefDecl *ASTContext::getCFConstantStringDecl() const { 6451 if (CFConstantStringTypeDecl) 6452 return CFConstantStringTypeDecl; 6453 6454 assert(!CFConstantStringTagDecl && 6455 "tag and typedef should be initialized together"); 6456 CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag"); 6457 CFConstantStringTagDecl->startDefinition(); 6458 6459 struct { 6460 QualType Type; 6461 const char *Name; 6462 } Fields[5]; 6463 unsigned Count = 0; 6464 6465 /// Objective-C ABI 6466 /// 6467 /// typedef struct __NSConstantString_tag { 6468 /// const int *isa; 6469 /// int flags; 6470 /// const char *str; 6471 /// long length; 6472 /// } __NSConstantString; 6473 /// 6474 /// Swift ABI (4.1, 4.2) 6475 /// 6476 /// typedef struct __NSConstantString_tag { 6477 /// uintptr_t _cfisa; 6478 /// uintptr_t _swift_rc; 6479 /// _Atomic(uint64_t) _cfinfoa; 6480 /// const char *_ptr; 6481 /// uint32_t _length; 6482 /// } __NSConstantString; 6483 /// 6484 /// Swift ABI (5.0) 6485 /// 6486 /// typedef struct __NSConstantString_tag { 6487 /// uintptr_t _cfisa; 6488 /// uintptr_t _swift_rc; 6489 /// _Atomic(uint64_t) _cfinfoa; 6490 /// const char *_ptr; 6491 /// uintptr_t _length; 6492 /// } __NSConstantString; 6493 6494 const auto CFRuntime = getLangOpts().CFRuntime; 6495 if (static_cast<unsigned>(CFRuntime) < 6496 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) { 6497 Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" }; 6498 Fields[Count++] = { IntTy, "flags" }; 6499 Fields[Count++] = { getPointerType(CharTy.withConst()), "str" }; 6500 Fields[Count++] = { LongTy, "length" }; 6501 } else { 6502 Fields[Count++] = { getUIntPtrType(), "_cfisa" }; 6503 Fields[Count++] = { getUIntPtrType(), "_swift_rc" }; 6504 Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" }; 6505 Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" }; 6506 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6507 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6508 Fields[Count++] = { IntTy, "_ptr" }; 6509 else 6510 Fields[Count++] = { getUIntPtrType(), "_ptr" }; 6511 } 6512 6513 // Create fields 6514 for (unsigned i = 0; i < Count; ++i) { 6515 FieldDecl *Field = 6516 FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(), 6517 SourceLocation(), &Idents.get(Fields[i].Name), 6518 Fields[i].Type, /*TInfo=*/nullptr, 6519 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); 6520 Field->setAccess(AS_public); 6521 CFConstantStringTagDecl->addDecl(Field); 6522 } 6523 6524 CFConstantStringTagDecl->completeDefinition(); 6525 // This type is designed to be compatible with NSConstantString, but cannot 6526 // use the same name, since NSConstantString is an interface. 6527 auto tagType = getTagDeclType(CFConstantStringTagDecl); 6528 CFConstantStringTypeDecl = 6529 buildImplicitTypedef(tagType, "__NSConstantString"); 6530 6531 return CFConstantStringTypeDecl; 6532 } 6533 6534 RecordDecl *ASTContext::getCFConstantStringTagDecl() const { 6535 if (!CFConstantStringTagDecl) 6536 getCFConstantStringDecl(); // Build the tag and the typedef. 6537 return CFConstantStringTagDecl; 6538 } 6539 6540 // getCFConstantStringType - Return the type used for constant CFStrings. 6541 QualType ASTContext::getCFConstantStringType() const { 6542 return getTypedefType(getCFConstantStringDecl()); 6543 } 6544 6545 QualType ASTContext::getObjCSuperType() const { 6546 if (ObjCSuperType.isNull()) { 6547 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); 6548 TUDecl->addDecl(ObjCSuperTypeDecl); 6549 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); 6550 } 6551 return ObjCSuperType; 6552 } 6553 6554 void ASTContext::setCFConstantStringType(QualType T) { 6555 const auto *TD = T->castAs<TypedefType>(); 6556 CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl()); 6557 const auto *TagType = 6558 CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>(); 6559 CFConstantStringTagDecl = TagType->getDecl(); 6560 } 6561 6562 QualType ASTContext::getBlockDescriptorType() const { 6563 if (BlockDescriptorType) 6564 return getTagDeclType(BlockDescriptorType); 6565 6566 RecordDecl *RD; 6567 // FIXME: Needs the FlagAppleBlock bit. 6568 RD = buildImplicitRecord("__block_descriptor"); 6569 RD->startDefinition(); 6570 6571 QualType FieldTypes[] = { 6572 UnsignedLongTy, 6573 UnsignedLongTy, 6574 }; 6575 6576 static const char *const FieldNames[] = { 6577 "reserved", 6578 "Size" 6579 }; 6580 6581 for (size_t i = 0; i < 2; ++i) { 6582 FieldDecl *Field = FieldDecl::Create( 6583 *this, RD, SourceLocation(), SourceLocation(), 6584 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 6585 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); 6586 Field->setAccess(AS_public); 6587 RD->addDecl(Field); 6588 } 6589 6590 RD->completeDefinition(); 6591 6592 BlockDescriptorType = RD; 6593 6594 return getTagDeclType(BlockDescriptorType); 6595 } 6596 6597 QualType ASTContext::getBlockDescriptorExtendedType() const { 6598 if (BlockDescriptorExtendedType) 6599 return getTagDeclType(BlockDescriptorExtendedType); 6600 6601 RecordDecl *RD; 6602 // FIXME: Needs the FlagAppleBlock bit. 6603 RD = buildImplicitRecord("__block_descriptor_withcopydispose"); 6604 RD->startDefinition(); 6605 6606 QualType FieldTypes[] = { 6607 UnsignedLongTy, 6608 UnsignedLongTy, 6609 getPointerType(VoidPtrTy), 6610 getPointerType(VoidPtrTy) 6611 }; 6612 6613 static const char *const FieldNames[] = { 6614 "reserved", 6615 "Size", 6616 "CopyFuncPtr", 6617 "DestroyFuncPtr" 6618 }; 6619 6620 for (size_t i = 0; i < 4; ++i) { 6621 FieldDecl *Field = FieldDecl::Create( 6622 *this, RD, SourceLocation(), SourceLocation(), 6623 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 6624 /*BitWidth=*/nullptr, 6625 /*Mutable=*/false, ICIS_NoInit); 6626 Field->setAccess(AS_public); 6627 RD->addDecl(Field); 6628 } 6629 6630 RD->completeDefinition(); 6631 6632 BlockDescriptorExtendedType = RD; 6633 return getTagDeclType(BlockDescriptorExtendedType); 6634 } 6635 6636 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { 6637 const auto *BT = dyn_cast<BuiltinType>(T); 6638 6639 if (!BT) { 6640 if (isa<PipeType>(T)) 6641 return OCLTK_Pipe; 6642 6643 return OCLTK_Default; 6644 } 6645 6646 switch (BT->getKind()) { 6647 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 6648 case BuiltinType::Id: \ 6649 return OCLTK_Image; 6650 #include "clang/Basic/OpenCLImageTypes.def" 6651 6652 case BuiltinType::OCLClkEvent: 6653 return OCLTK_ClkEvent; 6654 6655 case BuiltinType::OCLEvent: 6656 return OCLTK_Event; 6657 6658 case BuiltinType::OCLQueue: 6659 return OCLTK_Queue; 6660 6661 case BuiltinType::OCLReserveID: 6662 return OCLTK_ReserveID; 6663 6664 case BuiltinType::OCLSampler: 6665 return OCLTK_Sampler; 6666 6667 default: 6668 return OCLTK_Default; 6669 } 6670 } 6671 6672 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { 6673 return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); 6674 } 6675 6676 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" 6677 /// requires copy/dispose. Note that this must match the logic 6678 /// in buildByrefHelpers. 6679 bool ASTContext::BlockRequiresCopying(QualType Ty, 6680 const VarDecl *D) { 6681 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { 6682 const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr(); 6683 if (!copyExpr && record->hasTrivialDestructor()) return false; 6684 6685 return true; 6686 } 6687 6688 // The block needs copy/destroy helpers if Ty is non-trivial to destructively 6689 // move or destroy. 6690 if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) 6691 return true; 6692 6693 if (!Ty->isObjCRetainableType()) return false; 6694 6695 Qualifiers qs = Ty.getQualifiers(); 6696 6697 // If we have lifetime, that dominates. 6698 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { 6699 switch (lifetime) { 6700 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 6701 6702 // These are just bits as far as the runtime is concerned. 6703 case Qualifiers::OCL_ExplicitNone: 6704 case Qualifiers::OCL_Autoreleasing: 6705 return false; 6706 6707 // These cases should have been taken care of when checking the type's 6708 // non-triviality. 6709 case Qualifiers::OCL_Weak: 6710 case Qualifiers::OCL_Strong: 6711 llvm_unreachable("impossible"); 6712 } 6713 llvm_unreachable("fell out of lifetime switch!"); 6714 } 6715 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || 6716 Ty->isObjCObjectPointerType()); 6717 } 6718 6719 bool ASTContext::getByrefLifetime(QualType Ty, 6720 Qualifiers::ObjCLifetime &LifeTime, 6721 bool &HasByrefExtendedLayout) const { 6722 if (!getLangOpts().ObjC || 6723 getLangOpts().getGC() != LangOptions::NonGC) 6724 return false; 6725 6726 HasByrefExtendedLayout = false; 6727 if (Ty->isRecordType()) { 6728 HasByrefExtendedLayout = true; 6729 LifeTime = Qualifiers::OCL_None; 6730 } else if ((LifeTime = Ty.getObjCLifetime())) { 6731 // Honor the ARC qualifiers. 6732 } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { 6733 // The MRR rule. 6734 LifeTime = Qualifiers::OCL_ExplicitNone; 6735 } else { 6736 LifeTime = Qualifiers::OCL_None; 6737 } 6738 return true; 6739 } 6740 6741 CanQualType ASTContext::getNSUIntegerType() const { 6742 assert(Target && "Expected target to be initialized"); 6743 const llvm::Triple &T = Target->getTriple(); 6744 // Windows is LLP64 rather than LP64 6745 if (T.isOSWindows() && T.isArch64Bit()) 6746 return UnsignedLongLongTy; 6747 return UnsignedLongTy; 6748 } 6749 6750 CanQualType ASTContext::getNSIntegerType() const { 6751 assert(Target && "Expected target to be initialized"); 6752 const llvm::Triple &T = Target->getTriple(); 6753 // Windows is LLP64 rather than LP64 6754 if (T.isOSWindows() && T.isArch64Bit()) 6755 return LongLongTy; 6756 return LongTy; 6757 } 6758 6759 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { 6760 if (!ObjCInstanceTypeDecl) 6761 ObjCInstanceTypeDecl = 6762 buildImplicitTypedef(getObjCIdType(), "instancetype"); 6763 return ObjCInstanceTypeDecl; 6764 } 6765 6766 // This returns true if a type has been typedefed to BOOL: 6767 // typedef <type> BOOL; 6768 static bool isTypeTypedefedAsBOOL(QualType T) { 6769 if (const auto *TT = dyn_cast<TypedefType>(T)) 6770 if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) 6771 return II->isStr("BOOL"); 6772 6773 return false; 6774 } 6775 6776 /// getObjCEncodingTypeSize returns size of type for objective-c encoding 6777 /// purpose. 6778 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { 6779 if (!type->isIncompleteArrayType() && type->isIncompleteType()) 6780 return CharUnits::Zero(); 6781 6782 CharUnits sz = getTypeSizeInChars(type); 6783 6784 // Make all integer and enum types at least as large as an int 6785 if (sz.isPositive() && type->isIntegralOrEnumerationType()) 6786 sz = std::max(sz, getTypeSizeInChars(IntTy)); 6787 // Treat arrays as pointers, since that's how they're passed in. 6788 else if (type->isArrayType()) 6789 sz = getTypeSizeInChars(VoidPtrTy); 6790 return sz; 6791 } 6792 6793 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { 6794 return getTargetInfo().getCXXABI().isMicrosoft() && 6795 VD->isStaticDataMember() && 6796 VD->getType()->isIntegralOrEnumerationType() && 6797 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); 6798 } 6799 6800 ASTContext::InlineVariableDefinitionKind 6801 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { 6802 if (!VD->isInline()) 6803 return InlineVariableDefinitionKind::None; 6804 6805 // In almost all cases, it's a weak definition. 6806 auto *First = VD->getFirstDecl(); 6807 if (First->isInlineSpecified() || !First->isStaticDataMember()) 6808 return InlineVariableDefinitionKind::Weak; 6809 6810 // If there's a file-context declaration in this translation unit, it's a 6811 // non-discardable definition. 6812 for (auto *D : VD->redecls()) 6813 if (D->getLexicalDeclContext()->isFileContext() && 6814 !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) 6815 return InlineVariableDefinitionKind::Strong; 6816 6817 // If we've not seen one yet, we don't know. 6818 return InlineVariableDefinitionKind::WeakUnknown; 6819 } 6820 6821 static std::string charUnitsToString(const CharUnits &CU) { 6822 return llvm::itostr(CU.getQuantity()); 6823 } 6824 6825 /// getObjCEncodingForBlock - Return the encoded type for this block 6826 /// declaration. 6827 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { 6828 std::string S; 6829 6830 const BlockDecl *Decl = Expr->getBlockDecl(); 6831 QualType BlockTy = 6832 Expr->getType()->castAs<BlockPointerType>()->getPointeeType(); 6833 QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType(); 6834 // Encode result type. 6835 if (getLangOpts().EncodeExtendedBlockSig) 6836 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S, 6837 true /*Extended*/); 6838 else 6839 getObjCEncodingForType(BlockReturnTy, S); 6840 // Compute size of all parameters. 6841 // Start with computing size of a pointer in number of bytes. 6842 // FIXME: There might(should) be a better way of doing this computation! 6843 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 6844 CharUnits ParmOffset = PtrSize; 6845 for (auto PI : Decl->parameters()) { 6846 QualType PType = PI->getType(); 6847 CharUnits sz = getObjCEncodingTypeSize(PType); 6848 if (sz.isZero()) 6849 continue; 6850 assert(sz.isPositive() && "BlockExpr - Incomplete param type"); 6851 ParmOffset += sz; 6852 } 6853 // Size of the argument frame 6854 S += charUnitsToString(ParmOffset); 6855 // Block pointer and offset. 6856 S += "@?0"; 6857 6858 // Argument types. 6859 ParmOffset = PtrSize; 6860 for (auto PVDecl : Decl->parameters()) { 6861 QualType PType = PVDecl->getOriginalType(); 6862 if (const auto *AT = 6863 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 6864 // Use array's original type only if it has known number of 6865 // elements. 6866 if (!isa<ConstantArrayType>(AT)) 6867 PType = PVDecl->getType(); 6868 } else if (PType->isFunctionType()) 6869 PType = PVDecl->getType(); 6870 if (getLangOpts().EncodeExtendedBlockSig) 6871 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, 6872 S, true /*Extended*/); 6873 else 6874 getObjCEncodingForType(PType, S); 6875 S += charUnitsToString(ParmOffset); 6876 ParmOffset += getObjCEncodingTypeSize(PType); 6877 } 6878 6879 return S; 6880 } 6881 6882 std::string 6883 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { 6884 std::string S; 6885 // Encode result type. 6886 getObjCEncodingForType(Decl->getReturnType(), S); 6887 CharUnits ParmOffset; 6888 // Compute size of all parameters. 6889 for (auto PI : Decl->parameters()) { 6890 QualType PType = PI->getType(); 6891 CharUnits sz = getObjCEncodingTypeSize(PType); 6892 if (sz.isZero()) 6893 continue; 6894 6895 assert(sz.isPositive() && 6896 "getObjCEncodingForFunctionDecl - Incomplete param type"); 6897 ParmOffset += sz; 6898 } 6899 S += charUnitsToString(ParmOffset); 6900 ParmOffset = CharUnits::Zero(); 6901 6902 // Argument types. 6903 for (auto PVDecl : Decl->parameters()) { 6904 QualType PType = PVDecl->getOriginalType(); 6905 if (const auto *AT = 6906 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 6907 // Use array's original type only if it has known number of 6908 // elements. 6909 if (!isa<ConstantArrayType>(AT)) 6910 PType = PVDecl->getType(); 6911 } else if (PType->isFunctionType()) 6912 PType = PVDecl->getType(); 6913 getObjCEncodingForType(PType, S); 6914 S += charUnitsToString(ParmOffset); 6915 ParmOffset += getObjCEncodingTypeSize(PType); 6916 } 6917 6918 return S; 6919 } 6920 6921 /// getObjCEncodingForMethodParameter - Return the encoded type for a single 6922 /// method parameter or return type. If Extended, include class names and 6923 /// block object types. 6924 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, 6925 QualType T, std::string& S, 6926 bool Extended) const { 6927 // Encode type qualifer, 'in', 'inout', etc. for the parameter. 6928 getObjCEncodingForTypeQualifier(QT, S); 6929 // Encode parameter type. 6930 ObjCEncOptions Options = ObjCEncOptions() 6931 .setExpandPointedToStructures() 6932 .setExpandStructures() 6933 .setIsOutermostType(); 6934 if (Extended) 6935 Options.setEncodeBlockParameters().setEncodeClassNames(); 6936 getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr); 6937 } 6938 6939 /// getObjCEncodingForMethodDecl - Return the encoded type for this method 6940 /// declaration. 6941 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, 6942 bool Extended) const { 6943 // FIXME: This is not very efficient. 6944 // Encode return type. 6945 std::string S; 6946 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), 6947 Decl->getReturnType(), S, Extended); 6948 // Compute size of all parameters. 6949 // Start with computing size of a pointer in number of bytes. 6950 // FIXME: There might(should) be a better way of doing this computation! 6951 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 6952 // The first two arguments (self and _cmd) are pointers; account for 6953 // their size. 6954 CharUnits ParmOffset = 2 * PtrSize; 6955 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 6956 E = Decl->sel_param_end(); PI != E; ++PI) { 6957 QualType PType = (*PI)->getType(); 6958 CharUnits sz = getObjCEncodingTypeSize(PType); 6959 if (sz.isZero()) 6960 continue; 6961 6962 assert(sz.isPositive() && 6963 "getObjCEncodingForMethodDecl - Incomplete param type"); 6964 ParmOffset += sz; 6965 } 6966 S += charUnitsToString(ParmOffset); 6967 S += "@0:"; 6968 S += charUnitsToString(PtrSize); 6969 6970 // Argument types. 6971 ParmOffset = 2 * PtrSize; 6972 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 6973 E = Decl->sel_param_end(); PI != E; ++PI) { 6974 const ParmVarDecl *PVDecl = *PI; 6975 QualType PType = PVDecl->getOriginalType(); 6976 if (const auto *AT = 6977 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 6978 // Use array's original type only if it has known number of 6979 // elements. 6980 if (!isa<ConstantArrayType>(AT)) 6981 PType = PVDecl->getType(); 6982 } else if (PType->isFunctionType()) 6983 PType = PVDecl->getType(); 6984 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), 6985 PType, S, Extended); 6986 S += charUnitsToString(ParmOffset); 6987 ParmOffset += getObjCEncodingTypeSize(PType); 6988 } 6989 6990 return S; 6991 } 6992 6993 ObjCPropertyImplDecl * 6994 ASTContext::getObjCPropertyImplDeclForPropertyDecl( 6995 const ObjCPropertyDecl *PD, 6996 const Decl *Container) const { 6997 if (!Container) 6998 return nullptr; 6999 if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) { 7000 for (auto *PID : CID->property_impls()) 7001 if (PID->getPropertyDecl() == PD) 7002 return PID; 7003 } else { 7004 const auto *OID = cast<ObjCImplementationDecl>(Container); 7005 for (auto *PID : OID->property_impls()) 7006 if (PID->getPropertyDecl() == PD) 7007 return PID; 7008 } 7009 return nullptr; 7010 } 7011 7012 /// getObjCEncodingForPropertyDecl - Return the encoded type for this 7013 /// property declaration. If non-NULL, Container must be either an 7014 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be 7015 /// NULL when getting encodings for protocol properties. 7016 /// Property attributes are stored as a comma-delimited C string. The simple 7017 /// attributes readonly and bycopy are encoded as single characters. The 7018 /// parametrized attributes, getter=name, setter=name, and ivar=name, are 7019 /// encoded as single characters, followed by an identifier. Property types 7020 /// are also encoded as a parametrized attribute. The characters used to encode 7021 /// these attributes are defined by the following enumeration: 7022 /// @code 7023 /// enum PropertyAttributes { 7024 /// kPropertyReadOnly = 'R', // property is read-only. 7025 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned 7026 /// kPropertyByref = '&', // property is a reference to the value last assigned 7027 /// kPropertyDynamic = 'D', // property is dynamic 7028 /// kPropertyGetter = 'G', // followed by getter selector name 7029 /// kPropertySetter = 'S', // followed by setter selector name 7030 /// kPropertyInstanceVariable = 'V' // followed by instance variable name 7031 /// kPropertyType = 'T' // followed by old-style type encoding. 7032 /// kPropertyWeak = 'W' // 'weak' property 7033 /// kPropertyStrong = 'P' // property GC'able 7034 /// kPropertyNonAtomic = 'N' // property non-atomic 7035 /// }; 7036 /// @endcode 7037 std::string 7038 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, 7039 const Decl *Container) const { 7040 // Collect information from the property implementation decl(s). 7041 bool Dynamic = false; 7042 ObjCPropertyImplDecl *SynthesizePID = nullptr; 7043 7044 if (ObjCPropertyImplDecl *PropertyImpDecl = 7045 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { 7046 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) 7047 Dynamic = true; 7048 else 7049 SynthesizePID = PropertyImpDecl; 7050 } 7051 7052 // FIXME: This is not very efficient. 7053 std::string S = "T"; 7054 7055 // Encode result type. 7056 // GCC has some special rules regarding encoding of properties which 7057 // closely resembles encoding of ivars. 7058 getObjCEncodingForPropertyType(PD->getType(), S); 7059 7060 if (PD->isReadOnly()) { 7061 S += ",R"; 7062 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy) 7063 S += ",C"; 7064 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain) 7065 S += ",&"; 7066 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) 7067 S += ",W"; 7068 } else { 7069 switch (PD->getSetterKind()) { 7070 case ObjCPropertyDecl::Assign: break; 7071 case ObjCPropertyDecl::Copy: S += ",C"; break; 7072 case ObjCPropertyDecl::Retain: S += ",&"; break; 7073 case ObjCPropertyDecl::Weak: S += ",W"; break; 7074 } 7075 } 7076 7077 // It really isn't clear at all what this means, since properties 7078 // are "dynamic by default". 7079 if (Dynamic) 7080 S += ",D"; 7081 7082 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic) 7083 S += ",N"; 7084 7085 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) { 7086 S += ",G"; 7087 S += PD->getGetterName().getAsString(); 7088 } 7089 7090 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) { 7091 S += ",S"; 7092 S += PD->getSetterName().getAsString(); 7093 } 7094 7095 if (SynthesizePID) { 7096 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); 7097 S += ",V"; 7098 S += OID->getNameAsString(); 7099 } 7100 7101 // FIXME: OBJCGC: weak & strong 7102 return S; 7103 } 7104 7105 /// getLegacyIntegralTypeEncoding - 7106 /// Another legacy compatibility encoding: 32-bit longs are encoded as 7107 /// 'l' or 'L' , but not always. For typedefs, we need to use 7108 /// 'i' or 'I' instead if encoding a struct field, or a pointer! 7109 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { 7110 if (isa<TypedefType>(PointeeTy.getTypePtr())) { 7111 if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { 7112 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) 7113 PointeeTy = UnsignedIntTy; 7114 else 7115 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) 7116 PointeeTy = IntTy; 7117 } 7118 } 7119 } 7120 7121 void ASTContext::getObjCEncodingForType(QualType T, std::string& S, 7122 const FieldDecl *Field, 7123 QualType *NotEncodedT) const { 7124 // We follow the behavior of gcc, expanding structures which are 7125 // directly pointed to, and expanding embedded structures. Note that 7126 // these rules are sufficient to prevent recursive encoding of the 7127 // same type. 7128 getObjCEncodingForTypeImpl(T, S, 7129 ObjCEncOptions() 7130 .setExpandPointedToStructures() 7131 .setExpandStructures() 7132 .setIsOutermostType(), 7133 Field, NotEncodedT); 7134 } 7135 7136 void ASTContext::getObjCEncodingForPropertyType(QualType T, 7137 std::string& S) const { 7138 // Encode result type. 7139 // GCC has some special rules regarding encoding of properties which 7140 // closely resembles encoding of ivars. 7141 getObjCEncodingForTypeImpl(T, S, 7142 ObjCEncOptions() 7143 .setExpandPointedToStructures() 7144 .setExpandStructures() 7145 .setIsOutermostType() 7146 .setEncodingProperty(), 7147 /*Field=*/nullptr); 7148 } 7149 7150 static char getObjCEncodingForPrimitiveType(const ASTContext *C, 7151 const BuiltinType *BT) { 7152 BuiltinType::Kind kind = BT->getKind(); 7153 switch (kind) { 7154 case BuiltinType::Void: return 'v'; 7155 case BuiltinType::Bool: return 'B'; 7156 case BuiltinType::Char8: 7157 case BuiltinType::Char_U: 7158 case BuiltinType::UChar: return 'C'; 7159 case BuiltinType::Char16: 7160 case BuiltinType::UShort: return 'S'; 7161 case BuiltinType::Char32: 7162 case BuiltinType::UInt: return 'I'; 7163 case BuiltinType::ULong: 7164 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; 7165 case BuiltinType::UInt128: return 'T'; 7166 case BuiltinType::ULongLong: return 'Q'; 7167 case BuiltinType::Char_S: 7168 case BuiltinType::SChar: return 'c'; 7169 case BuiltinType::Short: return 's'; 7170 case BuiltinType::WChar_S: 7171 case BuiltinType::WChar_U: 7172 case BuiltinType::Int: return 'i'; 7173 case BuiltinType::Long: 7174 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; 7175 case BuiltinType::LongLong: return 'q'; 7176 case BuiltinType::Int128: return 't'; 7177 case BuiltinType::Float: return 'f'; 7178 case BuiltinType::Double: return 'd'; 7179 case BuiltinType::LongDouble: return 'D'; 7180 case BuiltinType::NullPtr: return '*'; // like char* 7181 7182 case BuiltinType::BFloat16: 7183 case BuiltinType::Float16: 7184 case BuiltinType::Float128: 7185 case BuiltinType::Half: 7186 case BuiltinType::ShortAccum: 7187 case BuiltinType::Accum: 7188 case BuiltinType::LongAccum: 7189 case BuiltinType::UShortAccum: 7190 case BuiltinType::UAccum: 7191 case BuiltinType::ULongAccum: 7192 case BuiltinType::ShortFract: 7193 case BuiltinType::Fract: 7194 case BuiltinType::LongFract: 7195 case BuiltinType::UShortFract: 7196 case BuiltinType::UFract: 7197 case BuiltinType::ULongFract: 7198 case BuiltinType::SatShortAccum: 7199 case BuiltinType::SatAccum: 7200 case BuiltinType::SatLongAccum: 7201 case BuiltinType::SatUShortAccum: 7202 case BuiltinType::SatUAccum: 7203 case BuiltinType::SatULongAccum: 7204 case BuiltinType::SatShortFract: 7205 case BuiltinType::SatFract: 7206 case BuiltinType::SatLongFract: 7207 case BuiltinType::SatUShortFract: 7208 case BuiltinType::SatUFract: 7209 case BuiltinType::SatULongFract: 7210 // FIXME: potentially need @encodes for these! 7211 return ' '; 7212 7213 #define SVE_TYPE(Name, Id, SingletonId) \ 7214 case BuiltinType::Id: 7215 #include "clang/Basic/AArch64SVEACLETypes.def" 7216 { 7217 DiagnosticsEngine &Diags = C->getDiagnostics(); 7218 unsigned DiagID = Diags.getCustomDiagID( 7219 DiagnosticsEngine::Error, "cannot yet @encode type %0"); 7220 Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy()); 7221 return ' '; 7222 } 7223 7224 case BuiltinType::ObjCId: 7225 case BuiltinType::ObjCClass: 7226 case BuiltinType::ObjCSel: 7227 llvm_unreachable("@encoding ObjC primitive type"); 7228 7229 // OpenCL and placeholder types don't need @encodings. 7230 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 7231 case BuiltinType::Id: 7232 #include "clang/Basic/OpenCLImageTypes.def" 7233 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 7234 case BuiltinType::Id: 7235 #include "clang/Basic/OpenCLExtensionTypes.def" 7236 case BuiltinType::OCLEvent: 7237 case BuiltinType::OCLClkEvent: 7238 case BuiltinType::OCLQueue: 7239 case BuiltinType::OCLReserveID: 7240 case BuiltinType::OCLSampler: 7241 case BuiltinType::Dependent: 7242 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 7243 case BuiltinType::Id: 7244 #include "clang/Basic/PPCTypes.def" 7245 #define BUILTIN_TYPE(KIND, ID) 7246 #define PLACEHOLDER_TYPE(KIND, ID) \ 7247 case BuiltinType::KIND: 7248 #include "clang/AST/BuiltinTypes.def" 7249 llvm_unreachable("invalid builtin type for @encode"); 7250 } 7251 llvm_unreachable("invalid BuiltinType::Kind value"); 7252 } 7253 7254 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { 7255 EnumDecl *Enum = ET->getDecl(); 7256 7257 // The encoding of an non-fixed enum type is always 'i', regardless of size. 7258 if (!Enum->isFixed()) 7259 return 'i'; 7260 7261 // The encoding of a fixed enum type matches its fixed underlying type. 7262 const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); 7263 return getObjCEncodingForPrimitiveType(C, BT); 7264 } 7265 7266 static void EncodeBitField(const ASTContext *Ctx, std::string& S, 7267 QualType T, const FieldDecl *FD) { 7268 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); 7269 S += 'b'; 7270 // The NeXT runtime encodes bit fields as b followed by the number of bits. 7271 // The GNU runtime requires more information; bitfields are encoded as b, 7272 // then the offset (in bits) of the first element, then the type of the 7273 // bitfield, then the size in bits. For example, in this structure: 7274 // 7275 // struct 7276 // { 7277 // int integer; 7278 // int flags:2; 7279 // }; 7280 // On a 32-bit system, the encoding for flags would be b2 for the NeXT 7281 // runtime, but b32i2 for the GNU runtime. The reason for this extra 7282 // information is not especially sensible, but we're stuck with it for 7283 // compatibility with GCC, although providing it breaks anything that 7284 // actually uses runtime introspection and wants to work on both runtimes... 7285 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { 7286 uint64_t Offset; 7287 7288 if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) { 7289 Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr, 7290 IVD); 7291 } else { 7292 const RecordDecl *RD = FD->getParent(); 7293 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); 7294 Offset = RL.getFieldOffset(FD->getFieldIndex()); 7295 } 7296 7297 S += llvm::utostr(Offset); 7298 7299 if (const auto *ET = T->getAs<EnumType>()) 7300 S += ObjCEncodingForEnumType(Ctx, ET); 7301 else { 7302 const auto *BT = T->castAs<BuiltinType>(); 7303 S += getObjCEncodingForPrimitiveType(Ctx, BT); 7304 } 7305 } 7306 S += llvm::utostr(FD->getBitWidthValue(*Ctx)); 7307 } 7308 7309 // FIXME: Use SmallString for accumulating string. 7310 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S, 7311 const ObjCEncOptions Options, 7312 const FieldDecl *FD, 7313 QualType *NotEncodedT) const { 7314 CanQualType CT = getCanonicalType(T); 7315 switch (CT->getTypeClass()) { 7316 case Type::Builtin: 7317 case Type::Enum: 7318 if (FD && FD->isBitField()) 7319 return EncodeBitField(this, S, T, FD); 7320 if (const auto *BT = dyn_cast<BuiltinType>(CT)) 7321 S += getObjCEncodingForPrimitiveType(this, BT); 7322 else 7323 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); 7324 return; 7325 7326 case Type::Complex: 7327 S += 'j'; 7328 getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S, 7329 ObjCEncOptions(), 7330 /*Field=*/nullptr); 7331 return; 7332 7333 case Type::Atomic: 7334 S += 'A'; 7335 getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S, 7336 ObjCEncOptions(), 7337 /*Field=*/nullptr); 7338 return; 7339 7340 // encoding for pointer or reference types. 7341 case Type::Pointer: 7342 case Type::LValueReference: 7343 case Type::RValueReference: { 7344 QualType PointeeTy; 7345 if (isa<PointerType>(CT)) { 7346 const auto *PT = T->castAs<PointerType>(); 7347 if (PT->isObjCSelType()) { 7348 S += ':'; 7349 return; 7350 } 7351 PointeeTy = PT->getPointeeType(); 7352 } else { 7353 PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); 7354 } 7355 7356 bool isReadOnly = false; 7357 // For historical/compatibility reasons, the read-only qualifier of the 7358 // pointee gets emitted _before_ the '^'. The read-only qualifier of 7359 // the pointer itself gets ignored, _unless_ we are looking at a typedef! 7360 // Also, do not emit the 'r' for anything but the outermost type! 7361 if (isa<TypedefType>(T.getTypePtr())) { 7362 if (Options.IsOutermostType() && T.isConstQualified()) { 7363 isReadOnly = true; 7364 S += 'r'; 7365 } 7366 } else if (Options.IsOutermostType()) { 7367 QualType P = PointeeTy; 7368 while (auto PT = P->getAs<PointerType>()) 7369 P = PT->getPointeeType(); 7370 if (P.isConstQualified()) { 7371 isReadOnly = true; 7372 S += 'r'; 7373 } 7374 } 7375 if (isReadOnly) { 7376 // Another legacy compatibility encoding. Some ObjC qualifier and type 7377 // combinations need to be rearranged. 7378 // Rewrite "in const" from "nr" to "rn" 7379 if (StringRef(S).endswith("nr")) 7380 S.replace(S.end()-2, S.end(), "rn"); 7381 } 7382 7383 if (PointeeTy->isCharType()) { 7384 // char pointer types should be encoded as '*' unless it is a 7385 // type that has been typedef'd to 'BOOL'. 7386 if (!isTypeTypedefedAsBOOL(PointeeTy)) { 7387 S += '*'; 7388 return; 7389 } 7390 } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) { 7391 // GCC binary compat: Need to convert "struct objc_class *" to "#". 7392 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { 7393 S += '#'; 7394 return; 7395 } 7396 // GCC binary compat: Need to convert "struct objc_object *" to "@". 7397 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { 7398 S += '@'; 7399 return; 7400 } 7401 // fall through... 7402 } 7403 S += '^'; 7404 getLegacyIntegralTypeEncoding(PointeeTy); 7405 7406 ObjCEncOptions NewOptions; 7407 if (Options.ExpandPointedToStructures()) 7408 NewOptions.setExpandStructures(); 7409 getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions, 7410 /*Field=*/nullptr, NotEncodedT); 7411 return; 7412 } 7413 7414 case Type::ConstantArray: 7415 case Type::IncompleteArray: 7416 case Type::VariableArray: { 7417 const auto *AT = cast<ArrayType>(CT); 7418 7419 if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) { 7420 // Incomplete arrays are encoded as a pointer to the array element. 7421 S += '^'; 7422 7423 getObjCEncodingForTypeImpl( 7424 AT->getElementType(), S, 7425 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD); 7426 } else { 7427 S += '['; 7428 7429 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 7430 S += llvm::utostr(CAT->getSize().getZExtValue()); 7431 else { 7432 //Variable length arrays are encoded as a regular array with 0 elements. 7433 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && 7434 "Unknown array type!"); 7435 S += '0'; 7436 } 7437 7438 getObjCEncodingForTypeImpl( 7439 AT->getElementType(), S, 7440 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD, 7441 NotEncodedT); 7442 S += ']'; 7443 } 7444 return; 7445 } 7446 7447 case Type::FunctionNoProto: 7448 case Type::FunctionProto: 7449 S += '?'; 7450 return; 7451 7452 case Type::Record: { 7453 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); 7454 S += RDecl->isUnion() ? '(' : '{'; 7455 // Anonymous structures print as '?' 7456 if (const IdentifierInfo *II = RDecl->getIdentifier()) { 7457 S += II->getName(); 7458 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { 7459 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 7460 llvm::raw_string_ostream OS(S); 7461 printTemplateArgumentList(OS, TemplateArgs.asArray(), 7462 getPrintingPolicy()); 7463 } 7464 } else { 7465 S += '?'; 7466 } 7467 if (Options.ExpandStructures()) { 7468 S += '='; 7469 if (!RDecl->isUnion()) { 7470 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); 7471 } else { 7472 for (const auto *Field : RDecl->fields()) { 7473 if (FD) { 7474 S += '"'; 7475 S += Field->getNameAsString(); 7476 S += '"'; 7477 } 7478 7479 // Special case bit-fields. 7480 if (Field->isBitField()) { 7481 getObjCEncodingForTypeImpl(Field->getType(), S, 7482 ObjCEncOptions().setExpandStructures(), 7483 Field); 7484 } else { 7485 QualType qt = Field->getType(); 7486 getLegacyIntegralTypeEncoding(qt); 7487 getObjCEncodingForTypeImpl( 7488 qt, S, 7489 ObjCEncOptions().setExpandStructures().setIsStructField(), FD, 7490 NotEncodedT); 7491 } 7492 } 7493 } 7494 } 7495 S += RDecl->isUnion() ? ')' : '}'; 7496 return; 7497 } 7498 7499 case Type::BlockPointer: { 7500 const auto *BT = T->castAs<BlockPointerType>(); 7501 S += "@?"; // Unlike a pointer-to-function, which is "^?". 7502 if (Options.EncodeBlockParameters()) { 7503 const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); 7504 7505 S += '<'; 7506 // Block return type 7507 getObjCEncodingForTypeImpl(FT->getReturnType(), S, 7508 Options.forComponentType(), FD, NotEncodedT); 7509 // Block self 7510 S += "@?"; 7511 // Block parameters 7512 if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) { 7513 for (const auto &I : FPT->param_types()) 7514 getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD, 7515 NotEncodedT); 7516 } 7517 S += '>'; 7518 } 7519 return; 7520 } 7521 7522 case Type::ObjCObject: { 7523 // hack to match legacy encoding of *id and *Class 7524 QualType Ty = getObjCObjectPointerType(CT); 7525 if (Ty->isObjCIdType()) { 7526 S += "{objc_object=}"; 7527 return; 7528 } 7529 else if (Ty->isObjCClassType()) { 7530 S += "{objc_class=}"; 7531 return; 7532 } 7533 // TODO: Double check to make sure this intentionally falls through. 7534 LLVM_FALLTHROUGH; 7535 } 7536 7537 case Type::ObjCInterface: { 7538 // Ignore protocol qualifiers when mangling at this level. 7539 // @encode(class_name) 7540 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); 7541 S += '{'; 7542 S += OI->getObjCRuntimeNameAsString(); 7543 if (Options.ExpandStructures()) { 7544 S += '='; 7545 SmallVector<const ObjCIvarDecl*, 32> Ivars; 7546 DeepCollectObjCIvars(OI, true, Ivars); 7547 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 7548 const FieldDecl *Field = Ivars[i]; 7549 if (Field->isBitField()) 7550 getObjCEncodingForTypeImpl(Field->getType(), S, 7551 ObjCEncOptions().setExpandStructures(), 7552 Field); 7553 else 7554 getObjCEncodingForTypeImpl(Field->getType(), S, 7555 ObjCEncOptions().setExpandStructures(), FD, 7556 NotEncodedT); 7557 } 7558 } 7559 S += '}'; 7560 return; 7561 } 7562 7563 case Type::ObjCObjectPointer: { 7564 const auto *OPT = T->castAs<ObjCObjectPointerType>(); 7565 if (OPT->isObjCIdType()) { 7566 S += '@'; 7567 return; 7568 } 7569 7570 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { 7571 // FIXME: Consider if we need to output qualifiers for 'Class<p>'. 7572 // Since this is a binary compatibility issue, need to consult with 7573 // runtime folks. Fortunately, this is a *very* obscure construct. 7574 S += '#'; 7575 return; 7576 } 7577 7578 if (OPT->isObjCQualifiedIdType()) { 7579 getObjCEncodingForTypeImpl( 7580 getObjCIdType(), S, 7581 Options.keepingOnly(ObjCEncOptions() 7582 .setExpandPointedToStructures() 7583 .setExpandStructures()), 7584 FD); 7585 if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) { 7586 // Note that we do extended encoding of protocol qualifer list 7587 // Only when doing ivar or property encoding. 7588 S += '"'; 7589 for (const auto *I : OPT->quals()) { 7590 S += '<'; 7591 S += I->getObjCRuntimeNameAsString(); 7592 S += '>'; 7593 } 7594 S += '"'; 7595 } 7596 return; 7597 } 7598 7599 S += '@'; 7600 if (OPT->getInterfaceDecl() && 7601 (FD || Options.EncodingProperty() || Options.EncodeClassNames())) { 7602 S += '"'; 7603 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); 7604 for (const auto *I : OPT->quals()) { 7605 S += '<'; 7606 S += I->getObjCRuntimeNameAsString(); 7607 S += '>'; 7608 } 7609 S += '"'; 7610 } 7611 return; 7612 } 7613 7614 // gcc just blithely ignores member pointers. 7615 // FIXME: we should do better than that. 'M' is available. 7616 case Type::MemberPointer: 7617 // This matches gcc's encoding, even though technically it is insufficient. 7618 //FIXME. We should do a better job than gcc. 7619 case Type::Vector: 7620 case Type::ExtVector: 7621 // Until we have a coherent encoding of these three types, issue warning. 7622 if (NotEncodedT) 7623 *NotEncodedT = T; 7624 return; 7625 7626 case Type::ConstantMatrix: 7627 if (NotEncodedT) 7628 *NotEncodedT = T; 7629 return; 7630 7631 // We could see an undeduced auto type here during error recovery. 7632 // Just ignore it. 7633 case Type::Auto: 7634 case Type::DeducedTemplateSpecialization: 7635 return; 7636 7637 case Type::Pipe: 7638 case Type::ExtInt: 7639 #define ABSTRACT_TYPE(KIND, BASE) 7640 #define TYPE(KIND, BASE) 7641 #define DEPENDENT_TYPE(KIND, BASE) \ 7642 case Type::KIND: 7643 #define NON_CANONICAL_TYPE(KIND, BASE) \ 7644 case Type::KIND: 7645 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ 7646 case Type::KIND: 7647 #include "clang/AST/TypeNodes.inc" 7648 llvm_unreachable("@encode for dependent type!"); 7649 } 7650 llvm_unreachable("bad type kind!"); 7651 } 7652 7653 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, 7654 std::string &S, 7655 const FieldDecl *FD, 7656 bool includeVBases, 7657 QualType *NotEncodedT) const { 7658 assert(RDecl && "Expected non-null RecordDecl"); 7659 assert(!RDecl->isUnion() && "Should not be called for unions"); 7660 if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) 7661 return; 7662 7663 const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); 7664 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; 7665 const ASTRecordLayout &layout = getASTRecordLayout(RDecl); 7666 7667 if (CXXRec) { 7668 for (const auto &BI : CXXRec->bases()) { 7669 if (!BI.isVirtual()) { 7670 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 7671 if (base->isEmpty()) 7672 continue; 7673 uint64_t offs = toBits(layout.getBaseClassOffset(base)); 7674 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 7675 std::make_pair(offs, base)); 7676 } 7677 } 7678 } 7679 7680 unsigned i = 0; 7681 for (FieldDecl *Field : RDecl->fields()) { 7682 if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this)) 7683 continue; 7684 uint64_t offs = layout.getFieldOffset(i); 7685 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 7686 std::make_pair(offs, Field)); 7687 ++i; 7688 } 7689 7690 if (CXXRec && includeVBases) { 7691 for (const auto &BI : CXXRec->vbases()) { 7692 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 7693 if (base->isEmpty()) 7694 continue; 7695 uint64_t offs = toBits(layout.getVBaseClassOffset(base)); 7696 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && 7697 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) 7698 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), 7699 std::make_pair(offs, base)); 7700 } 7701 } 7702 7703 CharUnits size; 7704 if (CXXRec) { 7705 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); 7706 } else { 7707 size = layout.getSize(); 7708 } 7709 7710 #ifndef NDEBUG 7711 uint64_t CurOffs = 0; 7712 #endif 7713 std::multimap<uint64_t, NamedDecl *>::iterator 7714 CurLayObj = FieldOrBaseOffsets.begin(); 7715 7716 if (CXXRec && CXXRec->isDynamicClass() && 7717 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { 7718 if (FD) { 7719 S += "\"_vptr$"; 7720 std::string recname = CXXRec->getNameAsString(); 7721 if (recname.empty()) recname = "?"; 7722 S += recname; 7723 S += '"'; 7724 } 7725 S += "^^?"; 7726 #ifndef NDEBUG 7727 CurOffs += getTypeSize(VoidPtrTy); 7728 #endif 7729 } 7730 7731 if (!RDecl->hasFlexibleArrayMember()) { 7732 // Mark the end of the structure. 7733 uint64_t offs = toBits(size); 7734 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 7735 std::make_pair(offs, nullptr)); 7736 } 7737 7738 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { 7739 #ifndef NDEBUG 7740 assert(CurOffs <= CurLayObj->first); 7741 if (CurOffs < CurLayObj->first) { 7742 uint64_t padding = CurLayObj->first - CurOffs; 7743 // FIXME: There doesn't seem to be a way to indicate in the encoding that 7744 // packing/alignment of members is different that normal, in which case 7745 // the encoding will be out-of-sync with the real layout. 7746 // If the runtime switches to just consider the size of types without 7747 // taking into account alignment, we could make padding explicit in the 7748 // encoding (e.g. using arrays of chars). The encoding strings would be 7749 // longer then though. 7750 CurOffs += padding; 7751 } 7752 #endif 7753 7754 NamedDecl *dcl = CurLayObj->second; 7755 if (!dcl) 7756 break; // reached end of structure. 7757 7758 if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) { 7759 // We expand the bases without their virtual bases since those are going 7760 // in the initial structure. Note that this differs from gcc which 7761 // expands virtual bases each time one is encountered in the hierarchy, 7762 // making the encoding type bigger than it really is. 7763 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, 7764 NotEncodedT); 7765 assert(!base->isEmpty()); 7766 #ifndef NDEBUG 7767 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); 7768 #endif 7769 } else { 7770 const auto *field = cast<FieldDecl>(dcl); 7771 if (FD) { 7772 S += '"'; 7773 S += field->getNameAsString(); 7774 S += '"'; 7775 } 7776 7777 if (field->isBitField()) { 7778 EncodeBitField(this, S, field->getType(), field); 7779 #ifndef NDEBUG 7780 CurOffs += field->getBitWidthValue(*this); 7781 #endif 7782 } else { 7783 QualType qt = field->getType(); 7784 getLegacyIntegralTypeEncoding(qt); 7785 getObjCEncodingForTypeImpl( 7786 qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(), 7787 FD, NotEncodedT); 7788 #ifndef NDEBUG 7789 CurOffs += getTypeSize(field->getType()); 7790 #endif 7791 } 7792 } 7793 } 7794 } 7795 7796 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 7797 std::string& S) const { 7798 if (QT & Decl::OBJC_TQ_In) 7799 S += 'n'; 7800 if (QT & Decl::OBJC_TQ_Inout) 7801 S += 'N'; 7802 if (QT & Decl::OBJC_TQ_Out) 7803 S += 'o'; 7804 if (QT & Decl::OBJC_TQ_Bycopy) 7805 S += 'O'; 7806 if (QT & Decl::OBJC_TQ_Byref) 7807 S += 'R'; 7808 if (QT & Decl::OBJC_TQ_Oneway) 7809 S += 'V'; 7810 } 7811 7812 TypedefDecl *ASTContext::getObjCIdDecl() const { 7813 if (!ObjCIdDecl) { 7814 QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {}); 7815 T = getObjCObjectPointerType(T); 7816 ObjCIdDecl = buildImplicitTypedef(T, "id"); 7817 } 7818 return ObjCIdDecl; 7819 } 7820 7821 TypedefDecl *ASTContext::getObjCSelDecl() const { 7822 if (!ObjCSelDecl) { 7823 QualType T = getPointerType(ObjCBuiltinSelTy); 7824 ObjCSelDecl = buildImplicitTypedef(T, "SEL"); 7825 } 7826 return ObjCSelDecl; 7827 } 7828 7829 TypedefDecl *ASTContext::getObjCClassDecl() const { 7830 if (!ObjCClassDecl) { 7831 QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {}); 7832 T = getObjCObjectPointerType(T); 7833 ObjCClassDecl = buildImplicitTypedef(T, "Class"); 7834 } 7835 return ObjCClassDecl; 7836 } 7837 7838 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { 7839 if (!ObjCProtocolClassDecl) { 7840 ObjCProtocolClassDecl 7841 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), 7842 SourceLocation(), 7843 &Idents.get("Protocol"), 7844 /*typeParamList=*/nullptr, 7845 /*PrevDecl=*/nullptr, 7846 SourceLocation(), true); 7847 } 7848 7849 return ObjCProtocolClassDecl; 7850 } 7851 7852 //===----------------------------------------------------------------------===// 7853 // __builtin_va_list Construction Functions 7854 //===----------------------------------------------------------------------===// 7855 7856 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, 7857 StringRef Name) { 7858 // typedef char* __builtin[_ms]_va_list; 7859 QualType T = Context->getPointerType(Context->CharTy); 7860 return Context->buildImplicitTypedef(T, Name); 7861 } 7862 7863 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { 7864 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list"); 7865 } 7866 7867 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { 7868 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list"); 7869 } 7870 7871 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { 7872 // typedef void* __builtin_va_list; 7873 QualType T = Context->getPointerType(Context->VoidTy); 7874 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 7875 } 7876 7877 static TypedefDecl * 7878 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { 7879 // struct __va_list 7880 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); 7881 if (Context->getLangOpts().CPlusPlus) { 7882 // namespace std { struct __va_list { 7883 NamespaceDecl *NS; 7884 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 7885 Context->getTranslationUnitDecl(), 7886 /*Inline*/ false, SourceLocation(), 7887 SourceLocation(), &Context->Idents.get("std"), 7888 /*PrevDecl*/ nullptr); 7889 NS->setImplicit(); 7890 VaListTagDecl->setDeclContext(NS); 7891 } 7892 7893 VaListTagDecl->startDefinition(); 7894 7895 const size_t NumFields = 5; 7896 QualType FieldTypes[NumFields]; 7897 const char *FieldNames[NumFields]; 7898 7899 // void *__stack; 7900 FieldTypes[0] = Context->getPointerType(Context->VoidTy); 7901 FieldNames[0] = "__stack"; 7902 7903 // void *__gr_top; 7904 FieldTypes[1] = Context->getPointerType(Context->VoidTy); 7905 FieldNames[1] = "__gr_top"; 7906 7907 // void *__vr_top; 7908 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 7909 FieldNames[2] = "__vr_top"; 7910 7911 // int __gr_offs; 7912 FieldTypes[3] = Context->IntTy; 7913 FieldNames[3] = "__gr_offs"; 7914 7915 // int __vr_offs; 7916 FieldTypes[4] = Context->IntTy; 7917 FieldNames[4] = "__vr_offs"; 7918 7919 // Create fields 7920 for (unsigned i = 0; i < NumFields; ++i) { 7921 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 7922 VaListTagDecl, 7923 SourceLocation(), 7924 SourceLocation(), 7925 &Context->Idents.get(FieldNames[i]), 7926 FieldTypes[i], /*TInfo=*/nullptr, 7927 /*BitWidth=*/nullptr, 7928 /*Mutable=*/false, 7929 ICIS_NoInit); 7930 Field->setAccess(AS_public); 7931 VaListTagDecl->addDecl(Field); 7932 } 7933 VaListTagDecl->completeDefinition(); 7934 Context->VaListTagDecl = VaListTagDecl; 7935 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 7936 7937 // } __builtin_va_list; 7938 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); 7939 } 7940 7941 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { 7942 // typedef struct __va_list_tag { 7943 RecordDecl *VaListTagDecl; 7944 7945 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 7946 VaListTagDecl->startDefinition(); 7947 7948 const size_t NumFields = 5; 7949 QualType FieldTypes[NumFields]; 7950 const char *FieldNames[NumFields]; 7951 7952 // unsigned char gpr; 7953 FieldTypes[0] = Context->UnsignedCharTy; 7954 FieldNames[0] = "gpr"; 7955 7956 // unsigned char fpr; 7957 FieldTypes[1] = Context->UnsignedCharTy; 7958 FieldNames[1] = "fpr"; 7959 7960 // unsigned short reserved; 7961 FieldTypes[2] = Context->UnsignedShortTy; 7962 FieldNames[2] = "reserved"; 7963 7964 // void* overflow_arg_area; 7965 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 7966 FieldNames[3] = "overflow_arg_area"; 7967 7968 // void* reg_save_area; 7969 FieldTypes[4] = Context->getPointerType(Context->VoidTy); 7970 FieldNames[4] = "reg_save_area"; 7971 7972 // Create fields 7973 for (unsigned i = 0; i < NumFields; ++i) { 7974 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, 7975 SourceLocation(), 7976 SourceLocation(), 7977 &Context->Idents.get(FieldNames[i]), 7978 FieldTypes[i], /*TInfo=*/nullptr, 7979 /*BitWidth=*/nullptr, 7980 /*Mutable=*/false, 7981 ICIS_NoInit); 7982 Field->setAccess(AS_public); 7983 VaListTagDecl->addDecl(Field); 7984 } 7985 VaListTagDecl->completeDefinition(); 7986 Context->VaListTagDecl = VaListTagDecl; 7987 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 7988 7989 // } __va_list_tag; 7990 TypedefDecl *VaListTagTypedefDecl = 7991 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 7992 7993 QualType VaListTagTypedefType = 7994 Context->getTypedefType(VaListTagTypedefDecl); 7995 7996 // typedef __va_list_tag __builtin_va_list[1]; 7997 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 7998 QualType VaListTagArrayType 7999 = Context->getConstantArrayType(VaListTagTypedefType, 8000 Size, nullptr, ArrayType::Normal, 0); 8001 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 8002 } 8003 8004 static TypedefDecl * 8005 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { 8006 // struct __va_list_tag { 8007 RecordDecl *VaListTagDecl; 8008 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 8009 VaListTagDecl->startDefinition(); 8010 8011 const size_t NumFields = 4; 8012 QualType FieldTypes[NumFields]; 8013 const char *FieldNames[NumFields]; 8014 8015 // unsigned gp_offset; 8016 FieldTypes[0] = Context->UnsignedIntTy; 8017 FieldNames[0] = "gp_offset"; 8018 8019 // unsigned fp_offset; 8020 FieldTypes[1] = Context->UnsignedIntTy; 8021 FieldNames[1] = "fp_offset"; 8022 8023 // void* overflow_arg_area; 8024 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 8025 FieldNames[2] = "overflow_arg_area"; 8026 8027 // void* reg_save_area; 8028 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 8029 FieldNames[3] = "reg_save_area"; 8030 8031 // Create fields 8032 for (unsigned i = 0; i < NumFields; ++i) { 8033 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 8034 VaListTagDecl, 8035 SourceLocation(), 8036 SourceLocation(), 8037 &Context->Idents.get(FieldNames[i]), 8038 FieldTypes[i], /*TInfo=*/nullptr, 8039 /*BitWidth=*/nullptr, 8040 /*Mutable=*/false, 8041 ICIS_NoInit); 8042 Field->setAccess(AS_public); 8043 VaListTagDecl->addDecl(Field); 8044 } 8045 VaListTagDecl->completeDefinition(); 8046 Context->VaListTagDecl = VaListTagDecl; 8047 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 8048 8049 // }; 8050 8051 // typedef struct __va_list_tag __builtin_va_list[1]; 8052 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 8053 QualType VaListTagArrayType = Context->getConstantArrayType( 8054 VaListTagType, Size, nullptr, ArrayType::Normal, 0); 8055 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 8056 } 8057 8058 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { 8059 // typedef int __builtin_va_list[4]; 8060 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); 8061 QualType IntArrayType = Context->getConstantArrayType( 8062 Context->IntTy, Size, nullptr, ArrayType::Normal, 0); 8063 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); 8064 } 8065 8066 static TypedefDecl * 8067 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { 8068 // struct __va_list 8069 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); 8070 if (Context->getLangOpts().CPlusPlus) { 8071 // namespace std { struct __va_list { 8072 NamespaceDecl *NS; 8073 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 8074 Context->getTranslationUnitDecl(), 8075 /*Inline*/false, SourceLocation(), 8076 SourceLocation(), &Context->Idents.get("std"), 8077 /*PrevDecl*/ nullptr); 8078 NS->setImplicit(); 8079 VaListDecl->setDeclContext(NS); 8080 } 8081 8082 VaListDecl->startDefinition(); 8083 8084 // void * __ap; 8085 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 8086 VaListDecl, 8087 SourceLocation(), 8088 SourceLocation(), 8089 &Context->Idents.get("__ap"), 8090 Context->getPointerType(Context->VoidTy), 8091 /*TInfo=*/nullptr, 8092 /*BitWidth=*/nullptr, 8093 /*Mutable=*/false, 8094 ICIS_NoInit); 8095 Field->setAccess(AS_public); 8096 VaListDecl->addDecl(Field); 8097 8098 // }; 8099 VaListDecl->completeDefinition(); 8100 Context->VaListTagDecl = VaListDecl; 8101 8102 // typedef struct __va_list __builtin_va_list; 8103 QualType T = Context->getRecordType(VaListDecl); 8104 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 8105 } 8106 8107 static TypedefDecl * 8108 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { 8109 // struct __va_list_tag { 8110 RecordDecl *VaListTagDecl; 8111 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 8112 VaListTagDecl->startDefinition(); 8113 8114 const size_t NumFields = 4; 8115 QualType FieldTypes[NumFields]; 8116 const char *FieldNames[NumFields]; 8117 8118 // long __gpr; 8119 FieldTypes[0] = Context->LongTy; 8120 FieldNames[0] = "__gpr"; 8121 8122 // long __fpr; 8123 FieldTypes[1] = Context->LongTy; 8124 FieldNames[1] = "__fpr"; 8125 8126 // void *__overflow_arg_area; 8127 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 8128 FieldNames[2] = "__overflow_arg_area"; 8129 8130 // void *__reg_save_area; 8131 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 8132 FieldNames[3] = "__reg_save_area"; 8133 8134 // Create fields 8135 for (unsigned i = 0; i < NumFields; ++i) { 8136 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 8137 VaListTagDecl, 8138 SourceLocation(), 8139 SourceLocation(), 8140 &Context->Idents.get(FieldNames[i]), 8141 FieldTypes[i], /*TInfo=*/nullptr, 8142 /*BitWidth=*/nullptr, 8143 /*Mutable=*/false, 8144 ICIS_NoInit); 8145 Field->setAccess(AS_public); 8146 VaListTagDecl->addDecl(Field); 8147 } 8148 VaListTagDecl->completeDefinition(); 8149 Context->VaListTagDecl = VaListTagDecl; 8150 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 8151 8152 // }; 8153 8154 // typedef __va_list_tag __builtin_va_list[1]; 8155 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 8156 QualType VaListTagArrayType = Context->getConstantArrayType( 8157 VaListTagType, Size, nullptr, ArrayType::Normal, 0); 8158 8159 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 8160 } 8161 8162 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) { 8163 // typedef struct __va_list_tag { 8164 RecordDecl *VaListTagDecl; 8165 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 8166 VaListTagDecl->startDefinition(); 8167 8168 const size_t NumFields = 3; 8169 QualType FieldTypes[NumFields]; 8170 const char *FieldNames[NumFields]; 8171 8172 // void *CurrentSavedRegisterArea; 8173 FieldTypes[0] = Context->getPointerType(Context->VoidTy); 8174 FieldNames[0] = "__current_saved_reg_area_pointer"; 8175 8176 // void *SavedRegAreaEnd; 8177 FieldTypes[1] = Context->getPointerType(Context->VoidTy); 8178 FieldNames[1] = "__saved_reg_area_end_pointer"; 8179 8180 // void *OverflowArea; 8181 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 8182 FieldNames[2] = "__overflow_area_pointer"; 8183 8184 // Create fields 8185 for (unsigned i = 0; i < NumFields; ++i) { 8186 FieldDecl *Field = FieldDecl::Create( 8187 const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(), 8188 SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i], 8189 /*TInfo=*/0, 8190 /*BitWidth=*/0, 8191 /*Mutable=*/false, ICIS_NoInit); 8192 Field->setAccess(AS_public); 8193 VaListTagDecl->addDecl(Field); 8194 } 8195 VaListTagDecl->completeDefinition(); 8196 Context->VaListTagDecl = VaListTagDecl; 8197 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 8198 8199 // } __va_list_tag; 8200 TypedefDecl *VaListTagTypedefDecl = 8201 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 8202 8203 QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl); 8204 8205 // typedef __va_list_tag __builtin_va_list[1]; 8206 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 8207 QualType VaListTagArrayType = Context->getConstantArrayType( 8208 VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0); 8209 8210 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 8211 } 8212 8213 static TypedefDecl *CreateVaListDecl(const ASTContext *Context, 8214 TargetInfo::BuiltinVaListKind Kind) { 8215 switch (Kind) { 8216 case TargetInfo::CharPtrBuiltinVaList: 8217 return CreateCharPtrBuiltinVaListDecl(Context); 8218 case TargetInfo::VoidPtrBuiltinVaList: 8219 return CreateVoidPtrBuiltinVaListDecl(Context); 8220 case TargetInfo::AArch64ABIBuiltinVaList: 8221 return CreateAArch64ABIBuiltinVaListDecl(Context); 8222 case TargetInfo::PowerABIBuiltinVaList: 8223 return CreatePowerABIBuiltinVaListDecl(Context); 8224 case TargetInfo::X86_64ABIBuiltinVaList: 8225 return CreateX86_64ABIBuiltinVaListDecl(Context); 8226 case TargetInfo::PNaClABIBuiltinVaList: 8227 return CreatePNaClABIBuiltinVaListDecl(Context); 8228 case TargetInfo::AAPCSABIBuiltinVaList: 8229 return CreateAAPCSABIBuiltinVaListDecl(Context); 8230 case TargetInfo::SystemZBuiltinVaList: 8231 return CreateSystemZBuiltinVaListDecl(Context); 8232 case TargetInfo::HexagonBuiltinVaList: 8233 return CreateHexagonBuiltinVaListDecl(Context); 8234 } 8235 8236 llvm_unreachable("Unhandled __builtin_va_list type kind"); 8237 } 8238 8239 TypedefDecl *ASTContext::getBuiltinVaListDecl() const { 8240 if (!BuiltinVaListDecl) { 8241 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); 8242 assert(BuiltinVaListDecl->isImplicit()); 8243 } 8244 8245 return BuiltinVaListDecl; 8246 } 8247 8248 Decl *ASTContext::getVaListTagDecl() const { 8249 // Force the creation of VaListTagDecl by building the __builtin_va_list 8250 // declaration. 8251 if (!VaListTagDecl) 8252 (void)getBuiltinVaListDecl(); 8253 8254 return VaListTagDecl; 8255 } 8256 8257 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { 8258 if (!BuiltinMSVaListDecl) 8259 BuiltinMSVaListDecl = CreateMSVaListDecl(this); 8260 8261 return BuiltinMSVaListDecl; 8262 } 8263 8264 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { 8265 return BuiltinInfo.canBeRedeclared(FD->getBuiltinID()); 8266 } 8267 8268 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { 8269 assert(ObjCConstantStringType.isNull() && 8270 "'NSConstantString' type already set!"); 8271 8272 ObjCConstantStringType = getObjCInterfaceType(Decl); 8273 } 8274 8275 /// Retrieve the template name that corresponds to a non-empty 8276 /// lookup. 8277 TemplateName 8278 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, 8279 UnresolvedSetIterator End) const { 8280 unsigned size = End - Begin; 8281 assert(size > 1 && "set is not overloaded!"); 8282 8283 void *memory = Allocate(sizeof(OverloadedTemplateStorage) + 8284 size * sizeof(FunctionTemplateDecl*)); 8285 auto *OT = new (memory) OverloadedTemplateStorage(size); 8286 8287 NamedDecl **Storage = OT->getStorage(); 8288 for (UnresolvedSetIterator I = Begin; I != End; ++I) { 8289 NamedDecl *D = *I; 8290 assert(isa<FunctionTemplateDecl>(D) || 8291 isa<UnresolvedUsingValueDecl>(D) || 8292 (isa<UsingShadowDecl>(D) && 8293 isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); 8294 *Storage++ = D; 8295 } 8296 8297 return TemplateName(OT); 8298 } 8299 8300 /// Retrieve a template name representing an unqualified-id that has been 8301 /// assumed to name a template for ADL purposes. 8302 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const { 8303 auto *OT = new (*this) AssumedTemplateStorage(Name); 8304 return TemplateName(OT); 8305 } 8306 8307 /// Retrieve the template name that represents a qualified 8308 /// template name such as \c std::vector. 8309 TemplateName 8310 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, 8311 bool TemplateKeyword, 8312 TemplateDecl *Template) const { 8313 assert(NNS && "Missing nested-name-specifier in qualified template name"); 8314 8315 // FIXME: Canonicalization? 8316 llvm::FoldingSetNodeID ID; 8317 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); 8318 8319 void *InsertPos = nullptr; 8320 QualifiedTemplateName *QTN = 8321 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8322 if (!QTN) { 8323 QTN = new (*this, alignof(QualifiedTemplateName)) 8324 QualifiedTemplateName(NNS, TemplateKeyword, Template); 8325 QualifiedTemplateNames.InsertNode(QTN, InsertPos); 8326 } 8327 8328 return TemplateName(QTN); 8329 } 8330 8331 /// Retrieve the template name that represents a dependent 8332 /// template name such as \c MetaFun::template apply. 8333 TemplateName 8334 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 8335 const IdentifierInfo *Name) const { 8336 assert((!NNS || NNS->isDependent()) && 8337 "Nested name specifier must be dependent"); 8338 8339 llvm::FoldingSetNodeID ID; 8340 DependentTemplateName::Profile(ID, NNS, Name); 8341 8342 void *InsertPos = nullptr; 8343 DependentTemplateName *QTN = 8344 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8345 8346 if (QTN) 8347 return TemplateName(QTN); 8348 8349 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 8350 if (CanonNNS == NNS) { 8351 QTN = new (*this, alignof(DependentTemplateName)) 8352 DependentTemplateName(NNS, Name); 8353 } else { 8354 TemplateName Canon = getDependentTemplateName(CanonNNS, Name); 8355 QTN = new (*this, alignof(DependentTemplateName)) 8356 DependentTemplateName(NNS, Name, Canon); 8357 DependentTemplateName *CheckQTN = 8358 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8359 assert(!CheckQTN && "Dependent type name canonicalization broken"); 8360 (void)CheckQTN; 8361 } 8362 8363 DependentTemplateNames.InsertNode(QTN, InsertPos); 8364 return TemplateName(QTN); 8365 } 8366 8367 /// Retrieve the template name that represents a dependent 8368 /// template name such as \c MetaFun::template operator+. 8369 TemplateName 8370 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 8371 OverloadedOperatorKind Operator) const { 8372 assert((!NNS || NNS->isDependent()) && 8373 "Nested name specifier must be dependent"); 8374 8375 llvm::FoldingSetNodeID ID; 8376 DependentTemplateName::Profile(ID, NNS, Operator); 8377 8378 void *InsertPos = nullptr; 8379 DependentTemplateName *QTN 8380 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8381 8382 if (QTN) 8383 return TemplateName(QTN); 8384 8385 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 8386 if (CanonNNS == NNS) { 8387 QTN = new (*this, alignof(DependentTemplateName)) 8388 DependentTemplateName(NNS, Operator); 8389 } else { 8390 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); 8391 QTN = new (*this, alignof(DependentTemplateName)) 8392 DependentTemplateName(NNS, Operator, Canon); 8393 8394 DependentTemplateName *CheckQTN 8395 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 8396 assert(!CheckQTN && "Dependent template name canonicalization broken"); 8397 (void)CheckQTN; 8398 } 8399 8400 DependentTemplateNames.InsertNode(QTN, InsertPos); 8401 return TemplateName(QTN); 8402 } 8403 8404 TemplateName 8405 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, 8406 TemplateName replacement) const { 8407 llvm::FoldingSetNodeID ID; 8408 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); 8409 8410 void *insertPos = nullptr; 8411 SubstTemplateTemplateParmStorage *subst 8412 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); 8413 8414 if (!subst) { 8415 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); 8416 SubstTemplateTemplateParms.InsertNode(subst, insertPos); 8417 } 8418 8419 return TemplateName(subst); 8420 } 8421 8422 TemplateName 8423 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, 8424 const TemplateArgument &ArgPack) const { 8425 auto &Self = const_cast<ASTContext &>(*this); 8426 llvm::FoldingSetNodeID ID; 8427 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); 8428 8429 void *InsertPos = nullptr; 8430 SubstTemplateTemplateParmPackStorage *Subst 8431 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); 8432 8433 if (!Subst) { 8434 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, 8435 ArgPack.pack_size(), 8436 ArgPack.pack_begin()); 8437 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); 8438 } 8439 8440 return TemplateName(Subst); 8441 } 8442 8443 /// getFromTargetType - Given one of the integer types provided by 8444 /// TargetInfo, produce the corresponding type. The unsigned @p Type 8445 /// is actually a value of type @c TargetInfo::IntType. 8446 CanQualType ASTContext::getFromTargetType(unsigned Type) const { 8447 switch (Type) { 8448 case TargetInfo::NoInt: return {}; 8449 case TargetInfo::SignedChar: return SignedCharTy; 8450 case TargetInfo::UnsignedChar: return UnsignedCharTy; 8451 case TargetInfo::SignedShort: return ShortTy; 8452 case TargetInfo::UnsignedShort: return UnsignedShortTy; 8453 case TargetInfo::SignedInt: return IntTy; 8454 case TargetInfo::UnsignedInt: return UnsignedIntTy; 8455 case TargetInfo::SignedLong: return LongTy; 8456 case TargetInfo::UnsignedLong: return UnsignedLongTy; 8457 case TargetInfo::SignedLongLong: return LongLongTy; 8458 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; 8459 } 8460 8461 llvm_unreachable("Unhandled TargetInfo::IntType value"); 8462 } 8463 8464 //===----------------------------------------------------------------------===// 8465 // Type Predicates. 8466 //===----------------------------------------------------------------------===// 8467 8468 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's 8469 /// garbage collection attribute. 8470 /// 8471 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { 8472 if (getLangOpts().getGC() == LangOptions::NonGC) 8473 return Qualifiers::GCNone; 8474 8475 assert(getLangOpts().ObjC); 8476 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); 8477 8478 // Default behaviour under objective-C's gc is for ObjC pointers 8479 // (or pointers to them) be treated as though they were declared 8480 // as __strong. 8481 if (GCAttrs == Qualifiers::GCNone) { 8482 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) 8483 return Qualifiers::Strong; 8484 else if (Ty->isPointerType()) 8485 return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType()); 8486 } else { 8487 // It's not valid to set GC attributes on anything that isn't a 8488 // pointer. 8489 #ifndef NDEBUG 8490 QualType CT = Ty->getCanonicalTypeInternal(); 8491 while (const auto *AT = dyn_cast<ArrayType>(CT)) 8492 CT = AT->getElementType(); 8493 assert(CT->isAnyPointerType() || CT->isBlockPointerType()); 8494 #endif 8495 } 8496 return GCAttrs; 8497 } 8498 8499 //===----------------------------------------------------------------------===// 8500 // Type Compatibility Testing 8501 //===----------------------------------------------------------------------===// 8502 8503 /// areCompatVectorTypes - Return true if the two specified vector types are 8504 /// compatible. 8505 static bool areCompatVectorTypes(const VectorType *LHS, 8506 const VectorType *RHS) { 8507 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); 8508 return LHS->getElementType() == RHS->getElementType() && 8509 LHS->getNumElements() == RHS->getNumElements(); 8510 } 8511 8512 /// areCompatMatrixTypes - Return true if the two specified matrix types are 8513 /// compatible. 8514 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS, 8515 const ConstantMatrixType *RHS) { 8516 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); 8517 return LHS->getElementType() == RHS->getElementType() && 8518 LHS->getNumRows() == RHS->getNumRows() && 8519 LHS->getNumColumns() == RHS->getNumColumns(); 8520 } 8521 8522 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, 8523 QualType SecondVec) { 8524 assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); 8525 assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); 8526 8527 if (hasSameUnqualifiedType(FirstVec, SecondVec)) 8528 return true; 8529 8530 // Treat Neon vector types and most AltiVec vector types as if they are the 8531 // equivalent GCC vector types. 8532 const auto *First = FirstVec->castAs<VectorType>(); 8533 const auto *Second = SecondVec->castAs<VectorType>(); 8534 if (First->getNumElements() == Second->getNumElements() && 8535 hasSameType(First->getElementType(), Second->getElementType()) && 8536 First->getVectorKind() != VectorType::AltiVecPixel && 8537 First->getVectorKind() != VectorType::AltiVecBool && 8538 Second->getVectorKind() != VectorType::AltiVecPixel && 8539 Second->getVectorKind() != VectorType::AltiVecBool && 8540 First->getVectorKind() != VectorType::SveFixedLengthDataVector && 8541 First->getVectorKind() != VectorType::SveFixedLengthPredicateVector && 8542 Second->getVectorKind() != VectorType::SveFixedLengthDataVector && 8543 Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector) 8544 return true; 8545 8546 return false; 8547 } 8548 8549 bool ASTContext::areCompatibleSveTypes(QualType FirstType, 8550 QualType SecondType) { 8551 assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) || 8552 (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) && 8553 "Expected SVE builtin type and vector type!"); 8554 8555 auto IsValidCast = [this](QualType FirstType, QualType SecondType) { 8556 if (const auto *BT = FirstType->getAs<BuiltinType>()) { 8557 if (const auto *VT = SecondType->getAs<VectorType>()) { 8558 // Predicates have the same representation as uint8 so we also have to 8559 // check the kind to make these types incompatible. 8560 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 8561 return BT->getKind() == BuiltinType::SveBool; 8562 else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) 8563 return VT->getElementType().getCanonicalType() == 8564 FirstType->getSveEltType(*this); 8565 else if (VT->getVectorKind() == VectorType::GenericVector) 8566 return getTypeSize(SecondType) == getLangOpts().ArmSveVectorBits && 8567 hasSameType(VT->getElementType(), 8568 getBuiltinVectorTypeInfo(BT).ElementType); 8569 } 8570 } 8571 return false; 8572 }; 8573 8574 return IsValidCast(FirstType, SecondType) || 8575 IsValidCast(SecondType, FirstType); 8576 } 8577 8578 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType, 8579 QualType SecondType) { 8580 assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) || 8581 (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) && 8582 "Expected SVE builtin type and vector type!"); 8583 8584 auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { 8585 if (!FirstType->getAs<BuiltinType>()) 8586 return false; 8587 8588 const auto *VecTy = SecondType->getAs<VectorType>(); 8589 if (VecTy && 8590 (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector || 8591 VecTy->getVectorKind() == VectorType::GenericVector)) { 8592 const LangOptions::LaxVectorConversionKind LVCKind = 8593 getLangOpts().getLaxVectorConversions(); 8594 8595 // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion. 8596 // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly 8597 // converts to VLAT and VLAT implicitly converts to GNUT." 8598 // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and 8599 // predicates. 8600 if (VecTy->getVectorKind() == VectorType::GenericVector && 8601 getTypeSize(SecondType) != getLangOpts().ArmSveVectorBits) 8602 return false; 8603 8604 // If -flax-vector-conversions=all is specified, the types are 8605 // certainly compatible. 8606 if (LVCKind == LangOptions::LaxVectorConversionKind::All) 8607 return true; 8608 8609 // If -flax-vector-conversions=integer is specified, the types are 8610 // compatible if the elements are integer types. 8611 if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) 8612 return VecTy->getElementType().getCanonicalType()->isIntegerType() && 8613 FirstType->getSveEltType(*this)->isIntegerType(); 8614 } 8615 8616 return false; 8617 }; 8618 8619 return IsLaxCompatible(FirstType, SecondType) || 8620 IsLaxCompatible(SecondType, FirstType); 8621 } 8622 8623 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const { 8624 while (true) { 8625 // __strong id 8626 if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) { 8627 if (Attr->getAttrKind() == attr::ObjCOwnership) 8628 return true; 8629 8630 Ty = Attr->getModifiedType(); 8631 8632 // X *__strong (...) 8633 } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) { 8634 Ty = Paren->getInnerType(); 8635 8636 // We do not want to look through typedefs, typeof(expr), 8637 // typeof(type), or any other way that the type is somehow 8638 // abstracted. 8639 } else { 8640 return false; 8641 } 8642 } 8643 } 8644 8645 //===----------------------------------------------------------------------===// 8646 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. 8647 //===----------------------------------------------------------------------===// 8648 8649 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the 8650 /// inheritance hierarchy of 'rProto'. 8651 bool 8652 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, 8653 ObjCProtocolDecl *rProto) const { 8654 if (declaresSameEntity(lProto, rProto)) 8655 return true; 8656 for (auto *PI : rProto->protocols()) 8657 if (ProtocolCompatibleWithProtocol(lProto, PI)) 8658 return true; 8659 return false; 8660 } 8661 8662 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and 8663 /// Class<pr1, ...>. 8664 bool ASTContext::ObjCQualifiedClassTypesAreCompatible( 8665 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) { 8666 for (auto *lhsProto : lhs->quals()) { 8667 bool match = false; 8668 for (auto *rhsProto : rhs->quals()) { 8669 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { 8670 match = true; 8671 break; 8672 } 8673 } 8674 if (!match) 8675 return false; 8676 } 8677 return true; 8678 } 8679 8680 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an 8681 /// ObjCQualifiedIDType. 8682 bool ASTContext::ObjCQualifiedIdTypesAreCompatible( 8683 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs, 8684 bool compare) { 8685 // Allow id<P..> and an 'id' in all cases. 8686 if (lhs->isObjCIdType() || rhs->isObjCIdType()) 8687 return true; 8688 8689 // Don't allow id<P..> to convert to Class or Class<P..> in either direction. 8690 if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() || 8691 rhs->isObjCClassType() || rhs->isObjCQualifiedClassType()) 8692 return false; 8693 8694 if (lhs->isObjCQualifiedIdType()) { 8695 if (rhs->qual_empty()) { 8696 // If the RHS is a unqualified interface pointer "NSString*", 8697 // make sure we check the class hierarchy. 8698 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { 8699 for (auto *I : lhs->quals()) { 8700 // when comparing an id<P> on lhs with a static type on rhs, 8701 // see if static class implements all of id's protocols, directly or 8702 // through its super class and categories. 8703 if (!rhsID->ClassImplementsProtocol(I, true)) 8704 return false; 8705 } 8706 } 8707 // If there are no qualifiers and no interface, we have an 'id'. 8708 return true; 8709 } 8710 // Both the right and left sides have qualifiers. 8711 for (auto *lhsProto : lhs->quals()) { 8712 bool match = false; 8713 8714 // when comparing an id<P> on lhs with a static type on rhs, 8715 // see if static class implements all of id's protocols, directly or 8716 // through its super class and categories. 8717 for (auto *rhsProto : rhs->quals()) { 8718 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 8719 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 8720 match = true; 8721 break; 8722 } 8723 } 8724 // If the RHS is a qualified interface pointer "NSString<P>*", 8725 // make sure we check the class hierarchy. 8726 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { 8727 for (auto *I : lhs->quals()) { 8728 // when comparing an id<P> on lhs with a static type on rhs, 8729 // see if static class implements all of id's protocols, directly or 8730 // through its super class and categories. 8731 if (rhsID->ClassImplementsProtocol(I, true)) { 8732 match = true; 8733 break; 8734 } 8735 } 8736 } 8737 if (!match) 8738 return false; 8739 } 8740 8741 return true; 8742 } 8743 8744 assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>"); 8745 8746 if (lhs->getInterfaceType()) { 8747 // If both the right and left sides have qualifiers. 8748 for (auto *lhsProto : lhs->quals()) { 8749 bool match = false; 8750 8751 // when comparing an id<P> on rhs with a static type on lhs, 8752 // see if static class implements all of id's protocols, directly or 8753 // through its super class and categories. 8754 // First, lhs protocols in the qualifier list must be found, direct 8755 // or indirect in rhs's qualifier list or it is a mismatch. 8756 for (auto *rhsProto : rhs->quals()) { 8757 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 8758 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 8759 match = true; 8760 break; 8761 } 8762 } 8763 if (!match) 8764 return false; 8765 } 8766 8767 // Static class's protocols, or its super class or category protocols 8768 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. 8769 if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) { 8770 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; 8771 CollectInheritedProtocols(lhsID, LHSInheritedProtocols); 8772 // This is rather dubious but matches gcc's behavior. If lhs has 8773 // no type qualifier and its class has no static protocol(s) 8774 // assume that it is mismatch. 8775 if (LHSInheritedProtocols.empty() && lhs->qual_empty()) 8776 return false; 8777 for (auto *lhsProto : LHSInheritedProtocols) { 8778 bool match = false; 8779 for (auto *rhsProto : rhs->quals()) { 8780 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 8781 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 8782 match = true; 8783 break; 8784 } 8785 } 8786 if (!match) 8787 return false; 8788 } 8789 } 8790 return true; 8791 } 8792 return false; 8793 } 8794 8795 /// canAssignObjCInterfaces - Return true if the two interface types are 8796 /// compatible for assignment from RHS to LHS. This handles validation of any 8797 /// protocol qualifiers on the LHS or RHS. 8798 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, 8799 const ObjCObjectPointerType *RHSOPT) { 8800 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 8801 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 8802 8803 // If either type represents the built-in 'id' type, return true. 8804 if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId()) 8805 return true; 8806 8807 // Function object that propagates a successful result or handles 8808 // __kindof types. 8809 auto finish = [&](bool succeeded) -> bool { 8810 if (succeeded) 8811 return true; 8812 8813 if (!RHS->isKindOfType()) 8814 return false; 8815 8816 // Strip off __kindof and protocol qualifiers, then check whether 8817 // we can assign the other way. 8818 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this), 8819 LHSOPT->stripObjCKindOfTypeAndQuals(*this)); 8820 }; 8821 8822 // Casts from or to id<P> are allowed when the other side has compatible 8823 // protocols. 8824 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { 8825 return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false)); 8826 } 8827 8828 // Verify protocol compatibility for casts from Class<P1> to Class<P2>. 8829 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { 8830 return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT)); 8831 } 8832 8833 // Casts from Class to Class<Foo>, or vice-versa, are allowed. 8834 if (LHS->isObjCClass() && RHS->isObjCClass()) { 8835 return true; 8836 } 8837 8838 // If we have 2 user-defined types, fall into that path. 8839 if (LHS->getInterface() && RHS->getInterface()) { 8840 return finish(canAssignObjCInterfaces(LHS, RHS)); 8841 } 8842 8843 return false; 8844 } 8845 8846 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written 8847 /// for providing type-safety for objective-c pointers used to pass/return 8848 /// arguments in block literals. When passed as arguments, passing 'A*' where 8849 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is 8850 /// not OK. For the return type, the opposite is not OK. 8851 bool ASTContext::canAssignObjCInterfacesInBlockPointer( 8852 const ObjCObjectPointerType *LHSOPT, 8853 const ObjCObjectPointerType *RHSOPT, 8854 bool BlockReturnType) { 8855 8856 // Function object that propagates a successful result or handles 8857 // __kindof types. 8858 auto finish = [&](bool succeeded) -> bool { 8859 if (succeeded) 8860 return true; 8861 8862 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; 8863 if (!Expected->isKindOfType()) 8864 return false; 8865 8866 // Strip off __kindof and protocol qualifiers, then check whether 8867 // we can assign the other way. 8868 return canAssignObjCInterfacesInBlockPointer( 8869 RHSOPT->stripObjCKindOfTypeAndQuals(*this), 8870 LHSOPT->stripObjCKindOfTypeAndQuals(*this), 8871 BlockReturnType); 8872 }; 8873 8874 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) 8875 return true; 8876 8877 if (LHSOPT->isObjCBuiltinType()) { 8878 return finish(RHSOPT->isObjCBuiltinType() || 8879 RHSOPT->isObjCQualifiedIdType()); 8880 } 8881 8882 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) { 8883 if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking) 8884 // Use for block parameters previous type checking for compatibility. 8885 return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) || 8886 // Or corrected type checking as in non-compat mode. 8887 (!BlockReturnType && 8888 ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false))); 8889 else 8890 return finish(ObjCQualifiedIdTypesAreCompatible( 8891 (BlockReturnType ? LHSOPT : RHSOPT), 8892 (BlockReturnType ? RHSOPT : LHSOPT), false)); 8893 } 8894 8895 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); 8896 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); 8897 if (LHS && RHS) { // We have 2 user-defined types. 8898 if (LHS != RHS) { 8899 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) 8900 return finish(BlockReturnType); 8901 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) 8902 return finish(!BlockReturnType); 8903 } 8904 else 8905 return true; 8906 } 8907 return false; 8908 } 8909 8910 /// Comparison routine for Objective-C protocols to be used with 8911 /// llvm::array_pod_sort. 8912 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, 8913 ObjCProtocolDecl * const *rhs) { 8914 return (*lhs)->getName().compare((*rhs)->getName()); 8915 } 8916 8917 /// getIntersectionOfProtocols - This routine finds the intersection of set 8918 /// of protocols inherited from two distinct objective-c pointer objects with 8919 /// the given common base. 8920 /// It is used to build composite qualifier list of the composite type of 8921 /// the conditional expression involving two objective-c pointer objects. 8922 static 8923 void getIntersectionOfProtocols(ASTContext &Context, 8924 const ObjCInterfaceDecl *CommonBase, 8925 const ObjCObjectPointerType *LHSOPT, 8926 const ObjCObjectPointerType *RHSOPT, 8927 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { 8928 8929 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 8930 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 8931 assert(LHS->getInterface() && "LHS must have an interface base"); 8932 assert(RHS->getInterface() && "RHS must have an interface base"); 8933 8934 // Add all of the protocols for the LHS. 8935 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; 8936 8937 // Start with the protocol qualifiers. 8938 for (auto proto : LHS->quals()) { 8939 Context.CollectInheritedProtocols(proto, LHSProtocolSet); 8940 } 8941 8942 // Also add the protocols associated with the LHS interface. 8943 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); 8944 8945 // Add all of the protocols for the RHS. 8946 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; 8947 8948 // Start with the protocol qualifiers. 8949 for (auto proto : RHS->quals()) { 8950 Context.CollectInheritedProtocols(proto, RHSProtocolSet); 8951 } 8952 8953 // Also add the protocols associated with the RHS interface. 8954 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); 8955 8956 // Compute the intersection of the collected protocol sets. 8957 for (auto proto : LHSProtocolSet) { 8958 if (RHSProtocolSet.count(proto)) 8959 IntersectionSet.push_back(proto); 8960 } 8961 8962 // Compute the set of protocols that is implied by either the common type or 8963 // the protocols within the intersection. 8964 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; 8965 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); 8966 8967 // Remove any implied protocols from the list of inherited protocols. 8968 if (!ImpliedProtocols.empty()) { 8969 IntersectionSet.erase( 8970 std::remove_if(IntersectionSet.begin(), 8971 IntersectionSet.end(), 8972 [&](ObjCProtocolDecl *proto) -> bool { 8973 return ImpliedProtocols.count(proto) > 0; 8974 }), 8975 IntersectionSet.end()); 8976 } 8977 8978 // Sort the remaining protocols by name. 8979 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(), 8980 compareObjCProtocolsByName); 8981 } 8982 8983 /// Determine whether the first type is a subtype of the second. 8984 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, 8985 QualType rhs) { 8986 // Common case: two object pointers. 8987 const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); 8988 const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 8989 if (lhsOPT && rhsOPT) 8990 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT); 8991 8992 // Two block pointers. 8993 const auto *lhsBlock = lhs->getAs<BlockPointerType>(); 8994 const auto *rhsBlock = rhs->getAs<BlockPointerType>(); 8995 if (lhsBlock && rhsBlock) 8996 return ctx.typesAreBlockPointerCompatible(lhs, rhs); 8997 8998 // If either is an unqualified 'id' and the other is a block, it's 8999 // acceptable. 9000 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || 9001 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) 9002 return true; 9003 9004 return false; 9005 } 9006 9007 // Check that the given Objective-C type argument lists are equivalent. 9008 static bool sameObjCTypeArgs(ASTContext &ctx, 9009 const ObjCInterfaceDecl *iface, 9010 ArrayRef<QualType> lhsArgs, 9011 ArrayRef<QualType> rhsArgs, 9012 bool stripKindOf) { 9013 if (lhsArgs.size() != rhsArgs.size()) 9014 return false; 9015 9016 ObjCTypeParamList *typeParams = iface->getTypeParamList(); 9017 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { 9018 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i])) 9019 continue; 9020 9021 switch (typeParams->begin()[i]->getVariance()) { 9022 case ObjCTypeParamVariance::Invariant: 9023 if (!stripKindOf || 9024 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx), 9025 rhsArgs[i].stripObjCKindOfType(ctx))) { 9026 return false; 9027 } 9028 break; 9029 9030 case ObjCTypeParamVariance::Covariant: 9031 if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i])) 9032 return false; 9033 break; 9034 9035 case ObjCTypeParamVariance::Contravariant: 9036 if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i])) 9037 return false; 9038 break; 9039 } 9040 } 9041 9042 return true; 9043 } 9044 9045 QualType ASTContext::areCommonBaseCompatible( 9046 const ObjCObjectPointerType *Lptr, 9047 const ObjCObjectPointerType *Rptr) { 9048 const ObjCObjectType *LHS = Lptr->getObjectType(); 9049 const ObjCObjectType *RHS = Rptr->getObjectType(); 9050 const ObjCInterfaceDecl* LDecl = LHS->getInterface(); 9051 const ObjCInterfaceDecl* RDecl = RHS->getInterface(); 9052 9053 if (!LDecl || !RDecl) 9054 return {}; 9055 9056 // When either LHS or RHS is a kindof type, we should return a kindof type. 9057 // For example, for common base of kindof(ASub1) and kindof(ASub2), we return 9058 // kindof(A). 9059 bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); 9060 9061 // Follow the left-hand side up the class hierarchy until we either hit a 9062 // root or find the RHS. Record the ancestors in case we don't find it. 9063 llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> 9064 LHSAncestors; 9065 while (true) { 9066 // Record this ancestor. We'll need this if the common type isn't in the 9067 // path from the LHS to the root. 9068 LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; 9069 9070 if (declaresSameEntity(LHS->getInterface(), RDecl)) { 9071 // Get the type arguments. 9072 ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); 9073 bool anyChanges = false; 9074 if (LHS->isSpecialized() && RHS->isSpecialized()) { 9075 // Both have type arguments, compare them. 9076 if (!sameObjCTypeArgs(*this, LHS->getInterface(), 9077 LHS->getTypeArgs(), RHS->getTypeArgs(), 9078 /*stripKindOf=*/true)) 9079 return {}; 9080 } else if (LHS->isSpecialized() != RHS->isSpecialized()) { 9081 // If only one has type arguments, the result will not have type 9082 // arguments. 9083 LHSTypeArgs = {}; 9084 anyChanges = true; 9085 } 9086 9087 // Compute the intersection of protocols. 9088 SmallVector<ObjCProtocolDecl *, 8> Protocols; 9089 getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr, 9090 Protocols); 9091 if (!Protocols.empty()) 9092 anyChanges = true; 9093 9094 // If anything in the LHS will have changed, build a new result type. 9095 // If we need to return a kindof type but LHS is not a kindof type, we 9096 // build a new result type. 9097 if (anyChanges || LHS->isKindOfType() != anyKindOf) { 9098 QualType Result = getObjCInterfaceType(LHS->getInterface()); 9099 Result = getObjCObjectType(Result, LHSTypeArgs, Protocols, 9100 anyKindOf || LHS->isKindOfType()); 9101 return getObjCObjectPointerType(Result); 9102 } 9103 9104 return getObjCObjectPointerType(QualType(LHS, 0)); 9105 } 9106 9107 // Find the superclass. 9108 QualType LHSSuperType = LHS->getSuperClassType(); 9109 if (LHSSuperType.isNull()) 9110 break; 9111 9112 LHS = LHSSuperType->castAs<ObjCObjectType>(); 9113 } 9114 9115 // We didn't find anything by following the LHS to its root; now check 9116 // the RHS against the cached set of ancestors. 9117 while (true) { 9118 auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl()); 9119 if (KnownLHS != LHSAncestors.end()) { 9120 LHS = KnownLHS->second; 9121 9122 // Get the type arguments. 9123 ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); 9124 bool anyChanges = false; 9125 if (LHS->isSpecialized() && RHS->isSpecialized()) { 9126 // Both have type arguments, compare them. 9127 if (!sameObjCTypeArgs(*this, LHS->getInterface(), 9128 LHS->getTypeArgs(), RHS->getTypeArgs(), 9129 /*stripKindOf=*/true)) 9130 return {}; 9131 } else if (LHS->isSpecialized() != RHS->isSpecialized()) { 9132 // If only one has type arguments, the result will not have type 9133 // arguments. 9134 RHSTypeArgs = {}; 9135 anyChanges = true; 9136 } 9137 9138 // Compute the intersection of protocols. 9139 SmallVector<ObjCProtocolDecl *, 8> Protocols; 9140 getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr, 9141 Protocols); 9142 if (!Protocols.empty()) 9143 anyChanges = true; 9144 9145 // If we need to return a kindof type but RHS is not a kindof type, we 9146 // build a new result type. 9147 if (anyChanges || RHS->isKindOfType() != anyKindOf) { 9148 QualType Result = getObjCInterfaceType(RHS->getInterface()); 9149 Result = getObjCObjectType(Result, RHSTypeArgs, Protocols, 9150 anyKindOf || RHS->isKindOfType()); 9151 return getObjCObjectPointerType(Result); 9152 } 9153 9154 return getObjCObjectPointerType(QualType(RHS, 0)); 9155 } 9156 9157 // Find the superclass of the RHS. 9158 QualType RHSSuperType = RHS->getSuperClassType(); 9159 if (RHSSuperType.isNull()) 9160 break; 9161 9162 RHS = RHSSuperType->castAs<ObjCObjectType>(); 9163 } 9164 9165 return {}; 9166 } 9167 9168 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, 9169 const ObjCObjectType *RHS) { 9170 assert(LHS->getInterface() && "LHS is not an interface type"); 9171 assert(RHS->getInterface() && "RHS is not an interface type"); 9172 9173 // Verify that the base decls are compatible: the RHS must be a subclass of 9174 // the LHS. 9175 ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); 9176 bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface()); 9177 if (!IsSuperClass) 9178 return false; 9179 9180 // If the LHS has protocol qualifiers, determine whether all of them are 9181 // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the 9182 // LHS). 9183 if (LHS->getNumProtocols() > 0) { 9184 // OK if conversion of LHS to SuperClass results in narrowing of types 9185 // ; i.e., SuperClass may implement at least one of the protocols 9186 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. 9187 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. 9188 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; 9189 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); 9190 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's 9191 // qualifiers. 9192 for (auto *RHSPI : RHS->quals()) 9193 CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); 9194 // If there is no protocols associated with RHS, it is not a match. 9195 if (SuperClassInheritedProtocols.empty()) 9196 return false; 9197 9198 for (const auto *LHSProto : LHS->quals()) { 9199 bool SuperImplementsProtocol = false; 9200 for (auto *SuperClassProto : SuperClassInheritedProtocols) 9201 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { 9202 SuperImplementsProtocol = true; 9203 break; 9204 } 9205 if (!SuperImplementsProtocol) 9206 return false; 9207 } 9208 } 9209 9210 // If the LHS is specialized, we may need to check type arguments. 9211 if (LHS->isSpecialized()) { 9212 // Follow the superclass chain until we've matched the LHS class in the 9213 // hierarchy. This substitutes type arguments through. 9214 const ObjCObjectType *RHSSuper = RHS; 9215 while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) 9216 RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); 9217 9218 // If the RHS is specializd, compare type arguments. 9219 if (RHSSuper->isSpecialized() && 9220 !sameObjCTypeArgs(*this, LHS->getInterface(), 9221 LHS->getTypeArgs(), RHSSuper->getTypeArgs(), 9222 /*stripKindOf=*/true)) { 9223 return false; 9224 } 9225 } 9226 9227 return true; 9228 } 9229 9230 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { 9231 // get the "pointed to" types 9232 const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); 9233 const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); 9234 9235 if (!LHSOPT || !RHSOPT) 9236 return false; 9237 9238 return canAssignObjCInterfaces(LHSOPT, RHSOPT) || 9239 canAssignObjCInterfaces(RHSOPT, LHSOPT); 9240 } 9241 9242 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { 9243 return canAssignObjCInterfaces( 9244 getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(), 9245 getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>()); 9246 } 9247 9248 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 9249 /// both shall have the identically qualified version of a compatible type. 9250 /// C99 6.2.7p1: Two types have compatible types if their types are the 9251 /// same. See 6.7.[2,3,5] for additional rules. 9252 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, 9253 bool CompareUnqualified) { 9254 if (getLangOpts().CPlusPlus) 9255 return hasSameType(LHS, RHS); 9256 9257 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); 9258 } 9259 9260 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { 9261 return typesAreCompatible(LHS, RHS); 9262 } 9263 9264 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { 9265 return !mergeTypes(LHS, RHS, true).isNull(); 9266 } 9267 9268 /// mergeTransparentUnionType - if T is a transparent union type and a member 9269 /// of T is compatible with SubType, return the merged type, else return 9270 /// QualType() 9271 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, 9272 bool OfBlockPointer, 9273 bool Unqualified) { 9274 if (const RecordType *UT = T->getAsUnionType()) { 9275 RecordDecl *UD = UT->getDecl(); 9276 if (UD->hasAttr<TransparentUnionAttr>()) { 9277 for (const auto *I : UD->fields()) { 9278 QualType ET = I->getType().getUnqualifiedType(); 9279 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); 9280 if (!MT.isNull()) 9281 return MT; 9282 } 9283 } 9284 } 9285 9286 return {}; 9287 } 9288 9289 /// mergeFunctionParameterTypes - merge two types which appear as function 9290 /// parameter types 9291 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, 9292 bool OfBlockPointer, 9293 bool Unqualified) { 9294 // GNU extension: two types are compatible if they appear as a function 9295 // argument, one of the types is a transparent union type and the other 9296 // type is compatible with a union member 9297 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, 9298 Unqualified); 9299 if (!lmerge.isNull()) 9300 return lmerge; 9301 9302 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, 9303 Unqualified); 9304 if (!rmerge.isNull()) 9305 return rmerge; 9306 9307 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); 9308 } 9309 9310 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, 9311 bool OfBlockPointer, bool Unqualified, 9312 bool AllowCXX) { 9313 const auto *lbase = lhs->castAs<FunctionType>(); 9314 const auto *rbase = rhs->castAs<FunctionType>(); 9315 const auto *lproto = dyn_cast<FunctionProtoType>(lbase); 9316 const auto *rproto = dyn_cast<FunctionProtoType>(rbase); 9317 bool allLTypes = true; 9318 bool allRTypes = true; 9319 9320 // Check return type 9321 QualType retType; 9322 if (OfBlockPointer) { 9323 QualType RHS = rbase->getReturnType(); 9324 QualType LHS = lbase->getReturnType(); 9325 bool UnqualifiedResult = Unqualified; 9326 if (!UnqualifiedResult) 9327 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); 9328 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); 9329 } 9330 else 9331 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, 9332 Unqualified); 9333 if (retType.isNull()) 9334 return {}; 9335 9336 if (Unqualified) 9337 retType = retType.getUnqualifiedType(); 9338 9339 CanQualType LRetType = getCanonicalType(lbase->getReturnType()); 9340 CanQualType RRetType = getCanonicalType(rbase->getReturnType()); 9341 if (Unqualified) { 9342 LRetType = LRetType.getUnqualifiedType(); 9343 RRetType = RRetType.getUnqualifiedType(); 9344 } 9345 9346 if (getCanonicalType(retType) != LRetType) 9347 allLTypes = false; 9348 if (getCanonicalType(retType) != RRetType) 9349 allRTypes = false; 9350 9351 // FIXME: double check this 9352 // FIXME: should we error if lbase->getRegParmAttr() != 0 && 9353 // rbase->getRegParmAttr() != 0 && 9354 // lbase->getRegParmAttr() != rbase->getRegParmAttr()? 9355 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); 9356 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); 9357 9358 // Compatible functions must have compatible calling conventions 9359 if (lbaseInfo.getCC() != rbaseInfo.getCC()) 9360 return {}; 9361 9362 // Regparm is part of the calling convention. 9363 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) 9364 return {}; 9365 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) 9366 return {}; 9367 9368 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) 9369 return {}; 9370 if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) 9371 return {}; 9372 if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) 9373 return {}; 9374 9375 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. 9376 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); 9377 9378 if (lbaseInfo.getNoReturn() != NoReturn) 9379 allLTypes = false; 9380 if (rbaseInfo.getNoReturn() != NoReturn) 9381 allRTypes = false; 9382 9383 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); 9384 9385 if (lproto && rproto) { // two C99 style function prototypes 9386 assert((AllowCXX || 9387 (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && 9388 "C++ shouldn't be here"); 9389 // Compatible functions must have the same number of parameters 9390 if (lproto->getNumParams() != rproto->getNumParams()) 9391 return {}; 9392 9393 // Variadic and non-variadic functions aren't compatible 9394 if (lproto->isVariadic() != rproto->isVariadic()) 9395 return {}; 9396 9397 if (lproto->getMethodQuals() != rproto->getMethodQuals()) 9398 return {}; 9399 9400 SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; 9401 bool canUseLeft, canUseRight; 9402 if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight, 9403 newParamInfos)) 9404 return {}; 9405 9406 if (!canUseLeft) 9407 allLTypes = false; 9408 if (!canUseRight) 9409 allRTypes = false; 9410 9411 // Check parameter type compatibility 9412 SmallVector<QualType, 10> types; 9413 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { 9414 QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); 9415 QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); 9416 QualType paramType = mergeFunctionParameterTypes( 9417 lParamType, rParamType, OfBlockPointer, Unqualified); 9418 if (paramType.isNull()) 9419 return {}; 9420 9421 if (Unqualified) 9422 paramType = paramType.getUnqualifiedType(); 9423 9424 types.push_back(paramType); 9425 if (Unqualified) { 9426 lParamType = lParamType.getUnqualifiedType(); 9427 rParamType = rParamType.getUnqualifiedType(); 9428 } 9429 9430 if (getCanonicalType(paramType) != getCanonicalType(lParamType)) 9431 allLTypes = false; 9432 if (getCanonicalType(paramType) != getCanonicalType(rParamType)) 9433 allRTypes = false; 9434 } 9435 9436 if (allLTypes) return lhs; 9437 if (allRTypes) return rhs; 9438 9439 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); 9440 EPI.ExtInfo = einfo; 9441 EPI.ExtParameterInfos = 9442 newParamInfos.empty() ? nullptr : newParamInfos.data(); 9443 return getFunctionType(retType, types, EPI); 9444 } 9445 9446 if (lproto) allRTypes = false; 9447 if (rproto) allLTypes = false; 9448 9449 const FunctionProtoType *proto = lproto ? lproto : rproto; 9450 if (proto) { 9451 assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here"); 9452 if (proto->isVariadic()) 9453 return {}; 9454 // Check that the types are compatible with the types that 9455 // would result from default argument promotions (C99 6.7.5.3p15). 9456 // The only types actually affected are promotable integer 9457 // types and floats, which would be passed as a different 9458 // type depending on whether the prototype is visible. 9459 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { 9460 QualType paramTy = proto->getParamType(i); 9461 9462 // Look at the converted type of enum types, since that is the type used 9463 // to pass enum values. 9464 if (const auto *Enum = paramTy->getAs<EnumType>()) { 9465 paramTy = Enum->getDecl()->getIntegerType(); 9466 if (paramTy.isNull()) 9467 return {}; 9468 } 9469 9470 if (paramTy->isPromotableIntegerType() || 9471 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) 9472 return {}; 9473 } 9474 9475 if (allLTypes) return lhs; 9476 if (allRTypes) return rhs; 9477 9478 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); 9479 EPI.ExtInfo = einfo; 9480 return getFunctionType(retType, proto->getParamTypes(), EPI); 9481 } 9482 9483 if (allLTypes) return lhs; 9484 if (allRTypes) return rhs; 9485 return getFunctionNoProtoType(retType, einfo); 9486 } 9487 9488 /// Given that we have an enum type and a non-enum type, try to merge them. 9489 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, 9490 QualType other, bool isBlockReturnType) { 9491 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, 9492 // a signed integer type, or an unsigned integer type. 9493 // Compatibility is based on the underlying type, not the promotion 9494 // type. 9495 QualType underlyingType = ET->getDecl()->getIntegerType(); 9496 if (underlyingType.isNull()) 9497 return {}; 9498 if (Context.hasSameType(underlyingType, other)) 9499 return other; 9500 9501 // In block return types, we're more permissive and accept any 9502 // integral type of the same size. 9503 if (isBlockReturnType && other->isIntegerType() && 9504 Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) 9505 return other; 9506 9507 return {}; 9508 } 9509 9510 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, 9511 bool OfBlockPointer, 9512 bool Unqualified, bool BlockReturnType) { 9513 // C++ [expr]: If an expression initially has the type "reference to T", the 9514 // type is adjusted to "T" prior to any further analysis, the expression 9515 // designates the object or function denoted by the reference, and the 9516 // expression is an lvalue unless the reference is an rvalue reference and 9517 // the expression is a function call (possibly inside parentheses). 9518 if (LHS->getAs<ReferenceType>() || RHS->getAs<ReferenceType>()) 9519 return {}; 9520 9521 if (Unqualified) { 9522 LHS = LHS.getUnqualifiedType(); 9523 RHS = RHS.getUnqualifiedType(); 9524 } 9525 9526 QualType LHSCan = getCanonicalType(LHS), 9527 RHSCan = getCanonicalType(RHS); 9528 9529 // If two types are identical, they are compatible. 9530 if (LHSCan == RHSCan) 9531 return LHS; 9532 9533 // If the qualifiers are different, the types aren't compatible... mostly. 9534 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 9535 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 9536 if (LQuals != RQuals) { 9537 // If any of these qualifiers are different, we have a type 9538 // mismatch. 9539 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 9540 LQuals.getAddressSpace() != RQuals.getAddressSpace() || 9541 LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || 9542 LQuals.hasUnaligned() != RQuals.hasUnaligned()) 9543 return {}; 9544 9545 // Exactly one GC qualifier difference is allowed: __strong is 9546 // okay if the other type has no GC qualifier but is an Objective 9547 // C object pointer (i.e. implicitly strong by default). We fix 9548 // this by pretending that the unqualified type was actually 9549 // qualified __strong. 9550 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 9551 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 9552 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 9553 9554 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 9555 return {}; 9556 9557 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { 9558 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); 9559 } 9560 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { 9561 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); 9562 } 9563 return {}; 9564 } 9565 9566 // Okay, qualifiers are equal. 9567 9568 Type::TypeClass LHSClass = LHSCan->getTypeClass(); 9569 Type::TypeClass RHSClass = RHSCan->getTypeClass(); 9570 9571 // We want to consider the two function types to be the same for these 9572 // comparisons, just force one to the other. 9573 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; 9574 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; 9575 9576 // Same as above for arrays 9577 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) 9578 LHSClass = Type::ConstantArray; 9579 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) 9580 RHSClass = Type::ConstantArray; 9581 9582 // ObjCInterfaces are just specialized ObjCObjects. 9583 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; 9584 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; 9585 9586 // Canonicalize ExtVector -> Vector. 9587 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; 9588 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; 9589 9590 // If the canonical type classes don't match. 9591 if (LHSClass != RHSClass) { 9592 // Note that we only have special rules for turning block enum 9593 // returns into block int returns, not vice-versa. 9594 if (const auto *ETy = LHS->getAs<EnumType>()) { 9595 return mergeEnumWithInteger(*this, ETy, RHS, false); 9596 } 9597 if (const EnumType* ETy = RHS->getAs<EnumType>()) { 9598 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); 9599 } 9600 // allow block pointer type to match an 'id' type. 9601 if (OfBlockPointer && !BlockReturnType) { 9602 if (LHS->isObjCIdType() && RHS->isBlockPointerType()) 9603 return LHS; 9604 if (RHS->isObjCIdType() && LHS->isBlockPointerType()) 9605 return RHS; 9606 } 9607 9608 return {}; 9609 } 9610 9611 // The canonical type classes match. 9612 switch (LHSClass) { 9613 #define TYPE(Class, Base) 9614 #define ABSTRACT_TYPE(Class, Base) 9615 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 9616 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 9617 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 9618 #include "clang/AST/TypeNodes.inc" 9619 llvm_unreachable("Non-canonical and dependent types shouldn't get here"); 9620 9621 case Type::Auto: 9622 case Type::DeducedTemplateSpecialization: 9623 case Type::LValueReference: 9624 case Type::RValueReference: 9625 case Type::MemberPointer: 9626 llvm_unreachable("C++ should never be in mergeTypes"); 9627 9628 case Type::ObjCInterface: 9629 case Type::IncompleteArray: 9630 case Type::VariableArray: 9631 case Type::FunctionProto: 9632 case Type::ExtVector: 9633 llvm_unreachable("Types are eliminated above"); 9634 9635 case Type::Pointer: 9636 { 9637 // Merge two pointer types, while trying to preserve typedef info 9638 QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType(); 9639 QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType(); 9640 if (Unqualified) { 9641 LHSPointee = LHSPointee.getUnqualifiedType(); 9642 RHSPointee = RHSPointee.getUnqualifiedType(); 9643 } 9644 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, 9645 Unqualified); 9646 if (ResultType.isNull()) 9647 return {}; 9648 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 9649 return LHS; 9650 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 9651 return RHS; 9652 return getPointerType(ResultType); 9653 } 9654 case Type::BlockPointer: 9655 { 9656 // Merge two block pointer types, while trying to preserve typedef info 9657 QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType(); 9658 QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType(); 9659 if (Unqualified) { 9660 LHSPointee = LHSPointee.getUnqualifiedType(); 9661 RHSPointee = RHSPointee.getUnqualifiedType(); 9662 } 9663 if (getLangOpts().OpenCL) { 9664 Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); 9665 Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); 9666 // Blocks can't be an expression in a ternary operator (OpenCL v2.0 9667 // 6.12.5) thus the following check is asymmetric. 9668 if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual)) 9669 return {}; 9670 LHSPteeQual.removeAddressSpace(); 9671 RHSPteeQual.removeAddressSpace(); 9672 LHSPointee = 9673 QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); 9674 RHSPointee = 9675 QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); 9676 } 9677 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, 9678 Unqualified); 9679 if (ResultType.isNull()) 9680 return {}; 9681 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 9682 return LHS; 9683 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 9684 return RHS; 9685 return getBlockPointerType(ResultType); 9686 } 9687 case Type::Atomic: 9688 { 9689 // Merge two pointer types, while trying to preserve typedef info 9690 QualType LHSValue = LHS->castAs<AtomicType>()->getValueType(); 9691 QualType RHSValue = RHS->castAs<AtomicType>()->getValueType(); 9692 if (Unqualified) { 9693 LHSValue = LHSValue.getUnqualifiedType(); 9694 RHSValue = RHSValue.getUnqualifiedType(); 9695 } 9696 QualType ResultType = mergeTypes(LHSValue, RHSValue, false, 9697 Unqualified); 9698 if (ResultType.isNull()) 9699 return {}; 9700 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) 9701 return LHS; 9702 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) 9703 return RHS; 9704 return getAtomicType(ResultType); 9705 } 9706 case Type::ConstantArray: 9707 { 9708 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); 9709 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); 9710 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) 9711 return {}; 9712 9713 QualType LHSElem = getAsArrayType(LHS)->getElementType(); 9714 QualType RHSElem = getAsArrayType(RHS)->getElementType(); 9715 if (Unqualified) { 9716 LHSElem = LHSElem.getUnqualifiedType(); 9717 RHSElem = RHSElem.getUnqualifiedType(); 9718 } 9719 9720 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); 9721 if (ResultType.isNull()) 9722 return {}; 9723 9724 const VariableArrayType* LVAT = getAsVariableArrayType(LHS); 9725 const VariableArrayType* RVAT = getAsVariableArrayType(RHS); 9726 9727 // If either side is a variable array, and both are complete, check whether 9728 // the current dimension is definite. 9729 if (LVAT || RVAT) { 9730 auto SizeFetch = [this](const VariableArrayType* VAT, 9731 const ConstantArrayType* CAT) 9732 -> std::pair<bool,llvm::APInt> { 9733 if (VAT) { 9734 Optional<llvm::APSInt> TheInt; 9735 Expr *E = VAT->getSizeExpr(); 9736 if (E && (TheInt = E->getIntegerConstantExpr(*this))) 9737 return std::make_pair(true, *TheInt); 9738 return std::make_pair(false, llvm::APSInt()); 9739 } 9740 if (CAT) 9741 return std::make_pair(true, CAT->getSize()); 9742 return std::make_pair(false, llvm::APInt()); 9743 }; 9744 9745 bool HaveLSize, HaveRSize; 9746 llvm::APInt LSize, RSize; 9747 std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT); 9748 std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT); 9749 if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize)) 9750 return {}; // Definite, but unequal, array dimension 9751 } 9752 9753 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 9754 return LHS; 9755 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 9756 return RHS; 9757 if (LCAT) 9758 return getConstantArrayType(ResultType, LCAT->getSize(), 9759 LCAT->getSizeExpr(), 9760 ArrayType::ArraySizeModifier(), 0); 9761 if (RCAT) 9762 return getConstantArrayType(ResultType, RCAT->getSize(), 9763 RCAT->getSizeExpr(), 9764 ArrayType::ArraySizeModifier(), 0); 9765 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 9766 return LHS; 9767 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 9768 return RHS; 9769 if (LVAT) { 9770 // FIXME: This isn't correct! But tricky to implement because 9771 // the array's size has to be the size of LHS, but the type 9772 // has to be different. 9773 return LHS; 9774 } 9775 if (RVAT) { 9776 // FIXME: This isn't correct! But tricky to implement because 9777 // the array's size has to be the size of RHS, but the type 9778 // has to be different. 9779 return RHS; 9780 } 9781 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; 9782 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; 9783 return getIncompleteArrayType(ResultType, 9784 ArrayType::ArraySizeModifier(), 0); 9785 } 9786 case Type::FunctionNoProto: 9787 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); 9788 case Type::Record: 9789 case Type::Enum: 9790 return {}; 9791 case Type::Builtin: 9792 // Only exactly equal builtin types are compatible, which is tested above. 9793 return {}; 9794 case Type::Complex: 9795 // Distinct complex types are incompatible. 9796 return {}; 9797 case Type::Vector: 9798 // FIXME: The merged type should be an ExtVector! 9799 if (areCompatVectorTypes(LHSCan->castAs<VectorType>(), 9800 RHSCan->castAs<VectorType>())) 9801 return LHS; 9802 return {}; 9803 case Type::ConstantMatrix: 9804 if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(), 9805 RHSCan->castAs<ConstantMatrixType>())) 9806 return LHS; 9807 return {}; 9808 case Type::ObjCObject: { 9809 // Check if the types are assignment compatible. 9810 // FIXME: This should be type compatibility, e.g. whether 9811 // "LHS x; RHS x;" at global scope is legal. 9812 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(), 9813 RHS->castAs<ObjCObjectType>())) 9814 return LHS; 9815 return {}; 9816 } 9817 case Type::ObjCObjectPointer: 9818 if (OfBlockPointer) { 9819 if (canAssignObjCInterfacesInBlockPointer( 9820 LHS->castAs<ObjCObjectPointerType>(), 9821 RHS->castAs<ObjCObjectPointerType>(), BlockReturnType)) 9822 return LHS; 9823 return {}; 9824 } 9825 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(), 9826 RHS->castAs<ObjCObjectPointerType>())) 9827 return LHS; 9828 return {}; 9829 case Type::Pipe: 9830 assert(LHS != RHS && 9831 "Equivalent pipe types should have already been handled!"); 9832 return {}; 9833 case Type::ExtInt: { 9834 // Merge two ext-int types, while trying to preserve typedef info. 9835 bool LHSUnsigned = LHS->castAs<ExtIntType>()->isUnsigned(); 9836 bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned(); 9837 unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits(); 9838 unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits(); 9839 9840 // Like unsigned/int, shouldn't have a type if they dont match. 9841 if (LHSUnsigned != RHSUnsigned) 9842 return {}; 9843 9844 if (LHSBits != RHSBits) 9845 return {}; 9846 return LHS; 9847 } 9848 } 9849 9850 llvm_unreachable("Invalid Type::Class!"); 9851 } 9852 9853 bool ASTContext::mergeExtParameterInfo( 9854 const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, 9855 bool &CanUseFirst, bool &CanUseSecond, 9856 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { 9857 assert(NewParamInfos.empty() && "param info list not empty"); 9858 CanUseFirst = CanUseSecond = true; 9859 bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); 9860 bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); 9861 9862 // Fast path: if the first type doesn't have ext parameter infos, 9863 // we match if and only if the second type also doesn't have them. 9864 if (!FirstHasInfo && !SecondHasInfo) 9865 return true; 9866 9867 bool NeedParamInfo = false; 9868 size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() 9869 : SecondFnType->getExtParameterInfos().size(); 9870 9871 for (size_t I = 0; I < E; ++I) { 9872 FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; 9873 if (FirstHasInfo) 9874 FirstParam = FirstFnType->getExtParameterInfo(I); 9875 if (SecondHasInfo) 9876 SecondParam = SecondFnType->getExtParameterInfo(I); 9877 9878 // Cannot merge unless everything except the noescape flag matches. 9879 if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false)) 9880 return false; 9881 9882 bool FirstNoEscape = FirstParam.isNoEscape(); 9883 bool SecondNoEscape = SecondParam.isNoEscape(); 9884 bool IsNoEscape = FirstNoEscape && SecondNoEscape; 9885 NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape)); 9886 if (NewParamInfos.back().getOpaqueValue()) 9887 NeedParamInfo = true; 9888 if (FirstNoEscape != IsNoEscape) 9889 CanUseFirst = false; 9890 if (SecondNoEscape != IsNoEscape) 9891 CanUseSecond = false; 9892 } 9893 9894 if (!NeedParamInfo) 9895 NewParamInfos.clear(); 9896 9897 return true; 9898 } 9899 9900 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) { 9901 ObjCLayouts[CD] = nullptr; 9902 } 9903 9904 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and 9905 /// 'RHS' attributes and returns the merged version; including for function 9906 /// return types. 9907 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { 9908 QualType LHSCan = getCanonicalType(LHS), 9909 RHSCan = getCanonicalType(RHS); 9910 // If two types are identical, they are compatible. 9911 if (LHSCan == RHSCan) 9912 return LHS; 9913 if (RHSCan->isFunctionType()) { 9914 if (!LHSCan->isFunctionType()) 9915 return {}; 9916 QualType OldReturnType = 9917 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); 9918 QualType NewReturnType = 9919 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); 9920 QualType ResReturnType = 9921 mergeObjCGCQualifiers(NewReturnType, OldReturnType); 9922 if (ResReturnType.isNull()) 9923 return {}; 9924 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { 9925 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); 9926 // In either case, use OldReturnType to build the new function type. 9927 const auto *F = LHS->castAs<FunctionType>(); 9928 if (const auto *FPT = cast<FunctionProtoType>(F)) { 9929 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 9930 EPI.ExtInfo = getFunctionExtInfo(LHS); 9931 QualType ResultType = 9932 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); 9933 return ResultType; 9934 } 9935 } 9936 return {}; 9937 } 9938 9939 // If the qualifiers are different, the types can still be merged. 9940 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 9941 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 9942 if (LQuals != RQuals) { 9943 // If any of these qualifiers are different, we have a type mismatch. 9944 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 9945 LQuals.getAddressSpace() != RQuals.getAddressSpace()) 9946 return {}; 9947 9948 // Exactly one GC qualifier difference is allowed: __strong is 9949 // okay if the other type has no GC qualifier but is an Objective 9950 // C object pointer (i.e. implicitly strong by default). We fix 9951 // this by pretending that the unqualified type was actually 9952 // qualified __strong. 9953 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 9954 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 9955 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 9956 9957 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 9958 return {}; 9959 9960 if (GC_L == Qualifiers::Strong) 9961 return LHS; 9962 if (GC_R == Qualifiers::Strong) 9963 return RHS; 9964 return {}; 9965 } 9966 9967 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { 9968 QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType(); 9969 QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType(); 9970 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); 9971 if (ResQT == LHSBaseQT) 9972 return LHS; 9973 if (ResQT == RHSBaseQT) 9974 return RHS; 9975 } 9976 return {}; 9977 } 9978 9979 //===----------------------------------------------------------------------===// 9980 // Integer Predicates 9981 //===----------------------------------------------------------------------===// 9982 9983 unsigned ASTContext::getIntWidth(QualType T) const { 9984 if (const auto *ET = T->getAs<EnumType>()) 9985 T = ET->getDecl()->getIntegerType(); 9986 if (T->isBooleanType()) 9987 return 1; 9988 if(const auto *EIT = T->getAs<ExtIntType>()) 9989 return EIT->getNumBits(); 9990 // For builtin types, just use the standard type sizing method 9991 return (unsigned)getTypeSize(T); 9992 } 9993 9994 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { 9995 assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && 9996 "Unexpected type"); 9997 9998 // Turn <4 x signed int> -> <4 x unsigned int> 9999 if (const auto *VTy = T->getAs<VectorType>()) 10000 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), 10001 VTy->getNumElements(), VTy->getVectorKind()); 10002 10003 // For enums, we return the unsigned version of the base type. 10004 if (const auto *ETy = T->getAs<EnumType>()) 10005 T = ETy->getDecl()->getIntegerType(); 10006 10007 switch (T->castAs<BuiltinType>()->getKind()) { 10008 case BuiltinType::Char_S: 10009 case BuiltinType::SChar: 10010 return UnsignedCharTy; 10011 case BuiltinType::Short: 10012 return UnsignedShortTy; 10013 case BuiltinType::Int: 10014 return UnsignedIntTy; 10015 case BuiltinType::Long: 10016 return UnsignedLongTy; 10017 case BuiltinType::LongLong: 10018 return UnsignedLongLongTy; 10019 case BuiltinType::Int128: 10020 return UnsignedInt128Ty; 10021 // wchar_t is special. It is either signed or not, but when it's signed, 10022 // there's no matching "unsigned wchar_t". Therefore we return the unsigned 10023 // version of it's underlying type instead. 10024 case BuiltinType::WChar_S: 10025 return getUnsignedWCharType(); 10026 10027 case BuiltinType::ShortAccum: 10028 return UnsignedShortAccumTy; 10029 case BuiltinType::Accum: 10030 return UnsignedAccumTy; 10031 case BuiltinType::LongAccum: 10032 return UnsignedLongAccumTy; 10033 case BuiltinType::SatShortAccum: 10034 return SatUnsignedShortAccumTy; 10035 case BuiltinType::SatAccum: 10036 return SatUnsignedAccumTy; 10037 case BuiltinType::SatLongAccum: 10038 return SatUnsignedLongAccumTy; 10039 case BuiltinType::ShortFract: 10040 return UnsignedShortFractTy; 10041 case BuiltinType::Fract: 10042 return UnsignedFractTy; 10043 case BuiltinType::LongFract: 10044 return UnsignedLongFractTy; 10045 case BuiltinType::SatShortFract: 10046 return SatUnsignedShortFractTy; 10047 case BuiltinType::SatFract: 10048 return SatUnsignedFractTy; 10049 case BuiltinType::SatLongFract: 10050 return SatUnsignedLongFractTy; 10051 default: 10052 llvm_unreachable("Unexpected signed integer or fixed point type"); 10053 } 10054 } 10055 10056 ASTMutationListener::~ASTMutationListener() = default; 10057 10058 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, 10059 QualType ReturnType) {} 10060 10061 //===----------------------------------------------------------------------===// 10062 // Builtin Type Computation 10063 //===----------------------------------------------------------------------===// 10064 10065 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the 10066 /// pointer over the consumed characters. This returns the resultant type. If 10067 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic 10068 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of 10069 /// a vector of "i*". 10070 /// 10071 /// RequiresICE is filled in on return to indicate whether the value is required 10072 /// to be an Integer Constant Expression. 10073 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, 10074 ASTContext::GetBuiltinTypeError &Error, 10075 bool &RequiresICE, 10076 bool AllowTypeModifiers) { 10077 // Modifiers. 10078 int HowLong = 0; 10079 bool Signed = false, Unsigned = false; 10080 RequiresICE = false; 10081 10082 // Read the prefixed modifiers first. 10083 bool Done = false; 10084 #ifndef NDEBUG 10085 bool IsSpecial = false; 10086 #endif 10087 while (!Done) { 10088 switch (*Str++) { 10089 default: Done = true; --Str; break; 10090 case 'I': 10091 RequiresICE = true; 10092 break; 10093 case 'S': 10094 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); 10095 assert(!Signed && "Can't use 'S' modifier multiple times!"); 10096 Signed = true; 10097 break; 10098 case 'U': 10099 assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); 10100 assert(!Unsigned && "Can't use 'U' modifier multiple times!"); 10101 Unsigned = true; 10102 break; 10103 case 'L': 10104 assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers"); 10105 assert(HowLong <= 2 && "Can't have LLLL modifier"); 10106 ++HowLong; 10107 break; 10108 case 'N': 10109 // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. 10110 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); 10111 assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!"); 10112 #ifndef NDEBUG 10113 IsSpecial = true; 10114 #endif 10115 if (Context.getTargetInfo().getLongWidth() == 32) 10116 ++HowLong; 10117 break; 10118 case 'W': 10119 // This modifier represents int64 type. 10120 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); 10121 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); 10122 #ifndef NDEBUG 10123 IsSpecial = true; 10124 #endif 10125 switch (Context.getTargetInfo().getInt64Type()) { 10126 default: 10127 llvm_unreachable("Unexpected integer type"); 10128 case TargetInfo::SignedLong: 10129 HowLong = 1; 10130 break; 10131 case TargetInfo::SignedLongLong: 10132 HowLong = 2; 10133 break; 10134 } 10135 break; 10136 case 'Z': 10137 // This modifier represents int32 type. 10138 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); 10139 assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!"); 10140 #ifndef NDEBUG 10141 IsSpecial = true; 10142 #endif 10143 switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) { 10144 default: 10145 llvm_unreachable("Unexpected integer type"); 10146 case TargetInfo::SignedInt: 10147 HowLong = 0; 10148 break; 10149 case TargetInfo::SignedLong: 10150 HowLong = 1; 10151 break; 10152 case TargetInfo::SignedLongLong: 10153 HowLong = 2; 10154 break; 10155 } 10156 break; 10157 case 'O': 10158 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); 10159 assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!"); 10160 #ifndef NDEBUG 10161 IsSpecial = true; 10162 #endif 10163 if (Context.getLangOpts().OpenCL) 10164 HowLong = 1; 10165 else 10166 HowLong = 2; 10167 break; 10168 } 10169 } 10170 10171 QualType Type; 10172 10173 // Read the base type. 10174 switch (*Str++) { 10175 default: llvm_unreachable("Unknown builtin type letter!"); 10176 case 'y': 10177 assert(HowLong == 0 && !Signed && !Unsigned && 10178 "Bad modifiers used with 'y'!"); 10179 Type = Context.BFloat16Ty; 10180 break; 10181 case 'v': 10182 assert(HowLong == 0 && !Signed && !Unsigned && 10183 "Bad modifiers used with 'v'!"); 10184 Type = Context.VoidTy; 10185 break; 10186 case 'h': 10187 assert(HowLong == 0 && !Signed && !Unsigned && 10188 "Bad modifiers used with 'h'!"); 10189 Type = Context.HalfTy; 10190 break; 10191 case 'f': 10192 assert(HowLong == 0 && !Signed && !Unsigned && 10193 "Bad modifiers used with 'f'!"); 10194 Type = Context.FloatTy; 10195 break; 10196 case 'd': 10197 assert(HowLong < 3 && !Signed && !Unsigned && 10198 "Bad modifiers used with 'd'!"); 10199 if (HowLong == 1) 10200 Type = Context.LongDoubleTy; 10201 else if (HowLong == 2) 10202 Type = Context.Float128Ty; 10203 else 10204 Type = Context.DoubleTy; 10205 break; 10206 case 's': 10207 assert(HowLong == 0 && "Bad modifiers used with 's'!"); 10208 if (Unsigned) 10209 Type = Context.UnsignedShortTy; 10210 else 10211 Type = Context.ShortTy; 10212 break; 10213 case 'i': 10214 if (HowLong == 3) 10215 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; 10216 else if (HowLong == 2) 10217 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; 10218 else if (HowLong == 1) 10219 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; 10220 else 10221 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; 10222 break; 10223 case 'c': 10224 assert(HowLong == 0 && "Bad modifiers used with 'c'!"); 10225 if (Signed) 10226 Type = Context.SignedCharTy; 10227 else if (Unsigned) 10228 Type = Context.UnsignedCharTy; 10229 else 10230 Type = Context.CharTy; 10231 break; 10232 case 'b': // boolean 10233 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); 10234 Type = Context.BoolTy; 10235 break; 10236 case 'z': // size_t. 10237 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); 10238 Type = Context.getSizeType(); 10239 break; 10240 case 'w': // wchar_t. 10241 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!"); 10242 Type = Context.getWideCharType(); 10243 break; 10244 case 'F': 10245 Type = Context.getCFConstantStringType(); 10246 break; 10247 case 'G': 10248 Type = Context.getObjCIdType(); 10249 break; 10250 case 'H': 10251 Type = Context.getObjCSelType(); 10252 break; 10253 case 'M': 10254 Type = Context.getObjCSuperType(); 10255 break; 10256 case 'a': 10257 Type = Context.getBuiltinVaListType(); 10258 assert(!Type.isNull() && "builtin va list type not initialized!"); 10259 break; 10260 case 'A': 10261 // This is a "reference" to a va_list; however, what exactly 10262 // this means depends on how va_list is defined. There are two 10263 // different kinds of va_list: ones passed by value, and ones 10264 // passed by reference. An example of a by-value va_list is 10265 // x86, where va_list is a char*. An example of by-ref va_list 10266 // is x86-64, where va_list is a __va_list_tag[1]. For x86, 10267 // we want this argument to be a char*&; for x86-64, we want 10268 // it to be a __va_list_tag*. 10269 Type = Context.getBuiltinVaListType(); 10270 assert(!Type.isNull() && "builtin va list type not initialized!"); 10271 if (Type->isArrayType()) 10272 Type = Context.getArrayDecayedType(Type); 10273 else 10274 Type = Context.getLValueReferenceType(Type); 10275 break; 10276 case 'q': { 10277 char *End; 10278 unsigned NumElements = strtoul(Str, &End, 10); 10279 assert(End != Str && "Missing vector size"); 10280 Str = End; 10281 10282 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, 10283 RequiresICE, false); 10284 assert(!RequiresICE && "Can't require vector ICE"); 10285 10286 Type = Context.getScalableVectorType(ElementType, NumElements); 10287 break; 10288 } 10289 case 'V': { 10290 char *End; 10291 unsigned NumElements = strtoul(Str, &End, 10); 10292 assert(End != Str && "Missing vector size"); 10293 Str = End; 10294 10295 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, 10296 RequiresICE, false); 10297 assert(!RequiresICE && "Can't require vector ICE"); 10298 10299 // TODO: No way to make AltiVec vectors in builtins yet. 10300 Type = Context.getVectorType(ElementType, NumElements, 10301 VectorType::GenericVector); 10302 break; 10303 } 10304 case 'E': { 10305 char *End; 10306 10307 unsigned NumElements = strtoul(Str, &End, 10); 10308 assert(End != Str && "Missing vector size"); 10309 10310 Str = End; 10311 10312 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 10313 false); 10314 Type = Context.getExtVectorType(ElementType, NumElements); 10315 break; 10316 } 10317 case 'X': { 10318 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 10319 false); 10320 assert(!RequiresICE && "Can't require complex ICE"); 10321 Type = Context.getComplexType(ElementType); 10322 break; 10323 } 10324 case 'Y': 10325 Type = Context.getPointerDiffType(); 10326 break; 10327 case 'P': 10328 Type = Context.getFILEType(); 10329 if (Type.isNull()) { 10330 Error = ASTContext::GE_Missing_stdio; 10331 return {}; 10332 } 10333 break; 10334 case 'J': 10335 if (Signed) 10336 Type = Context.getsigjmp_bufType(); 10337 else 10338 Type = Context.getjmp_bufType(); 10339 10340 if (Type.isNull()) { 10341 Error = ASTContext::GE_Missing_setjmp; 10342 return {}; 10343 } 10344 break; 10345 case 'K': 10346 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); 10347 Type = Context.getucontext_tType(); 10348 10349 if (Type.isNull()) { 10350 Error = ASTContext::GE_Missing_ucontext; 10351 return {}; 10352 } 10353 break; 10354 case 'p': 10355 Type = Context.getProcessIDType(); 10356 break; 10357 } 10358 10359 // If there are modifiers and if we're allowed to parse them, go for it. 10360 Done = !AllowTypeModifiers; 10361 while (!Done) { 10362 switch (char c = *Str++) { 10363 default: Done = true; --Str; break; 10364 case '*': 10365 case '&': { 10366 // Both pointers and references can have their pointee types 10367 // qualified with an address space. 10368 char *End; 10369 unsigned AddrSpace = strtoul(Str, &End, 10); 10370 if (End != Str) { 10371 // Note AddrSpace == 0 is not the same as an unspecified address space. 10372 Type = Context.getAddrSpaceQualType( 10373 Type, 10374 Context.getLangASForBuiltinAddressSpace(AddrSpace)); 10375 Str = End; 10376 } 10377 if (c == '*') 10378 Type = Context.getPointerType(Type); 10379 else 10380 Type = Context.getLValueReferenceType(Type); 10381 break; 10382 } 10383 // FIXME: There's no way to have a built-in with an rvalue ref arg. 10384 case 'C': 10385 Type = Type.withConst(); 10386 break; 10387 case 'D': 10388 Type = Context.getVolatileType(Type); 10389 break; 10390 case 'R': 10391 Type = Type.withRestrict(); 10392 break; 10393 } 10394 } 10395 10396 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && 10397 "Integer constant 'I' type must be an integer"); 10398 10399 return Type; 10400 } 10401 10402 // On some targets such as PowerPC, some of the builtins are defined with custom 10403 // type decriptors for target-dependent types. These descriptors are decoded in 10404 // other functions, but it may be useful to be able to fall back to default 10405 // descriptor decoding to define builtins mixing target-dependent and target- 10406 // independent types. This function allows decoding one type descriptor with 10407 // default decoding. 10408 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context, 10409 GetBuiltinTypeError &Error, bool &RequireICE, 10410 bool AllowTypeModifiers) const { 10411 return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers); 10412 } 10413 10414 /// GetBuiltinType - Return the type for the specified builtin. 10415 QualType ASTContext::GetBuiltinType(unsigned Id, 10416 GetBuiltinTypeError &Error, 10417 unsigned *IntegerConstantArgs) const { 10418 const char *TypeStr = BuiltinInfo.getTypeString(Id); 10419 if (TypeStr[0] == '\0') { 10420 Error = GE_Missing_type; 10421 return {}; 10422 } 10423 10424 SmallVector<QualType, 8> ArgTypes; 10425 10426 bool RequiresICE = false; 10427 Error = GE_None; 10428 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, 10429 RequiresICE, true); 10430 if (Error != GE_None) 10431 return {}; 10432 10433 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); 10434 10435 while (TypeStr[0] && TypeStr[0] != '.') { 10436 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); 10437 if (Error != GE_None) 10438 return {}; 10439 10440 // If this argument is required to be an IntegerConstantExpression and the 10441 // caller cares, fill in the bitmask we return. 10442 if (RequiresICE && IntegerConstantArgs) 10443 *IntegerConstantArgs |= 1 << ArgTypes.size(); 10444 10445 // Do array -> pointer decay. The builtin should use the decayed type. 10446 if (Ty->isArrayType()) 10447 Ty = getArrayDecayedType(Ty); 10448 10449 ArgTypes.push_back(Ty); 10450 } 10451 10452 if (Id == Builtin::BI__GetExceptionInfo) 10453 return {}; 10454 10455 assert((TypeStr[0] != '.' || TypeStr[1] == 0) && 10456 "'.' should only occur at end of builtin type list!"); 10457 10458 bool Variadic = (TypeStr[0] == '.'); 10459 10460 FunctionType::ExtInfo EI(getDefaultCallingConvention( 10461 Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 10462 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); 10463 10464 10465 // We really shouldn't be making a no-proto type here. 10466 if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus) 10467 return getFunctionNoProtoType(ResType, EI); 10468 10469 FunctionProtoType::ExtProtoInfo EPI; 10470 EPI.ExtInfo = EI; 10471 EPI.Variadic = Variadic; 10472 if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id)) 10473 EPI.ExceptionSpec.Type = 10474 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 10475 10476 return getFunctionType(ResType, ArgTypes, EPI); 10477 } 10478 10479 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, 10480 const FunctionDecl *FD) { 10481 if (!FD->isExternallyVisible()) 10482 return GVA_Internal; 10483 10484 // Non-user-provided functions get emitted as weak definitions with every 10485 // use, no matter whether they've been explicitly instantiated etc. 10486 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 10487 if (!MD->isUserProvided()) 10488 return GVA_DiscardableODR; 10489 10490 GVALinkage External; 10491 switch (FD->getTemplateSpecializationKind()) { 10492 case TSK_Undeclared: 10493 case TSK_ExplicitSpecialization: 10494 External = GVA_StrongExternal; 10495 break; 10496 10497 case TSK_ExplicitInstantiationDefinition: 10498 return GVA_StrongODR; 10499 10500 // C++11 [temp.explicit]p10: 10501 // [ Note: The intent is that an inline function that is the subject of 10502 // an explicit instantiation declaration will still be implicitly 10503 // instantiated when used so that the body can be considered for 10504 // inlining, but that no out-of-line copy of the inline function would be 10505 // generated in the translation unit. -- end note ] 10506 case TSK_ExplicitInstantiationDeclaration: 10507 return GVA_AvailableExternally; 10508 10509 case TSK_ImplicitInstantiation: 10510 External = GVA_DiscardableODR; 10511 break; 10512 } 10513 10514 if (!FD->isInlined()) 10515 return External; 10516 10517 if ((!Context.getLangOpts().CPlusPlus && 10518 !Context.getTargetInfo().getCXXABI().isMicrosoft() && 10519 !FD->hasAttr<DLLExportAttr>()) || 10520 FD->hasAttr<GNUInlineAttr>()) { 10521 // FIXME: This doesn't match gcc's behavior for dllexport inline functions. 10522 10523 // GNU or C99 inline semantics. Determine whether this symbol should be 10524 // externally visible. 10525 if (FD->isInlineDefinitionExternallyVisible()) 10526 return External; 10527 10528 // C99 inline semantics, where the symbol is not externally visible. 10529 return GVA_AvailableExternally; 10530 } 10531 10532 // Functions specified with extern and inline in -fms-compatibility mode 10533 // forcibly get emitted. While the body of the function cannot be later 10534 // replaced, the function definition cannot be discarded. 10535 if (FD->isMSExternInline()) 10536 return GVA_StrongODR; 10537 10538 return GVA_DiscardableODR; 10539 } 10540 10541 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, 10542 const Decl *D, GVALinkage L) { 10543 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx 10544 // dllexport/dllimport on inline functions. 10545 if (D->hasAttr<DLLImportAttr>()) { 10546 if (L == GVA_DiscardableODR || L == GVA_StrongODR) 10547 return GVA_AvailableExternally; 10548 } else if (D->hasAttr<DLLExportAttr>()) { 10549 if (L == GVA_DiscardableODR) 10550 return GVA_StrongODR; 10551 } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) { 10552 // Device-side functions with __global__ attribute must always be 10553 // visible externally so they can be launched from host. 10554 if (D->hasAttr<CUDAGlobalAttr>() && 10555 (L == GVA_DiscardableODR || L == GVA_Internal)) 10556 return GVA_StrongODR; 10557 // Single source offloading languages like CUDA/HIP need to be able to 10558 // access static device variables from host code of the same compilation 10559 // unit. This is done by externalizing the static variable. 10560 if (Context.shouldExternalizeStaticVar(D)) 10561 return GVA_StrongExternal; 10562 } 10563 return L; 10564 } 10565 10566 /// Adjust the GVALinkage for a declaration based on what an external AST source 10567 /// knows about whether there can be other definitions of this declaration. 10568 static GVALinkage 10569 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, 10570 GVALinkage L) { 10571 ExternalASTSource *Source = Ctx.getExternalSource(); 10572 if (!Source) 10573 return L; 10574 10575 switch (Source->hasExternalDefinitions(D)) { 10576 case ExternalASTSource::EK_Never: 10577 // Other translation units rely on us to provide the definition. 10578 if (L == GVA_DiscardableODR) 10579 return GVA_StrongODR; 10580 break; 10581 10582 case ExternalASTSource::EK_Always: 10583 return GVA_AvailableExternally; 10584 10585 case ExternalASTSource::EK_ReplyHazy: 10586 break; 10587 } 10588 return L; 10589 } 10590 10591 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { 10592 return adjustGVALinkageForExternalDefinitionKind(*this, FD, 10593 adjustGVALinkageForAttributes(*this, FD, 10594 basicGVALinkageForFunction(*this, FD))); 10595 } 10596 10597 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, 10598 const VarDecl *VD) { 10599 if (!VD->isExternallyVisible()) 10600 return GVA_Internal; 10601 10602 if (VD->isStaticLocal()) { 10603 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); 10604 while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) 10605 LexicalContext = LexicalContext->getLexicalParent(); 10606 10607 // ObjC Blocks can create local variables that don't have a FunctionDecl 10608 // LexicalContext. 10609 if (!LexicalContext) 10610 return GVA_DiscardableODR; 10611 10612 // Otherwise, let the static local variable inherit its linkage from the 10613 // nearest enclosing function. 10614 auto StaticLocalLinkage = 10615 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); 10616 10617 // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must 10618 // be emitted in any object with references to the symbol for the object it 10619 // contains, whether inline or out-of-line." 10620 // Similar behavior is observed with MSVC. An alternative ABI could use 10621 // StrongODR/AvailableExternally to match the function, but none are 10622 // known/supported currently. 10623 if (StaticLocalLinkage == GVA_StrongODR || 10624 StaticLocalLinkage == GVA_AvailableExternally) 10625 return GVA_DiscardableODR; 10626 return StaticLocalLinkage; 10627 } 10628 10629 // MSVC treats in-class initialized static data members as definitions. 10630 // By giving them non-strong linkage, out-of-line definitions won't 10631 // cause link errors. 10632 if (Context.isMSStaticDataMemberInlineDefinition(VD)) 10633 return GVA_DiscardableODR; 10634 10635 // Most non-template variables have strong linkage; inline variables are 10636 // linkonce_odr or (occasionally, for compatibility) weak_odr. 10637 GVALinkage StrongLinkage; 10638 switch (Context.getInlineVariableDefinitionKind(VD)) { 10639 case ASTContext::InlineVariableDefinitionKind::None: 10640 StrongLinkage = GVA_StrongExternal; 10641 break; 10642 case ASTContext::InlineVariableDefinitionKind::Weak: 10643 case ASTContext::InlineVariableDefinitionKind::WeakUnknown: 10644 StrongLinkage = GVA_DiscardableODR; 10645 break; 10646 case ASTContext::InlineVariableDefinitionKind::Strong: 10647 StrongLinkage = GVA_StrongODR; 10648 break; 10649 } 10650 10651 switch (VD->getTemplateSpecializationKind()) { 10652 case TSK_Undeclared: 10653 return StrongLinkage; 10654 10655 case TSK_ExplicitSpecialization: 10656 return Context.getTargetInfo().getCXXABI().isMicrosoft() && 10657 VD->isStaticDataMember() 10658 ? GVA_StrongODR 10659 : StrongLinkage; 10660 10661 case TSK_ExplicitInstantiationDefinition: 10662 return GVA_StrongODR; 10663 10664 case TSK_ExplicitInstantiationDeclaration: 10665 return GVA_AvailableExternally; 10666 10667 case TSK_ImplicitInstantiation: 10668 return GVA_DiscardableODR; 10669 } 10670 10671 llvm_unreachable("Invalid Linkage!"); 10672 } 10673 10674 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { 10675 return adjustGVALinkageForExternalDefinitionKind(*this, VD, 10676 adjustGVALinkageForAttributes(*this, VD, 10677 basicGVALinkageForVariable(*this, VD))); 10678 } 10679 10680 bool ASTContext::DeclMustBeEmitted(const Decl *D) { 10681 if (const auto *VD = dyn_cast<VarDecl>(D)) { 10682 if (!VD->isFileVarDecl()) 10683 return false; 10684 // Global named register variables (GNU extension) are never emitted. 10685 if (VD->getStorageClass() == SC_Register) 10686 return false; 10687 if (VD->getDescribedVarTemplate() || 10688 isa<VarTemplatePartialSpecializationDecl>(VD)) 10689 return false; 10690 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 10691 // We never need to emit an uninstantiated function template. 10692 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 10693 return false; 10694 } else if (isa<PragmaCommentDecl>(D)) 10695 return true; 10696 else if (isa<PragmaDetectMismatchDecl>(D)) 10697 return true; 10698 else if (isa<OMPRequiresDecl>(D)) 10699 return true; 10700 else if (isa<OMPThreadPrivateDecl>(D)) 10701 return !D->getDeclContext()->isDependentContext(); 10702 else if (isa<OMPAllocateDecl>(D)) 10703 return !D->getDeclContext()->isDependentContext(); 10704 else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D)) 10705 return !D->getDeclContext()->isDependentContext(); 10706 else if (isa<ImportDecl>(D)) 10707 return true; 10708 else 10709 return false; 10710 10711 // If this is a member of a class template, we do not need to emit it. 10712 if (D->getDeclContext()->isDependentContext()) 10713 return false; 10714 10715 // Weak references don't produce any output by themselves. 10716 if (D->hasAttr<WeakRefAttr>()) 10717 return false; 10718 10719 // Aliases and used decls are required. 10720 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) 10721 return true; 10722 10723 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 10724 // Forward declarations aren't required. 10725 if (!FD->doesThisDeclarationHaveABody()) 10726 return FD->doesDeclarationForceExternallyVisibleDefinition(); 10727 10728 // Constructors and destructors are required. 10729 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 10730 return true; 10731 10732 // The key function for a class is required. This rule only comes 10733 // into play when inline functions can be key functions, though. 10734 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 10735 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 10736 const CXXRecordDecl *RD = MD->getParent(); 10737 if (MD->isOutOfLine() && RD->isDynamicClass()) { 10738 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); 10739 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) 10740 return true; 10741 } 10742 } 10743 } 10744 10745 GVALinkage Linkage = GetGVALinkageForFunction(FD); 10746 10747 // static, static inline, always_inline, and extern inline functions can 10748 // always be deferred. Normal inline functions can be deferred in C99/C++. 10749 // Implicit template instantiations can also be deferred in C++. 10750 return !isDiscardableGVALinkage(Linkage); 10751 } 10752 10753 const auto *VD = cast<VarDecl>(D); 10754 assert(VD->isFileVarDecl() && "Expected file scoped var"); 10755 10756 // If the decl is marked as `declare target to`, it should be emitted for the 10757 // host and for the device. 10758 if (LangOpts.OpenMP && 10759 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 10760 return true; 10761 10762 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && 10763 !isMSStaticDataMemberInlineDefinition(VD)) 10764 return false; 10765 10766 // Variables that can be needed in other TUs are required. 10767 auto Linkage = GetGVALinkageForVariable(VD); 10768 if (!isDiscardableGVALinkage(Linkage)) 10769 return true; 10770 10771 // We never need to emit a variable that is available in another TU. 10772 if (Linkage == GVA_AvailableExternally) 10773 return false; 10774 10775 // Variables that have destruction with side-effects are required. 10776 if (VD->needsDestruction(*this)) 10777 return true; 10778 10779 // Variables that have initialization with side-effects are required. 10780 if (VD->getInit() && VD->getInit()->HasSideEffects(*this) && 10781 // We can get a value-dependent initializer during error recovery. 10782 (VD->getInit()->isValueDependent() || !VD->evaluateValue())) 10783 return true; 10784 10785 // Likewise, variables with tuple-like bindings are required if their 10786 // bindings have side-effects. 10787 if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) 10788 for (const auto *BD : DD->bindings()) 10789 if (const auto *BindingVD = BD->getHoldingVar()) 10790 if (DeclMustBeEmitted(BindingVD)) 10791 return true; 10792 10793 return false; 10794 } 10795 10796 void ASTContext::forEachMultiversionedFunctionVersion( 10797 const FunctionDecl *FD, 10798 llvm::function_ref<void(FunctionDecl *)> Pred) const { 10799 assert(FD->isMultiVersion() && "Only valid for multiversioned functions"); 10800 llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; 10801 FD = FD->getMostRecentDecl(); 10802 for (auto *CurDecl : 10803 FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) { 10804 FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl(); 10805 if (CurFD && hasSameType(CurFD->getType(), FD->getType()) && 10806 std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) { 10807 SeenDecls.insert(CurFD); 10808 Pred(CurFD); 10809 } 10810 } 10811 } 10812 10813 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, 10814 bool IsCXXMethod, 10815 bool IsBuiltin) const { 10816 // Pass through to the C++ ABI object 10817 if (IsCXXMethod) 10818 return ABI->getDefaultMethodCallConv(IsVariadic); 10819 10820 // Builtins ignore user-specified default calling convention and remain the 10821 // Target's default calling convention. 10822 if (!IsBuiltin) { 10823 switch (LangOpts.getDefaultCallingConv()) { 10824 case LangOptions::DCC_None: 10825 break; 10826 case LangOptions::DCC_CDecl: 10827 return CC_C; 10828 case LangOptions::DCC_FastCall: 10829 if (getTargetInfo().hasFeature("sse2") && !IsVariadic) 10830 return CC_X86FastCall; 10831 break; 10832 case LangOptions::DCC_StdCall: 10833 if (!IsVariadic) 10834 return CC_X86StdCall; 10835 break; 10836 case LangOptions::DCC_VectorCall: 10837 // __vectorcall cannot be applied to variadic functions. 10838 if (!IsVariadic) 10839 return CC_X86VectorCall; 10840 break; 10841 case LangOptions::DCC_RegCall: 10842 // __regcall cannot be applied to variadic functions. 10843 if (!IsVariadic) 10844 return CC_X86RegCall; 10845 break; 10846 } 10847 } 10848 return Target->getDefaultCallingConv(); 10849 } 10850 10851 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { 10852 // Pass through to the C++ ABI object 10853 return ABI->isNearlyEmpty(RD); 10854 } 10855 10856 VTableContextBase *ASTContext::getVTableContext() { 10857 if (!VTContext.get()) { 10858 auto ABI = Target->getCXXABI(); 10859 if (ABI.isMicrosoft()) 10860 VTContext.reset(new MicrosoftVTableContext(*this)); 10861 else { 10862 auto ComponentLayout = getLangOpts().RelativeCXXABIVTables 10863 ? ItaniumVTableContext::Relative 10864 : ItaniumVTableContext::Pointer; 10865 VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout)); 10866 } 10867 } 10868 return VTContext.get(); 10869 } 10870 10871 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) { 10872 if (!T) 10873 T = Target; 10874 switch (T->getCXXABI().getKind()) { 10875 case TargetCXXABI::AppleARM64: 10876 case TargetCXXABI::Fuchsia: 10877 case TargetCXXABI::GenericAArch64: 10878 case TargetCXXABI::GenericItanium: 10879 case TargetCXXABI::GenericARM: 10880 case TargetCXXABI::GenericMIPS: 10881 case TargetCXXABI::iOS: 10882 case TargetCXXABI::WebAssembly: 10883 case TargetCXXABI::WatchOS: 10884 case TargetCXXABI::XL: 10885 return ItaniumMangleContext::create(*this, getDiagnostics()); 10886 case TargetCXXABI::Microsoft: 10887 return MicrosoftMangleContext::create(*this, getDiagnostics()); 10888 } 10889 llvm_unreachable("Unsupported ABI"); 10890 } 10891 10892 CXXABI::~CXXABI() = default; 10893 10894 size_t ASTContext::getSideTableAllocatedMemory() const { 10895 return ASTRecordLayouts.getMemorySize() + 10896 llvm::capacity_in_bytes(ObjCLayouts) + 10897 llvm::capacity_in_bytes(KeyFunctions) + 10898 llvm::capacity_in_bytes(ObjCImpls) + 10899 llvm::capacity_in_bytes(BlockVarCopyInits) + 10900 llvm::capacity_in_bytes(DeclAttrs) + 10901 llvm::capacity_in_bytes(TemplateOrInstantiation) + 10902 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + 10903 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + 10904 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + 10905 llvm::capacity_in_bytes(OverriddenMethods) + 10906 llvm::capacity_in_bytes(Types) + 10907 llvm::capacity_in_bytes(VariableArrayTypes); 10908 } 10909 10910 /// getIntTypeForBitwidth - 10911 /// sets integer QualTy according to specified details: 10912 /// bitwidth, signed/unsigned. 10913 /// Returns empty type if there is no appropriate target types. 10914 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, 10915 unsigned Signed) const { 10916 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); 10917 CanQualType QualTy = getFromTargetType(Ty); 10918 if (!QualTy && DestWidth == 128) 10919 return Signed ? Int128Ty : UnsignedInt128Ty; 10920 return QualTy; 10921 } 10922 10923 /// getRealTypeForBitwidth - 10924 /// sets floating point QualTy according to specified bitwidth. 10925 /// Returns empty type if there is no appropriate target types. 10926 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth, 10927 bool ExplicitIEEE) const { 10928 TargetInfo::RealType Ty = 10929 getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE); 10930 switch (Ty) { 10931 case TargetInfo::Float: 10932 return FloatTy; 10933 case TargetInfo::Double: 10934 return DoubleTy; 10935 case TargetInfo::LongDouble: 10936 return LongDoubleTy; 10937 case TargetInfo::Float128: 10938 return Float128Ty; 10939 case TargetInfo::NoFloat: 10940 return {}; 10941 } 10942 10943 llvm_unreachable("Unhandled TargetInfo::RealType value"); 10944 } 10945 10946 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { 10947 if (Number > 1) 10948 MangleNumbers[ND] = Number; 10949 } 10950 10951 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { 10952 auto I = MangleNumbers.find(ND); 10953 return I != MangleNumbers.end() ? I->second : 1; 10954 } 10955 10956 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { 10957 if (Number > 1) 10958 StaticLocalNumbers[VD] = Number; 10959 } 10960 10961 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { 10962 auto I = StaticLocalNumbers.find(VD); 10963 return I != StaticLocalNumbers.end() ? I->second : 1; 10964 } 10965 10966 MangleNumberingContext & 10967 ASTContext::getManglingNumberContext(const DeclContext *DC) { 10968 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. 10969 std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; 10970 if (!MCtx) 10971 MCtx = createMangleNumberingContext(); 10972 return *MCtx; 10973 } 10974 10975 MangleNumberingContext & 10976 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) { 10977 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. 10978 std::unique_ptr<MangleNumberingContext> &MCtx = 10979 ExtraMangleNumberingContexts[D]; 10980 if (!MCtx) 10981 MCtx = createMangleNumberingContext(); 10982 return *MCtx; 10983 } 10984 10985 std::unique_ptr<MangleNumberingContext> 10986 ASTContext::createMangleNumberingContext() const { 10987 return ABI->createMangleNumberingContext(); 10988 } 10989 10990 const CXXConstructorDecl * 10991 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { 10992 return ABI->getCopyConstructorForExceptionObject( 10993 cast<CXXRecordDecl>(RD->getFirstDecl())); 10994 } 10995 10996 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, 10997 CXXConstructorDecl *CD) { 10998 return ABI->addCopyConstructorForExceptionObject( 10999 cast<CXXRecordDecl>(RD->getFirstDecl()), 11000 cast<CXXConstructorDecl>(CD->getFirstDecl())); 11001 } 11002 11003 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, 11004 TypedefNameDecl *DD) { 11005 return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); 11006 } 11007 11008 TypedefNameDecl * 11009 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { 11010 return ABI->getTypedefNameForUnnamedTagDecl(TD); 11011 } 11012 11013 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, 11014 DeclaratorDecl *DD) { 11015 return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); 11016 } 11017 11018 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { 11019 return ABI->getDeclaratorForUnnamedTagDecl(TD); 11020 } 11021 11022 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { 11023 ParamIndices[D] = index; 11024 } 11025 11026 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { 11027 ParameterIndexTable::const_iterator I = ParamIndices.find(D); 11028 assert(I != ParamIndices.end() && 11029 "ParmIndices lacks entry set by ParmVarDecl"); 11030 return I->second; 11031 } 11032 11033 QualType ASTContext::getStringLiteralArrayType(QualType EltTy, 11034 unsigned Length) const { 11035 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). 11036 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) 11037 EltTy = EltTy.withConst(); 11038 11039 EltTy = adjustStringLiteralBaseType(EltTy); 11040 11041 // Get an array type for the string, according to C99 6.4.5. This includes 11042 // the null terminator character. 11043 return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr, 11044 ArrayType::Normal, /*IndexTypeQuals*/ 0); 11045 } 11046 11047 StringLiteral * 11048 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const { 11049 StringLiteral *&Result = StringLiteralCache[Key]; 11050 if (!Result) 11051 Result = StringLiteral::Create( 11052 *this, Key, StringLiteral::Ascii, 11053 /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()), 11054 SourceLocation()); 11055 return Result; 11056 } 11057 11058 MSGuidDecl * 11059 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const { 11060 assert(MSGuidTagDecl && "building MS GUID without MS extensions?"); 11061 11062 llvm::FoldingSetNodeID ID; 11063 MSGuidDecl::Profile(ID, Parts); 11064 11065 void *InsertPos; 11066 if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos)) 11067 return Existing; 11068 11069 QualType GUIDType = getMSGuidType().withConst(); 11070 MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts); 11071 MSGuidDecls.InsertNode(New, InsertPos); 11072 return New; 11073 } 11074 11075 TemplateParamObjectDecl * 11076 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const { 11077 assert(T->isRecordType() && "template param object of unexpected type"); 11078 11079 // C++ [temp.param]p8: 11080 // [...] a static storage duration object of type 'const T' [...] 11081 T.addConst(); 11082 11083 llvm::FoldingSetNodeID ID; 11084 TemplateParamObjectDecl::Profile(ID, T, V); 11085 11086 void *InsertPos; 11087 if (TemplateParamObjectDecl *Existing = 11088 TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos)) 11089 return Existing; 11090 11091 TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V); 11092 TemplateParamObjectDecls.InsertNode(New, InsertPos); 11093 return New; 11094 } 11095 11096 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { 11097 const llvm::Triple &T = getTargetInfo().getTriple(); 11098 if (!T.isOSDarwin()) 11099 return false; 11100 11101 if (!(T.isiOS() && T.isOSVersionLT(7)) && 11102 !(T.isMacOSX() && T.isOSVersionLT(10, 9))) 11103 return false; 11104 11105 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 11106 CharUnits sizeChars = getTypeSizeInChars(AtomicTy); 11107 uint64_t Size = sizeChars.getQuantity(); 11108 CharUnits alignChars = getTypeAlignInChars(AtomicTy); 11109 unsigned Align = alignChars.getQuantity(); 11110 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); 11111 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); 11112 } 11113 11114 bool 11115 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, 11116 const ObjCMethodDecl *MethodImpl) { 11117 // No point trying to match an unavailable/deprecated mothod. 11118 if (MethodDecl->hasAttr<UnavailableAttr>() 11119 || MethodDecl->hasAttr<DeprecatedAttr>()) 11120 return false; 11121 if (MethodDecl->getObjCDeclQualifier() != 11122 MethodImpl->getObjCDeclQualifier()) 11123 return false; 11124 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) 11125 return false; 11126 11127 if (MethodDecl->param_size() != MethodImpl->param_size()) 11128 return false; 11129 11130 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), 11131 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), 11132 EF = MethodDecl->param_end(); 11133 IM != EM && IF != EF; ++IM, ++IF) { 11134 const ParmVarDecl *DeclVar = (*IF); 11135 const ParmVarDecl *ImplVar = (*IM); 11136 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) 11137 return false; 11138 if (!hasSameType(DeclVar->getType(), ImplVar->getType())) 11139 return false; 11140 } 11141 11142 return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); 11143 } 11144 11145 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { 11146 LangAS AS; 11147 if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) 11148 AS = LangAS::Default; 11149 else 11150 AS = QT->getPointeeType().getAddressSpace(); 11151 11152 return getTargetInfo().getNullPointerValue(AS); 11153 } 11154 11155 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { 11156 if (isTargetAddressSpace(AS)) 11157 return toTargetAddressSpace(AS); 11158 else 11159 return (*AddrSpaceMap)[(unsigned)AS]; 11160 } 11161 11162 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { 11163 assert(Ty->isFixedPointType()); 11164 11165 if (Ty->isSaturatedFixedPointType()) return Ty; 11166 11167 switch (Ty->castAs<BuiltinType>()->getKind()) { 11168 default: 11169 llvm_unreachable("Not a fixed point type!"); 11170 case BuiltinType::ShortAccum: 11171 return SatShortAccumTy; 11172 case BuiltinType::Accum: 11173 return SatAccumTy; 11174 case BuiltinType::LongAccum: 11175 return SatLongAccumTy; 11176 case BuiltinType::UShortAccum: 11177 return SatUnsignedShortAccumTy; 11178 case BuiltinType::UAccum: 11179 return SatUnsignedAccumTy; 11180 case BuiltinType::ULongAccum: 11181 return SatUnsignedLongAccumTy; 11182 case BuiltinType::ShortFract: 11183 return SatShortFractTy; 11184 case BuiltinType::Fract: 11185 return SatFractTy; 11186 case BuiltinType::LongFract: 11187 return SatLongFractTy; 11188 case BuiltinType::UShortFract: 11189 return SatUnsignedShortFractTy; 11190 case BuiltinType::UFract: 11191 return SatUnsignedFractTy; 11192 case BuiltinType::ULongFract: 11193 return SatUnsignedLongFractTy; 11194 } 11195 } 11196 11197 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const { 11198 if (LangOpts.OpenCL) 11199 return getTargetInfo().getOpenCLBuiltinAddressSpace(AS); 11200 11201 if (LangOpts.CUDA) 11202 return getTargetInfo().getCUDABuiltinAddressSpace(AS); 11203 11204 return getLangASFromTargetAS(AS); 11205 } 11206 11207 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that 11208 // doesn't include ASTContext.h 11209 template 11210 clang::LazyGenerationalUpdatePtr< 11211 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType 11212 clang::LazyGenerationalUpdatePtr< 11213 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( 11214 const clang::ASTContext &Ctx, Decl *Value); 11215 11216 unsigned char ASTContext::getFixedPointScale(QualType Ty) const { 11217 assert(Ty->isFixedPointType()); 11218 11219 const TargetInfo &Target = getTargetInfo(); 11220 switch (Ty->castAs<BuiltinType>()->getKind()) { 11221 default: 11222 llvm_unreachable("Not a fixed point type!"); 11223 case BuiltinType::ShortAccum: 11224 case BuiltinType::SatShortAccum: 11225 return Target.getShortAccumScale(); 11226 case BuiltinType::Accum: 11227 case BuiltinType::SatAccum: 11228 return Target.getAccumScale(); 11229 case BuiltinType::LongAccum: 11230 case BuiltinType::SatLongAccum: 11231 return Target.getLongAccumScale(); 11232 case BuiltinType::UShortAccum: 11233 case BuiltinType::SatUShortAccum: 11234 return Target.getUnsignedShortAccumScale(); 11235 case BuiltinType::UAccum: 11236 case BuiltinType::SatUAccum: 11237 return Target.getUnsignedAccumScale(); 11238 case BuiltinType::ULongAccum: 11239 case BuiltinType::SatULongAccum: 11240 return Target.getUnsignedLongAccumScale(); 11241 case BuiltinType::ShortFract: 11242 case BuiltinType::SatShortFract: 11243 return Target.getShortFractScale(); 11244 case BuiltinType::Fract: 11245 case BuiltinType::SatFract: 11246 return Target.getFractScale(); 11247 case BuiltinType::LongFract: 11248 case BuiltinType::SatLongFract: 11249 return Target.getLongFractScale(); 11250 case BuiltinType::UShortFract: 11251 case BuiltinType::SatUShortFract: 11252 return Target.getUnsignedShortFractScale(); 11253 case BuiltinType::UFract: 11254 case BuiltinType::SatUFract: 11255 return Target.getUnsignedFractScale(); 11256 case BuiltinType::ULongFract: 11257 case BuiltinType::SatULongFract: 11258 return Target.getUnsignedLongFractScale(); 11259 } 11260 } 11261 11262 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { 11263 assert(Ty->isFixedPointType()); 11264 11265 const TargetInfo &Target = getTargetInfo(); 11266 switch (Ty->castAs<BuiltinType>()->getKind()) { 11267 default: 11268 llvm_unreachable("Not a fixed point type!"); 11269 case BuiltinType::ShortAccum: 11270 case BuiltinType::SatShortAccum: 11271 return Target.getShortAccumIBits(); 11272 case BuiltinType::Accum: 11273 case BuiltinType::SatAccum: 11274 return Target.getAccumIBits(); 11275 case BuiltinType::LongAccum: 11276 case BuiltinType::SatLongAccum: 11277 return Target.getLongAccumIBits(); 11278 case BuiltinType::UShortAccum: 11279 case BuiltinType::SatUShortAccum: 11280 return Target.getUnsignedShortAccumIBits(); 11281 case BuiltinType::UAccum: 11282 case BuiltinType::SatUAccum: 11283 return Target.getUnsignedAccumIBits(); 11284 case BuiltinType::ULongAccum: 11285 case BuiltinType::SatULongAccum: 11286 return Target.getUnsignedLongAccumIBits(); 11287 case BuiltinType::ShortFract: 11288 case BuiltinType::SatShortFract: 11289 case BuiltinType::Fract: 11290 case BuiltinType::SatFract: 11291 case BuiltinType::LongFract: 11292 case BuiltinType::SatLongFract: 11293 case BuiltinType::UShortFract: 11294 case BuiltinType::SatUShortFract: 11295 case BuiltinType::UFract: 11296 case BuiltinType::SatUFract: 11297 case BuiltinType::ULongFract: 11298 case BuiltinType::SatULongFract: 11299 return 0; 11300 } 11301 } 11302 11303 llvm::FixedPointSemantics 11304 ASTContext::getFixedPointSemantics(QualType Ty) const { 11305 assert((Ty->isFixedPointType() || Ty->isIntegerType()) && 11306 "Can only get the fixed point semantics for a " 11307 "fixed point or integer type."); 11308 if (Ty->isIntegerType()) 11309 return llvm::FixedPointSemantics::GetIntegerSemantics( 11310 getIntWidth(Ty), Ty->isSignedIntegerType()); 11311 11312 bool isSigned = Ty->isSignedFixedPointType(); 11313 return llvm::FixedPointSemantics( 11314 static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned, 11315 Ty->isSaturatedFixedPointType(), 11316 !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding()); 11317 } 11318 11319 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const { 11320 assert(Ty->isFixedPointType()); 11321 return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty)); 11322 } 11323 11324 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const { 11325 assert(Ty->isFixedPointType()); 11326 return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty)); 11327 } 11328 11329 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const { 11330 assert(Ty->isUnsignedFixedPointType() && 11331 "Expected unsigned fixed point type"); 11332 11333 switch (Ty->castAs<BuiltinType>()->getKind()) { 11334 case BuiltinType::UShortAccum: 11335 return ShortAccumTy; 11336 case BuiltinType::UAccum: 11337 return AccumTy; 11338 case BuiltinType::ULongAccum: 11339 return LongAccumTy; 11340 case BuiltinType::SatUShortAccum: 11341 return SatShortAccumTy; 11342 case BuiltinType::SatUAccum: 11343 return SatAccumTy; 11344 case BuiltinType::SatULongAccum: 11345 return SatLongAccumTy; 11346 case BuiltinType::UShortFract: 11347 return ShortFractTy; 11348 case BuiltinType::UFract: 11349 return FractTy; 11350 case BuiltinType::ULongFract: 11351 return LongFractTy; 11352 case BuiltinType::SatUShortFract: 11353 return SatShortFractTy; 11354 case BuiltinType::SatUFract: 11355 return SatFractTy; 11356 case BuiltinType::SatULongFract: 11357 return SatLongFractTy; 11358 default: 11359 llvm_unreachable("Unexpected unsigned fixed point type"); 11360 } 11361 } 11362 11363 ParsedTargetAttr 11364 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const { 11365 assert(TD != nullptr); 11366 ParsedTargetAttr ParsedAttr = TD->parse(); 11367 11368 ParsedAttr.Features.erase( 11369 llvm::remove_if(ParsedAttr.Features, 11370 [&](const std::string &Feat) { 11371 return !Target->isValidFeatureName( 11372 StringRef{Feat}.substr(1)); 11373 }), 11374 ParsedAttr.Features.end()); 11375 return ParsedAttr; 11376 } 11377 11378 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 11379 const FunctionDecl *FD) const { 11380 if (FD) 11381 getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD)); 11382 else 11383 Target->initFeatureMap(FeatureMap, getDiagnostics(), 11384 Target->getTargetOpts().CPU, 11385 Target->getTargetOpts().Features); 11386 } 11387 11388 // Fills in the supplied string map with the set of target features for the 11389 // passed in function. 11390 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 11391 GlobalDecl GD) const { 11392 StringRef TargetCPU = Target->getTargetOpts().CPU; 11393 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 11394 if (const auto *TD = FD->getAttr<TargetAttr>()) { 11395 ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 11396 11397 // Make a copy of the features as passed on the command line into the 11398 // beginning of the additional features from the function to override. 11399 ParsedAttr.Features.insert( 11400 ParsedAttr.Features.begin(), 11401 Target->getTargetOpts().FeaturesAsWritten.begin(), 11402 Target->getTargetOpts().FeaturesAsWritten.end()); 11403 11404 if (ParsedAttr.Architecture != "" && 11405 Target->isValidCPUName(ParsedAttr.Architecture)) 11406 TargetCPU = ParsedAttr.Architecture; 11407 11408 // Now populate the feature map, first with the TargetCPU which is either 11409 // the default or a new one from the target attribute string. Then we'll use 11410 // the passed in features (FeaturesAsWritten) along with the new ones from 11411 // the attribute. 11412 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, 11413 ParsedAttr.Features); 11414 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 11415 llvm::SmallVector<StringRef, 32> FeaturesTmp; 11416 Target->getCPUSpecificCPUDispatchFeatures( 11417 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 11418 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 11419 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); 11420 } else { 11421 FeatureMap = Target->getTargetOpts().FeatureMap; 11422 } 11423 } 11424 11425 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() { 11426 OMPTraitInfoVector.emplace_back(new OMPTraitInfo()); 11427 return *OMPTraitInfoVector.back(); 11428 } 11429 11430 const StreamingDiagnostic &clang:: 11431 operator<<(const StreamingDiagnostic &DB, 11432 const ASTContext::SectionInfo &Section) { 11433 if (Section.Decl) 11434 return DB << Section.Decl; 11435 return DB << "a prior #pragma section"; 11436 } 11437 11438 bool ASTContext::mayExternalizeStaticVar(const Decl *D) const { 11439 return !getLangOpts().GPURelocatableDeviceCode && 11440 ((D->hasAttr<CUDADeviceAttr>() && 11441 !D->getAttr<CUDADeviceAttr>()->isImplicit()) || 11442 (D->hasAttr<CUDAConstantAttr>() && 11443 !D->getAttr<CUDAConstantAttr>()->isImplicit())) && 11444 isa<VarDecl>(D) && cast<VarDecl>(D)->isFileVarDecl() && 11445 cast<VarDecl>(D)->getStorageClass() == SC_Static; 11446 } 11447 11448 bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const { 11449 return mayExternalizeStaticVar(D) && 11450 CUDAStaticDeviceVarReferencedByHost.count(cast<VarDecl>(D)); 11451 } 11452