xref: /freebsd/contrib/llvm-project/clang/lib/AST/ASTContext.cpp (revision a521f2116473fbd8c09db395518f060a27d02334)
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/FixedPoint.h"
55 #include "clang/Basic/IdentifierTable.h"
56 #include "clang/Basic/LLVM.h"
57 #include "clang/Basic/LangOptions.h"
58 #include "clang/Basic/Linkage.h"
59 #include "clang/Basic/Module.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/SanitizerBlacklist.h"
62 #include "clang/Basic/SourceLocation.h"
63 #include "clang/Basic/SourceManager.h"
64 #include "clang/Basic/Specifiers.h"
65 #include "clang/Basic/TargetCXXABI.h"
66 #include "clang/Basic/TargetInfo.h"
67 #include "clang/Basic/XRayLists.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/None.h"
75 #include "llvm/ADT/Optional.h"
76 #include "llvm/ADT/PointerUnion.h"
77 #include "llvm/ADT/STLExtras.h"
78 #include "llvm/ADT/SmallPtrSet.h"
79 #include "llvm/ADT/SmallVector.h"
80 #include "llvm/ADT/StringExtras.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Triple.h"
83 #include "llvm/Support/Capacity.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstddef>
92 #include <cstdint>
93 #include <cstdlib>
94 #include <map>
95 #include <memory>
96 #include <string>
97 #include <tuple>
98 #include <utility>
99 
100 using namespace clang;
101 
102 enum FloatingRank {
103   BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
104 };
105 
106 /// \returns location that is relevant when searching for Doc comments related
107 /// to \p D.
108 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
109                                                  SourceManager &SourceMgr) {
110   assert(D);
111 
112   // User can not attach documentation to implicit declarations.
113   if (D->isImplicit())
114     return {};
115 
116   // User can not attach documentation to implicit instantiations.
117   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
118     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
119       return {};
120   }
121 
122   if (const auto *VD = dyn_cast<VarDecl>(D)) {
123     if (VD->isStaticDataMember() &&
124         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
125       return {};
126   }
127 
128   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
129     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
130       return {};
131   }
132 
133   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
134     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
135     if (TSK == TSK_ImplicitInstantiation ||
136         TSK == TSK_Undeclared)
137       return {};
138   }
139 
140   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
141     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
142       return {};
143   }
144   if (const auto *TD = dyn_cast<TagDecl>(D)) {
145     // When tag declaration (but not definition!) is part of the
146     // decl-specifier-seq of some other declaration, it doesn't get comment
147     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
148       return {};
149   }
150   // TODO: handle comments for function parameters properly.
151   if (isa<ParmVarDecl>(D))
152     return {};
153 
154   // TODO: we could look up template parameter documentation in the template
155   // documentation.
156   if (isa<TemplateTypeParmDecl>(D) ||
157       isa<NonTypeTemplateParmDecl>(D) ||
158       isa<TemplateTemplateParmDecl>(D))
159     return {};
160 
161   // Find declaration location.
162   // For Objective-C declarations we generally don't expect to have multiple
163   // declarators, thus use declaration starting location as the "declaration
164   // location".
165   // For all other declarations multiple declarators are used quite frequently,
166   // so we use the location of the identifier as the "declaration location".
167   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
168       isa<ObjCPropertyDecl>(D) ||
169       isa<RedeclarableTemplateDecl>(D) ||
170       isa<ClassTemplateSpecializationDecl>(D) ||
171       // Allow association with Y across {} in `typedef struct X {} Y`.
172       isa<TypedefDecl>(D))
173     return D->getBeginLoc();
174   else {
175     const SourceLocation DeclLoc = D->getLocation();
176     if (DeclLoc.isMacroID()) {
177       if (isa<TypedefDecl>(D)) {
178         // If location of the typedef name is in a macro, it is because being
179         // declared via a macro. Try using declaration's starting location as
180         // the "declaration location".
181         return D->getBeginLoc();
182       } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
183         // If location of the tag decl is inside a macro, but the spelling of
184         // the tag name comes from a macro argument, it looks like a special
185         // macro like NS_ENUM is being used to define the tag decl.  In that
186         // case, adjust the source location to the expansion loc so that we can
187         // attach the comment to the tag decl.
188         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
189             TD->isCompleteDefinition())
190           return SourceMgr.getExpansionLoc(DeclLoc);
191       }
192     }
193     return DeclLoc;
194   }
195 
196   return {};
197 }
198 
199 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
200     const Decl *D, const SourceLocation RepresentativeLocForDecl,
201     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
202   // If the declaration doesn't map directly to a location in a file, we
203   // can't find the comment.
204   if (RepresentativeLocForDecl.isInvalid() ||
205       !RepresentativeLocForDecl.isFileID())
206     return nullptr;
207 
208   // If there are no comments anywhere, we won't find anything.
209   if (CommentsInTheFile.empty())
210     return nullptr;
211 
212   // Decompose the location for the declaration and find the beginning of the
213   // file buffer.
214   const std::pair<FileID, unsigned> DeclLocDecomp =
215       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
216 
217   // Slow path.
218   auto OffsetCommentBehindDecl =
219       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
220 
221   // First check whether we have a trailing comment.
222   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
223     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
224     if ((CommentBehindDecl->isDocumentation() ||
225          LangOpts.CommentOpts.ParseAllComments) &&
226         CommentBehindDecl->isTrailingComment() &&
227         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
228          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
229 
230       // Check that Doxygen trailing comment comes after the declaration, starts
231       // on the same line and in the same file as the declaration.
232       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
233           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
234                                        OffsetCommentBehindDecl->first)) {
235         return CommentBehindDecl;
236       }
237     }
238   }
239 
240   // The comment just after the declaration was not a trailing comment.
241   // Let's look at the previous comment.
242   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
243     return nullptr;
244 
245   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
246   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
247 
248   // Check that we actually have a non-member Doxygen comment.
249   if (!(CommentBeforeDecl->isDocumentation() ||
250         LangOpts.CommentOpts.ParseAllComments) ||
251       CommentBeforeDecl->isTrailingComment())
252     return nullptr;
253 
254   // Decompose the end of the comment.
255   const unsigned CommentEndOffset =
256       Comments.getCommentEndOffset(CommentBeforeDecl);
257 
258   // Get the corresponding buffer.
259   bool Invalid = false;
260   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
261                                                &Invalid).data();
262   if (Invalid)
263     return nullptr;
264 
265   // Extract text between the comment and declaration.
266   StringRef Text(Buffer + CommentEndOffset,
267                  DeclLocDecomp.second - CommentEndOffset);
268 
269   // There should be no other declarations or preprocessor directives between
270   // comment and declaration.
271   if (Text.find_first_of(";{}#@") != StringRef::npos)
272     return nullptr;
273 
274   return CommentBeforeDecl;
275 }
276 
277 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
278   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
279 
280   // If the declaration doesn't map directly to a location in a file, we
281   // can't find the comment.
282   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
283     return nullptr;
284 
285   if (ExternalSource && !CommentsLoaded) {
286     ExternalSource->ReadComments();
287     CommentsLoaded = true;
288   }
289 
290   if (Comments.empty())
291     return nullptr;
292 
293   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
294   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
295   if (!CommentsInThisFile || CommentsInThisFile->empty())
296     return nullptr;
297 
298   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
299 }
300 
301 void ASTContext::addComment(const RawComment &RC) {
302   assert(LangOpts.RetainCommentsFromSystemHeaders ||
303          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
304   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
305 }
306 
307 /// If we have a 'templated' declaration for a template, adjust 'D' to
308 /// refer to the actual template.
309 /// If we have an implicit instantiation, adjust 'D' to refer to template.
310 static const Decl &adjustDeclToTemplate(const Decl &D) {
311   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
312     // Is this function declaration part of a function template?
313     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
314       return *FTD;
315 
316     // Nothing to do if function is not an implicit instantiation.
317     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
318       return D;
319 
320     // Function is an implicit instantiation of a function template?
321     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
322       return *FTD;
323 
324     // Function is instantiated from a member definition of a class template?
325     if (const FunctionDecl *MemberDecl =
326             FD->getInstantiatedFromMemberFunction())
327       return *MemberDecl;
328 
329     return D;
330   }
331   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
332     // Static data member is instantiated from a member definition of a class
333     // template?
334     if (VD->isStaticDataMember())
335       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
336         return *MemberDecl;
337 
338     return D;
339   }
340   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
341     // Is this class declaration part of a class template?
342     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
343       return *CTD;
344 
345     // Class is an implicit instantiation of a class template or partial
346     // specialization?
347     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
348       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
349         return D;
350       llvm::PointerUnion<ClassTemplateDecl *,
351                          ClassTemplatePartialSpecializationDecl *>
352           PU = CTSD->getSpecializedTemplateOrPartial();
353       return PU.is<ClassTemplateDecl *>()
354                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
355                  : *static_cast<const Decl *>(
356                        PU.get<ClassTemplatePartialSpecializationDecl *>());
357     }
358 
359     // Class is instantiated from a member definition of a class template?
360     if (const MemberSpecializationInfo *Info =
361             CRD->getMemberSpecializationInfo())
362       return *Info->getInstantiatedFrom();
363 
364     return D;
365   }
366   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
367     // Enum is instantiated from a member definition of a class template?
368     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
369       return *MemberDecl;
370 
371     return D;
372   }
373   // FIXME: Adjust alias templates?
374   return D;
375 }
376 
377 const RawComment *ASTContext::getRawCommentForAnyRedecl(
378                                                 const Decl *D,
379                                                 const Decl **OriginalDecl) const {
380   if (!D) {
381     if (OriginalDecl)
382       OriginalDecl = nullptr;
383     return nullptr;
384   }
385 
386   D = &adjustDeclToTemplate(*D);
387 
388   // Any comment directly attached to D?
389   {
390     auto DeclComment = DeclRawComments.find(D);
391     if (DeclComment != DeclRawComments.end()) {
392       if (OriginalDecl)
393         *OriginalDecl = D;
394       return DeclComment->second;
395     }
396   }
397 
398   // Any comment attached to any redeclaration of D?
399   const Decl *CanonicalD = D->getCanonicalDecl();
400   if (!CanonicalD)
401     return nullptr;
402 
403   {
404     auto RedeclComment = RedeclChainComments.find(CanonicalD);
405     if (RedeclComment != RedeclChainComments.end()) {
406       if (OriginalDecl)
407         *OriginalDecl = RedeclComment->second;
408       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
409       assert(CommentAtRedecl != DeclRawComments.end() &&
410              "This decl is supposed to have comment attached.");
411       return CommentAtRedecl->second;
412     }
413   }
414 
415   // Any redeclarations of D that we haven't checked for comments yet?
416   // We can't use DenseMap::iterator directly since it'd get invalid.
417   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
418     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
419     if (LookupRes != CommentlessRedeclChains.end())
420       return LookupRes->second;
421     return nullptr;
422   }();
423 
424   for (const auto Redecl : D->redecls()) {
425     assert(Redecl);
426     // Skip all redeclarations that have been checked previously.
427     if (LastCheckedRedecl) {
428       if (LastCheckedRedecl == Redecl) {
429         LastCheckedRedecl = nullptr;
430       }
431       continue;
432     }
433     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
434     if (RedeclComment) {
435       cacheRawCommentForDecl(*Redecl, *RedeclComment);
436       if (OriginalDecl)
437         *OriginalDecl = Redecl;
438       return RedeclComment;
439     }
440     CommentlessRedeclChains[CanonicalD] = Redecl;
441   }
442 
443   if (OriginalDecl)
444     *OriginalDecl = nullptr;
445   return nullptr;
446 }
447 
448 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
449                                         const RawComment &Comment) const {
450   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
451   DeclRawComments.try_emplace(&OriginalD, &Comment);
452   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
453   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
454   CommentlessRedeclChains.erase(CanonicalDecl);
455 }
456 
457 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
458                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
459   const DeclContext *DC = ObjCMethod->getDeclContext();
460   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
461     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
462     if (!ID)
463       return;
464     // Add redeclared method here.
465     for (const auto *Ext : ID->known_extensions()) {
466       if (ObjCMethodDecl *RedeclaredMethod =
467             Ext->getMethod(ObjCMethod->getSelector(),
468                                   ObjCMethod->isInstanceMethod()))
469         Redeclared.push_back(RedeclaredMethod);
470     }
471   }
472 }
473 
474 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
475                                                  const Preprocessor *PP) {
476   if (Comments.empty() || Decls.empty())
477     return;
478 
479   FileID File;
480   for (Decl *D : Decls) {
481     SourceLocation Loc = D->getLocation();
482     if (Loc.isValid()) {
483       // See if there are any new comments that are not attached to a decl.
484       // The location doesn't have to be precise - we care only about the file.
485       File = SourceMgr.getDecomposedLoc(Loc).first;
486       break;
487     }
488   }
489 
490   if (File.isInvalid())
491     return;
492 
493   auto CommentsInThisFile = Comments.getCommentsInFile(File);
494   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
495       CommentsInThisFile->rbegin()->second->isAttached())
496     return;
497 
498   // There is at least one comment not attached to a decl.
499   // Maybe it should be attached to one of Decls?
500   //
501   // Note that this way we pick up not only comments that precede the
502   // declaration, but also comments that *follow* the declaration -- thanks to
503   // the lookahead in the lexer: we've consumed the semicolon and looked
504   // ahead through comments.
505 
506   for (const Decl *D : Decls) {
507     assert(D);
508     if (D->isInvalidDecl())
509       continue;
510 
511     D = &adjustDeclToTemplate(*D);
512 
513     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
514 
515     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
516       continue;
517 
518     if (DeclRawComments.count(D) > 0)
519       continue;
520 
521     if (RawComment *const DocComment =
522             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
523       cacheRawCommentForDecl(*D, *DocComment);
524       comments::FullComment *FC = DocComment->parse(*this, PP, D);
525       ParsedComments[D->getCanonicalDecl()] = FC;
526     }
527   }
528 }
529 
530 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
531                                                     const Decl *D) const {
532   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
533   ThisDeclInfo->CommentDecl = D;
534   ThisDeclInfo->IsFilled = false;
535   ThisDeclInfo->fill();
536   ThisDeclInfo->CommentDecl = FC->getDecl();
537   if (!ThisDeclInfo->TemplateParameters)
538     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
539   comments::FullComment *CFC =
540     new (*this) comments::FullComment(FC->getBlocks(),
541                                       ThisDeclInfo);
542   return CFC;
543 }
544 
545 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
546   const RawComment *RC = getRawCommentForDeclNoCache(D);
547   return RC ? RC->parse(*this, nullptr, D) : nullptr;
548 }
549 
550 comments::FullComment *ASTContext::getCommentForDecl(
551                                               const Decl *D,
552                                               const Preprocessor *PP) const {
553   if (!D || D->isInvalidDecl())
554     return nullptr;
555   D = &adjustDeclToTemplate(*D);
556 
557   const Decl *Canonical = D->getCanonicalDecl();
558   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
559       ParsedComments.find(Canonical);
560 
561   if (Pos != ParsedComments.end()) {
562     if (Canonical != D) {
563       comments::FullComment *FC = Pos->second;
564       comments::FullComment *CFC = cloneFullComment(FC, D);
565       return CFC;
566     }
567     return Pos->second;
568   }
569 
570   const Decl *OriginalDecl = nullptr;
571 
572   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
573   if (!RC) {
574     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
575       SmallVector<const NamedDecl*, 8> Overridden;
576       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
577       if (OMD && OMD->isPropertyAccessor())
578         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
579           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
580             return cloneFullComment(FC, D);
581       if (OMD)
582         addRedeclaredMethods(OMD, Overridden);
583       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
584       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
585         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
586           return cloneFullComment(FC, D);
587     }
588     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
589       // Attach any tag type's documentation to its typedef if latter
590       // does not have one of its own.
591       QualType QT = TD->getUnderlyingType();
592       if (const auto *TT = QT->getAs<TagType>())
593         if (const Decl *TD = TT->getDecl())
594           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
595             return cloneFullComment(FC, D);
596     }
597     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
598       while (IC->getSuperClass()) {
599         IC = IC->getSuperClass();
600         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
601           return cloneFullComment(FC, D);
602       }
603     }
604     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
605       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
606         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
607           return cloneFullComment(FC, D);
608     }
609     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
610       if (!(RD = RD->getDefinition()))
611         return nullptr;
612       // Check non-virtual bases.
613       for (const auto &I : RD->bases()) {
614         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
615           continue;
616         QualType Ty = I.getType();
617         if (Ty.isNull())
618           continue;
619         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
620           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
621             continue;
622 
623           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
624             return cloneFullComment(FC, D);
625         }
626       }
627       // Check virtual bases.
628       for (const auto &I : RD->vbases()) {
629         if (I.getAccessSpecifier() != AS_public)
630           continue;
631         QualType Ty = I.getType();
632         if (Ty.isNull())
633           continue;
634         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
635           if (!(VirtualBase= VirtualBase->getDefinition()))
636             continue;
637           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
638             return cloneFullComment(FC, D);
639         }
640       }
641     }
642     return nullptr;
643   }
644 
645   // If the RawComment was attached to other redeclaration of this Decl, we
646   // should parse the comment in context of that other Decl.  This is important
647   // because comments can contain references to parameter names which can be
648   // different across redeclarations.
649   if (D != OriginalDecl && OriginalDecl)
650     return getCommentForDecl(OriginalDecl, PP);
651 
652   comments::FullComment *FC = RC->parse(*this, PP, D);
653   ParsedComments[Canonical] = FC;
654   return FC;
655 }
656 
657 void
658 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
659                                                    const ASTContext &C,
660                                                TemplateTemplateParmDecl *Parm) {
661   ID.AddInteger(Parm->getDepth());
662   ID.AddInteger(Parm->getPosition());
663   ID.AddBoolean(Parm->isParameterPack());
664 
665   TemplateParameterList *Params = Parm->getTemplateParameters();
666   ID.AddInteger(Params->size());
667   for (TemplateParameterList::const_iterator P = Params->begin(),
668                                           PEnd = Params->end();
669        P != PEnd; ++P) {
670     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
671       ID.AddInteger(0);
672       ID.AddBoolean(TTP->isParameterPack());
673       const TypeConstraint *TC = TTP->getTypeConstraint();
674       ID.AddBoolean(TC != nullptr);
675       if (TC)
676         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
677                                                         /*Canonical=*/true);
678       if (TTP->isExpandedParameterPack()) {
679         ID.AddBoolean(true);
680         ID.AddInteger(TTP->getNumExpansionParameters());
681       } else
682         ID.AddBoolean(false);
683       continue;
684     }
685 
686     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
687       ID.AddInteger(1);
688       ID.AddBoolean(NTTP->isParameterPack());
689       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
690       if (NTTP->isExpandedParameterPack()) {
691         ID.AddBoolean(true);
692         ID.AddInteger(NTTP->getNumExpansionTypes());
693         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
694           QualType T = NTTP->getExpansionType(I);
695           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
696         }
697       } else
698         ID.AddBoolean(false);
699       continue;
700     }
701 
702     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
703     ID.AddInteger(2);
704     Profile(ID, C, TTP);
705   }
706   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
707   ID.AddBoolean(RequiresClause != nullptr);
708   if (RequiresClause)
709     RequiresClause->Profile(ID, C, /*Canonical=*/true);
710 }
711 
712 static Expr *
713 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
714                                           QualType ConstrainedType) {
715   // This is a bit ugly - we need to form a new immediately-declared
716   // constraint that references the new parameter; this would ideally
717   // require semantic analysis (e.g. template<C T> struct S {}; - the
718   // converted arguments of C<T> could be an argument pack if C is
719   // declared as template<typename... T> concept C = ...).
720   // We don't have semantic analysis here so we dig deep into the
721   // ready-made constraint expr and change the thing manually.
722   ConceptSpecializationExpr *CSE;
723   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
724     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
725   else
726     CSE = cast<ConceptSpecializationExpr>(IDC);
727   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
728   SmallVector<TemplateArgument, 3> NewConverted;
729   NewConverted.reserve(OldConverted.size());
730   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
731     // The case:
732     // template<typename... T> concept C = true;
733     // template<C<int> T> struct S; -> constraint is C<{T, int}>
734     NewConverted.push_back(ConstrainedType);
735     for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
736       NewConverted.push_back(Arg);
737     TemplateArgument NewPack(NewConverted);
738 
739     NewConverted.clear();
740     NewConverted.push_back(NewPack);
741     assert(OldConverted.size() == 1 &&
742            "Template parameter pack should be the last parameter");
743   } else {
744     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
745            "Unexpected first argument kind for immediately-declared "
746            "constraint");
747     NewConverted.push_back(ConstrainedType);
748     for (auto &Arg : OldConverted.drop_front(1))
749       NewConverted.push_back(Arg);
750   }
751   Expr *NewIDC = ConceptSpecializationExpr::Create(
752       C, CSE->getNamedConcept(), NewConverted, nullptr,
753       CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
754 
755   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
756     NewIDC = new (C) CXXFoldExpr(OrigFold->getType(), SourceLocation(), NewIDC,
757                                  BinaryOperatorKind::BO_LAnd,
758                                  SourceLocation(), /*RHS=*/nullptr,
759                                  SourceLocation(), /*NumExpansions=*/None);
760   return NewIDC;
761 }
762 
763 TemplateTemplateParmDecl *
764 ASTContext::getCanonicalTemplateTemplateParmDecl(
765                                           TemplateTemplateParmDecl *TTP) const {
766   // Check if we already have a canonical template template parameter.
767   llvm::FoldingSetNodeID ID;
768   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
769   void *InsertPos = nullptr;
770   CanonicalTemplateTemplateParm *Canonical
771     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
772   if (Canonical)
773     return Canonical->getParam();
774 
775   // Build a canonical template parameter list.
776   TemplateParameterList *Params = TTP->getTemplateParameters();
777   SmallVector<NamedDecl *, 4> CanonParams;
778   CanonParams.reserve(Params->size());
779   for (TemplateParameterList::const_iterator P = Params->begin(),
780                                           PEnd = Params->end();
781        P != PEnd; ++P) {
782     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
783       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
784           getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
785           TTP->getDepth(), TTP->getIndex(), nullptr, false,
786           TTP->isParameterPack(), TTP->hasTypeConstraint(),
787           TTP->isExpandedParameterPack() ?
788           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
789       if (const auto *TC = TTP->getTypeConstraint()) {
790         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
791         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
792                 *this, TC->getImmediatelyDeclaredConstraint(),
793                 ParamAsArgument);
794         TemplateArgumentListInfo CanonArgsAsWritten;
795         if (auto *Args = TC->getTemplateArgsAsWritten())
796           for (const auto &ArgLoc : Args->arguments())
797             CanonArgsAsWritten.addArgument(
798                 TemplateArgumentLoc(ArgLoc.getArgument(),
799                                     TemplateArgumentLocInfo()));
800         NewTTP->setTypeConstraint(
801             NestedNameSpecifierLoc(),
802             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
803                                 SourceLocation()), /*FoundDecl=*/nullptr,
804             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
805             // simply omit the ArgsAsWritten
806             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
807       }
808       CanonParams.push_back(NewTTP);
809     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
810       QualType T = getCanonicalType(NTTP->getType());
811       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
812       NonTypeTemplateParmDecl *Param;
813       if (NTTP->isExpandedParameterPack()) {
814         SmallVector<QualType, 2> ExpandedTypes;
815         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
816         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
817           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
818           ExpandedTInfos.push_back(
819                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
820         }
821 
822         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
823                                                 SourceLocation(),
824                                                 SourceLocation(),
825                                                 NTTP->getDepth(),
826                                                 NTTP->getPosition(), nullptr,
827                                                 T,
828                                                 TInfo,
829                                                 ExpandedTypes,
830                                                 ExpandedTInfos);
831       } else {
832         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
833                                                 SourceLocation(),
834                                                 SourceLocation(),
835                                                 NTTP->getDepth(),
836                                                 NTTP->getPosition(), nullptr,
837                                                 T,
838                                                 NTTP->isParameterPack(),
839                                                 TInfo);
840       }
841       if (AutoType *AT = T->getContainedAutoType()) {
842         if (AT->isConstrained()) {
843           Param->setPlaceholderTypeConstraint(
844               canonicalizeImmediatelyDeclaredConstraint(
845                   *this, NTTP->getPlaceholderTypeConstraint(), T));
846         }
847       }
848       CanonParams.push_back(Param);
849 
850     } else
851       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
852                                            cast<TemplateTemplateParmDecl>(*P)));
853   }
854 
855   Expr *CanonRequiresClause = nullptr;
856   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
857     CanonRequiresClause = RequiresClause;
858 
859   TemplateTemplateParmDecl *CanonTTP
860     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
861                                        SourceLocation(), TTP->getDepth(),
862                                        TTP->getPosition(),
863                                        TTP->isParameterPack(),
864                                        nullptr,
865                          TemplateParameterList::Create(*this, SourceLocation(),
866                                                        SourceLocation(),
867                                                        CanonParams,
868                                                        SourceLocation(),
869                                                        CanonRequiresClause));
870 
871   // Get the new insert position for the node we care about.
872   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
873   assert(!Canonical && "Shouldn't be in the map!");
874   (void)Canonical;
875 
876   // Create the canonical template template parameter entry.
877   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
878   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
879   return CanonTTP;
880 }
881 
882 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
883   if (!LangOpts.CPlusPlus) return nullptr;
884 
885   switch (T.getCXXABI().getKind()) {
886   case TargetCXXABI::Fuchsia:
887   case TargetCXXABI::GenericARM: // Same as Itanium at this level
888   case TargetCXXABI::iOS:
889   case TargetCXXABI::iOS64:
890   case TargetCXXABI::WatchOS:
891   case TargetCXXABI::GenericAArch64:
892   case TargetCXXABI::GenericMIPS:
893   case TargetCXXABI::GenericItanium:
894   case TargetCXXABI::WebAssembly:
895   case TargetCXXABI::XL:
896     return CreateItaniumCXXABI(*this);
897   case TargetCXXABI::Microsoft:
898     return CreateMicrosoftCXXABI(*this);
899   }
900   llvm_unreachable("Invalid CXXABI type!");
901 }
902 
903 interp::Context &ASTContext::getInterpContext() {
904   if (!InterpContext) {
905     InterpContext.reset(new interp::Context(*this));
906   }
907   return *InterpContext.get();
908 }
909 
910 ParentMapContext &ASTContext::getParentMapContext() {
911   if (!ParentMapCtx)
912     ParentMapCtx.reset(new ParentMapContext(*this));
913   return *ParentMapCtx.get();
914 }
915 
916 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
917                                            const LangOptions &LOpts) {
918   if (LOpts.FakeAddressSpaceMap) {
919     // The fake address space map must have a distinct entry for each
920     // language-specific address space.
921     static const unsigned FakeAddrSpaceMap[] = {
922         0, // Default
923         1, // opencl_global
924         3, // opencl_local
925         2, // opencl_constant
926         0, // opencl_private
927         4, // opencl_generic
928         5, // cuda_device
929         6, // cuda_constant
930         7, // cuda_shared
931         8, // ptr32_sptr
932         9, // ptr32_uptr
933         10 // ptr64
934     };
935     return &FakeAddrSpaceMap;
936   } else {
937     return &T.getAddressSpaceMap();
938   }
939 }
940 
941 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
942                                           const LangOptions &LangOpts) {
943   switch (LangOpts.getAddressSpaceMapMangling()) {
944   case LangOptions::ASMM_Target:
945     return TI.useAddressSpaceMapMangling();
946   case LangOptions::ASMM_On:
947     return true;
948   case LangOptions::ASMM_Off:
949     return false;
950   }
951   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
952 }
953 
954 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
955                        IdentifierTable &idents, SelectorTable &sels,
956                        Builtin::Context &builtins)
957     : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
958       TemplateSpecializationTypes(this_()),
959       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
960       SubstTemplateTemplateParmPacks(this_()),
961       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
962       SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
963       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
964                                         LangOpts.XRayNeverInstrumentFiles,
965                                         LangOpts.XRayAttrListFiles, SM)),
966       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
967       BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
968       CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
969       CompCategories(this_()), LastSDM(nullptr, 0) {
970   TUDecl = TranslationUnitDecl::Create(*this);
971   TraversalScope = {TUDecl};
972 }
973 
974 ASTContext::~ASTContext() {
975   // Release the DenseMaps associated with DeclContext objects.
976   // FIXME: Is this the ideal solution?
977   ReleaseDeclContextMaps();
978 
979   // Call all of the deallocation functions on all of their targets.
980   for (auto &Pair : Deallocations)
981     (Pair.first)(Pair.second);
982 
983   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
984   // because they can contain DenseMaps.
985   for (llvm::DenseMap<const ObjCContainerDecl*,
986        const ASTRecordLayout*>::iterator
987        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
988     // Increment in loop to prevent using deallocated memory.
989     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
990       R->Destroy(*this);
991 
992   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
993        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
994     // Increment in loop to prevent using deallocated memory.
995     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
996       R->Destroy(*this);
997   }
998 
999   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1000                                                     AEnd = DeclAttrs.end();
1001        A != AEnd; ++A)
1002     A->second->~AttrVec();
1003 
1004   for (const auto &Value : ModuleInitializers)
1005     Value.second->~PerModuleInitializers();
1006 
1007   for (APValue *Value : APValueCleanups)
1008     Value->~APValue();
1009 }
1010 
1011 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1012   TraversalScope = TopLevelDecls;
1013   getParentMapContext().clear();
1014 }
1015 
1016 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1017   Deallocations.push_back({Callback, Data});
1018 }
1019 
1020 void
1021 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1022   ExternalSource = std::move(Source);
1023 }
1024 
1025 void ASTContext::PrintStats() const {
1026   llvm::errs() << "\n*** AST Context Stats:\n";
1027   llvm::errs() << "  " << Types.size() << " types total.\n";
1028 
1029   unsigned counts[] = {
1030 #define TYPE(Name, Parent) 0,
1031 #define ABSTRACT_TYPE(Name, Parent)
1032 #include "clang/AST/TypeNodes.inc"
1033     0 // Extra
1034   };
1035 
1036   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1037     Type *T = Types[i];
1038     counts[(unsigned)T->getTypeClass()]++;
1039   }
1040 
1041   unsigned Idx = 0;
1042   unsigned TotalBytes = 0;
1043 #define TYPE(Name, Parent)                                              \
1044   if (counts[Idx])                                                      \
1045     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1046                  << " types, " << sizeof(Name##Type) << " each "        \
1047                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1048                  << " bytes)\n";                                        \
1049   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1050   ++Idx;
1051 #define ABSTRACT_TYPE(Name, Parent)
1052 #include "clang/AST/TypeNodes.inc"
1053 
1054   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1055 
1056   // Implicit special member functions.
1057   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1058                << NumImplicitDefaultConstructors
1059                << " implicit default constructors created\n";
1060   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1061                << NumImplicitCopyConstructors
1062                << " implicit copy constructors created\n";
1063   if (getLangOpts().CPlusPlus)
1064     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1065                  << NumImplicitMoveConstructors
1066                  << " implicit move constructors created\n";
1067   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1068                << NumImplicitCopyAssignmentOperators
1069                << " implicit copy assignment operators created\n";
1070   if (getLangOpts().CPlusPlus)
1071     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1072                  << NumImplicitMoveAssignmentOperators
1073                  << " implicit move assignment operators created\n";
1074   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1075                << NumImplicitDestructors
1076                << " implicit destructors created\n";
1077 
1078   if (ExternalSource) {
1079     llvm::errs() << "\n";
1080     ExternalSource->PrintStats();
1081   }
1082 
1083   BumpAlloc.PrintStats();
1084 }
1085 
1086 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1087                                            bool NotifyListeners) {
1088   if (NotifyListeners)
1089     if (auto *Listener = getASTMutationListener())
1090       Listener->RedefinedHiddenDefinition(ND, M);
1091 
1092   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1093 }
1094 
1095 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1096   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1097   if (It == MergedDefModules.end())
1098     return;
1099 
1100   auto &Merged = It->second;
1101   llvm::DenseSet<Module*> Found;
1102   for (Module *&M : Merged)
1103     if (!Found.insert(M).second)
1104       M = nullptr;
1105   Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1106 }
1107 
1108 ArrayRef<Module *>
1109 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1110   auto MergedIt =
1111       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1112   if (MergedIt == MergedDefModules.end())
1113     return None;
1114   return MergedIt->second;
1115 }
1116 
1117 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1118   if (LazyInitializers.empty())
1119     return;
1120 
1121   auto *Source = Ctx.getExternalSource();
1122   assert(Source && "lazy initializers but no external source");
1123 
1124   auto LazyInits = std::move(LazyInitializers);
1125   LazyInitializers.clear();
1126 
1127   for (auto ID : LazyInits)
1128     Initializers.push_back(Source->GetExternalDecl(ID));
1129 
1130   assert(LazyInitializers.empty() &&
1131          "GetExternalDecl for lazy module initializer added more inits");
1132 }
1133 
1134 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1135   // One special case: if we add a module initializer that imports another
1136   // module, and that module's only initializer is an ImportDecl, simplify.
1137   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1138     auto It = ModuleInitializers.find(ID->getImportedModule());
1139 
1140     // Maybe the ImportDecl does nothing at all. (Common case.)
1141     if (It == ModuleInitializers.end())
1142       return;
1143 
1144     // Maybe the ImportDecl only imports another ImportDecl.
1145     auto &Imported = *It->second;
1146     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1147       Imported.resolve(*this);
1148       auto *OnlyDecl = Imported.Initializers.front();
1149       if (isa<ImportDecl>(OnlyDecl))
1150         D = OnlyDecl;
1151     }
1152   }
1153 
1154   auto *&Inits = ModuleInitializers[M];
1155   if (!Inits)
1156     Inits = new (*this) PerModuleInitializers;
1157   Inits->Initializers.push_back(D);
1158 }
1159 
1160 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1161   auto *&Inits = ModuleInitializers[M];
1162   if (!Inits)
1163     Inits = new (*this) PerModuleInitializers;
1164   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1165                                  IDs.begin(), IDs.end());
1166 }
1167 
1168 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1169   auto It = ModuleInitializers.find(M);
1170   if (It == ModuleInitializers.end())
1171     return None;
1172 
1173   auto *Inits = It->second;
1174   Inits->resolve(*this);
1175   return Inits->Initializers;
1176 }
1177 
1178 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1179   if (!ExternCContext)
1180     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1181 
1182   return ExternCContext;
1183 }
1184 
1185 BuiltinTemplateDecl *
1186 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1187                                      const IdentifierInfo *II) const {
1188   auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1189   BuiltinTemplate->setImplicit();
1190   TUDecl->addDecl(BuiltinTemplate);
1191 
1192   return BuiltinTemplate;
1193 }
1194 
1195 BuiltinTemplateDecl *
1196 ASTContext::getMakeIntegerSeqDecl() const {
1197   if (!MakeIntegerSeqDecl)
1198     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1199                                                   getMakeIntegerSeqName());
1200   return MakeIntegerSeqDecl;
1201 }
1202 
1203 BuiltinTemplateDecl *
1204 ASTContext::getTypePackElementDecl() const {
1205   if (!TypePackElementDecl)
1206     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1207                                                    getTypePackElementName());
1208   return TypePackElementDecl;
1209 }
1210 
1211 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1212                                             RecordDecl::TagKind TK) const {
1213   SourceLocation Loc;
1214   RecordDecl *NewDecl;
1215   if (getLangOpts().CPlusPlus)
1216     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1217                                     Loc, &Idents.get(Name));
1218   else
1219     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1220                                  &Idents.get(Name));
1221   NewDecl->setImplicit();
1222   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1223       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1224   return NewDecl;
1225 }
1226 
1227 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1228                                               StringRef Name) const {
1229   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1230   TypedefDecl *NewDecl = TypedefDecl::Create(
1231       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1232       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1233   NewDecl->setImplicit();
1234   return NewDecl;
1235 }
1236 
1237 TypedefDecl *ASTContext::getInt128Decl() const {
1238   if (!Int128Decl)
1239     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1240   return Int128Decl;
1241 }
1242 
1243 TypedefDecl *ASTContext::getUInt128Decl() const {
1244   if (!UInt128Decl)
1245     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1246   return UInt128Decl;
1247 }
1248 
1249 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1250   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1251   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1252   Types.push_back(Ty);
1253 }
1254 
1255 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1256                                   const TargetInfo *AuxTarget) {
1257   assert((!this->Target || this->Target == &Target) &&
1258          "Incorrect target reinitialization");
1259   assert(VoidTy.isNull() && "Context reinitialized?");
1260 
1261   this->Target = &Target;
1262   this->AuxTarget = AuxTarget;
1263 
1264   ABI.reset(createCXXABI(Target));
1265   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1266   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1267 
1268   // C99 6.2.5p19.
1269   InitBuiltinType(VoidTy,              BuiltinType::Void);
1270 
1271   // C99 6.2.5p2.
1272   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1273   // C99 6.2.5p3.
1274   if (LangOpts.CharIsSigned)
1275     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1276   else
1277     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1278   // C99 6.2.5p4.
1279   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1280   InitBuiltinType(ShortTy,             BuiltinType::Short);
1281   InitBuiltinType(IntTy,               BuiltinType::Int);
1282   InitBuiltinType(LongTy,              BuiltinType::Long);
1283   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1284 
1285   // C99 6.2.5p6.
1286   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1287   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1288   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1289   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1290   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1291 
1292   // C99 6.2.5p10.
1293   InitBuiltinType(FloatTy,             BuiltinType::Float);
1294   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1295   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1296 
1297   // GNU extension, __float128 for IEEE quadruple precision
1298   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1299 
1300   // C11 extension ISO/IEC TS 18661-3
1301   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1302 
1303   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1304   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1305   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1306   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1307   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1308   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1309   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1310   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1311   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1312   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1313   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1314   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1315   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1316   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1317   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1318   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1319   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1320   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1321   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1322   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1323   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1324   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1325   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1326   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1327   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1328 
1329   // GNU extension, 128-bit integers.
1330   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1331   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1332 
1333   // C++ 3.9.1p5
1334   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1335     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1336   else  // -fshort-wchar makes wchar_t be unsigned.
1337     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1338   if (LangOpts.CPlusPlus && LangOpts.WChar)
1339     WideCharTy = WCharTy;
1340   else {
1341     // C99 (or C++ using -fno-wchar).
1342     WideCharTy = getFromTargetType(Target.getWCharType());
1343   }
1344 
1345   WIntTy = getFromTargetType(Target.getWIntType());
1346 
1347   // C++20 (proposed)
1348   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1349 
1350   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1351     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1352   else // C99
1353     Char16Ty = getFromTargetType(Target.getChar16Type());
1354 
1355   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1356     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1357   else // C99
1358     Char32Ty = getFromTargetType(Target.getChar32Type());
1359 
1360   // Placeholder type for type-dependent expressions whose type is
1361   // completely unknown. No code should ever check a type against
1362   // DependentTy and users should never see it; however, it is here to
1363   // help diagnose failures to properly check for type-dependent
1364   // expressions.
1365   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1366 
1367   // Placeholder type for functions.
1368   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1369 
1370   // Placeholder type for bound members.
1371   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1372 
1373   // Placeholder type for pseudo-objects.
1374   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1375 
1376   // "any" type; useful for debugger-like clients.
1377   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1378 
1379   // Placeholder type for unbridged ARC casts.
1380   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1381 
1382   // Placeholder type for builtin functions.
1383   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1384 
1385   // Placeholder type for OMP array sections.
1386   if (LangOpts.OpenMP) {
1387     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1388     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1389     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1390   }
1391   if (LangOpts.MatrixTypes)
1392     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1393 
1394   // C99 6.2.5p11.
1395   FloatComplexTy      = getComplexType(FloatTy);
1396   DoubleComplexTy     = getComplexType(DoubleTy);
1397   LongDoubleComplexTy = getComplexType(LongDoubleTy);
1398   Float128ComplexTy   = getComplexType(Float128Ty);
1399 
1400   // Builtin types for 'id', 'Class', and 'SEL'.
1401   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1402   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1403   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1404 
1405   if (LangOpts.OpenCL) {
1406 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1407     InitBuiltinType(SingletonId, BuiltinType::Id);
1408 #include "clang/Basic/OpenCLImageTypes.def"
1409 
1410     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1411     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1412     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1413     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1414     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1415 
1416 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1417     InitBuiltinType(Id##Ty, BuiltinType::Id);
1418 #include "clang/Basic/OpenCLExtensionTypes.def"
1419   }
1420 
1421   if (Target.hasAArch64SVETypes()) {
1422 #define SVE_TYPE(Name, Id, SingletonId) \
1423     InitBuiltinType(SingletonId, BuiltinType::Id);
1424 #include "clang/Basic/AArch64SVEACLETypes.def"
1425   }
1426 
1427   // Builtin type for __objc_yes and __objc_no
1428   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1429                        SignedCharTy : BoolTy);
1430 
1431   ObjCConstantStringType = QualType();
1432 
1433   ObjCSuperType = QualType();
1434 
1435   // void * type
1436   if (LangOpts.OpenCLVersion >= 200) {
1437     auto Q = VoidTy.getQualifiers();
1438     Q.setAddressSpace(LangAS::opencl_generic);
1439     VoidPtrTy = getPointerType(getCanonicalType(
1440         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1441   } else {
1442     VoidPtrTy = getPointerType(VoidTy);
1443   }
1444 
1445   // nullptr type (C++0x 2.14.7)
1446   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1447 
1448   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1449   InitBuiltinType(HalfTy, BuiltinType::Half);
1450 
1451   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1452 
1453   // Builtin type used to help define __builtin_va_list.
1454   VaListTagDecl = nullptr;
1455 
1456   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1457   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1458     MSGuidTagDecl = buildImplicitRecord("_GUID");
1459     TUDecl->addDecl(MSGuidTagDecl);
1460   }
1461 }
1462 
1463 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1464   return SourceMgr.getDiagnostics();
1465 }
1466 
1467 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1468   AttrVec *&Result = DeclAttrs[D];
1469   if (!Result) {
1470     void *Mem = Allocate(sizeof(AttrVec));
1471     Result = new (Mem) AttrVec;
1472   }
1473 
1474   return *Result;
1475 }
1476 
1477 /// Erase the attributes corresponding to the given declaration.
1478 void ASTContext::eraseDeclAttrs(const Decl *D) {
1479   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1480   if (Pos != DeclAttrs.end()) {
1481     Pos->second->~AttrVec();
1482     DeclAttrs.erase(Pos);
1483   }
1484 }
1485 
1486 // FIXME: Remove ?
1487 MemberSpecializationInfo *
1488 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1489   assert(Var->isStaticDataMember() && "Not a static data member");
1490   return getTemplateOrSpecializationInfo(Var)
1491       .dyn_cast<MemberSpecializationInfo *>();
1492 }
1493 
1494 ASTContext::TemplateOrSpecializationInfo
1495 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1496   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1497       TemplateOrInstantiation.find(Var);
1498   if (Pos == TemplateOrInstantiation.end())
1499     return {};
1500 
1501   return Pos->second;
1502 }
1503 
1504 void
1505 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1506                                                 TemplateSpecializationKind TSK,
1507                                           SourceLocation PointOfInstantiation) {
1508   assert(Inst->isStaticDataMember() && "Not a static data member");
1509   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1510   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1511                                             Tmpl, TSK, PointOfInstantiation));
1512 }
1513 
1514 void
1515 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1516                                             TemplateOrSpecializationInfo TSI) {
1517   assert(!TemplateOrInstantiation[Inst] &&
1518          "Already noted what the variable was instantiated from");
1519   TemplateOrInstantiation[Inst] = TSI;
1520 }
1521 
1522 NamedDecl *
1523 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1524   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1525   if (Pos == InstantiatedFromUsingDecl.end())
1526     return nullptr;
1527 
1528   return Pos->second;
1529 }
1530 
1531 void
1532 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1533   assert((isa<UsingDecl>(Pattern) ||
1534           isa<UnresolvedUsingValueDecl>(Pattern) ||
1535           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1536          "pattern decl is not a using decl");
1537   assert((isa<UsingDecl>(Inst) ||
1538           isa<UnresolvedUsingValueDecl>(Inst) ||
1539           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1540          "instantiation did not produce a using decl");
1541   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1542   InstantiatedFromUsingDecl[Inst] = Pattern;
1543 }
1544 
1545 UsingShadowDecl *
1546 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1547   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1548     = InstantiatedFromUsingShadowDecl.find(Inst);
1549   if (Pos == InstantiatedFromUsingShadowDecl.end())
1550     return nullptr;
1551 
1552   return Pos->second;
1553 }
1554 
1555 void
1556 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1557                                                UsingShadowDecl *Pattern) {
1558   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1559   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1560 }
1561 
1562 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1563   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1564     = InstantiatedFromUnnamedFieldDecl.find(Field);
1565   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1566     return nullptr;
1567 
1568   return Pos->second;
1569 }
1570 
1571 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1572                                                      FieldDecl *Tmpl) {
1573   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1574   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1575   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1576          "Already noted what unnamed field was instantiated from");
1577 
1578   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1579 }
1580 
1581 ASTContext::overridden_cxx_method_iterator
1582 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1583   return overridden_methods(Method).begin();
1584 }
1585 
1586 ASTContext::overridden_cxx_method_iterator
1587 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1588   return overridden_methods(Method).end();
1589 }
1590 
1591 unsigned
1592 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1593   auto Range = overridden_methods(Method);
1594   return Range.end() - Range.begin();
1595 }
1596 
1597 ASTContext::overridden_method_range
1598 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1599   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1600       OverriddenMethods.find(Method->getCanonicalDecl());
1601   if (Pos == OverriddenMethods.end())
1602     return overridden_method_range(nullptr, nullptr);
1603   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1604 }
1605 
1606 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1607                                      const CXXMethodDecl *Overridden) {
1608   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1609   OverriddenMethods[Method].push_back(Overridden);
1610 }
1611 
1612 void ASTContext::getOverriddenMethods(
1613                       const NamedDecl *D,
1614                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1615   assert(D);
1616 
1617   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1618     Overridden.append(overridden_methods_begin(CXXMethod),
1619                       overridden_methods_end(CXXMethod));
1620     return;
1621   }
1622 
1623   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1624   if (!Method)
1625     return;
1626 
1627   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1628   Method->getOverriddenMethods(OverDecls);
1629   Overridden.append(OverDecls.begin(), OverDecls.end());
1630 }
1631 
1632 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1633   assert(!Import->getNextLocalImport() &&
1634          "Import declaration already in the chain");
1635   assert(!Import->isFromASTFile() && "Non-local import declaration");
1636   if (!FirstLocalImport) {
1637     FirstLocalImport = Import;
1638     LastLocalImport = Import;
1639     return;
1640   }
1641 
1642   LastLocalImport->setNextLocalImport(Import);
1643   LastLocalImport = Import;
1644 }
1645 
1646 //===----------------------------------------------------------------------===//
1647 //                         Type Sizing and Analysis
1648 //===----------------------------------------------------------------------===//
1649 
1650 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1651 /// scalar floating point type.
1652 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1653   switch (T->castAs<BuiltinType>()->getKind()) {
1654   default:
1655     llvm_unreachable("Not a floating point type!");
1656   case BuiltinType::BFloat16:
1657     return Target->getBFloat16Format();
1658   case BuiltinType::Float16:
1659   case BuiltinType::Half:
1660     return Target->getHalfFormat();
1661   case BuiltinType::Float:      return Target->getFloatFormat();
1662   case BuiltinType::Double:     return Target->getDoubleFormat();
1663   case BuiltinType::LongDouble:
1664     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1665       return AuxTarget->getLongDoubleFormat();
1666     return Target->getLongDoubleFormat();
1667   case BuiltinType::Float128:
1668     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1669       return AuxTarget->getFloat128Format();
1670     return Target->getFloat128Format();
1671   }
1672 }
1673 
1674 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1675   unsigned Align = Target->getCharWidth();
1676 
1677   bool UseAlignAttrOnly = false;
1678   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1679     Align = AlignFromAttr;
1680 
1681     // __attribute__((aligned)) can increase or decrease alignment
1682     // *except* on a struct or struct member, where it only increases
1683     // alignment unless 'packed' is also specified.
1684     //
1685     // It is an error for alignas to decrease alignment, so we can
1686     // ignore that possibility;  Sema should diagnose it.
1687     if (isa<FieldDecl>(D)) {
1688       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1689         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1690     } else {
1691       UseAlignAttrOnly = true;
1692     }
1693   }
1694   else if (isa<FieldDecl>(D))
1695       UseAlignAttrOnly =
1696         D->hasAttr<PackedAttr>() ||
1697         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1698 
1699   // If we're using the align attribute only, just ignore everything
1700   // else about the declaration and its type.
1701   if (UseAlignAttrOnly) {
1702     // do nothing
1703   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1704     QualType T = VD->getType();
1705     if (const auto *RT = T->getAs<ReferenceType>()) {
1706       if (ForAlignof)
1707         T = RT->getPointeeType();
1708       else
1709         T = getPointerType(RT->getPointeeType());
1710     }
1711     QualType BaseT = getBaseElementType(T);
1712     if (T->isFunctionType())
1713       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1714     else if (!BaseT->isIncompleteType()) {
1715       // Adjust alignments of declarations with array type by the
1716       // large-array alignment on the target.
1717       if (const ArrayType *arrayType = getAsArrayType(T)) {
1718         unsigned MinWidth = Target->getLargeArrayMinWidth();
1719         if (!ForAlignof && MinWidth) {
1720           if (isa<VariableArrayType>(arrayType))
1721             Align = std::max(Align, Target->getLargeArrayAlign());
1722           else if (isa<ConstantArrayType>(arrayType) &&
1723                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1724             Align = std::max(Align, Target->getLargeArrayAlign());
1725         }
1726       }
1727       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1728       if (BaseT.getQualifiers().hasUnaligned())
1729         Align = Target->getCharWidth();
1730       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1731         if (VD->hasGlobalStorage() && !ForAlignof) {
1732           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1733           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1734         }
1735       }
1736     }
1737 
1738     // Fields can be subject to extra alignment constraints, like if
1739     // the field is packed, the struct is packed, or the struct has a
1740     // a max-field-alignment constraint (#pragma pack).  So calculate
1741     // the actual alignment of the field within the struct, and then
1742     // (as we're expected to) constrain that by the alignment of the type.
1743     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1744       const RecordDecl *Parent = Field->getParent();
1745       // We can only produce a sensible answer if the record is valid.
1746       if (!Parent->isInvalidDecl()) {
1747         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1748 
1749         // Start with the record's overall alignment.
1750         unsigned FieldAlign = toBits(Layout.getAlignment());
1751 
1752         // Use the GCD of that and the offset within the record.
1753         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1754         if (Offset > 0) {
1755           // Alignment is always a power of 2, so the GCD will be a power of 2,
1756           // which means we get to do this crazy thing instead of Euclid's.
1757           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1758           if (LowBitOfOffset < FieldAlign)
1759             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1760         }
1761 
1762         Align = std::min(Align, FieldAlign);
1763       }
1764     }
1765   }
1766 
1767   return toCharUnitsFromBits(Align);
1768 }
1769 
1770 CharUnits ASTContext::getExnObjectAlignment() const {
1771   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1772 }
1773 
1774 // getTypeInfoDataSizeInChars - Return the size of a type, in
1775 // chars. If the type is a record, its data size is returned.  This is
1776 // the size of the memcpy that's performed when assigning this type
1777 // using a trivial copy/move assignment operator.
1778 std::pair<CharUnits, CharUnits>
1779 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1780   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1781 
1782   // In C++, objects can sometimes be allocated into the tail padding
1783   // of a base-class subobject.  We decide whether that's possible
1784   // during class layout, so here we can just trust the layout results.
1785   if (getLangOpts().CPlusPlus) {
1786     if (const auto *RT = T->getAs<RecordType>()) {
1787       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1788       sizeAndAlign.first = layout.getDataSize();
1789     }
1790   }
1791 
1792   return sizeAndAlign;
1793 }
1794 
1795 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1796 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1797 std::pair<CharUnits, CharUnits>
1798 static getConstantArrayInfoInChars(const ASTContext &Context,
1799                                    const ConstantArrayType *CAT) {
1800   std::pair<CharUnits, CharUnits> EltInfo =
1801       Context.getTypeInfoInChars(CAT->getElementType());
1802   uint64_t Size = CAT->getSize().getZExtValue();
1803   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1804               (uint64_t)(-1)/Size) &&
1805          "Overflow in array type char size evaluation");
1806   uint64_t Width = EltInfo.first.getQuantity() * Size;
1807   unsigned Align = EltInfo.second.getQuantity();
1808   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1809       Context.getTargetInfo().getPointerWidth(0) == 64)
1810     Width = llvm::alignTo(Width, Align);
1811   return std::make_pair(CharUnits::fromQuantity(Width),
1812                         CharUnits::fromQuantity(Align));
1813 }
1814 
1815 std::pair<CharUnits, CharUnits>
1816 ASTContext::getTypeInfoInChars(const Type *T) const {
1817   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1818     return getConstantArrayInfoInChars(*this, CAT);
1819   TypeInfo Info = getTypeInfo(T);
1820   return std::make_pair(toCharUnitsFromBits(Info.Width),
1821                         toCharUnitsFromBits(Info.Align));
1822 }
1823 
1824 std::pair<CharUnits, CharUnits>
1825 ASTContext::getTypeInfoInChars(QualType T) const {
1826   return getTypeInfoInChars(T.getTypePtr());
1827 }
1828 
1829 bool ASTContext::isAlignmentRequired(const Type *T) const {
1830   return getTypeInfo(T).AlignIsRequired;
1831 }
1832 
1833 bool ASTContext::isAlignmentRequired(QualType T) const {
1834   return isAlignmentRequired(T.getTypePtr());
1835 }
1836 
1837 unsigned ASTContext::getTypeAlignIfKnown(QualType T) const {
1838   // An alignment on a typedef overrides anything else.
1839   if (const auto *TT = T->getAs<TypedefType>())
1840     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1841       return Align;
1842 
1843   // If we have an (array of) complete type, we're done.
1844   T = getBaseElementType(T);
1845   if (!T->isIncompleteType())
1846     return getTypeAlign(T);
1847 
1848   // If we had an array type, its element type might be a typedef
1849   // type with an alignment attribute.
1850   if (const auto *TT = T->getAs<TypedefType>())
1851     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1852       return Align;
1853 
1854   // Otherwise, see if the declaration of the type had an attribute.
1855   if (const auto *TT = T->getAs<TagType>())
1856     return TT->getDecl()->getMaxAlignment();
1857 
1858   return 0;
1859 }
1860 
1861 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1862   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1863   if (I != MemoizedTypeInfo.end())
1864     return I->second;
1865 
1866   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1867   TypeInfo TI = getTypeInfoImpl(T);
1868   MemoizedTypeInfo[T] = TI;
1869   return TI;
1870 }
1871 
1872 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1873 /// method does not work on incomplete types.
1874 ///
1875 /// FIXME: Pointers into different addr spaces could have different sizes and
1876 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1877 /// should take a QualType, &c.
1878 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1879   uint64_t Width = 0;
1880   unsigned Align = 8;
1881   bool AlignIsRequired = false;
1882   unsigned AS = 0;
1883   switch (T->getTypeClass()) {
1884 #define TYPE(Class, Base)
1885 #define ABSTRACT_TYPE(Class, Base)
1886 #define NON_CANONICAL_TYPE(Class, Base)
1887 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1888 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1889   case Type::Class:                                                            \
1890   assert(!T->isDependentType() && "should not see dependent types here");      \
1891   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1892 #include "clang/AST/TypeNodes.inc"
1893     llvm_unreachable("Should not see dependent types");
1894 
1895   case Type::FunctionNoProto:
1896   case Type::FunctionProto:
1897     // GCC extension: alignof(function) = 32 bits
1898     Width = 0;
1899     Align = 32;
1900     break;
1901 
1902   case Type::IncompleteArray:
1903   case Type::VariableArray:
1904   case Type::ConstantArray: {
1905     // Model non-constant sized arrays as size zero, but track the alignment.
1906     uint64_t Size = 0;
1907     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1908       Size = CAT->getSize().getZExtValue();
1909 
1910     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1911     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1912            "Overflow in array type bit size evaluation");
1913     Width = EltInfo.Width * Size;
1914     Align = EltInfo.Align;
1915     AlignIsRequired = EltInfo.AlignIsRequired;
1916     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1917         getTargetInfo().getPointerWidth(0) == 64)
1918       Width = llvm::alignTo(Width, Align);
1919     break;
1920   }
1921 
1922   case Type::ExtVector:
1923   case Type::Vector: {
1924     const auto *VT = cast<VectorType>(T);
1925     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1926     Width = EltInfo.Width * VT->getNumElements();
1927     Align = Width;
1928     // If the alignment is not a power of 2, round up to the next power of 2.
1929     // This happens for non-power-of-2 length vectors.
1930     if (Align & (Align-1)) {
1931       Align = llvm::NextPowerOf2(Align);
1932       Width = llvm::alignTo(Width, Align);
1933     }
1934     // Adjust the alignment based on the target max.
1935     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1936     if (TargetVectorAlign && TargetVectorAlign < Align)
1937       Align = TargetVectorAlign;
1938     break;
1939   }
1940 
1941   case Type::ConstantMatrix: {
1942     const auto *MT = cast<ConstantMatrixType>(T);
1943     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
1944     // The internal layout of a matrix value is implementation defined.
1945     // Initially be ABI compatible with arrays with respect to alignment and
1946     // size.
1947     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
1948     Align = ElementInfo.Align;
1949     break;
1950   }
1951 
1952   case Type::Builtin:
1953     switch (cast<BuiltinType>(T)->getKind()) {
1954     default: llvm_unreachable("Unknown builtin type!");
1955     case BuiltinType::Void:
1956       // GCC extension: alignof(void) = 8 bits.
1957       Width = 0;
1958       Align = 8;
1959       break;
1960     case BuiltinType::Bool:
1961       Width = Target->getBoolWidth();
1962       Align = Target->getBoolAlign();
1963       break;
1964     case BuiltinType::Char_S:
1965     case BuiltinType::Char_U:
1966     case BuiltinType::UChar:
1967     case BuiltinType::SChar:
1968     case BuiltinType::Char8:
1969       Width = Target->getCharWidth();
1970       Align = Target->getCharAlign();
1971       break;
1972     case BuiltinType::WChar_S:
1973     case BuiltinType::WChar_U:
1974       Width = Target->getWCharWidth();
1975       Align = Target->getWCharAlign();
1976       break;
1977     case BuiltinType::Char16:
1978       Width = Target->getChar16Width();
1979       Align = Target->getChar16Align();
1980       break;
1981     case BuiltinType::Char32:
1982       Width = Target->getChar32Width();
1983       Align = Target->getChar32Align();
1984       break;
1985     case BuiltinType::UShort:
1986     case BuiltinType::Short:
1987       Width = Target->getShortWidth();
1988       Align = Target->getShortAlign();
1989       break;
1990     case BuiltinType::UInt:
1991     case BuiltinType::Int:
1992       Width = Target->getIntWidth();
1993       Align = Target->getIntAlign();
1994       break;
1995     case BuiltinType::ULong:
1996     case BuiltinType::Long:
1997       Width = Target->getLongWidth();
1998       Align = Target->getLongAlign();
1999       break;
2000     case BuiltinType::ULongLong:
2001     case BuiltinType::LongLong:
2002       Width = Target->getLongLongWidth();
2003       Align = Target->getLongLongAlign();
2004       break;
2005     case BuiltinType::Int128:
2006     case BuiltinType::UInt128:
2007       Width = 128;
2008       Align = 128; // int128_t is 128-bit aligned on all targets.
2009       break;
2010     case BuiltinType::ShortAccum:
2011     case BuiltinType::UShortAccum:
2012     case BuiltinType::SatShortAccum:
2013     case BuiltinType::SatUShortAccum:
2014       Width = Target->getShortAccumWidth();
2015       Align = Target->getShortAccumAlign();
2016       break;
2017     case BuiltinType::Accum:
2018     case BuiltinType::UAccum:
2019     case BuiltinType::SatAccum:
2020     case BuiltinType::SatUAccum:
2021       Width = Target->getAccumWidth();
2022       Align = Target->getAccumAlign();
2023       break;
2024     case BuiltinType::LongAccum:
2025     case BuiltinType::ULongAccum:
2026     case BuiltinType::SatLongAccum:
2027     case BuiltinType::SatULongAccum:
2028       Width = Target->getLongAccumWidth();
2029       Align = Target->getLongAccumAlign();
2030       break;
2031     case BuiltinType::ShortFract:
2032     case BuiltinType::UShortFract:
2033     case BuiltinType::SatShortFract:
2034     case BuiltinType::SatUShortFract:
2035       Width = Target->getShortFractWidth();
2036       Align = Target->getShortFractAlign();
2037       break;
2038     case BuiltinType::Fract:
2039     case BuiltinType::UFract:
2040     case BuiltinType::SatFract:
2041     case BuiltinType::SatUFract:
2042       Width = Target->getFractWidth();
2043       Align = Target->getFractAlign();
2044       break;
2045     case BuiltinType::LongFract:
2046     case BuiltinType::ULongFract:
2047     case BuiltinType::SatLongFract:
2048     case BuiltinType::SatULongFract:
2049       Width = Target->getLongFractWidth();
2050       Align = Target->getLongFractAlign();
2051       break;
2052     case BuiltinType::BFloat16:
2053       Width = Target->getBFloat16Width();
2054       Align = Target->getBFloat16Align();
2055       break;
2056     case BuiltinType::Float16:
2057     case BuiltinType::Half:
2058       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2059           !getLangOpts().OpenMPIsDevice) {
2060         Width = Target->getHalfWidth();
2061         Align = Target->getHalfAlign();
2062       } else {
2063         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2064                "Expected OpenMP device compilation.");
2065         Width = AuxTarget->getHalfWidth();
2066         Align = AuxTarget->getHalfAlign();
2067       }
2068       break;
2069     case BuiltinType::Float:
2070       Width = Target->getFloatWidth();
2071       Align = Target->getFloatAlign();
2072       break;
2073     case BuiltinType::Double:
2074       Width = Target->getDoubleWidth();
2075       Align = Target->getDoubleAlign();
2076       break;
2077     case BuiltinType::LongDouble:
2078       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2079           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2080            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2081         Width = AuxTarget->getLongDoubleWidth();
2082         Align = AuxTarget->getLongDoubleAlign();
2083       } else {
2084         Width = Target->getLongDoubleWidth();
2085         Align = Target->getLongDoubleAlign();
2086       }
2087       break;
2088     case BuiltinType::Float128:
2089       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2090           !getLangOpts().OpenMPIsDevice) {
2091         Width = Target->getFloat128Width();
2092         Align = Target->getFloat128Align();
2093       } else {
2094         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2095                "Expected OpenMP device compilation.");
2096         Width = AuxTarget->getFloat128Width();
2097         Align = AuxTarget->getFloat128Align();
2098       }
2099       break;
2100     case BuiltinType::NullPtr:
2101       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2102       Align = Target->getPointerAlign(0); //   == sizeof(void*)
2103       break;
2104     case BuiltinType::ObjCId:
2105     case BuiltinType::ObjCClass:
2106     case BuiltinType::ObjCSel:
2107       Width = Target->getPointerWidth(0);
2108       Align = Target->getPointerAlign(0);
2109       break;
2110     case BuiltinType::OCLSampler:
2111     case BuiltinType::OCLEvent:
2112     case BuiltinType::OCLClkEvent:
2113     case BuiltinType::OCLQueue:
2114     case BuiltinType::OCLReserveID:
2115 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2116     case BuiltinType::Id:
2117 #include "clang/Basic/OpenCLImageTypes.def"
2118 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2119   case BuiltinType::Id:
2120 #include "clang/Basic/OpenCLExtensionTypes.def"
2121       AS = getTargetAddressSpace(
2122           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2123       Width = Target->getPointerWidth(AS);
2124       Align = Target->getPointerAlign(AS);
2125       break;
2126     // The SVE types are effectively target-specific.  The length of an
2127     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2128     // of 128 bits.  There is one predicate bit for each vector byte, so the
2129     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2130     //
2131     // Because the length is only known at runtime, we use a dummy value
2132     // of 0 for the static length.  The alignment values are those defined
2133     // by the Procedure Call Standard for the Arm Architecture.
2134 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2135                         IsSigned, IsFP, IsBF)                                  \
2136   case BuiltinType::Id:                                                        \
2137     Width = 0;                                                                 \
2138     Align = 128;                                                               \
2139     break;
2140 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2141   case BuiltinType::Id:                                                        \
2142     Width = 0;                                                                 \
2143     Align = 16;                                                                \
2144     break;
2145 #include "clang/Basic/AArch64SVEACLETypes.def"
2146     }
2147     break;
2148   case Type::ObjCObjectPointer:
2149     Width = Target->getPointerWidth(0);
2150     Align = Target->getPointerAlign(0);
2151     break;
2152   case Type::BlockPointer:
2153     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2154     Width = Target->getPointerWidth(AS);
2155     Align = Target->getPointerAlign(AS);
2156     break;
2157   case Type::LValueReference:
2158   case Type::RValueReference:
2159     // alignof and sizeof should never enter this code path here, so we go
2160     // the pointer route.
2161     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2162     Width = Target->getPointerWidth(AS);
2163     Align = Target->getPointerAlign(AS);
2164     break;
2165   case Type::Pointer:
2166     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2167     Width = Target->getPointerWidth(AS);
2168     Align = Target->getPointerAlign(AS);
2169     break;
2170   case Type::MemberPointer: {
2171     const auto *MPT = cast<MemberPointerType>(T);
2172     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2173     Width = MPI.Width;
2174     Align = MPI.Align;
2175     break;
2176   }
2177   case Type::Complex: {
2178     // Complex types have the same alignment as their elements, but twice the
2179     // size.
2180     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2181     Width = EltInfo.Width * 2;
2182     Align = EltInfo.Align;
2183     break;
2184   }
2185   case Type::ObjCObject:
2186     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2187   case Type::Adjusted:
2188   case Type::Decayed:
2189     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2190   case Type::ObjCInterface: {
2191     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2192     if (ObjCI->getDecl()->isInvalidDecl()) {
2193       Width = 8;
2194       Align = 8;
2195       break;
2196     }
2197     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2198     Width = toBits(Layout.getSize());
2199     Align = toBits(Layout.getAlignment());
2200     break;
2201   }
2202   case Type::ExtInt: {
2203     const auto *EIT = cast<ExtIntType>(T);
2204     Align =
2205         std::min(static_cast<unsigned>(std::max(
2206                      getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2207                  Target->getLongLongAlign());
2208     Width = llvm::alignTo(EIT->getNumBits(), Align);
2209     break;
2210   }
2211   case Type::Record:
2212   case Type::Enum: {
2213     const auto *TT = cast<TagType>(T);
2214 
2215     if (TT->getDecl()->isInvalidDecl()) {
2216       Width = 8;
2217       Align = 8;
2218       break;
2219     }
2220 
2221     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2222       const EnumDecl *ED = ET->getDecl();
2223       TypeInfo Info =
2224           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2225       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2226         Info.Align = AttrAlign;
2227         Info.AlignIsRequired = true;
2228       }
2229       return Info;
2230     }
2231 
2232     const auto *RT = cast<RecordType>(TT);
2233     const RecordDecl *RD = RT->getDecl();
2234     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2235     Width = toBits(Layout.getSize());
2236     Align = toBits(Layout.getAlignment());
2237     AlignIsRequired = RD->hasAttr<AlignedAttr>();
2238     break;
2239   }
2240 
2241   case Type::SubstTemplateTypeParm:
2242     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2243                        getReplacementType().getTypePtr());
2244 
2245   case Type::Auto:
2246   case Type::DeducedTemplateSpecialization: {
2247     const auto *A = cast<DeducedType>(T);
2248     assert(!A->getDeducedType().isNull() &&
2249            "cannot request the size of an undeduced or dependent auto type");
2250     return getTypeInfo(A->getDeducedType().getTypePtr());
2251   }
2252 
2253   case Type::Paren:
2254     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2255 
2256   case Type::MacroQualified:
2257     return getTypeInfo(
2258         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2259 
2260   case Type::ObjCTypeParam:
2261     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2262 
2263   case Type::Typedef: {
2264     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2265     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2266     // If the typedef has an aligned attribute on it, it overrides any computed
2267     // alignment we have.  This violates the GCC documentation (which says that
2268     // attribute(aligned) can only round up) but matches its implementation.
2269     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2270       Align = AttrAlign;
2271       AlignIsRequired = true;
2272     } else {
2273       Align = Info.Align;
2274       AlignIsRequired = Info.AlignIsRequired;
2275     }
2276     Width = Info.Width;
2277     break;
2278   }
2279 
2280   case Type::Elaborated:
2281     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2282 
2283   case Type::Attributed:
2284     return getTypeInfo(
2285                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2286 
2287   case Type::Atomic: {
2288     // Start with the base type information.
2289     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2290     Width = Info.Width;
2291     Align = Info.Align;
2292 
2293     if (!Width) {
2294       // An otherwise zero-sized type should still generate an
2295       // atomic operation.
2296       Width = Target->getCharWidth();
2297       assert(Align);
2298     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2299       // If the size of the type doesn't exceed the platform's max
2300       // atomic promotion width, make the size and alignment more
2301       // favorable to atomic operations:
2302 
2303       // Round the size up to a power of 2.
2304       if (!llvm::isPowerOf2_64(Width))
2305         Width = llvm::NextPowerOf2(Width);
2306 
2307       // Set the alignment equal to the size.
2308       Align = static_cast<unsigned>(Width);
2309     }
2310   }
2311   break;
2312 
2313   case Type::Pipe:
2314     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2315     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2316     break;
2317   }
2318 
2319   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2320   return TypeInfo(Width, Align, AlignIsRequired);
2321 }
2322 
2323 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2324   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2325   if (I != MemoizedUnadjustedAlign.end())
2326     return I->second;
2327 
2328   unsigned UnadjustedAlign;
2329   if (const auto *RT = T->getAs<RecordType>()) {
2330     const RecordDecl *RD = RT->getDecl();
2331     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2332     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2333   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2334     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2335     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2336   } else {
2337     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2338   }
2339 
2340   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2341   return UnadjustedAlign;
2342 }
2343 
2344 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2345   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2346   // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
2347   if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
2348        getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
2349       getTargetInfo().getABI() == "elfv1-qpx" &&
2350       T->isSpecificBuiltinType(BuiltinType::Double))
2351     SimdAlign = 256;
2352   return SimdAlign;
2353 }
2354 
2355 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2356 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2357   return CharUnits::fromQuantity(BitSize / getCharWidth());
2358 }
2359 
2360 /// toBits - Convert a size in characters to a size in characters.
2361 int64_t ASTContext::toBits(CharUnits CharSize) const {
2362   return CharSize.getQuantity() * getCharWidth();
2363 }
2364 
2365 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2366 /// This method does not work on incomplete types.
2367 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2368   return getTypeInfoInChars(T).first;
2369 }
2370 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2371   return getTypeInfoInChars(T).first;
2372 }
2373 
2374 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2375 /// characters. This method does not work on incomplete types.
2376 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2377   return toCharUnitsFromBits(getTypeAlign(T));
2378 }
2379 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2380   return toCharUnitsFromBits(getTypeAlign(T));
2381 }
2382 
2383 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2384 /// type, in characters, before alignment adustments. This method does
2385 /// not work on incomplete types.
2386 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2387   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2388 }
2389 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2390   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2391 }
2392 
2393 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2394 /// type for the current target in bits.  This can be different than the ABI
2395 /// alignment in cases where it is beneficial for performance to overalign
2396 /// a data type.
2397 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2398   TypeInfo TI = getTypeInfo(T);
2399   unsigned ABIAlign = TI.Align;
2400 
2401   T = T->getBaseElementTypeUnsafe();
2402 
2403   // The preferred alignment of member pointers is that of a pointer.
2404   if (T->isMemberPointerType())
2405     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2406 
2407   if (!Target->allowsLargerPreferedTypeAlignment())
2408     return ABIAlign;
2409 
2410   // Double and long long should be naturally aligned if possible.
2411   if (const auto *CT = T->getAs<ComplexType>())
2412     T = CT->getElementType().getTypePtr();
2413   if (const auto *ET = T->getAs<EnumType>())
2414     T = ET->getDecl()->getIntegerType().getTypePtr();
2415   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2416       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2417       T->isSpecificBuiltinType(BuiltinType::ULongLong))
2418     // Don't increase the alignment if an alignment attribute was specified on a
2419     // typedef declaration.
2420     if (!TI.AlignIsRequired)
2421       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2422 
2423   return ABIAlign;
2424 }
2425 
2426 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2427 /// for __attribute__((aligned)) on this target, to be used if no alignment
2428 /// value is specified.
2429 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2430   return getTargetInfo().getDefaultAlignForAttributeAligned();
2431 }
2432 
2433 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2434 /// to a global variable of the specified type.
2435 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2436   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2437   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign(TypeSize));
2438 }
2439 
2440 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2441 /// should be given to a global variable of the specified type.
2442 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2443   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2444 }
2445 
2446 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2447   CharUnits Offset = CharUnits::Zero();
2448   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2449   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2450     Offset += Layout->getBaseClassOffset(Base);
2451     Layout = &getASTRecordLayout(Base);
2452   }
2453   return Offset;
2454 }
2455 
2456 /// DeepCollectObjCIvars -
2457 /// This routine first collects all declared, but not synthesized, ivars in
2458 /// super class and then collects all ivars, including those synthesized for
2459 /// current class. This routine is used for implementation of current class
2460 /// when all ivars, declared and synthesized are known.
2461 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2462                                       bool leafClass,
2463                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2464   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2465     DeepCollectObjCIvars(SuperClass, false, Ivars);
2466   if (!leafClass) {
2467     for (const auto *I : OI->ivars())
2468       Ivars.push_back(I);
2469   } else {
2470     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2471     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2472          Iv= Iv->getNextIvar())
2473       Ivars.push_back(Iv);
2474   }
2475 }
2476 
2477 /// CollectInheritedProtocols - Collect all protocols in current class and
2478 /// those inherited by it.
2479 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2480                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2481   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2482     // We can use protocol_iterator here instead of
2483     // all_referenced_protocol_iterator since we are walking all categories.
2484     for (auto *Proto : OI->all_referenced_protocols()) {
2485       CollectInheritedProtocols(Proto, Protocols);
2486     }
2487 
2488     // Categories of this Interface.
2489     for (const auto *Cat : OI->visible_categories())
2490       CollectInheritedProtocols(Cat, Protocols);
2491 
2492     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2493       while (SD) {
2494         CollectInheritedProtocols(SD, Protocols);
2495         SD = SD->getSuperClass();
2496       }
2497   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2498     for (auto *Proto : OC->protocols()) {
2499       CollectInheritedProtocols(Proto, Protocols);
2500     }
2501   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2502     // Insert the protocol.
2503     if (!Protocols.insert(
2504           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2505       return;
2506 
2507     for (auto *Proto : OP->protocols())
2508       CollectInheritedProtocols(Proto, Protocols);
2509   }
2510 }
2511 
2512 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2513                                                 const RecordDecl *RD) {
2514   assert(RD->isUnion() && "Must be union type");
2515   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2516 
2517   for (const auto *Field : RD->fields()) {
2518     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2519       return false;
2520     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2521     if (FieldSize != UnionSize)
2522       return false;
2523   }
2524   return !RD->field_empty();
2525 }
2526 
2527 static bool isStructEmpty(QualType Ty) {
2528   const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2529 
2530   if (!RD->field_empty())
2531     return false;
2532 
2533   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2534     return ClassDecl->isEmpty();
2535 
2536   return true;
2537 }
2538 
2539 static llvm::Optional<int64_t>
2540 structHasUniqueObjectRepresentations(const ASTContext &Context,
2541                                      const RecordDecl *RD) {
2542   assert(!RD->isUnion() && "Must be struct/class type");
2543   const auto &Layout = Context.getASTRecordLayout(RD);
2544 
2545   int64_t CurOffsetInBits = 0;
2546   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2547     if (ClassDecl->isDynamicClass())
2548       return llvm::None;
2549 
2550     SmallVector<std::pair<QualType, int64_t>, 4> Bases;
2551     for (const auto &Base : ClassDecl->bases()) {
2552       // Empty types can be inherited from, and non-empty types can potentially
2553       // have tail padding, so just make sure there isn't an error.
2554       if (!isStructEmpty(Base.getType())) {
2555         llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
2556             Context, Base.getType()->castAs<RecordType>()->getDecl());
2557         if (!Size)
2558           return llvm::None;
2559         Bases.emplace_back(Base.getType(), Size.getValue());
2560       }
2561     }
2562 
2563     llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2564                           const std::pair<QualType, int64_t> &R) {
2565       return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2566              Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2567     });
2568 
2569     for (const auto &Base : Bases) {
2570       int64_t BaseOffset = Context.toBits(
2571           Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2572       int64_t BaseSize = Base.second;
2573       if (BaseOffset != CurOffsetInBits)
2574         return llvm::None;
2575       CurOffsetInBits = BaseOffset + BaseSize;
2576     }
2577   }
2578 
2579   for (const auto *Field : RD->fields()) {
2580     if (!Field->getType()->isReferenceType() &&
2581         !Context.hasUniqueObjectRepresentations(Field->getType()))
2582       return llvm::None;
2583 
2584     int64_t FieldSizeInBits =
2585         Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2586     if (Field->isBitField()) {
2587       int64_t BitfieldSize = Field->getBitWidthValue(Context);
2588 
2589       if (BitfieldSize > FieldSizeInBits)
2590         return llvm::None;
2591       FieldSizeInBits = BitfieldSize;
2592     }
2593 
2594     int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2595 
2596     if (FieldOffsetInBits != CurOffsetInBits)
2597       return llvm::None;
2598 
2599     CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2600   }
2601 
2602   return CurOffsetInBits;
2603 }
2604 
2605 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2606   // C++17 [meta.unary.prop]:
2607   //   The predicate condition for a template specialization
2608   //   has_unique_object_representations<T> shall be
2609   //   satisfied if and only if:
2610   //     (9.1) - T is trivially copyable, and
2611   //     (9.2) - any two objects of type T with the same value have the same
2612   //     object representation, where two objects
2613   //   of array or non-union class type are considered to have the same value
2614   //   if their respective sequences of
2615   //   direct subobjects have the same values, and two objects of union type
2616   //   are considered to have the same
2617   //   value if they have the same active member and the corresponding members
2618   //   have the same value.
2619   //   The set of scalar types for which this condition holds is
2620   //   implementation-defined. [ Note: If a type has padding
2621   //   bits, the condition does not hold; otherwise, the condition holds true
2622   //   for unsigned integral types. -- end note ]
2623   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2624 
2625   // Arrays are unique only if their element type is unique.
2626   if (Ty->isArrayType())
2627     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2628 
2629   // (9.1) - T is trivially copyable...
2630   if (!Ty.isTriviallyCopyableType(*this))
2631     return false;
2632 
2633   // All integrals and enums are unique.
2634   if (Ty->isIntegralOrEnumerationType())
2635     return true;
2636 
2637   // All other pointers are unique.
2638   if (Ty->isPointerType())
2639     return true;
2640 
2641   if (Ty->isMemberPointerType()) {
2642     const auto *MPT = Ty->getAs<MemberPointerType>();
2643     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2644   }
2645 
2646   if (Ty->isRecordType()) {
2647     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2648 
2649     if (Record->isInvalidDecl())
2650       return false;
2651 
2652     if (Record->isUnion())
2653       return unionHasUniqueObjectRepresentations(*this, Record);
2654 
2655     Optional<int64_t> StructSize =
2656         structHasUniqueObjectRepresentations(*this, Record);
2657 
2658     return StructSize &&
2659            StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2660   }
2661 
2662   // FIXME: More cases to handle here (list by rsmith):
2663   // vectors (careful about, eg, vector of 3 foo)
2664   // _Complex int and friends
2665   // _Atomic T
2666   // Obj-C block pointers
2667   // Obj-C object pointers
2668   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2669   // clk_event_t, queue_t, reserve_id_t)
2670   // There're also Obj-C class types and the Obj-C selector type, but I think it
2671   // makes sense for those to return false here.
2672 
2673   return false;
2674 }
2675 
2676 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2677   unsigned count = 0;
2678   // Count ivars declared in class extension.
2679   for (const auto *Ext : OI->known_extensions())
2680     count += Ext->ivar_size();
2681 
2682   // Count ivar defined in this class's implementation.  This
2683   // includes synthesized ivars.
2684   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2685     count += ImplDecl->ivar_size();
2686 
2687   return count;
2688 }
2689 
2690 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2691   if (!E)
2692     return false;
2693 
2694   // nullptr_t is always treated as null.
2695   if (E->getType()->isNullPtrType()) return true;
2696 
2697   if (E->getType()->isAnyPointerType() &&
2698       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2699                                                 Expr::NPC_ValueDependentIsNull))
2700     return true;
2701 
2702   // Unfortunately, __null has type 'int'.
2703   if (isa<GNUNullExpr>(E)) return true;
2704 
2705   return false;
2706 }
2707 
2708 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2709 /// exists.
2710 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2711   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2712     I = ObjCImpls.find(D);
2713   if (I != ObjCImpls.end())
2714     return cast<ObjCImplementationDecl>(I->second);
2715   return nullptr;
2716 }
2717 
2718 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2719 /// exists.
2720 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2721   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2722     I = ObjCImpls.find(D);
2723   if (I != ObjCImpls.end())
2724     return cast<ObjCCategoryImplDecl>(I->second);
2725   return nullptr;
2726 }
2727 
2728 /// Set the implementation of ObjCInterfaceDecl.
2729 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2730                            ObjCImplementationDecl *ImplD) {
2731   assert(IFaceD && ImplD && "Passed null params");
2732   ObjCImpls[IFaceD] = ImplD;
2733 }
2734 
2735 /// Set the implementation of ObjCCategoryDecl.
2736 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2737                            ObjCCategoryImplDecl *ImplD) {
2738   assert(CatD && ImplD && "Passed null params");
2739   ObjCImpls[CatD] = ImplD;
2740 }
2741 
2742 const ObjCMethodDecl *
2743 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2744   return ObjCMethodRedecls.lookup(MD);
2745 }
2746 
2747 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2748                                             const ObjCMethodDecl *Redecl) {
2749   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2750   ObjCMethodRedecls[MD] = Redecl;
2751 }
2752 
2753 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2754                                               const NamedDecl *ND) const {
2755   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2756     return ID;
2757   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2758     return CD->getClassInterface();
2759   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2760     return IMD->getClassInterface();
2761 
2762   return nullptr;
2763 }
2764 
2765 /// Get the copy initialization expression of VarDecl, or nullptr if
2766 /// none exists.
2767 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2768   assert(VD && "Passed null params");
2769   assert(VD->hasAttr<BlocksAttr>() &&
2770          "getBlockVarCopyInits - not __block var");
2771   auto I = BlockVarCopyInits.find(VD);
2772   if (I != BlockVarCopyInits.end())
2773     return I->second;
2774   return {nullptr, false};
2775 }
2776 
2777 /// Set the copy initialization expression of a block var decl.
2778 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2779                                      bool CanThrow) {
2780   assert(VD && CopyExpr && "Passed null params");
2781   assert(VD->hasAttr<BlocksAttr>() &&
2782          "setBlockVarCopyInits - not __block var");
2783   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2784 }
2785 
2786 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2787                                                  unsigned DataSize) const {
2788   if (!DataSize)
2789     DataSize = TypeLoc::getFullDataSizeForType(T);
2790   else
2791     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2792            "incorrect data size provided to CreateTypeSourceInfo!");
2793 
2794   auto *TInfo =
2795     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2796   new (TInfo) TypeSourceInfo(T);
2797   return TInfo;
2798 }
2799 
2800 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2801                                                      SourceLocation L) const {
2802   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2803   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2804   return DI;
2805 }
2806 
2807 const ASTRecordLayout &
2808 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2809   return getObjCLayout(D, nullptr);
2810 }
2811 
2812 const ASTRecordLayout &
2813 ASTContext::getASTObjCImplementationLayout(
2814                                         const ObjCImplementationDecl *D) const {
2815   return getObjCLayout(D->getClassInterface(), D);
2816 }
2817 
2818 //===----------------------------------------------------------------------===//
2819 //                   Type creation/memoization methods
2820 //===----------------------------------------------------------------------===//
2821 
2822 QualType
2823 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2824   unsigned fastQuals = quals.getFastQualifiers();
2825   quals.removeFastQualifiers();
2826 
2827   // Check if we've already instantiated this type.
2828   llvm::FoldingSetNodeID ID;
2829   ExtQuals::Profile(ID, baseType, quals);
2830   void *insertPos = nullptr;
2831   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2832     assert(eq->getQualifiers() == quals);
2833     return QualType(eq, fastQuals);
2834   }
2835 
2836   // If the base type is not canonical, make the appropriate canonical type.
2837   QualType canon;
2838   if (!baseType->isCanonicalUnqualified()) {
2839     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2840     canonSplit.Quals.addConsistentQualifiers(quals);
2841     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2842 
2843     // Re-find the insert position.
2844     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2845   }
2846 
2847   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2848   ExtQualNodes.InsertNode(eq, insertPos);
2849   return QualType(eq, fastQuals);
2850 }
2851 
2852 QualType ASTContext::getAddrSpaceQualType(QualType T,
2853                                           LangAS AddressSpace) const {
2854   QualType CanT = getCanonicalType(T);
2855   if (CanT.getAddressSpace() == AddressSpace)
2856     return T;
2857 
2858   // If we are composing extended qualifiers together, merge together
2859   // into one ExtQuals node.
2860   QualifierCollector Quals;
2861   const Type *TypeNode = Quals.strip(T);
2862 
2863   // If this type already has an address space specified, it cannot get
2864   // another one.
2865   assert(!Quals.hasAddressSpace() &&
2866          "Type cannot be in multiple addr spaces!");
2867   Quals.addAddressSpace(AddressSpace);
2868 
2869   return getExtQualType(TypeNode, Quals);
2870 }
2871 
2872 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2873   // If we are composing extended qualifiers together, merge together
2874   // into one ExtQuals node.
2875   QualifierCollector Quals;
2876   const Type *TypeNode = Quals.strip(T);
2877 
2878   // If the qualifier doesn't have an address space just return it.
2879   if (!Quals.hasAddressSpace())
2880     return T;
2881 
2882   Quals.removeAddressSpace();
2883 
2884   // Removal of the address space can mean there are no longer any
2885   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2886   // or required.
2887   if (Quals.hasNonFastQualifiers())
2888     return getExtQualType(TypeNode, Quals);
2889   else
2890     return QualType(TypeNode, Quals.getFastQualifiers());
2891 }
2892 
2893 QualType ASTContext::getObjCGCQualType(QualType T,
2894                                        Qualifiers::GC GCAttr) const {
2895   QualType CanT = getCanonicalType(T);
2896   if (CanT.getObjCGCAttr() == GCAttr)
2897     return T;
2898 
2899   if (const auto *ptr = T->getAs<PointerType>()) {
2900     QualType Pointee = ptr->getPointeeType();
2901     if (Pointee->isAnyPointerType()) {
2902       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2903       return getPointerType(ResultType);
2904     }
2905   }
2906 
2907   // If we are composing extended qualifiers together, merge together
2908   // into one ExtQuals node.
2909   QualifierCollector Quals;
2910   const Type *TypeNode = Quals.strip(T);
2911 
2912   // If this type already has an ObjCGC specified, it cannot get
2913   // another one.
2914   assert(!Quals.hasObjCGCAttr() &&
2915          "Type cannot have multiple ObjCGCs!");
2916   Quals.addObjCGCAttr(GCAttr);
2917 
2918   return getExtQualType(TypeNode, Quals);
2919 }
2920 
2921 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
2922   if (const PointerType *Ptr = T->getAs<PointerType>()) {
2923     QualType Pointee = Ptr->getPointeeType();
2924     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
2925       return getPointerType(removeAddrSpaceQualType(Pointee));
2926     }
2927   }
2928   return T;
2929 }
2930 
2931 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2932                                                    FunctionType::ExtInfo Info) {
2933   if (T->getExtInfo() == Info)
2934     return T;
2935 
2936   QualType Result;
2937   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2938     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2939   } else {
2940     const auto *FPT = cast<FunctionProtoType>(T);
2941     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2942     EPI.ExtInfo = Info;
2943     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2944   }
2945 
2946   return cast<FunctionType>(Result.getTypePtr());
2947 }
2948 
2949 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2950                                                  QualType ResultType) {
2951   FD = FD->getMostRecentDecl();
2952   while (true) {
2953     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
2954     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2955     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2956     if (FunctionDecl *Next = FD->getPreviousDecl())
2957       FD = Next;
2958     else
2959       break;
2960   }
2961   if (ASTMutationListener *L = getASTMutationListener())
2962     L->DeducedReturnType(FD, ResultType);
2963 }
2964 
2965 /// Get a function type and produce the equivalent function type with the
2966 /// specified exception specification. Type sugar that can be present on a
2967 /// declaration of a function with an exception specification is permitted
2968 /// and preserved. Other type sugar (for instance, typedefs) is not.
2969 QualType ASTContext::getFunctionTypeWithExceptionSpec(
2970     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
2971   // Might have some parens.
2972   if (const auto *PT = dyn_cast<ParenType>(Orig))
2973     return getParenType(
2974         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
2975 
2976   // Might be wrapped in a macro qualified type.
2977   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
2978     return getMacroQualifiedType(
2979         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
2980         MQT->getMacroIdentifier());
2981 
2982   // Might have a calling-convention attribute.
2983   if (const auto *AT = dyn_cast<AttributedType>(Orig))
2984     return getAttributedType(
2985         AT->getAttrKind(),
2986         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
2987         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
2988 
2989   // Anything else must be a function type. Rebuild it with the new exception
2990   // specification.
2991   const auto *Proto = Orig->castAs<FunctionProtoType>();
2992   return getFunctionType(
2993       Proto->getReturnType(), Proto->getParamTypes(),
2994       Proto->getExtProtoInfo().withExceptionSpec(ESI));
2995 }
2996 
2997 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
2998                                                           QualType U) {
2999   return hasSameType(T, U) ||
3000          (getLangOpts().CPlusPlus17 &&
3001           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3002                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3003 }
3004 
3005 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3006   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3007     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3008     SmallVector<QualType, 16> Args(Proto->param_types());
3009     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3010       Args[i] = removePtrSizeAddrSpace(Args[i]);
3011     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3012   }
3013 
3014   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3015     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3016     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3017   }
3018 
3019   return T;
3020 }
3021 
3022 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3023   return hasSameType(T, U) ||
3024          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3025                      getFunctionTypeWithoutPtrSizes(U));
3026 }
3027 
3028 void ASTContext::adjustExceptionSpec(
3029     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3030     bool AsWritten) {
3031   // Update the type.
3032   QualType Updated =
3033       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3034   FD->setType(Updated);
3035 
3036   if (!AsWritten)
3037     return;
3038 
3039   // Update the type in the type source information too.
3040   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3041     // If the type and the type-as-written differ, we may need to update
3042     // the type-as-written too.
3043     if (TSInfo->getType() != FD->getType())
3044       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3045 
3046     // FIXME: When we get proper type location information for exceptions,
3047     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3048     // up the TypeSourceInfo;
3049     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3050                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3051            "TypeLoc size mismatch from updating exception specification");
3052     TSInfo->overrideType(Updated);
3053   }
3054 }
3055 
3056 /// getComplexType - Return the uniqued reference to the type for a complex
3057 /// number with the specified element type.
3058 QualType ASTContext::getComplexType(QualType T) const {
3059   // Unique pointers, to guarantee there is only one pointer of a particular
3060   // structure.
3061   llvm::FoldingSetNodeID ID;
3062   ComplexType::Profile(ID, T);
3063 
3064   void *InsertPos = nullptr;
3065   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3066     return QualType(CT, 0);
3067 
3068   // If the pointee type isn't canonical, this won't be a canonical type either,
3069   // so fill in the canonical type field.
3070   QualType Canonical;
3071   if (!T.isCanonical()) {
3072     Canonical = getComplexType(getCanonicalType(T));
3073 
3074     // Get the new insert position for the node we care about.
3075     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3076     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3077   }
3078   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3079   Types.push_back(New);
3080   ComplexTypes.InsertNode(New, InsertPos);
3081   return QualType(New, 0);
3082 }
3083 
3084 /// getPointerType - Return the uniqued reference to the type for a pointer to
3085 /// the specified type.
3086 QualType ASTContext::getPointerType(QualType T) const {
3087   // Unique pointers, to guarantee there is only one pointer of a particular
3088   // structure.
3089   llvm::FoldingSetNodeID ID;
3090   PointerType::Profile(ID, T);
3091 
3092   void *InsertPos = nullptr;
3093   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3094     return QualType(PT, 0);
3095 
3096   // If the pointee type isn't canonical, this won't be a canonical type either,
3097   // so fill in the canonical type field.
3098   QualType Canonical;
3099   if (!T.isCanonical()) {
3100     Canonical = getPointerType(getCanonicalType(T));
3101 
3102     // Get the new insert position for the node we care about.
3103     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3104     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3105   }
3106   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3107   Types.push_back(New);
3108   PointerTypes.InsertNode(New, InsertPos);
3109   return QualType(New, 0);
3110 }
3111 
3112 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3113   llvm::FoldingSetNodeID ID;
3114   AdjustedType::Profile(ID, Orig, New);
3115   void *InsertPos = nullptr;
3116   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3117   if (AT)
3118     return QualType(AT, 0);
3119 
3120   QualType Canonical = getCanonicalType(New);
3121 
3122   // Get the new insert position for the node we care about.
3123   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3124   assert(!AT && "Shouldn't be in the map!");
3125 
3126   AT = new (*this, TypeAlignment)
3127       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3128   Types.push_back(AT);
3129   AdjustedTypes.InsertNode(AT, InsertPos);
3130   return QualType(AT, 0);
3131 }
3132 
3133 QualType ASTContext::getDecayedType(QualType T) const {
3134   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3135 
3136   QualType Decayed;
3137 
3138   // C99 6.7.5.3p7:
3139   //   A declaration of a parameter as "array of type" shall be
3140   //   adjusted to "qualified pointer to type", where the type
3141   //   qualifiers (if any) are those specified within the [ and ] of
3142   //   the array type derivation.
3143   if (T->isArrayType())
3144     Decayed = getArrayDecayedType(T);
3145 
3146   // C99 6.7.5.3p8:
3147   //   A declaration of a parameter as "function returning type"
3148   //   shall be adjusted to "pointer to function returning type", as
3149   //   in 6.3.2.1.
3150   if (T->isFunctionType())
3151     Decayed = getPointerType(T);
3152 
3153   llvm::FoldingSetNodeID ID;
3154   AdjustedType::Profile(ID, T, Decayed);
3155   void *InsertPos = nullptr;
3156   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3157   if (AT)
3158     return QualType(AT, 0);
3159 
3160   QualType Canonical = getCanonicalType(Decayed);
3161 
3162   // Get the new insert position for the node we care about.
3163   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3164   assert(!AT && "Shouldn't be in the map!");
3165 
3166   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3167   Types.push_back(AT);
3168   AdjustedTypes.InsertNode(AT, InsertPos);
3169   return QualType(AT, 0);
3170 }
3171 
3172 /// getBlockPointerType - Return the uniqued reference to the type for
3173 /// a pointer to the specified block.
3174 QualType ASTContext::getBlockPointerType(QualType T) const {
3175   assert(T->isFunctionType() && "block of function types only");
3176   // Unique pointers, to guarantee there is only one block of a particular
3177   // structure.
3178   llvm::FoldingSetNodeID ID;
3179   BlockPointerType::Profile(ID, T);
3180 
3181   void *InsertPos = nullptr;
3182   if (BlockPointerType *PT =
3183         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3184     return QualType(PT, 0);
3185 
3186   // If the block pointee type isn't canonical, this won't be a canonical
3187   // type either so fill in the canonical type field.
3188   QualType Canonical;
3189   if (!T.isCanonical()) {
3190     Canonical = getBlockPointerType(getCanonicalType(T));
3191 
3192     // Get the new insert position for the node we care about.
3193     BlockPointerType *NewIP =
3194       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3195     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3196   }
3197   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3198   Types.push_back(New);
3199   BlockPointerTypes.InsertNode(New, InsertPos);
3200   return QualType(New, 0);
3201 }
3202 
3203 /// getLValueReferenceType - Return the uniqued reference to the type for an
3204 /// lvalue reference to the specified type.
3205 QualType
3206 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3207   assert(getCanonicalType(T) != OverloadTy &&
3208          "Unresolved overloaded function type");
3209 
3210   // Unique pointers, to guarantee there is only one pointer of a particular
3211   // structure.
3212   llvm::FoldingSetNodeID ID;
3213   ReferenceType::Profile(ID, T, SpelledAsLValue);
3214 
3215   void *InsertPos = nullptr;
3216   if (LValueReferenceType *RT =
3217         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3218     return QualType(RT, 0);
3219 
3220   const auto *InnerRef = T->getAs<ReferenceType>();
3221 
3222   // If the referencee type isn't canonical, this won't be a canonical type
3223   // either, so fill in the canonical type field.
3224   QualType Canonical;
3225   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3226     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3227     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3228 
3229     // Get the new insert position for the node we care about.
3230     LValueReferenceType *NewIP =
3231       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3232     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3233   }
3234 
3235   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3236                                                              SpelledAsLValue);
3237   Types.push_back(New);
3238   LValueReferenceTypes.InsertNode(New, InsertPos);
3239 
3240   return QualType(New, 0);
3241 }
3242 
3243 /// getRValueReferenceType - Return the uniqued reference to the type for an
3244 /// rvalue reference to the specified type.
3245 QualType ASTContext::getRValueReferenceType(QualType T) const {
3246   // Unique pointers, to guarantee there is only one pointer of a particular
3247   // structure.
3248   llvm::FoldingSetNodeID ID;
3249   ReferenceType::Profile(ID, T, false);
3250 
3251   void *InsertPos = nullptr;
3252   if (RValueReferenceType *RT =
3253         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3254     return QualType(RT, 0);
3255 
3256   const auto *InnerRef = T->getAs<ReferenceType>();
3257 
3258   // If the referencee type isn't canonical, this won't be a canonical type
3259   // either, so fill in the canonical type field.
3260   QualType Canonical;
3261   if (InnerRef || !T.isCanonical()) {
3262     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3263     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3264 
3265     // Get the new insert position for the node we care about.
3266     RValueReferenceType *NewIP =
3267       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3268     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3269   }
3270 
3271   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3272   Types.push_back(New);
3273   RValueReferenceTypes.InsertNode(New, InsertPos);
3274   return QualType(New, 0);
3275 }
3276 
3277 /// getMemberPointerType - Return the uniqued reference to the type for a
3278 /// member pointer to the specified type, in the specified class.
3279 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3280   // Unique pointers, to guarantee there is only one pointer of a particular
3281   // structure.
3282   llvm::FoldingSetNodeID ID;
3283   MemberPointerType::Profile(ID, T, Cls);
3284 
3285   void *InsertPos = nullptr;
3286   if (MemberPointerType *PT =
3287       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3288     return QualType(PT, 0);
3289 
3290   // If the pointee or class type isn't canonical, this won't be a canonical
3291   // type either, so fill in the canonical type field.
3292   QualType Canonical;
3293   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3294     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3295 
3296     // Get the new insert position for the node we care about.
3297     MemberPointerType *NewIP =
3298       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3299     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3300   }
3301   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3302   Types.push_back(New);
3303   MemberPointerTypes.InsertNode(New, InsertPos);
3304   return QualType(New, 0);
3305 }
3306 
3307 /// getConstantArrayType - Return the unique reference to the type for an
3308 /// array of the specified element type.
3309 QualType ASTContext::getConstantArrayType(QualType EltTy,
3310                                           const llvm::APInt &ArySizeIn,
3311                                           const Expr *SizeExpr,
3312                                           ArrayType::ArraySizeModifier ASM,
3313                                           unsigned IndexTypeQuals) const {
3314   assert((EltTy->isDependentType() ||
3315           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3316          "Constant array of VLAs is illegal!");
3317 
3318   // We only need the size as part of the type if it's instantiation-dependent.
3319   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3320     SizeExpr = nullptr;
3321 
3322   // Convert the array size into a canonical width matching the pointer size for
3323   // the target.
3324   llvm::APInt ArySize(ArySizeIn);
3325   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3326 
3327   llvm::FoldingSetNodeID ID;
3328   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3329                              IndexTypeQuals);
3330 
3331   void *InsertPos = nullptr;
3332   if (ConstantArrayType *ATP =
3333       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3334     return QualType(ATP, 0);
3335 
3336   // If the element type isn't canonical or has qualifiers, or the array bound
3337   // is instantiation-dependent, this won't be a canonical type either, so fill
3338   // in the canonical type field.
3339   QualType Canon;
3340   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3341     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3342     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3343                                  ASM, IndexTypeQuals);
3344     Canon = getQualifiedType(Canon, canonSplit.Quals);
3345 
3346     // Get the new insert position for the node we care about.
3347     ConstantArrayType *NewIP =
3348       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3349     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3350   }
3351 
3352   void *Mem = Allocate(
3353       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3354       TypeAlignment);
3355   auto *New = new (Mem)
3356     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3357   ConstantArrayTypes.InsertNode(New, InsertPos);
3358   Types.push_back(New);
3359   return QualType(New, 0);
3360 }
3361 
3362 /// getVariableArrayDecayedType - Turns the given type, which may be
3363 /// variably-modified, into the corresponding type with all the known
3364 /// sizes replaced with [*].
3365 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3366   // Vastly most common case.
3367   if (!type->isVariablyModifiedType()) return type;
3368 
3369   QualType result;
3370 
3371   SplitQualType split = type.getSplitDesugaredType();
3372   const Type *ty = split.Ty;
3373   switch (ty->getTypeClass()) {
3374 #define TYPE(Class, Base)
3375 #define ABSTRACT_TYPE(Class, Base)
3376 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3377 #include "clang/AST/TypeNodes.inc"
3378     llvm_unreachable("didn't desugar past all non-canonical types?");
3379 
3380   // These types should never be variably-modified.
3381   case Type::Builtin:
3382   case Type::Complex:
3383   case Type::Vector:
3384   case Type::DependentVector:
3385   case Type::ExtVector:
3386   case Type::DependentSizedExtVector:
3387   case Type::ConstantMatrix:
3388   case Type::DependentSizedMatrix:
3389   case Type::DependentAddressSpace:
3390   case Type::ObjCObject:
3391   case Type::ObjCInterface:
3392   case Type::ObjCObjectPointer:
3393   case Type::Record:
3394   case Type::Enum:
3395   case Type::UnresolvedUsing:
3396   case Type::TypeOfExpr:
3397   case Type::TypeOf:
3398   case Type::Decltype:
3399   case Type::UnaryTransform:
3400   case Type::DependentName:
3401   case Type::InjectedClassName:
3402   case Type::TemplateSpecialization:
3403   case Type::DependentTemplateSpecialization:
3404   case Type::TemplateTypeParm:
3405   case Type::SubstTemplateTypeParmPack:
3406   case Type::Auto:
3407   case Type::DeducedTemplateSpecialization:
3408   case Type::PackExpansion:
3409   case Type::ExtInt:
3410   case Type::DependentExtInt:
3411     llvm_unreachable("type should never be variably-modified");
3412 
3413   // These types can be variably-modified but should never need to
3414   // further decay.
3415   case Type::FunctionNoProto:
3416   case Type::FunctionProto:
3417   case Type::BlockPointer:
3418   case Type::MemberPointer:
3419   case Type::Pipe:
3420     return type;
3421 
3422   // These types can be variably-modified.  All these modifications
3423   // preserve structure except as noted by comments.
3424   // TODO: if we ever care about optimizing VLAs, there are no-op
3425   // optimizations available here.
3426   case Type::Pointer:
3427     result = getPointerType(getVariableArrayDecayedType(
3428                               cast<PointerType>(ty)->getPointeeType()));
3429     break;
3430 
3431   case Type::LValueReference: {
3432     const auto *lv = cast<LValueReferenceType>(ty);
3433     result = getLValueReferenceType(
3434                  getVariableArrayDecayedType(lv->getPointeeType()),
3435                                     lv->isSpelledAsLValue());
3436     break;
3437   }
3438 
3439   case Type::RValueReference: {
3440     const auto *lv = cast<RValueReferenceType>(ty);
3441     result = getRValueReferenceType(
3442                  getVariableArrayDecayedType(lv->getPointeeType()));
3443     break;
3444   }
3445 
3446   case Type::Atomic: {
3447     const auto *at = cast<AtomicType>(ty);
3448     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3449     break;
3450   }
3451 
3452   case Type::ConstantArray: {
3453     const auto *cat = cast<ConstantArrayType>(ty);
3454     result = getConstantArrayType(
3455                  getVariableArrayDecayedType(cat->getElementType()),
3456                                   cat->getSize(),
3457                                   cat->getSizeExpr(),
3458                                   cat->getSizeModifier(),
3459                                   cat->getIndexTypeCVRQualifiers());
3460     break;
3461   }
3462 
3463   case Type::DependentSizedArray: {
3464     const auto *dat = cast<DependentSizedArrayType>(ty);
3465     result = getDependentSizedArrayType(
3466                  getVariableArrayDecayedType(dat->getElementType()),
3467                                         dat->getSizeExpr(),
3468                                         dat->getSizeModifier(),
3469                                         dat->getIndexTypeCVRQualifiers(),
3470                                         dat->getBracketsRange());
3471     break;
3472   }
3473 
3474   // Turn incomplete types into [*] types.
3475   case Type::IncompleteArray: {
3476     const auto *iat = cast<IncompleteArrayType>(ty);
3477     result = getVariableArrayType(
3478                  getVariableArrayDecayedType(iat->getElementType()),
3479                                   /*size*/ nullptr,
3480                                   ArrayType::Normal,
3481                                   iat->getIndexTypeCVRQualifiers(),
3482                                   SourceRange());
3483     break;
3484   }
3485 
3486   // Turn VLA types into [*] types.
3487   case Type::VariableArray: {
3488     const auto *vat = cast<VariableArrayType>(ty);
3489     result = getVariableArrayType(
3490                  getVariableArrayDecayedType(vat->getElementType()),
3491                                   /*size*/ nullptr,
3492                                   ArrayType::Star,
3493                                   vat->getIndexTypeCVRQualifiers(),
3494                                   vat->getBracketsRange());
3495     break;
3496   }
3497   }
3498 
3499   // Apply the top-level qualifiers from the original.
3500   return getQualifiedType(result, split.Quals);
3501 }
3502 
3503 /// getVariableArrayType - Returns a non-unique reference to the type for a
3504 /// variable array of the specified element type.
3505 QualType ASTContext::getVariableArrayType(QualType EltTy,
3506                                           Expr *NumElts,
3507                                           ArrayType::ArraySizeModifier ASM,
3508                                           unsigned IndexTypeQuals,
3509                                           SourceRange Brackets) const {
3510   // Since we don't unique expressions, it isn't possible to unique VLA's
3511   // that have an expression provided for their size.
3512   QualType Canon;
3513 
3514   // Be sure to pull qualifiers off the element type.
3515   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3516     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3517     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3518                                  IndexTypeQuals, Brackets);
3519     Canon = getQualifiedType(Canon, canonSplit.Quals);
3520   }
3521 
3522   auto *New = new (*this, TypeAlignment)
3523     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3524 
3525   VariableArrayTypes.push_back(New);
3526   Types.push_back(New);
3527   return QualType(New, 0);
3528 }
3529 
3530 /// getDependentSizedArrayType - Returns a non-unique reference to
3531 /// the type for a dependently-sized array of the specified element
3532 /// type.
3533 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3534                                                 Expr *numElements,
3535                                                 ArrayType::ArraySizeModifier ASM,
3536                                                 unsigned elementTypeQuals,
3537                                                 SourceRange brackets) const {
3538   assert((!numElements || numElements->isTypeDependent() ||
3539           numElements->isValueDependent()) &&
3540          "Size must be type- or value-dependent!");
3541 
3542   // Dependently-sized array types that do not have a specified number
3543   // of elements will have their sizes deduced from a dependent
3544   // initializer.  We do no canonicalization here at all, which is okay
3545   // because they can't be used in most locations.
3546   if (!numElements) {
3547     auto *newType
3548       = new (*this, TypeAlignment)
3549           DependentSizedArrayType(*this, elementType, QualType(),
3550                                   numElements, ASM, elementTypeQuals,
3551                                   brackets);
3552     Types.push_back(newType);
3553     return QualType(newType, 0);
3554   }
3555 
3556   // Otherwise, we actually build a new type every time, but we
3557   // also build a canonical type.
3558 
3559   SplitQualType canonElementType = getCanonicalType(elementType).split();
3560 
3561   void *insertPos = nullptr;
3562   llvm::FoldingSetNodeID ID;
3563   DependentSizedArrayType::Profile(ID, *this,
3564                                    QualType(canonElementType.Ty, 0),
3565                                    ASM, elementTypeQuals, numElements);
3566 
3567   // Look for an existing type with these properties.
3568   DependentSizedArrayType *canonTy =
3569     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3570 
3571   // If we don't have one, build one.
3572   if (!canonTy) {
3573     canonTy = new (*this, TypeAlignment)
3574       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3575                               QualType(), numElements, ASM, elementTypeQuals,
3576                               brackets);
3577     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3578     Types.push_back(canonTy);
3579   }
3580 
3581   // Apply qualifiers from the element type to the array.
3582   QualType canon = getQualifiedType(QualType(canonTy,0),
3583                                     canonElementType.Quals);
3584 
3585   // If we didn't need extra canonicalization for the element type or the size
3586   // expression, then just use that as our result.
3587   if (QualType(canonElementType.Ty, 0) == elementType &&
3588       canonTy->getSizeExpr() == numElements)
3589     return canon;
3590 
3591   // Otherwise, we need to build a type which follows the spelling
3592   // of the element type.
3593   auto *sugaredType
3594     = new (*this, TypeAlignment)
3595         DependentSizedArrayType(*this, elementType, canon, numElements,
3596                                 ASM, elementTypeQuals, brackets);
3597   Types.push_back(sugaredType);
3598   return QualType(sugaredType, 0);
3599 }
3600 
3601 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3602                                             ArrayType::ArraySizeModifier ASM,
3603                                             unsigned elementTypeQuals) const {
3604   llvm::FoldingSetNodeID ID;
3605   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3606 
3607   void *insertPos = nullptr;
3608   if (IncompleteArrayType *iat =
3609        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3610     return QualType(iat, 0);
3611 
3612   // If the element type isn't canonical, this won't be a canonical type
3613   // either, so fill in the canonical type field.  We also have to pull
3614   // qualifiers off the element type.
3615   QualType canon;
3616 
3617   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3618     SplitQualType canonSplit = getCanonicalType(elementType).split();
3619     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3620                                    ASM, elementTypeQuals);
3621     canon = getQualifiedType(canon, canonSplit.Quals);
3622 
3623     // Get the new insert position for the node we care about.
3624     IncompleteArrayType *existing =
3625       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3626     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3627   }
3628 
3629   auto *newType = new (*this, TypeAlignment)
3630     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3631 
3632   IncompleteArrayTypes.InsertNode(newType, insertPos);
3633   Types.push_back(newType);
3634   return QualType(newType, 0);
3635 }
3636 
3637 ASTContext::BuiltinVectorTypeInfo
3638 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3639 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3640   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount(ELTS, true),        \
3641    NUMVECTORS};
3642 
3643 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3644   {ELTTY, llvm::ElementCount(ELTS, true), NUMVECTORS};
3645 
3646   switch (Ty->getKind()) {
3647   default:
3648     llvm_unreachable("Unsupported builtin vector type");
3649   case BuiltinType::SveInt8:
3650     return SVE_INT_ELTTY(8, 16, true, 1);
3651   case BuiltinType::SveUint8:
3652     return SVE_INT_ELTTY(8, 16, false, 1);
3653   case BuiltinType::SveInt8x2:
3654     return SVE_INT_ELTTY(8, 16, true, 2);
3655   case BuiltinType::SveUint8x2:
3656     return SVE_INT_ELTTY(8, 16, false, 2);
3657   case BuiltinType::SveInt8x3:
3658     return SVE_INT_ELTTY(8, 16, true, 3);
3659   case BuiltinType::SveUint8x3:
3660     return SVE_INT_ELTTY(8, 16, false, 3);
3661   case BuiltinType::SveInt8x4:
3662     return SVE_INT_ELTTY(8, 16, true, 4);
3663   case BuiltinType::SveUint8x4:
3664     return SVE_INT_ELTTY(8, 16, false, 4);
3665   case BuiltinType::SveInt16:
3666     return SVE_INT_ELTTY(16, 8, true, 1);
3667   case BuiltinType::SveUint16:
3668     return SVE_INT_ELTTY(16, 8, false, 1);
3669   case BuiltinType::SveInt16x2:
3670     return SVE_INT_ELTTY(16, 8, true, 2);
3671   case BuiltinType::SveUint16x2:
3672     return SVE_INT_ELTTY(16, 8, false, 2);
3673   case BuiltinType::SveInt16x3:
3674     return SVE_INT_ELTTY(16, 8, true, 3);
3675   case BuiltinType::SveUint16x3:
3676     return SVE_INT_ELTTY(16, 8, false, 3);
3677   case BuiltinType::SveInt16x4:
3678     return SVE_INT_ELTTY(16, 8, true, 4);
3679   case BuiltinType::SveUint16x4:
3680     return SVE_INT_ELTTY(16, 8, false, 4);
3681   case BuiltinType::SveInt32:
3682     return SVE_INT_ELTTY(32, 4, true, 1);
3683   case BuiltinType::SveUint32:
3684     return SVE_INT_ELTTY(32, 4, false, 1);
3685   case BuiltinType::SveInt32x2:
3686     return SVE_INT_ELTTY(32, 4, true, 2);
3687   case BuiltinType::SveUint32x2:
3688     return SVE_INT_ELTTY(32, 4, false, 2);
3689   case BuiltinType::SveInt32x3:
3690     return SVE_INT_ELTTY(32, 4, true, 3);
3691   case BuiltinType::SveUint32x3:
3692     return SVE_INT_ELTTY(32, 4, false, 3);
3693   case BuiltinType::SveInt32x4:
3694     return SVE_INT_ELTTY(32, 4, true, 4);
3695   case BuiltinType::SveUint32x4:
3696     return SVE_INT_ELTTY(32, 4, false, 4);
3697   case BuiltinType::SveInt64:
3698     return SVE_INT_ELTTY(64, 2, true, 1);
3699   case BuiltinType::SveUint64:
3700     return SVE_INT_ELTTY(64, 2, false, 1);
3701   case BuiltinType::SveInt64x2:
3702     return SVE_INT_ELTTY(64, 2, true, 2);
3703   case BuiltinType::SveUint64x2:
3704     return SVE_INT_ELTTY(64, 2, false, 2);
3705   case BuiltinType::SveInt64x3:
3706     return SVE_INT_ELTTY(64, 2, true, 3);
3707   case BuiltinType::SveUint64x3:
3708     return SVE_INT_ELTTY(64, 2, false, 3);
3709   case BuiltinType::SveInt64x4:
3710     return SVE_INT_ELTTY(64, 2, true, 4);
3711   case BuiltinType::SveUint64x4:
3712     return SVE_INT_ELTTY(64, 2, false, 4);
3713   case BuiltinType::SveBool:
3714     return SVE_ELTTY(BoolTy, 16, 1);
3715   case BuiltinType::SveFloat16:
3716     return SVE_ELTTY(HalfTy, 8, 1);
3717   case BuiltinType::SveFloat16x2:
3718     return SVE_ELTTY(HalfTy, 8, 2);
3719   case BuiltinType::SveFloat16x3:
3720     return SVE_ELTTY(HalfTy, 8, 3);
3721   case BuiltinType::SveFloat16x4:
3722     return SVE_ELTTY(HalfTy, 8, 4);
3723   case BuiltinType::SveFloat32:
3724     return SVE_ELTTY(FloatTy, 4, 1);
3725   case BuiltinType::SveFloat32x2:
3726     return SVE_ELTTY(FloatTy, 4, 2);
3727   case BuiltinType::SveFloat32x3:
3728     return SVE_ELTTY(FloatTy, 4, 3);
3729   case BuiltinType::SveFloat32x4:
3730     return SVE_ELTTY(FloatTy, 4, 4);
3731   case BuiltinType::SveFloat64:
3732     return SVE_ELTTY(DoubleTy, 2, 1);
3733   case BuiltinType::SveFloat64x2:
3734     return SVE_ELTTY(DoubleTy, 2, 2);
3735   case BuiltinType::SveFloat64x3:
3736     return SVE_ELTTY(DoubleTy, 2, 3);
3737   case BuiltinType::SveFloat64x4:
3738     return SVE_ELTTY(DoubleTy, 2, 4);
3739   case BuiltinType::SveBFloat16:
3740     return SVE_ELTTY(BFloat16Ty, 8, 1);
3741   case BuiltinType::SveBFloat16x2:
3742     return SVE_ELTTY(BFloat16Ty, 8, 2);
3743   case BuiltinType::SveBFloat16x3:
3744     return SVE_ELTTY(BFloat16Ty, 8, 3);
3745   case BuiltinType::SveBFloat16x4:
3746     return SVE_ELTTY(BFloat16Ty, 8, 4);
3747   }
3748 }
3749 
3750 /// getScalableVectorType - Return the unique reference to a scalable vector
3751 /// type of the specified element type and size. VectorType must be a built-in
3752 /// type.
3753 QualType ASTContext::getScalableVectorType(QualType EltTy,
3754                                            unsigned NumElts) const {
3755   if (Target->hasAArch64SVETypes()) {
3756     uint64_t EltTySize = getTypeSize(EltTy);
3757 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3758                         IsSigned, IsFP, IsBF)                                  \
3759   if (!EltTy->isBooleanType() &&                                               \
3760       ((EltTy->hasIntegerRepresentation() &&                                   \
3761         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3762        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3763         IsFP && !IsBF) ||                                                      \
3764        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3765         IsBF && !IsFP)) &&                                                     \
3766       EltTySize == ElBits && NumElts == NumEls) {                              \
3767     return SingletonId;                                                        \
3768   }
3769 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3770   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3771     return SingletonId;
3772 #include "clang/Basic/AArch64SVEACLETypes.def"
3773   }
3774   return QualType();
3775 }
3776 
3777 /// getVectorType - Return the unique reference to a vector type of
3778 /// the specified element type and size. VectorType must be a built-in type.
3779 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3780                                    VectorType::VectorKind VecKind) const {
3781   assert(vecType->isBuiltinType());
3782 
3783   // Check if we've already instantiated a vector of this type.
3784   llvm::FoldingSetNodeID ID;
3785   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3786 
3787   void *InsertPos = nullptr;
3788   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3789     return QualType(VTP, 0);
3790 
3791   // If the element type isn't canonical, this won't be a canonical type either,
3792   // so fill in the canonical type field.
3793   QualType Canonical;
3794   if (!vecType.isCanonical()) {
3795     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3796 
3797     // Get the new insert position for the node we care about.
3798     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3799     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3800   }
3801   auto *New = new (*this, TypeAlignment)
3802     VectorType(vecType, NumElts, Canonical, VecKind);
3803   VectorTypes.InsertNode(New, InsertPos);
3804   Types.push_back(New);
3805   return QualType(New, 0);
3806 }
3807 
3808 QualType
3809 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3810                                    SourceLocation AttrLoc,
3811                                    VectorType::VectorKind VecKind) const {
3812   llvm::FoldingSetNodeID ID;
3813   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3814                                VecKind);
3815   void *InsertPos = nullptr;
3816   DependentVectorType *Canon =
3817       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3818   DependentVectorType *New;
3819 
3820   if (Canon) {
3821     New = new (*this, TypeAlignment) DependentVectorType(
3822         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3823   } else {
3824     QualType CanonVecTy = getCanonicalType(VecType);
3825     if (CanonVecTy == VecType) {
3826       New = new (*this, TypeAlignment) DependentVectorType(
3827           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3828 
3829       DependentVectorType *CanonCheck =
3830           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3831       assert(!CanonCheck &&
3832              "Dependent-sized vector_size canonical type broken");
3833       (void)CanonCheck;
3834       DependentVectorTypes.InsertNode(New, InsertPos);
3835     } else {
3836       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
3837                                                 SourceLocation(), VecKind);
3838       New = new (*this, TypeAlignment) DependentVectorType(
3839           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
3840     }
3841   }
3842 
3843   Types.push_back(New);
3844   return QualType(New, 0);
3845 }
3846 
3847 /// getExtVectorType - Return the unique reference to an extended vector type of
3848 /// the specified element type and size. VectorType must be a built-in type.
3849 QualType
3850 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3851   assert(vecType->isBuiltinType() || vecType->isDependentType());
3852 
3853   // Check if we've already instantiated a vector of this type.
3854   llvm::FoldingSetNodeID ID;
3855   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3856                       VectorType::GenericVector);
3857   void *InsertPos = nullptr;
3858   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3859     return QualType(VTP, 0);
3860 
3861   // If the element type isn't canonical, this won't be a canonical type either,
3862   // so fill in the canonical type field.
3863   QualType Canonical;
3864   if (!vecType.isCanonical()) {
3865     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3866 
3867     // Get the new insert position for the node we care about.
3868     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3869     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3870   }
3871   auto *New = new (*this, TypeAlignment)
3872     ExtVectorType(vecType, NumElts, Canonical);
3873   VectorTypes.InsertNode(New, InsertPos);
3874   Types.push_back(New);
3875   return QualType(New, 0);
3876 }
3877 
3878 QualType
3879 ASTContext::getDependentSizedExtVectorType(QualType vecType,
3880                                            Expr *SizeExpr,
3881                                            SourceLocation AttrLoc) const {
3882   llvm::FoldingSetNodeID ID;
3883   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
3884                                        SizeExpr);
3885 
3886   void *InsertPos = nullptr;
3887   DependentSizedExtVectorType *Canon
3888     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3889   DependentSizedExtVectorType *New;
3890   if (Canon) {
3891     // We already have a canonical version of this array type; use it as
3892     // the canonical type for a newly-built type.
3893     New = new (*this, TypeAlignment)
3894       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
3895                                   SizeExpr, AttrLoc);
3896   } else {
3897     QualType CanonVecTy = getCanonicalType(vecType);
3898     if (CanonVecTy == vecType) {
3899       New = new (*this, TypeAlignment)
3900         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
3901                                     AttrLoc);
3902 
3903       DependentSizedExtVectorType *CanonCheck
3904         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3905       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
3906       (void)CanonCheck;
3907       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
3908     } else {
3909       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3910                                                            SourceLocation());
3911       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
3912           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
3913     }
3914   }
3915 
3916   Types.push_back(New);
3917   return QualType(New, 0);
3918 }
3919 
3920 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
3921                                            unsigned NumColumns) const {
3922   llvm::FoldingSetNodeID ID;
3923   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
3924                               Type::ConstantMatrix);
3925 
3926   assert(MatrixType::isValidElementType(ElementTy) &&
3927          "need a valid element type");
3928   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
3929          ConstantMatrixType::isDimensionValid(NumColumns) &&
3930          "need valid matrix dimensions");
3931   void *InsertPos = nullptr;
3932   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
3933     return QualType(MTP, 0);
3934 
3935   QualType Canonical;
3936   if (!ElementTy.isCanonical()) {
3937     Canonical =
3938         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
3939 
3940     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
3941     assert(!NewIP && "Matrix type shouldn't already exist in the map");
3942     (void)NewIP;
3943   }
3944 
3945   auto *New = new (*this, TypeAlignment)
3946       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
3947   MatrixTypes.InsertNode(New, InsertPos);
3948   Types.push_back(New);
3949   return QualType(New, 0);
3950 }
3951 
3952 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
3953                                                  Expr *RowExpr,
3954                                                  Expr *ColumnExpr,
3955                                                  SourceLocation AttrLoc) const {
3956   QualType CanonElementTy = getCanonicalType(ElementTy);
3957   llvm::FoldingSetNodeID ID;
3958   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
3959                                     ColumnExpr);
3960 
3961   void *InsertPos = nullptr;
3962   DependentSizedMatrixType *Canon =
3963       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
3964 
3965   if (!Canon) {
3966     Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
3967         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
3968 #ifndef NDEBUG
3969     DependentSizedMatrixType *CanonCheck =
3970         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
3971     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
3972 #endif
3973     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
3974     Types.push_back(Canon);
3975   }
3976 
3977   // Already have a canonical version of the matrix type
3978   //
3979   // If it exactly matches the requested type, use it directly.
3980   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
3981       Canon->getRowExpr() == ColumnExpr)
3982     return QualType(Canon, 0);
3983 
3984   // Use Canon as the canonical type for newly-built type.
3985   DependentSizedMatrixType *New = new (*this, TypeAlignment)
3986       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
3987                                ColumnExpr, AttrLoc);
3988   Types.push_back(New);
3989   return QualType(New, 0);
3990 }
3991 
3992 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
3993                                                   Expr *AddrSpaceExpr,
3994                                                   SourceLocation AttrLoc) const {
3995   assert(AddrSpaceExpr->isInstantiationDependent());
3996 
3997   QualType canonPointeeType = getCanonicalType(PointeeType);
3998 
3999   void *insertPos = nullptr;
4000   llvm::FoldingSetNodeID ID;
4001   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4002                                      AddrSpaceExpr);
4003 
4004   DependentAddressSpaceType *canonTy =
4005     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4006 
4007   if (!canonTy) {
4008     canonTy = new (*this, TypeAlignment)
4009       DependentAddressSpaceType(*this, canonPointeeType,
4010                                 QualType(), AddrSpaceExpr, AttrLoc);
4011     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4012     Types.push_back(canonTy);
4013   }
4014 
4015   if (canonPointeeType == PointeeType &&
4016       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4017     return QualType(canonTy, 0);
4018 
4019   auto *sugaredType
4020     = new (*this, TypeAlignment)
4021         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4022                                   AddrSpaceExpr, AttrLoc);
4023   Types.push_back(sugaredType);
4024   return QualType(sugaredType, 0);
4025 }
4026 
4027 /// Determine whether \p T is canonical as the result type of a function.
4028 static bool isCanonicalResultType(QualType T) {
4029   return T.isCanonical() &&
4030          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4031           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4032 }
4033 
4034 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4035 QualType
4036 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4037                                    const FunctionType::ExtInfo &Info) const {
4038   // Unique functions, to guarantee there is only one function of a particular
4039   // structure.
4040   llvm::FoldingSetNodeID ID;
4041   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4042 
4043   void *InsertPos = nullptr;
4044   if (FunctionNoProtoType *FT =
4045         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4046     return QualType(FT, 0);
4047 
4048   QualType Canonical;
4049   if (!isCanonicalResultType(ResultTy)) {
4050     Canonical =
4051       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4052 
4053     // Get the new insert position for the node we care about.
4054     FunctionNoProtoType *NewIP =
4055       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4056     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4057   }
4058 
4059   auto *New = new (*this, TypeAlignment)
4060     FunctionNoProtoType(ResultTy, Canonical, Info);
4061   Types.push_back(New);
4062   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4063   return QualType(New, 0);
4064 }
4065 
4066 CanQualType
4067 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4068   CanQualType CanResultType = getCanonicalType(ResultType);
4069 
4070   // Canonical result types do not have ARC lifetime qualifiers.
4071   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4072     Qualifiers Qs = CanResultType.getQualifiers();
4073     Qs.removeObjCLifetime();
4074     return CanQualType::CreateUnsafe(
4075              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4076   }
4077 
4078   return CanResultType;
4079 }
4080 
4081 static bool isCanonicalExceptionSpecification(
4082     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4083   if (ESI.Type == EST_None)
4084     return true;
4085   if (!NoexceptInType)
4086     return false;
4087 
4088   // C++17 onwards: exception specification is part of the type, as a simple
4089   // boolean "can this function type throw".
4090   if (ESI.Type == EST_BasicNoexcept)
4091     return true;
4092 
4093   // A noexcept(expr) specification is (possibly) canonical if expr is
4094   // value-dependent.
4095   if (ESI.Type == EST_DependentNoexcept)
4096     return true;
4097 
4098   // A dynamic exception specification is canonical if it only contains pack
4099   // expansions (so we can't tell whether it's non-throwing) and all its
4100   // contained types are canonical.
4101   if (ESI.Type == EST_Dynamic) {
4102     bool AnyPackExpansions = false;
4103     for (QualType ET : ESI.Exceptions) {
4104       if (!ET.isCanonical())
4105         return false;
4106       if (ET->getAs<PackExpansionType>())
4107         AnyPackExpansions = true;
4108     }
4109     return AnyPackExpansions;
4110   }
4111 
4112   return false;
4113 }
4114 
4115 QualType ASTContext::getFunctionTypeInternal(
4116     QualType ResultTy, ArrayRef<QualType> ArgArray,
4117     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4118   size_t NumArgs = ArgArray.size();
4119 
4120   // Unique functions, to guarantee there is only one function of a particular
4121   // structure.
4122   llvm::FoldingSetNodeID ID;
4123   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4124                              *this, true);
4125 
4126   QualType Canonical;
4127   bool Unique = false;
4128 
4129   void *InsertPos = nullptr;
4130   if (FunctionProtoType *FPT =
4131         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4132     QualType Existing = QualType(FPT, 0);
4133 
4134     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4135     // it so long as our exception specification doesn't contain a dependent
4136     // noexcept expression, or we're just looking for a canonical type.
4137     // Otherwise, we're going to need to create a type
4138     // sugar node to hold the concrete expression.
4139     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4140         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4141       return Existing;
4142 
4143     // We need a new type sugar node for this one, to hold the new noexcept
4144     // expression. We do no canonicalization here, but that's OK since we don't
4145     // expect to see the same noexcept expression much more than once.
4146     Canonical = getCanonicalType(Existing);
4147     Unique = true;
4148   }
4149 
4150   bool NoexceptInType = getLangOpts().CPlusPlus17;
4151   bool IsCanonicalExceptionSpec =
4152       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4153 
4154   // Determine whether the type being created is already canonical or not.
4155   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4156                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4157   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4158     if (!ArgArray[i].isCanonicalAsParam())
4159       isCanonical = false;
4160 
4161   if (OnlyWantCanonical)
4162     assert(isCanonical &&
4163            "given non-canonical parameters constructing canonical type");
4164 
4165   // If this type isn't canonical, get the canonical version of it if we don't
4166   // already have it. The exception spec is only partially part of the
4167   // canonical type, and only in C++17 onwards.
4168   if (!isCanonical && Canonical.isNull()) {
4169     SmallVector<QualType, 16> CanonicalArgs;
4170     CanonicalArgs.reserve(NumArgs);
4171     for (unsigned i = 0; i != NumArgs; ++i)
4172       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4173 
4174     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4175     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4176     CanonicalEPI.HasTrailingReturn = false;
4177 
4178     if (IsCanonicalExceptionSpec) {
4179       // Exception spec is already OK.
4180     } else if (NoexceptInType) {
4181       switch (EPI.ExceptionSpec.Type) {
4182       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4183         // We don't know yet. It shouldn't matter what we pick here; no-one
4184         // should ever look at this.
4185         LLVM_FALLTHROUGH;
4186       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4187         CanonicalEPI.ExceptionSpec.Type = EST_None;
4188         break;
4189 
4190         // A dynamic exception specification is almost always "not noexcept",
4191         // with the exception that a pack expansion might expand to no types.
4192       case EST_Dynamic: {
4193         bool AnyPacks = false;
4194         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4195           if (ET->getAs<PackExpansionType>())
4196             AnyPacks = true;
4197           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4198         }
4199         if (!AnyPacks)
4200           CanonicalEPI.ExceptionSpec.Type = EST_None;
4201         else {
4202           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4203           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4204         }
4205         break;
4206       }
4207 
4208       case EST_DynamicNone:
4209       case EST_BasicNoexcept:
4210       case EST_NoexceptTrue:
4211       case EST_NoThrow:
4212         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4213         break;
4214 
4215       case EST_DependentNoexcept:
4216         llvm_unreachable("dependent noexcept is already canonical");
4217       }
4218     } else {
4219       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4220     }
4221 
4222     // Adjust the canonical function result type.
4223     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4224     Canonical =
4225         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4226 
4227     // Get the new insert position for the node we care about.
4228     FunctionProtoType *NewIP =
4229       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4230     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4231   }
4232 
4233   // Compute the needed size to hold this FunctionProtoType and the
4234   // various trailing objects.
4235   auto ESH = FunctionProtoType::getExceptionSpecSize(
4236       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4237   size_t Size = FunctionProtoType::totalSizeToAlloc<
4238       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4239       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4240       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4241       NumArgs, EPI.Variadic,
4242       FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4243       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4244       EPI.ExtParameterInfos ? NumArgs : 0,
4245       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4246 
4247   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4248   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4249   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4250   Types.push_back(FTP);
4251   if (!Unique)
4252     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4253   return QualType(FTP, 0);
4254 }
4255 
4256 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4257   llvm::FoldingSetNodeID ID;
4258   PipeType::Profile(ID, T, ReadOnly);
4259 
4260   void *InsertPos = nullptr;
4261   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4262     return QualType(PT, 0);
4263 
4264   // If the pipe element type isn't canonical, this won't be a canonical type
4265   // either, so fill in the canonical type field.
4266   QualType Canonical;
4267   if (!T.isCanonical()) {
4268     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4269 
4270     // Get the new insert position for the node we care about.
4271     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4272     assert(!NewIP && "Shouldn't be in the map!");
4273     (void)NewIP;
4274   }
4275   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4276   Types.push_back(New);
4277   PipeTypes.InsertNode(New, InsertPos);
4278   return QualType(New, 0);
4279 }
4280 
4281 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4282   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4283   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4284                          : Ty;
4285 }
4286 
4287 QualType ASTContext::getReadPipeType(QualType T) const {
4288   return getPipeType(T, true);
4289 }
4290 
4291 QualType ASTContext::getWritePipeType(QualType T) const {
4292   return getPipeType(T, false);
4293 }
4294 
4295 QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const {
4296   llvm::FoldingSetNodeID ID;
4297   ExtIntType::Profile(ID, IsUnsigned, NumBits);
4298 
4299   void *InsertPos = nullptr;
4300   if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4301     return QualType(EIT, 0);
4302 
4303   auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits);
4304   ExtIntTypes.InsertNode(New, InsertPos);
4305   Types.push_back(New);
4306   return QualType(New, 0);
4307 }
4308 
4309 QualType ASTContext::getDependentExtIntType(bool IsUnsigned,
4310                                             Expr *NumBitsExpr) const {
4311   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4312   llvm::FoldingSetNodeID ID;
4313   DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4314 
4315   void *InsertPos = nullptr;
4316   if (DependentExtIntType *Existing =
4317           DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4318     return QualType(Existing, 0);
4319 
4320   auto *New = new (*this, TypeAlignment)
4321       DependentExtIntType(*this, IsUnsigned, NumBitsExpr);
4322   DependentExtIntTypes.InsertNode(New, InsertPos);
4323 
4324   Types.push_back(New);
4325   return QualType(New, 0);
4326 }
4327 
4328 #ifndef NDEBUG
4329 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4330   if (!isa<CXXRecordDecl>(D)) return false;
4331   const auto *RD = cast<CXXRecordDecl>(D);
4332   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4333     return true;
4334   if (RD->getDescribedClassTemplate() &&
4335       !isa<ClassTemplateSpecializationDecl>(RD))
4336     return true;
4337   return false;
4338 }
4339 #endif
4340 
4341 /// getInjectedClassNameType - Return the unique reference to the
4342 /// injected class name type for the specified templated declaration.
4343 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4344                                               QualType TST) const {
4345   assert(NeedsInjectedClassNameType(Decl));
4346   if (Decl->TypeForDecl) {
4347     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4348   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4349     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4350     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4351     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4352   } else {
4353     Type *newType =
4354       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4355     Decl->TypeForDecl = newType;
4356     Types.push_back(newType);
4357   }
4358   return QualType(Decl->TypeForDecl, 0);
4359 }
4360 
4361 /// getTypeDeclType - Return the unique reference to the type for the
4362 /// specified type declaration.
4363 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4364   assert(Decl && "Passed null for Decl param");
4365   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4366 
4367   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4368     return getTypedefType(Typedef);
4369 
4370   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4371          "Template type parameter types are always available.");
4372 
4373   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4374     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4375     assert(!NeedsInjectedClassNameType(Record));
4376     return getRecordType(Record);
4377   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4378     assert(Enum->isFirstDecl() && "enum has previous declaration");
4379     return getEnumType(Enum);
4380   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4381     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
4382     Decl->TypeForDecl = newType;
4383     Types.push_back(newType);
4384   } else
4385     llvm_unreachable("TypeDecl without a type?");
4386 
4387   return QualType(Decl->TypeForDecl, 0);
4388 }
4389 
4390 /// getTypedefType - Return the unique reference to the type for the
4391 /// specified typedef name decl.
4392 QualType
4393 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4394                            QualType Canonical) const {
4395   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4396 
4397   if (Canonical.isNull())
4398     Canonical = getCanonicalType(Decl->getUnderlyingType());
4399   auto *newType = new (*this, TypeAlignment)
4400     TypedefType(Type::Typedef, Decl, Canonical);
4401   Decl->TypeForDecl = newType;
4402   Types.push_back(newType);
4403   return QualType(newType, 0);
4404 }
4405 
4406 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4407   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4408 
4409   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4410     if (PrevDecl->TypeForDecl)
4411       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4412 
4413   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4414   Decl->TypeForDecl = newType;
4415   Types.push_back(newType);
4416   return QualType(newType, 0);
4417 }
4418 
4419 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4420   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4421 
4422   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4423     if (PrevDecl->TypeForDecl)
4424       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4425 
4426   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4427   Decl->TypeForDecl = newType;
4428   Types.push_back(newType);
4429   return QualType(newType, 0);
4430 }
4431 
4432 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4433                                        QualType modifiedType,
4434                                        QualType equivalentType) {
4435   llvm::FoldingSetNodeID id;
4436   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4437 
4438   void *insertPos = nullptr;
4439   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4440   if (type) return QualType(type, 0);
4441 
4442   QualType canon = getCanonicalType(equivalentType);
4443   type = new (*this, TypeAlignment)
4444       AttributedType(canon, attrKind, modifiedType, equivalentType);
4445 
4446   Types.push_back(type);
4447   AttributedTypes.InsertNode(type, insertPos);
4448 
4449   return QualType(type, 0);
4450 }
4451 
4452 /// Retrieve a substitution-result type.
4453 QualType
4454 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4455                                          QualType Replacement) const {
4456   assert(Replacement.isCanonical()
4457          && "replacement types must always be canonical");
4458 
4459   llvm::FoldingSetNodeID ID;
4460   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4461   void *InsertPos = nullptr;
4462   SubstTemplateTypeParmType *SubstParm
4463     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4464 
4465   if (!SubstParm) {
4466     SubstParm = new (*this, TypeAlignment)
4467       SubstTemplateTypeParmType(Parm, Replacement);
4468     Types.push_back(SubstParm);
4469     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4470   }
4471 
4472   return QualType(SubstParm, 0);
4473 }
4474 
4475 /// Retrieve a
4476 QualType ASTContext::getSubstTemplateTypeParmPackType(
4477                                           const TemplateTypeParmType *Parm,
4478                                               const TemplateArgument &ArgPack) {
4479 #ifndef NDEBUG
4480   for (const auto &P : ArgPack.pack_elements()) {
4481     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4482     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4483   }
4484 #endif
4485 
4486   llvm::FoldingSetNodeID ID;
4487   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4488   void *InsertPos = nullptr;
4489   if (SubstTemplateTypeParmPackType *SubstParm
4490         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4491     return QualType(SubstParm, 0);
4492 
4493   QualType Canon;
4494   if (!Parm->isCanonicalUnqualified()) {
4495     Canon = getCanonicalType(QualType(Parm, 0));
4496     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4497                                              ArgPack);
4498     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4499   }
4500 
4501   auto *SubstParm
4502     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4503                                                                ArgPack);
4504   Types.push_back(SubstParm);
4505   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4506   return QualType(SubstParm, 0);
4507 }
4508 
4509 /// Retrieve the template type parameter type for a template
4510 /// parameter or parameter pack with the given depth, index, and (optionally)
4511 /// name.
4512 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4513                                              bool ParameterPack,
4514                                              TemplateTypeParmDecl *TTPDecl) const {
4515   llvm::FoldingSetNodeID ID;
4516   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4517   void *InsertPos = nullptr;
4518   TemplateTypeParmType *TypeParm
4519     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4520 
4521   if (TypeParm)
4522     return QualType(TypeParm, 0);
4523 
4524   if (TTPDecl) {
4525     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4526     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4527 
4528     TemplateTypeParmType *TypeCheck
4529       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4530     assert(!TypeCheck && "Template type parameter canonical type broken");
4531     (void)TypeCheck;
4532   } else
4533     TypeParm = new (*this, TypeAlignment)
4534       TemplateTypeParmType(Depth, Index, ParameterPack);
4535 
4536   Types.push_back(TypeParm);
4537   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4538 
4539   return QualType(TypeParm, 0);
4540 }
4541 
4542 TypeSourceInfo *
4543 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4544                                               SourceLocation NameLoc,
4545                                         const TemplateArgumentListInfo &Args,
4546                                               QualType Underlying) const {
4547   assert(!Name.getAsDependentTemplateName() &&
4548          "No dependent template names here!");
4549   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4550 
4551   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4552   TemplateSpecializationTypeLoc TL =
4553       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4554   TL.setTemplateKeywordLoc(SourceLocation());
4555   TL.setTemplateNameLoc(NameLoc);
4556   TL.setLAngleLoc(Args.getLAngleLoc());
4557   TL.setRAngleLoc(Args.getRAngleLoc());
4558   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4559     TL.setArgLocInfo(i, Args[i].getLocInfo());
4560   return DI;
4561 }
4562 
4563 QualType
4564 ASTContext::getTemplateSpecializationType(TemplateName Template,
4565                                           const TemplateArgumentListInfo &Args,
4566                                           QualType Underlying) const {
4567   assert(!Template.getAsDependentTemplateName() &&
4568          "No dependent template names here!");
4569 
4570   SmallVector<TemplateArgument, 4> ArgVec;
4571   ArgVec.reserve(Args.size());
4572   for (const TemplateArgumentLoc &Arg : Args.arguments())
4573     ArgVec.push_back(Arg.getArgument());
4574 
4575   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4576 }
4577 
4578 #ifndef NDEBUG
4579 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4580   for (const TemplateArgument &Arg : Args)
4581     if (Arg.isPackExpansion())
4582       return true;
4583 
4584   return true;
4585 }
4586 #endif
4587 
4588 QualType
4589 ASTContext::getTemplateSpecializationType(TemplateName Template,
4590                                           ArrayRef<TemplateArgument> Args,
4591                                           QualType Underlying) const {
4592   assert(!Template.getAsDependentTemplateName() &&
4593          "No dependent template names here!");
4594   // Look through qualified template names.
4595   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4596     Template = TemplateName(QTN->getTemplateDecl());
4597 
4598   bool IsTypeAlias =
4599     Template.getAsTemplateDecl() &&
4600     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4601   QualType CanonType;
4602   if (!Underlying.isNull())
4603     CanonType = getCanonicalType(Underlying);
4604   else {
4605     // We can get here with an alias template when the specialization contains
4606     // a pack expansion that does not match up with a parameter pack.
4607     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4608            "Caller must compute aliased type");
4609     IsTypeAlias = false;
4610     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4611   }
4612 
4613   // Allocate the (non-canonical) template specialization type, but don't
4614   // try to unique it: these types typically have location information that
4615   // we don't unique and don't want to lose.
4616   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4617                        sizeof(TemplateArgument) * Args.size() +
4618                        (IsTypeAlias? sizeof(QualType) : 0),
4619                        TypeAlignment);
4620   auto *Spec
4621     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4622                                          IsTypeAlias ? Underlying : QualType());
4623 
4624   Types.push_back(Spec);
4625   return QualType(Spec, 0);
4626 }
4627 
4628 QualType ASTContext::getCanonicalTemplateSpecializationType(
4629     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4630   assert(!Template.getAsDependentTemplateName() &&
4631          "No dependent template names here!");
4632 
4633   // Look through qualified template names.
4634   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4635     Template = TemplateName(QTN->getTemplateDecl());
4636 
4637   // Build the canonical template specialization type.
4638   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4639   SmallVector<TemplateArgument, 4> CanonArgs;
4640   unsigned NumArgs = Args.size();
4641   CanonArgs.reserve(NumArgs);
4642   for (const TemplateArgument &Arg : Args)
4643     CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4644 
4645   // Determine whether this canonical template specialization type already
4646   // exists.
4647   llvm::FoldingSetNodeID ID;
4648   TemplateSpecializationType::Profile(ID, CanonTemplate,
4649                                       CanonArgs, *this);
4650 
4651   void *InsertPos = nullptr;
4652   TemplateSpecializationType *Spec
4653     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4654 
4655   if (!Spec) {
4656     // Allocate a new canonical template specialization type.
4657     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4658                           sizeof(TemplateArgument) * NumArgs),
4659                          TypeAlignment);
4660     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4661                                                 CanonArgs,
4662                                                 QualType(), QualType());
4663     Types.push_back(Spec);
4664     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4665   }
4666 
4667   assert(Spec->isDependentType() &&
4668          "Non-dependent template-id type must have a canonical type");
4669   return QualType(Spec, 0);
4670 }
4671 
4672 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4673                                        NestedNameSpecifier *NNS,
4674                                        QualType NamedType,
4675                                        TagDecl *OwnedTagDecl) const {
4676   llvm::FoldingSetNodeID ID;
4677   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4678 
4679   void *InsertPos = nullptr;
4680   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4681   if (T)
4682     return QualType(T, 0);
4683 
4684   QualType Canon = NamedType;
4685   if (!Canon.isCanonical()) {
4686     Canon = getCanonicalType(NamedType);
4687     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4688     assert(!CheckT && "Elaborated canonical type broken");
4689     (void)CheckT;
4690   }
4691 
4692   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4693                        TypeAlignment);
4694   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4695 
4696   Types.push_back(T);
4697   ElaboratedTypes.InsertNode(T, InsertPos);
4698   return QualType(T, 0);
4699 }
4700 
4701 QualType
4702 ASTContext::getParenType(QualType InnerType) const {
4703   llvm::FoldingSetNodeID ID;
4704   ParenType::Profile(ID, InnerType);
4705 
4706   void *InsertPos = nullptr;
4707   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4708   if (T)
4709     return QualType(T, 0);
4710 
4711   QualType Canon = InnerType;
4712   if (!Canon.isCanonical()) {
4713     Canon = getCanonicalType(InnerType);
4714     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4715     assert(!CheckT && "Paren canonical type broken");
4716     (void)CheckT;
4717   }
4718 
4719   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4720   Types.push_back(T);
4721   ParenTypes.InsertNode(T, InsertPos);
4722   return QualType(T, 0);
4723 }
4724 
4725 QualType
4726 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4727                                   const IdentifierInfo *MacroII) const {
4728   QualType Canon = UnderlyingTy;
4729   if (!Canon.isCanonical())
4730     Canon = getCanonicalType(UnderlyingTy);
4731 
4732   auto *newType = new (*this, TypeAlignment)
4733       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4734   Types.push_back(newType);
4735   return QualType(newType, 0);
4736 }
4737 
4738 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4739                                           NestedNameSpecifier *NNS,
4740                                           const IdentifierInfo *Name,
4741                                           QualType Canon) const {
4742   if (Canon.isNull()) {
4743     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4744     if (CanonNNS != NNS)
4745       Canon = getDependentNameType(Keyword, CanonNNS, Name);
4746   }
4747 
4748   llvm::FoldingSetNodeID ID;
4749   DependentNameType::Profile(ID, Keyword, NNS, Name);
4750 
4751   void *InsertPos = nullptr;
4752   DependentNameType *T
4753     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4754   if (T)
4755     return QualType(T, 0);
4756 
4757   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4758   Types.push_back(T);
4759   DependentNameTypes.InsertNode(T, InsertPos);
4760   return QualType(T, 0);
4761 }
4762 
4763 QualType
4764 ASTContext::getDependentTemplateSpecializationType(
4765                                  ElaboratedTypeKeyword Keyword,
4766                                  NestedNameSpecifier *NNS,
4767                                  const IdentifierInfo *Name,
4768                                  const TemplateArgumentListInfo &Args) const {
4769   // TODO: avoid this copy
4770   SmallVector<TemplateArgument, 16> ArgCopy;
4771   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4772     ArgCopy.push_back(Args[I].getArgument());
4773   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4774 }
4775 
4776 QualType
4777 ASTContext::getDependentTemplateSpecializationType(
4778                                  ElaboratedTypeKeyword Keyword,
4779                                  NestedNameSpecifier *NNS,
4780                                  const IdentifierInfo *Name,
4781                                  ArrayRef<TemplateArgument> Args) const {
4782   assert((!NNS || NNS->isDependent()) &&
4783          "nested-name-specifier must be dependent");
4784 
4785   llvm::FoldingSetNodeID ID;
4786   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4787                                                Name, Args);
4788 
4789   void *InsertPos = nullptr;
4790   DependentTemplateSpecializationType *T
4791     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4792   if (T)
4793     return QualType(T, 0);
4794 
4795   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4796 
4797   ElaboratedTypeKeyword CanonKeyword = Keyword;
4798   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4799 
4800   bool AnyNonCanonArgs = false;
4801   unsigned NumArgs = Args.size();
4802   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4803   for (unsigned I = 0; I != NumArgs; ++I) {
4804     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4805     if (!CanonArgs[I].structurallyEquals(Args[I]))
4806       AnyNonCanonArgs = true;
4807   }
4808 
4809   QualType Canon;
4810   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4811     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4812                                                    Name,
4813                                                    CanonArgs);
4814 
4815     // Find the insert position again.
4816     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4817   }
4818 
4819   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4820                         sizeof(TemplateArgument) * NumArgs),
4821                        TypeAlignment);
4822   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4823                                                     Name, Args, Canon);
4824   Types.push_back(T);
4825   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4826   return QualType(T, 0);
4827 }
4828 
4829 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
4830   TemplateArgument Arg;
4831   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4832     QualType ArgType = getTypeDeclType(TTP);
4833     if (TTP->isParameterPack())
4834       ArgType = getPackExpansionType(ArgType, None);
4835 
4836     Arg = TemplateArgument(ArgType);
4837   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4838     Expr *E = new (*this) DeclRefExpr(
4839         *this, NTTP, /*enclosing*/ false,
4840         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this),
4841         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4842 
4843     if (NTTP->isParameterPack())
4844       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4845                                         None);
4846     Arg = TemplateArgument(E);
4847   } else {
4848     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4849     if (TTP->isParameterPack())
4850       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
4851     else
4852       Arg = TemplateArgument(TemplateName(TTP));
4853   }
4854 
4855   if (Param->isTemplateParameterPack())
4856     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4857 
4858   return Arg;
4859 }
4860 
4861 void
4862 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
4863                                     SmallVectorImpl<TemplateArgument> &Args) {
4864   Args.reserve(Args.size() + Params->size());
4865 
4866   for (NamedDecl *Param : *Params)
4867     Args.push_back(getInjectedTemplateArg(Param));
4868 }
4869 
4870 QualType ASTContext::getPackExpansionType(QualType Pattern,
4871                                           Optional<unsigned> NumExpansions) {
4872   llvm::FoldingSetNodeID ID;
4873   PackExpansionType::Profile(ID, Pattern, NumExpansions);
4874 
4875   // A deduced type can deduce to a pack, eg
4876   //   auto ...x = some_pack;
4877   // That declaration isn't (yet) valid, but is created as part of building an
4878   // init-capture pack:
4879   //   [...x = some_pack] {}
4880   assert((Pattern->containsUnexpandedParameterPack() ||
4881           Pattern->getContainedDeducedType()) &&
4882          "Pack expansions must expand one or more parameter packs");
4883   void *InsertPos = nullptr;
4884   PackExpansionType *T
4885     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4886   if (T)
4887     return QualType(T, 0);
4888 
4889   QualType Canon;
4890   if (!Pattern.isCanonical()) {
4891     Canon = getCanonicalType(Pattern);
4892     // The canonical type might not contain an unexpanded parameter pack, if it
4893     // contains an alias template specialization which ignores one of its
4894     // parameters.
4895     if (Canon->containsUnexpandedParameterPack()) {
4896       Canon = getPackExpansionType(Canon, NumExpansions);
4897 
4898       // Find the insert position again, in case we inserted an element into
4899       // PackExpansionTypes and invalidated our insert position.
4900       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4901     }
4902   }
4903 
4904   T = new (*this, TypeAlignment)
4905       PackExpansionType(Pattern, Canon, NumExpansions);
4906   Types.push_back(T);
4907   PackExpansionTypes.InsertNode(T, InsertPos);
4908   return QualType(T, 0);
4909 }
4910 
4911 /// CmpProtocolNames - Comparison predicate for sorting protocols
4912 /// alphabetically.
4913 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
4914                             ObjCProtocolDecl *const *RHS) {
4915   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
4916 }
4917 
4918 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
4919   if (Protocols.empty()) return true;
4920 
4921   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
4922     return false;
4923 
4924   for (unsigned i = 1; i != Protocols.size(); ++i)
4925     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
4926         Protocols[i]->getCanonicalDecl() != Protocols[i])
4927       return false;
4928   return true;
4929 }
4930 
4931 static void
4932 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
4933   // Sort protocols, keyed by name.
4934   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
4935 
4936   // Canonicalize.
4937   for (ObjCProtocolDecl *&P : Protocols)
4938     P = P->getCanonicalDecl();
4939 
4940   // Remove duplicates.
4941   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
4942   Protocols.erase(ProtocolsEnd, Protocols.end());
4943 }
4944 
4945 QualType ASTContext::getObjCObjectType(QualType BaseType,
4946                                        ObjCProtocolDecl * const *Protocols,
4947                                        unsigned NumProtocols) const {
4948   return getObjCObjectType(BaseType, {},
4949                            llvm::makeArrayRef(Protocols, NumProtocols),
4950                            /*isKindOf=*/false);
4951 }
4952 
4953 QualType ASTContext::getObjCObjectType(
4954            QualType baseType,
4955            ArrayRef<QualType> typeArgs,
4956            ArrayRef<ObjCProtocolDecl *> protocols,
4957            bool isKindOf) const {
4958   // If the base type is an interface and there aren't any protocols or
4959   // type arguments to add, then the interface type will do just fine.
4960   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
4961       isa<ObjCInterfaceType>(baseType))
4962     return baseType;
4963 
4964   // Look in the folding set for an existing type.
4965   llvm::FoldingSetNodeID ID;
4966   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
4967   void *InsertPos = nullptr;
4968   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
4969     return QualType(QT, 0);
4970 
4971   // Determine the type arguments to be used for canonicalization,
4972   // which may be explicitly specified here or written on the base
4973   // type.
4974   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
4975   if (effectiveTypeArgs.empty()) {
4976     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
4977       effectiveTypeArgs = baseObject->getTypeArgs();
4978   }
4979 
4980   // Build the canonical type, which has the canonical base type and a
4981   // sorted-and-uniqued list of protocols and the type arguments
4982   // canonicalized.
4983   QualType canonical;
4984   bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
4985                                           effectiveTypeArgs.end(),
4986                                           [&](QualType type) {
4987                                             return type.isCanonical();
4988                                           });
4989   bool protocolsSorted = areSortedAndUniqued(protocols);
4990   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
4991     // Determine the canonical type arguments.
4992     ArrayRef<QualType> canonTypeArgs;
4993     SmallVector<QualType, 4> canonTypeArgsVec;
4994     if (!typeArgsAreCanonical) {
4995       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
4996       for (auto typeArg : effectiveTypeArgs)
4997         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
4998       canonTypeArgs = canonTypeArgsVec;
4999     } else {
5000       canonTypeArgs = effectiveTypeArgs;
5001     }
5002 
5003     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5004     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5005     if (!protocolsSorted) {
5006       canonProtocolsVec.append(protocols.begin(), protocols.end());
5007       SortAndUniqueProtocols(canonProtocolsVec);
5008       canonProtocols = canonProtocolsVec;
5009     } else {
5010       canonProtocols = protocols;
5011     }
5012 
5013     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5014                                   canonProtocols, isKindOf);
5015 
5016     // Regenerate InsertPos.
5017     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5018   }
5019 
5020   unsigned size = sizeof(ObjCObjectTypeImpl);
5021   size += typeArgs.size() * sizeof(QualType);
5022   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5023   void *mem = Allocate(size, TypeAlignment);
5024   auto *T =
5025     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5026                                  isKindOf);
5027 
5028   Types.push_back(T);
5029   ObjCObjectTypes.InsertNode(T, InsertPos);
5030   return QualType(T, 0);
5031 }
5032 
5033 /// Apply Objective-C protocol qualifiers to the given type.
5034 /// If this is for the canonical type of a type parameter, we can apply
5035 /// protocol qualifiers on the ObjCObjectPointerType.
5036 QualType
5037 ASTContext::applyObjCProtocolQualifiers(QualType type,
5038                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5039                   bool allowOnPointerType) const {
5040   hasError = false;
5041 
5042   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5043     return getObjCTypeParamType(objT->getDecl(), protocols);
5044   }
5045 
5046   // Apply protocol qualifiers to ObjCObjectPointerType.
5047   if (allowOnPointerType) {
5048     if (const auto *objPtr =
5049             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5050       const ObjCObjectType *objT = objPtr->getObjectType();
5051       // Merge protocol lists and construct ObjCObjectType.
5052       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5053       protocolsVec.append(objT->qual_begin(),
5054                           objT->qual_end());
5055       protocolsVec.append(protocols.begin(), protocols.end());
5056       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5057       type = getObjCObjectType(
5058              objT->getBaseType(),
5059              objT->getTypeArgsAsWritten(),
5060              protocols,
5061              objT->isKindOfTypeAsWritten());
5062       return getObjCObjectPointerType(type);
5063     }
5064   }
5065 
5066   // Apply protocol qualifiers to ObjCObjectType.
5067   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5068     // FIXME: Check for protocols to which the class type is already
5069     // known to conform.
5070 
5071     return getObjCObjectType(objT->getBaseType(),
5072                              objT->getTypeArgsAsWritten(),
5073                              protocols,
5074                              objT->isKindOfTypeAsWritten());
5075   }
5076 
5077   // If the canonical type is ObjCObjectType, ...
5078   if (type->isObjCObjectType()) {
5079     // Silently overwrite any existing protocol qualifiers.
5080     // TODO: determine whether that's the right thing to do.
5081 
5082     // FIXME: Check for protocols to which the class type is already
5083     // known to conform.
5084     return getObjCObjectType(type, {}, protocols, false);
5085   }
5086 
5087   // id<protocol-list>
5088   if (type->isObjCIdType()) {
5089     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5090     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5091                                  objPtr->isKindOfType());
5092     return getObjCObjectPointerType(type);
5093   }
5094 
5095   // Class<protocol-list>
5096   if (type->isObjCClassType()) {
5097     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5098     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5099                                  objPtr->isKindOfType());
5100     return getObjCObjectPointerType(type);
5101   }
5102 
5103   hasError = true;
5104   return type;
5105 }
5106 
5107 QualType
5108 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5109                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5110   // Look in the folding set for an existing type.
5111   llvm::FoldingSetNodeID ID;
5112   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5113   void *InsertPos = nullptr;
5114   if (ObjCTypeParamType *TypeParam =
5115       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5116     return QualType(TypeParam, 0);
5117 
5118   // We canonicalize to the underlying type.
5119   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5120   if (!protocols.empty()) {
5121     // Apply the protocol qualifers.
5122     bool hasError;
5123     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5124         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5125     assert(!hasError && "Error when apply protocol qualifier to bound type");
5126   }
5127 
5128   unsigned size = sizeof(ObjCTypeParamType);
5129   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5130   void *mem = Allocate(size, TypeAlignment);
5131   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5132 
5133   Types.push_back(newType);
5134   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5135   return QualType(newType, 0);
5136 }
5137 
5138 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5139                                               ObjCTypeParamDecl *New) const {
5140   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5141   // Update TypeForDecl after updating TypeSourceInfo.
5142   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5143   SmallVector<ObjCProtocolDecl *, 8> protocols;
5144   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5145   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5146   New->setTypeForDecl(UpdatedTy.getTypePtr());
5147 }
5148 
5149 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5150 /// protocol list adopt all protocols in QT's qualified-id protocol
5151 /// list.
5152 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5153                                                 ObjCInterfaceDecl *IC) {
5154   if (!QT->isObjCQualifiedIdType())
5155     return false;
5156 
5157   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5158     // If both the right and left sides have qualifiers.
5159     for (auto *Proto : OPT->quals()) {
5160       if (!IC->ClassImplementsProtocol(Proto, false))
5161         return false;
5162     }
5163     return true;
5164   }
5165   return false;
5166 }
5167 
5168 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5169 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5170 /// of protocols.
5171 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5172                                                 ObjCInterfaceDecl *IDecl) {
5173   if (!QT->isObjCQualifiedIdType())
5174     return false;
5175   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5176   if (!OPT)
5177     return false;
5178   if (!IDecl->hasDefinition())
5179     return false;
5180   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5181   CollectInheritedProtocols(IDecl, InheritedProtocols);
5182   if (InheritedProtocols.empty())
5183     return false;
5184   // Check that if every protocol in list of id<plist> conforms to a protocol
5185   // of IDecl's, then bridge casting is ok.
5186   bool Conforms = false;
5187   for (auto *Proto : OPT->quals()) {
5188     Conforms = false;
5189     for (auto *PI : InheritedProtocols) {
5190       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5191         Conforms = true;
5192         break;
5193       }
5194     }
5195     if (!Conforms)
5196       break;
5197   }
5198   if (Conforms)
5199     return true;
5200 
5201   for (auto *PI : InheritedProtocols) {
5202     // If both the right and left sides have qualifiers.
5203     bool Adopts = false;
5204     for (auto *Proto : OPT->quals()) {
5205       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5206       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5207         break;
5208     }
5209     if (!Adopts)
5210       return false;
5211   }
5212   return true;
5213 }
5214 
5215 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5216 /// the given object type.
5217 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5218   llvm::FoldingSetNodeID ID;
5219   ObjCObjectPointerType::Profile(ID, ObjectT);
5220 
5221   void *InsertPos = nullptr;
5222   if (ObjCObjectPointerType *QT =
5223               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5224     return QualType(QT, 0);
5225 
5226   // Find the canonical object type.
5227   QualType Canonical;
5228   if (!ObjectT.isCanonical()) {
5229     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5230 
5231     // Regenerate InsertPos.
5232     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5233   }
5234 
5235   // No match.
5236   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5237   auto *QType =
5238     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5239 
5240   Types.push_back(QType);
5241   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5242   return QualType(QType, 0);
5243 }
5244 
5245 /// getObjCInterfaceType - Return the unique reference to the type for the
5246 /// specified ObjC interface decl. The list of protocols is optional.
5247 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5248                                           ObjCInterfaceDecl *PrevDecl) const {
5249   if (Decl->TypeForDecl)
5250     return QualType(Decl->TypeForDecl, 0);
5251 
5252   if (PrevDecl) {
5253     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5254     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5255     return QualType(PrevDecl->TypeForDecl, 0);
5256   }
5257 
5258   // Prefer the definition, if there is one.
5259   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5260     Decl = Def;
5261 
5262   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5263   auto *T = new (Mem) ObjCInterfaceType(Decl);
5264   Decl->TypeForDecl = T;
5265   Types.push_back(T);
5266   return QualType(T, 0);
5267 }
5268 
5269 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5270 /// TypeOfExprType AST's (since expression's are never shared). For example,
5271 /// multiple declarations that refer to "typeof(x)" all contain different
5272 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5273 /// on canonical type's (which are always unique).
5274 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5275   TypeOfExprType *toe;
5276   if (tofExpr->isTypeDependent()) {
5277     llvm::FoldingSetNodeID ID;
5278     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5279 
5280     void *InsertPos = nullptr;
5281     DependentTypeOfExprType *Canon
5282       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5283     if (Canon) {
5284       // We already have a "canonical" version of an identical, dependent
5285       // typeof(expr) type. Use that as our canonical type.
5286       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5287                                           QualType((TypeOfExprType*)Canon, 0));
5288     } else {
5289       // Build a new, canonical typeof(expr) type.
5290       Canon
5291         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5292       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5293       toe = Canon;
5294     }
5295   } else {
5296     QualType Canonical = getCanonicalType(tofExpr->getType());
5297     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5298   }
5299   Types.push_back(toe);
5300   return QualType(toe, 0);
5301 }
5302 
5303 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5304 /// TypeOfType nodes. The only motivation to unique these nodes would be
5305 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5306 /// an issue. This doesn't affect the type checker, since it operates
5307 /// on canonical types (which are always unique).
5308 QualType ASTContext::getTypeOfType(QualType tofType) const {
5309   QualType Canonical = getCanonicalType(tofType);
5310   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5311   Types.push_back(tot);
5312   return QualType(tot, 0);
5313 }
5314 
5315 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5316 /// nodes. This would never be helpful, since each such type has its own
5317 /// expression, and would not give a significant memory saving, since there
5318 /// is an Expr tree under each such type.
5319 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5320   DecltypeType *dt;
5321 
5322   // C++11 [temp.type]p2:
5323   //   If an expression e involves a template parameter, decltype(e) denotes a
5324   //   unique dependent type. Two such decltype-specifiers refer to the same
5325   //   type only if their expressions are equivalent (14.5.6.1).
5326   if (e->isInstantiationDependent()) {
5327     llvm::FoldingSetNodeID ID;
5328     DependentDecltypeType::Profile(ID, *this, e);
5329 
5330     void *InsertPos = nullptr;
5331     DependentDecltypeType *Canon
5332       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5333     if (!Canon) {
5334       // Build a new, canonical decltype(expr) type.
5335       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5336       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5337     }
5338     dt = new (*this, TypeAlignment)
5339         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5340   } else {
5341     dt = new (*this, TypeAlignment)
5342         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5343   }
5344   Types.push_back(dt);
5345   return QualType(dt, 0);
5346 }
5347 
5348 /// getUnaryTransformationType - We don't unique these, since the memory
5349 /// savings are minimal and these are rare.
5350 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5351                                            QualType UnderlyingType,
5352                                            UnaryTransformType::UTTKind Kind)
5353     const {
5354   UnaryTransformType *ut = nullptr;
5355 
5356   if (BaseType->isDependentType()) {
5357     // Look in the folding set for an existing type.
5358     llvm::FoldingSetNodeID ID;
5359     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5360 
5361     void *InsertPos = nullptr;
5362     DependentUnaryTransformType *Canon
5363       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5364 
5365     if (!Canon) {
5366       // Build a new, canonical __underlying_type(type) type.
5367       Canon = new (*this, TypeAlignment)
5368              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5369                                          Kind);
5370       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5371     }
5372     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5373                                                         QualType(), Kind,
5374                                                         QualType(Canon, 0));
5375   } else {
5376     QualType CanonType = getCanonicalType(UnderlyingType);
5377     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5378                                                         UnderlyingType, Kind,
5379                                                         CanonType);
5380   }
5381   Types.push_back(ut);
5382   return QualType(ut, 0);
5383 }
5384 
5385 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5386 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5387 /// canonical deduced-but-dependent 'auto' type.
5388 QualType
5389 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5390                         bool IsDependent, bool IsPack,
5391                         ConceptDecl *TypeConstraintConcept,
5392                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5393   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5394   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5395       !TypeConstraintConcept && !IsDependent)
5396     return getAutoDeductType();
5397 
5398   // Look in the folding set for an existing type.
5399   void *InsertPos = nullptr;
5400   llvm::FoldingSetNodeID ID;
5401   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5402                     TypeConstraintConcept, TypeConstraintArgs);
5403   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5404     return QualType(AT, 0);
5405 
5406   void *Mem = Allocate(sizeof(AutoType) +
5407                        sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5408                        TypeAlignment);
5409   auto *AT = new (Mem) AutoType(
5410       DeducedType, Keyword,
5411       (IsDependent ? TypeDependence::DependentInstantiation
5412                    : TypeDependence::None) |
5413           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5414       TypeConstraintConcept, TypeConstraintArgs);
5415   Types.push_back(AT);
5416   if (InsertPos)
5417     AutoTypes.InsertNode(AT, InsertPos);
5418   return QualType(AT, 0);
5419 }
5420 
5421 /// Return the uniqued reference to the deduced template specialization type
5422 /// which has been deduced to the given type, or to the canonical undeduced
5423 /// such type, or the canonical deduced-but-dependent such type.
5424 QualType ASTContext::getDeducedTemplateSpecializationType(
5425     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5426   // Look in the folding set for an existing type.
5427   void *InsertPos = nullptr;
5428   llvm::FoldingSetNodeID ID;
5429   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5430                                              IsDependent);
5431   if (DeducedTemplateSpecializationType *DTST =
5432           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5433     return QualType(DTST, 0);
5434 
5435   auto *DTST = new (*this, TypeAlignment)
5436       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5437   Types.push_back(DTST);
5438   if (InsertPos)
5439     DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5440   return QualType(DTST, 0);
5441 }
5442 
5443 /// getAtomicType - Return the uniqued reference to the atomic type for
5444 /// the given value type.
5445 QualType ASTContext::getAtomicType(QualType T) const {
5446   // Unique pointers, to guarantee there is only one pointer of a particular
5447   // structure.
5448   llvm::FoldingSetNodeID ID;
5449   AtomicType::Profile(ID, T);
5450 
5451   void *InsertPos = nullptr;
5452   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5453     return QualType(AT, 0);
5454 
5455   // If the atomic value type isn't canonical, this won't be a canonical type
5456   // either, so fill in the canonical type field.
5457   QualType Canonical;
5458   if (!T.isCanonical()) {
5459     Canonical = getAtomicType(getCanonicalType(T));
5460 
5461     // Get the new insert position for the node we care about.
5462     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5463     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5464   }
5465   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5466   Types.push_back(New);
5467   AtomicTypes.InsertNode(New, InsertPos);
5468   return QualType(New, 0);
5469 }
5470 
5471 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5472 QualType ASTContext::getAutoDeductType() const {
5473   if (AutoDeductTy.isNull())
5474     AutoDeductTy = QualType(new (*this, TypeAlignment)
5475                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5476                                          TypeDependence::None,
5477                                          /*concept*/ nullptr, /*args*/ {}),
5478                             0);
5479   return AutoDeductTy;
5480 }
5481 
5482 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5483 QualType ASTContext::getAutoRRefDeductType() const {
5484   if (AutoRRefDeductTy.isNull())
5485     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5486   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5487   return AutoRRefDeductTy;
5488 }
5489 
5490 /// getTagDeclType - Return the unique reference to the type for the
5491 /// specified TagDecl (struct/union/class/enum) decl.
5492 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5493   assert(Decl);
5494   // FIXME: What is the design on getTagDeclType when it requires casting
5495   // away const?  mutable?
5496   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5497 }
5498 
5499 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5500 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5501 /// needs to agree with the definition in <stddef.h>.
5502 CanQualType ASTContext::getSizeType() const {
5503   return getFromTargetType(Target->getSizeType());
5504 }
5505 
5506 /// Return the unique signed counterpart of the integer type
5507 /// corresponding to size_t.
5508 CanQualType ASTContext::getSignedSizeType() const {
5509   return getFromTargetType(Target->getSignedSizeType());
5510 }
5511 
5512 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5513 CanQualType ASTContext::getIntMaxType() const {
5514   return getFromTargetType(Target->getIntMaxType());
5515 }
5516 
5517 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5518 CanQualType ASTContext::getUIntMaxType() const {
5519   return getFromTargetType(Target->getUIntMaxType());
5520 }
5521 
5522 /// getSignedWCharType - Return the type of "signed wchar_t".
5523 /// Used when in C++, as a GCC extension.
5524 QualType ASTContext::getSignedWCharType() const {
5525   // FIXME: derive from "Target" ?
5526   return WCharTy;
5527 }
5528 
5529 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5530 /// Used when in C++, as a GCC extension.
5531 QualType ASTContext::getUnsignedWCharType() const {
5532   // FIXME: derive from "Target" ?
5533   return UnsignedIntTy;
5534 }
5535 
5536 QualType ASTContext::getIntPtrType() const {
5537   return getFromTargetType(Target->getIntPtrType());
5538 }
5539 
5540 QualType ASTContext::getUIntPtrType() const {
5541   return getCorrespondingUnsignedType(getIntPtrType());
5542 }
5543 
5544 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5545 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5546 QualType ASTContext::getPointerDiffType() const {
5547   return getFromTargetType(Target->getPtrDiffType(0));
5548 }
5549 
5550 /// Return the unique unsigned counterpart of "ptrdiff_t"
5551 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5552 /// in the definition of %tu format specifier.
5553 QualType ASTContext::getUnsignedPointerDiffType() const {
5554   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5555 }
5556 
5557 /// Return the unique type for "pid_t" defined in
5558 /// <sys/types.h>. We need this to compute the correct type for vfork().
5559 QualType ASTContext::getProcessIDType() const {
5560   return getFromTargetType(Target->getProcessIDType());
5561 }
5562 
5563 //===----------------------------------------------------------------------===//
5564 //                              Type Operators
5565 //===----------------------------------------------------------------------===//
5566 
5567 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5568   // Push qualifiers into arrays, and then discard any remaining
5569   // qualifiers.
5570   T = getCanonicalType(T);
5571   T = getVariableArrayDecayedType(T);
5572   const Type *Ty = T.getTypePtr();
5573   QualType Result;
5574   if (isa<ArrayType>(Ty)) {
5575     Result = getArrayDecayedType(QualType(Ty,0));
5576   } else if (isa<FunctionType>(Ty)) {
5577     Result = getPointerType(QualType(Ty, 0));
5578   } else {
5579     Result = QualType(Ty, 0);
5580   }
5581 
5582   return CanQualType::CreateUnsafe(Result);
5583 }
5584 
5585 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5586                                              Qualifiers &quals) {
5587   SplitQualType splitType = type.getSplitUnqualifiedType();
5588 
5589   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5590   // the unqualified desugared type and then drops it on the floor.
5591   // We then have to strip that sugar back off with
5592   // getUnqualifiedDesugaredType(), which is silly.
5593   const auto *AT =
5594       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5595 
5596   // If we don't have an array, just use the results in splitType.
5597   if (!AT) {
5598     quals = splitType.Quals;
5599     return QualType(splitType.Ty, 0);
5600   }
5601 
5602   // Otherwise, recurse on the array's element type.
5603   QualType elementType = AT->getElementType();
5604   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5605 
5606   // If that didn't change the element type, AT has no qualifiers, so we
5607   // can just use the results in splitType.
5608   if (elementType == unqualElementType) {
5609     assert(quals.empty()); // from the recursive call
5610     quals = splitType.Quals;
5611     return QualType(splitType.Ty, 0);
5612   }
5613 
5614   // Otherwise, add in the qualifiers from the outermost type, then
5615   // build the type back up.
5616   quals.addConsistentQualifiers(splitType.Quals);
5617 
5618   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5619     return getConstantArrayType(unqualElementType, CAT->getSize(),
5620                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5621   }
5622 
5623   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5624     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5625   }
5626 
5627   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5628     return getVariableArrayType(unqualElementType,
5629                                 VAT->getSizeExpr(),
5630                                 VAT->getSizeModifier(),
5631                                 VAT->getIndexTypeCVRQualifiers(),
5632                                 VAT->getBracketsRange());
5633   }
5634 
5635   const auto *DSAT = cast<DependentSizedArrayType>(AT);
5636   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5637                                     DSAT->getSizeModifier(), 0,
5638                                     SourceRange());
5639 }
5640 
5641 /// Attempt to unwrap two types that may both be array types with the same bound
5642 /// (or both be array types of unknown bound) for the purpose of comparing the
5643 /// cv-decomposition of two types per C++ [conv.qual].
5644 bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
5645   bool UnwrappedAny = false;
5646   while (true) {
5647     auto *AT1 = getAsArrayType(T1);
5648     if (!AT1) return UnwrappedAny;
5649 
5650     auto *AT2 = getAsArrayType(T2);
5651     if (!AT2) return UnwrappedAny;
5652 
5653     // If we don't have two array types with the same constant bound nor two
5654     // incomplete array types, we've unwrapped everything we can.
5655     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5656       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5657       if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5658         return UnwrappedAny;
5659     } else if (!isa<IncompleteArrayType>(AT1) ||
5660                !isa<IncompleteArrayType>(AT2)) {
5661       return UnwrappedAny;
5662     }
5663 
5664     T1 = AT1->getElementType();
5665     T2 = AT2->getElementType();
5666     UnwrappedAny = true;
5667   }
5668 }
5669 
5670 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5671 ///
5672 /// If T1 and T2 are both pointer types of the same kind, or both array types
5673 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5674 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5675 ///
5676 /// This function will typically be called in a loop that successively
5677 /// "unwraps" pointer and pointer-to-member types to compare them at each
5678 /// level.
5679 ///
5680 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5681 /// pair of types that can't be unwrapped further.
5682 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
5683   UnwrapSimilarArrayTypes(T1, T2);
5684 
5685   const auto *T1PtrType = T1->getAs<PointerType>();
5686   const auto *T2PtrType = T2->getAs<PointerType>();
5687   if (T1PtrType && T2PtrType) {
5688     T1 = T1PtrType->getPointeeType();
5689     T2 = T2PtrType->getPointeeType();
5690     return true;
5691   }
5692 
5693   const auto *T1MPType = T1->getAs<MemberPointerType>();
5694   const auto *T2MPType = T2->getAs<MemberPointerType>();
5695   if (T1MPType && T2MPType &&
5696       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5697                              QualType(T2MPType->getClass(), 0))) {
5698     T1 = T1MPType->getPointeeType();
5699     T2 = T2MPType->getPointeeType();
5700     return true;
5701   }
5702 
5703   if (getLangOpts().ObjC) {
5704     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5705     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5706     if (T1OPType && T2OPType) {
5707       T1 = T1OPType->getPointeeType();
5708       T2 = T2OPType->getPointeeType();
5709       return true;
5710     }
5711   }
5712 
5713   // FIXME: Block pointers, too?
5714 
5715   return false;
5716 }
5717 
5718 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5719   while (true) {
5720     Qualifiers Quals;
5721     T1 = getUnqualifiedArrayType(T1, Quals);
5722     T2 = getUnqualifiedArrayType(T2, Quals);
5723     if (hasSameType(T1, T2))
5724       return true;
5725     if (!UnwrapSimilarTypes(T1, T2))
5726       return false;
5727   }
5728 }
5729 
5730 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5731   while (true) {
5732     Qualifiers Quals1, Quals2;
5733     T1 = getUnqualifiedArrayType(T1, Quals1);
5734     T2 = getUnqualifiedArrayType(T2, Quals2);
5735 
5736     Quals1.removeCVRQualifiers();
5737     Quals2.removeCVRQualifiers();
5738     if (Quals1 != Quals2)
5739       return false;
5740 
5741     if (hasSameType(T1, T2))
5742       return true;
5743 
5744     if (!UnwrapSimilarTypes(T1, T2))
5745       return false;
5746   }
5747 }
5748 
5749 DeclarationNameInfo
5750 ASTContext::getNameForTemplate(TemplateName Name,
5751                                SourceLocation NameLoc) const {
5752   switch (Name.getKind()) {
5753   case TemplateName::QualifiedTemplate:
5754   case TemplateName::Template:
5755     // DNInfo work in progress: CHECKME: what about DNLoc?
5756     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5757                                NameLoc);
5758 
5759   case TemplateName::OverloadedTemplate: {
5760     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5761     // DNInfo work in progress: CHECKME: what about DNLoc?
5762     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5763   }
5764 
5765   case TemplateName::AssumedTemplate: {
5766     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
5767     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
5768   }
5769 
5770   case TemplateName::DependentTemplate: {
5771     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5772     DeclarationName DName;
5773     if (DTN->isIdentifier()) {
5774       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5775       return DeclarationNameInfo(DName, NameLoc);
5776     } else {
5777       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5778       // DNInfo work in progress: FIXME: source locations?
5779       DeclarationNameLoc DNLoc;
5780       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
5781       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
5782       return DeclarationNameInfo(DName, NameLoc, DNLoc);
5783     }
5784   }
5785 
5786   case TemplateName::SubstTemplateTemplateParm: {
5787     SubstTemplateTemplateParmStorage *subst
5788       = Name.getAsSubstTemplateTemplateParm();
5789     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5790                                NameLoc);
5791   }
5792 
5793   case TemplateName::SubstTemplateTemplateParmPack: {
5794     SubstTemplateTemplateParmPackStorage *subst
5795       = Name.getAsSubstTemplateTemplateParmPack();
5796     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
5797                                NameLoc);
5798   }
5799   }
5800 
5801   llvm_unreachable("bad template name kind!");
5802 }
5803 
5804 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
5805   switch (Name.getKind()) {
5806   case TemplateName::QualifiedTemplate:
5807   case TemplateName::Template: {
5808     TemplateDecl *Template = Name.getAsTemplateDecl();
5809     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
5810       Template = getCanonicalTemplateTemplateParmDecl(TTP);
5811 
5812     // The canonical template name is the canonical template declaration.
5813     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5814   }
5815 
5816   case TemplateName::OverloadedTemplate:
5817   case TemplateName::AssumedTemplate:
5818     llvm_unreachable("cannot canonicalize unresolved template");
5819 
5820   case TemplateName::DependentTemplate: {
5821     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5822     assert(DTN && "Non-dependent template names must refer to template decls.");
5823     return DTN->CanonicalTemplateName;
5824   }
5825 
5826   case TemplateName::SubstTemplateTemplateParm: {
5827     SubstTemplateTemplateParmStorage *subst
5828       = Name.getAsSubstTemplateTemplateParm();
5829     return getCanonicalTemplateName(subst->getReplacement());
5830   }
5831 
5832   case TemplateName::SubstTemplateTemplateParmPack: {
5833     SubstTemplateTemplateParmPackStorage *subst
5834                                   = Name.getAsSubstTemplateTemplateParmPack();
5835     TemplateTemplateParmDecl *canonParameter
5836       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5837     TemplateArgument canonArgPack
5838       = getCanonicalTemplateArgument(subst->getArgumentPack());
5839     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5840   }
5841   }
5842 
5843   llvm_unreachable("bad template name!");
5844 }
5845 
5846 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
5847   X = getCanonicalTemplateName(X);
5848   Y = getCanonicalTemplateName(Y);
5849   return X.getAsVoidPointer() == Y.getAsVoidPointer();
5850 }
5851 
5852 TemplateArgument
5853 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
5854   switch (Arg.getKind()) {
5855     case TemplateArgument::Null:
5856       return Arg;
5857 
5858     case TemplateArgument::Expression:
5859       return Arg;
5860 
5861     case TemplateArgument::Declaration: {
5862       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5863       return TemplateArgument(D, Arg.getParamTypeForDecl());
5864     }
5865 
5866     case TemplateArgument::NullPtr:
5867       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
5868                               /*isNullPtr*/true);
5869 
5870     case TemplateArgument::Template:
5871       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
5872 
5873     case TemplateArgument::TemplateExpansion:
5874       return TemplateArgument(getCanonicalTemplateName(
5875                                          Arg.getAsTemplateOrTemplatePattern()),
5876                               Arg.getNumTemplateExpansions());
5877 
5878     case TemplateArgument::Integral:
5879       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
5880 
5881     case TemplateArgument::Type:
5882       return TemplateArgument(getCanonicalType(Arg.getAsType()));
5883 
5884     case TemplateArgument::Pack: {
5885       if (Arg.pack_size() == 0)
5886         return Arg;
5887 
5888       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
5889       unsigned Idx = 0;
5890       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
5891                                         AEnd = Arg.pack_end();
5892            A != AEnd; (void)++A, ++Idx)
5893         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
5894 
5895       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
5896     }
5897   }
5898 
5899   // Silence GCC warning
5900   llvm_unreachable("Unhandled template argument kind");
5901 }
5902 
5903 NestedNameSpecifier *
5904 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
5905   if (!NNS)
5906     return nullptr;
5907 
5908   switch (NNS->getKind()) {
5909   case NestedNameSpecifier::Identifier:
5910     // Canonicalize the prefix but keep the identifier the same.
5911     return NestedNameSpecifier::Create(*this,
5912                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
5913                                        NNS->getAsIdentifier());
5914 
5915   case NestedNameSpecifier::Namespace:
5916     // A namespace is canonical; build a nested-name-specifier with
5917     // this namespace and no prefix.
5918     return NestedNameSpecifier::Create(*this, nullptr,
5919                                  NNS->getAsNamespace()->getOriginalNamespace());
5920 
5921   case NestedNameSpecifier::NamespaceAlias:
5922     // A namespace is canonical; build a nested-name-specifier with
5923     // this namespace and no prefix.
5924     return NestedNameSpecifier::Create(*this, nullptr,
5925                                     NNS->getAsNamespaceAlias()->getNamespace()
5926                                                       ->getOriginalNamespace());
5927 
5928   case NestedNameSpecifier::TypeSpec:
5929   case NestedNameSpecifier::TypeSpecWithTemplate: {
5930     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
5931 
5932     // If we have some kind of dependent-named type (e.g., "typename T::type"),
5933     // break it apart into its prefix and identifier, then reconsititute those
5934     // as the canonical nested-name-specifier. This is required to canonicalize
5935     // a dependent nested-name-specifier involving typedefs of dependent-name
5936     // types, e.g.,
5937     //   typedef typename T::type T1;
5938     //   typedef typename T1::type T2;
5939     if (const auto *DNT = T->getAs<DependentNameType>())
5940       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
5941                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
5942 
5943     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
5944     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
5945     // first place?
5946     return NestedNameSpecifier::Create(*this, nullptr, false,
5947                                        const_cast<Type *>(T.getTypePtr()));
5948   }
5949 
5950   case NestedNameSpecifier::Global:
5951   case NestedNameSpecifier::Super:
5952     // The global specifier and __super specifer are canonical and unique.
5953     return NNS;
5954   }
5955 
5956   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
5957 }
5958 
5959 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
5960   // Handle the non-qualified case efficiently.
5961   if (!T.hasLocalQualifiers()) {
5962     // Handle the common positive case fast.
5963     if (const auto *AT = dyn_cast<ArrayType>(T))
5964       return AT;
5965   }
5966 
5967   // Handle the common negative case fast.
5968   if (!isa<ArrayType>(T.getCanonicalType()))
5969     return nullptr;
5970 
5971   // Apply any qualifiers from the array type to the element type.  This
5972   // implements C99 6.7.3p8: "If the specification of an array type includes
5973   // any type qualifiers, the element type is so qualified, not the array type."
5974 
5975   // If we get here, we either have type qualifiers on the type, or we have
5976   // sugar such as a typedef in the way.  If we have type qualifiers on the type
5977   // we must propagate them down into the element type.
5978 
5979   SplitQualType split = T.getSplitDesugaredType();
5980   Qualifiers qs = split.Quals;
5981 
5982   // If we have a simple case, just return now.
5983   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
5984   if (!ATy || qs.empty())
5985     return ATy;
5986 
5987   // Otherwise, we have an array and we have qualifiers on it.  Push the
5988   // qualifiers into the array element type and return a new array type.
5989   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
5990 
5991   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
5992     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
5993                                                 CAT->getSizeExpr(),
5994                                                 CAT->getSizeModifier(),
5995                                            CAT->getIndexTypeCVRQualifiers()));
5996   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
5997     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
5998                                                   IAT->getSizeModifier(),
5999                                            IAT->getIndexTypeCVRQualifiers()));
6000 
6001   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6002     return cast<ArrayType>(
6003                      getDependentSizedArrayType(NewEltTy,
6004                                                 DSAT->getSizeExpr(),
6005                                                 DSAT->getSizeModifier(),
6006                                               DSAT->getIndexTypeCVRQualifiers(),
6007                                                 DSAT->getBracketsRange()));
6008 
6009   const auto *VAT = cast<VariableArrayType>(ATy);
6010   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6011                                               VAT->getSizeExpr(),
6012                                               VAT->getSizeModifier(),
6013                                               VAT->getIndexTypeCVRQualifiers(),
6014                                               VAT->getBracketsRange()));
6015 }
6016 
6017 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6018   if (T->isArrayType() || T->isFunctionType())
6019     return getDecayedType(T);
6020   return T;
6021 }
6022 
6023 QualType ASTContext::getSignatureParameterType(QualType T) const {
6024   T = getVariableArrayDecayedType(T);
6025   T = getAdjustedParameterType(T);
6026   return T.getUnqualifiedType();
6027 }
6028 
6029 QualType ASTContext::getExceptionObjectType(QualType T) const {
6030   // C++ [except.throw]p3:
6031   //   A throw-expression initializes a temporary object, called the exception
6032   //   object, the type of which is determined by removing any top-level
6033   //   cv-qualifiers from the static type of the operand of throw and adjusting
6034   //   the type from "array of T" or "function returning T" to "pointer to T"
6035   //   or "pointer to function returning T", [...]
6036   T = getVariableArrayDecayedType(T);
6037   if (T->isArrayType() || T->isFunctionType())
6038     T = getDecayedType(T);
6039   return T.getUnqualifiedType();
6040 }
6041 
6042 /// getArrayDecayedType - Return the properly qualified result of decaying the
6043 /// specified array type to a pointer.  This operation is non-trivial when
6044 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6045 /// this returns a pointer to a properly qualified element of the array.
6046 ///
6047 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6048 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6049   // Get the element type with 'getAsArrayType' so that we don't lose any
6050   // typedefs in the element type of the array.  This also handles propagation
6051   // of type qualifiers from the array type into the element type if present
6052   // (C99 6.7.3p8).
6053   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6054   assert(PrettyArrayType && "Not an array type!");
6055 
6056   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6057 
6058   // int x[restrict 4] ->  int *restrict
6059   QualType Result = getQualifiedType(PtrTy,
6060                                      PrettyArrayType->getIndexTypeQualifiers());
6061 
6062   // int x[_Nullable] -> int * _Nullable
6063   if (auto Nullability = Ty->getNullability(*this)) {
6064     Result = const_cast<ASTContext *>(this)->getAttributedType(
6065         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6066   }
6067   return Result;
6068 }
6069 
6070 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6071   return getBaseElementType(array->getElementType());
6072 }
6073 
6074 QualType ASTContext::getBaseElementType(QualType type) const {
6075   Qualifiers qs;
6076   while (true) {
6077     SplitQualType split = type.getSplitDesugaredType();
6078     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6079     if (!array) break;
6080 
6081     type = array->getElementType();
6082     qs.addConsistentQualifiers(split.Quals);
6083   }
6084 
6085   return getQualifiedType(type, qs);
6086 }
6087 
6088 /// getConstantArrayElementCount - Returns number of constant array elements.
6089 uint64_t
6090 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6091   uint64_t ElementCount = 1;
6092   do {
6093     ElementCount *= CA->getSize().getZExtValue();
6094     CA = dyn_cast_or_null<ConstantArrayType>(
6095       CA->getElementType()->getAsArrayTypeUnsafe());
6096   } while (CA);
6097   return ElementCount;
6098 }
6099 
6100 /// getFloatingRank - Return a relative rank for floating point types.
6101 /// This routine will assert if passed a built-in type that isn't a float.
6102 static FloatingRank getFloatingRank(QualType T) {
6103   if (const auto *CT = T->getAs<ComplexType>())
6104     return getFloatingRank(CT->getElementType());
6105 
6106   switch (T->castAs<BuiltinType>()->getKind()) {
6107   default: llvm_unreachable("getFloatingRank(): not a floating type");
6108   case BuiltinType::Float16:    return Float16Rank;
6109   case BuiltinType::Half:       return HalfRank;
6110   case BuiltinType::Float:      return FloatRank;
6111   case BuiltinType::Double:     return DoubleRank;
6112   case BuiltinType::LongDouble: return LongDoubleRank;
6113   case BuiltinType::Float128:   return Float128Rank;
6114   case BuiltinType::BFloat16:   return BFloat16Rank;
6115   }
6116 }
6117 
6118 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
6119 /// point or a complex type (based on typeDomain/typeSize).
6120 /// 'typeDomain' is a real floating point or complex type.
6121 /// 'typeSize' is a real floating point or complex type.
6122 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
6123                                                        QualType Domain) const {
6124   FloatingRank EltRank = getFloatingRank(Size);
6125   if (Domain->isComplexType()) {
6126     switch (EltRank) {
6127     case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported");
6128     case Float16Rank:
6129     case HalfRank: llvm_unreachable("Complex half is not supported");
6130     case FloatRank:      return FloatComplexTy;
6131     case DoubleRank:     return DoubleComplexTy;
6132     case LongDoubleRank: return LongDoubleComplexTy;
6133     case Float128Rank:   return Float128ComplexTy;
6134     }
6135   }
6136 
6137   assert(Domain->isRealFloatingType() && "Unknown domain!");
6138   switch (EltRank) {
6139   case Float16Rank:    return HalfTy;
6140   case BFloat16Rank:   return BFloat16Ty;
6141   case HalfRank:       return HalfTy;
6142   case FloatRank:      return FloatTy;
6143   case DoubleRank:     return DoubleTy;
6144   case LongDoubleRank: return LongDoubleTy;
6145   case Float128Rank:   return Float128Ty;
6146   }
6147   llvm_unreachable("getFloatingRank(): illegal value for rank");
6148 }
6149 
6150 /// getFloatingTypeOrder - Compare the rank of the two specified floating
6151 /// point types, ignoring the domain of the type (i.e. 'double' ==
6152 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6153 /// LHS < RHS, return -1.
6154 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
6155   FloatingRank LHSR = getFloatingRank(LHS);
6156   FloatingRank RHSR = getFloatingRank(RHS);
6157 
6158   if (LHSR == RHSR)
6159     return 0;
6160   if (LHSR > RHSR)
6161     return 1;
6162   return -1;
6163 }
6164 
6165 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
6166   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
6167     return 0;
6168   return getFloatingTypeOrder(LHS, RHS);
6169 }
6170 
6171 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
6172 /// routine will assert if passed a built-in type that isn't an integer or enum,
6173 /// or if it is not canonicalized.
6174 unsigned ASTContext::getIntegerRank(const Type *T) const {
6175   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
6176 
6177   // Results in this 'losing' to any type of the same size, but winning if
6178   // larger.
6179   if (const auto *EIT = dyn_cast<ExtIntType>(T))
6180     return 0 + (EIT->getNumBits() << 3);
6181 
6182   switch (cast<BuiltinType>(T)->getKind()) {
6183   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
6184   case BuiltinType::Bool:
6185     return 1 + (getIntWidth(BoolTy) << 3);
6186   case BuiltinType::Char_S:
6187   case BuiltinType::Char_U:
6188   case BuiltinType::SChar:
6189   case BuiltinType::UChar:
6190     return 2 + (getIntWidth(CharTy) << 3);
6191   case BuiltinType::Short:
6192   case BuiltinType::UShort:
6193     return 3 + (getIntWidth(ShortTy) << 3);
6194   case BuiltinType::Int:
6195   case BuiltinType::UInt:
6196     return 4 + (getIntWidth(IntTy) << 3);
6197   case BuiltinType::Long:
6198   case BuiltinType::ULong:
6199     return 5 + (getIntWidth(LongTy) << 3);
6200   case BuiltinType::LongLong:
6201   case BuiltinType::ULongLong:
6202     return 6 + (getIntWidth(LongLongTy) << 3);
6203   case BuiltinType::Int128:
6204   case BuiltinType::UInt128:
6205     return 7 + (getIntWidth(Int128Ty) << 3);
6206   }
6207 }
6208 
6209 /// Whether this is a promotable bitfield reference according
6210 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
6211 ///
6212 /// \returns the type this bit-field will promote to, or NULL if no
6213 /// promotion occurs.
6214 QualType ASTContext::isPromotableBitField(Expr *E) const {
6215   if (E->isTypeDependent() || E->isValueDependent())
6216     return {};
6217 
6218   // C++ [conv.prom]p5:
6219   //    If the bit-field has an enumerated type, it is treated as any other
6220   //    value of that type for promotion purposes.
6221   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
6222     return {};
6223 
6224   // FIXME: We should not do this unless E->refersToBitField() is true. This
6225   // matters in C where getSourceBitField() will find bit-fields for various
6226   // cases where the source expression is not a bit-field designator.
6227 
6228   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
6229   if (!Field)
6230     return {};
6231 
6232   QualType FT = Field->getType();
6233 
6234   uint64_t BitWidth = Field->getBitWidthValue(*this);
6235   uint64_t IntSize = getTypeSize(IntTy);
6236   // C++ [conv.prom]p5:
6237   //   A prvalue for an integral bit-field can be converted to a prvalue of type
6238   //   int if int can represent all the values of the bit-field; otherwise, it
6239   //   can be converted to unsigned int if unsigned int can represent all the
6240   //   values of the bit-field. If the bit-field is larger yet, no integral
6241   //   promotion applies to it.
6242   // C11 6.3.1.1/2:
6243   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
6244   //   If an int can represent all values of the original type (as restricted by
6245   //   the width, for a bit-field), the value is converted to an int; otherwise,
6246   //   it is converted to an unsigned int.
6247   //
6248   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
6249   //        We perform that promotion here to match GCC and C++.
6250   // FIXME: C does not permit promotion of an enum bit-field whose rank is
6251   //        greater than that of 'int'. We perform that promotion to match GCC.
6252   if (BitWidth < IntSize)
6253     return IntTy;
6254 
6255   if (BitWidth == IntSize)
6256     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
6257 
6258   // Bit-fields wider than int are not subject to promotions, and therefore act
6259   // like the base type. GCC has some weird bugs in this area that we
6260   // deliberately do not follow (GCC follows a pre-standard resolution to
6261   // C's DR315 which treats bit-width as being part of the type, and this leaks
6262   // into their semantics in some cases).
6263   return {};
6264 }
6265 
6266 /// getPromotedIntegerType - Returns the type that Promotable will
6267 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6268 /// integer type.
6269 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6270   assert(!Promotable.isNull());
6271   assert(Promotable->isPromotableIntegerType());
6272   if (const auto *ET = Promotable->getAs<EnumType>())
6273     return ET->getDecl()->getPromotionType();
6274 
6275   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6276     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6277     // (3.9.1) can be converted to a prvalue of the first of the following
6278     // types that can represent all the values of its underlying type:
6279     // int, unsigned int, long int, unsigned long int, long long int, or
6280     // unsigned long long int [...]
6281     // FIXME: Is there some better way to compute this?
6282     if (BT->getKind() == BuiltinType::WChar_S ||
6283         BT->getKind() == BuiltinType::WChar_U ||
6284         BT->getKind() == BuiltinType::Char8 ||
6285         BT->getKind() == BuiltinType::Char16 ||
6286         BT->getKind() == BuiltinType::Char32) {
6287       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6288       uint64_t FromSize = getTypeSize(BT);
6289       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6290                                   LongLongTy, UnsignedLongLongTy };
6291       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6292         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6293         if (FromSize < ToSize ||
6294             (FromSize == ToSize &&
6295              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6296           return PromoteTypes[Idx];
6297       }
6298       llvm_unreachable("char type should fit into long long");
6299     }
6300   }
6301 
6302   // At this point, we should have a signed or unsigned integer type.
6303   if (Promotable->isSignedIntegerType())
6304     return IntTy;
6305   uint64_t PromotableSize = getIntWidth(Promotable);
6306   uint64_t IntSize = getIntWidth(IntTy);
6307   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6308   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6309 }
6310 
6311 /// Recurses in pointer/array types until it finds an objc retainable
6312 /// type and returns its ownership.
6313 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6314   while (!T.isNull()) {
6315     if (T.getObjCLifetime() != Qualifiers::OCL_None)
6316       return T.getObjCLifetime();
6317     if (T->isArrayType())
6318       T = getBaseElementType(T);
6319     else if (const auto *PT = T->getAs<PointerType>())
6320       T = PT->getPointeeType();
6321     else if (const auto *RT = T->getAs<ReferenceType>())
6322       T = RT->getPointeeType();
6323     else
6324       break;
6325   }
6326 
6327   return Qualifiers::OCL_None;
6328 }
6329 
6330 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
6331   // Incomplete enum types are not treated as integer types.
6332   // FIXME: In C++, enum types are never integer types.
6333   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
6334     return ET->getDecl()->getIntegerType().getTypePtr();
6335   return nullptr;
6336 }
6337 
6338 /// getIntegerTypeOrder - Returns the highest ranked integer type:
6339 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6340 /// LHS < RHS, return -1.
6341 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
6342   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
6343   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
6344 
6345   // Unwrap enums to their underlying type.
6346   if (const auto *ET = dyn_cast<EnumType>(LHSC))
6347     LHSC = getIntegerTypeForEnum(ET);
6348   if (const auto *ET = dyn_cast<EnumType>(RHSC))
6349     RHSC = getIntegerTypeForEnum(ET);
6350 
6351   if (LHSC == RHSC) return 0;
6352 
6353   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
6354   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
6355 
6356   unsigned LHSRank = getIntegerRank(LHSC);
6357   unsigned RHSRank = getIntegerRank(RHSC);
6358 
6359   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
6360     if (LHSRank == RHSRank) return 0;
6361     return LHSRank > RHSRank ? 1 : -1;
6362   }
6363 
6364   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
6365   if (LHSUnsigned) {
6366     // If the unsigned [LHS] type is larger, return it.
6367     if (LHSRank >= RHSRank)
6368       return 1;
6369 
6370     // If the signed type can represent all values of the unsigned type, it
6371     // wins.  Because we are dealing with 2's complement and types that are
6372     // powers of two larger than each other, this is always safe.
6373     return -1;
6374   }
6375 
6376   // If the unsigned [RHS] type is larger, return it.
6377   if (RHSRank >= LHSRank)
6378     return -1;
6379 
6380   // If the signed type can represent all values of the unsigned type, it
6381   // wins.  Because we are dealing with 2's complement and types that are
6382   // powers of two larger than each other, this is always safe.
6383   return 1;
6384 }
6385 
6386 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
6387   if (CFConstantStringTypeDecl)
6388     return CFConstantStringTypeDecl;
6389 
6390   assert(!CFConstantStringTagDecl &&
6391          "tag and typedef should be initialized together");
6392   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
6393   CFConstantStringTagDecl->startDefinition();
6394 
6395   struct {
6396     QualType Type;
6397     const char *Name;
6398   } Fields[5];
6399   unsigned Count = 0;
6400 
6401   /// Objective-C ABI
6402   ///
6403   ///    typedef struct __NSConstantString_tag {
6404   ///      const int *isa;
6405   ///      int flags;
6406   ///      const char *str;
6407   ///      long length;
6408   ///    } __NSConstantString;
6409   ///
6410   /// Swift ABI (4.1, 4.2)
6411   ///
6412   ///    typedef struct __NSConstantString_tag {
6413   ///      uintptr_t _cfisa;
6414   ///      uintptr_t _swift_rc;
6415   ///      _Atomic(uint64_t) _cfinfoa;
6416   ///      const char *_ptr;
6417   ///      uint32_t _length;
6418   ///    } __NSConstantString;
6419   ///
6420   /// Swift ABI (5.0)
6421   ///
6422   ///    typedef struct __NSConstantString_tag {
6423   ///      uintptr_t _cfisa;
6424   ///      uintptr_t _swift_rc;
6425   ///      _Atomic(uint64_t) _cfinfoa;
6426   ///      const char *_ptr;
6427   ///      uintptr_t _length;
6428   ///    } __NSConstantString;
6429 
6430   const auto CFRuntime = getLangOpts().CFRuntime;
6431   if (static_cast<unsigned>(CFRuntime) <
6432       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
6433     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
6434     Fields[Count++] = { IntTy, "flags" };
6435     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
6436     Fields[Count++] = { LongTy, "length" };
6437   } else {
6438     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
6439     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
6440     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
6441     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
6442     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6443         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6444       Fields[Count++] = { IntTy, "_ptr" };
6445     else
6446       Fields[Count++] = { getUIntPtrType(), "_ptr" };
6447   }
6448 
6449   // Create fields
6450   for (unsigned i = 0; i < Count; ++i) {
6451     FieldDecl *Field =
6452         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
6453                           SourceLocation(), &Idents.get(Fields[i].Name),
6454                           Fields[i].Type, /*TInfo=*/nullptr,
6455                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6456     Field->setAccess(AS_public);
6457     CFConstantStringTagDecl->addDecl(Field);
6458   }
6459 
6460   CFConstantStringTagDecl->completeDefinition();
6461   // This type is designed to be compatible with NSConstantString, but cannot
6462   // use the same name, since NSConstantString is an interface.
6463   auto tagType = getTagDeclType(CFConstantStringTagDecl);
6464   CFConstantStringTypeDecl =
6465       buildImplicitTypedef(tagType, "__NSConstantString");
6466 
6467   return CFConstantStringTypeDecl;
6468 }
6469 
6470 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
6471   if (!CFConstantStringTagDecl)
6472     getCFConstantStringDecl(); // Build the tag and the typedef.
6473   return CFConstantStringTagDecl;
6474 }
6475 
6476 // getCFConstantStringType - Return the type used for constant CFStrings.
6477 QualType ASTContext::getCFConstantStringType() const {
6478   return getTypedefType(getCFConstantStringDecl());
6479 }
6480 
6481 QualType ASTContext::getObjCSuperType() const {
6482   if (ObjCSuperType.isNull()) {
6483     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
6484     TUDecl->addDecl(ObjCSuperTypeDecl);
6485     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
6486   }
6487   return ObjCSuperType;
6488 }
6489 
6490 void ASTContext::setCFConstantStringType(QualType T) {
6491   const auto *TD = T->castAs<TypedefType>();
6492   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
6493   const auto *TagType =
6494       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
6495   CFConstantStringTagDecl = TagType->getDecl();
6496 }
6497 
6498 QualType ASTContext::getBlockDescriptorType() const {
6499   if (BlockDescriptorType)
6500     return getTagDeclType(BlockDescriptorType);
6501 
6502   RecordDecl *RD;
6503   // FIXME: Needs the FlagAppleBlock bit.
6504   RD = buildImplicitRecord("__block_descriptor");
6505   RD->startDefinition();
6506 
6507   QualType FieldTypes[] = {
6508     UnsignedLongTy,
6509     UnsignedLongTy,
6510   };
6511 
6512   static const char *const FieldNames[] = {
6513     "reserved",
6514     "Size"
6515   };
6516 
6517   for (size_t i = 0; i < 2; ++i) {
6518     FieldDecl *Field = FieldDecl::Create(
6519         *this, RD, SourceLocation(), SourceLocation(),
6520         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6521         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6522     Field->setAccess(AS_public);
6523     RD->addDecl(Field);
6524   }
6525 
6526   RD->completeDefinition();
6527 
6528   BlockDescriptorType = RD;
6529 
6530   return getTagDeclType(BlockDescriptorType);
6531 }
6532 
6533 QualType ASTContext::getBlockDescriptorExtendedType() const {
6534   if (BlockDescriptorExtendedType)
6535     return getTagDeclType(BlockDescriptorExtendedType);
6536 
6537   RecordDecl *RD;
6538   // FIXME: Needs the FlagAppleBlock bit.
6539   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
6540   RD->startDefinition();
6541 
6542   QualType FieldTypes[] = {
6543     UnsignedLongTy,
6544     UnsignedLongTy,
6545     getPointerType(VoidPtrTy),
6546     getPointerType(VoidPtrTy)
6547   };
6548 
6549   static const char *const FieldNames[] = {
6550     "reserved",
6551     "Size",
6552     "CopyFuncPtr",
6553     "DestroyFuncPtr"
6554   };
6555 
6556   for (size_t i = 0; i < 4; ++i) {
6557     FieldDecl *Field = FieldDecl::Create(
6558         *this, RD, SourceLocation(), SourceLocation(),
6559         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6560         /*BitWidth=*/nullptr,
6561         /*Mutable=*/false, ICIS_NoInit);
6562     Field->setAccess(AS_public);
6563     RD->addDecl(Field);
6564   }
6565 
6566   RD->completeDefinition();
6567 
6568   BlockDescriptorExtendedType = RD;
6569   return getTagDeclType(BlockDescriptorExtendedType);
6570 }
6571 
6572 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6573   const auto *BT = dyn_cast<BuiltinType>(T);
6574 
6575   if (!BT) {
6576     if (isa<PipeType>(T))
6577       return OCLTK_Pipe;
6578 
6579     return OCLTK_Default;
6580   }
6581 
6582   switch (BT->getKind()) {
6583 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
6584   case BuiltinType::Id:                                                        \
6585     return OCLTK_Image;
6586 #include "clang/Basic/OpenCLImageTypes.def"
6587 
6588   case BuiltinType::OCLClkEvent:
6589     return OCLTK_ClkEvent;
6590 
6591   case BuiltinType::OCLEvent:
6592     return OCLTK_Event;
6593 
6594   case BuiltinType::OCLQueue:
6595     return OCLTK_Queue;
6596 
6597   case BuiltinType::OCLReserveID:
6598     return OCLTK_ReserveID;
6599 
6600   case BuiltinType::OCLSampler:
6601     return OCLTK_Sampler;
6602 
6603   default:
6604     return OCLTK_Default;
6605   }
6606 }
6607 
6608 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6609   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6610 }
6611 
6612 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6613 /// requires copy/dispose. Note that this must match the logic
6614 /// in buildByrefHelpers.
6615 bool ASTContext::BlockRequiresCopying(QualType Ty,
6616                                       const VarDecl *D) {
6617   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6618     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6619     if (!copyExpr && record->hasTrivialDestructor()) return false;
6620 
6621     return true;
6622   }
6623 
6624   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6625   // move or destroy.
6626   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6627     return true;
6628 
6629   if (!Ty->isObjCRetainableType()) return false;
6630 
6631   Qualifiers qs = Ty.getQualifiers();
6632 
6633   // If we have lifetime, that dominates.
6634   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6635     switch (lifetime) {
6636       case Qualifiers::OCL_None: llvm_unreachable("impossible");
6637 
6638       // These are just bits as far as the runtime is concerned.
6639       case Qualifiers::OCL_ExplicitNone:
6640       case Qualifiers::OCL_Autoreleasing:
6641         return false;
6642 
6643       // These cases should have been taken care of when checking the type's
6644       // non-triviality.
6645       case Qualifiers::OCL_Weak:
6646       case Qualifiers::OCL_Strong:
6647         llvm_unreachable("impossible");
6648     }
6649     llvm_unreachable("fell out of lifetime switch!");
6650   }
6651   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6652           Ty->isObjCObjectPointerType());
6653 }
6654 
6655 bool ASTContext::getByrefLifetime(QualType Ty,
6656                               Qualifiers::ObjCLifetime &LifeTime,
6657                               bool &HasByrefExtendedLayout) const {
6658   if (!getLangOpts().ObjC ||
6659       getLangOpts().getGC() != LangOptions::NonGC)
6660     return false;
6661 
6662   HasByrefExtendedLayout = false;
6663   if (Ty->isRecordType()) {
6664     HasByrefExtendedLayout = true;
6665     LifeTime = Qualifiers::OCL_None;
6666   } else if ((LifeTime = Ty.getObjCLifetime())) {
6667     // Honor the ARC qualifiers.
6668   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6669     // The MRR rule.
6670     LifeTime = Qualifiers::OCL_ExplicitNone;
6671   } else {
6672     LifeTime = Qualifiers::OCL_None;
6673   }
6674   return true;
6675 }
6676 
6677 CanQualType ASTContext::getNSUIntegerType() const {
6678   assert(Target && "Expected target to be initialized");
6679   const llvm::Triple &T = Target->getTriple();
6680   // Windows is LLP64 rather than LP64
6681   if (T.isOSWindows() && T.isArch64Bit())
6682     return UnsignedLongLongTy;
6683   return UnsignedLongTy;
6684 }
6685 
6686 CanQualType ASTContext::getNSIntegerType() const {
6687   assert(Target && "Expected target to be initialized");
6688   const llvm::Triple &T = Target->getTriple();
6689   // Windows is LLP64 rather than LP64
6690   if (T.isOSWindows() && T.isArch64Bit())
6691     return LongLongTy;
6692   return LongTy;
6693 }
6694 
6695 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6696   if (!ObjCInstanceTypeDecl)
6697     ObjCInstanceTypeDecl =
6698         buildImplicitTypedef(getObjCIdType(), "instancetype");
6699   return ObjCInstanceTypeDecl;
6700 }
6701 
6702 // This returns true if a type has been typedefed to BOOL:
6703 // typedef <type> BOOL;
6704 static bool isTypeTypedefedAsBOOL(QualType T) {
6705   if (const auto *TT = dyn_cast<TypedefType>(T))
6706     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6707       return II->isStr("BOOL");
6708 
6709   return false;
6710 }
6711 
6712 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
6713 /// purpose.
6714 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6715   if (!type->isIncompleteArrayType() && type->isIncompleteType())
6716     return CharUnits::Zero();
6717 
6718   CharUnits sz = getTypeSizeInChars(type);
6719 
6720   // Make all integer and enum types at least as large as an int
6721   if (sz.isPositive() && type->isIntegralOrEnumerationType())
6722     sz = std::max(sz, getTypeSizeInChars(IntTy));
6723   // Treat arrays as pointers, since that's how they're passed in.
6724   else if (type->isArrayType())
6725     sz = getTypeSizeInChars(VoidPtrTy);
6726   return sz;
6727 }
6728 
6729 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6730   return getTargetInfo().getCXXABI().isMicrosoft() &&
6731          VD->isStaticDataMember() &&
6732          VD->getType()->isIntegralOrEnumerationType() &&
6733          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6734 }
6735 
6736 ASTContext::InlineVariableDefinitionKind
6737 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6738   if (!VD->isInline())
6739     return InlineVariableDefinitionKind::None;
6740 
6741   // In almost all cases, it's a weak definition.
6742   auto *First = VD->getFirstDecl();
6743   if (First->isInlineSpecified() || !First->isStaticDataMember())
6744     return InlineVariableDefinitionKind::Weak;
6745 
6746   // If there's a file-context declaration in this translation unit, it's a
6747   // non-discardable definition.
6748   for (auto *D : VD->redecls())
6749     if (D->getLexicalDeclContext()->isFileContext() &&
6750         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6751       return InlineVariableDefinitionKind::Strong;
6752 
6753   // If we've not seen one yet, we don't know.
6754   return InlineVariableDefinitionKind::WeakUnknown;
6755 }
6756 
6757 static std::string charUnitsToString(const CharUnits &CU) {
6758   return llvm::itostr(CU.getQuantity());
6759 }
6760 
6761 /// getObjCEncodingForBlock - Return the encoded type for this block
6762 /// declaration.
6763 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6764   std::string S;
6765 
6766   const BlockDecl *Decl = Expr->getBlockDecl();
6767   QualType BlockTy =
6768       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
6769   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
6770   // Encode result type.
6771   if (getLangOpts().EncodeExtendedBlockSig)
6772     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
6773                                       true /*Extended*/);
6774   else
6775     getObjCEncodingForType(BlockReturnTy, S);
6776   // Compute size of all parameters.
6777   // Start with computing size of a pointer in number of bytes.
6778   // FIXME: There might(should) be a better way of doing this computation!
6779   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6780   CharUnits ParmOffset = PtrSize;
6781   for (auto PI : Decl->parameters()) {
6782     QualType PType = PI->getType();
6783     CharUnits sz = getObjCEncodingTypeSize(PType);
6784     if (sz.isZero())
6785       continue;
6786     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
6787     ParmOffset += sz;
6788   }
6789   // Size of the argument frame
6790   S += charUnitsToString(ParmOffset);
6791   // Block pointer and offset.
6792   S += "@?0";
6793 
6794   // Argument types.
6795   ParmOffset = PtrSize;
6796   for (auto PVDecl : Decl->parameters()) {
6797     QualType PType = PVDecl->getOriginalType();
6798     if (const auto *AT =
6799             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6800       // Use array's original type only if it has known number of
6801       // elements.
6802       if (!isa<ConstantArrayType>(AT))
6803         PType = PVDecl->getType();
6804     } else if (PType->isFunctionType())
6805       PType = PVDecl->getType();
6806     if (getLangOpts().EncodeExtendedBlockSig)
6807       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
6808                                       S, true /*Extended*/);
6809     else
6810       getObjCEncodingForType(PType, S);
6811     S += charUnitsToString(ParmOffset);
6812     ParmOffset += getObjCEncodingTypeSize(PType);
6813   }
6814 
6815   return S;
6816 }
6817 
6818 std::string
6819 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
6820   std::string S;
6821   // Encode result type.
6822   getObjCEncodingForType(Decl->getReturnType(), S);
6823   CharUnits ParmOffset;
6824   // Compute size of all parameters.
6825   for (auto PI : Decl->parameters()) {
6826     QualType PType = PI->getType();
6827     CharUnits sz = getObjCEncodingTypeSize(PType);
6828     if (sz.isZero())
6829       continue;
6830 
6831     assert(sz.isPositive() &&
6832            "getObjCEncodingForFunctionDecl - Incomplete param type");
6833     ParmOffset += sz;
6834   }
6835   S += charUnitsToString(ParmOffset);
6836   ParmOffset = CharUnits::Zero();
6837 
6838   // Argument types.
6839   for (auto PVDecl : Decl->parameters()) {
6840     QualType PType = PVDecl->getOriginalType();
6841     if (const auto *AT =
6842             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6843       // Use array's original type only if it has known number of
6844       // elements.
6845       if (!isa<ConstantArrayType>(AT))
6846         PType = PVDecl->getType();
6847     } else if (PType->isFunctionType())
6848       PType = PVDecl->getType();
6849     getObjCEncodingForType(PType, S);
6850     S += charUnitsToString(ParmOffset);
6851     ParmOffset += getObjCEncodingTypeSize(PType);
6852   }
6853 
6854   return S;
6855 }
6856 
6857 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
6858 /// method parameter or return type. If Extended, include class names and
6859 /// block object types.
6860 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
6861                                                    QualType T, std::string& S,
6862                                                    bool Extended) const {
6863   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
6864   getObjCEncodingForTypeQualifier(QT, S);
6865   // Encode parameter type.
6866   ObjCEncOptions Options = ObjCEncOptions()
6867                                .setExpandPointedToStructures()
6868                                .setExpandStructures()
6869                                .setIsOutermostType();
6870   if (Extended)
6871     Options.setEncodeBlockParameters().setEncodeClassNames();
6872   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
6873 }
6874 
6875 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
6876 /// declaration.
6877 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
6878                                                      bool Extended) const {
6879   // FIXME: This is not very efficient.
6880   // Encode return type.
6881   std::string S;
6882   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
6883                                     Decl->getReturnType(), S, Extended);
6884   // Compute size of all parameters.
6885   // Start with computing size of a pointer in number of bytes.
6886   // FIXME: There might(should) be a better way of doing this computation!
6887   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6888   // The first two arguments (self and _cmd) are pointers; account for
6889   // their size.
6890   CharUnits ParmOffset = 2 * PtrSize;
6891   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6892        E = Decl->sel_param_end(); PI != E; ++PI) {
6893     QualType PType = (*PI)->getType();
6894     CharUnits sz = getObjCEncodingTypeSize(PType);
6895     if (sz.isZero())
6896       continue;
6897 
6898     assert(sz.isPositive() &&
6899            "getObjCEncodingForMethodDecl - Incomplete param type");
6900     ParmOffset += sz;
6901   }
6902   S += charUnitsToString(ParmOffset);
6903   S += "@0:";
6904   S += charUnitsToString(PtrSize);
6905 
6906   // Argument types.
6907   ParmOffset = 2 * PtrSize;
6908   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6909        E = Decl->sel_param_end(); PI != E; ++PI) {
6910     const ParmVarDecl *PVDecl = *PI;
6911     QualType PType = PVDecl->getOriginalType();
6912     if (const auto *AT =
6913             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6914       // Use array's original type only if it has known number of
6915       // elements.
6916       if (!isa<ConstantArrayType>(AT))
6917         PType = PVDecl->getType();
6918     } else if (PType->isFunctionType())
6919       PType = PVDecl->getType();
6920     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
6921                                       PType, S, Extended);
6922     S += charUnitsToString(ParmOffset);
6923     ParmOffset += getObjCEncodingTypeSize(PType);
6924   }
6925 
6926   return S;
6927 }
6928 
6929 ObjCPropertyImplDecl *
6930 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
6931                                       const ObjCPropertyDecl *PD,
6932                                       const Decl *Container) const {
6933   if (!Container)
6934     return nullptr;
6935   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
6936     for (auto *PID : CID->property_impls())
6937       if (PID->getPropertyDecl() == PD)
6938         return PID;
6939   } else {
6940     const auto *OID = cast<ObjCImplementationDecl>(Container);
6941     for (auto *PID : OID->property_impls())
6942       if (PID->getPropertyDecl() == PD)
6943         return PID;
6944   }
6945   return nullptr;
6946 }
6947 
6948 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
6949 /// property declaration. If non-NULL, Container must be either an
6950 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
6951 /// NULL when getting encodings for protocol properties.
6952 /// Property attributes are stored as a comma-delimited C string. The simple
6953 /// attributes readonly and bycopy are encoded as single characters. The
6954 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
6955 /// encoded as single characters, followed by an identifier. Property types
6956 /// are also encoded as a parametrized attribute. The characters used to encode
6957 /// these attributes are defined by the following enumeration:
6958 /// @code
6959 /// enum PropertyAttributes {
6960 /// kPropertyReadOnly = 'R',   // property is read-only.
6961 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
6962 /// kPropertyByref = '&',  // property is a reference to the value last assigned
6963 /// kPropertyDynamic = 'D',    // property is dynamic
6964 /// kPropertyGetter = 'G',     // followed by getter selector name
6965 /// kPropertySetter = 'S',     // followed by setter selector name
6966 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
6967 /// kPropertyType = 'T'              // followed by old-style type encoding.
6968 /// kPropertyWeak = 'W'              // 'weak' property
6969 /// kPropertyStrong = 'P'            // property GC'able
6970 /// kPropertyNonAtomic = 'N'         // property non-atomic
6971 /// };
6972 /// @endcode
6973 std::string
6974 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
6975                                            const Decl *Container) const {
6976   // Collect information from the property implementation decl(s).
6977   bool Dynamic = false;
6978   ObjCPropertyImplDecl *SynthesizePID = nullptr;
6979 
6980   if (ObjCPropertyImplDecl *PropertyImpDecl =
6981       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
6982     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
6983       Dynamic = true;
6984     else
6985       SynthesizePID = PropertyImpDecl;
6986   }
6987 
6988   // FIXME: This is not very efficient.
6989   std::string S = "T";
6990 
6991   // Encode result type.
6992   // GCC has some special rules regarding encoding of properties which
6993   // closely resembles encoding of ivars.
6994   getObjCEncodingForPropertyType(PD->getType(), S);
6995 
6996   if (PD->isReadOnly()) {
6997     S += ",R";
6998     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
6999       S += ",C";
7000     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7001       S += ",&";
7002     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7003       S += ",W";
7004   } else {
7005     switch (PD->getSetterKind()) {
7006     case ObjCPropertyDecl::Assign: break;
7007     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7008     case ObjCPropertyDecl::Retain: S += ",&"; break;
7009     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7010     }
7011   }
7012 
7013   // It really isn't clear at all what this means, since properties
7014   // are "dynamic by default".
7015   if (Dynamic)
7016     S += ",D";
7017 
7018   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7019     S += ",N";
7020 
7021   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7022     S += ",G";
7023     S += PD->getGetterName().getAsString();
7024   }
7025 
7026   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7027     S += ",S";
7028     S += PD->getSetterName().getAsString();
7029   }
7030 
7031   if (SynthesizePID) {
7032     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7033     S += ",V";
7034     S += OID->getNameAsString();
7035   }
7036 
7037   // FIXME: OBJCGC: weak & strong
7038   return S;
7039 }
7040 
7041 /// getLegacyIntegralTypeEncoding -
7042 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7043 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7044 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
7045 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7046   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
7047     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7048       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7049         PointeeTy = UnsignedIntTy;
7050       else
7051         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7052           PointeeTy = IntTy;
7053     }
7054   }
7055 }
7056 
7057 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7058                                         const FieldDecl *Field,
7059                                         QualType *NotEncodedT) const {
7060   // We follow the behavior of gcc, expanding structures which are
7061   // directly pointed to, and expanding embedded structures. Note that
7062   // these rules are sufficient to prevent recursive encoding of the
7063   // same type.
7064   getObjCEncodingForTypeImpl(T, S,
7065                              ObjCEncOptions()
7066                                  .setExpandPointedToStructures()
7067                                  .setExpandStructures()
7068                                  .setIsOutermostType(),
7069                              Field, NotEncodedT);
7070 }
7071 
7072 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7073                                                 std::string& S) const {
7074   // Encode result type.
7075   // GCC has some special rules regarding encoding of properties which
7076   // closely resembles encoding of ivars.
7077   getObjCEncodingForTypeImpl(T, S,
7078                              ObjCEncOptions()
7079                                  .setExpandPointedToStructures()
7080                                  .setExpandStructures()
7081                                  .setIsOutermostType()
7082                                  .setEncodingProperty(),
7083                              /*Field=*/nullptr);
7084 }
7085 
7086 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7087                                             const BuiltinType *BT) {
7088     BuiltinType::Kind kind = BT->getKind();
7089     switch (kind) {
7090     case BuiltinType::Void:       return 'v';
7091     case BuiltinType::Bool:       return 'B';
7092     case BuiltinType::Char8:
7093     case BuiltinType::Char_U:
7094     case BuiltinType::UChar:      return 'C';
7095     case BuiltinType::Char16:
7096     case BuiltinType::UShort:     return 'S';
7097     case BuiltinType::Char32:
7098     case BuiltinType::UInt:       return 'I';
7099     case BuiltinType::ULong:
7100         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7101     case BuiltinType::UInt128:    return 'T';
7102     case BuiltinType::ULongLong:  return 'Q';
7103     case BuiltinType::Char_S:
7104     case BuiltinType::SChar:      return 'c';
7105     case BuiltinType::Short:      return 's';
7106     case BuiltinType::WChar_S:
7107     case BuiltinType::WChar_U:
7108     case BuiltinType::Int:        return 'i';
7109     case BuiltinType::Long:
7110       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7111     case BuiltinType::LongLong:   return 'q';
7112     case BuiltinType::Int128:     return 't';
7113     case BuiltinType::Float:      return 'f';
7114     case BuiltinType::Double:     return 'd';
7115     case BuiltinType::LongDouble: return 'D';
7116     case BuiltinType::NullPtr:    return '*'; // like char*
7117 
7118     case BuiltinType::BFloat16:
7119     case BuiltinType::Float16:
7120     case BuiltinType::Float128:
7121     case BuiltinType::Half:
7122     case BuiltinType::ShortAccum:
7123     case BuiltinType::Accum:
7124     case BuiltinType::LongAccum:
7125     case BuiltinType::UShortAccum:
7126     case BuiltinType::UAccum:
7127     case BuiltinType::ULongAccum:
7128     case BuiltinType::ShortFract:
7129     case BuiltinType::Fract:
7130     case BuiltinType::LongFract:
7131     case BuiltinType::UShortFract:
7132     case BuiltinType::UFract:
7133     case BuiltinType::ULongFract:
7134     case BuiltinType::SatShortAccum:
7135     case BuiltinType::SatAccum:
7136     case BuiltinType::SatLongAccum:
7137     case BuiltinType::SatUShortAccum:
7138     case BuiltinType::SatUAccum:
7139     case BuiltinType::SatULongAccum:
7140     case BuiltinType::SatShortFract:
7141     case BuiltinType::SatFract:
7142     case BuiltinType::SatLongFract:
7143     case BuiltinType::SatUShortFract:
7144     case BuiltinType::SatUFract:
7145     case BuiltinType::SatULongFract:
7146       // FIXME: potentially need @encodes for these!
7147       return ' ';
7148 
7149 #define SVE_TYPE(Name, Id, SingletonId) \
7150     case BuiltinType::Id:
7151 #include "clang/Basic/AArch64SVEACLETypes.def"
7152     {
7153       DiagnosticsEngine &Diags = C->getDiagnostics();
7154       unsigned DiagID = Diags.getCustomDiagID(
7155           DiagnosticsEngine::Error, "cannot yet @encode type %0");
7156       Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
7157       return ' ';
7158     }
7159 
7160     case BuiltinType::ObjCId:
7161     case BuiltinType::ObjCClass:
7162     case BuiltinType::ObjCSel:
7163       llvm_unreachable("@encoding ObjC primitive type");
7164 
7165     // OpenCL and placeholder types don't need @encodings.
7166 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7167     case BuiltinType::Id:
7168 #include "clang/Basic/OpenCLImageTypes.def"
7169 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7170     case BuiltinType::Id:
7171 #include "clang/Basic/OpenCLExtensionTypes.def"
7172     case BuiltinType::OCLEvent:
7173     case BuiltinType::OCLClkEvent:
7174     case BuiltinType::OCLQueue:
7175     case BuiltinType::OCLReserveID:
7176     case BuiltinType::OCLSampler:
7177     case BuiltinType::Dependent:
7178 #define BUILTIN_TYPE(KIND, ID)
7179 #define PLACEHOLDER_TYPE(KIND, ID) \
7180     case BuiltinType::KIND:
7181 #include "clang/AST/BuiltinTypes.def"
7182       llvm_unreachable("invalid builtin type for @encode");
7183     }
7184     llvm_unreachable("invalid BuiltinType::Kind value");
7185 }
7186 
7187 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
7188   EnumDecl *Enum = ET->getDecl();
7189 
7190   // The encoding of an non-fixed enum type is always 'i', regardless of size.
7191   if (!Enum->isFixed())
7192     return 'i';
7193 
7194   // The encoding of a fixed enum type matches its fixed underlying type.
7195   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
7196   return getObjCEncodingForPrimitiveType(C, BT);
7197 }
7198 
7199 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
7200                            QualType T, const FieldDecl *FD) {
7201   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
7202   S += 'b';
7203   // The NeXT runtime encodes bit fields as b followed by the number of bits.
7204   // The GNU runtime requires more information; bitfields are encoded as b,
7205   // then the offset (in bits) of the first element, then the type of the
7206   // bitfield, then the size in bits.  For example, in this structure:
7207   //
7208   // struct
7209   // {
7210   //    int integer;
7211   //    int flags:2;
7212   // };
7213   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
7214   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
7215   // information is not especially sensible, but we're stuck with it for
7216   // compatibility with GCC, although providing it breaks anything that
7217   // actually uses runtime introspection and wants to work on both runtimes...
7218   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
7219     uint64_t Offset;
7220 
7221     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
7222       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
7223                                          IVD);
7224     } else {
7225       const RecordDecl *RD = FD->getParent();
7226       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
7227       Offset = RL.getFieldOffset(FD->getFieldIndex());
7228     }
7229 
7230     S += llvm::utostr(Offset);
7231 
7232     if (const auto *ET = T->getAs<EnumType>())
7233       S += ObjCEncodingForEnumType(Ctx, ET);
7234     else {
7235       const auto *BT = T->castAs<BuiltinType>();
7236       S += getObjCEncodingForPrimitiveType(Ctx, BT);
7237     }
7238   }
7239   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
7240 }
7241 
7242 // FIXME: Use SmallString for accumulating string.
7243 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
7244                                             const ObjCEncOptions Options,
7245                                             const FieldDecl *FD,
7246                                             QualType *NotEncodedT) const {
7247   CanQualType CT = getCanonicalType(T);
7248   switch (CT->getTypeClass()) {
7249   case Type::Builtin:
7250   case Type::Enum:
7251     if (FD && FD->isBitField())
7252       return EncodeBitField(this, S, T, FD);
7253     if (const auto *BT = dyn_cast<BuiltinType>(CT))
7254       S += getObjCEncodingForPrimitiveType(this, BT);
7255     else
7256       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
7257     return;
7258 
7259   case Type::Complex:
7260     S += 'j';
7261     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
7262                                ObjCEncOptions(),
7263                                /*Field=*/nullptr);
7264     return;
7265 
7266   case Type::Atomic:
7267     S += 'A';
7268     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
7269                                ObjCEncOptions(),
7270                                /*Field=*/nullptr);
7271     return;
7272 
7273   // encoding for pointer or reference types.
7274   case Type::Pointer:
7275   case Type::LValueReference:
7276   case Type::RValueReference: {
7277     QualType PointeeTy;
7278     if (isa<PointerType>(CT)) {
7279       const auto *PT = T->castAs<PointerType>();
7280       if (PT->isObjCSelType()) {
7281         S += ':';
7282         return;
7283       }
7284       PointeeTy = PT->getPointeeType();
7285     } else {
7286       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
7287     }
7288 
7289     bool isReadOnly = false;
7290     // For historical/compatibility reasons, the read-only qualifier of the
7291     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
7292     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
7293     // Also, do not emit the 'r' for anything but the outermost type!
7294     if (isa<TypedefType>(T.getTypePtr())) {
7295       if (Options.IsOutermostType() && T.isConstQualified()) {
7296         isReadOnly = true;
7297         S += 'r';
7298       }
7299     } else if (Options.IsOutermostType()) {
7300       QualType P = PointeeTy;
7301       while (auto PT = P->getAs<PointerType>())
7302         P = PT->getPointeeType();
7303       if (P.isConstQualified()) {
7304         isReadOnly = true;
7305         S += 'r';
7306       }
7307     }
7308     if (isReadOnly) {
7309       // Another legacy compatibility encoding. Some ObjC qualifier and type
7310       // combinations need to be rearranged.
7311       // Rewrite "in const" from "nr" to "rn"
7312       if (StringRef(S).endswith("nr"))
7313         S.replace(S.end()-2, S.end(), "rn");
7314     }
7315 
7316     if (PointeeTy->isCharType()) {
7317       // char pointer types should be encoded as '*' unless it is a
7318       // type that has been typedef'd to 'BOOL'.
7319       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
7320         S += '*';
7321         return;
7322       }
7323     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
7324       // GCC binary compat: Need to convert "struct objc_class *" to "#".
7325       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
7326         S += '#';
7327         return;
7328       }
7329       // GCC binary compat: Need to convert "struct objc_object *" to "@".
7330       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
7331         S += '@';
7332         return;
7333       }
7334       // fall through...
7335     }
7336     S += '^';
7337     getLegacyIntegralTypeEncoding(PointeeTy);
7338 
7339     ObjCEncOptions NewOptions;
7340     if (Options.ExpandPointedToStructures())
7341       NewOptions.setExpandStructures();
7342     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
7343                                /*Field=*/nullptr, NotEncodedT);
7344     return;
7345   }
7346 
7347   case Type::ConstantArray:
7348   case Type::IncompleteArray:
7349   case Type::VariableArray: {
7350     const auto *AT = cast<ArrayType>(CT);
7351 
7352     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
7353       // Incomplete arrays are encoded as a pointer to the array element.
7354       S += '^';
7355 
7356       getObjCEncodingForTypeImpl(
7357           AT->getElementType(), S,
7358           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
7359     } else {
7360       S += '[';
7361 
7362       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
7363         S += llvm::utostr(CAT->getSize().getZExtValue());
7364       else {
7365         //Variable length arrays are encoded as a regular array with 0 elements.
7366         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
7367                "Unknown array type!");
7368         S += '0';
7369       }
7370 
7371       getObjCEncodingForTypeImpl(
7372           AT->getElementType(), S,
7373           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
7374           NotEncodedT);
7375       S += ']';
7376     }
7377     return;
7378   }
7379 
7380   case Type::FunctionNoProto:
7381   case Type::FunctionProto:
7382     S += '?';
7383     return;
7384 
7385   case Type::Record: {
7386     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
7387     S += RDecl->isUnion() ? '(' : '{';
7388     // Anonymous structures print as '?'
7389     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
7390       S += II->getName();
7391       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
7392         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
7393         llvm::raw_string_ostream OS(S);
7394         printTemplateArgumentList(OS, TemplateArgs.asArray(),
7395                                   getPrintingPolicy());
7396       }
7397     } else {
7398       S += '?';
7399     }
7400     if (Options.ExpandStructures()) {
7401       S += '=';
7402       if (!RDecl->isUnion()) {
7403         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
7404       } else {
7405         for (const auto *Field : RDecl->fields()) {
7406           if (FD) {
7407             S += '"';
7408             S += Field->getNameAsString();
7409             S += '"';
7410           }
7411 
7412           // Special case bit-fields.
7413           if (Field->isBitField()) {
7414             getObjCEncodingForTypeImpl(Field->getType(), S,
7415                                        ObjCEncOptions().setExpandStructures(),
7416                                        Field);
7417           } else {
7418             QualType qt = Field->getType();
7419             getLegacyIntegralTypeEncoding(qt);
7420             getObjCEncodingForTypeImpl(
7421                 qt, S,
7422                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
7423                 NotEncodedT);
7424           }
7425         }
7426       }
7427     }
7428     S += RDecl->isUnion() ? ')' : '}';
7429     return;
7430   }
7431 
7432   case Type::BlockPointer: {
7433     const auto *BT = T->castAs<BlockPointerType>();
7434     S += "@?"; // Unlike a pointer-to-function, which is "^?".
7435     if (Options.EncodeBlockParameters()) {
7436       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
7437 
7438       S += '<';
7439       // Block return type
7440       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
7441                                  Options.forComponentType(), FD, NotEncodedT);
7442       // Block self
7443       S += "@?";
7444       // Block parameters
7445       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
7446         for (const auto &I : FPT->param_types())
7447           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
7448                                      NotEncodedT);
7449       }
7450       S += '>';
7451     }
7452     return;
7453   }
7454 
7455   case Type::ObjCObject: {
7456     // hack to match legacy encoding of *id and *Class
7457     QualType Ty = getObjCObjectPointerType(CT);
7458     if (Ty->isObjCIdType()) {
7459       S += "{objc_object=}";
7460       return;
7461     }
7462     else if (Ty->isObjCClassType()) {
7463       S += "{objc_class=}";
7464       return;
7465     }
7466     // TODO: Double check to make sure this intentionally falls through.
7467     LLVM_FALLTHROUGH;
7468   }
7469 
7470   case Type::ObjCInterface: {
7471     // Ignore protocol qualifiers when mangling at this level.
7472     // @encode(class_name)
7473     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
7474     S += '{';
7475     S += OI->getObjCRuntimeNameAsString();
7476     if (Options.ExpandStructures()) {
7477       S += '=';
7478       SmallVector<const ObjCIvarDecl*, 32> Ivars;
7479       DeepCollectObjCIvars(OI, true, Ivars);
7480       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
7481         const FieldDecl *Field = Ivars[i];
7482         if (Field->isBitField())
7483           getObjCEncodingForTypeImpl(Field->getType(), S,
7484                                      ObjCEncOptions().setExpandStructures(),
7485                                      Field);
7486         else
7487           getObjCEncodingForTypeImpl(Field->getType(), S,
7488                                      ObjCEncOptions().setExpandStructures(), FD,
7489                                      NotEncodedT);
7490       }
7491     }
7492     S += '}';
7493     return;
7494   }
7495 
7496   case Type::ObjCObjectPointer: {
7497     const auto *OPT = T->castAs<ObjCObjectPointerType>();
7498     if (OPT->isObjCIdType()) {
7499       S += '@';
7500       return;
7501     }
7502 
7503     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
7504       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
7505       // Since this is a binary compatibility issue, need to consult with
7506       // runtime folks. Fortunately, this is a *very* obscure construct.
7507       S += '#';
7508       return;
7509     }
7510 
7511     if (OPT->isObjCQualifiedIdType()) {
7512       getObjCEncodingForTypeImpl(
7513           getObjCIdType(), S,
7514           Options.keepingOnly(ObjCEncOptions()
7515                                   .setExpandPointedToStructures()
7516                                   .setExpandStructures()),
7517           FD);
7518       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
7519         // Note that we do extended encoding of protocol qualifer list
7520         // Only when doing ivar or property encoding.
7521         S += '"';
7522         for (const auto *I : OPT->quals()) {
7523           S += '<';
7524           S += I->getObjCRuntimeNameAsString();
7525           S += '>';
7526         }
7527         S += '"';
7528       }
7529       return;
7530     }
7531 
7532     S += '@';
7533     if (OPT->getInterfaceDecl() &&
7534         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
7535       S += '"';
7536       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
7537       for (const auto *I : OPT->quals()) {
7538         S += '<';
7539         S += I->getObjCRuntimeNameAsString();
7540         S += '>';
7541       }
7542       S += '"';
7543     }
7544     return;
7545   }
7546 
7547   // gcc just blithely ignores member pointers.
7548   // FIXME: we should do better than that.  'M' is available.
7549   case Type::MemberPointer:
7550   // This matches gcc's encoding, even though technically it is insufficient.
7551   //FIXME. We should do a better job than gcc.
7552   case Type::Vector:
7553   case Type::ExtVector:
7554   // Until we have a coherent encoding of these three types, issue warning.
7555     if (NotEncodedT)
7556       *NotEncodedT = T;
7557     return;
7558 
7559   case Type::ConstantMatrix:
7560     if (NotEncodedT)
7561       *NotEncodedT = T;
7562     return;
7563 
7564   // We could see an undeduced auto type here during error recovery.
7565   // Just ignore it.
7566   case Type::Auto:
7567   case Type::DeducedTemplateSpecialization:
7568     return;
7569 
7570   case Type::Pipe:
7571   case Type::ExtInt:
7572 #define ABSTRACT_TYPE(KIND, BASE)
7573 #define TYPE(KIND, BASE)
7574 #define DEPENDENT_TYPE(KIND, BASE) \
7575   case Type::KIND:
7576 #define NON_CANONICAL_TYPE(KIND, BASE) \
7577   case Type::KIND:
7578 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7579   case Type::KIND:
7580 #include "clang/AST/TypeNodes.inc"
7581     llvm_unreachable("@encode for dependent type!");
7582   }
7583   llvm_unreachable("bad type kind!");
7584 }
7585 
7586 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7587                                                  std::string &S,
7588                                                  const FieldDecl *FD,
7589                                                  bool includeVBases,
7590                                                  QualType *NotEncodedT) const {
7591   assert(RDecl && "Expected non-null RecordDecl");
7592   assert(!RDecl->isUnion() && "Should not be called for unions");
7593   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7594     return;
7595 
7596   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7597   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7598   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7599 
7600   if (CXXRec) {
7601     for (const auto &BI : CXXRec->bases()) {
7602       if (!BI.isVirtual()) {
7603         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7604         if (base->isEmpty())
7605           continue;
7606         uint64_t offs = toBits(layout.getBaseClassOffset(base));
7607         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7608                                   std::make_pair(offs, base));
7609       }
7610     }
7611   }
7612 
7613   unsigned i = 0;
7614   for (auto *Field : RDecl->fields()) {
7615     uint64_t offs = layout.getFieldOffset(i);
7616     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7617                               std::make_pair(offs, Field));
7618     ++i;
7619   }
7620 
7621   if (CXXRec && includeVBases) {
7622     for (const auto &BI : CXXRec->vbases()) {
7623       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7624       if (base->isEmpty())
7625         continue;
7626       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7627       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7628           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7629         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7630                                   std::make_pair(offs, base));
7631     }
7632   }
7633 
7634   CharUnits size;
7635   if (CXXRec) {
7636     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7637   } else {
7638     size = layout.getSize();
7639   }
7640 
7641 #ifndef NDEBUG
7642   uint64_t CurOffs = 0;
7643 #endif
7644   std::multimap<uint64_t, NamedDecl *>::iterator
7645     CurLayObj = FieldOrBaseOffsets.begin();
7646 
7647   if (CXXRec && CXXRec->isDynamicClass() &&
7648       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7649     if (FD) {
7650       S += "\"_vptr$";
7651       std::string recname = CXXRec->getNameAsString();
7652       if (recname.empty()) recname = "?";
7653       S += recname;
7654       S += '"';
7655     }
7656     S += "^^?";
7657 #ifndef NDEBUG
7658     CurOffs += getTypeSize(VoidPtrTy);
7659 #endif
7660   }
7661 
7662   if (!RDecl->hasFlexibleArrayMember()) {
7663     // Mark the end of the structure.
7664     uint64_t offs = toBits(size);
7665     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7666                               std::make_pair(offs, nullptr));
7667   }
7668 
7669   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7670 #ifndef NDEBUG
7671     assert(CurOffs <= CurLayObj->first);
7672     if (CurOffs < CurLayObj->first) {
7673       uint64_t padding = CurLayObj->first - CurOffs;
7674       // FIXME: There doesn't seem to be a way to indicate in the encoding that
7675       // packing/alignment of members is different that normal, in which case
7676       // the encoding will be out-of-sync with the real layout.
7677       // If the runtime switches to just consider the size of types without
7678       // taking into account alignment, we could make padding explicit in the
7679       // encoding (e.g. using arrays of chars). The encoding strings would be
7680       // longer then though.
7681       CurOffs += padding;
7682     }
7683 #endif
7684 
7685     NamedDecl *dcl = CurLayObj->second;
7686     if (!dcl)
7687       break; // reached end of structure.
7688 
7689     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7690       // We expand the bases without their virtual bases since those are going
7691       // in the initial structure. Note that this differs from gcc which
7692       // expands virtual bases each time one is encountered in the hierarchy,
7693       // making the encoding type bigger than it really is.
7694       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7695                                       NotEncodedT);
7696       assert(!base->isEmpty());
7697 #ifndef NDEBUG
7698       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7699 #endif
7700     } else {
7701       const auto *field = cast<FieldDecl>(dcl);
7702       if (FD) {
7703         S += '"';
7704         S += field->getNameAsString();
7705         S += '"';
7706       }
7707 
7708       if (field->isBitField()) {
7709         EncodeBitField(this, S, field->getType(), field);
7710 #ifndef NDEBUG
7711         CurOffs += field->getBitWidthValue(*this);
7712 #endif
7713       } else {
7714         QualType qt = field->getType();
7715         getLegacyIntegralTypeEncoding(qt);
7716         getObjCEncodingForTypeImpl(
7717             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
7718             FD, NotEncodedT);
7719 #ifndef NDEBUG
7720         CurOffs += getTypeSize(field->getType());
7721 #endif
7722       }
7723     }
7724   }
7725 }
7726 
7727 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
7728                                                  std::string& S) const {
7729   if (QT & Decl::OBJC_TQ_In)
7730     S += 'n';
7731   if (QT & Decl::OBJC_TQ_Inout)
7732     S += 'N';
7733   if (QT & Decl::OBJC_TQ_Out)
7734     S += 'o';
7735   if (QT & Decl::OBJC_TQ_Bycopy)
7736     S += 'O';
7737   if (QT & Decl::OBJC_TQ_Byref)
7738     S += 'R';
7739   if (QT & Decl::OBJC_TQ_Oneway)
7740     S += 'V';
7741 }
7742 
7743 TypedefDecl *ASTContext::getObjCIdDecl() const {
7744   if (!ObjCIdDecl) {
7745     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
7746     T = getObjCObjectPointerType(T);
7747     ObjCIdDecl = buildImplicitTypedef(T, "id");
7748   }
7749   return ObjCIdDecl;
7750 }
7751 
7752 TypedefDecl *ASTContext::getObjCSelDecl() const {
7753   if (!ObjCSelDecl) {
7754     QualType T = getPointerType(ObjCBuiltinSelTy);
7755     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
7756   }
7757   return ObjCSelDecl;
7758 }
7759 
7760 TypedefDecl *ASTContext::getObjCClassDecl() const {
7761   if (!ObjCClassDecl) {
7762     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
7763     T = getObjCObjectPointerType(T);
7764     ObjCClassDecl = buildImplicitTypedef(T, "Class");
7765   }
7766   return ObjCClassDecl;
7767 }
7768 
7769 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
7770   if (!ObjCProtocolClassDecl) {
7771     ObjCProtocolClassDecl
7772       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
7773                                   SourceLocation(),
7774                                   &Idents.get("Protocol"),
7775                                   /*typeParamList=*/nullptr,
7776                                   /*PrevDecl=*/nullptr,
7777                                   SourceLocation(), true);
7778   }
7779 
7780   return ObjCProtocolClassDecl;
7781 }
7782 
7783 //===----------------------------------------------------------------------===//
7784 // __builtin_va_list Construction Functions
7785 //===----------------------------------------------------------------------===//
7786 
7787 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
7788                                                  StringRef Name) {
7789   // typedef char* __builtin[_ms]_va_list;
7790   QualType T = Context->getPointerType(Context->CharTy);
7791   return Context->buildImplicitTypedef(T, Name);
7792 }
7793 
7794 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
7795   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
7796 }
7797 
7798 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
7799   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
7800 }
7801 
7802 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
7803   // typedef void* __builtin_va_list;
7804   QualType T = Context->getPointerType(Context->VoidTy);
7805   return Context->buildImplicitTypedef(T, "__builtin_va_list");
7806 }
7807 
7808 static TypedefDecl *
7809 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
7810   // struct __va_list
7811   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
7812   if (Context->getLangOpts().CPlusPlus) {
7813     // namespace std { struct __va_list {
7814     NamespaceDecl *NS;
7815     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7816                                Context->getTranslationUnitDecl(),
7817                                /*Inline*/ false, SourceLocation(),
7818                                SourceLocation(), &Context->Idents.get("std"),
7819                                /*PrevDecl*/ nullptr);
7820     NS->setImplicit();
7821     VaListTagDecl->setDeclContext(NS);
7822   }
7823 
7824   VaListTagDecl->startDefinition();
7825 
7826   const size_t NumFields = 5;
7827   QualType FieldTypes[NumFields];
7828   const char *FieldNames[NumFields];
7829 
7830   // void *__stack;
7831   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
7832   FieldNames[0] = "__stack";
7833 
7834   // void *__gr_top;
7835   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
7836   FieldNames[1] = "__gr_top";
7837 
7838   // void *__vr_top;
7839   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7840   FieldNames[2] = "__vr_top";
7841 
7842   // int __gr_offs;
7843   FieldTypes[3] = Context->IntTy;
7844   FieldNames[3] = "__gr_offs";
7845 
7846   // int __vr_offs;
7847   FieldTypes[4] = Context->IntTy;
7848   FieldNames[4] = "__vr_offs";
7849 
7850   // Create fields
7851   for (unsigned i = 0; i < NumFields; ++i) {
7852     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7853                                          VaListTagDecl,
7854                                          SourceLocation(),
7855                                          SourceLocation(),
7856                                          &Context->Idents.get(FieldNames[i]),
7857                                          FieldTypes[i], /*TInfo=*/nullptr,
7858                                          /*BitWidth=*/nullptr,
7859                                          /*Mutable=*/false,
7860                                          ICIS_NoInit);
7861     Field->setAccess(AS_public);
7862     VaListTagDecl->addDecl(Field);
7863   }
7864   VaListTagDecl->completeDefinition();
7865   Context->VaListTagDecl = VaListTagDecl;
7866   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7867 
7868   // } __builtin_va_list;
7869   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
7870 }
7871 
7872 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
7873   // typedef struct __va_list_tag {
7874   RecordDecl *VaListTagDecl;
7875 
7876   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7877   VaListTagDecl->startDefinition();
7878 
7879   const size_t NumFields = 5;
7880   QualType FieldTypes[NumFields];
7881   const char *FieldNames[NumFields];
7882 
7883   //   unsigned char gpr;
7884   FieldTypes[0] = Context->UnsignedCharTy;
7885   FieldNames[0] = "gpr";
7886 
7887   //   unsigned char fpr;
7888   FieldTypes[1] = Context->UnsignedCharTy;
7889   FieldNames[1] = "fpr";
7890 
7891   //   unsigned short reserved;
7892   FieldTypes[2] = Context->UnsignedShortTy;
7893   FieldNames[2] = "reserved";
7894 
7895   //   void* overflow_arg_area;
7896   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7897   FieldNames[3] = "overflow_arg_area";
7898 
7899   //   void* reg_save_area;
7900   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
7901   FieldNames[4] = "reg_save_area";
7902 
7903   // Create fields
7904   for (unsigned i = 0; i < NumFields; ++i) {
7905     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
7906                                          SourceLocation(),
7907                                          SourceLocation(),
7908                                          &Context->Idents.get(FieldNames[i]),
7909                                          FieldTypes[i], /*TInfo=*/nullptr,
7910                                          /*BitWidth=*/nullptr,
7911                                          /*Mutable=*/false,
7912                                          ICIS_NoInit);
7913     Field->setAccess(AS_public);
7914     VaListTagDecl->addDecl(Field);
7915   }
7916   VaListTagDecl->completeDefinition();
7917   Context->VaListTagDecl = VaListTagDecl;
7918   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7919 
7920   // } __va_list_tag;
7921   TypedefDecl *VaListTagTypedefDecl =
7922       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
7923 
7924   QualType VaListTagTypedefType =
7925     Context->getTypedefType(VaListTagTypedefDecl);
7926 
7927   // typedef __va_list_tag __builtin_va_list[1];
7928   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7929   QualType VaListTagArrayType
7930     = Context->getConstantArrayType(VaListTagTypedefType,
7931                                     Size, nullptr, ArrayType::Normal, 0);
7932   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7933 }
7934 
7935 static TypedefDecl *
7936 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
7937   // struct __va_list_tag {
7938   RecordDecl *VaListTagDecl;
7939   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7940   VaListTagDecl->startDefinition();
7941 
7942   const size_t NumFields = 4;
7943   QualType FieldTypes[NumFields];
7944   const char *FieldNames[NumFields];
7945 
7946   //   unsigned gp_offset;
7947   FieldTypes[0] = Context->UnsignedIntTy;
7948   FieldNames[0] = "gp_offset";
7949 
7950   //   unsigned fp_offset;
7951   FieldTypes[1] = Context->UnsignedIntTy;
7952   FieldNames[1] = "fp_offset";
7953 
7954   //   void* overflow_arg_area;
7955   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7956   FieldNames[2] = "overflow_arg_area";
7957 
7958   //   void* reg_save_area;
7959   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7960   FieldNames[3] = "reg_save_area";
7961 
7962   // Create fields
7963   for (unsigned i = 0; i < NumFields; ++i) {
7964     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7965                                          VaListTagDecl,
7966                                          SourceLocation(),
7967                                          SourceLocation(),
7968                                          &Context->Idents.get(FieldNames[i]),
7969                                          FieldTypes[i], /*TInfo=*/nullptr,
7970                                          /*BitWidth=*/nullptr,
7971                                          /*Mutable=*/false,
7972                                          ICIS_NoInit);
7973     Field->setAccess(AS_public);
7974     VaListTagDecl->addDecl(Field);
7975   }
7976   VaListTagDecl->completeDefinition();
7977   Context->VaListTagDecl = VaListTagDecl;
7978   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7979 
7980   // };
7981 
7982   // typedef struct __va_list_tag __builtin_va_list[1];
7983   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7984   QualType VaListTagArrayType = Context->getConstantArrayType(
7985       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
7986   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7987 }
7988 
7989 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
7990   // typedef int __builtin_va_list[4];
7991   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
7992   QualType IntArrayType = Context->getConstantArrayType(
7993       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
7994   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
7995 }
7996 
7997 static TypedefDecl *
7998 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
7999   // struct __va_list
8000   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8001   if (Context->getLangOpts().CPlusPlus) {
8002     // namespace std { struct __va_list {
8003     NamespaceDecl *NS;
8004     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8005                                Context->getTranslationUnitDecl(),
8006                                /*Inline*/false, SourceLocation(),
8007                                SourceLocation(), &Context->Idents.get("std"),
8008                                /*PrevDecl*/ nullptr);
8009     NS->setImplicit();
8010     VaListDecl->setDeclContext(NS);
8011   }
8012 
8013   VaListDecl->startDefinition();
8014 
8015   // void * __ap;
8016   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8017                                        VaListDecl,
8018                                        SourceLocation(),
8019                                        SourceLocation(),
8020                                        &Context->Idents.get("__ap"),
8021                                        Context->getPointerType(Context->VoidTy),
8022                                        /*TInfo=*/nullptr,
8023                                        /*BitWidth=*/nullptr,
8024                                        /*Mutable=*/false,
8025                                        ICIS_NoInit);
8026   Field->setAccess(AS_public);
8027   VaListDecl->addDecl(Field);
8028 
8029   // };
8030   VaListDecl->completeDefinition();
8031   Context->VaListTagDecl = VaListDecl;
8032 
8033   // typedef struct __va_list __builtin_va_list;
8034   QualType T = Context->getRecordType(VaListDecl);
8035   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8036 }
8037 
8038 static TypedefDecl *
8039 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8040   // struct __va_list_tag {
8041   RecordDecl *VaListTagDecl;
8042   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8043   VaListTagDecl->startDefinition();
8044 
8045   const size_t NumFields = 4;
8046   QualType FieldTypes[NumFields];
8047   const char *FieldNames[NumFields];
8048 
8049   //   long __gpr;
8050   FieldTypes[0] = Context->LongTy;
8051   FieldNames[0] = "__gpr";
8052 
8053   //   long __fpr;
8054   FieldTypes[1] = Context->LongTy;
8055   FieldNames[1] = "__fpr";
8056 
8057   //   void *__overflow_arg_area;
8058   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8059   FieldNames[2] = "__overflow_arg_area";
8060 
8061   //   void *__reg_save_area;
8062   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8063   FieldNames[3] = "__reg_save_area";
8064 
8065   // Create fields
8066   for (unsigned i = 0; i < NumFields; ++i) {
8067     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8068                                          VaListTagDecl,
8069                                          SourceLocation(),
8070                                          SourceLocation(),
8071                                          &Context->Idents.get(FieldNames[i]),
8072                                          FieldTypes[i], /*TInfo=*/nullptr,
8073                                          /*BitWidth=*/nullptr,
8074                                          /*Mutable=*/false,
8075                                          ICIS_NoInit);
8076     Field->setAccess(AS_public);
8077     VaListTagDecl->addDecl(Field);
8078   }
8079   VaListTagDecl->completeDefinition();
8080   Context->VaListTagDecl = VaListTagDecl;
8081   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8082 
8083   // };
8084 
8085   // typedef __va_list_tag __builtin_va_list[1];
8086   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8087   QualType VaListTagArrayType = Context->getConstantArrayType(
8088       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8089 
8090   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8091 }
8092 
8093 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
8094   // typedef struct __va_list_tag {
8095   RecordDecl *VaListTagDecl;
8096   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8097   VaListTagDecl->startDefinition();
8098 
8099   const size_t NumFields = 3;
8100   QualType FieldTypes[NumFields];
8101   const char *FieldNames[NumFields];
8102 
8103   //   void *CurrentSavedRegisterArea;
8104   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8105   FieldNames[0] = "__current_saved_reg_area_pointer";
8106 
8107   //   void *SavedRegAreaEnd;
8108   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8109   FieldNames[1] = "__saved_reg_area_end_pointer";
8110 
8111   //   void *OverflowArea;
8112   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8113   FieldNames[2] = "__overflow_area_pointer";
8114 
8115   // Create fields
8116   for (unsigned i = 0; i < NumFields; ++i) {
8117     FieldDecl *Field = FieldDecl::Create(
8118         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
8119         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
8120         /*TInfo=*/0,
8121         /*BitWidth=*/0,
8122         /*Mutable=*/false, ICIS_NoInit);
8123     Field->setAccess(AS_public);
8124     VaListTagDecl->addDecl(Field);
8125   }
8126   VaListTagDecl->completeDefinition();
8127   Context->VaListTagDecl = VaListTagDecl;
8128   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8129 
8130   // } __va_list_tag;
8131   TypedefDecl *VaListTagTypedefDecl =
8132       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8133 
8134   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
8135 
8136   // typedef __va_list_tag __builtin_va_list[1];
8137   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8138   QualType VaListTagArrayType = Context->getConstantArrayType(
8139       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
8140 
8141   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8142 }
8143 
8144 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
8145                                      TargetInfo::BuiltinVaListKind Kind) {
8146   switch (Kind) {
8147   case TargetInfo::CharPtrBuiltinVaList:
8148     return CreateCharPtrBuiltinVaListDecl(Context);
8149   case TargetInfo::VoidPtrBuiltinVaList:
8150     return CreateVoidPtrBuiltinVaListDecl(Context);
8151   case TargetInfo::AArch64ABIBuiltinVaList:
8152     return CreateAArch64ABIBuiltinVaListDecl(Context);
8153   case TargetInfo::PowerABIBuiltinVaList:
8154     return CreatePowerABIBuiltinVaListDecl(Context);
8155   case TargetInfo::X86_64ABIBuiltinVaList:
8156     return CreateX86_64ABIBuiltinVaListDecl(Context);
8157   case TargetInfo::PNaClABIBuiltinVaList:
8158     return CreatePNaClABIBuiltinVaListDecl(Context);
8159   case TargetInfo::AAPCSABIBuiltinVaList:
8160     return CreateAAPCSABIBuiltinVaListDecl(Context);
8161   case TargetInfo::SystemZBuiltinVaList:
8162     return CreateSystemZBuiltinVaListDecl(Context);
8163   case TargetInfo::HexagonBuiltinVaList:
8164     return CreateHexagonBuiltinVaListDecl(Context);
8165   }
8166 
8167   llvm_unreachable("Unhandled __builtin_va_list type kind");
8168 }
8169 
8170 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
8171   if (!BuiltinVaListDecl) {
8172     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
8173     assert(BuiltinVaListDecl->isImplicit());
8174   }
8175 
8176   return BuiltinVaListDecl;
8177 }
8178 
8179 Decl *ASTContext::getVaListTagDecl() const {
8180   // Force the creation of VaListTagDecl by building the __builtin_va_list
8181   // declaration.
8182   if (!VaListTagDecl)
8183     (void)getBuiltinVaListDecl();
8184 
8185   return VaListTagDecl;
8186 }
8187 
8188 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
8189   if (!BuiltinMSVaListDecl)
8190     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
8191 
8192   return BuiltinMSVaListDecl;
8193 }
8194 
8195 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
8196   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
8197 }
8198 
8199 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
8200   assert(ObjCConstantStringType.isNull() &&
8201          "'NSConstantString' type already set!");
8202 
8203   ObjCConstantStringType = getObjCInterfaceType(Decl);
8204 }
8205 
8206 /// Retrieve the template name that corresponds to a non-empty
8207 /// lookup.
8208 TemplateName
8209 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
8210                                       UnresolvedSetIterator End) const {
8211   unsigned size = End - Begin;
8212   assert(size > 1 && "set is not overloaded!");
8213 
8214   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
8215                           size * sizeof(FunctionTemplateDecl*));
8216   auto *OT = new (memory) OverloadedTemplateStorage(size);
8217 
8218   NamedDecl **Storage = OT->getStorage();
8219   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
8220     NamedDecl *D = *I;
8221     assert(isa<FunctionTemplateDecl>(D) ||
8222            isa<UnresolvedUsingValueDecl>(D) ||
8223            (isa<UsingShadowDecl>(D) &&
8224             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
8225     *Storage++ = D;
8226   }
8227 
8228   return TemplateName(OT);
8229 }
8230 
8231 /// Retrieve a template name representing an unqualified-id that has been
8232 /// assumed to name a template for ADL purposes.
8233 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
8234   auto *OT = new (*this) AssumedTemplateStorage(Name);
8235   return TemplateName(OT);
8236 }
8237 
8238 /// Retrieve the template name that represents a qualified
8239 /// template name such as \c std::vector.
8240 TemplateName
8241 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
8242                                      bool TemplateKeyword,
8243                                      TemplateDecl *Template) const {
8244   assert(NNS && "Missing nested-name-specifier in qualified template name");
8245 
8246   // FIXME: Canonicalization?
8247   llvm::FoldingSetNodeID ID;
8248   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
8249 
8250   void *InsertPos = nullptr;
8251   QualifiedTemplateName *QTN =
8252     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8253   if (!QTN) {
8254     QTN = new (*this, alignof(QualifiedTemplateName))
8255         QualifiedTemplateName(NNS, TemplateKeyword, Template);
8256     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
8257   }
8258 
8259   return TemplateName(QTN);
8260 }
8261 
8262 /// Retrieve the template name that represents a dependent
8263 /// template name such as \c MetaFun::template apply.
8264 TemplateName
8265 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8266                                      const IdentifierInfo *Name) const {
8267   assert((!NNS || NNS->isDependent()) &&
8268          "Nested name specifier must be dependent");
8269 
8270   llvm::FoldingSetNodeID ID;
8271   DependentTemplateName::Profile(ID, NNS, Name);
8272 
8273   void *InsertPos = nullptr;
8274   DependentTemplateName *QTN =
8275     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8276 
8277   if (QTN)
8278     return TemplateName(QTN);
8279 
8280   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8281   if (CanonNNS == NNS) {
8282     QTN = new (*this, alignof(DependentTemplateName))
8283         DependentTemplateName(NNS, Name);
8284   } else {
8285     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
8286     QTN = new (*this, alignof(DependentTemplateName))
8287         DependentTemplateName(NNS, Name, Canon);
8288     DependentTemplateName *CheckQTN =
8289       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8290     assert(!CheckQTN && "Dependent type name canonicalization broken");
8291     (void)CheckQTN;
8292   }
8293 
8294   DependentTemplateNames.InsertNode(QTN, InsertPos);
8295   return TemplateName(QTN);
8296 }
8297 
8298 /// Retrieve the template name that represents a dependent
8299 /// template name such as \c MetaFun::template operator+.
8300 TemplateName
8301 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8302                                      OverloadedOperatorKind Operator) const {
8303   assert((!NNS || NNS->isDependent()) &&
8304          "Nested name specifier must be dependent");
8305 
8306   llvm::FoldingSetNodeID ID;
8307   DependentTemplateName::Profile(ID, NNS, Operator);
8308 
8309   void *InsertPos = nullptr;
8310   DependentTemplateName *QTN
8311     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8312 
8313   if (QTN)
8314     return TemplateName(QTN);
8315 
8316   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8317   if (CanonNNS == NNS) {
8318     QTN = new (*this, alignof(DependentTemplateName))
8319         DependentTemplateName(NNS, Operator);
8320   } else {
8321     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
8322     QTN = new (*this, alignof(DependentTemplateName))
8323         DependentTemplateName(NNS, Operator, Canon);
8324 
8325     DependentTemplateName *CheckQTN
8326       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8327     assert(!CheckQTN && "Dependent template name canonicalization broken");
8328     (void)CheckQTN;
8329   }
8330 
8331   DependentTemplateNames.InsertNode(QTN, InsertPos);
8332   return TemplateName(QTN);
8333 }
8334 
8335 TemplateName
8336 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
8337                                          TemplateName replacement) const {
8338   llvm::FoldingSetNodeID ID;
8339   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
8340 
8341   void *insertPos = nullptr;
8342   SubstTemplateTemplateParmStorage *subst
8343     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
8344 
8345   if (!subst) {
8346     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
8347     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
8348   }
8349 
8350   return TemplateName(subst);
8351 }
8352 
8353 TemplateName
8354 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
8355                                        const TemplateArgument &ArgPack) const {
8356   auto &Self = const_cast<ASTContext &>(*this);
8357   llvm::FoldingSetNodeID ID;
8358   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
8359 
8360   void *InsertPos = nullptr;
8361   SubstTemplateTemplateParmPackStorage *Subst
8362     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
8363 
8364   if (!Subst) {
8365     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
8366                                                            ArgPack.pack_size(),
8367                                                          ArgPack.pack_begin());
8368     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
8369   }
8370 
8371   return TemplateName(Subst);
8372 }
8373 
8374 /// getFromTargetType - Given one of the integer types provided by
8375 /// TargetInfo, produce the corresponding type. The unsigned @p Type
8376 /// is actually a value of type @c TargetInfo::IntType.
8377 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
8378   switch (Type) {
8379   case TargetInfo::NoInt: return {};
8380   case TargetInfo::SignedChar: return SignedCharTy;
8381   case TargetInfo::UnsignedChar: return UnsignedCharTy;
8382   case TargetInfo::SignedShort: return ShortTy;
8383   case TargetInfo::UnsignedShort: return UnsignedShortTy;
8384   case TargetInfo::SignedInt: return IntTy;
8385   case TargetInfo::UnsignedInt: return UnsignedIntTy;
8386   case TargetInfo::SignedLong: return LongTy;
8387   case TargetInfo::UnsignedLong: return UnsignedLongTy;
8388   case TargetInfo::SignedLongLong: return LongLongTy;
8389   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
8390   }
8391 
8392   llvm_unreachable("Unhandled TargetInfo::IntType value");
8393 }
8394 
8395 //===----------------------------------------------------------------------===//
8396 //                        Type Predicates.
8397 //===----------------------------------------------------------------------===//
8398 
8399 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
8400 /// garbage collection attribute.
8401 ///
8402 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
8403   if (getLangOpts().getGC() == LangOptions::NonGC)
8404     return Qualifiers::GCNone;
8405 
8406   assert(getLangOpts().ObjC);
8407   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
8408 
8409   // Default behaviour under objective-C's gc is for ObjC pointers
8410   // (or pointers to them) be treated as though they were declared
8411   // as __strong.
8412   if (GCAttrs == Qualifiers::GCNone) {
8413     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
8414       return Qualifiers::Strong;
8415     else if (Ty->isPointerType())
8416       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
8417   } else {
8418     // It's not valid to set GC attributes on anything that isn't a
8419     // pointer.
8420 #ifndef NDEBUG
8421     QualType CT = Ty->getCanonicalTypeInternal();
8422     while (const auto *AT = dyn_cast<ArrayType>(CT))
8423       CT = AT->getElementType();
8424     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
8425 #endif
8426   }
8427   return GCAttrs;
8428 }
8429 
8430 //===----------------------------------------------------------------------===//
8431 //                        Type Compatibility Testing
8432 //===----------------------------------------------------------------------===//
8433 
8434 /// areCompatVectorTypes - Return true if the two specified vector types are
8435 /// compatible.
8436 static bool areCompatVectorTypes(const VectorType *LHS,
8437                                  const VectorType *RHS) {
8438   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8439   return LHS->getElementType() == RHS->getElementType() &&
8440          LHS->getNumElements() == RHS->getNumElements();
8441 }
8442 
8443 /// areCompatMatrixTypes - Return true if the two specified matrix types are
8444 /// compatible.
8445 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
8446                                  const ConstantMatrixType *RHS) {
8447   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8448   return LHS->getElementType() == RHS->getElementType() &&
8449          LHS->getNumRows() == RHS->getNumRows() &&
8450          LHS->getNumColumns() == RHS->getNumColumns();
8451 }
8452 
8453 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
8454                                           QualType SecondVec) {
8455   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
8456   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
8457 
8458   if (hasSameUnqualifiedType(FirstVec, SecondVec))
8459     return true;
8460 
8461   // Treat Neon vector types and most AltiVec vector types as if they are the
8462   // equivalent GCC vector types.
8463   const auto *First = FirstVec->castAs<VectorType>();
8464   const auto *Second = SecondVec->castAs<VectorType>();
8465   if (First->getNumElements() == Second->getNumElements() &&
8466       hasSameType(First->getElementType(), Second->getElementType()) &&
8467       First->getVectorKind() != VectorType::AltiVecPixel &&
8468       First->getVectorKind() != VectorType::AltiVecBool &&
8469       Second->getVectorKind() != VectorType::AltiVecPixel &&
8470       Second->getVectorKind() != VectorType::AltiVecBool)
8471     return true;
8472 
8473   return false;
8474 }
8475 
8476 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
8477   while (true) {
8478     // __strong id
8479     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
8480       if (Attr->getAttrKind() == attr::ObjCOwnership)
8481         return true;
8482 
8483       Ty = Attr->getModifiedType();
8484 
8485     // X *__strong (...)
8486     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
8487       Ty = Paren->getInnerType();
8488 
8489     // We do not want to look through typedefs, typeof(expr),
8490     // typeof(type), or any other way that the type is somehow
8491     // abstracted.
8492     } else {
8493       return false;
8494     }
8495   }
8496 }
8497 
8498 //===----------------------------------------------------------------------===//
8499 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
8500 //===----------------------------------------------------------------------===//
8501 
8502 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
8503 /// inheritance hierarchy of 'rProto'.
8504 bool
8505 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
8506                                            ObjCProtocolDecl *rProto) const {
8507   if (declaresSameEntity(lProto, rProto))
8508     return true;
8509   for (auto *PI : rProto->protocols())
8510     if (ProtocolCompatibleWithProtocol(lProto, PI))
8511       return true;
8512   return false;
8513 }
8514 
8515 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
8516 /// Class<pr1, ...>.
8517 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
8518     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
8519   for (auto *lhsProto : lhs->quals()) {
8520     bool match = false;
8521     for (auto *rhsProto : rhs->quals()) {
8522       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
8523         match = true;
8524         break;
8525       }
8526     }
8527     if (!match)
8528       return false;
8529   }
8530   return true;
8531 }
8532 
8533 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
8534 /// ObjCQualifiedIDType.
8535 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
8536     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
8537     bool compare) {
8538   // Allow id<P..> and an 'id' in all cases.
8539   if (lhs->isObjCIdType() || rhs->isObjCIdType())
8540     return true;
8541 
8542   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
8543   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
8544       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
8545     return false;
8546 
8547   if (lhs->isObjCQualifiedIdType()) {
8548     if (rhs->qual_empty()) {
8549       // If the RHS is a unqualified interface pointer "NSString*",
8550       // make sure we check the class hierarchy.
8551       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8552         for (auto *I : lhs->quals()) {
8553           // when comparing an id<P> on lhs with a static type on rhs,
8554           // see if static class implements all of id's protocols, directly or
8555           // through its super class and categories.
8556           if (!rhsID->ClassImplementsProtocol(I, true))
8557             return false;
8558         }
8559       }
8560       // If there are no qualifiers and no interface, we have an 'id'.
8561       return true;
8562     }
8563     // Both the right and left sides have qualifiers.
8564     for (auto *lhsProto : lhs->quals()) {
8565       bool match = false;
8566 
8567       // when comparing an id<P> on lhs with a static type on rhs,
8568       // see if static class implements all of id's protocols, directly or
8569       // through its super class and categories.
8570       for (auto *rhsProto : rhs->quals()) {
8571         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8572             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8573           match = true;
8574           break;
8575         }
8576       }
8577       // If the RHS is a qualified interface pointer "NSString<P>*",
8578       // make sure we check the class hierarchy.
8579       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8580         for (auto *I : lhs->quals()) {
8581           // when comparing an id<P> on lhs with a static type on rhs,
8582           // see if static class implements all of id's protocols, directly or
8583           // through its super class and categories.
8584           if (rhsID->ClassImplementsProtocol(I, true)) {
8585             match = true;
8586             break;
8587           }
8588         }
8589       }
8590       if (!match)
8591         return false;
8592     }
8593 
8594     return true;
8595   }
8596 
8597   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
8598 
8599   if (lhs->getInterfaceType()) {
8600     // If both the right and left sides have qualifiers.
8601     for (auto *lhsProto : lhs->quals()) {
8602       bool match = false;
8603 
8604       // when comparing an id<P> on rhs with a static type on lhs,
8605       // see if static class implements all of id's protocols, directly or
8606       // through its super class and categories.
8607       // First, lhs protocols in the qualifier list must be found, direct
8608       // or indirect in rhs's qualifier list or it is a mismatch.
8609       for (auto *rhsProto : rhs->quals()) {
8610         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8611             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8612           match = true;
8613           break;
8614         }
8615       }
8616       if (!match)
8617         return false;
8618     }
8619 
8620     // Static class's protocols, or its super class or category protocols
8621     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
8622     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
8623       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
8624       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
8625       // This is rather dubious but matches gcc's behavior. If lhs has
8626       // no type qualifier and its class has no static protocol(s)
8627       // assume that it is mismatch.
8628       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
8629         return false;
8630       for (auto *lhsProto : LHSInheritedProtocols) {
8631         bool match = false;
8632         for (auto *rhsProto : rhs->quals()) {
8633           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8634               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8635             match = true;
8636             break;
8637           }
8638         }
8639         if (!match)
8640           return false;
8641       }
8642     }
8643     return true;
8644   }
8645   return false;
8646 }
8647 
8648 /// canAssignObjCInterfaces - Return true if the two interface types are
8649 /// compatible for assignment from RHS to LHS.  This handles validation of any
8650 /// protocol qualifiers on the LHS or RHS.
8651 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
8652                                          const ObjCObjectPointerType *RHSOPT) {
8653   const ObjCObjectType* LHS = LHSOPT->getObjectType();
8654   const ObjCObjectType* RHS = RHSOPT->getObjectType();
8655 
8656   // If either type represents the built-in 'id' type, return true.
8657   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
8658     return true;
8659 
8660   // Function object that propagates a successful result or handles
8661   // __kindof types.
8662   auto finish = [&](bool succeeded) -> bool {
8663     if (succeeded)
8664       return true;
8665 
8666     if (!RHS->isKindOfType())
8667       return false;
8668 
8669     // Strip off __kindof and protocol qualifiers, then check whether
8670     // we can assign the other way.
8671     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8672                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
8673   };
8674 
8675   // Casts from or to id<P> are allowed when the other side has compatible
8676   // protocols.
8677   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
8678     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
8679   }
8680 
8681   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
8682   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
8683     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
8684   }
8685 
8686   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
8687   if (LHS->isObjCClass() && RHS->isObjCClass()) {
8688     return true;
8689   }
8690 
8691   // If we have 2 user-defined types, fall into that path.
8692   if (LHS->getInterface() && RHS->getInterface()) {
8693     return finish(canAssignObjCInterfaces(LHS, RHS));
8694   }
8695 
8696   return false;
8697 }
8698 
8699 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
8700 /// for providing type-safety for objective-c pointers used to pass/return
8701 /// arguments in block literals. When passed as arguments, passing 'A*' where
8702 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
8703 /// not OK. For the return type, the opposite is not OK.
8704 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
8705                                          const ObjCObjectPointerType *LHSOPT,
8706                                          const ObjCObjectPointerType *RHSOPT,
8707                                          bool BlockReturnType) {
8708 
8709   // Function object that propagates a successful result or handles
8710   // __kindof types.
8711   auto finish = [&](bool succeeded) -> bool {
8712     if (succeeded)
8713       return true;
8714 
8715     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
8716     if (!Expected->isKindOfType())
8717       return false;
8718 
8719     // Strip off __kindof and protocol qualifiers, then check whether
8720     // we can assign the other way.
8721     return canAssignObjCInterfacesInBlockPointer(
8722              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8723              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
8724              BlockReturnType);
8725   };
8726 
8727   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
8728     return true;
8729 
8730   if (LHSOPT->isObjCBuiltinType()) {
8731     return finish(RHSOPT->isObjCBuiltinType() ||
8732                   RHSOPT->isObjCQualifiedIdType());
8733   }
8734 
8735   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
8736     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
8737       // Use for block parameters previous type checking for compatibility.
8738       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
8739                     // Or corrected type checking as in non-compat mode.
8740                     (!BlockReturnType &&
8741                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
8742     else
8743       return finish(ObjCQualifiedIdTypesAreCompatible(
8744           (BlockReturnType ? LHSOPT : RHSOPT),
8745           (BlockReturnType ? RHSOPT : LHSOPT), false));
8746   }
8747 
8748   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
8749   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
8750   if (LHS && RHS)  { // We have 2 user-defined types.
8751     if (LHS != RHS) {
8752       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
8753         return finish(BlockReturnType);
8754       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
8755         return finish(!BlockReturnType);
8756     }
8757     else
8758       return true;
8759   }
8760   return false;
8761 }
8762 
8763 /// Comparison routine for Objective-C protocols to be used with
8764 /// llvm::array_pod_sort.
8765 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
8766                                       ObjCProtocolDecl * const *rhs) {
8767   return (*lhs)->getName().compare((*rhs)->getName());
8768 }
8769 
8770 /// getIntersectionOfProtocols - This routine finds the intersection of set
8771 /// of protocols inherited from two distinct objective-c pointer objects with
8772 /// the given common base.
8773 /// It is used to build composite qualifier list of the composite type of
8774 /// the conditional expression involving two objective-c pointer objects.
8775 static
8776 void getIntersectionOfProtocols(ASTContext &Context,
8777                                 const ObjCInterfaceDecl *CommonBase,
8778                                 const ObjCObjectPointerType *LHSOPT,
8779                                 const ObjCObjectPointerType *RHSOPT,
8780       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
8781 
8782   const ObjCObjectType* LHS = LHSOPT->getObjectType();
8783   const ObjCObjectType* RHS = RHSOPT->getObjectType();
8784   assert(LHS->getInterface() && "LHS must have an interface base");
8785   assert(RHS->getInterface() && "RHS must have an interface base");
8786 
8787   // Add all of the protocols for the LHS.
8788   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
8789 
8790   // Start with the protocol qualifiers.
8791   for (auto proto : LHS->quals()) {
8792     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
8793   }
8794 
8795   // Also add the protocols associated with the LHS interface.
8796   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
8797 
8798   // Add all of the protocols for the RHS.
8799   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
8800 
8801   // Start with the protocol qualifiers.
8802   for (auto proto : RHS->quals()) {
8803     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
8804   }
8805 
8806   // Also add the protocols associated with the RHS interface.
8807   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
8808 
8809   // Compute the intersection of the collected protocol sets.
8810   for (auto proto : LHSProtocolSet) {
8811     if (RHSProtocolSet.count(proto))
8812       IntersectionSet.push_back(proto);
8813   }
8814 
8815   // Compute the set of protocols that is implied by either the common type or
8816   // the protocols within the intersection.
8817   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
8818   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
8819 
8820   // Remove any implied protocols from the list of inherited protocols.
8821   if (!ImpliedProtocols.empty()) {
8822     IntersectionSet.erase(
8823       std::remove_if(IntersectionSet.begin(),
8824                      IntersectionSet.end(),
8825                      [&](ObjCProtocolDecl *proto) -> bool {
8826                        return ImpliedProtocols.count(proto) > 0;
8827                      }),
8828       IntersectionSet.end());
8829   }
8830 
8831   // Sort the remaining protocols by name.
8832   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
8833                        compareObjCProtocolsByName);
8834 }
8835 
8836 /// Determine whether the first type is a subtype of the second.
8837 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
8838                                      QualType rhs) {
8839   // Common case: two object pointers.
8840   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
8841   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
8842   if (lhsOPT && rhsOPT)
8843     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
8844 
8845   // Two block pointers.
8846   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
8847   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
8848   if (lhsBlock && rhsBlock)
8849     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
8850 
8851   // If either is an unqualified 'id' and the other is a block, it's
8852   // acceptable.
8853   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
8854       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
8855     return true;
8856 
8857   return false;
8858 }
8859 
8860 // Check that the given Objective-C type argument lists are equivalent.
8861 static bool sameObjCTypeArgs(ASTContext &ctx,
8862                              const ObjCInterfaceDecl *iface,
8863                              ArrayRef<QualType> lhsArgs,
8864                              ArrayRef<QualType> rhsArgs,
8865                              bool stripKindOf) {
8866   if (lhsArgs.size() != rhsArgs.size())
8867     return false;
8868 
8869   ObjCTypeParamList *typeParams = iface->getTypeParamList();
8870   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
8871     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
8872       continue;
8873 
8874     switch (typeParams->begin()[i]->getVariance()) {
8875     case ObjCTypeParamVariance::Invariant:
8876       if (!stripKindOf ||
8877           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
8878                            rhsArgs[i].stripObjCKindOfType(ctx))) {
8879         return false;
8880       }
8881       break;
8882 
8883     case ObjCTypeParamVariance::Covariant:
8884       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
8885         return false;
8886       break;
8887 
8888     case ObjCTypeParamVariance::Contravariant:
8889       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
8890         return false;
8891       break;
8892     }
8893   }
8894 
8895   return true;
8896 }
8897 
8898 QualType ASTContext::areCommonBaseCompatible(
8899            const ObjCObjectPointerType *Lptr,
8900            const ObjCObjectPointerType *Rptr) {
8901   const ObjCObjectType *LHS = Lptr->getObjectType();
8902   const ObjCObjectType *RHS = Rptr->getObjectType();
8903   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
8904   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
8905 
8906   if (!LDecl || !RDecl)
8907     return {};
8908 
8909   // When either LHS or RHS is a kindof type, we should return a kindof type.
8910   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
8911   // kindof(A).
8912   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
8913 
8914   // Follow the left-hand side up the class hierarchy until we either hit a
8915   // root or find the RHS. Record the ancestors in case we don't find it.
8916   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
8917     LHSAncestors;
8918   while (true) {
8919     // Record this ancestor. We'll need this if the common type isn't in the
8920     // path from the LHS to the root.
8921     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
8922 
8923     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
8924       // Get the type arguments.
8925       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
8926       bool anyChanges = false;
8927       if (LHS->isSpecialized() && RHS->isSpecialized()) {
8928         // Both have type arguments, compare them.
8929         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8930                               LHS->getTypeArgs(), RHS->getTypeArgs(),
8931                               /*stripKindOf=*/true))
8932           return {};
8933       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8934         // If only one has type arguments, the result will not have type
8935         // arguments.
8936         LHSTypeArgs = {};
8937         anyChanges = true;
8938       }
8939 
8940       // Compute the intersection of protocols.
8941       SmallVector<ObjCProtocolDecl *, 8> Protocols;
8942       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
8943                                  Protocols);
8944       if (!Protocols.empty())
8945         anyChanges = true;
8946 
8947       // If anything in the LHS will have changed, build a new result type.
8948       // If we need to return a kindof type but LHS is not a kindof type, we
8949       // build a new result type.
8950       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
8951         QualType Result = getObjCInterfaceType(LHS->getInterface());
8952         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
8953                                    anyKindOf || LHS->isKindOfType());
8954         return getObjCObjectPointerType(Result);
8955       }
8956 
8957       return getObjCObjectPointerType(QualType(LHS, 0));
8958     }
8959 
8960     // Find the superclass.
8961     QualType LHSSuperType = LHS->getSuperClassType();
8962     if (LHSSuperType.isNull())
8963       break;
8964 
8965     LHS = LHSSuperType->castAs<ObjCObjectType>();
8966   }
8967 
8968   // We didn't find anything by following the LHS to its root; now check
8969   // the RHS against the cached set of ancestors.
8970   while (true) {
8971     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
8972     if (KnownLHS != LHSAncestors.end()) {
8973       LHS = KnownLHS->second;
8974 
8975       // Get the type arguments.
8976       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
8977       bool anyChanges = false;
8978       if (LHS->isSpecialized() && RHS->isSpecialized()) {
8979         // Both have type arguments, compare them.
8980         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8981                               LHS->getTypeArgs(), RHS->getTypeArgs(),
8982                               /*stripKindOf=*/true))
8983           return {};
8984       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8985         // If only one has type arguments, the result will not have type
8986         // arguments.
8987         RHSTypeArgs = {};
8988         anyChanges = true;
8989       }
8990 
8991       // Compute the intersection of protocols.
8992       SmallVector<ObjCProtocolDecl *, 8> Protocols;
8993       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
8994                                  Protocols);
8995       if (!Protocols.empty())
8996         anyChanges = true;
8997 
8998       // If we need to return a kindof type but RHS is not a kindof type, we
8999       // build a new result type.
9000       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
9001         QualType Result = getObjCInterfaceType(RHS->getInterface());
9002         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
9003                                    anyKindOf || RHS->isKindOfType());
9004         return getObjCObjectPointerType(Result);
9005       }
9006 
9007       return getObjCObjectPointerType(QualType(RHS, 0));
9008     }
9009 
9010     // Find the superclass of the RHS.
9011     QualType RHSSuperType = RHS->getSuperClassType();
9012     if (RHSSuperType.isNull())
9013       break;
9014 
9015     RHS = RHSSuperType->castAs<ObjCObjectType>();
9016   }
9017 
9018   return {};
9019 }
9020 
9021 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
9022                                          const ObjCObjectType *RHS) {
9023   assert(LHS->getInterface() && "LHS is not an interface type");
9024   assert(RHS->getInterface() && "RHS is not an interface type");
9025 
9026   // Verify that the base decls are compatible: the RHS must be a subclass of
9027   // the LHS.
9028   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
9029   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
9030   if (!IsSuperClass)
9031     return false;
9032 
9033   // If the LHS has protocol qualifiers, determine whether all of them are
9034   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
9035   // LHS).
9036   if (LHS->getNumProtocols() > 0) {
9037     // OK if conversion of LHS to SuperClass results in narrowing of types
9038     // ; i.e., SuperClass may implement at least one of the protocols
9039     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
9040     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
9041     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
9042     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
9043     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
9044     // qualifiers.
9045     for (auto *RHSPI : RHS->quals())
9046       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
9047     // If there is no protocols associated with RHS, it is not a match.
9048     if (SuperClassInheritedProtocols.empty())
9049       return false;
9050 
9051     for (const auto *LHSProto : LHS->quals()) {
9052       bool SuperImplementsProtocol = false;
9053       for (auto *SuperClassProto : SuperClassInheritedProtocols)
9054         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
9055           SuperImplementsProtocol = true;
9056           break;
9057         }
9058       if (!SuperImplementsProtocol)
9059         return false;
9060     }
9061   }
9062 
9063   // If the LHS is specialized, we may need to check type arguments.
9064   if (LHS->isSpecialized()) {
9065     // Follow the superclass chain until we've matched the LHS class in the
9066     // hierarchy. This substitutes type arguments through.
9067     const ObjCObjectType *RHSSuper = RHS;
9068     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
9069       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
9070 
9071     // If the RHS is specializd, compare type arguments.
9072     if (RHSSuper->isSpecialized() &&
9073         !sameObjCTypeArgs(*this, LHS->getInterface(),
9074                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
9075                           /*stripKindOf=*/true)) {
9076       return false;
9077     }
9078   }
9079 
9080   return true;
9081 }
9082 
9083 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
9084   // get the "pointed to" types
9085   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
9086   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
9087 
9088   if (!LHSOPT || !RHSOPT)
9089     return false;
9090 
9091   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
9092          canAssignObjCInterfaces(RHSOPT, LHSOPT);
9093 }
9094 
9095 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
9096   return canAssignObjCInterfaces(
9097       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
9098       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
9099 }
9100 
9101 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
9102 /// both shall have the identically qualified version of a compatible type.
9103 /// C99 6.2.7p1: Two types have compatible types if their types are the
9104 /// same. See 6.7.[2,3,5] for additional rules.
9105 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
9106                                     bool CompareUnqualified) {
9107   if (getLangOpts().CPlusPlus)
9108     return hasSameType(LHS, RHS);
9109 
9110   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
9111 }
9112 
9113 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
9114   return typesAreCompatible(LHS, RHS);
9115 }
9116 
9117 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
9118   return !mergeTypes(LHS, RHS, true).isNull();
9119 }
9120 
9121 /// mergeTransparentUnionType - if T is a transparent union type and a member
9122 /// of T is compatible with SubType, return the merged type, else return
9123 /// QualType()
9124 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
9125                                                bool OfBlockPointer,
9126                                                bool Unqualified) {
9127   if (const RecordType *UT = T->getAsUnionType()) {
9128     RecordDecl *UD = UT->getDecl();
9129     if (UD->hasAttr<TransparentUnionAttr>()) {
9130       for (const auto *I : UD->fields()) {
9131         QualType ET = I->getType().getUnqualifiedType();
9132         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
9133         if (!MT.isNull())
9134           return MT;
9135       }
9136     }
9137   }
9138 
9139   return {};
9140 }
9141 
9142 /// mergeFunctionParameterTypes - merge two types which appear as function
9143 /// parameter types
9144 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
9145                                                  bool OfBlockPointer,
9146                                                  bool Unqualified) {
9147   // GNU extension: two types are compatible if they appear as a function
9148   // argument, one of the types is a transparent union type and the other
9149   // type is compatible with a union member
9150   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
9151                                               Unqualified);
9152   if (!lmerge.isNull())
9153     return lmerge;
9154 
9155   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
9156                                               Unqualified);
9157   if (!rmerge.isNull())
9158     return rmerge;
9159 
9160   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
9161 }
9162 
9163 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
9164                                         bool OfBlockPointer, bool Unqualified,
9165                                         bool AllowCXX) {
9166   const auto *lbase = lhs->castAs<FunctionType>();
9167   const auto *rbase = rhs->castAs<FunctionType>();
9168   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
9169   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
9170   bool allLTypes = true;
9171   bool allRTypes = true;
9172 
9173   // Check return type
9174   QualType retType;
9175   if (OfBlockPointer) {
9176     QualType RHS = rbase->getReturnType();
9177     QualType LHS = lbase->getReturnType();
9178     bool UnqualifiedResult = Unqualified;
9179     if (!UnqualifiedResult)
9180       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
9181     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
9182   }
9183   else
9184     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
9185                          Unqualified);
9186   if (retType.isNull())
9187     return {};
9188 
9189   if (Unqualified)
9190     retType = retType.getUnqualifiedType();
9191 
9192   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
9193   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
9194   if (Unqualified) {
9195     LRetType = LRetType.getUnqualifiedType();
9196     RRetType = RRetType.getUnqualifiedType();
9197   }
9198 
9199   if (getCanonicalType(retType) != LRetType)
9200     allLTypes = false;
9201   if (getCanonicalType(retType) != RRetType)
9202     allRTypes = false;
9203 
9204   // FIXME: double check this
9205   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
9206   //                           rbase->getRegParmAttr() != 0 &&
9207   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
9208   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
9209   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
9210 
9211   // Compatible functions must have compatible calling conventions
9212   if (lbaseInfo.getCC() != rbaseInfo.getCC())
9213     return {};
9214 
9215   // Regparm is part of the calling convention.
9216   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
9217     return {};
9218   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
9219     return {};
9220 
9221   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
9222     return {};
9223   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
9224     return {};
9225   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
9226     return {};
9227 
9228   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
9229   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
9230 
9231   if (lbaseInfo.getNoReturn() != NoReturn)
9232     allLTypes = false;
9233   if (rbaseInfo.getNoReturn() != NoReturn)
9234     allRTypes = false;
9235 
9236   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
9237 
9238   if (lproto && rproto) { // two C99 style function prototypes
9239     assert((AllowCXX ||
9240             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
9241            "C++ shouldn't be here");
9242     // Compatible functions must have the same number of parameters
9243     if (lproto->getNumParams() != rproto->getNumParams())
9244       return {};
9245 
9246     // Variadic and non-variadic functions aren't compatible
9247     if (lproto->isVariadic() != rproto->isVariadic())
9248       return {};
9249 
9250     if (lproto->getMethodQuals() != rproto->getMethodQuals())
9251       return {};
9252 
9253     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
9254     bool canUseLeft, canUseRight;
9255     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
9256                                newParamInfos))
9257       return {};
9258 
9259     if (!canUseLeft)
9260       allLTypes = false;
9261     if (!canUseRight)
9262       allRTypes = false;
9263 
9264     // Check parameter type compatibility
9265     SmallVector<QualType, 10> types;
9266     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
9267       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
9268       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
9269       QualType paramType = mergeFunctionParameterTypes(
9270           lParamType, rParamType, OfBlockPointer, Unqualified);
9271       if (paramType.isNull())
9272         return {};
9273 
9274       if (Unqualified)
9275         paramType = paramType.getUnqualifiedType();
9276 
9277       types.push_back(paramType);
9278       if (Unqualified) {
9279         lParamType = lParamType.getUnqualifiedType();
9280         rParamType = rParamType.getUnqualifiedType();
9281       }
9282 
9283       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
9284         allLTypes = false;
9285       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
9286         allRTypes = false;
9287     }
9288 
9289     if (allLTypes) return lhs;
9290     if (allRTypes) return rhs;
9291 
9292     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
9293     EPI.ExtInfo = einfo;
9294     EPI.ExtParameterInfos =
9295         newParamInfos.empty() ? nullptr : newParamInfos.data();
9296     return getFunctionType(retType, types, EPI);
9297   }
9298 
9299   if (lproto) allRTypes = false;
9300   if (rproto) allLTypes = false;
9301 
9302   const FunctionProtoType *proto = lproto ? lproto : rproto;
9303   if (proto) {
9304     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
9305     if (proto->isVariadic())
9306       return {};
9307     // Check that the types are compatible with the types that
9308     // would result from default argument promotions (C99 6.7.5.3p15).
9309     // The only types actually affected are promotable integer
9310     // types and floats, which would be passed as a different
9311     // type depending on whether the prototype is visible.
9312     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
9313       QualType paramTy = proto->getParamType(i);
9314 
9315       // Look at the converted type of enum types, since that is the type used
9316       // to pass enum values.
9317       if (const auto *Enum = paramTy->getAs<EnumType>()) {
9318         paramTy = Enum->getDecl()->getIntegerType();
9319         if (paramTy.isNull())
9320           return {};
9321       }
9322 
9323       if (paramTy->isPromotableIntegerType() ||
9324           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
9325         return {};
9326     }
9327 
9328     if (allLTypes) return lhs;
9329     if (allRTypes) return rhs;
9330 
9331     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
9332     EPI.ExtInfo = einfo;
9333     return getFunctionType(retType, proto->getParamTypes(), EPI);
9334   }
9335 
9336   if (allLTypes) return lhs;
9337   if (allRTypes) return rhs;
9338   return getFunctionNoProtoType(retType, einfo);
9339 }
9340 
9341 /// Given that we have an enum type and a non-enum type, try to merge them.
9342 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
9343                                      QualType other, bool isBlockReturnType) {
9344   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
9345   // a signed integer type, or an unsigned integer type.
9346   // Compatibility is based on the underlying type, not the promotion
9347   // type.
9348   QualType underlyingType = ET->getDecl()->getIntegerType();
9349   if (underlyingType.isNull())
9350     return {};
9351   if (Context.hasSameType(underlyingType, other))
9352     return other;
9353 
9354   // In block return types, we're more permissive and accept any
9355   // integral type of the same size.
9356   if (isBlockReturnType && other->isIntegerType() &&
9357       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
9358     return other;
9359 
9360   return {};
9361 }
9362 
9363 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
9364                                 bool OfBlockPointer,
9365                                 bool Unqualified, bool BlockReturnType) {
9366   // C++ [expr]: If an expression initially has the type "reference to T", the
9367   // type is adjusted to "T" prior to any further analysis, the expression
9368   // designates the object or function denoted by the reference, and the
9369   // expression is an lvalue unless the reference is an rvalue reference and
9370   // the expression is a function call (possibly inside parentheses).
9371   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
9372   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
9373 
9374   if (Unqualified) {
9375     LHS = LHS.getUnqualifiedType();
9376     RHS = RHS.getUnqualifiedType();
9377   }
9378 
9379   QualType LHSCan = getCanonicalType(LHS),
9380            RHSCan = getCanonicalType(RHS);
9381 
9382   // If two types are identical, they are compatible.
9383   if (LHSCan == RHSCan)
9384     return LHS;
9385 
9386   // If the qualifiers are different, the types aren't compatible... mostly.
9387   Qualifiers LQuals = LHSCan.getLocalQualifiers();
9388   Qualifiers RQuals = RHSCan.getLocalQualifiers();
9389   if (LQuals != RQuals) {
9390     // If any of these qualifiers are different, we have a type
9391     // mismatch.
9392     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9393         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
9394         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
9395         LQuals.hasUnaligned() != RQuals.hasUnaligned())
9396       return {};
9397 
9398     // Exactly one GC qualifier difference is allowed: __strong is
9399     // okay if the other type has no GC qualifier but is an Objective
9400     // C object pointer (i.e. implicitly strong by default).  We fix
9401     // this by pretending that the unqualified type was actually
9402     // qualified __strong.
9403     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9404     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9405     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9406 
9407     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9408       return {};
9409 
9410     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
9411       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
9412     }
9413     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
9414       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
9415     }
9416     return {};
9417   }
9418 
9419   // Okay, qualifiers are equal.
9420 
9421   Type::TypeClass LHSClass = LHSCan->getTypeClass();
9422   Type::TypeClass RHSClass = RHSCan->getTypeClass();
9423 
9424   // We want to consider the two function types to be the same for these
9425   // comparisons, just force one to the other.
9426   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
9427   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
9428 
9429   // Same as above for arrays
9430   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
9431     LHSClass = Type::ConstantArray;
9432   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
9433     RHSClass = Type::ConstantArray;
9434 
9435   // ObjCInterfaces are just specialized ObjCObjects.
9436   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
9437   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
9438 
9439   // Canonicalize ExtVector -> Vector.
9440   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
9441   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
9442 
9443   // If the canonical type classes don't match.
9444   if (LHSClass != RHSClass) {
9445     // Note that we only have special rules for turning block enum
9446     // returns into block int returns, not vice-versa.
9447     if (const auto *ETy = LHS->getAs<EnumType>()) {
9448       return mergeEnumWithInteger(*this, ETy, RHS, false);
9449     }
9450     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
9451       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
9452     }
9453     // allow block pointer type to match an 'id' type.
9454     if (OfBlockPointer && !BlockReturnType) {
9455        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
9456          return LHS;
9457       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
9458         return RHS;
9459     }
9460 
9461     return {};
9462   }
9463 
9464   // The canonical type classes match.
9465   switch (LHSClass) {
9466 #define TYPE(Class, Base)
9467 #define ABSTRACT_TYPE(Class, Base)
9468 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
9469 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
9470 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
9471 #include "clang/AST/TypeNodes.inc"
9472     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
9473 
9474   case Type::Auto:
9475   case Type::DeducedTemplateSpecialization:
9476   case Type::LValueReference:
9477   case Type::RValueReference:
9478   case Type::MemberPointer:
9479     llvm_unreachable("C++ should never be in mergeTypes");
9480 
9481   case Type::ObjCInterface:
9482   case Type::IncompleteArray:
9483   case Type::VariableArray:
9484   case Type::FunctionProto:
9485   case Type::ExtVector:
9486     llvm_unreachable("Types are eliminated above");
9487 
9488   case Type::Pointer:
9489   {
9490     // Merge two pointer types, while trying to preserve typedef info
9491     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
9492     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
9493     if (Unqualified) {
9494       LHSPointee = LHSPointee.getUnqualifiedType();
9495       RHSPointee = RHSPointee.getUnqualifiedType();
9496     }
9497     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
9498                                      Unqualified);
9499     if (ResultType.isNull())
9500       return {};
9501     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9502       return LHS;
9503     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9504       return RHS;
9505     return getPointerType(ResultType);
9506   }
9507   case Type::BlockPointer:
9508   {
9509     // Merge two block pointer types, while trying to preserve typedef info
9510     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
9511     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
9512     if (Unqualified) {
9513       LHSPointee = LHSPointee.getUnqualifiedType();
9514       RHSPointee = RHSPointee.getUnqualifiedType();
9515     }
9516     if (getLangOpts().OpenCL) {
9517       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
9518       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
9519       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
9520       // 6.12.5) thus the following check is asymmetric.
9521       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
9522         return {};
9523       LHSPteeQual.removeAddressSpace();
9524       RHSPteeQual.removeAddressSpace();
9525       LHSPointee =
9526           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
9527       RHSPointee =
9528           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
9529     }
9530     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
9531                                      Unqualified);
9532     if (ResultType.isNull())
9533       return {};
9534     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9535       return LHS;
9536     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9537       return RHS;
9538     return getBlockPointerType(ResultType);
9539   }
9540   case Type::Atomic:
9541   {
9542     // Merge two pointer types, while trying to preserve typedef info
9543     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
9544     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
9545     if (Unqualified) {
9546       LHSValue = LHSValue.getUnqualifiedType();
9547       RHSValue = RHSValue.getUnqualifiedType();
9548     }
9549     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
9550                                      Unqualified);
9551     if (ResultType.isNull())
9552       return {};
9553     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
9554       return LHS;
9555     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
9556       return RHS;
9557     return getAtomicType(ResultType);
9558   }
9559   case Type::ConstantArray:
9560   {
9561     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
9562     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
9563     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
9564       return {};
9565 
9566     QualType LHSElem = getAsArrayType(LHS)->getElementType();
9567     QualType RHSElem = getAsArrayType(RHS)->getElementType();
9568     if (Unqualified) {
9569       LHSElem = LHSElem.getUnqualifiedType();
9570       RHSElem = RHSElem.getUnqualifiedType();
9571     }
9572 
9573     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
9574     if (ResultType.isNull())
9575       return {};
9576 
9577     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
9578     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
9579 
9580     // If either side is a variable array, and both are complete, check whether
9581     // the current dimension is definite.
9582     if (LVAT || RVAT) {
9583       auto SizeFetch = [this](const VariableArrayType* VAT,
9584           const ConstantArrayType* CAT)
9585           -> std::pair<bool,llvm::APInt> {
9586         if (VAT) {
9587           llvm::APSInt TheInt;
9588           Expr *E = VAT->getSizeExpr();
9589           if (E && E->isIntegerConstantExpr(TheInt, *this))
9590             return std::make_pair(true, TheInt);
9591           else
9592             return std::make_pair(false, TheInt);
9593         } else if (CAT) {
9594             return std::make_pair(true, CAT->getSize());
9595         } else {
9596             return std::make_pair(false, llvm::APInt());
9597         }
9598       };
9599 
9600       bool HaveLSize, HaveRSize;
9601       llvm::APInt LSize, RSize;
9602       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
9603       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
9604       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
9605         return {}; // Definite, but unequal, array dimension
9606     }
9607 
9608     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9609       return LHS;
9610     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9611       return RHS;
9612     if (LCAT)
9613       return getConstantArrayType(ResultType, LCAT->getSize(),
9614                                   LCAT->getSizeExpr(),
9615                                   ArrayType::ArraySizeModifier(), 0);
9616     if (RCAT)
9617       return getConstantArrayType(ResultType, RCAT->getSize(),
9618                                   RCAT->getSizeExpr(),
9619                                   ArrayType::ArraySizeModifier(), 0);
9620     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9621       return LHS;
9622     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9623       return RHS;
9624     if (LVAT) {
9625       // FIXME: This isn't correct! But tricky to implement because
9626       // the array's size has to be the size of LHS, but the type
9627       // has to be different.
9628       return LHS;
9629     }
9630     if (RVAT) {
9631       // FIXME: This isn't correct! But tricky to implement because
9632       // the array's size has to be the size of RHS, but the type
9633       // has to be different.
9634       return RHS;
9635     }
9636     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
9637     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
9638     return getIncompleteArrayType(ResultType,
9639                                   ArrayType::ArraySizeModifier(), 0);
9640   }
9641   case Type::FunctionNoProto:
9642     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
9643   case Type::Record:
9644   case Type::Enum:
9645     return {};
9646   case Type::Builtin:
9647     // Only exactly equal builtin types are compatible, which is tested above.
9648     return {};
9649   case Type::Complex:
9650     // Distinct complex types are incompatible.
9651     return {};
9652   case Type::Vector:
9653     // FIXME: The merged type should be an ExtVector!
9654     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
9655                              RHSCan->castAs<VectorType>()))
9656       return LHS;
9657     return {};
9658   case Type::ConstantMatrix:
9659     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
9660                              RHSCan->castAs<ConstantMatrixType>()))
9661       return LHS;
9662     return {};
9663   case Type::ObjCObject: {
9664     // Check if the types are assignment compatible.
9665     // FIXME: This should be type compatibility, e.g. whether
9666     // "LHS x; RHS x;" at global scope is legal.
9667     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
9668                                 RHS->castAs<ObjCObjectType>()))
9669       return LHS;
9670     return {};
9671   }
9672   case Type::ObjCObjectPointer:
9673     if (OfBlockPointer) {
9674       if (canAssignObjCInterfacesInBlockPointer(
9675               LHS->castAs<ObjCObjectPointerType>(),
9676               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
9677         return LHS;
9678       return {};
9679     }
9680     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
9681                                 RHS->castAs<ObjCObjectPointerType>()))
9682       return LHS;
9683     return {};
9684   case Type::Pipe:
9685     assert(LHS != RHS &&
9686            "Equivalent pipe types should have already been handled!");
9687     return {};
9688   case Type::ExtInt: {
9689     // Merge two ext-int types, while trying to preserve typedef info.
9690     bool LHSUnsigned  = LHS->castAs<ExtIntType>()->isUnsigned();
9691     bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned();
9692     unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits();
9693     unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits();
9694 
9695     // Like unsigned/int, shouldn't have a type if they dont match.
9696     if (LHSUnsigned != RHSUnsigned)
9697       return {};
9698 
9699     if (LHSBits != RHSBits)
9700       return {};
9701     return LHS;
9702   }
9703   }
9704 
9705   llvm_unreachable("Invalid Type::Class!");
9706 }
9707 
9708 bool ASTContext::mergeExtParameterInfo(
9709     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
9710     bool &CanUseFirst, bool &CanUseSecond,
9711     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
9712   assert(NewParamInfos.empty() && "param info list not empty");
9713   CanUseFirst = CanUseSecond = true;
9714   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
9715   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
9716 
9717   // Fast path: if the first type doesn't have ext parameter infos,
9718   // we match if and only if the second type also doesn't have them.
9719   if (!FirstHasInfo && !SecondHasInfo)
9720     return true;
9721 
9722   bool NeedParamInfo = false;
9723   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
9724                           : SecondFnType->getExtParameterInfos().size();
9725 
9726   for (size_t I = 0; I < E; ++I) {
9727     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
9728     if (FirstHasInfo)
9729       FirstParam = FirstFnType->getExtParameterInfo(I);
9730     if (SecondHasInfo)
9731       SecondParam = SecondFnType->getExtParameterInfo(I);
9732 
9733     // Cannot merge unless everything except the noescape flag matches.
9734     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
9735       return false;
9736 
9737     bool FirstNoEscape = FirstParam.isNoEscape();
9738     bool SecondNoEscape = SecondParam.isNoEscape();
9739     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
9740     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
9741     if (NewParamInfos.back().getOpaqueValue())
9742       NeedParamInfo = true;
9743     if (FirstNoEscape != IsNoEscape)
9744       CanUseFirst = false;
9745     if (SecondNoEscape != IsNoEscape)
9746       CanUseSecond = false;
9747   }
9748 
9749   if (!NeedParamInfo)
9750     NewParamInfos.clear();
9751 
9752   return true;
9753 }
9754 
9755 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
9756   ObjCLayouts[CD] = nullptr;
9757 }
9758 
9759 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
9760 /// 'RHS' attributes and returns the merged version; including for function
9761 /// return types.
9762 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
9763   QualType LHSCan = getCanonicalType(LHS),
9764   RHSCan = getCanonicalType(RHS);
9765   // If two types are identical, they are compatible.
9766   if (LHSCan == RHSCan)
9767     return LHS;
9768   if (RHSCan->isFunctionType()) {
9769     if (!LHSCan->isFunctionType())
9770       return {};
9771     QualType OldReturnType =
9772         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
9773     QualType NewReturnType =
9774         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
9775     QualType ResReturnType =
9776       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
9777     if (ResReturnType.isNull())
9778       return {};
9779     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
9780       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
9781       // In either case, use OldReturnType to build the new function type.
9782       const auto *F = LHS->castAs<FunctionType>();
9783       if (const auto *FPT = cast<FunctionProtoType>(F)) {
9784         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9785         EPI.ExtInfo = getFunctionExtInfo(LHS);
9786         QualType ResultType =
9787             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
9788         return ResultType;
9789       }
9790     }
9791     return {};
9792   }
9793 
9794   // If the qualifiers are different, the types can still be merged.
9795   Qualifiers LQuals = LHSCan.getLocalQualifiers();
9796   Qualifiers RQuals = RHSCan.getLocalQualifiers();
9797   if (LQuals != RQuals) {
9798     // If any of these qualifiers are different, we have a type mismatch.
9799     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9800         LQuals.getAddressSpace() != RQuals.getAddressSpace())
9801       return {};
9802 
9803     // Exactly one GC qualifier difference is allowed: __strong is
9804     // okay if the other type has no GC qualifier but is an Objective
9805     // C object pointer (i.e. implicitly strong by default).  We fix
9806     // this by pretending that the unqualified type was actually
9807     // qualified __strong.
9808     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9809     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9810     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9811 
9812     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9813       return {};
9814 
9815     if (GC_L == Qualifiers::Strong)
9816       return LHS;
9817     if (GC_R == Qualifiers::Strong)
9818       return RHS;
9819     return {};
9820   }
9821 
9822   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
9823     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9824     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9825     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
9826     if (ResQT == LHSBaseQT)
9827       return LHS;
9828     if (ResQT == RHSBaseQT)
9829       return RHS;
9830   }
9831   return {};
9832 }
9833 
9834 //===----------------------------------------------------------------------===//
9835 //                         Integer Predicates
9836 //===----------------------------------------------------------------------===//
9837 
9838 unsigned ASTContext::getIntWidth(QualType T) const {
9839   if (const auto *ET = T->getAs<EnumType>())
9840     T = ET->getDecl()->getIntegerType();
9841   if (T->isBooleanType())
9842     return 1;
9843   if(const auto *EIT = T->getAs<ExtIntType>())
9844     return EIT->getNumBits();
9845   // For builtin types, just use the standard type sizing method
9846   return (unsigned)getTypeSize(T);
9847 }
9848 
9849 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
9850   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
9851          "Unexpected type");
9852 
9853   // Turn <4 x signed int> -> <4 x unsigned int>
9854   if (const auto *VTy = T->getAs<VectorType>())
9855     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
9856                          VTy->getNumElements(), VTy->getVectorKind());
9857 
9858   // For enums, we return the unsigned version of the base type.
9859   if (const auto *ETy = T->getAs<EnumType>())
9860     T = ETy->getDecl()->getIntegerType();
9861 
9862   switch (T->castAs<BuiltinType>()->getKind()) {
9863   case BuiltinType::Char_S:
9864   case BuiltinType::SChar:
9865     return UnsignedCharTy;
9866   case BuiltinType::Short:
9867     return UnsignedShortTy;
9868   case BuiltinType::Int:
9869     return UnsignedIntTy;
9870   case BuiltinType::Long:
9871     return UnsignedLongTy;
9872   case BuiltinType::LongLong:
9873     return UnsignedLongLongTy;
9874   case BuiltinType::Int128:
9875     return UnsignedInt128Ty;
9876 
9877   case BuiltinType::ShortAccum:
9878     return UnsignedShortAccumTy;
9879   case BuiltinType::Accum:
9880     return UnsignedAccumTy;
9881   case BuiltinType::LongAccum:
9882     return UnsignedLongAccumTy;
9883   case BuiltinType::SatShortAccum:
9884     return SatUnsignedShortAccumTy;
9885   case BuiltinType::SatAccum:
9886     return SatUnsignedAccumTy;
9887   case BuiltinType::SatLongAccum:
9888     return SatUnsignedLongAccumTy;
9889   case BuiltinType::ShortFract:
9890     return UnsignedShortFractTy;
9891   case BuiltinType::Fract:
9892     return UnsignedFractTy;
9893   case BuiltinType::LongFract:
9894     return UnsignedLongFractTy;
9895   case BuiltinType::SatShortFract:
9896     return SatUnsignedShortFractTy;
9897   case BuiltinType::SatFract:
9898     return SatUnsignedFractTy;
9899   case BuiltinType::SatLongFract:
9900     return SatUnsignedLongFractTy;
9901   default:
9902     llvm_unreachable("Unexpected signed integer or fixed point type");
9903   }
9904 }
9905 
9906 ASTMutationListener::~ASTMutationListener() = default;
9907 
9908 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
9909                                             QualType ReturnType) {}
9910 
9911 //===----------------------------------------------------------------------===//
9912 //                          Builtin Type Computation
9913 //===----------------------------------------------------------------------===//
9914 
9915 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
9916 /// pointer over the consumed characters.  This returns the resultant type.  If
9917 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
9918 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
9919 /// a vector of "i*".
9920 ///
9921 /// RequiresICE is filled in on return to indicate whether the value is required
9922 /// to be an Integer Constant Expression.
9923 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
9924                                   ASTContext::GetBuiltinTypeError &Error,
9925                                   bool &RequiresICE,
9926                                   bool AllowTypeModifiers) {
9927   // Modifiers.
9928   int HowLong = 0;
9929   bool Signed = false, Unsigned = false;
9930   RequiresICE = false;
9931 
9932   // Read the prefixed modifiers first.
9933   bool Done = false;
9934   #ifndef NDEBUG
9935   bool IsSpecial = false;
9936   #endif
9937   while (!Done) {
9938     switch (*Str++) {
9939     default: Done = true; --Str; break;
9940     case 'I':
9941       RequiresICE = true;
9942       break;
9943     case 'S':
9944       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
9945       assert(!Signed && "Can't use 'S' modifier multiple times!");
9946       Signed = true;
9947       break;
9948     case 'U':
9949       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
9950       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
9951       Unsigned = true;
9952       break;
9953     case 'L':
9954       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
9955       assert(HowLong <= 2 && "Can't have LLLL modifier");
9956       ++HowLong;
9957       break;
9958     case 'N':
9959       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
9960       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9961       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
9962       #ifndef NDEBUG
9963       IsSpecial = true;
9964       #endif
9965       if (Context.getTargetInfo().getLongWidth() == 32)
9966         ++HowLong;
9967       break;
9968     case 'W':
9969       // This modifier represents int64 type.
9970       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9971       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
9972       #ifndef NDEBUG
9973       IsSpecial = true;
9974       #endif
9975       switch (Context.getTargetInfo().getInt64Type()) {
9976       default:
9977         llvm_unreachable("Unexpected integer type");
9978       case TargetInfo::SignedLong:
9979         HowLong = 1;
9980         break;
9981       case TargetInfo::SignedLongLong:
9982         HowLong = 2;
9983         break;
9984       }
9985       break;
9986     case 'Z':
9987       // This modifier represents int32 type.
9988       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9989       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
9990       #ifndef NDEBUG
9991       IsSpecial = true;
9992       #endif
9993       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
9994       default:
9995         llvm_unreachable("Unexpected integer type");
9996       case TargetInfo::SignedInt:
9997         HowLong = 0;
9998         break;
9999       case TargetInfo::SignedLong:
10000         HowLong = 1;
10001         break;
10002       case TargetInfo::SignedLongLong:
10003         HowLong = 2;
10004         break;
10005       }
10006       break;
10007     case 'O':
10008       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10009       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
10010       #ifndef NDEBUG
10011       IsSpecial = true;
10012       #endif
10013       if (Context.getLangOpts().OpenCL)
10014         HowLong = 1;
10015       else
10016         HowLong = 2;
10017       break;
10018     }
10019   }
10020 
10021   QualType Type;
10022 
10023   // Read the base type.
10024   switch (*Str++) {
10025   default: llvm_unreachable("Unknown builtin type letter!");
10026   case 'y':
10027     assert(HowLong == 0 && !Signed && !Unsigned &&
10028            "Bad modifiers used with 'y'!");
10029     Type = Context.BFloat16Ty;
10030     break;
10031   case 'v':
10032     assert(HowLong == 0 && !Signed && !Unsigned &&
10033            "Bad modifiers used with 'v'!");
10034     Type = Context.VoidTy;
10035     break;
10036   case 'h':
10037     assert(HowLong == 0 && !Signed && !Unsigned &&
10038            "Bad modifiers used with 'h'!");
10039     Type = Context.HalfTy;
10040     break;
10041   case 'f':
10042     assert(HowLong == 0 && !Signed && !Unsigned &&
10043            "Bad modifiers used with 'f'!");
10044     Type = Context.FloatTy;
10045     break;
10046   case 'd':
10047     assert(HowLong < 3 && !Signed && !Unsigned &&
10048            "Bad modifiers used with 'd'!");
10049     if (HowLong == 1)
10050       Type = Context.LongDoubleTy;
10051     else if (HowLong == 2)
10052       Type = Context.Float128Ty;
10053     else
10054       Type = Context.DoubleTy;
10055     break;
10056   case 's':
10057     assert(HowLong == 0 && "Bad modifiers used with 's'!");
10058     if (Unsigned)
10059       Type = Context.UnsignedShortTy;
10060     else
10061       Type = Context.ShortTy;
10062     break;
10063   case 'i':
10064     if (HowLong == 3)
10065       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
10066     else if (HowLong == 2)
10067       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
10068     else if (HowLong == 1)
10069       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
10070     else
10071       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
10072     break;
10073   case 'c':
10074     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
10075     if (Signed)
10076       Type = Context.SignedCharTy;
10077     else if (Unsigned)
10078       Type = Context.UnsignedCharTy;
10079     else
10080       Type = Context.CharTy;
10081     break;
10082   case 'b': // boolean
10083     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
10084     Type = Context.BoolTy;
10085     break;
10086   case 'z':  // size_t.
10087     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
10088     Type = Context.getSizeType();
10089     break;
10090   case 'w':  // wchar_t.
10091     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
10092     Type = Context.getWideCharType();
10093     break;
10094   case 'F':
10095     Type = Context.getCFConstantStringType();
10096     break;
10097   case 'G':
10098     Type = Context.getObjCIdType();
10099     break;
10100   case 'H':
10101     Type = Context.getObjCSelType();
10102     break;
10103   case 'M':
10104     Type = Context.getObjCSuperType();
10105     break;
10106   case 'a':
10107     Type = Context.getBuiltinVaListType();
10108     assert(!Type.isNull() && "builtin va list type not initialized!");
10109     break;
10110   case 'A':
10111     // This is a "reference" to a va_list; however, what exactly
10112     // this means depends on how va_list is defined. There are two
10113     // different kinds of va_list: ones passed by value, and ones
10114     // passed by reference.  An example of a by-value va_list is
10115     // x86, where va_list is a char*. An example of by-ref va_list
10116     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
10117     // we want this argument to be a char*&; for x86-64, we want
10118     // it to be a __va_list_tag*.
10119     Type = Context.getBuiltinVaListType();
10120     assert(!Type.isNull() && "builtin va list type not initialized!");
10121     if (Type->isArrayType())
10122       Type = Context.getArrayDecayedType(Type);
10123     else
10124       Type = Context.getLValueReferenceType(Type);
10125     break;
10126   case 'q': {
10127     char *End;
10128     unsigned NumElements = strtoul(Str, &End, 10);
10129     assert(End != Str && "Missing vector size");
10130     Str = End;
10131 
10132     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10133                                              RequiresICE, false);
10134     assert(!RequiresICE && "Can't require vector ICE");
10135 
10136     Type = Context.getScalableVectorType(ElementType, NumElements);
10137     break;
10138   }
10139   case 'V': {
10140     char *End;
10141     unsigned NumElements = strtoul(Str, &End, 10);
10142     assert(End != Str && "Missing vector size");
10143     Str = End;
10144 
10145     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10146                                              RequiresICE, false);
10147     assert(!RequiresICE && "Can't require vector ICE");
10148 
10149     // TODO: No way to make AltiVec vectors in builtins yet.
10150     Type = Context.getVectorType(ElementType, NumElements,
10151                                  VectorType::GenericVector);
10152     break;
10153   }
10154   case 'E': {
10155     char *End;
10156 
10157     unsigned NumElements = strtoul(Str, &End, 10);
10158     assert(End != Str && "Missing vector size");
10159 
10160     Str = End;
10161 
10162     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10163                                              false);
10164     Type = Context.getExtVectorType(ElementType, NumElements);
10165     break;
10166   }
10167   case 'X': {
10168     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10169                                              false);
10170     assert(!RequiresICE && "Can't require complex ICE");
10171     Type = Context.getComplexType(ElementType);
10172     break;
10173   }
10174   case 'Y':
10175     Type = Context.getPointerDiffType();
10176     break;
10177   case 'P':
10178     Type = Context.getFILEType();
10179     if (Type.isNull()) {
10180       Error = ASTContext::GE_Missing_stdio;
10181       return {};
10182     }
10183     break;
10184   case 'J':
10185     if (Signed)
10186       Type = Context.getsigjmp_bufType();
10187     else
10188       Type = Context.getjmp_bufType();
10189 
10190     if (Type.isNull()) {
10191       Error = ASTContext::GE_Missing_setjmp;
10192       return {};
10193     }
10194     break;
10195   case 'K':
10196     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
10197     Type = Context.getucontext_tType();
10198 
10199     if (Type.isNull()) {
10200       Error = ASTContext::GE_Missing_ucontext;
10201       return {};
10202     }
10203     break;
10204   case 'p':
10205     Type = Context.getProcessIDType();
10206     break;
10207   }
10208 
10209   // If there are modifiers and if we're allowed to parse them, go for it.
10210   Done = !AllowTypeModifiers;
10211   while (!Done) {
10212     switch (char c = *Str++) {
10213     default: Done = true; --Str; break;
10214     case '*':
10215     case '&': {
10216       // Both pointers and references can have their pointee types
10217       // qualified with an address space.
10218       char *End;
10219       unsigned AddrSpace = strtoul(Str, &End, 10);
10220       if (End != Str) {
10221         // Note AddrSpace == 0 is not the same as an unspecified address space.
10222         Type = Context.getAddrSpaceQualType(
10223           Type,
10224           Context.getLangASForBuiltinAddressSpace(AddrSpace));
10225         Str = End;
10226       }
10227       if (c == '*')
10228         Type = Context.getPointerType(Type);
10229       else
10230         Type = Context.getLValueReferenceType(Type);
10231       break;
10232     }
10233     // FIXME: There's no way to have a built-in with an rvalue ref arg.
10234     case 'C':
10235       Type = Type.withConst();
10236       break;
10237     case 'D':
10238       Type = Context.getVolatileType(Type);
10239       break;
10240     case 'R':
10241       Type = Type.withRestrict();
10242       break;
10243     }
10244   }
10245 
10246   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
10247          "Integer constant 'I' type must be an integer");
10248 
10249   return Type;
10250 }
10251 
10252 /// GetBuiltinType - Return the type for the specified builtin.
10253 QualType ASTContext::GetBuiltinType(unsigned Id,
10254                                     GetBuiltinTypeError &Error,
10255                                     unsigned *IntegerConstantArgs) const {
10256   const char *TypeStr = BuiltinInfo.getTypeString(Id);
10257   if (TypeStr[0] == '\0') {
10258     Error = GE_Missing_type;
10259     return {};
10260   }
10261 
10262   SmallVector<QualType, 8> ArgTypes;
10263 
10264   bool RequiresICE = false;
10265   Error = GE_None;
10266   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
10267                                        RequiresICE, true);
10268   if (Error != GE_None)
10269     return {};
10270 
10271   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
10272 
10273   while (TypeStr[0] && TypeStr[0] != '.') {
10274     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
10275     if (Error != GE_None)
10276       return {};
10277 
10278     // If this argument is required to be an IntegerConstantExpression and the
10279     // caller cares, fill in the bitmask we return.
10280     if (RequiresICE && IntegerConstantArgs)
10281       *IntegerConstantArgs |= 1 << ArgTypes.size();
10282 
10283     // Do array -> pointer decay.  The builtin should use the decayed type.
10284     if (Ty->isArrayType())
10285       Ty = getArrayDecayedType(Ty);
10286 
10287     ArgTypes.push_back(Ty);
10288   }
10289 
10290   if (Id == Builtin::BI__GetExceptionInfo)
10291     return {};
10292 
10293   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
10294          "'.' should only occur at end of builtin type list!");
10295 
10296   bool Variadic = (TypeStr[0] == '.');
10297 
10298   FunctionType::ExtInfo EI(getDefaultCallingConvention(
10299       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
10300   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
10301 
10302 
10303   // We really shouldn't be making a no-proto type here.
10304   if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
10305     return getFunctionNoProtoType(ResType, EI);
10306 
10307   FunctionProtoType::ExtProtoInfo EPI;
10308   EPI.ExtInfo = EI;
10309   EPI.Variadic = Variadic;
10310   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
10311     EPI.ExceptionSpec.Type =
10312         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
10313 
10314   return getFunctionType(ResType, ArgTypes, EPI);
10315 }
10316 
10317 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
10318                                              const FunctionDecl *FD) {
10319   if (!FD->isExternallyVisible())
10320     return GVA_Internal;
10321 
10322   // Non-user-provided functions get emitted as weak definitions with every
10323   // use, no matter whether they've been explicitly instantiated etc.
10324   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
10325     if (!MD->isUserProvided())
10326       return GVA_DiscardableODR;
10327 
10328   GVALinkage External;
10329   switch (FD->getTemplateSpecializationKind()) {
10330   case TSK_Undeclared:
10331   case TSK_ExplicitSpecialization:
10332     External = GVA_StrongExternal;
10333     break;
10334 
10335   case TSK_ExplicitInstantiationDefinition:
10336     return GVA_StrongODR;
10337 
10338   // C++11 [temp.explicit]p10:
10339   //   [ Note: The intent is that an inline function that is the subject of
10340   //   an explicit instantiation declaration will still be implicitly
10341   //   instantiated when used so that the body can be considered for
10342   //   inlining, but that no out-of-line copy of the inline function would be
10343   //   generated in the translation unit. -- end note ]
10344   case TSK_ExplicitInstantiationDeclaration:
10345     return GVA_AvailableExternally;
10346 
10347   case TSK_ImplicitInstantiation:
10348     External = GVA_DiscardableODR;
10349     break;
10350   }
10351 
10352   if (!FD->isInlined())
10353     return External;
10354 
10355   if ((!Context.getLangOpts().CPlusPlus &&
10356        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10357        !FD->hasAttr<DLLExportAttr>()) ||
10358       FD->hasAttr<GNUInlineAttr>()) {
10359     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
10360 
10361     // GNU or C99 inline semantics. Determine whether this symbol should be
10362     // externally visible.
10363     if (FD->isInlineDefinitionExternallyVisible())
10364       return External;
10365 
10366     // C99 inline semantics, where the symbol is not externally visible.
10367     return GVA_AvailableExternally;
10368   }
10369 
10370   // Functions specified with extern and inline in -fms-compatibility mode
10371   // forcibly get emitted.  While the body of the function cannot be later
10372   // replaced, the function definition cannot be discarded.
10373   if (FD->isMSExternInline())
10374     return GVA_StrongODR;
10375 
10376   return GVA_DiscardableODR;
10377 }
10378 
10379 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
10380                                                 const Decl *D, GVALinkage L) {
10381   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
10382   // dllexport/dllimport on inline functions.
10383   if (D->hasAttr<DLLImportAttr>()) {
10384     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
10385       return GVA_AvailableExternally;
10386   } else if (D->hasAttr<DLLExportAttr>()) {
10387     if (L == GVA_DiscardableODR)
10388       return GVA_StrongODR;
10389   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice &&
10390              D->hasAttr<CUDAGlobalAttr>()) {
10391     // Device-side functions with __global__ attribute must always be
10392     // visible externally so they can be launched from host.
10393     if (L == GVA_DiscardableODR || L == GVA_Internal)
10394       return GVA_StrongODR;
10395   }
10396   return L;
10397 }
10398 
10399 /// Adjust the GVALinkage for a declaration based on what an external AST source
10400 /// knows about whether there can be other definitions of this declaration.
10401 static GVALinkage
10402 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
10403                                           GVALinkage L) {
10404   ExternalASTSource *Source = Ctx.getExternalSource();
10405   if (!Source)
10406     return L;
10407 
10408   switch (Source->hasExternalDefinitions(D)) {
10409   case ExternalASTSource::EK_Never:
10410     // Other translation units rely on us to provide the definition.
10411     if (L == GVA_DiscardableODR)
10412       return GVA_StrongODR;
10413     break;
10414 
10415   case ExternalASTSource::EK_Always:
10416     return GVA_AvailableExternally;
10417 
10418   case ExternalASTSource::EK_ReplyHazy:
10419     break;
10420   }
10421   return L;
10422 }
10423 
10424 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
10425   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
10426            adjustGVALinkageForAttributes(*this, FD,
10427              basicGVALinkageForFunction(*this, FD)));
10428 }
10429 
10430 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
10431                                              const VarDecl *VD) {
10432   if (!VD->isExternallyVisible())
10433     return GVA_Internal;
10434 
10435   if (VD->isStaticLocal()) {
10436     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
10437     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
10438       LexicalContext = LexicalContext->getLexicalParent();
10439 
10440     // ObjC Blocks can create local variables that don't have a FunctionDecl
10441     // LexicalContext.
10442     if (!LexicalContext)
10443       return GVA_DiscardableODR;
10444 
10445     // Otherwise, let the static local variable inherit its linkage from the
10446     // nearest enclosing function.
10447     auto StaticLocalLinkage =
10448         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
10449 
10450     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
10451     // be emitted in any object with references to the symbol for the object it
10452     // contains, whether inline or out-of-line."
10453     // Similar behavior is observed with MSVC. An alternative ABI could use
10454     // StrongODR/AvailableExternally to match the function, but none are
10455     // known/supported currently.
10456     if (StaticLocalLinkage == GVA_StrongODR ||
10457         StaticLocalLinkage == GVA_AvailableExternally)
10458       return GVA_DiscardableODR;
10459     return StaticLocalLinkage;
10460   }
10461 
10462   // MSVC treats in-class initialized static data members as definitions.
10463   // By giving them non-strong linkage, out-of-line definitions won't
10464   // cause link errors.
10465   if (Context.isMSStaticDataMemberInlineDefinition(VD))
10466     return GVA_DiscardableODR;
10467 
10468   // Most non-template variables have strong linkage; inline variables are
10469   // linkonce_odr or (occasionally, for compatibility) weak_odr.
10470   GVALinkage StrongLinkage;
10471   switch (Context.getInlineVariableDefinitionKind(VD)) {
10472   case ASTContext::InlineVariableDefinitionKind::None:
10473     StrongLinkage = GVA_StrongExternal;
10474     break;
10475   case ASTContext::InlineVariableDefinitionKind::Weak:
10476   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
10477     StrongLinkage = GVA_DiscardableODR;
10478     break;
10479   case ASTContext::InlineVariableDefinitionKind::Strong:
10480     StrongLinkage = GVA_StrongODR;
10481     break;
10482   }
10483 
10484   switch (VD->getTemplateSpecializationKind()) {
10485   case TSK_Undeclared:
10486     return StrongLinkage;
10487 
10488   case TSK_ExplicitSpecialization:
10489     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10490                    VD->isStaticDataMember()
10491                ? GVA_StrongODR
10492                : StrongLinkage;
10493 
10494   case TSK_ExplicitInstantiationDefinition:
10495     return GVA_StrongODR;
10496 
10497   case TSK_ExplicitInstantiationDeclaration:
10498     return GVA_AvailableExternally;
10499 
10500   case TSK_ImplicitInstantiation:
10501     return GVA_DiscardableODR;
10502   }
10503 
10504   llvm_unreachable("Invalid Linkage!");
10505 }
10506 
10507 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
10508   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
10509            adjustGVALinkageForAttributes(*this, VD,
10510              basicGVALinkageForVariable(*this, VD)));
10511 }
10512 
10513 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
10514   if (const auto *VD = dyn_cast<VarDecl>(D)) {
10515     if (!VD->isFileVarDecl())
10516       return false;
10517     // Global named register variables (GNU extension) are never emitted.
10518     if (VD->getStorageClass() == SC_Register)
10519       return false;
10520     if (VD->getDescribedVarTemplate() ||
10521         isa<VarTemplatePartialSpecializationDecl>(VD))
10522       return false;
10523   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10524     // We never need to emit an uninstantiated function template.
10525     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10526       return false;
10527   } else if (isa<PragmaCommentDecl>(D))
10528     return true;
10529   else if (isa<PragmaDetectMismatchDecl>(D))
10530     return true;
10531   else if (isa<OMPRequiresDecl>(D))
10532     return true;
10533   else if (isa<OMPThreadPrivateDecl>(D))
10534     return !D->getDeclContext()->isDependentContext();
10535   else if (isa<OMPAllocateDecl>(D))
10536     return !D->getDeclContext()->isDependentContext();
10537   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
10538     return !D->getDeclContext()->isDependentContext();
10539   else if (isa<ImportDecl>(D))
10540     return true;
10541   else
10542     return false;
10543 
10544   if (D->isFromASTFile() && !LangOpts.BuildingPCHWithObjectFile) {
10545     assert(getExternalSource() && "It's from an AST file; must have a source.");
10546     // On Windows, PCH files are built together with an object file. If this
10547     // declaration comes from such a PCH and DeclMustBeEmitted would return
10548     // true, it would have returned true and the decl would have been emitted
10549     // into that object file, so it doesn't need to be emitted here.
10550     // Note that decls are still emitted if they're referenced, as usual;
10551     // DeclMustBeEmitted is used to decide whether a decl must be emitted even
10552     // if it's not referenced.
10553     //
10554     // Explicit template instantiation definitions are tricky. If there was an
10555     // explicit template instantiation decl in the PCH before, it will look like
10556     // the definition comes from there, even if that was just the declaration.
10557     // (Explicit instantiation defs of variable templates always get emitted.)
10558     bool IsExpInstDef =
10559         isa<FunctionDecl>(D) &&
10560         cast<FunctionDecl>(D)->getTemplateSpecializationKind() ==
10561             TSK_ExplicitInstantiationDefinition;
10562 
10563     // Implicit member function definitions, such as operator= might not be
10564     // marked as template specializations, since they're not coming from a
10565     // template but synthesized directly on the class.
10566     IsExpInstDef |=
10567         isa<CXXMethodDecl>(D) &&
10568         cast<CXXMethodDecl>(D)->getParent()->getTemplateSpecializationKind() ==
10569             TSK_ExplicitInstantiationDefinition;
10570 
10571     if (getExternalSource()->DeclIsFromPCHWithObjectFile(D) && !IsExpInstDef)
10572       return false;
10573   }
10574 
10575   // If this is a member of a class template, we do not need to emit it.
10576   if (D->getDeclContext()->isDependentContext())
10577     return false;
10578 
10579   // Weak references don't produce any output by themselves.
10580   if (D->hasAttr<WeakRefAttr>())
10581     return false;
10582 
10583   // Aliases and used decls are required.
10584   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
10585     return true;
10586 
10587   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10588     // Forward declarations aren't required.
10589     if (!FD->doesThisDeclarationHaveABody())
10590       return FD->doesDeclarationForceExternallyVisibleDefinition();
10591 
10592     // Constructors and destructors are required.
10593     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
10594       return true;
10595 
10596     // The key function for a class is required.  This rule only comes
10597     // into play when inline functions can be key functions, though.
10598     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10599       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10600         const CXXRecordDecl *RD = MD->getParent();
10601         if (MD->isOutOfLine() && RD->isDynamicClass()) {
10602           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
10603           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
10604             return true;
10605         }
10606       }
10607     }
10608 
10609     GVALinkage Linkage = GetGVALinkageForFunction(FD);
10610 
10611     // static, static inline, always_inline, and extern inline functions can
10612     // always be deferred.  Normal inline functions can be deferred in C99/C++.
10613     // Implicit template instantiations can also be deferred in C++.
10614     return !isDiscardableGVALinkage(Linkage);
10615   }
10616 
10617   const auto *VD = cast<VarDecl>(D);
10618   assert(VD->isFileVarDecl() && "Expected file scoped var");
10619 
10620   // If the decl is marked as `declare target to`, it should be emitted for the
10621   // host and for the device.
10622   if (LangOpts.OpenMP &&
10623       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
10624     return true;
10625 
10626   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
10627       !isMSStaticDataMemberInlineDefinition(VD))
10628     return false;
10629 
10630   // Variables that can be needed in other TUs are required.
10631   auto Linkage = GetGVALinkageForVariable(VD);
10632   if (!isDiscardableGVALinkage(Linkage))
10633     return true;
10634 
10635   // We never need to emit a variable that is available in another TU.
10636   if (Linkage == GVA_AvailableExternally)
10637     return false;
10638 
10639   // Variables that have destruction with side-effects are required.
10640   if (VD->needsDestruction(*this))
10641     return true;
10642 
10643   // Variables that have initialization with side-effects are required.
10644   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
10645       // We can get a value-dependent initializer during error recovery.
10646       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
10647     return true;
10648 
10649   // Likewise, variables with tuple-like bindings are required if their
10650   // bindings have side-effects.
10651   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
10652     for (const auto *BD : DD->bindings())
10653       if (const auto *BindingVD = BD->getHoldingVar())
10654         if (DeclMustBeEmitted(BindingVD))
10655           return true;
10656 
10657   return false;
10658 }
10659 
10660 void ASTContext::forEachMultiversionedFunctionVersion(
10661     const FunctionDecl *FD,
10662     llvm::function_ref<void(FunctionDecl *)> Pred) const {
10663   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
10664   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
10665   FD = FD->getMostRecentDecl();
10666   for (auto *CurDecl :
10667        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
10668     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
10669     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
10670         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
10671       SeenDecls.insert(CurFD);
10672       Pred(CurFD);
10673     }
10674   }
10675 }
10676 
10677 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
10678                                                     bool IsCXXMethod,
10679                                                     bool IsBuiltin) const {
10680   // Pass through to the C++ ABI object
10681   if (IsCXXMethod)
10682     return ABI->getDefaultMethodCallConv(IsVariadic);
10683 
10684   // Builtins ignore user-specified default calling convention and remain the
10685   // Target's default calling convention.
10686   if (!IsBuiltin) {
10687     switch (LangOpts.getDefaultCallingConv()) {
10688     case LangOptions::DCC_None:
10689       break;
10690     case LangOptions::DCC_CDecl:
10691       return CC_C;
10692     case LangOptions::DCC_FastCall:
10693       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
10694         return CC_X86FastCall;
10695       break;
10696     case LangOptions::DCC_StdCall:
10697       if (!IsVariadic)
10698         return CC_X86StdCall;
10699       break;
10700     case LangOptions::DCC_VectorCall:
10701       // __vectorcall cannot be applied to variadic functions.
10702       if (!IsVariadic)
10703         return CC_X86VectorCall;
10704       break;
10705     case LangOptions::DCC_RegCall:
10706       // __regcall cannot be applied to variadic functions.
10707       if (!IsVariadic)
10708         return CC_X86RegCall;
10709       break;
10710     }
10711   }
10712   return Target->getDefaultCallingConv();
10713 }
10714 
10715 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
10716   // Pass through to the C++ ABI object
10717   return ABI->isNearlyEmpty(RD);
10718 }
10719 
10720 VTableContextBase *ASTContext::getVTableContext() {
10721   if (!VTContext.get()) {
10722     auto ABI = Target->getCXXABI();
10723     if (ABI.isMicrosoft())
10724       VTContext.reset(new MicrosoftVTableContext(*this));
10725     else {
10726       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
10727                                  ? ItaniumVTableContext::Relative
10728                                  : ItaniumVTableContext::Pointer;
10729       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
10730     }
10731   }
10732   return VTContext.get();
10733 }
10734 
10735 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
10736   if (!T)
10737     T = Target;
10738   switch (T->getCXXABI().getKind()) {
10739   case TargetCXXABI::Fuchsia:
10740   case TargetCXXABI::GenericAArch64:
10741   case TargetCXXABI::GenericItanium:
10742   case TargetCXXABI::GenericARM:
10743   case TargetCXXABI::GenericMIPS:
10744   case TargetCXXABI::iOS:
10745   case TargetCXXABI::iOS64:
10746   case TargetCXXABI::WebAssembly:
10747   case TargetCXXABI::WatchOS:
10748   case TargetCXXABI::XL:
10749     return ItaniumMangleContext::create(*this, getDiagnostics());
10750   case TargetCXXABI::Microsoft:
10751     return MicrosoftMangleContext::create(*this, getDiagnostics());
10752   }
10753   llvm_unreachable("Unsupported ABI");
10754 }
10755 
10756 CXXABI::~CXXABI() = default;
10757 
10758 size_t ASTContext::getSideTableAllocatedMemory() const {
10759   return ASTRecordLayouts.getMemorySize() +
10760          llvm::capacity_in_bytes(ObjCLayouts) +
10761          llvm::capacity_in_bytes(KeyFunctions) +
10762          llvm::capacity_in_bytes(ObjCImpls) +
10763          llvm::capacity_in_bytes(BlockVarCopyInits) +
10764          llvm::capacity_in_bytes(DeclAttrs) +
10765          llvm::capacity_in_bytes(TemplateOrInstantiation) +
10766          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
10767          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
10768          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
10769          llvm::capacity_in_bytes(OverriddenMethods) +
10770          llvm::capacity_in_bytes(Types) +
10771          llvm::capacity_in_bytes(VariableArrayTypes);
10772 }
10773 
10774 /// getIntTypeForBitwidth -
10775 /// sets integer QualTy according to specified details:
10776 /// bitwidth, signed/unsigned.
10777 /// Returns empty type if there is no appropriate target types.
10778 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
10779                                            unsigned Signed) const {
10780   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
10781   CanQualType QualTy = getFromTargetType(Ty);
10782   if (!QualTy && DestWidth == 128)
10783     return Signed ? Int128Ty : UnsignedInt128Ty;
10784   return QualTy;
10785 }
10786 
10787 /// getRealTypeForBitwidth -
10788 /// sets floating point QualTy according to specified bitwidth.
10789 /// Returns empty type if there is no appropriate target types.
10790 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
10791                                             bool ExplicitIEEE) const {
10792   TargetInfo::RealType Ty =
10793       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE);
10794   switch (Ty) {
10795   case TargetInfo::Float:
10796     return FloatTy;
10797   case TargetInfo::Double:
10798     return DoubleTy;
10799   case TargetInfo::LongDouble:
10800     return LongDoubleTy;
10801   case TargetInfo::Float128:
10802     return Float128Ty;
10803   case TargetInfo::NoFloat:
10804     return {};
10805   }
10806 
10807   llvm_unreachable("Unhandled TargetInfo::RealType value");
10808 }
10809 
10810 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
10811   if (Number > 1)
10812     MangleNumbers[ND] = Number;
10813 }
10814 
10815 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
10816   auto I = MangleNumbers.find(ND);
10817   return I != MangleNumbers.end() ? I->second : 1;
10818 }
10819 
10820 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
10821   if (Number > 1)
10822     StaticLocalNumbers[VD] = Number;
10823 }
10824 
10825 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
10826   auto I = StaticLocalNumbers.find(VD);
10827   return I != StaticLocalNumbers.end() ? I->second : 1;
10828 }
10829 
10830 MangleNumberingContext &
10831 ASTContext::getManglingNumberContext(const DeclContext *DC) {
10832   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
10833   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
10834   if (!MCtx)
10835     MCtx = createMangleNumberingContext();
10836   return *MCtx;
10837 }
10838 
10839 MangleNumberingContext &
10840 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
10841   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
10842   std::unique_ptr<MangleNumberingContext> &MCtx =
10843       ExtraMangleNumberingContexts[D];
10844   if (!MCtx)
10845     MCtx = createMangleNumberingContext();
10846   return *MCtx;
10847 }
10848 
10849 std::unique_ptr<MangleNumberingContext>
10850 ASTContext::createMangleNumberingContext() const {
10851   return ABI->createMangleNumberingContext();
10852 }
10853 
10854 const CXXConstructorDecl *
10855 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
10856   return ABI->getCopyConstructorForExceptionObject(
10857       cast<CXXRecordDecl>(RD->getFirstDecl()));
10858 }
10859 
10860 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
10861                                                       CXXConstructorDecl *CD) {
10862   return ABI->addCopyConstructorForExceptionObject(
10863       cast<CXXRecordDecl>(RD->getFirstDecl()),
10864       cast<CXXConstructorDecl>(CD->getFirstDecl()));
10865 }
10866 
10867 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
10868                                                  TypedefNameDecl *DD) {
10869   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
10870 }
10871 
10872 TypedefNameDecl *
10873 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
10874   return ABI->getTypedefNameForUnnamedTagDecl(TD);
10875 }
10876 
10877 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
10878                                                 DeclaratorDecl *DD) {
10879   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
10880 }
10881 
10882 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
10883   return ABI->getDeclaratorForUnnamedTagDecl(TD);
10884 }
10885 
10886 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
10887   ParamIndices[D] = index;
10888 }
10889 
10890 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
10891   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
10892   assert(I != ParamIndices.end() &&
10893          "ParmIndices lacks entry set by ParmVarDecl");
10894   return I->second;
10895 }
10896 
10897 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
10898                                                unsigned Length) const {
10899   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
10900   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
10901     EltTy = EltTy.withConst();
10902 
10903   EltTy = adjustStringLiteralBaseType(EltTy);
10904 
10905   // Get an array type for the string, according to C99 6.4.5. This includes
10906   // the null terminator character.
10907   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
10908                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
10909 }
10910 
10911 StringLiteral *
10912 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
10913   StringLiteral *&Result = StringLiteralCache[Key];
10914   if (!Result)
10915     Result = StringLiteral::Create(
10916         *this, Key, StringLiteral::Ascii,
10917         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
10918         SourceLocation());
10919   return Result;
10920 }
10921 
10922 MSGuidDecl *
10923 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
10924   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
10925 
10926   llvm::FoldingSetNodeID ID;
10927   MSGuidDecl::Profile(ID, Parts);
10928 
10929   void *InsertPos;
10930   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
10931     return Existing;
10932 
10933   QualType GUIDType = getMSGuidType().withConst();
10934   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
10935   MSGuidDecls.InsertNode(New, InsertPos);
10936   return New;
10937 }
10938 
10939 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
10940   const llvm::Triple &T = getTargetInfo().getTriple();
10941   if (!T.isOSDarwin())
10942     return false;
10943 
10944   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
10945       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
10946     return false;
10947 
10948   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
10949   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
10950   uint64_t Size = sizeChars.getQuantity();
10951   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
10952   unsigned Align = alignChars.getQuantity();
10953   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
10954   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
10955 }
10956 
10957 bool
10958 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
10959                                 const ObjCMethodDecl *MethodImpl) {
10960   // No point trying to match an unavailable/deprecated mothod.
10961   if (MethodDecl->hasAttr<UnavailableAttr>()
10962       || MethodDecl->hasAttr<DeprecatedAttr>())
10963     return false;
10964   if (MethodDecl->getObjCDeclQualifier() !=
10965       MethodImpl->getObjCDeclQualifier())
10966     return false;
10967   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
10968     return false;
10969 
10970   if (MethodDecl->param_size() != MethodImpl->param_size())
10971     return false;
10972 
10973   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
10974        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
10975        EF = MethodDecl->param_end();
10976        IM != EM && IF != EF; ++IM, ++IF) {
10977     const ParmVarDecl *DeclVar = (*IF);
10978     const ParmVarDecl *ImplVar = (*IM);
10979     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
10980       return false;
10981     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
10982       return false;
10983   }
10984 
10985   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
10986 }
10987 
10988 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
10989   LangAS AS;
10990   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
10991     AS = LangAS::Default;
10992   else
10993     AS = QT->getPointeeType().getAddressSpace();
10994 
10995   return getTargetInfo().getNullPointerValue(AS);
10996 }
10997 
10998 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
10999   if (isTargetAddressSpace(AS))
11000     return toTargetAddressSpace(AS);
11001   else
11002     return (*AddrSpaceMap)[(unsigned)AS];
11003 }
11004 
11005 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
11006   assert(Ty->isFixedPointType());
11007 
11008   if (Ty->isSaturatedFixedPointType()) return Ty;
11009 
11010   switch (Ty->castAs<BuiltinType>()->getKind()) {
11011     default:
11012       llvm_unreachable("Not a fixed point type!");
11013     case BuiltinType::ShortAccum:
11014       return SatShortAccumTy;
11015     case BuiltinType::Accum:
11016       return SatAccumTy;
11017     case BuiltinType::LongAccum:
11018       return SatLongAccumTy;
11019     case BuiltinType::UShortAccum:
11020       return SatUnsignedShortAccumTy;
11021     case BuiltinType::UAccum:
11022       return SatUnsignedAccumTy;
11023     case BuiltinType::ULongAccum:
11024       return SatUnsignedLongAccumTy;
11025     case BuiltinType::ShortFract:
11026       return SatShortFractTy;
11027     case BuiltinType::Fract:
11028       return SatFractTy;
11029     case BuiltinType::LongFract:
11030       return SatLongFractTy;
11031     case BuiltinType::UShortFract:
11032       return SatUnsignedShortFractTy;
11033     case BuiltinType::UFract:
11034       return SatUnsignedFractTy;
11035     case BuiltinType::ULongFract:
11036       return SatUnsignedLongFractTy;
11037   }
11038 }
11039 
11040 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
11041   if (LangOpts.OpenCL)
11042     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
11043 
11044   if (LangOpts.CUDA)
11045     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
11046 
11047   return getLangASFromTargetAS(AS);
11048 }
11049 
11050 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
11051 // doesn't include ASTContext.h
11052 template
11053 clang::LazyGenerationalUpdatePtr<
11054     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
11055 clang::LazyGenerationalUpdatePtr<
11056     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
11057         const clang::ASTContext &Ctx, Decl *Value);
11058 
11059 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
11060   assert(Ty->isFixedPointType());
11061 
11062   const TargetInfo &Target = getTargetInfo();
11063   switch (Ty->castAs<BuiltinType>()->getKind()) {
11064     default:
11065       llvm_unreachable("Not a fixed point type!");
11066     case BuiltinType::ShortAccum:
11067     case BuiltinType::SatShortAccum:
11068       return Target.getShortAccumScale();
11069     case BuiltinType::Accum:
11070     case BuiltinType::SatAccum:
11071       return Target.getAccumScale();
11072     case BuiltinType::LongAccum:
11073     case BuiltinType::SatLongAccum:
11074       return Target.getLongAccumScale();
11075     case BuiltinType::UShortAccum:
11076     case BuiltinType::SatUShortAccum:
11077       return Target.getUnsignedShortAccumScale();
11078     case BuiltinType::UAccum:
11079     case BuiltinType::SatUAccum:
11080       return Target.getUnsignedAccumScale();
11081     case BuiltinType::ULongAccum:
11082     case BuiltinType::SatULongAccum:
11083       return Target.getUnsignedLongAccumScale();
11084     case BuiltinType::ShortFract:
11085     case BuiltinType::SatShortFract:
11086       return Target.getShortFractScale();
11087     case BuiltinType::Fract:
11088     case BuiltinType::SatFract:
11089       return Target.getFractScale();
11090     case BuiltinType::LongFract:
11091     case BuiltinType::SatLongFract:
11092       return Target.getLongFractScale();
11093     case BuiltinType::UShortFract:
11094     case BuiltinType::SatUShortFract:
11095       return Target.getUnsignedShortFractScale();
11096     case BuiltinType::UFract:
11097     case BuiltinType::SatUFract:
11098       return Target.getUnsignedFractScale();
11099     case BuiltinType::ULongFract:
11100     case BuiltinType::SatULongFract:
11101       return Target.getUnsignedLongFractScale();
11102   }
11103 }
11104 
11105 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
11106   assert(Ty->isFixedPointType());
11107 
11108   const TargetInfo &Target = getTargetInfo();
11109   switch (Ty->castAs<BuiltinType>()->getKind()) {
11110     default:
11111       llvm_unreachable("Not a fixed point type!");
11112     case BuiltinType::ShortAccum:
11113     case BuiltinType::SatShortAccum:
11114       return Target.getShortAccumIBits();
11115     case BuiltinType::Accum:
11116     case BuiltinType::SatAccum:
11117       return Target.getAccumIBits();
11118     case BuiltinType::LongAccum:
11119     case BuiltinType::SatLongAccum:
11120       return Target.getLongAccumIBits();
11121     case BuiltinType::UShortAccum:
11122     case BuiltinType::SatUShortAccum:
11123       return Target.getUnsignedShortAccumIBits();
11124     case BuiltinType::UAccum:
11125     case BuiltinType::SatUAccum:
11126       return Target.getUnsignedAccumIBits();
11127     case BuiltinType::ULongAccum:
11128     case BuiltinType::SatULongAccum:
11129       return Target.getUnsignedLongAccumIBits();
11130     case BuiltinType::ShortFract:
11131     case BuiltinType::SatShortFract:
11132     case BuiltinType::Fract:
11133     case BuiltinType::SatFract:
11134     case BuiltinType::LongFract:
11135     case BuiltinType::SatLongFract:
11136     case BuiltinType::UShortFract:
11137     case BuiltinType::SatUShortFract:
11138     case BuiltinType::UFract:
11139     case BuiltinType::SatUFract:
11140     case BuiltinType::ULongFract:
11141     case BuiltinType::SatULongFract:
11142       return 0;
11143   }
11144 }
11145 
11146 FixedPointSemantics ASTContext::getFixedPointSemantics(QualType Ty) const {
11147   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
11148          "Can only get the fixed point semantics for a "
11149          "fixed point or integer type.");
11150   if (Ty->isIntegerType())
11151     return FixedPointSemantics::GetIntegerSemantics(getIntWidth(Ty),
11152                                                     Ty->isSignedIntegerType());
11153 
11154   bool isSigned = Ty->isSignedFixedPointType();
11155   return FixedPointSemantics(
11156       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
11157       Ty->isSaturatedFixedPointType(),
11158       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
11159 }
11160 
11161 APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
11162   assert(Ty->isFixedPointType());
11163   return APFixedPoint::getMax(getFixedPointSemantics(Ty));
11164 }
11165 
11166 APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
11167   assert(Ty->isFixedPointType());
11168   return APFixedPoint::getMin(getFixedPointSemantics(Ty));
11169 }
11170 
11171 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
11172   assert(Ty->isUnsignedFixedPointType() &&
11173          "Expected unsigned fixed point type");
11174 
11175   switch (Ty->castAs<BuiltinType>()->getKind()) {
11176   case BuiltinType::UShortAccum:
11177     return ShortAccumTy;
11178   case BuiltinType::UAccum:
11179     return AccumTy;
11180   case BuiltinType::ULongAccum:
11181     return LongAccumTy;
11182   case BuiltinType::SatUShortAccum:
11183     return SatShortAccumTy;
11184   case BuiltinType::SatUAccum:
11185     return SatAccumTy;
11186   case BuiltinType::SatULongAccum:
11187     return SatLongAccumTy;
11188   case BuiltinType::UShortFract:
11189     return ShortFractTy;
11190   case BuiltinType::UFract:
11191     return FractTy;
11192   case BuiltinType::ULongFract:
11193     return LongFractTy;
11194   case BuiltinType::SatUShortFract:
11195     return SatShortFractTy;
11196   case BuiltinType::SatUFract:
11197     return SatFractTy;
11198   case BuiltinType::SatULongFract:
11199     return SatLongFractTy;
11200   default:
11201     llvm_unreachable("Unexpected unsigned fixed point type");
11202   }
11203 }
11204 
11205 ParsedTargetAttr
11206 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
11207   assert(TD != nullptr);
11208   ParsedTargetAttr ParsedAttr = TD->parse();
11209 
11210   ParsedAttr.Features.erase(
11211       llvm::remove_if(ParsedAttr.Features,
11212                       [&](const std::string &Feat) {
11213                         return !Target->isValidFeatureName(
11214                             StringRef{Feat}.substr(1));
11215                       }),
11216       ParsedAttr.Features.end());
11217   return ParsedAttr;
11218 }
11219 
11220 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11221                                        const FunctionDecl *FD) const {
11222   if (FD)
11223     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
11224   else
11225     Target->initFeatureMap(FeatureMap, getDiagnostics(),
11226                            Target->getTargetOpts().CPU,
11227                            Target->getTargetOpts().Features);
11228 }
11229 
11230 // Fills in the supplied string map with the set of target features for the
11231 // passed in function.
11232 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11233                                        GlobalDecl GD) const {
11234   StringRef TargetCPU = Target->getTargetOpts().CPU;
11235   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
11236   if (const auto *TD = FD->getAttr<TargetAttr>()) {
11237     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
11238 
11239     // Make a copy of the features as passed on the command line into the
11240     // beginning of the additional features from the function to override.
11241     ParsedAttr.Features.insert(
11242         ParsedAttr.Features.begin(),
11243         Target->getTargetOpts().FeaturesAsWritten.begin(),
11244         Target->getTargetOpts().FeaturesAsWritten.end());
11245 
11246     if (ParsedAttr.Architecture != "" &&
11247         Target->isValidCPUName(ParsedAttr.Architecture))
11248       TargetCPU = ParsedAttr.Architecture;
11249 
11250     // Now populate the feature map, first with the TargetCPU which is either
11251     // the default or a new one from the target attribute string. Then we'll use
11252     // the passed in features (FeaturesAsWritten) along with the new ones from
11253     // the attribute.
11254     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
11255                            ParsedAttr.Features);
11256   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
11257     llvm::SmallVector<StringRef, 32> FeaturesTmp;
11258     Target->getCPUSpecificCPUDispatchFeatures(
11259         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
11260     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
11261     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
11262   } else {
11263     FeatureMap = Target->getTargetOpts().FeatureMap;
11264   }
11265 }
11266 
11267 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
11268   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
11269   return *OMPTraitInfoVector.back();
11270 }
11271 
11272 const DiagnosticBuilder &
11273 clang::operator<<(const DiagnosticBuilder &DB,
11274                   const ASTContext::SectionInfo &Section) {
11275   if (Section.Decl)
11276     return DB << Section.Decl;
11277   return DB << "a prior #pragma section";
11278 }
11279