xref: /freebsd/contrib/llvm-project/clang/lib/AST/ASTContext.cpp (revision 652a9748855320619e075c4e83aef2f5294412d2)
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/Expr.h"
33 #include "clang/AST/ExprCXX.h"
34 #include "clang/AST/ExternalASTSource.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/MangleNumberingContext.h"
37 #include "clang/AST/NestedNameSpecifier.h"
38 #include "clang/AST/RawCommentList.h"
39 #include "clang/AST/RecordLayout.h"
40 #include "clang/AST/RecursiveASTVisitor.h"
41 #include "clang/AST/Stmt.h"
42 #include "clang/AST/TemplateBase.h"
43 #include "clang/AST/TemplateName.h"
44 #include "clang/AST/Type.h"
45 #include "clang/AST/TypeLoc.h"
46 #include "clang/AST/UnresolvedSet.h"
47 #include "clang/AST/VTableBuilder.h"
48 #include "clang/Basic/AddressSpaces.h"
49 #include "clang/Basic/Builtins.h"
50 #include "clang/Basic/CommentOptions.h"
51 #include "clang/Basic/ExceptionSpecificationType.h"
52 #include "clang/Basic/FixedPoint.h"
53 #include "clang/Basic/IdentifierTable.h"
54 #include "clang/Basic/LLVM.h"
55 #include "clang/Basic/LangOptions.h"
56 #include "clang/Basic/Linkage.h"
57 #include "clang/Basic/ObjCRuntime.h"
58 #include "clang/Basic/SanitizerBlacklist.h"
59 #include "clang/Basic/SourceLocation.h"
60 #include "clang/Basic/SourceManager.h"
61 #include "clang/Basic/Specifiers.h"
62 #include "clang/Basic/TargetCXXABI.h"
63 #include "clang/Basic/TargetInfo.h"
64 #include "clang/Basic/XRayLists.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/DenseSet.h"
70 #include "llvm/ADT/FoldingSet.h"
71 #include "llvm/ADT/None.h"
72 #include "llvm/ADT/Optional.h"
73 #include "llvm/ADT/PointerUnion.h"
74 #include "llvm/ADT/STLExtras.h"
75 #include "llvm/ADT/SmallPtrSet.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringExtras.h"
78 #include "llvm/ADT/StringRef.h"
79 #include "llvm/ADT/Triple.h"
80 #include "llvm/Support/Capacity.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include <algorithm>
87 #include <cassert>
88 #include <cstddef>
89 #include <cstdint>
90 #include <cstdlib>
91 #include <map>
92 #include <memory>
93 #include <string>
94 #include <tuple>
95 #include <utility>
96 
97 using namespace clang;
98 
99 enum FloatingRank {
100   Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
101 };
102 const Expr *ASTContext::traverseIgnored(const Expr *E) const {
103   return traverseIgnored(const_cast<Expr *>(E));
104 }
105 
106 Expr *ASTContext::traverseIgnored(Expr *E) const {
107   if (!E)
108     return nullptr;
109 
110   switch (Traversal) {
111   case ast_type_traits::TK_AsIs:
112     return E;
113   case ast_type_traits::TK_IgnoreImplicitCastsAndParentheses:
114     return E->IgnoreParenImpCasts();
115   case ast_type_traits::TK_IgnoreUnlessSpelledInSource:
116     return E->IgnoreUnlessSpelledInSource();
117   }
118   llvm_unreachable("Invalid Traversal type!");
119 }
120 
121 ast_type_traits::DynTypedNode
122 ASTContext::traverseIgnored(const ast_type_traits::DynTypedNode &N) const {
123   if (const auto *E = N.get<Expr>()) {
124     return ast_type_traits::DynTypedNode::create(*traverseIgnored(E));
125   }
126   return N;
127 }
128 
129 /// \returns location that is relevant when searching for Doc comments related
130 /// to \p D.
131 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
132                                                  SourceManager &SourceMgr) {
133   assert(D);
134 
135   // User can not attach documentation to implicit declarations.
136   if (D->isImplicit())
137     return {};
138 
139   // User can not attach documentation to implicit instantiations.
140   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
141     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
142       return {};
143   }
144 
145   if (const auto *VD = dyn_cast<VarDecl>(D)) {
146     if (VD->isStaticDataMember() &&
147         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
148       return {};
149   }
150 
151   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
152     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
153       return {};
154   }
155 
156   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
157     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
158     if (TSK == TSK_ImplicitInstantiation ||
159         TSK == TSK_Undeclared)
160       return {};
161   }
162 
163   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
164     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
165       return {};
166   }
167   if (const auto *TD = dyn_cast<TagDecl>(D)) {
168     // When tag declaration (but not definition!) is part of the
169     // decl-specifier-seq of some other declaration, it doesn't get comment
170     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
171       return {};
172   }
173   // TODO: handle comments for function parameters properly.
174   if (isa<ParmVarDecl>(D))
175     return {};
176 
177   // TODO: we could look up template parameter documentation in the template
178   // documentation.
179   if (isa<TemplateTypeParmDecl>(D) ||
180       isa<NonTypeTemplateParmDecl>(D) ||
181       isa<TemplateTemplateParmDecl>(D))
182     return {};
183 
184   // Find declaration location.
185   // For Objective-C declarations we generally don't expect to have multiple
186   // declarators, thus use declaration starting location as the "declaration
187   // location".
188   // For all other declarations multiple declarators are used quite frequently,
189   // so we use the location of the identifier as the "declaration location".
190   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
191       isa<ObjCPropertyDecl>(D) ||
192       isa<RedeclarableTemplateDecl>(D) ||
193       isa<ClassTemplateSpecializationDecl>(D) ||
194       // Allow association with Y across {} in `typedef struct X {} Y`.
195       isa<TypedefDecl>(D))
196     return D->getBeginLoc();
197   else {
198     const SourceLocation DeclLoc = D->getLocation();
199     if (DeclLoc.isMacroID()) {
200       if (isa<TypedefDecl>(D)) {
201         // If location of the typedef name is in a macro, it is because being
202         // declared via a macro. Try using declaration's starting location as
203         // the "declaration location".
204         return D->getBeginLoc();
205       } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
206         // If location of the tag decl is inside a macro, but the spelling of
207         // the tag name comes from a macro argument, it looks like a special
208         // macro like NS_ENUM is being used to define the tag decl.  In that
209         // case, adjust the source location to the expansion loc so that we can
210         // attach the comment to the tag decl.
211         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
212             TD->isCompleteDefinition())
213           return SourceMgr.getExpansionLoc(DeclLoc);
214       }
215     }
216     return DeclLoc;
217   }
218 
219   return {};
220 }
221 
222 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
223     const Decl *D, const SourceLocation RepresentativeLocForDecl,
224     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
225   // If the declaration doesn't map directly to a location in a file, we
226   // can't find the comment.
227   if (RepresentativeLocForDecl.isInvalid() ||
228       !RepresentativeLocForDecl.isFileID())
229     return nullptr;
230 
231   // If there are no comments anywhere, we won't find anything.
232   if (CommentsInTheFile.empty())
233     return nullptr;
234 
235   // Decompose the location for the declaration and find the beginning of the
236   // file buffer.
237   const std::pair<FileID, unsigned> DeclLocDecomp =
238       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
239 
240   // Slow path.
241   auto OffsetCommentBehindDecl =
242       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
243 
244   // First check whether we have a trailing comment.
245   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
246     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
247     if ((CommentBehindDecl->isDocumentation() ||
248          LangOpts.CommentOpts.ParseAllComments) &&
249         CommentBehindDecl->isTrailingComment() &&
250         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
251          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
252 
253       // Check that Doxygen trailing comment comes after the declaration, starts
254       // on the same line and in the same file as the declaration.
255       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
256           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
257                                        OffsetCommentBehindDecl->first)) {
258         return CommentBehindDecl;
259       }
260     }
261   }
262 
263   // The comment just after the declaration was not a trailing comment.
264   // Let's look at the previous comment.
265   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
266     return nullptr;
267 
268   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
269   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
270 
271   // Check that we actually have a non-member Doxygen comment.
272   if (!(CommentBeforeDecl->isDocumentation() ||
273         LangOpts.CommentOpts.ParseAllComments) ||
274       CommentBeforeDecl->isTrailingComment())
275     return nullptr;
276 
277   // Decompose the end of the comment.
278   const unsigned CommentEndOffset =
279       Comments.getCommentEndOffset(CommentBeforeDecl);
280 
281   // Get the corresponding buffer.
282   bool Invalid = false;
283   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
284                                                &Invalid).data();
285   if (Invalid)
286     return nullptr;
287 
288   // Extract text between the comment and declaration.
289   StringRef Text(Buffer + CommentEndOffset,
290                  DeclLocDecomp.second - CommentEndOffset);
291 
292   // There should be no other declarations or preprocessor directives between
293   // comment and declaration.
294   if (Text.find_first_of(";{}#@") != StringRef::npos)
295     return nullptr;
296 
297   return CommentBeforeDecl;
298 }
299 
300 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
301   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
302 
303   // If the declaration doesn't map directly to a location in a file, we
304   // can't find the comment.
305   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
306     return nullptr;
307 
308   if (ExternalSource && !CommentsLoaded) {
309     ExternalSource->ReadComments();
310     CommentsLoaded = true;
311   }
312 
313   if (Comments.empty())
314     return nullptr;
315 
316   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
317   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
318   if (!CommentsInThisFile || CommentsInThisFile->empty())
319     return nullptr;
320 
321   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
322 }
323 
324 /// If we have a 'templated' declaration for a template, adjust 'D' to
325 /// refer to the actual template.
326 /// If we have an implicit instantiation, adjust 'D' to refer to template.
327 static const Decl &adjustDeclToTemplate(const Decl &D) {
328   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
329     // Is this function declaration part of a function template?
330     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
331       return *FTD;
332 
333     // Nothing to do if function is not an implicit instantiation.
334     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
335       return D;
336 
337     // Function is an implicit instantiation of a function template?
338     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
339       return *FTD;
340 
341     // Function is instantiated from a member definition of a class template?
342     if (const FunctionDecl *MemberDecl =
343             FD->getInstantiatedFromMemberFunction())
344       return *MemberDecl;
345 
346     return D;
347   }
348   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
349     // Static data member is instantiated from a member definition of a class
350     // template?
351     if (VD->isStaticDataMember())
352       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
353         return *MemberDecl;
354 
355     return D;
356   }
357   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
358     // Is this class declaration part of a class template?
359     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
360       return *CTD;
361 
362     // Class is an implicit instantiation of a class template or partial
363     // specialization?
364     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
365       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
366         return D;
367       llvm::PointerUnion<ClassTemplateDecl *,
368                          ClassTemplatePartialSpecializationDecl *>
369           PU = CTSD->getSpecializedTemplateOrPartial();
370       return PU.is<ClassTemplateDecl *>()
371                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
372                  : *static_cast<const Decl *>(
373                        PU.get<ClassTemplatePartialSpecializationDecl *>());
374     }
375 
376     // Class is instantiated from a member definition of a class template?
377     if (const MemberSpecializationInfo *Info =
378             CRD->getMemberSpecializationInfo())
379       return *Info->getInstantiatedFrom();
380 
381     return D;
382   }
383   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
384     // Enum is instantiated from a member definition of a class template?
385     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
386       return *MemberDecl;
387 
388     return D;
389   }
390   // FIXME: Adjust alias templates?
391   return D;
392 }
393 
394 const RawComment *ASTContext::getRawCommentForAnyRedecl(
395                                                 const Decl *D,
396                                                 const Decl **OriginalDecl) const {
397   if (!D) {
398     if (OriginalDecl)
399       OriginalDecl = nullptr;
400     return nullptr;
401   }
402 
403   D = &adjustDeclToTemplate(*D);
404 
405   // Any comment directly attached to D?
406   {
407     auto DeclComment = DeclRawComments.find(D);
408     if (DeclComment != DeclRawComments.end()) {
409       if (OriginalDecl)
410         *OriginalDecl = D;
411       return DeclComment->second;
412     }
413   }
414 
415   // Any comment attached to any redeclaration of D?
416   const Decl *CanonicalD = D->getCanonicalDecl();
417   if (!CanonicalD)
418     return nullptr;
419 
420   {
421     auto RedeclComment = RedeclChainComments.find(CanonicalD);
422     if (RedeclComment != RedeclChainComments.end()) {
423       if (OriginalDecl)
424         *OriginalDecl = RedeclComment->second;
425       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
426       assert(CommentAtRedecl != DeclRawComments.end() &&
427              "This decl is supposed to have comment attached.");
428       return CommentAtRedecl->second;
429     }
430   }
431 
432   // Any redeclarations of D that we haven't checked for comments yet?
433   // We can't use DenseMap::iterator directly since it'd get invalid.
434   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
435     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
436     if (LookupRes != CommentlessRedeclChains.end())
437       return LookupRes->second;
438     return nullptr;
439   }();
440 
441   for (const auto Redecl : D->redecls()) {
442     assert(Redecl);
443     // Skip all redeclarations that have been checked previously.
444     if (LastCheckedRedecl) {
445       if (LastCheckedRedecl == Redecl) {
446         LastCheckedRedecl = nullptr;
447       }
448       continue;
449     }
450     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
451     if (RedeclComment) {
452       cacheRawCommentForDecl(*Redecl, *RedeclComment);
453       if (OriginalDecl)
454         *OriginalDecl = Redecl;
455       return RedeclComment;
456     }
457     CommentlessRedeclChains[CanonicalD] = Redecl;
458   }
459 
460   if (OriginalDecl)
461     *OriginalDecl = nullptr;
462   return nullptr;
463 }
464 
465 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
466                                         const RawComment &Comment) const {
467   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
468   DeclRawComments.try_emplace(&OriginalD, &Comment);
469   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
470   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
471   CommentlessRedeclChains.erase(CanonicalDecl);
472 }
473 
474 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
475                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
476   const DeclContext *DC = ObjCMethod->getDeclContext();
477   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
478     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
479     if (!ID)
480       return;
481     // Add redeclared method here.
482     for (const auto *Ext : ID->known_extensions()) {
483       if (ObjCMethodDecl *RedeclaredMethod =
484             Ext->getMethod(ObjCMethod->getSelector(),
485                                   ObjCMethod->isInstanceMethod()))
486         Redeclared.push_back(RedeclaredMethod);
487     }
488   }
489 }
490 
491 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
492                                                  const Preprocessor *PP) {
493   if (Comments.empty() || Decls.empty())
494     return;
495 
496   // See if there are any new comments that are not attached to a decl.
497   // The location doesn't have to be precise - we care only about the file.
498   const FileID File =
499       SourceMgr.getDecomposedLoc((*Decls.begin())->getLocation()).first;
500   auto CommentsInThisFile = Comments.getCommentsInFile(File);
501   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
502       CommentsInThisFile->rbegin()->second->isAttached())
503     return;
504 
505   // There is at least one comment not attached to a decl.
506   // Maybe it should be attached to one of Decls?
507   //
508   // Note that this way we pick up not only comments that precede the
509   // declaration, but also comments that *follow* the declaration -- thanks to
510   // the lookahead in the lexer: we've consumed the semicolon and looked
511   // ahead through comments.
512 
513   for (const Decl *D : Decls) {
514     assert(D);
515     if (D->isInvalidDecl())
516       continue;
517 
518     D = &adjustDeclToTemplate(*D);
519 
520     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
521 
522     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
523       continue;
524 
525     if (DeclRawComments.count(D) > 0)
526       continue;
527 
528     if (RawComment *const DocComment =
529             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
530       cacheRawCommentForDecl(*D, *DocComment);
531       comments::FullComment *FC = DocComment->parse(*this, PP, D);
532       ParsedComments[D->getCanonicalDecl()] = FC;
533     }
534   }
535 }
536 
537 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
538                                                     const Decl *D) const {
539   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
540   ThisDeclInfo->CommentDecl = D;
541   ThisDeclInfo->IsFilled = false;
542   ThisDeclInfo->fill();
543   ThisDeclInfo->CommentDecl = FC->getDecl();
544   if (!ThisDeclInfo->TemplateParameters)
545     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
546   comments::FullComment *CFC =
547     new (*this) comments::FullComment(FC->getBlocks(),
548                                       ThisDeclInfo);
549   return CFC;
550 }
551 
552 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
553   const RawComment *RC = getRawCommentForDeclNoCache(D);
554   return RC ? RC->parse(*this, nullptr, D) : nullptr;
555 }
556 
557 comments::FullComment *ASTContext::getCommentForDecl(
558                                               const Decl *D,
559                                               const Preprocessor *PP) const {
560   if (!D || D->isInvalidDecl())
561     return nullptr;
562   D = &adjustDeclToTemplate(*D);
563 
564   const Decl *Canonical = D->getCanonicalDecl();
565   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
566       ParsedComments.find(Canonical);
567 
568   if (Pos != ParsedComments.end()) {
569     if (Canonical != D) {
570       comments::FullComment *FC = Pos->second;
571       comments::FullComment *CFC = cloneFullComment(FC, D);
572       return CFC;
573     }
574     return Pos->second;
575   }
576 
577   const Decl *OriginalDecl = nullptr;
578 
579   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
580   if (!RC) {
581     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
582       SmallVector<const NamedDecl*, 8> Overridden;
583       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
584       if (OMD && OMD->isPropertyAccessor())
585         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
586           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
587             return cloneFullComment(FC, D);
588       if (OMD)
589         addRedeclaredMethods(OMD, Overridden);
590       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
591       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
592         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
593           return cloneFullComment(FC, D);
594     }
595     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
596       // Attach any tag type's documentation to its typedef if latter
597       // does not have one of its own.
598       QualType QT = TD->getUnderlyingType();
599       if (const auto *TT = QT->getAs<TagType>())
600         if (const Decl *TD = TT->getDecl())
601           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
602             return cloneFullComment(FC, D);
603     }
604     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
605       while (IC->getSuperClass()) {
606         IC = IC->getSuperClass();
607         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608           return cloneFullComment(FC, D);
609       }
610     }
611     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
612       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
613         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
614           return cloneFullComment(FC, D);
615     }
616     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
617       if (!(RD = RD->getDefinition()))
618         return nullptr;
619       // Check non-virtual bases.
620       for (const auto &I : RD->bases()) {
621         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
622           continue;
623         QualType Ty = I.getType();
624         if (Ty.isNull())
625           continue;
626         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
627           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
628             continue;
629 
630           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
631             return cloneFullComment(FC, D);
632         }
633       }
634       // Check virtual bases.
635       for (const auto &I : RD->vbases()) {
636         if (I.getAccessSpecifier() != AS_public)
637           continue;
638         QualType Ty = I.getType();
639         if (Ty.isNull())
640           continue;
641         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
642           if (!(VirtualBase= VirtualBase->getDefinition()))
643             continue;
644           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
645             return cloneFullComment(FC, D);
646         }
647       }
648     }
649     return nullptr;
650   }
651 
652   // If the RawComment was attached to other redeclaration of this Decl, we
653   // should parse the comment in context of that other Decl.  This is important
654   // because comments can contain references to parameter names which can be
655   // different across redeclarations.
656   if (D != OriginalDecl && OriginalDecl)
657     return getCommentForDecl(OriginalDecl, PP);
658 
659   comments::FullComment *FC = RC->parse(*this, PP, D);
660   ParsedComments[Canonical] = FC;
661   return FC;
662 }
663 
664 void
665 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
666                                                    const ASTContext &C,
667                                                TemplateTemplateParmDecl *Parm) {
668   ID.AddInteger(Parm->getDepth());
669   ID.AddInteger(Parm->getPosition());
670   ID.AddBoolean(Parm->isParameterPack());
671 
672   TemplateParameterList *Params = Parm->getTemplateParameters();
673   ID.AddInteger(Params->size());
674   for (TemplateParameterList::const_iterator P = Params->begin(),
675                                           PEnd = Params->end();
676        P != PEnd; ++P) {
677     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
678       ID.AddInteger(0);
679       ID.AddBoolean(TTP->isParameterPack());
680       const TypeConstraint *TC = TTP->getTypeConstraint();
681       ID.AddBoolean(TC != nullptr);
682       if (TC)
683         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
684                                                         /*Canonical=*/true);
685       if (TTP->isExpandedParameterPack()) {
686         ID.AddBoolean(true);
687         ID.AddInteger(TTP->getNumExpansionParameters());
688       } else
689         ID.AddBoolean(false);
690       continue;
691     }
692 
693     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
694       ID.AddInteger(1);
695       ID.AddBoolean(NTTP->isParameterPack());
696       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
697       if (NTTP->isExpandedParameterPack()) {
698         ID.AddBoolean(true);
699         ID.AddInteger(NTTP->getNumExpansionTypes());
700         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
701           QualType T = NTTP->getExpansionType(I);
702           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
703         }
704       } else
705         ID.AddBoolean(false);
706       continue;
707     }
708 
709     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
710     ID.AddInteger(2);
711     Profile(ID, C, TTP);
712   }
713   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
714   ID.AddBoolean(RequiresClause != nullptr);
715   if (RequiresClause)
716     RequiresClause->Profile(ID, C, /*Canonical=*/true);
717 }
718 
719 static Expr *
720 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
721                                           QualType ConstrainedType) {
722   // This is a bit ugly - we need to form a new immediately-declared
723   // constraint that references the new parameter; this would ideally
724   // require semantic analysis (e.g. template<C T> struct S {}; - the
725   // converted arguments of C<T> could be an argument pack if C is
726   // declared as template<typename... T> concept C = ...).
727   // We don't have semantic analysis here so we dig deep into the
728   // ready-made constraint expr and change the thing manually.
729   ConceptSpecializationExpr *CSE;
730   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
731     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
732   else
733     CSE = cast<ConceptSpecializationExpr>(IDC);
734   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
735   SmallVector<TemplateArgument, 3> NewConverted;
736   NewConverted.reserve(OldConverted.size());
737   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
738     // The case:
739     // template<typename... T> concept C = true;
740     // template<C<int> T> struct S; -> constraint is C<{T, int}>
741     NewConverted.push_back(ConstrainedType);
742     for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
743       NewConverted.push_back(Arg);
744     TemplateArgument NewPack(NewConverted);
745 
746     NewConverted.clear();
747     NewConverted.push_back(NewPack);
748     assert(OldConverted.size() == 1 &&
749            "Template parameter pack should be the last parameter");
750   } else {
751     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
752            "Unexpected first argument kind for immediately-declared "
753            "constraint");
754     NewConverted.push_back(ConstrainedType);
755     for (auto &Arg : OldConverted.drop_front(1))
756       NewConverted.push_back(Arg);
757   }
758   Expr *NewIDC = ConceptSpecializationExpr::Create(
759       C, CSE->getNamedConcept(), NewConverted, nullptr,
760       CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
761 
762   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
763     NewIDC = new (C) CXXFoldExpr(OrigFold->getType(), SourceLocation(), NewIDC,
764                                  BinaryOperatorKind::BO_LAnd,
765                                  SourceLocation(), /*RHS=*/nullptr,
766                                  SourceLocation(), /*NumExpansions=*/None);
767   return NewIDC;
768 }
769 
770 TemplateTemplateParmDecl *
771 ASTContext::getCanonicalTemplateTemplateParmDecl(
772                                           TemplateTemplateParmDecl *TTP) const {
773   // Check if we already have a canonical template template parameter.
774   llvm::FoldingSetNodeID ID;
775   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
776   void *InsertPos = nullptr;
777   CanonicalTemplateTemplateParm *Canonical
778     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
779   if (Canonical)
780     return Canonical->getParam();
781 
782   // Build a canonical template parameter list.
783   TemplateParameterList *Params = TTP->getTemplateParameters();
784   SmallVector<NamedDecl *, 4> CanonParams;
785   CanonParams.reserve(Params->size());
786   for (TemplateParameterList::const_iterator P = Params->begin(),
787                                           PEnd = Params->end();
788        P != PEnd; ++P) {
789     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
790       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
791           getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
792           TTP->getDepth(), TTP->getIndex(), nullptr, false,
793           TTP->isParameterPack(), TTP->hasTypeConstraint(),
794           TTP->isExpandedParameterPack() ?
795           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
796       if (const auto *TC = TTP->getTypeConstraint()) {
797         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
798         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
799                 *this, TC->getImmediatelyDeclaredConstraint(),
800                 ParamAsArgument);
801         TemplateArgumentListInfo CanonArgsAsWritten;
802         if (auto *Args = TC->getTemplateArgsAsWritten())
803           for (const auto &ArgLoc : Args->arguments())
804             CanonArgsAsWritten.addArgument(
805                 TemplateArgumentLoc(ArgLoc.getArgument(),
806                                     TemplateArgumentLocInfo()));
807         NewTTP->setTypeConstraint(
808             NestedNameSpecifierLoc(),
809             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
810                                 SourceLocation()), /*FoundDecl=*/nullptr,
811             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
812             // simply omit the ArgsAsWritten
813             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
814       }
815       CanonParams.push_back(NewTTP);
816     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
817       QualType T = getCanonicalType(NTTP->getType());
818       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
819       NonTypeTemplateParmDecl *Param;
820       if (NTTP->isExpandedParameterPack()) {
821         SmallVector<QualType, 2> ExpandedTypes;
822         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
823         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
824           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
825           ExpandedTInfos.push_back(
826                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
827         }
828 
829         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
830                                                 SourceLocation(),
831                                                 SourceLocation(),
832                                                 NTTP->getDepth(),
833                                                 NTTP->getPosition(), nullptr,
834                                                 T,
835                                                 TInfo,
836                                                 ExpandedTypes,
837                                                 ExpandedTInfos);
838       } else {
839         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
840                                                 SourceLocation(),
841                                                 SourceLocation(),
842                                                 NTTP->getDepth(),
843                                                 NTTP->getPosition(), nullptr,
844                                                 T,
845                                                 NTTP->isParameterPack(),
846                                                 TInfo);
847       }
848       if (AutoType *AT = T->getContainedAutoType()) {
849         if (AT->isConstrained()) {
850           Param->setPlaceholderTypeConstraint(
851               canonicalizeImmediatelyDeclaredConstraint(
852                   *this, NTTP->getPlaceholderTypeConstraint(), T));
853         }
854       }
855       CanonParams.push_back(Param);
856 
857     } else
858       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
859                                            cast<TemplateTemplateParmDecl>(*P)));
860   }
861 
862   Expr *CanonRequiresClause = nullptr;
863   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
864     CanonRequiresClause = RequiresClause;
865 
866   TemplateTemplateParmDecl *CanonTTP
867     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
868                                        SourceLocation(), TTP->getDepth(),
869                                        TTP->getPosition(),
870                                        TTP->isParameterPack(),
871                                        nullptr,
872                          TemplateParameterList::Create(*this, SourceLocation(),
873                                                        SourceLocation(),
874                                                        CanonParams,
875                                                        SourceLocation(),
876                                                        CanonRequiresClause));
877 
878   // Get the new insert position for the node we care about.
879   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
880   assert(!Canonical && "Shouldn't be in the map!");
881   (void)Canonical;
882 
883   // Create the canonical template template parameter entry.
884   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
885   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
886   return CanonTTP;
887 }
888 
889 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
890   if (!LangOpts.CPlusPlus) return nullptr;
891 
892   switch (T.getCXXABI().getKind()) {
893   case TargetCXXABI::Fuchsia:
894   case TargetCXXABI::GenericARM: // Same as Itanium at this level
895   case TargetCXXABI::iOS:
896   case TargetCXXABI::iOS64:
897   case TargetCXXABI::WatchOS:
898   case TargetCXXABI::GenericAArch64:
899   case TargetCXXABI::GenericMIPS:
900   case TargetCXXABI::GenericItanium:
901   case TargetCXXABI::WebAssembly:
902     return CreateItaniumCXXABI(*this);
903   case TargetCXXABI::Microsoft:
904     return CreateMicrosoftCXXABI(*this);
905   }
906   llvm_unreachable("Invalid CXXABI type!");
907 }
908 
909 interp::Context &ASTContext::getInterpContext() {
910   if (!InterpContext) {
911     InterpContext.reset(new interp::Context(*this));
912   }
913   return *InterpContext.get();
914 }
915 
916 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
917                                            const LangOptions &LOpts) {
918   if (LOpts.FakeAddressSpaceMap) {
919     // The fake address space map must have a distinct entry for each
920     // language-specific address space.
921     static const unsigned FakeAddrSpaceMap[] = {
922         0, // Default
923         1, // opencl_global
924         3, // opencl_local
925         2, // opencl_constant
926         0, // opencl_private
927         4, // opencl_generic
928         5, // cuda_device
929         6, // cuda_constant
930         7, // cuda_shared
931         8, // ptr32_sptr
932         9, // ptr32_uptr
933         10 // ptr64
934     };
935     return &FakeAddrSpaceMap;
936   } else {
937     return &T.getAddressSpaceMap();
938   }
939 }
940 
941 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
942                                           const LangOptions &LangOpts) {
943   switch (LangOpts.getAddressSpaceMapMangling()) {
944   case LangOptions::ASMM_Target:
945     return TI.useAddressSpaceMapMangling();
946   case LangOptions::ASMM_On:
947     return true;
948   case LangOptions::ASMM_Off:
949     return false;
950   }
951   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
952 }
953 
954 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
955                        IdentifierTable &idents, SelectorTable &sels,
956                        Builtin::Context &builtins)
957     : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
958       TemplateSpecializationTypes(this_()),
959       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
960       SubstTemplateTemplateParmPacks(this_()),
961       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
962       SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
963       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
964                                         LangOpts.XRayNeverInstrumentFiles,
965                                         LangOpts.XRayAttrListFiles, SM)),
966       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
967       BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
968       CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
969       CompCategories(this_()), LastSDM(nullptr, 0) {
970   TUDecl = TranslationUnitDecl::Create(*this);
971   TraversalScope = {TUDecl};
972 }
973 
974 ASTContext::~ASTContext() {
975   // Release the DenseMaps associated with DeclContext objects.
976   // FIXME: Is this the ideal solution?
977   ReleaseDeclContextMaps();
978 
979   // Call all of the deallocation functions on all of their targets.
980   for (auto &Pair : Deallocations)
981     (Pair.first)(Pair.second);
982 
983   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
984   // because they can contain DenseMaps.
985   for (llvm::DenseMap<const ObjCContainerDecl*,
986        const ASTRecordLayout*>::iterator
987        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
988     // Increment in loop to prevent using deallocated memory.
989     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
990       R->Destroy(*this);
991 
992   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
993        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
994     // Increment in loop to prevent using deallocated memory.
995     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
996       R->Destroy(*this);
997   }
998 
999   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1000                                                     AEnd = DeclAttrs.end();
1001        A != AEnd; ++A)
1002     A->second->~AttrVec();
1003 
1004   for (const auto &Value : ModuleInitializers)
1005     Value.second->~PerModuleInitializers();
1006 
1007   for (APValue *Value : APValueCleanups)
1008     Value->~APValue();
1009 }
1010 
1011 class ASTContext::ParentMap {
1012   /// Contains parents of a node.
1013   using ParentVector = llvm::SmallVector<ast_type_traits::DynTypedNode, 2>;
1014 
1015   /// Maps from a node to its parents. This is used for nodes that have
1016   /// pointer identity only, which are more common and we can save space by
1017   /// only storing a unique pointer to them.
1018   using ParentMapPointers = llvm::DenseMap<
1019       const void *,
1020       llvm::PointerUnion<const Decl *, const Stmt *,
1021                          ast_type_traits::DynTypedNode *, ParentVector *>>;
1022 
1023   /// Parent map for nodes without pointer identity. We store a full
1024   /// DynTypedNode for all keys.
1025   using ParentMapOtherNodes = llvm::DenseMap<
1026       ast_type_traits::DynTypedNode,
1027       llvm::PointerUnion<const Decl *, const Stmt *,
1028                          ast_type_traits::DynTypedNode *, ParentVector *>>;
1029 
1030   ParentMapPointers PointerParents;
1031   ParentMapOtherNodes OtherParents;
1032   class ASTVisitor;
1033 
1034   static ast_type_traits::DynTypedNode
1035   getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U) {
1036     if (const auto *D = U.dyn_cast<const Decl *>())
1037       return ast_type_traits::DynTypedNode::create(*D);
1038     if (const auto *S = U.dyn_cast<const Stmt *>())
1039       return ast_type_traits::DynTypedNode::create(*S);
1040     return *U.get<ast_type_traits::DynTypedNode *>();
1041   }
1042 
1043   template <typename NodeTy, typename MapTy>
1044   static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
1045                                                         const MapTy &Map) {
1046     auto I = Map.find(Node);
1047     if (I == Map.end()) {
1048       return llvm::ArrayRef<ast_type_traits::DynTypedNode>();
1049     }
1050     if (const auto *V = I->second.template dyn_cast<ParentVector *>()) {
1051       return llvm::makeArrayRef(*V);
1052     }
1053     return getSingleDynTypedNodeFromParentMap(I->second);
1054   }
1055 
1056 public:
1057   ParentMap(ASTContext &Ctx);
1058   ~ParentMap() {
1059     for (const auto &Entry : PointerParents) {
1060       if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
1061         delete Entry.second.get<ast_type_traits::DynTypedNode *>();
1062       } else if (Entry.second.is<ParentVector *>()) {
1063         delete Entry.second.get<ParentVector *>();
1064       }
1065     }
1066     for (const auto &Entry : OtherParents) {
1067       if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
1068         delete Entry.second.get<ast_type_traits::DynTypedNode *>();
1069       } else if (Entry.second.is<ParentVector *>()) {
1070         delete Entry.second.get<ParentVector *>();
1071       }
1072     }
1073   }
1074 
1075   DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node) {
1076     if (Node.getNodeKind().hasPointerIdentity())
1077       return getDynNodeFromMap(Node.getMemoizationData(), PointerParents);
1078     return getDynNodeFromMap(Node, OtherParents);
1079   }
1080 };
1081 
1082 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1083   TraversalScope = TopLevelDecls;
1084   Parents.clear();
1085 }
1086 
1087 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1088   Deallocations.push_back({Callback, Data});
1089 }
1090 
1091 void
1092 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1093   ExternalSource = std::move(Source);
1094 }
1095 
1096 void ASTContext::PrintStats() const {
1097   llvm::errs() << "\n*** AST Context Stats:\n";
1098   llvm::errs() << "  " << Types.size() << " types total.\n";
1099 
1100   unsigned counts[] = {
1101 #define TYPE(Name, Parent) 0,
1102 #define ABSTRACT_TYPE(Name, Parent)
1103 #include "clang/AST/TypeNodes.inc"
1104     0 // Extra
1105   };
1106 
1107   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1108     Type *T = Types[i];
1109     counts[(unsigned)T->getTypeClass()]++;
1110   }
1111 
1112   unsigned Idx = 0;
1113   unsigned TotalBytes = 0;
1114 #define TYPE(Name, Parent)                                              \
1115   if (counts[Idx])                                                      \
1116     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1117                  << " types, " << sizeof(Name##Type) << " each "        \
1118                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1119                  << " bytes)\n";                                        \
1120   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1121   ++Idx;
1122 #define ABSTRACT_TYPE(Name, Parent)
1123 #include "clang/AST/TypeNodes.inc"
1124 
1125   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1126 
1127   // Implicit special member functions.
1128   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1129                << NumImplicitDefaultConstructors
1130                << " implicit default constructors created\n";
1131   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1132                << NumImplicitCopyConstructors
1133                << " implicit copy constructors created\n";
1134   if (getLangOpts().CPlusPlus)
1135     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1136                  << NumImplicitMoveConstructors
1137                  << " implicit move constructors created\n";
1138   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1139                << NumImplicitCopyAssignmentOperators
1140                << " implicit copy assignment operators created\n";
1141   if (getLangOpts().CPlusPlus)
1142     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1143                  << NumImplicitMoveAssignmentOperators
1144                  << " implicit move assignment operators created\n";
1145   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1146                << NumImplicitDestructors
1147                << " implicit destructors created\n";
1148 
1149   if (ExternalSource) {
1150     llvm::errs() << "\n";
1151     ExternalSource->PrintStats();
1152   }
1153 
1154   BumpAlloc.PrintStats();
1155 }
1156 
1157 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1158                                            bool NotifyListeners) {
1159   if (NotifyListeners)
1160     if (auto *Listener = getASTMutationListener())
1161       Listener->RedefinedHiddenDefinition(ND, M);
1162 
1163   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1164 }
1165 
1166 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1167   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1168   if (It == MergedDefModules.end())
1169     return;
1170 
1171   auto &Merged = It->second;
1172   llvm::DenseSet<Module*> Found;
1173   for (Module *&M : Merged)
1174     if (!Found.insert(M).second)
1175       M = nullptr;
1176   Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1177 }
1178 
1179 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1180   if (LazyInitializers.empty())
1181     return;
1182 
1183   auto *Source = Ctx.getExternalSource();
1184   assert(Source && "lazy initializers but no external source");
1185 
1186   auto LazyInits = std::move(LazyInitializers);
1187   LazyInitializers.clear();
1188 
1189   for (auto ID : LazyInits)
1190     Initializers.push_back(Source->GetExternalDecl(ID));
1191 
1192   assert(LazyInitializers.empty() &&
1193          "GetExternalDecl for lazy module initializer added more inits");
1194 }
1195 
1196 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1197   // One special case: if we add a module initializer that imports another
1198   // module, and that module's only initializer is an ImportDecl, simplify.
1199   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1200     auto It = ModuleInitializers.find(ID->getImportedModule());
1201 
1202     // Maybe the ImportDecl does nothing at all. (Common case.)
1203     if (It == ModuleInitializers.end())
1204       return;
1205 
1206     // Maybe the ImportDecl only imports another ImportDecl.
1207     auto &Imported = *It->second;
1208     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1209       Imported.resolve(*this);
1210       auto *OnlyDecl = Imported.Initializers.front();
1211       if (isa<ImportDecl>(OnlyDecl))
1212         D = OnlyDecl;
1213     }
1214   }
1215 
1216   auto *&Inits = ModuleInitializers[M];
1217   if (!Inits)
1218     Inits = new (*this) PerModuleInitializers;
1219   Inits->Initializers.push_back(D);
1220 }
1221 
1222 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1223   auto *&Inits = ModuleInitializers[M];
1224   if (!Inits)
1225     Inits = new (*this) PerModuleInitializers;
1226   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1227                                  IDs.begin(), IDs.end());
1228 }
1229 
1230 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1231   auto It = ModuleInitializers.find(M);
1232   if (It == ModuleInitializers.end())
1233     return None;
1234 
1235   auto *Inits = It->second;
1236   Inits->resolve(*this);
1237   return Inits->Initializers;
1238 }
1239 
1240 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1241   if (!ExternCContext)
1242     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1243 
1244   return ExternCContext;
1245 }
1246 
1247 BuiltinTemplateDecl *
1248 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1249                                      const IdentifierInfo *II) const {
1250   auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1251   BuiltinTemplate->setImplicit();
1252   TUDecl->addDecl(BuiltinTemplate);
1253 
1254   return BuiltinTemplate;
1255 }
1256 
1257 BuiltinTemplateDecl *
1258 ASTContext::getMakeIntegerSeqDecl() const {
1259   if (!MakeIntegerSeqDecl)
1260     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1261                                                   getMakeIntegerSeqName());
1262   return MakeIntegerSeqDecl;
1263 }
1264 
1265 BuiltinTemplateDecl *
1266 ASTContext::getTypePackElementDecl() const {
1267   if (!TypePackElementDecl)
1268     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1269                                                    getTypePackElementName());
1270   return TypePackElementDecl;
1271 }
1272 
1273 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1274                                             RecordDecl::TagKind TK) const {
1275   SourceLocation Loc;
1276   RecordDecl *NewDecl;
1277   if (getLangOpts().CPlusPlus)
1278     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1279                                     Loc, &Idents.get(Name));
1280   else
1281     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1282                                  &Idents.get(Name));
1283   NewDecl->setImplicit();
1284   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1285       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1286   return NewDecl;
1287 }
1288 
1289 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1290                                               StringRef Name) const {
1291   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1292   TypedefDecl *NewDecl = TypedefDecl::Create(
1293       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1294       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1295   NewDecl->setImplicit();
1296   return NewDecl;
1297 }
1298 
1299 TypedefDecl *ASTContext::getInt128Decl() const {
1300   if (!Int128Decl)
1301     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1302   return Int128Decl;
1303 }
1304 
1305 TypedefDecl *ASTContext::getUInt128Decl() const {
1306   if (!UInt128Decl)
1307     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1308   return UInt128Decl;
1309 }
1310 
1311 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1312   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1313   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1314   Types.push_back(Ty);
1315 }
1316 
1317 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1318                                   const TargetInfo *AuxTarget) {
1319   assert((!this->Target || this->Target == &Target) &&
1320          "Incorrect target reinitialization");
1321   assert(VoidTy.isNull() && "Context reinitialized?");
1322 
1323   this->Target = &Target;
1324   this->AuxTarget = AuxTarget;
1325 
1326   ABI.reset(createCXXABI(Target));
1327   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1328   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1329 
1330   // C99 6.2.5p19.
1331   InitBuiltinType(VoidTy,              BuiltinType::Void);
1332 
1333   // C99 6.2.5p2.
1334   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1335   // C99 6.2.5p3.
1336   if (LangOpts.CharIsSigned)
1337     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1338   else
1339     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1340   // C99 6.2.5p4.
1341   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1342   InitBuiltinType(ShortTy,             BuiltinType::Short);
1343   InitBuiltinType(IntTy,               BuiltinType::Int);
1344   InitBuiltinType(LongTy,              BuiltinType::Long);
1345   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1346 
1347   // C99 6.2.5p6.
1348   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1349   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1350   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1351   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1352   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1353 
1354   // C99 6.2.5p10.
1355   InitBuiltinType(FloatTy,             BuiltinType::Float);
1356   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1357   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1358 
1359   // GNU extension, __float128 for IEEE quadruple precision
1360   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1361 
1362   // C11 extension ISO/IEC TS 18661-3
1363   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1364 
1365   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1366   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1367   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1368   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1369   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1370   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1371   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1372   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1373   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1374   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1375   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1376   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1377   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1378   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1379   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1380   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1381   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1382   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1383   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1384   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1385   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1386   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1387   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1388   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1389   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1390 
1391   // GNU extension, 128-bit integers.
1392   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1393   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1394 
1395   // C++ 3.9.1p5
1396   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1397     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1398   else  // -fshort-wchar makes wchar_t be unsigned.
1399     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1400   if (LangOpts.CPlusPlus && LangOpts.WChar)
1401     WideCharTy = WCharTy;
1402   else {
1403     // C99 (or C++ using -fno-wchar).
1404     WideCharTy = getFromTargetType(Target.getWCharType());
1405   }
1406 
1407   WIntTy = getFromTargetType(Target.getWIntType());
1408 
1409   // C++20 (proposed)
1410   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1411 
1412   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1413     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1414   else // C99
1415     Char16Ty = getFromTargetType(Target.getChar16Type());
1416 
1417   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1418     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1419   else // C99
1420     Char32Ty = getFromTargetType(Target.getChar32Type());
1421 
1422   // Placeholder type for type-dependent expressions whose type is
1423   // completely unknown. No code should ever check a type against
1424   // DependentTy and users should never see it; however, it is here to
1425   // help diagnose failures to properly check for type-dependent
1426   // expressions.
1427   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1428 
1429   // Placeholder type for functions.
1430   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1431 
1432   // Placeholder type for bound members.
1433   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1434 
1435   // Placeholder type for pseudo-objects.
1436   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1437 
1438   // "any" type; useful for debugger-like clients.
1439   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1440 
1441   // Placeholder type for unbridged ARC casts.
1442   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1443 
1444   // Placeholder type for builtin functions.
1445   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1446 
1447   // Placeholder type for OMP array sections.
1448   if (LangOpts.OpenMP)
1449     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1450 
1451   // C99 6.2.5p11.
1452   FloatComplexTy      = getComplexType(FloatTy);
1453   DoubleComplexTy     = getComplexType(DoubleTy);
1454   LongDoubleComplexTy = getComplexType(LongDoubleTy);
1455   Float128ComplexTy   = getComplexType(Float128Ty);
1456 
1457   // Builtin types for 'id', 'Class', and 'SEL'.
1458   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1459   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1460   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1461 
1462   if (LangOpts.OpenCL) {
1463 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1464     InitBuiltinType(SingletonId, BuiltinType::Id);
1465 #include "clang/Basic/OpenCLImageTypes.def"
1466 
1467     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1468     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1469     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1470     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1471     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1472 
1473 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1474     InitBuiltinType(Id##Ty, BuiltinType::Id);
1475 #include "clang/Basic/OpenCLExtensionTypes.def"
1476   }
1477 
1478   if (Target.hasAArch64SVETypes()) {
1479 #define SVE_TYPE(Name, Id, SingletonId) \
1480     InitBuiltinType(SingletonId, BuiltinType::Id);
1481 #include "clang/Basic/AArch64SVEACLETypes.def"
1482   }
1483 
1484   // Builtin type for __objc_yes and __objc_no
1485   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1486                        SignedCharTy : BoolTy);
1487 
1488   ObjCConstantStringType = QualType();
1489 
1490   ObjCSuperType = QualType();
1491 
1492   // void * type
1493   if (LangOpts.OpenCLVersion >= 200) {
1494     auto Q = VoidTy.getQualifiers();
1495     Q.setAddressSpace(LangAS::opencl_generic);
1496     VoidPtrTy = getPointerType(getCanonicalType(
1497         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1498   } else {
1499     VoidPtrTy = getPointerType(VoidTy);
1500   }
1501 
1502   // nullptr type (C++0x 2.14.7)
1503   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1504 
1505   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1506   InitBuiltinType(HalfTy, BuiltinType::Half);
1507 
1508   // Builtin type used to help define __builtin_va_list.
1509   VaListTagDecl = nullptr;
1510 }
1511 
1512 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1513   return SourceMgr.getDiagnostics();
1514 }
1515 
1516 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1517   AttrVec *&Result = DeclAttrs[D];
1518   if (!Result) {
1519     void *Mem = Allocate(sizeof(AttrVec));
1520     Result = new (Mem) AttrVec;
1521   }
1522 
1523   return *Result;
1524 }
1525 
1526 /// Erase the attributes corresponding to the given declaration.
1527 void ASTContext::eraseDeclAttrs(const Decl *D) {
1528   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1529   if (Pos != DeclAttrs.end()) {
1530     Pos->second->~AttrVec();
1531     DeclAttrs.erase(Pos);
1532   }
1533 }
1534 
1535 // FIXME: Remove ?
1536 MemberSpecializationInfo *
1537 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1538   assert(Var->isStaticDataMember() && "Not a static data member");
1539   return getTemplateOrSpecializationInfo(Var)
1540       .dyn_cast<MemberSpecializationInfo *>();
1541 }
1542 
1543 ASTContext::TemplateOrSpecializationInfo
1544 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1545   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1546       TemplateOrInstantiation.find(Var);
1547   if (Pos == TemplateOrInstantiation.end())
1548     return {};
1549 
1550   return Pos->second;
1551 }
1552 
1553 void
1554 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1555                                                 TemplateSpecializationKind TSK,
1556                                           SourceLocation PointOfInstantiation) {
1557   assert(Inst->isStaticDataMember() && "Not a static data member");
1558   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1559   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1560                                             Tmpl, TSK, PointOfInstantiation));
1561 }
1562 
1563 void
1564 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1565                                             TemplateOrSpecializationInfo TSI) {
1566   assert(!TemplateOrInstantiation[Inst] &&
1567          "Already noted what the variable was instantiated from");
1568   TemplateOrInstantiation[Inst] = TSI;
1569 }
1570 
1571 NamedDecl *
1572 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1573   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1574   if (Pos == InstantiatedFromUsingDecl.end())
1575     return nullptr;
1576 
1577   return Pos->second;
1578 }
1579 
1580 void
1581 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1582   assert((isa<UsingDecl>(Pattern) ||
1583           isa<UnresolvedUsingValueDecl>(Pattern) ||
1584           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1585          "pattern decl is not a using decl");
1586   assert((isa<UsingDecl>(Inst) ||
1587           isa<UnresolvedUsingValueDecl>(Inst) ||
1588           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1589          "instantiation did not produce a using decl");
1590   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1591   InstantiatedFromUsingDecl[Inst] = Pattern;
1592 }
1593 
1594 UsingShadowDecl *
1595 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1596   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1597     = InstantiatedFromUsingShadowDecl.find(Inst);
1598   if (Pos == InstantiatedFromUsingShadowDecl.end())
1599     return nullptr;
1600 
1601   return Pos->second;
1602 }
1603 
1604 void
1605 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1606                                                UsingShadowDecl *Pattern) {
1607   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1608   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1609 }
1610 
1611 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1612   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1613     = InstantiatedFromUnnamedFieldDecl.find(Field);
1614   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1615     return nullptr;
1616 
1617   return Pos->second;
1618 }
1619 
1620 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1621                                                      FieldDecl *Tmpl) {
1622   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1623   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1624   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1625          "Already noted what unnamed field was instantiated from");
1626 
1627   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1628 }
1629 
1630 ASTContext::overridden_cxx_method_iterator
1631 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1632   return overridden_methods(Method).begin();
1633 }
1634 
1635 ASTContext::overridden_cxx_method_iterator
1636 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1637   return overridden_methods(Method).end();
1638 }
1639 
1640 unsigned
1641 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1642   auto Range = overridden_methods(Method);
1643   return Range.end() - Range.begin();
1644 }
1645 
1646 ASTContext::overridden_method_range
1647 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1648   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1649       OverriddenMethods.find(Method->getCanonicalDecl());
1650   if (Pos == OverriddenMethods.end())
1651     return overridden_method_range(nullptr, nullptr);
1652   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1653 }
1654 
1655 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1656                                      const CXXMethodDecl *Overridden) {
1657   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1658   OverriddenMethods[Method].push_back(Overridden);
1659 }
1660 
1661 void ASTContext::getOverriddenMethods(
1662                       const NamedDecl *D,
1663                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1664   assert(D);
1665 
1666   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1667     Overridden.append(overridden_methods_begin(CXXMethod),
1668                       overridden_methods_end(CXXMethod));
1669     return;
1670   }
1671 
1672   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1673   if (!Method)
1674     return;
1675 
1676   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1677   Method->getOverriddenMethods(OverDecls);
1678   Overridden.append(OverDecls.begin(), OverDecls.end());
1679 }
1680 
1681 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1682   assert(!Import->NextLocalImport && "Import declaration already in the chain");
1683   assert(!Import->isFromASTFile() && "Non-local import declaration");
1684   if (!FirstLocalImport) {
1685     FirstLocalImport = Import;
1686     LastLocalImport = Import;
1687     return;
1688   }
1689 
1690   LastLocalImport->NextLocalImport = Import;
1691   LastLocalImport = Import;
1692 }
1693 
1694 //===----------------------------------------------------------------------===//
1695 //                         Type Sizing and Analysis
1696 //===----------------------------------------------------------------------===//
1697 
1698 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1699 /// scalar floating point type.
1700 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1701   switch (T->castAs<BuiltinType>()->getKind()) {
1702   default:
1703     llvm_unreachable("Not a floating point type!");
1704   case BuiltinType::Float16:
1705   case BuiltinType::Half:
1706     return Target->getHalfFormat();
1707   case BuiltinType::Float:      return Target->getFloatFormat();
1708   case BuiltinType::Double:     return Target->getDoubleFormat();
1709   case BuiltinType::LongDouble:
1710     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1711       return AuxTarget->getLongDoubleFormat();
1712     return Target->getLongDoubleFormat();
1713   case BuiltinType::Float128:
1714     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1715       return AuxTarget->getFloat128Format();
1716     return Target->getFloat128Format();
1717   }
1718 }
1719 
1720 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1721   unsigned Align = Target->getCharWidth();
1722 
1723   bool UseAlignAttrOnly = false;
1724   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1725     Align = AlignFromAttr;
1726 
1727     // __attribute__((aligned)) can increase or decrease alignment
1728     // *except* on a struct or struct member, where it only increases
1729     // alignment unless 'packed' is also specified.
1730     //
1731     // It is an error for alignas to decrease alignment, so we can
1732     // ignore that possibility;  Sema should diagnose it.
1733     if (isa<FieldDecl>(D)) {
1734       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1735         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1736     } else {
1737       UseAlignAttrOnly = true;
1738     }
1739   }
1740   else if (isa<FieldDecl>(D))
1741       UseAlignAttrOnly =
1742         D->hasAttr<PackedAttr>() ||
1743         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1744 
1745   // If we're using the align attribute only, just ignore everything
1746   // else about the declaration and its type.
1747   if (UseAlignAttrOnly) {
1748     // do nothing
1749   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1750     QualType T = VD->getType();
1751     if (const auto *RT = T->getAs<ReferenceType>()) {
1752       if (ForAlignof)
1753         T = RT->getPointeeType();
1754       else
1755         T = getPointerType(RT->getPointeeType());
1756     }
1757     QualType BaseT = getBaseElementType(T);
1758     if (T->isFunctionType())
1759       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1760     else if (!BaseT->isIncompleteType()) {
1761       // Adjust alignments of declarations with array type by the
1762       // large-array alignment on the target.
1763       if (const ArrayType *arrayType = getAsArrayType(T)) {
1764         unsigned MinWidth = Target->getLargeArrayMinWidth();
1765         if (!ForAlignof && MinWidth) {
1766           if (isa<VariableArrayType>(arrayType))
1767             Align = std::max(Align, Target->getLargeArrayAlign());
1768           else if (isa<ConstantArrayType>(arrayType) &&
1769                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1770             Align = std::max(Align, Target->getLargeArrayAlign());
1771         }
1772       }
1773       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1774       if (BaseT.getQualifiers().hasUnaligned())
1775         Align = Target->getCharWidth();
1776       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1777         if (VD->hasGlobalStorage() && !ForAlignof) {
1778           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1779           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1780         }
1781       }
1782     }
1783 
1784     // Fields can be subject to extra alignment constraints, like if
1785     // the field is packed, the struct is packed, or the struct has a
1786     // a max-field-alignment constraint (#pragma pack).  So calculate
1787     // the actual alignment of the field within the struct, and then
1788     // (as we're expected to) constrain that by the alignment of the type.
1789     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1790       const RecordDecl *Parent = Field->getParent();
1791       // We can only produce a sensible answer if the record is valid.
1792       if (!Parent->isInvalidDecl()) {
1793         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1794 
1795         // Start with the record's overall alignment.
1796         unsigned FieldAlign = toBits(Layout.getAlignment());
1797 
1798         // Use the GCD of that and the offset within the record.
1799         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1800         if (Offset > 0) {
1801           // Alignment is always a power of 2, so the GCD will be a power of 2,
1802           // which means we get to do this crazy thing instead of Euclid's.
1803           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1804           if (LowBitOfOffset < FieldAlign)
1805             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1806         }
1807 
1808         Align = std::min(Align, FieldAlign);
1809       }
1810     }
1811   }
1812 
1813   return toCharUnitsFromBits(Align);
1814 }
1815 
1816 // getTypeInfoDataSizeInChars - Return the size of a type, in
1817 // chars. If the type is a record, its data size is returned.  This is
1818 // the size of the memcpy that's performed when assigning this type
1819 // using a trivial copy/move assignment operator.
1820 std::pair<CharUnits, CharUnits>
1821 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1822   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1823 
1824   // In C++, objects can sometimes be allocated into the tail padding
1825   // of a base-class subobject.  We decide whether that's possible
1826   // during class layout, so here we can just trust the layout results.
1827   if (getLangOpts().CPlusPlus) {
1828     if (const auto *RT = T->getAs<RecordType>()) {
1829       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1830       sizeAndAlign.first = layout.getDataSize();
1831     }
1832   }
1833 
1834   return sizeAndAlign;
1835 }
1836 
1837 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1838 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1839 std::pair<CharUnits, CharUnits>
1840 static getConstantArrayInfoInChars(const ASTContext &Context,
1841                                    const ConstantArrayType *CAT) {
1842   std::pair<CharUnits, CharUnits> EltInfo =
1843       Context.getTypeInfoInChars(CAT->getElementType());
1844   uint64_t Size = CAT->getSize().getZExtValue();
1845   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1846               (uint64_t)(-1)/Size) &&
1847          "Overflow in array type char size evaluation");
1848   uint64_t Width = EltInfo.first.getQuantity() * Size;
1849   unsigned Align = EltInfo.second.getQuantity();
1850   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1851       Context.getTargetInfo().getPointerWidth(0) == 64)
1852     Width = llvm::alignTo(Width, Align);
1853   return std::make_pair(CharUnits::fromQuantity(Width),
1854                         CharUnits::fromQuantity(Align));
1855 }
1856 
1857 std::pair<CharUnits, CharUnits>
1858 ASTContext::getTypeInfoInChars(const Type *T) const {
1859   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1860     return getConstantArrayInfoInChars(*this, CAT);
1861   TypeInfo Info = getTypeInfo(T);
1862   return std::make_pair(toCharUnitsFromBits(Info.Width),
1863                         toCharUnitsFromBits(Info.Align));
1864 }
1865 
1866 std::pair<CharUnits, CharUnits>
1867 ASTContext::getTypeInfoInChars(QualType T) const {
1868   return getTypeInfoInChars(T.getTypePtr());
1869 }
1870 
1871 bool ASTContext::isAlignmentRequired(const Type *T) const {
1872   return getTypeInfo(T).AlignIsRequired;
1873 }
1874 
1875 bool ASTContext::isAlignmentRequired(QualType T) const {
1876   return isAlignmentRequired(T.getTypePtr());
1877 }
1878 
1879 unsigned ASTContext::getTypeAlignIfKnown(QualType T) const {
1880   // An alignment on a typedef overrides anything else.
1881   if (const auto *TT = T->getAs<TypedefType>())
1882     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1883       return Align;
1884 
1885   // If we have an (array of) complete type, we're done.
1886   T = getBaseElementType(T);
1887   if (!T->isIncompleteType())
1888     return getTypeAlign(T);
1889 
1890   // If we had an array type, its element type might be a typedef
1891   // type with an alignment attribute.
1892   if (const auto *TT = T->getAs<TypedefType>())
1893     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1894       return Align;
1895 
1896   // Otherwise, see if the declaration of the type had an attribute.
1897   if (const auto *TT = T->getAs<TagType>())
1898     return TT->getDecl()->getMaxAlignment();
1899 
1900   return 0;
1901 }
1902 
1903 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1904   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1905   if (I != MemoizedTypeInfo.end())
1906     return I->second;
1907 
1908   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1909   TypeInfo TI = getTypeInfoImpl(T);
1910   MemoizedTypeInfo[T] = TI;
1911   return TI;
1912 }
1913 
1914 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1915 /// method does not work on incomplete types.
1916 ///
1917 /// FIXME: Pointers into different addr spaces could have different sizes and
1918 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1919 /// should take a QualType, &c.
1920 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1921   uint64_t Width = 0;
1922   unsigned Align = 8;
1923   bool AlignIsRequired = false;
1924   unsigned AS = 0;
1925   switch (T->getTypeClass()) {
1926 #define TYPE(Class, Base)
1927 #define ABSTRACT_TYPE(Class, Base)
1928 #define NON_CANONICAL_TYPE(Class, Base)
1929 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1930 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1931   case Type::Class:                                                            \
1932   assert(!T->isDependentType() && "should not see dependent types here");      \
1933   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1934 #include "clang/AST/TypeNodes.inc"
1935     llvm_unreachable("Should not see dependent types");
1936 
1937   case Type::FunctionNoProto:
1938   case Type::FunctionProto:
1939     // GCC extension: alignof(function) = 32 bits
1940     Width = 0;
1941     Align = 32;
1942     break;
1943 
1944   case Type::IncompleteArray:
1945   case Type::VariableArray:
1946     Width = 0;
1947     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1948     break;
1949 
1950   case Type::ConstantArray: {
1951     const auto *CAT = cast<ConstantArrayType>(T);
1952 
1953     TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1954     uint64_t Size = CAT->getSize().getZExtValue();
1955     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1956            "Overflow in array type bit size evaluation");
1957     Width = EltInfo.Width * Size;
1958     Align = EltInfo.Align;
1959     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1960         getTargetInfo().getPointerWidth(0) == 64)
1961       Width = llvm::alignTo(Width, Align);
1962     break;
1963   }
1964   case Type::ExtVector:
1965   case Type::Vector: {
1966     const auto *VT = cast<VectorType>(T);
1967     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1968     Width = EltInfo.Width * VT->getNumElements();
1969     Align = Width;
1970     // If the alignment is not a power of 2, round up to the next power of 2.
1971     // This happens for non-power-of-2 length vectors.
1972     if (Align & (Align-1)) {
1973       Align = llvm::NextPowerOf2(Align);
1974       Width = llvm::alignTo(Width, Align);
1975     }
1976     // Adjust the alignment based on the target max.
1977     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1978     if (TargetVectorAlign && TargetVectorAlign < Align)
1979       Align = TargetVectorAlign;
1980     break;
1981   }
1982 
1983   case Type::Builtin:
1984     switch (cast<BuiltinType>(T)->getKind()) {
1985     default: llvm_unreachable("Unknown builtin type!");
1986     case BuiltinType::Void:
1987       // GCC extension: alignof(void) = 8 bits.
1988       Width = 0;
1989       Align = 8;
1990       break;
1991     case BuiltinType::Bool:
1992       Width = Target->getBoolWidth();
1993       Align = Target->getBoolAlign();
1994       break;
1995     case BuiltinType::Char_S:
1996     case BuiltinType::Char_U:
1997     case BuiltinType::UChar:
1998     case BuiltinType::SChar:
1999     case BuiltinType::Char8:
2000       Width = Target->getCharWidth();
2001       Align = Target->getCharAlign();
2002       break;
2003     case BuiltinType::WChar_S:
2004     case BuiltinType::WChar_U:
2005       Width = Target->getWCharWidth();
2006       Align = Target->getWCharAlign();
2007       break;
2008     case BuiltinType::Char16:
2009       Width = Target->getChar16Width();
2010       Align = Target->getChar16Align();
2011       break;
2012     case BuiltinType::Char32:
2013       Width = Target->getChar32Width();
2014       Align = Target->getChar32Align();
2015       break;
2016     case BuiltinType::UShort:
2017     case BuiltinType::Short:
2018       Width = Target->getShortWidth();
2019       Align = Target->getShortAlign();
2020       break;
2021     case BuiltinType::UInt:
2022     case BuiltinType::Int:
2023       Width = Target->getIntWidth();
2024       Align = Target->getIntAlign();
2025       break;
2026     case BuiltinType::ULong:
2027     case BuiltinType::Long:
2028       Width = Target->getLongWidth();
2029       Align = Target->getLongAlign();
2030       break;
2031     case BuiltinType::ULongLong:
2032     case BuiltinType::LongLong:
2033       Width = Target->getLongLongWidth();
2034       Align = Target->getLongLongAlign();
2035       break;
2036     case BuiltinType::Int128:
2037     case BuiltinType::UInt128:
2038       Width = 128;
2039       Align = 128; // int128_t is 128-bit aligned on all targets.
2040       break;
2041     case BuiltinType::ShortAccum:
2042     case BuiltinType::UShortAccum:
2043     case BuiltinType::SatShortAccum:
2044     case BuiltinType::SatUShortAccum:
2045       Width = Target->getShortAccumWidth();
2046       Align = Target->getShortAccumAlign();
2047       break;
2048     case BuiltinType::Accum:
2049     case BuiltinType::UAccum:
2050     case BuiltinType::SatAccum:
2051     case BuiltinType::SatUAccum:
2052       Width = Target->getAccumWidth();
2053       Align = Target->getAccumAlign();
2054       break;
2055     case BuiltinType::LongAccum:
2056     case BuiltinType::ULongAccum:
2057     case BuiltinType::SatLongAccum:
2058     case BuiltinType::SatULongAccum:
2059       Width = Target->getLongAccumWidth();
2060       Align = Target->getLongAccumAlign();
2061       break;
2062     case BuiltinType::ShortFract:
2063     case BuiltinType::UShortFract:
2064     case BuiltinType::SatShortFract:
2065     case BuiltinType::SatUShortFract:
2066       Width = Target->getShortFractWidth();
2067       Align = Target->getShortFractAlign();
2068       break;
2069     case BuiltinType::Fract:
2070     case BuiltinType::UFract:
2071     case BuiltinType::SatFract:
2072     case BuiltinType::SatUFract:
2073       Width = Target->getFractWidth();
2074       Align = Target->getFractAlign();
2075       break;
2076     case BuiltinType::LongFract:
2077     case BuiltinType::ULongFract:
2078     case BuiltinType::SatLongFract:
2079     case BuiltinType::SatULongFract:
2080       Width = Target->getLongFractWidth();
2081       Align = Target->getLongFractAlign();
2082       break;
2083     case BuiltinType::Float16:
2084     case BuiltinType::Half:
2085       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2086           !getLangOpts().OpenMPIsDevice) {
2087         Width = Target->getHalfWidth();
2088         Align = Target->getHalfAlign();
2089       } else {
2090         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2091                "Expected OpenMP device compilation.");
2092         Width = AuxTarget->getHalfWidth();
2093         Align = AuxTarget->getHalfAlign();
2094       }
2095       break;
2096     case BuiltinType::Float:
2097       Width = Target->getFloatWidth();
2098       Align = Target->getFloatAlign();
2099       break;
2100     case BuiltinType::Double:
2101       Width = Target->getDoubleWidth();
2102       Align = Target->getDoubleAlign();
2103       break;
2104     case BuiltinType::LongDouble:
2105       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2106           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2107            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2108         Width = AuxTarget->getLongDoubleWidth();
2109         Align = AuxTarget->getLongDoubleAlign();
2110       } else {
2111         Width = Target->getLongDoubleWidth();
2112         Align = Target->getLongDoubleAlign();
2113       }
2114       break;
2115     case BuiltinType::Float128:
2116       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2117           !getLangOpts().OpenMPIsDevice) {
2118         Width = Target->getFloat128Width();
2119         Align = Target->getFloat128Align();
2120       } else {
2121         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2122                "Expected OpenMP device compilation.");
2123         Width = AuxTarget->getFloat128Width();
2124         Align = AuxTarget->getFloat128Align();
2125       }
2126       break;
2127     case BuiltinType::NullPtr:
2128       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2129       Align = Target->getPointerAlign(0); //   == sizeof(void*)
2130       break;
2131     case BuiltinType::ObjCId:
2132     case BuiltinType::ObjCClass:
2133     case BuiltinType::ObjCSel:
2134       Width = Target->getPointerWidth(0);
2135       Align = Target->getPointerAlign(0);
2136       break;
2137     case BuiltinType::OCLSampler:
2138     case BuiltinType::OCLEvent:
2139     case BuiltinType::OCLClkEvent:
2140     case BuiltinType::OCLQueue:
2141     case BuiltinType::OCLReserveID:
2142 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2143     case BuiltinType::Id:
2144 #include "clang/Basic/OpenCLImageTypes.def"
2145 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2146   case BuiltinType::Id:
2147 #include "clang/Basic/OpenCLExtensionTypes.def"
2148       AS = getTargetAddressSpace(
2149           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2150       Width = Target->getPointerWidth(AS);
2151       Align = Target->getPointerAlign(AS);
2152       break;
2153     // The SVE types are effectively target-specific.  The length of an
2154     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2155     // of 128 bits.  There is one predicate bit for each vector byte, so the
2156     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2157     //
2158     // Because the length is only known at runtime, we use a dummy value
2159     // of 0 for the static length.  The alignment values are those defined
2160     // by the Procedure Call Standard for the Arm Architecture.
2161 #define SVE_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, IsSigned, IsFP)\
2162     case BuiltinType::Id: \
2163       Width = 0; \
2164       Align = 128; \
2165       break;
2166 #define SVE_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \
2167     case BuiltinType::Id: \
2168       Width = 0; \
2169       Align = 16; \
2170       break;
2171 #include "clang/Basic/AArch64SVEACLETypes.def"
2172     }
2173     break;
2174   case Type::ObjCObjectPointer:
2175     Width = Target->getPointerWidth(0);
2176     Align = Target->getPointerAlign(0);
2177     break;
2178   case Type::BlockPointer:
2179     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2180     Width = Target->getPointerWidth(AS);
2181     Align = Target->getPointerAlign(AS);
2182     break;
2183   case Type::LValueReference:
2184   case Type::RValueReference:
2185     // alignof and sizeof should never enter this code path here, so we go
2186     // the pointer route.
2187     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2188     Width = Target->getPointerWidth(AS);
2189     Align = Target->getPointerAlign(AS);
2190     break;
2191   case Type::Pointer:
2192     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2193     Width = Target->getPointerWidth(AS);
2194     Align = Target->getPointerAlign(AS);
2195     break;
2196   case Type::MemberPointer: {
2197     const auto *MPT = cast<MemberPointerType>(T);
2198     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2199     Width = MPI.Width;
2200     Align = MPI.Align;
2201     break;
2202   }
2203   case Type::Complex: {
2204     // Complex types have the same alignment as their elements, but twice the
2205     // size.
2206     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2207     Width = EltInfo.Width * 2;
2208     Align = EltInfo.Align;
2209     break;
2210   }
2211   case Type::ObjCObject:
2212     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2213   case Type::Adjusted:
2214   case Type::Decayed:
2215     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2216   case Type::ObjCInterface: {
2217     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2218     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2219     Width = toBits(Layout.getSize());
2220     Align = toBits(Layout.getAlignment());
2221     break;
2222   }
2223   case Type::Record:
2224   case Type::Enum: {
2225     const auto *TT = cast<TagType>(T);
2226 
2227     if (TT->getDecl()->isInvalidDecl()) {
2228       Width = 8;
2229       Align = 8;
2230       break;
2231     }
2232 
2233     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2234       const EnumDecl *ED = ET->getDecl();
2235       TypeInfo Info =
2236           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2237       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2238         Info.Align = AttrAlign;
2239         Info.AlignIsRequired = true;
2240       }
2241       return Info;
2242     }
2243 
2244     const auto *RT = cast<RecordType>(TT);
2245     const RecordDecl *RD = RT->getDecl();
2246     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2247     Width = toBits(Layout.getSize());
2248     Align = toBits(Layout.getAlignment());
2249     AlignIsRequired = RD->hasAttr<AlignedAttr>();
2250     break;
2251   }
2252 
2253   case Type::SubstTemplateTypeParm:
2254     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2255                        getReplacementType().getTypePtr());
2256 
2257   case Type::Auto:
2258   case Type::DeducedTemplateSpecialization: {
2259     const auto *A = cast<DeducedType>(T);
2260     assert(!A->getDeducedType().isNull() &&
2261            "cannot request the size of an undeduced or dependent auto type");
2262     return getTypeInfo(A->getDeducedType().getTypePtr());
2263   }
2264 
2265   case Type::Paren:
2266     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2267 
2268   case Type::MacroQualified:
2269     return getTypeInfo(
2270         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2271 
2272   case Type::ObjCTypeParam:
2273     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2274 
2275   case Type::Typedef: {
2276     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2277     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2278     // If the typedef has an aligned attribute on it, it overrides any computed
2279     // alignment we have.  This violates the GCC documentation (which says that
2280     // attribute(aligned) can only round up) but matches its implementation.
2281     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2282       Align = AttrAlign;
2283       AlignIsRequired = true;
2284     } else {
2285       Align = Info.Align;
2286       AlignIsRequired = Info.AlignIsRequired;
2287     }
2288     Width = Info.Width;
2289     break;
2290   }
2291 
2292   case Type::Elaborated:
2293     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2294 
2295   case Type::Attributed:
2296     return getTypeInfo(
2297                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2298 
2299   case Type::Atomic: {
2300     // Start with the base type information.
2301     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2302     Width = Info.Width;
2303     Align = Info.Align;
2304 
2305     if (!Width) {
2306       // An otherwise zero-sized type should still generate an
2307       // atomic operation.
2308       Width = Target->getCharWidth();
2309       assert(Align);
2310     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2311       // If the size of the type doesn't exceed the platform's max
2312       // atomic promotion width, make the size and alignment more
2313       // favorable to atomic operations:
2314 
2315       // Round the size up to a power of 2.
2316       if (!llvm::isPowerOf2_64(Width))
2317         Width = llvm::NextPowerOf2(Width);
2318 
2319       // Set the alignment equal to the size.
2320       Align = static_cast<unsigned>(Width);
2321     }
2322   }
2323   break;
2324 
2325   case Type::Pipe:
2326     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2327     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2328     break;
2329   }
2330 
2331   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2332   return TypeInfo(Width, Align, AlignIsRequired);
2333 }
2334 
2335 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2336   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2337   if (I != MemoizedUnadjustedAlign.end())
2338     return I->second;
2339 
2340   unsigned UnadjustedAlign;
2341   if (const auto *RT = T->getAs<RecordType>()) {
2342     const RecordDecl *RD = RT->getDecl();
2343     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2344     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2345   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2346     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2347     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2348   } else {
2349     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2350   }
2351 
2352   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2353   return UnadjustedAlign;
2354 }
2355 
2356 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2357   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2358   // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
2359   if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
2360        getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
2361       getTargetInfo().getABI() == "elfv1-qpx" &&
2362       T->isSpecificBuiltinType(BuiltinType::Double))
2363     SimdAlign = 256;
2364   return SimdAlign;
2365 }
2366 
2367 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2368 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2369   return CharUnits::fromQuantity(BitSize / getCharWidth());
2370 }
2371 
2372 /// toBits - Convert a size in characters to a size in characters.
2373 int64_t ASTContext::toBits(CharUnits CharSize) const {
2374   return CharSize.getQuantity() * getCharWidth();
2375 }
2376 
2377 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2378 /// This method does not work on incomplete types.
2379 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2380   return getTypeInfoInChars(T).first;
2381 }
2382 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2383   return getTypeInfoInChars(T).first;
2384 }
2385 
2386 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2387 /// characters. This method does not work on incomplete types.
2388 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2389   return toCharUnitsFromBits(getTypeAlign(T));
2390 }
2391 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2392   return toCharUnitsFromBits(getTypeAlign(T));
2393 }
2394 
2395 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2396 /// type, in characters, before alignment adustments. This method does
2397 /// not work on incomplete types.
2398 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2399   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2400 }
2401 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2402   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2403 }
2404 
2405 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2406 /// type for the current target in bits.  This can be different than the ABI
2407 /// alignment in cases where it is beneficial for performance to overalign
2408 /// a data type.
2409 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2410   TypeInfo TI = getTypeInfo(T);
2411   unsigned ABIAlign = TI.Align;
2412 
2413   T = T->getBaseElementTypeUnsafe();
2414 
2415   // The preferred alignment of member pointers is that of a pointer.
2416   if (T->isMemberPointerType())
2417     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2418 
2419   if (!Target->allowsLargerPreferedTypeAlignment())
2420     return ABIAlign;
2421 
2422   // Double and long long should be naturally aligned if possible.
2423   if (const auto *CT = T->getAs<ComplexType>())
2424     T = CT->getElementType().getTypePtr();
2425   if (const auto *ET = T->getAs<EnumType>())
2426     T = ET->getDecl()->getIntegerType().getTypePtr();
2427   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2428       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2429       T->isSpecificBuiltinType(BuiltinType::ULongLong))
2430     // Don't increase the alignment if an alignment attribute was specified on a
2431     // typedef declaration.
2432     if (!TI.AlignIsRequired)
2433       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2434 
2435   return ABIAlign;
2436 }
2437 
2438 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2439 /// for __attribute__((aligned)) on this target, to be used if no alignment
2440 /// value is specified.
2441 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2442   return getTargetInfo().getDefaultAlignForAttributeAligned();
2443 }
2444 
2445 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2446 /// to a global variable of the specified type.
2447 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2448   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2449   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign(TypeSize));
2450 }
2451 
2452 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2453 /// should be given to a global variable of the specified type.
2454 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2455   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2456 }
2457 
2458 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2459   CharUnits Offset = CharUnits::Zero();
2460   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2461   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2462     Offset += Layout->getBaseClassOffset(Base);
2463     Layout = &getASTRecordLayout(Base);
2464   }
2465   return Offset;
2466 }
2467 
2468 /// DeepCollectObjCIvars -
2469 /// This routine first collects all declared, but not synthesized, ivars in
2470 /// super class and then collects all ivars, including those synthesized for
2471 /// current class. This routine is used for implementation of current class
2472 /// when all ivars, declared and synthesized are known.
2473 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2474                                       bool leafClass,
2475                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2476   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2477     DeepCollectObjCIvars(SuperClass, false, Ivars);
2478   if (!leafClass) {
2479     for (const auto *I : OI->ivars())
2480       Ivars.push_back(I);
2481   } else {
2482     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2483     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2484          Iv= Iv->getNextIvar())
2485       Ivars.push_back(Iv);
2486   }
2487 }
2488 
2489 /// CollectInheritedProtocols - Collect all protocols in current class and
2490 /// those inherited by it.
2491 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2492                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2493   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2494     // We can use protocol_iterator here instead of
2495     // all_referenced_protocol_iterator since we are walking all categories.
2496     for (auto *Proto : OI->all_referenced_protocols()) {
2497       CollectInheritedProtocols(Proto, Protocols);
2498     }
2499 
2500     // Categories of this Interface.
2501     for (const auto *Cat : OI->visible_categories())
2502       CollectInheritedProtocols(Cat, Protocols);
2503 
2504     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2505       while (SD) {
2506         CollectInheritedProtocols(SD, Protocols);
2507         SD = SD->getSuperClass();
2508       }
2509   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2510     for (auto *Proto : OC->protocols()) {
2511       CollectInheritedProtocols(Proto, Protocols);
2512     }
2513   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2514     // Insert the protocol.
2515     if (!Protocols.insert(
2516           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2517       return;
2518 
2519     for (auto *Proto : OP->protocols())
2520       CollectInheritedProtocols(Proto, Protocols);
2521   }
2522 }
2523 
2524 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2525                                                 const RecordDecl *RD) {
2526   assert(RD->isUnion() && "Must be union type");
2527   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2528 
2529   for (const auto *Field : RD->fields()) {
2530     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2531       return false;
2532     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2533     if (FieldSize != UnionSize)
2534       return false;
2535   }
2536   return !RD->field_empty();
2537 }
2538 
2539 static bool isStructEmpty(QualType Ty) {
2540   const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2541 
2542   if (!RD->field_empty())
2543     return false;
2544 
2545   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2546     return ClassDecl->isEmpty();
2547 
2548   return true;
2549 }
2550 
2551 static llvm::Optional<int64_t>
2552 structHasUniqueObjectRepresentations(const ASTContext &Context,
2553                                      const RecordDecl *RD) {
2554   assert(!RD->isUnion() && "Must be struct/class type");
2555   const auto &Layout = Context.getASTRecordLayout(RD);
2556 
2557   int64_t CurOffsetInBits = 0;
2558   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2559     if (ClassDecl->isDynamicClass())
2560       return llvm::None;
2561 
2562     SmallVector<std::pair<QualType, int64_t>, 4> Bases;
2563     for (const auto &Base : ClassDecl->bases()) {
2564       // Empty types can be inherited from, and non-empty types can potentially
2565       // have tail padding, so just make sure there isn't an error.
2566       if (!isStructEmpty(Base.getType())) {
2567         llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
2568             Context, Base.getType()->castAs<RecordType>()->getDecl());
2569         if (!Size)
2570           return llvm::None;
2571         Bases.emplace_back(Base.getType(), Size.getValue());
2572       }
2573     }
2574 
2575     llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2576                           const std::pair<QualType, int64_t> &R) {
2577       return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2578              Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2579     });
2580 
2581     for (const auto &Base : Bases) {
2582       int64_t BaseOffset = Context.toBits(
2583           Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2584       int64_t BaseSize = Base.second;
2585       if (BaseOffset != CurOffsetInBits)
2586         return llvm::None;
2587       CurOffsetInBits = BaseOffset + BaseSize;
2588     }
2589   }
2590 
2591   for (const auto *Field : RD->fields()) {
2592     if (!Field->getType()->isReferenceType() &&
2593         !Context.hasUniqueObjectRepresentations(Field->getType()))
2594       return llvm::None;
2595 
2596     int64_t FieldSizeInBits =
2597         Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2598     if (Field->isBitField()) {
2599       int64_t BitfieldSize = Field->getBitWidthValue(Context);
2600 
2601       if (BitfieldSize > FieldSizeInBits)
2602         return llvm::None;
2603       FieldSizeInBits = BitfieldSize;
2604     }
2605 
2606     int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2607 
2608     if (FieldOffsetInBits != CurOffsetInBits)
2609       return llvm::None;
2610 
2611     CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2612   }
2613 
2614   return CurOffsetInBits;
2615 }
2616 
2617 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2618   // C++17 [meta.unary.prop]:
2619   //   The predicate condition for a template specialization
2620   //   has_unique_object_representations<T> shall be
2621   //   satisfied if and only if:
2622   //     (9.1) - T is trivially copyable, and
2623   //     (9.2) - any two objects of type T with the same value have the same
2624   //     object representation, where two objects
2625   //   of array or non-union class type are considered to have the same value
2626   //   if their respective sequences of
2627   //   direct subobjects have the same values, and two objects of union type
2628   //   are considered to have the same
2629   //   value if they have the same active member and the corresponding members
2630   //   have the same value.
2631   //   The set of scalar types for which this condition holds is
2632   //   implementation-defined. [ Note: If a type has padding
2633   //   bits, the condition does not hold; otherwise, the condition holds true
2634   //   for unsigned integral types. -- end note ]
2635   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2636 
2637   // Arrays are unique only if their element type is unique.
2638   if (Ty->isArrayType())
2639     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2640 
2641   // (9.1) - T is trivially copyable...
2642   if (!Ty.isTriviallyCopyableType(*this))
2643     return false;
2644 
2645   // All integrals and enums are unique.
2646   if (Ty->isIntegralOrEnumerationType())
2647     return true;
2648 
2649   // All other pointers are unique.
2650   if (Ty->isPointerType())
2651     return true;
2652 
2653   if (Ty->isMemberPointerType()) {
2654     const auto *MPT = Ty->getAs<MemberPointerType>();
2655     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2656   }
2657 
2658   if (Ty->isRecordType()) {
2659     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2660 
2661     if (Record->isInvalidDecl())
2662       return false;
2663 
2664     if (Record->isUnion())
2665       return unionHasUniqueObjectRepresentations(*this, Record);
2666 
2667     Optional<int64_t> StructSize =
2668         structHasUniqueObjectRepresentations(*this, Record);
2669 
2670     return StructSize &&
2671            StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2672   }
2673 
2674   // FIXME: More cases to handle here (list by rsmith):
2675   // vectors (careful about, eg, vector of 3 foo)
2676   // _Complex int and friends
2677   // _Atomic T
2678   // Obj-C block pointers
2679   // Obj-C object pointers
2680   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2681   // clk_event_t, queue_t, reserve_id_t)
2682   // There're also Obj-C class types and the Obj-C selector type, but I think it
2683   // makes sense for those to return false here.
2684 
2685   return false;
2686 }
2687 
2688 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2689   unsigned count = 0;
2690   // Count ivars declared in class extension.
2691   for (const auto *Ext : OI->known_extensions())
2692     count += Ext->ivar_size();
2693 
2694   // Count ivar defined in this class's implementation.  This
2695   // includes synthesized ivars.
2696   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2697     count += ImplDecl->ivar_size();
2698 
2699   return count;
2700 }
2701 
2702 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2703   if (!E)
2704     return false;
2705 
2706   // nullptr_t is always treated as null.
2707   if (E->getType()->isNullPtrType()) return true;
2708 
2709   if (E->getType()->isAnyPointerType() &&
2710       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2711                                                 Expr::NPC_ValueDependentIsNull))
2712     return true;
2713 
2714   // Unfortunately, __null has type 'int'.
2715   if (isa<GNUNullExpr>(E)) return true;
2716 
2717   return false;
2718 }
2719 
2720 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2721 /// exists.
2722 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2723   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2724     I = ObjCImpls.find(D);
2725   if (I != ObjCImpls.end())
2726     return cast<ObjCImplementationDecl>(I->second);
2727   return nullptr;
2728 }
2729 
2730 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2731 /// exists.
2732 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2733   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2734     I = ObjCImpls.find(D);
2735   if (I != ObjCImpls.end())
2736     return cast<ObjCCategoryImplDecl>(I->second);
2737   return nullptr;
2738 }
2739 
2740 /// Set the implementation of ObjCInterfaceDecl.
2741 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2742                            ObjCImplementationDecl *ImplD) {
2743   assert(IFaceD && ImplD && "Passed null params");
2744   ObjCImpls[IFaceD] = ImplD;
2745 }
2746 
2747 /// Set the implementation of ObjCCategoryDecl.
2748 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2749                            ObjCCategoryImplDecl *ImplD) {
2750   assert(CatD && ImplD && "Passed null params");
2751   ObjCImpls[CatD] = ImplD;
2752 }
2753 
2754 const ObjCMethodDecl *
2755 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2756   return ObjCMethodRedecls.lookup(MD);
2757 }
2758 
2759 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2760                                             const ObjCMethodDecl *Redecl) {
2761   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2762   ObjCMethodRedecls[MD] = Redecl;
2763 }
2764 
2765 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2766                                               const NamedDecl *ND) const {
2767   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2768     return ID;
2769   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2770     return CD->getClassInterface();
2771   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2772     return IMD->getClassInterface();
2773 
2774   return nullptr;
2775 }
2776 
2777 /// Get the copy initialization expression of VarDecl, or nullptr if
2778 /// none exists.
2779 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2780   assert(VD && "Passed null params");
2781   assert(VD->hasAttr<BlocksAttr>() &&
2782          "getBlockVarCopyInits - not __block var");
2783   auto I = BlockVarCopyInits.find(VD);
2784   if (I != BlockVarCopyInits.end())
2785     return I->second;
2786   return {nullptr, false};
2787 }
2788 
2789 /// Set the copy initialization expression of a block var decl.
2790 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2791                                      bool CanThrow) {
2792   assert(VD && CopyExpr && "Passed null params");
2793   assert(VD->hasAttr<BlocksAttr>() &&
2794          "setBlockVarCopyInits - not __block var");
2795   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2796 }
2797 
2798 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2799                                                  unsigned DataSize) const {
2800   if (!DataSize)
2801     DataSize = TypeLoc::getFullDataSizeForType(T);
2802   else
2803     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2804            "incorrect data size provided to CreateTypeSourceInfo!");
2805 
2806   auto *TInfo =
2807     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2808   new (TInfo) TypeSourceInfo(T);
2809   return TInfo;
2810 }
2811 
2812 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2813                                                      SourceLocation L) const {
2814   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2815   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2816   return DI;
2817 }
2818 
2819 const ASTRecordLayout &
2820 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2821   return getObjCLayout(D, nullptr);
2822 }
2823 
2824 const ASTRecordLayout &
2825 ASTContext::getASTObjCImplementationLayout(
2826                                         const ObjCImplementationDecl *D) const {
2827   return getObjCLayout(D->getClassInterface(), D);
2828 }
2829 
2830 //===----------------------------------------------------------------------===//
2831 //                   Type creation/memoization methods
2832 //===----------------------------------------------------------------------===//
2833 
2834 QualType
2835 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2836   unsigned fastQuals = quals.getFastQualifiers();
2837   quals.removeFastQualifiers();
2838 
2839   // Check if we've already instantiated this type.
2840   llvm::FoldingSetNodeID ID;
2841   ExtQuals::Profile(ID, baseType, quals);
2842   void *insertPos = nullptr;
2843   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2844     assert(eq->getQualifiers() == quals);
2845     return QualType(eq, fastQuals);
2846   }
2847 
2848   // If the base type is not canonical, make the appropriate canonical type.
2849   QualType canon;
2850   if (!baseType->isCanonicalUnqualified()) {
2851     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2852     canonSplit.Quals.addConsistentQualifiers(quals);
2853     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2854 
2855     // Re-find the insert position.
2856     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2857   }
2858 
2859   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2860   ExtQualNodes.InsertNode(eq, insertPos);
2861   return QualType(eq, fastQuals);
2862 }
2863 
2864 QualType ASTContext::getAddrSpaceQualType(QualType T,
2865                                           LangAS AddressSpace) const {
2866   QualType CanT = getCanonicalType(T);
2867   if (CanT.getAddressSpace() == AddressSpace)
2868     return T;
2869 
2870   // If we are composing extended qualifiers together, merge together
2871   // into one ExtQuals node.
2872   QualifierCollector Quals;
2873   const Type *TypeNode = Quals.strip(T);
2874 
2875   // If this type already has an address space specified, it cannot get
2876   // another one.
2877   assert(!Quals.hasAddressSpace() &&
2878          "Type cannot be in multiple addr spaces!");
2879   Quals.addAddressSpace(AddressSpace);
2880 
2881   return getExtQualType(TypeNode, Quals);
2882 }
2883 
2884 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2885   // If we are composing extended qualifiers together, merge together
2886   // into one ExtQuals node.
2887   QualifierCollector Quals;
2888   const Type *TypeNode = Quals.strip(T);
2889 
2890   // If the qualifier doesn't have an address space just return it.
2891   if (!Quals.hasAddressSpace())
2892     return T;
2893 
2894   Quals.removeAddressSpace();
2895 
2896   // Removal of the address space can mean there are no longer any
2897   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2898   // or required.
2899   if (Quals.hasNonFastQualifiers())
2900     return getExtQualType(TypeNode, Quals);
2901   else
2902     return QualType(TypeNode, Quals.getFastQualifiers());
2903 }
2904 
2905 QualType ASTContext::getObjCGCQualType(QualType T,
2906                                        Qualifiers::GC GCAttr) const {
2907   QualType CanT = getCanonicalType(T);
2908   if (CanT.getObjCGCAttr() == GCAttr)
2909     return T;
2910 
2911   if (const auto *ptr = T->getAs<PointerType>()) {
2912     QualType Pointee = ptr->getPointeeType();
2913     if (Pointee->isAnyPointerType()) {
2914       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2915       return getPointerType(ResultType);
2916     }
2917   }
2918 
2919   // If we are composing extended qualifiers together, merge together
2920   // into one ExtQuals node.
2921   QualifierCollector Quals;
2922   const Type *TypeNode = Quals.strip(T);
2923 
2924   // If this type already has an ObjCGC specified, it cannot get
2925   // another one.
2926   assert(!Quals.hasObjCGCAttr() &&
2927          "Type cannot have multiple ObjCGCs!");
2928   Quals.addObjCGCAttr(GCAttr);
2929 
2930   return getExtQualType(TypeNode, Quals);
2931 }
2932 
2933 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
2934   if (const PointerType *Ptr = T->getAs<PointerType>()) {
2935     QualType Pointee = Ptr->getPointeeType();
2936     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
2937       return getPointerType(removeAddrSpaceQualType(Pointee));
2938     }
2939   }
2940   return T;
2941 }
2942 
2943 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2944                                                    FunctionType::ExtInfo Info) {
2945   if (T->getExtInfo() == Info)
2946     return T;
2947 
2948   QualType Result;
2949   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2950     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2951   } else {
2952     const auto *FPT = cast<FunctionProtoType>(T);
2953     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2954     EPI.ExtInfo = Info;
2955     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2956   }
2957 
2958   return cast<FunctionType>(Result.getTypePtr());
2959 }
2960 
2961 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2962                                                  QualType ResultType) {
2963   FD = FD->getMostRecentDecl();
2964   while (true) {
2965     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
2966     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2967     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2968     if (FunctionDecl *Next = FD->getPreviousDecl())
2969       FD = Next;
2970     else
2971       break;
2972   }
2973   if (ASTMutationListener *L = getASTMutationListener())
2974     L->DeducedReturnType(FD, ResultType);
2975 }
2976 
2977 /// Get a function type and produce the equivalent function type with the
2978 /// specified exception specification. Type sugar that can be present on a
2979 /// declaration of a function with an exception specification is permitted
2980 /// and preserved. Other type sugar (for instance, typedefs) is not.
2981 QualType ASTContext::getFunctionTypeWithExceptionSpec(
2982     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
2983   // Might have some parens.
2984   if (const auto *PT = dyn_cast<ParenType>(Orig))
2985     return getParenType(
2986         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
2987 
2988   // Might be wrapped in a macro qualified type.
2989   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
2990     return getMacroQualifiedType(
2991         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
2992         MQT->getMacroIdentifier());
2993 
2994   // Might have a calling-convention attribute.
2995   if (const auto *AT = dyn_cast<AttributedType>(Orig))
2996     return getAttributedType(
2997         AT->getAttrKind(),
2998         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
2999         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3000 
3001   // Anything else must be a function type. Rebuild it with the new exception
3002   // specification.
3003   const auto *Proto = Orig->castAs<FunctionProtoType>();
3004   return getFunctionType(
3005       Proto->getReturnType(), Proto->getParamTypes(),
3006       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3007 }
3008 
3009 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3010                                                           QualType U) {
3011   return hasSameType(T, U) ||
3012          (getLangOpts().CPlusPlus17 &&
3013           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3014                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3015 }
3016 
3017 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3018   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3019     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3020     SmallVector<QualType, 16> Args(Proto->param_types());
3021     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3022       Args[i] = removePtrSizeAddrSpace(Args[i]);
3023     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3024   }
3025 
3026   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3027     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3028     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3029   }
3030 
3031   return T;
3032 }
3033 
3034 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3035   return hasSameType(T, U) ||
3036          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3037                      getFunctionTypeWithoutPtrSizes(U));
3038 }
3039 
3040 void ASTContext::adjustExceptionSpec(
3041     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3042     bool AsWritten) {
3043   // Update the type.
3044   QualType Updated =
3045       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3046   FD->setType(Updated);
3047 
3048   if (!AsWritten)
3049     return;
3050 
3051   // Update the type in the type source information too.
3052   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3053     // If the type and the type-as-written differ, we may need to update
3054     // the type-as-written too.
3055     if (TSInfo->getType() != FD->getType())
3056       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3057 
3058     // FIXME: When we get proper type location information for exceptions,
3059     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3060     // up the TypeSourceInfo;
3061     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3062                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3063            "TypeLoc size mismatch from updating exception specification");
3064     TSInfo->overrideType(Updated);
3065   }
3066 }
3067 
3068 /// getComplexType - Return the uniqued reference to the type for a complex
3069 /// number with the specified element type.
3070 QualType ASTContext::getComplexType(QualType T) const {
3071   // Unique pointers, to guarantee there is only one pointer of a particular
3072   // structure.
3073   llvm::FoldingSetNodeID ID;
3074   ComplexType::Profile(ID, T);
3075 
3076   void *InsertPos = nullptr;
3077   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3078     return QualType(CT, 0);
3079 
3080   // If the pointee type isn't canonical, this won't be a canonical type either,
3081   // so fill in the canonical type field.
3082   QualType Canonical;
3083   if (!T.isCanonical()) {
3084     Canonical = getComplexType(getCanonicalType(T));
3085 
3086     // Get the new insert position for the node we care about.
3087     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3088     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3089   }
3090   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3091   Types.push_back(New);
3092   ComplexTypes.InsertNode(New, InsertPos);
3093   return QualType(New, 0);
3094 }
3095 
3096 /// getPointerType - Return the uniqued reference to the type for a pointer to
3097 /// the specified type.
3098 QualType ASTContext::getPointerType(QualType T) const {
3099   // Unique pointers, to guarantee there is only one pointer of a particular
3100   // structure.
3101   llvm::FoldingSetNodeID ID;
3102   PointerType::Profile(ID, T);
3103 
3104   void *InsertPos = nullptr;
3105   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3106     return QualType(PT, 0);
3107 
3108   // If the pointee type isn't canonical, this won't be a canonical type either,
3109   // so fill in the canonical type field.
3110   QualType Canonical;
3111   if (!T.isCanonical()) {
3112     Canonical = getPointerType(getCanonicalType(T));
3113 
3114     // Get the new insert position for the node we care about.
3115     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3116     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3117   }
3118   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3119   Types.push_back(New);
3120   PointerTypes.InsertNode(New, InsertPos);
3121   return QualType(New, 0);
3122 }
3123 
3124 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3125   llvm::FoldingSetNodeID ID;
3126   AdjustedType::Profile(ID, Orig, New);
3127   void *InsertPos = nullptr;
3128   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3129   if (AT)
3130     return QualType(AT, 0);
3131 
3132   QualType Canonical = getCanonicalType(New);
3133 
3134   // Get the new insert position for the node we care about.
3135   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3136   assert(!AT && "Shouldn't be in the map!");
3137 
3138   AT = new (*this, TypeAlignment)
3139       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3140   Types.push_back(AT);
3141   AdjustedTypes.InsertNode(AT, InsertPos);
3142   return QualType(AT, 0);
3143 }
3144 
3145 QualType ASTContext::getDecayedType(QualType T) const {
3146   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3147 
3148   QualType Decayed;
3149 
3150   // C99 6.7.5.3p7:
3151   //   A declaration of a parameter as "array of type" shall be
3152   //   adjusted to "qualified pointer to type", where the type
3153   //   qualifiers (if any) are those specified within the [ and ] of
3154   //   the array type derivation.
3155   if (T->isArrayType())
3156     Decayed = getArrayDecayedType(T);
3157 
3158   // C99 6.7.5.3p8:
3159   //   A declaration of a parameter as "function returning type"
3160   //   shall be adjusted to "pointer to function returning type", as
3161   //   in 6.3.2.1.
3162   if (T->isFunctionType())
3163     Decayed = getPointerType(T);
3164 
3165   llvm::FoldingSetNodeID ID;
3166   AdjustedType::Profile(ID, T, Decayed);
3167   void *InsertPos = nullptr;
3168   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3169   if (AT)
3170     return QualType(AT, 0);
3171 
3172   QualType Canonical = getCanonicalType(Decayed);
3173 
3174   // Get the new insert position for the node we care about.
3175   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3176   assert(!AT && "Shouldn't be in the map!");
3177 
3178   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3179   Types.push_back(AT);
3180   AdjustedTypes.InsertNode(AT, InsertPos);
3181   return QualType(AT, 0);
3182 }
3183 
3184 /// getBlockPointerType - Return the uniqued reference to the type for
3185 /// a pointer to the specified block.
3186 QualType ASTContext::getBlockPointerType(QualType T) const {
3187   assert(T->isFunctionType() && "block of function types only");
3188   // Unique pointers, to guarantee there is only one block of a particular
3189   // structure.
3190   llvm::FoldingSetNodeID ID;
3191   BlockPointerType::Profile(ID, T);
3192 
3193   void *InsertPos = nullptr;
3194   if (BlockPointerType *PT =
3195         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3196     return QualType(PT, 0);
3197 
3198   // If the block pointee type isn't canonical, this won't be a canonical
3199   // type either so fill in the canonical type field.
3200   QualType Canonical;
3201   if (!T.isCanonical()) {
3202     Canonical = getBlockPointerType(getCanonicalType(T));
3203 
3204     // Get the new insert position for the node we care about.
3205     BlockPointerType *NewIP =
3206       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3207     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3208   }
3209   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3210   Types.push_back(New);
3211   BlockPointerTypes.InsertNode(New, InsertPos);
3212   return QualType(New, 0);
3213 }
3214 
3215 /// getLValueReferenceType - Return the uniqued reference to the type for an
3216 /// lvalue reference to the specified type.
3217 QualType
3218 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3219   assert(getCanonicalType(T) != OverloadTy &&
3220          "Unresolved overloaded function type");
3221 
3222   // Unique pointers, to guarantee there is only one pointer of a particular
3223   // structure.
3224   llvm::FoldingSetNodeID ID;
3225   ReferenceType::Profile(ID, T, SpelledAsLValue);
3226 
3227   void *InsertPos = nullptr;
3228   if (LValueReferenceType *RT =
3229         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3230     return QualType(RT, 0);
3231 
3232   const auto *InnerRef = T->getAs<ReferenceType>();
3233 
3234   // If the referencee type isn't canonical, this won't be a canonical type
3235   // either, so fill in the canonical type field.
3236   QualType Canonical;
3237   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3238     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3239     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3240 
3241     // Get the new insert position for the node we care about.
3242     LValueReferenceType *NewIP =
3243       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3244     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3245   }
3246 
3247   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3248                                                              SpelledAsLValue);
3249   Types.push_back(New);
3250   LValueReferenceTypes.InsertNode(New, InsertPos);
3251 
3252   return QualType(New, 0);
3253 }
3254 
3255 /// getRValueReferenceType - Return the uniqued reference to the type for an
3256 /// rvalue reference to the specified type.
3257 QualType ASTContext::getRValueReferenceType(QualType T) const {
3258   // Unique pointers, to guarantee there is only one pointer of a particular
3259   // structure.
3260   llvm::FoldingSetNodeID ID;
3261   ReferenceType::Profile(ID, T, false);
3262 
3263   void *InsertPos = nullptr;
3264   if (RValueReferenceType *RT =
3265         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3266     return QualType(RT, 0);
3267 
3268   const auto *InnerRef = T->getAs<ReferenceType>();
3269 
3270   // If the referencee type isn't canonical, this won't be a canonical type
3271   // either, so fill in the canonical type field.
3272   QualType Canonical;
3273   if (InnerRef || !T.isCanonical()) {
3274     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3275     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3276 
3277     // Get the new insert position for the node we care about.
3278     RValueReferenceType *NewIP =
3279       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3280     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3281   }
3282 
3283   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3284   Types.push_back(New);
3285   RValueReferenceTypes.InsertNode(New, InsertPos);
3286   return QualType(New, 0);
3287 }
3288 
3289 /// getMemberPointerType - Return the uniqued reference to the type for a
3290 /// member pointer to the specified type, in the specified class.
3291 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3292   // Unique pointers, to guarantee there is only one pointer of a particular
3293   // structure.
3294   llvm::FoldingSetNodeID ID;
3295   MemberPointerType::Profile(ID, T, Cls);
3296 
3297   void *InsertPos = nullptr;
3298   if (MemberPointerType *PT =
3299       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3300     return QualType(PT, 0);
3301 
3302   // If the pointee or class type isn't canonical, this won't be a canonical
3303   // type either, so fill in the canonical type field.
3304   QualType Canonical;
3305   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3306     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3307 
3308     // Get the new insert position for the node we care about.
3309     MemberPointerType *NewIP =
3310       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3311     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3312   }
3313   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3314   Types.push_back(New);
3315   MemberPointerTypes.InsertNode(New, InsertPos);
3316   return QualType(New, 0);
3317 }
3318 
3319 /// getConstantArrayType - Return the unique reference to the type for an
3320 /// array of the specified element type.
3321 QualType ASTContext::getConstantArrayType(QualType EltTy,
3322                                           const llvm::APInt &ArySizeIn,
3323                                           const Expr *SizeExpr,
3324                                           ArrayType::ArraySizeModifier ASM,
3325                                           unsigned IndexTypeQuals) const {
3326   assert((EltTy->isDependentType() ||
3327           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3328          "Constant array of VLAs is illegal!");
3329 
3330   // We only need the size as part of the type if it's instantiation-dependent.
3331   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3332     SizeExpr = nullptr;
3333 
3334   // Convert the array size into a canonical width matching the pointer size for
3335   // the target.
3336   llvm::APInt ArySize(ArySizeIn);
3337   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3338 
3339   llvm::FoldingSetNodeID ID;
3340   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3341                              IndexTypeQuals);
3342 
3343   void *InsertPos = nullptr;
3344   if (ConstantArrayType *ATP =
3345       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3346     return QualType(ATP, 0);
3347 
3348   // If the element type isn't canonical or has qualifiers, or the array bound
3349   // is instantiation-dependent, this won't be a canonical type either, so fill
3350   // in the canonical type field.
3351   QualType Canon;
3352   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3353     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3354     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3355                                  ASM, IndexTypeQuals);
3356     Canon = getQualifiedType(Canon, canonSplit.Quals);
3357 
3358     // Get the new insert position for the node we care about.
3359     ConstantArrayType *NewIP =
3360       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3361     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3362   }
3363 
3364   void *Mem = Allocate(
3365       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3366       TypeAlignment);
3367   auto *New = new (Mem)
3368     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3369   ConstantArrayTypes.InsertNode(New, InsertPos);
3370   Types.push_back(New);
3371   return QualType(New, 0);
3372 }
3373 
3374 /// getVariableArrayDecayedType - Turns the given type, which may be
3375 /// variably-modified, into the corresponding type with all the known
3376 /// sizes replaced with [*].
3377 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3378   // Vastly most common case.
3379   if (!type->isVariablyModifiedType()) return type;
3380 
3381   QualType result;
3382 
3383   SplitQualType split = type.getSplitDesugaredType();
3384   const Type *ty = split.Ty;
3385   switch (ty->getTypeClass()) {
3386 #define TYPE(Class, Base)
3387 #define ABSTRACT_TYPE(Class, Base)
3388 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3389 #include "clang/AST/TypeNodes.inc"
3390     llvm_unreachable("didn't desugar past all non-canonical types?");
3391 
3392   // These types should never be variably-modified.
3393   case Type::Builtin:
3394   case Type::Complex:
3395   case Type::Vector:
3396   case Type::DependentVector:
3397   case Type::ExtVector:
3398   case Type::DependentSizedExtVector:
3399   case Type::DependentAddressSpace:
3400   case Type::ObjCObject:
3401   case Type::ObjCInterface:
3402   case Type::ObjCObjectPointer:
3403   case Type::Record:
3404   case Type::Enum:
3405   case Type::UnresolvedUsing:
3406   case Type::TypeOfExpr:
3407   case Type::TypeOf:
3408   case Type::Decltype:
3409   case Type::UnaryTransform:
3410   case Type::DependentName:
3411   case Type::InjectedClassName:
3412   case Type::TemplateSpecialization:
3413   case Type::DependentTemplateSpecialization:
3414   case Type::TemplateTypeParm:
3415   case Type::SubstTemplateTypeParmPack:
3416   case Type::Auto:
3417   case Type::DeducedTemplateSpecialization:
3418   case Type::PackExpansion:
3419     llvm_unreachable("type should never be variably-modified");
3420 
3421   // These types can be variably-modified but should never need to
3422   // further decay.
3423   case Type::FunctionNoProto:
3424   case Type::FunctionProto:
3425   case Type::BlockPointer:
3426   case Type::MemberPointer:
3427   case Type::Pipe:
3428     return type;
3429 
3430   // These types can be variably-modified.  All these modifications
3431   // preserve structure except as noted by comments.
3432   // TODO: if we ever care about optimizing VLAs, there are no-op
3433   // optimizations available here.
3434   case Type::Pointer:
3435     result = getPointerType(getVariableArrayDecayedType(
3436                               cast<PointerType>(ty)->getPointeeType()));
3437     break;
3438 
3439   case Type::LValueReference: {
3440     const auto *lv = cast<LValueReferenceType>(ty);
3441     result = getLValueReferenceType(
3442                  getVariableArrayDecayedType(lv->getPointeeType()),
3443                                     lv->isSpelledAsLValue());
3444     break;
3445   }
3446 
3447   case Type::RValueReference: {
3448     const auto *lv = cast<RValueReferenceType>(ty);
3449     result = getRValueReferenceType(
3450                  getVariableArrayDecayedType(lv->getPointeeType()));
3451     break;
3452   }
3453 
3454   case Type::Atomic: {
3455     const auto *at = cast<AtomicType>(ty);
3456     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3457     break;
3458   }
3459 
3460   case Type::ConstantArray: {
3461     const auto *cat = cast<ConstantArrayType>(ty);
3462     result = getConstantArrayType(
3463                  getVariableArrayDecayedType(cat->getElementType()),
3464                                   cat->getSize(),
3465                                   cat->getSizeExpr(),
3466                                   cat->getSizeModifier(),
3467                                   cat->getIndexTypeCVRQualifiers());
3468     break;
3469   }
3470 
3471   case Type::DependentSizedArray: {
3472     const auto *dat = cast<DependentSizedArrayType>(ty);
3473     result = getDependentSizedArrayType(
3474                  getVariableArrayDecayedType(dat->getElementType()),
3475                                         dat->getSizeExpr(),
3476                                         dat->getSizeModifier(),
3477                                         dat->getIndexTypeCVRQualifiers(),
3478                                         dat->getBracketsRange());
3479     break;
3480   }
3481 
3482   // Turn incomplete types into [*] types.
3483   case Type::IncompleteArray: {
3484     const auto *iat = cast<IncompleteArrayType>(ty);
3485     result = getVariableArrayType(
3486                  getVariableArrayDecayedType(iat->getElementType()),
3487                                   /*size*/ nullptr,
3488                                   ArrayType::Normal,
3489                                   iat->getIndexTypeCVRQualifiers(),
3490                                   SourceRange());
3491     break;
3492   }
3493 
3494   // Turn VLA types into [*] types.
3495   case Type::VariableArray: {
3496     const auto *vat = cast<VariableArrayType>(ty);
3497     result = getVariableArrayType(
3498                  getVariableArrayDecayedType(vat->getElementType()),
3499                                   /*size*/ nullptr,
3500                                   ArrayType::Star,
3501                                   vat->getIndexTypeCVRQualifiers(),
3502                                   vat->getBracketsRange());
3503     break;
3504   }
3505   }
3506 
3507   // Apply the top-level qualifiers from the original.
3508   return getQualifiedType(result, split.Quals);
3509 }
3510 
3511 /// getVariableArrayType - Returns a non-unique reference to the type for a
3512 /// variable array of the specified element type.
3513 QualType ASTContext::getVariableArrayType(QualType EltTy,
3514                                           Expr *NumElts,
3515                                           ArrayType::ArraySizeModifier ASM,
3516                                           unsigned IndexTypeQuals,
3517                                           SourceRange Brackets) const {
3518   // Since we don't unique expressions, it isn't possible to unique VLA's
3519   // that have an expression provided for their size.
3520   QualType Canon;
3521 
3522   // Be sure to pull qualifiers off the element type.
3523   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3524     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3525     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3526                                  IndexTypeQuals, Brackets);
3527     Canon = getQualifiedType(Canon, canonSplit.Quals);
3528   }
3529 
3530   auto *New = new (*this, TypeAlignment)
3531     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3532 
3533   VariableArrayTypes.push_back(New);
3534   Types.push_back(New);
3535   return QualType(New, 0);
3536 }
3537 
3538 /// getDependentSizedArrayType - Returns a non-unique reference to
3539 /// the type for a dependently-sized array of the specified element
3540 /// type.
3541 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3542                                                 Expr *numElements,
3543                                                 ArrayType::ArraySizeModifier ASM,
3544                                                 unsigned elementTypeQuals,
3545                                                 SourceRange brackets) const {
3546   assert((!numElements || numElements->isTypeDependent() ||
3547           numElements->isValueDependent()) &&
3548          "Size must be type- or value-dependent!");
3549 
3550   // Dependently-sized array types that do not have a specified number
3551   // of elements will have their sizes deduced from a dependent
3552   // initializer.  We do no canonicalization here at all, which is okay
3553   // because they can't be used in most locations.
3554   if (!numElements) {
3555     auto *newType
3556       = new (*this, TypeAlignment)
3557           DependentSizedArrayType(*this, elementType, QualType(),
3558                                   numElements, ASM, elementTypeQuals,
3559                                   brackets);
3560     Types.push_back(newType);
3561     return QualType(newType, 0);
3562   }
3563 
3564   // Otherwise, we actually build a new type every time, but we
3565   // also build a canonical type.
3566 
3567   SplitQualType canonElementType = getCanonicalType(elementType).split();
3568 
3569   void *insertPos = nullptr;
3570   llvm::FoldingSetNodeID ID;
3571   DependentSizedArrayType::Profile(ID, *this,
3572                                    QualType(canonElementType.Ty, 0),
3573                                    ASM, elementTypeQuals, numElements);
3574 
3575   // Look for an existing type with these properties.
3576   DependentSizedArrayType *canonTy =
3577     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3578 
3579   // If we don't have one, build one.
3580   if (!canonTy) {
3581     canonTy = new (*this, TypeAlignment)
3582       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3583                               QualType(), numElements, ASM, elementTypeQuals,
3584                               brackets);
3585     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3586     Types.push_back(canonTy);
3587   }
3588 
3589   // Apply qualifiers from the element type to the array.
3590   QualType canon = getQualifiedType(QualType(canonTy,0),
3591                                     canonElementType.Quals);
3592 
3593   // If we didn't need extra canonicalization for the element type or the size
3594   // expression, then just use that as our result.
3595   if (QualType(canonElementType.Ty, 0) == elementType &&
3596       canonTy->getSizeExpr() == numElements)
3597     return canon;
3598 
3599   // Otherwise, we need to build a type which follows the spelling
3600   // of the element type.
3601   auto *sugaredType
3602     = new (*this, TypeAlignment)
3603         DependentSizedArrayType(*this, elementType, canon, numElements,
3604                                 ASM, elementTypeQuals, brackets);
3605   Types.push_back(sugaredType);
3606   return QualType(sugaredType, 0);
3607 }
3608 
3609 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3610                                             ArrayType::ArraySizeModifier ASM,
3611                                             unsigned elementTypeQuals) const {
3612   llvm::FoldingSetNodeID ID;
3613   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3614 
3615   void *insertPos = nullptr;
3616   if (IncompleteArrayType *iat =
3617        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3618     return QualType(iat, 0);
3619 
3620   // If the element type isn't canonical, this won't be a canonical type
3621   // either, so fill in the canonical type field.  We also have to pull
3622   // qualifiers off the element type.
3623   QualType canon;
3624 
3625   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3626     SplitQualType canonSplit = getCanonicalType(elementType).split();
3627     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3628                                    ASM, elementTypeQuals);
3629     canon = getQualifiedType(canon, canonSplit.Quals);
3630 
3631     // Get the new insert position for the node we care about.
3632     IncompleteArrayType *existing =
3633       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3634     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3635   }
3636 
3637   auto *newType = new (*this, TypeAlignment)
3638     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3639 
3640   IncompleteArrayTypes.InsertNode(newType, insertPos);
3641   Types.push_back(newType);
3642   return QualType(newType, 0);
3643 }
3644 
3645 /// getVectorType - Return the unique reference to a vector type of
3646 /// the specified element type and size. VectorType must be a built-in type.
3647 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3648                                    VectorType::VectorKind VecKind) const {
3649   assert(vecType->isBuiltinType());
3650 
3651   // Check if we've already instantiated a vector of this type.
3652   llvm::FoldingSetNodeID ID;
3653   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3654 
3655   void *InsertPos = nullptr;
3656   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3657     return QualType(VTP, 0);
3658 
3659   // If the element type isn't canonical, this won't be a canonical type either,
3660   // so fill in the canonical type field.
3661   QualType Canonical;
3662   if (!vecType.isCanonical()) {
3663     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3664 
3665     // Get the new insert position for the node we care about.
3666     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3667     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3668   }
3669   auto *New = new (*this, TypeAlignment)
3670     VectorType(vecType, NumElts, Canonical, VecKind);
3671   VectorTypes.InsertNode(New, InsertPos);
3672   Types.push_back(New);
3673   return QualType(New, 0);
3674 }
3675 
3676 QualType
3677 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3678                                    SourceLocation AttrLoc,
3679                                    VectorType::VectorKind VecKind) const {
3680   llvm::FoldingSetNodeID ID;
3681   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3682                                VecKind);
3683   void *InsertPos = nullptr;
3684   DependentVectorType *Canon =
3685       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3686   DependentVectorType *New;
3687 
3688   if (Canon) {
3689     New = new (*this, TypeAlignment) DependentVectorType(
3690         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3691   } else {
3692     QualType CanonVecTy = getCanonicalType(VecType);
3693     if (CanonVecTy == VecType) {
3694       New = new (*this, TypeAlignment) DependentVectorType(
3695           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3696 
3697       DependentVectorType *CanonCheck =
3698           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3699       assert(!CanonCheck &&
3700              "Dependent-sized vector_size canonical type broken");
3701       (void)CanonCheck;
3702       DependentVectorTypes.InsertNode(New, InsertPos);
3703     } else {
3704       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3705                                                            SourceLocation());
3706       New = new (*this, TypeAlignment) DependentVectorType(
3707           *this, VecType, CanonExtTy, SizeExpr, AttrLoc, VecKind);
3708     }
3709   }
3710 
3711   Types.push_back(New);
3712   return QualType(New, 0);
3713 }
3714 
3715 /// getExtVectorType - Return the unique reference to an extended vector type of
3716 /// the specified element type and size. VectorType must be a built-in type.
3717 QualType
3718 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3719   assert(vecType->isBuiltinType() || vecType->isDependentType());
3720 
3721   // Check if we've already instantiated a vector of this type.
3722   llvm::FoldingSetNodeID ID;
3723   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3724                       VectorType::GenericVector);
3725   void *InsertPos = nullptr;
3726   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3727     return QualType(VTP, 0);
3728 
3729   // If the element type isn't canonical, this won't be a canonical type either,
3730   // so fill in the canonical type field.
3731   QualType Canonical;
3732   if (!vecType.isCanonical()) {
3733     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3734 
3735     // Get the new insert position for the node we care about.
3736     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3737     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3738   }
3739   auto *New = new (*this, TypeAlignment)
3740     ExtVectorType(vecType, NumElts, Canonical);
3741   VectorTypes.InsertNode(New, InsertPos);
3742   Types.push_back(New);
3743   return QualType(New, 0);
3744 }
3745 
3746 QualType
3747 ASTContext::getDependentSizedExtVectorType(QualType vecType,
3748                                            Expr *SizeExpr,
3749                                            SourceLocation AttrLoc) const {
3750   llvm::FoldingSetNodeID ID;
3751   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
3752                                        SizeExpr);
3753 
3754   void *InsertPos = nullptr;
3755   DependentSizedExtVectorType *Canon
3756     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3757   DependentSizedExtVectorType *New;
3758   if (Canon) {
3759     // We already have a canonical version of this array type; use it as
3760     // the canonical type for a newly-built type.
3761     New = new (*this, TypeAlignment)
3762       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
3763                                   SizeExpr, AttrLoc);
3764   } else {
3765     QualType CanonVecTy = getCanonicalType(vecType);
3766     if (CanonVecTy == vecType) {
3767       New = new (*this, TypeAlignment)
3768         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
3769                                     AttrLoc);
3770 
3771       DependentSizedExtVectorType *CanonCheck
3772         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3773       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
3774       (void)CanonCheck;
3775       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
3776     } else {
3777       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3778                                                            SourceLocation());
3779       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
3780           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
3781     }
3782   }
3783 
3784   Types.push_back(New);
3785   return QualType(New, 0);
3786 }
3787 
3788 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
3789                                                   Expr *AddrSpaceExpr,
3790                                                   SourceLocation AttrLoc) const {
3791   assert(AddrSpaceExpr->isInstantiationDependent());
3792 
3793   QualType canonPointeeType = getCanonicalType(PointeeType);
3794 
3795   void *insertPos = nullptr;
3796   llvm::FoldingSetNodeID ID;
3797   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
3798                                      AddrSpaceExpr);
3799 
3800   DependentAddressSpaceType *canonTy =
3801     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
3802 
3803   if (!canonTy) {
3804     canonTy = new (*this, TypeAlignment)
3805       DependentAddressSpaceType(*this, canonPointeeType,
3806                                 QualType(), AddrSpaceExpr, AttrLoc);
3807     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
3808     Types.push_back(canonTy);
3809   }
3810 
3811   if (canonPointeeType == PointeeType &&
3812       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
3813     return QualType(canonTy, 0);
3814 
3815   auto *sugaredType
3816     = new (*this, TypeAlignment)
3817         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
3818                                   AddrSpaceExpr, AttrLoc);
3819   Types.push_back(sugaredType);
3820   return QualType(sugaredType, 0);
3821 }
3822 
3823 /// Determine whether \p T is canonical as the result type of a function.
3824 static bool isCanonicalResultType(QualType T) {
3825   return T.isCanonical() &&
3826          (T.getObjCLifetime() == Qualifiers::OCL_None ||
3827           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
3828 }
3829 
3830 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
3831 QualType
3832 ASTContext::getFunctionNoProtoType(QualType ResultTy,
3833                                    const FunctionType::ExtInfo &Info) const {
3834   // Unique functions, to guarantee there is only one function of a particular
3835   // structure.
3836   llvm::FoldingSetNodeID ID;
3837   FunctionNoProtoType::Profile(ID, ResultTy, Info);
3838 
3839   void *InsertPos = nullptr;
3840   if (FunctionNoProtoType *FT =
3841         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3842     return QualType(FT, 0);
3843 
3844   QualType Canonical;
3845   if (!isCanonicalResultType(ResultTy)) {
3846     Canonical =
3847       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
3848 
3849     // Get the new insert position for the node we care about.
3850     FunctionNoProtoType *NewIP =
3851       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3852     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3853   }
3854 
3855   auto *New = new (*this, TypeAlignment)
3856     FunctionNoProtoType(ResultTy, Canonical, Info);
3857   Types.push_back(New);
3858   FunctionNoProtoTypes.InsertNode(New, InsertPos);
3859   return QualType(New, 0);
3860 }
3861 
3862 CanQualType
3863 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
3864   CanQualType CanResultType = getCanonicalType(ResultType);
3865 
3866   // Canonical result types do not have ARC lifetime qualifiers.
3867   if (CanResultType.getQualifiers().hasObjCLifetime()) {
3868     Qualifiers Qs = CanResultType.getQualifiers();
3869     Qs.removeObjCLifetime();
3870     return CanQualType::CreateUnsafe(
3871              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3872   }
3873 
3874   return CanResultType;
3875 }
3876 
3877 static bool isCanonicalExceptionSpecification(
3878     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
3879   if (ESI.Type == EST_None)
3880     return true;
3881   if (!NoexceptInType)
3882     return false;
3883 
3884   // C++17 onwards: exception specification is part of the type, as a simple
3885   // boolean "can this function type throw".
3886   if (ESI.Type == EST_BasicNoexcept)
3887     return true;
3888 
3889   // A noexcept(expr) specification is (possibly) canonical if expr is
3890   // value-dependent.
3891   if (ESI.Type == EST_DependentNoexcept)
3892     return true;
3893 
3894   // A dynamic exception specification is canonical if it only contains pack
3895   // expansions (so we can't tell whether it's non-throwing) and all its
3896   // contained types are canonical.
3897   if (ESI.Type == EST_Dynamic) {
3898     bool AnyPackExpansions = false;
3899     for (QualType ET : ESI.Exceptions) {
3900       if (!ET.isCanonical())
3901         return false;
3902       if (ET->getAs<PackExpansionType>())
3903         AnyPackExpansions = true;
3904     }
3905     return AnyPackExpansions;
3906   }
3907 
3908   return false;
3909 }
3910 
3911 QualType ASTContext::getFunctionTypeInternal(
3912     QualType ResultTy, ArrayRef<QualType> ArgArray,
3913     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
3914   size_t NumArgs = ArgArray.size();
3915 
3916   // Unique functions, to guarantee there is only one function of a particular
3917   // structure.
3918   llvm::FoldingSetNodeID ID;
3919   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3920                              *this, true);
3921 
3922   QualType Canonical;
3923   bool Unique = false;
3924 
3925   void *InsertPos = nullptr;
3926   if (FunctionProtoType *FPT =
3927         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
3928     QualType Existing = QualType(FPT, 0);
3929 
3930     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
3931     // it so long as our exception specification doesn't contain a dependent
3932     // noexcept expression, or we're just looking for a canonical type.
3933     // Otherwise, we're going to need to create a type
3934     // sugar node to hold the concrete expression.
3935     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
3936         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
3937       return Existing;
3938 
3939     // We need a new type sugar node for this one, to hold the new noexcept
3940     // expression. We do no canonicalization here, but that's OK since we don't
3941     // expect to see the same noexcept expression much more than once.
3942     Canonical = getCanonicalType(Existing);
3943     Unique = true;
3944   }
3945 
3946   bool NoexceptInType = getLangOpts().CPlusPlus17;
3947   bool IsCanonicalExceptionSpec =
3948       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
3949 
3950   // Determine whether the type being created is already canonical or not.
3951   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
3952                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
3953   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3954     if (!ArgArray[i].isCanonicalAsParam())
3955       isCanonical = false;
3956 
3957   if (OnlyWantCanonical)
3958     assert(isCanonical &&
3959            "given non-canonical parameters constructing canonical type");
3960 
3961   // If this type isn't canonical, get the canonical version of it if we don't
3962   // already have it. The exception spec is only partially part of the
3963   // canonical type, and only in C++17 onwards.
3964   if (!isCanonical && Canonical.isNull()) {
3965     SmallVector<QualType, 16> CanonicalArgs;
3966     CanonicalArgs.reserve(NumArgs);
3967     for (unsigned i = 0; i != NumArgs; ++i)
3968       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3969 
3970     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
3971     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3972     CanonicalEPI.HasTrailingReturn = false;
3973 
3974     if (IsCanonicalExceptionSpec) {
3975       // Exception spec is already OK.
3976     } else if (NoexceptInType) {
3977       switch (EPI.ExceptionSpec.Type) {
3978       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
3979         // We don't know yet. It shouldn't matter what we pick here; no-one
3980         // should ever look at this.
3981         LLVM_FALLTHROUGH;
3982       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
3983         CanonicalEPI.ExceptionSpec.Type = EST_None;
3984         break;
3985 
3986         // A dynamic exception specification is almost always "not noexcept",
3987         // with the exception that a pack expansion might expand to no types.
3988       case EST_Dynamic: {
3989         bool AnyPacks = false;
3990         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
3991           if (ET->getAs<PackExpansionType>())
3992             AnyPacks = true;
3993           ExceptionTypeStorage.push_back(getCanonicalType(ET));
3994         }
3995         if (!AnyPacks)
3996           CanonicalEPI.ExceptionSpec.Type = EST_None;
3997         else {
3998           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
3999           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4000         }
4001         break;
4002       }
4003 
4004       case EST_DynamicNone:
4005       case EST_BasicNoexcept:
4006       case EST_NoexceptTrue:
4007       case EST_NoThrow:
4008         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4009         break;
4010 
4011       case EST_DependentNoexcept:
4012         llvm_unreachable("dependent noexcept is already canonical");
4013       }
4014     } else {
4015       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4016     }
4017 
4018     // Adjust the canonical function result type.
4019     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4020     Canonical =
4021         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4022 
4023     // Get the new insert position for the node we care about.
4024     FunctionProtoType *NewIP =
4025       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4026     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4027   }
4028 
4029   // Compute the needed size to hold this FunctionProtoType and the
4030   // various trailing objects.
4031   auto ESH = FunctionProtoType::getExceptionSpecSize(
4032       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4033   size_t Size = FunctionProtoType::totalSizeToAlloc<
4034       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4035       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4036       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4037       NumArgs, EPI.Variadic,
4038       FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4039       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4040       EPI.ExtParameterInfos ? NumArgs : 0,
4041       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4042 
4043   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4044   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4045   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4046   Types.push_back(FTP);
4047   if (!Unique)
4048     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4049   return QualType(FTP, 0);
4050 }
4051 
4052 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4053   llvm::FoldingSetNodeID ID;
4054   PipeType::Profile(ID, T, ReadOnly);
4055 
4056   void *InsertPos = nullptr;
4057   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4058     return QualType(PT, 0);
4059 
4060   // If the pipe element type isn't canonical, this won't be a canonical type
4061   // either, so fill in the canonical type field.
4062   QualType Canonical;
4063   if (!T.isCanonical()) {
4064     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4065 
4066     // Get the new insert position for the node we care about.
4067     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4068     assert(!NewIP && "Shouldn't be in the map!");
4069     (void)NewIP;
4070   }
4071   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4072   Types.push_back(New);
4073   PipeTypes.InsertNode(New, InsertPos);
4074   return QualType(New, 0);
4075 }
4076 
4077 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4078   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4079   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4080                          : Ty;
4081 }
4082 
4083 QualType ASTContext::getReadPipeType(QualType T) const {
4084   return getPipeType(T, true);
4085 }
4086 
4087 QualType ASTContext::getWritePipeType(QualType T) const {
4088   return getPipeType(T, false);
4089 }
4090 
4091 #ifndef NDEBUG
4092 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4093   if (!isa<CXXRecordDecl>(D)) return false;
4094   const auto *RD = cast<CXXRecordDecl>(D);
4095   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4096     return true;
4097   if (RD->getDescribedClassTemplate() &&
4098       !isa<ClassTemplateSpecializationDecl>(RD))
4099     return true;
4100   return false;
4101 }
4102 #endif
4103 
4104 /// getInjectedClassNameType - Return the unique reference to the
4105 /// injected class name type for the specified templated declaration.
4106 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4107                                               QualType TST) const {
4108   assert(NeedsInjectedClassNameType(Decl));
4109   if (Decl->TypeForDecl) {
4110     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4111   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4112     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4113     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4114     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4115   } else {
4116     Type *newType =
4117       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4118     Decl->TypeForDecl = newType;
4119     Types.push_back(newType);
4120   }
4121   return QualType(Decl->TypeForDecl, 0);
4122 }
4123 
4124 /// getTypeDeclType - Return the unique reference to the type for the
4125 /// specified type declaration.
4126 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4127   assert(Decl && "Passed null for Decl param");
4128   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4129 
4130   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4131     return getTypedefType(Typedef);
4132 
4133   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4134          "Template type parameter types are always available.");
4135 
4136   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4137     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4138     assert(!NeedsInjectedClassNameType(Record));
4139     return getRecordType(Record);
4140   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4141     assert(Enum->isFirstDecl() && "enum has previous declaration");
4142     return getEnumType(Enum);
4143   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4144     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
4145     Decl->TypeForDecl = newType;
4146     Types.push_back(newType);
4147   } else
4148     llvm_unreachable("TypeDecl without a type?");
4149 
4150   return QualType(Decl->TypeForDecl, 0);
4151 }
4152 
4153 /// getTypedefType - Return the unique reference to the type for the
4154 /// specified typedef name decl.
4155 QualType
4156 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4157                            QualType Canonical) const {
4158   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4159 
4160   if (Canonical.isNull())
4161     Canonical = getCanonicalType(Decl->getUnderlyingType());
4162   auto *newType = new (*this, TypeAlignment)
4163     TypedefType(Type::Typedef, Decl, Canonical);
4164   Decl->TypeForDecl = newType;
4165   Types.push_back(newType);
4166   return QualType(newType, 0);
4167 }
4168 
4169 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4170   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4171 
4172   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4173     if (PrevDecl->TypeForDecl)
4174       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4175 
4176   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4177   Decl->TypeForDecl = newType;
4178   Types.push_back(newType);
4179   return QualType(newType, 0);
4180 }
4181 
4182 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4183   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4184 
4185   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4186     if (PrevDecl->TypeForDecl)
4187       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4188 
4189   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4190   Decl->TypeForDecl = newType;
4191   Types.push_back(newType);
4192   return QualType(newType, 0);
4193 }
4194 
4195 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4196                                        QualType modifiedType,
4197                                        QualType equivalentType) {
4198   llvm::FoldingSetNodeID id;
4199   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4200 
4201   void *insertPos = nullptr;
4202   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4203   if (type) return QualType(type, 0);
4204 
4205   QualType canon = getCanonicalType(equivalentType);
4206   type = new (*this, TypeAlignment)
4207       AttributedType(canon, attrKind, modifiedType, equivalentType);
4208 
4209   Types.push_back(type);
4210   AttributedTypes.InsertNode(type, insertPos);
4211 
4212   return QualType(type, 0);
4213 }
4214 
4215 /// Retrieve a substitution-result type.
4216 QualType
4217 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4218                                          QualType Replacement) const {
4219   assert(Replacement.isCanonical()
4220          && "replacement types must always be canonical");
4221 
4222   llvm::FoldingSetNodeID ID;
4223   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4224   void *InsertPos = nullptr;
4225   SubstTemplateTypeParmType *SubstParm
4226     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4227 
4228   if (!SubstParm) {
4229     SubstParm = new (*this, TypeAlignment)
4230       SubstTemplateTypeParmType(Parm, Replacement);
4231     Types.push_back(SubstParm);
4232     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4233   }
4234 
4235   return QualType(SubstParm, 0);
4236 }
4237 
4238 /// Retrieve a
4239 QualType ASTContext::getSubstTemplateTypeParmPackType(
4240                                           const TemplateTypeParmType *Parm,
4241                                               const TemplateArgument &ArgPack) {
4242 #ifndef NDEBUG
4243   for (const auto &P : ArgPack.pack_elements()) {
4244     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4245     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4246   }
4247 #endif
4248 
4249   llvm::FoldingSetNodeID ID;
4250   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4251   void *InsertPos = nullptr;
4252   if (SubstTemplateTypeParmPackType *SubstParm
4253         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4254     return QualType(SubstParm, 0);
4255 
4256   QualType Canon;
4257   if (!Parm->isCanonicalUnqualified()) {
4258     Canon = getCanonicalType(QualType(Parm, 0));
4259     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4260                                              ArgPack);
4261     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4262   }
4263 
4264   auto *SubstParm
4265     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4266                                                                ArgPack);
4267   Types.push_back(SubstParm);
4268   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4269   return QualType(SubstParm, 0);
4270 }
4271 
4272 /// Retrieve the template type parameter type for a template
4273 /// parameter or parameter pack with the given depth, index, and (optionally)
4274 /// name.
4275 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4276                                              bool ParameterPack,
4277                                              TemplateTypeParmDecl *TTPDecl) const {
4278   llvm::FoldingSetNodeID ID;
4279   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4280   void *InsertPos = nullptr;
4281   TemplateTypeParmType *TypeParm
4282     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4283 
4284   if (TypeParm)
4285     return QualType(TypeParm, 0);
4286 
4287   if (TTPDecl) {
4288     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4289     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4290 
4291     TemplateTypeParmType *TypeCheck
4292       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4293     assert(!TypeCheck && "Template type parameter canonical type broken");
4294     (void)TypeCheck;
4295   } else
4296     TypeParm = new (*this, TypeAlignment)
4297       TemplateTypeParmType(Depth, Index, ParameterPack);
4298 
4299   Types.push_back(TypeParm);
4300   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4301 
4302   return QualType(TypeParm, 0);
4303 }
4304 
4305 TypeSourceInfo *
4306 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4307                                               SourceLocation NameLoc,
4308                                         const TemplateArgumentListInfo &Args,
4309                                               QualType Underlying) const {
4310   assert(!Name.getAsDependentTemplateName() &&
4311          "No dependent template names here!");
4312   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4313 
4314   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4315   TemplateSpecializationTypeLoc TL =
4316       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4317   TL.setTemplateKeywordLoc(SourceLocation());
4318   TL.setTemplateNameLoc(NameLoc);
4319   TL.setLAngleLoc(Args.getLAngleLoc());
4320   TL.setRAngleLoc(Args.getRAngleLoc());
4321   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4322     TL.setArgLocInfo(i, Args[i].getLocInfo());
4323   return DI;
4324 }
4325 
4326 QualType
4327 ASTContext::getTemplateSpecializationType(TemplateName Template,
4328                                           const TemplateArgumentListInfo &Args,
4329                                           QualType Underlying) const {
4330   assert(!Template.getAsDependentTemplateName() &&
4331          "No dependent template names here!");
4332 
4333   SmallVector<TemplateArgument, 4> ArgVec;
4334   ArgVec.reserve(Args.size());
4335   for (const TemplateArgumentLoc &Arg : Args.arguments())
4336     ArgVec.push_back(Arg.getArgument());
4337 
4338   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4339 }
4340 
4341 #ifndef NDEBUG
4342 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4343   for (const TemplateArgument &Arg : Args)
4344     if (Arg.isPackExpansion())
4345       return true;
4346 
4347   return true;
4348 }
4349 #endif
4350 
4351 QualType
4352 ASTContext::getTemplateSpecializationType(TemplateName Template,
4353                                           ArrayRef<TemplateArgument> Args,
4354                                           QualType Underlying) const {
4355   assert(!Template.getAsDependentTemplateName() &&
4356          "No dependent template names here!");
4357   // Look through qualified template names.
4358   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4359     Template = TemplateName(QTN->getTemplateDecl());
4360 
4361   bool IsTypeAlias =
4362     Template.getAsTemplateDecl() &&
4363     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4364   QualType CanonType;
4365   if (!Underlying.isNull())
4366     CanonType = getCanonicalType(Underlying);
4367   else {
4368     // We can get here with an alias template when the specialization contains
4369     // a pack expansion that does not match up with a parameter pack.
4370     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4371            "Caller must compute aliased type");
4372     IsTypeAlias = false;
4373     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4374   }
4375 
4376   // Allocate the (non-canonical) template specialization type, but don't
4377   // try to unique it: these types typically have location information that
4378   // we don't unique and don't want to lose.
4379   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4380                        sizeof(TemplateArgument) * Args.size() +
4381                        (IsTypeAlias? sizeof(QualType) : 0),
4382                        TypeAlignment);
4383   auto *Spec
4384     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4385                                          IsTypeAlias ? Underlying : QualType());
4386 
4387   Types.push_back(Spec);
4388   return QualType(Spec, 0);
4389 }
4390 
4391 QualType ASTContext::getCanonicalTemplateSpecializationType(
4392     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4393   assert(!Template.getAsDependentTemplateName() &&
4394          "No dependent template names here!");
4395 
4396   // Look through qualified template names.
4397   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4398     Template = TemplateName(QTN->getTemplateDecl());
4399 
4400   // Build the canonical template specialization type.
4401   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4402   SmallVector<TemplateArgument, 4> CanonArgs;
4403   unsigned NumArgs = Args.size();
4404   CanonArgs.reserve(NumArgs);
4405   for (const TemplateArgument &Arg : Args)
4406     CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4407 
4408   // Determine whether this canonical template specialization type already
4409   // exists.
4410   llvm::FoldingSetNodeID ID;
4411   TemplateSpecializationType::Profile(ID, CanonTemplate,
4412                                       CanonArgs, *this);
4413 
4414   void *InsertPos = nullptr;
4415   TemplateSpecializationType *Spec
4416     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4417 
4418   if (!Spec) {
4419     // Allocate a new canonical template specialization type.
4420     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4421                           sizeof(TemplateArgument) * NumArgs),
4422                          TypeAlignment);
4423     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4424                                                 CanonArgs,
4425                                                 QualType(), QualType());
4426     Types.push_back(Spec);
4427     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4428   }
4429 
4430   assert(Spec->isDependentType() &&
4431          "Non-dependent template-id type must have a canonical type");
4432   return QualType(Spec, 0);
4433 }
4434 
4435 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4436                                        NestedNameSpecifier *NNS,
4437                                        QualType NamedType,
4438                                        TagDecl *OwnedTagDecl) const {
4439   llvm::FoldingSetNodeID ID;
4440   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4441 
4442   void *InsertPos = nullptr;
4443   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4444   if (T)
4445     return QualType(T, 0);
4446 
4447   QualType Canon = NamedType;
4448   if (!Canon.isCanonical()) {
4449     Canon = getCanonicalType(NamedType);
4450     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4451     assert(!CheckT && "Elaborated canonical type broken");
4452     (void)CheckT;
4453   }
4454 
4455   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4456                        TypeAlignment);
4457   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4458 
4459   Types.push_back(T);
4460   ElaboratedTypes.InsertNode(T, InsertPos);
4461   return QualType(T, 0);
4462 }
4463 
4464 QualType
4465 ASTContext::getParenType(QualType InnerType) const {
4466   llvm::FoldingSetNodeID ID;
4467   ParenType::Profile(ID, InnerType);
4468 
4469   void *InsertPos = nullptr;
4470   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4471   if (T)
4472     return QualType(T, 0);
4473 
4474   QualType Canon = InnerType;
4475   if (!Canon.isCanonical()) {
4476     Canon = getCanonicalType(InnerType);
4477     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4478     assert(!CheckT && "Paren canonical type broken");
4479     (void)CheckT;
4480   }
4481 
4482   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4483   Types.push_back(T);
4484   ParenTypes.InsertNode(T, InsertPos);
4485   return QualType(T, 0);
4486 }
4487 
4488 QualType
4489 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4490                                   const IdentifierInfo *MacroII) const {
4491   QualType Canon = UnderlyingTy;
4492   if (!Canon.isCanonical())
4493     Canon = getCanonicalType(UnderlyingTy);
4494 
4495   auto *newType = new (*this, TypeAlignment)
4496       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4497   Types.push_back(newType);
4498   return QualType(newType, 0);
4499 }
4500 
4501 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4502                                           NestedNameSpecifier *NNS,
4503                                           const IdentifierInfo *Name,
4504                                           QualType Canon) const {
4505   if (Canon.isNull()) {
4506     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4507     if (CanonNNS != NNS)
4508       Canon = getDependentNameType(Keyword, CanonNNS, Name);
4509   }
4510 
4511   llvm::FoldingSetNodeID ID;
4512   DependentNameType::Profile(ID, Keyword, NNS, Name);
4513 
4514   void *InsertPos = nullptr;
4515   DependentNameType *T
4516     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4517   if (T)
4518     return QualType(T, 0);
4519 
4520   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4521   Types.push_back(T);
4522   DependentNameTypes.InsertNode(T, InsertPos);
4523   return QualType(T, 0);
4524 }
4525 
4526 QualType
4527 ASTContext::getDependentTemplateSpecializationType(
4528                                  ElaboratedTypeKeyword Keyword,
4529                                  NestedNameSpecifier *NNS,
4530                                  const IdentifierInfo *Name,
4531                                  const TemplateArgumentListInfo &Args) const {
4532   // TODO: avoid this copy
4533   SmallVector<TemplateArgument, 16> ArgCopy;
4534   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4535     ArgCopy.push_back(Args[I].getArgument());
4536   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4537 }
4538 
4539 QualType
4540 ASTContext::getDependentTemplateSpecializationType(
4541                                  ElaboratedTypeKeyword Keyword,
4542                                  NestedNameSpecifier *NNS,
4543                                  const IdentifierInfo *Name,
4544                                  ArrayRef<TemplateArgument> Args) const {
4545   assert((!NNS || NNS->isDependent()) &&
4546          "nested-name-specifier must be dependent");
4547 
4548   llvm::FoldingSetNodeID ID;
4549   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4550                                                Name, Args);
4551 
4552   void *InsertPos = nullptr;
4553   DependentTemplateSpecializationType *T
4554     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4555   if (T)
4556     return QualType(T, 0);
4557 
4558   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4559 
4560   ElaboratedTypeKeyword CanonKeyword = Keyword;
4561   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4562 
4563   bool AnyNonCanonArgs = false;
4564   unsigned NumArgs = Args.size();
4565   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4566   for (unsigned I = 0; I != NumArgs; ++I) {
4567     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4568     if (!CanonArgs[I].structurallyEquals(Args[I]))
4569       AnyNonCanonArgs = true;
4570   }
4571 
4572   QualType Canon;
4573   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4574     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4575                                                    Name,
4576                                                    CanonArgs);
4577 
4578     // Find the insert position again.
4579     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4580   }
4581 
4582   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4583                         sizeof(TemplateArgument) * NumArgs),
4584                        TypeAlignment);
4585   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4586                                                     Name, Args, Canon);
4587   Types.push_back(T);
4588   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4589   return QualType(T, 0);
4590 }
4591 
4592 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
4593   TemplateArgument Arg;
4594   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4595     QualType ArgType = getTypeDeclType(TTP);
4596     if (TTP->isParameterPack())
4597       ArgType = getPackExpansionType(ArgType, None);
4598 
4599     Arg = TemplateArgument(ArgType);
4600   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4601     Expr *E = new (*this) DeclRefExpr(
4602         *this, NTTP, /*enclosing*/ false,
4603         NTTP->getType().getNonLValueExprType(*this),
4604         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4605 
4606     if (NTTP->isParameterPack())
4607       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4608                                         None);
4609     Arg = TemplateArgument(E);
4610   } else {
4611     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4612     if (TTP->isParameterPack())
4613       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
4614     else
4615       Arg = TemplateArgument(TemplateName(TTP));
4616   }
4617 
4618   if (Param->isTemplateParameterPack())
4619     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4620 
4621   return Arg;
4622 }
4623 
4624 void
4625 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
4626                                     SmallVectorImpl<TemplateArgument> &Args) {
4627   Args.reserve(Args.size() + Params->size());
4628 
4629   for (NamedDecl *Param : *Params)
4630     Args.push_back(getInjectedTemplateArg(Param));
4631 }
4632 
4633 QualType ASTContext::getPackExpansionType(QualType Pattern,
4634                                           Optional<unsigned> NumExpansions) {
4635   llvm::FoldingSetNodeID ID;
4636   PackExpansionType::Profile(ID, Pattern, NumExpansions);
4637 
4638   // A deduced type can deduce to a pack, eg
4639   //   auto ...x = some_pack;
4640   // That declaration isn't (yet) valid, but is created as part of building an
4641   // init-capture pack:
4642   //   [...x = some_pack] {}
4643   assert((Pattern->containsUnexpandedParameterPack() ||
4644           Pattern->getContainedDeducedType()) &&
4645          "Pack expansions must expand one or more parameter packs");
4646   void *InsertPos = nullptr;
4647   PackExpansionType *T
4648     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4649   if (T)
4650     return QualType(T, 0);
4651 
4652   QualType Canon;
4653   if (!Pattern.isCanonical()) {
4654     Canon = getCanonicalType(Pattern);
4655     // The canonical type might not contain an unexpanded parameter pack, if it
4656     // contains an alias template specialization which ignores one of its
4657     // parameters.
4658     if (Canon->containsUnexpandedParameterPack()) {
4659       Canon = getPackExpansionType(Canon, NumExpansions);
4660 
4661       // Find the insert position again, in case we inserted an element into
4662       // PackExpansionTypes and invalidated our insert position.
4663       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4664     }
4665   }
4666 
4667   T = new (*this, TypeAlignment)
4668       PackExpansionType(Pattern, Canon, NumExpansions);
4669   Types.push_back(T);
4670   PackExpansionTypes.InsertNode(T, InsertPos);
4671   return QualType(T, 0);
4672 }
4673 
4674 /// CmpProtocolNames - Comparison predicate for sorting protocols
4675 /// alphabetically.
4676 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
4677                             ObjCProtocolDecl *const *RHS) {
4678   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
4679 }
4680 
4681 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
4682   if (Protocols.empty()) return true;
4683 
4684   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
4685     return false;
4686 
4687   for (unsigned i = 1; i != Protocols.size(); ++i)
4688     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
4689         Protocols[i]->getCanonicalDecl() != Protocols[i])
4690       return false;
4691   return true;
4692 }
4693 
4694 static void
4695 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
4696   // Sort protocols, keyed by name.
4697   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
4698 
4699   // Canonicalize.
4700   for (ObjCProtocolDecl *&P : Protocols)
4701     P = P->getCanonicalDecl();
4702 
4703   // Remove duplicates.
4704   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
4705   Protocols.erase(ProtocolsEnd, Protocols.end());
4706 }
4707 
4708 QualType ASTContext::getObjCObjectType(QualType BaseType,
4709                                        ObjCProtocolDecl * const *Protocols,
4710                                        unsigned NumProtocols) const {
4711   return getObjCObjectType(BaseType, {},
4712                            llvm::makeArrayRef(Protocols, NumProtocols),
4713                            /*isKindOf=*/false);
4714 }
4715 
4716 QualType ASTContext::getObjCObjectType(
4717            QualType baseType,
4718            ArrayRef<QualType> typeArgs,
4719            ArrayRef<ObjCProtocolDecl *> protocols,
4720            bool isKindOf) const {
4721   // If the base type is an interface and there aren't any protocols or
4722   // type arguments to add, then the interface type will do just fine.
4723   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
4724       isa<ObjCInterfaceType>(baseType))
4725     return baseType;
4726 
4727   // Look in the folding set for an existing type.
4728   llvm::FoldingSetNodeID ID;
4729   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
4730   void *InsertPos = nullptr;
4731   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
4732     return QualType(QT, 0);
4733 
4734   // Determine the type arguments to be used for canonicalization,
4735   // which may be explicitly specified here or written on the base
4736   // type.
4737   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
4738   if (effectiveTypeArgs.empty()) {
4739     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
4740       effectiveTypeArgs = baseObject->getTypeArgs();
4741   }
4742 
4743   // Build the canonical type, which has the canonical base type and a
4744   // sorted-and-uniqued list of protocols and the type arguments
4745   // canonicalized.
4746   QualType canonical;
4747   bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
4748                                           effectiveTypeArgs.end(),
4749                                           [&](QualType type) {
4750                                             return type.isCanonical();
4751                                           });
4752   bool protocolsSorted = areSortedAndUniqued(protocols);
4753   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
4754     // Determine the canonical type arguments.
4755     ArrayRef<QualType> canonTypeArgs;
4756     SmallVector<QualType, 4> canonTypeArgsVec;
4757     if (!typeArgsAreCanonical) {
4758       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
4759       for (auto typeArg : effectiveTypeArgs)
4760         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
4761       canonTypeArgs = canonTypeArgsVec;
4762     } else {
4763       canonTypeArgs = effectiveTypeArgs;
4764     }
4765 
4766     ArrayRef<ObjCProtocolDecl *> canonProtocols;
4767     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
4768     if (!protocolsSorted) {
4769       canonProtocolsVec.append(protocols.begin(), protocols.end());
4770       SortAndUniqueProtocols(canonProtocolsVec);
4771       canonProtocols = canonProtocolsVec;
4772     } else {
4773       canonProtocols = protocols;
4774     }
4775 
4776     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
4777                                   canonProtocols, isKindOf);
4778 
4779     // Regenerate InsertPos.
4780     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
4781   }
4782 
4783   unsigned size = sizeof(ObjCObjectTypeImpl);
4784   size += typeArgs.size() * sizeof(QualType);
4785   size += protocols.size() * sizeof(ObjCProtocolDecl *);
4786   void *mem = Allocate(size, TypeAlignment);
4787   auto *T =
4788     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
4789                                  isKindOf);
4790 
4791   Types.push_back(T);
4792   ObjCObjectTypes.InsertNode(T, InsertPos);
4793   return QualType(T, 0);
4794 }
4795 
4796 /// Apply Objective-C protocol qualifiers to the given type.
4797 /// If this is for the canonical type of a type parameter, we can apply
4798 /// protocol qualifiers on the ObjCObjectPointerType.
4799 QualType
4800 ASTContext::applyObjCProtocolQualifiers(QualType type,
4801                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
4802                   bool allowOnPointerType) const {
4803   hasError = false;
4804 
4805   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
4806     return getObjCTypeParamType(objT->getDecl(), protocols);
4807   }
4808 
4809   // Apply protocol qualifiers to ObjCObjectPointerType.
4810   if (allowOnPointerType) {
4811     if (const auto *objPtr =
4812             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
4813       const ObjCObjectType *objT = objPtr->getObjectType();
4814       // Merge protocol lists and construct ObjCObjectType.
4815       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
4816       protocolsVec.append(objT->qual_begin(),
4817                           objT->qual_end());
4818       protocolsVec.append(protocols.begin(), protocols.end());
4819       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
4820       type = getObjCObjectType(
4821              objT->getBaseType(),
4822              objT->getTypeArgsAsWritten(),
4823              protocols,
4824              objT->isKindOfTypeAsWritten());
4825       return getObjCObjectPointerType(type);
4826     }
4827   }
4828 
4829   // Apply protocol qualifiers to ObjCObjectType.
4830   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
4831     // FIXME: Check for protocols to which the class type is already
4832     // known to conform.
4833 
4834     return getObjCObjectType(objT->getBaseType(),
4835                              objT->getTypeArgsAsWritten(),
4836                              protocols,
4837                              objT->isKindOfTypeAsWritten());
4838   }
4839 
4840   // If the canonical type is ObjCObjectType, ...
4841   if (type->isObjCObjectType()) {
4842     // Silently overwrite any existing protocol qualifiers.
4843     // TODO: determine whether that's the right thing to do.
4844 
4845     // FIXME: Check for protocols to which the class type is already
4846     // known to conform.
4847     return getObjCObjectType(type, {}, protocols, false);
4848   }
4849 
4850   // id<protocol-list>
4851   if (type->isObjCIdType()) {
4852     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4853     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
4854                                  objPtr->isKindOfType());
4855     return getObjCObjectPointerType(type);
4856   }
4857 
4858   // Class<protocol-list>
4859   if (type->isObjCClassType()) {
4860     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4861     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
4862                                  objPtr->isKindOfType());
4863     return getObjCObjectPointerType(type);
4864   }
4865 
4866   hasError = true;
4867   return type;
4868 }
4869 
4870 QualType
4871 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
4872                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
4873   // Look in the folding set for an existing type.
4874   llvm::FoldingSetNodeID ID;
4875   ObjCTypeParamType::Profile(ID, Decl, protocols);
4876   void *InsertPos = nullptr;
4877   if (ObjCTypeParamType *TypeParam =
4878       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
4879     return QualType(TypeParam, 0);
4880 
4881   // We canonicalize to the underlying type.
4882   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
4883   if (!protocols.empty()) {
4884     // Apply the protocol qualifers.
4885     bool hasError;
4886     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
4887         Canonical, protocols, hasError, true /*allowOnPointerType*/));
4888     assert(!hasError && "Error when apply protocol qualifier to bound type");
4889   }
4890 
4891   unsigned size = sizeof(ObjCTypeParamType);
4892   size += protocols.size() * sizeof(ObjCProtocolDecl *);
4893   void *mem = Allocate(size, TypeAlignment);
4894   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
4895 
4896   Types.push_back(newType);
4897   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
4898   return QualType(newType, 0);
4899 }
4900 
4901 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
4902 /// protocol list adopt all protocols in QT's qualified-id protocol
4903 /// list.
4904 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
4905                                                 ObjCInterfaceDecl *IC) {
4906   if (!QT->isObjCQualifiedIdType())
4907     return false;
4908 
4909   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
4910     // If both the right and left sides have qualifiers.
4911     for (auto *Proto : OPT->quals()) {
4912       if (!IC->ClassImplementsProtocol(Proto, false))
4913         return false;
4914     }
4915     return true;
4916   }
4917   return false;
4918 }
4919 
4920 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
4921 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
4922 /// of protocols.
4923 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
4924                                                 ObjCInterfaceDecl *IDecl) {
4925   if (!QT->isObjCQualifiedIdType())
4926     return false;
4927   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
4928   if (!OPT)
4929     return false;
4930   if (!IDecl->hasDefinition())
4931     return false;
4932   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
4933   CollectInheritedProtocols(IDecl, InheritedProtocols);
4934   if (InheritedProtocols.empty())
4935     return false;
4936   // Check that if every protocol in list of id<plist> conforms to a protocol
4937   // of IDecl's, then bridge casting is ok.
4938   bool Conforms = false;
4939   for (auto *Proto : OPT->quals()) {
4940     Conforms = false;
4941     for (auto *PI : InheritedProtocols) {
4942       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
4943         Conforms = true;
4944         break;
4945       }
4946     }
4947     if (!Conforms)
4948       break;
4949   }
4950   if (Conforms)
4951     return true;
4952 
4953   for (auto *PI : InheritedProtocols) {
4954     // If both the right and left sides have qualifiers.
4955     bool Adopts = false;
4956     for (auto *Proto : OPT->quals()) {
4957       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
4958       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
4959         break;
4960     }
4961     if (!Adopts)
4962       return false;
4963   }
4964   return true;
4965 }
4966 
4967 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
4968 /// the given object type.
4969 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
4970   llvm::FoldingSetNodeID ID;
4971   ObjCObjectPointerType::Profile(ID, ObjectT);
4972 
4973   void *InsertPos = nullptr;
4974   if (ObjCObjectPointerType *QT =
4975               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
4976     return QualType(QT, 0);
4977 
4978   // Find the canonical object type.
4979   QualType Canonical;
4980   if (!ObjectT.isCanonical()) {
4981     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
4982 
4983     // Regenerate InsertPos.
4984     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
4985   }
4986 
4987   // No match.
4988   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
4989   auto *QType =
4990     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
4991 
4992   Types.push_back(QType);
4993   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
4994   return QualType(QType, 0);
4995 }
4996 
4997 /// getObjCInterfaceType - Return the unique reference to the type for the
4998 /// specified ObjC interface decl. The list of protocols is optional.
4999 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5000                                           ObjCInterfaceDecl *PrevDecl) const {
5001   if (Decl->TypeForDecl)
5002     return QualType(Decl->TypeForDecl, 0);
5003 
5004   if (PrevDecl) {
5005     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5006     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5007     return QualType(PrevDecl->TypeForDecl, 0);
5008   }
5009 
5010   // Prefer the definition, if there is one.
5011   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5012     Decl = Def;
5013 
5014   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5015   auto *T = new (Mem) ObjCInterfaceType(Decl);
5016   Decl->TypeForDecl = T;
5017   Types.push_back(T);
5018   return QualType(T, 0);
5019 }
5020 
5021 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5022 /// TypeOfExprType AST's (since expression's are never shared). For example,
5023 /// multiple declarations that refer to "typeof(x)" all contain different
5024 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5025 /// on canonical type's (which are always unique).
5026 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5027   TypeOfExprType *toe;
5028   if (tofExpr->isTypeDependent()) {
5029     llvm::FoldingSetNodeID ID;
5030     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5031 
5032     void *InsertPos = nullptr;
5033     DependentTypeOfExprType *Canon
5034       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5035     if (Canon) {
5036       // We already have a "canonical" version of an identical, dependent
5037       // typeof(expr) type. Use that as our canonical type.
5038       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5039                                           QualType((TypeOfExprType*)Canon, 0));
5040     } else {
5041       // Build a new, canonical typeof(expr) type.
5042       Canon
5043         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5044       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5045       toe = Canon;
5046     }
5047   } else {
5048     QualType Canonical = getCanonicalType(tofExpr->getType());
5049     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5050   }
5051   Types.push_back(toe);
5052   return QualType(toe, 0);
5053 }
5054 
5055 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5056 /// TypeOfType nodes. The only motivation to unique these nodes would be
5057 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5058 /// an issue. This doesn't affect the type checker, since it operates
5059 /// on canonical types (which are always unique).
5060 QualType ASTContext::getTypeOfType(QualType tofType) const {
5061   QualType Canonical = getCanonicalType(tofType);
5062   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5063   Types.push_back(tot);
5064   return QualType(tot, 0);
5065 }
5066 
5067 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5068 /// nodes. This would never be helpful, since each such type has its own
5069 /// expression, and would not give a significant memory saving, since there
5070 /// is an Expr tree under each such type.
5071 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5072   DecltypeType *dt;
5073 
5074   // C++11 [temp.type]p2:
5075   //   If an expression e involves a template parameter, decltype(e) denotes a
5076   //   unique dependent type. Two such decltype-specifiers refer to the same
5077   //   type only if their expressions are equivalent (14.5.6.1).
5078   if (e->isInstantiationDependent()) {
5079     llvm::FoldingSetNodeID ID;
5080     DependentDecltypeType::Profile(ID, *this, e);
5081 
5082     void *InsertPos = nullptr;
5083     DependentDecltypeType *Canon
5084       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5085     if (!Canon) {
5086       // Build a new, canonical decltype(expr) type.
5087       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5088       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5089     }
5090     dt = new (*this, TypeAlignment)
5091         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5092   } else {
5093     dt = new (*this, TypeAlignment)
5094         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5095   }
5096   Types.push_back(dt);
5097   return QualType(dt, 0);
5098 }
5099 
5100 /// getUnaryTransformationType - We don't unique these, since the memory
5101 /// savings are minimal and these are rare.
5102 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5103                                            QualType UnderlyingType,
5104                                            UnaryTransformType::UTTKind Kind)
5105     const {
5106   UnaryTransformType *ut = nullptr;
5107 
5108   if (BaseType->isDependentType()) {
5109     // Look in the folding set for an existing type.
5110     llvm::FoldingSetNodeID ID;
5111     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5112 
5113     void *InsertPos = nullptr;
5114     DependentUnaryTransformType *Canon
5115       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5116 
5117     if (!Canon) {
5118       // Build a new, canonical __underlying_type(type) type.
5119       Canon = new (*this, TypeAlignment)
5120              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5121                                          Kind);
5122       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5123     }
5124     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5125                                                         QualType(), Kind,
5126                                                         QualType(Canon, 0));
5127   } else {
5128     QualType CanonType = getCanonicalType(UnderlyingType);
5129     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5130                                                         UnderlyingType, Kind,
5131                                                         CanonType);
5132   }
5133   Types.push_back(ut);
5134   return QualType(ut, 0);
5135 }
5136 
5137 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5138 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5139 /// canonical deduced-but-dependent 'auto' type.
5140 QualType
5141 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5142                         bool IsDependent, bool IsPack,
5143                         ConceptDecl *TypeConstraintConcept,
5144                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5145   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5146   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5147       !TypeConstraintConcept && !IsDependent)
5148     return getAutoDeductType();
5149 
5150   // Look in the folding set for an existing type.
5151   void *InsertPos = nullptr;
5152   llvm::FoldingSetNodeID ID;
5153   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5154                     TypeConstraintConcept, TypeConstraintArgs);
5155   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5156     return QualType(AT, 0);
5157 
5158   void *Mem = Allocate(sizeof(AutoType) +
5159                        sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5160                        TypeAlignment);
5161   auto *AT = new (Mem) AutoType(DeducedType, Keyword, IsDependent, IsPack,
5162                                 TypeConstraintConcept, TypeConstraintArgs);
5163   Types.push_back(AT);
5164   if (InsertPos)
5165     AutoTypes.InsertNode(AT, InsertPos);
5166   return QualType(AT, 0);
5167 }
5168 
5169 /// Return the uniqued reference to the deduced template specialization type
5170 /// which has been deduced to the given type, or to the canonical undeduced
5171 /// such type, or the canonical deduced-but-dependent such type.
5172 QualType ASTContext::getDeducedTemplateSpecializationType(
5173     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5174   // Look in the folding set for an existing type.
5175   void *InsertPos = nullptr;
5176   llvm::FoldingSetNodeID ID;
5177   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5178                                              IsDependent);
5179   if (DeducedTemplateSpecializationType *DTST =
5180           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5181     return QualType(DTST, 0);
5182 
5183   auto *DTST = new (*this, TypeAlignment)
5184       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5185   Types.push_back(DTST);
5186   if (InsertPos)
5187     DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5188   return QualType(DTST, 0);
5189 }
5190 
5191 /// getAtomicType - Return the uniqued reference to the atomic type for
5192 /// the given value type.
5193 QualType ASTContext::getAtomicType(QualType T) const {
5194   // Unique pointers, to guarantee there is only one pointer of a particular
5195   // structure.
5196   llvm::FoldingSetNodeID ID;
5197   AtomicType::Profile(ID, T);
5198 
5199   void *InsertPos = nullptr;
5200   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5201     return QualType(AT, 0);
5202 
5203   // If the atomic value type isn't canonical, this won't be a canonical type
5204   // either, so fill in the canonical type field.
5205   QualType Canonical;
5206   if (!T.isCanonical()) {
5207     Canonical = getAtomicType(getCanonicalType(T));
5208 
5209     // Get the new insert position for the node we care about.
5210     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5211     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5212   }
5213   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5214   Types.push_back(New);
5215   AtomicTypes.InsertNode(New, InsertPos);
5216   return QualType(New, 0);
5217 }
5218 
5219 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5220 QualType ASTContext::getAutoDeductType() const {
5221   if (AutoDeductTy.isNull())
5222     AutoDeductTy = QualType(
5223       new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
5224                                           /*dependent*/false, /*pack*/false,
5225                                           /*concept*/nullptr, /*args*/{}),
5226       0);
5227   return AutoDeductTy;
5228 }
5229 
5230 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5231 QualType ASTContext::getAutoRRefDeductType() const {
5232   if (AutoRRefDeductTy.isNull())
5233     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5234   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5235   return AutoRRefDeductTy;
5236 }
5237 
5238 /// getTagDeclType - Return the unique reference to the type for the
5239 /// specified TagDecl (struct/union/class/enum) decl.
5240 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5241   assert(Decl);
5242   // FIXME: What is the design on getTagDeclType when it requires casting
5243   // away const?  mutable?
5244   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5245 }
5246 
5247 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5248 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5249 /// needs to agree with the definition in <stddef.h>.
5250 CanQualType ASTContext::getSizeType() const {
5251   return getFromTargetType(Target->getSizeType());
5252 }
5253 
5254 /// Return the unique signed counterpart of the integer type
5255 /// corresponding to size_t.
5256 CanQualType ASTContext::getSignedSizeType() const {
5257   return getFromTargetType(Target->getSignedSizeType());
5258 }
5259 
5260 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5261 CanQualType ASTContext::getIntMaxType() const {
5262   return getFromTargetType(Target->getIntMaxType());
5263 }
5264 
5265 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5266 CanQualType ASTContext::getUIntMaxType() const {
5267   return getFromTargetType(Target->getUIntMaxType());
5268 }
5269 
5270 /// getSignedWCharType - Return the type of "signed wchar_t".
5271 /// Used when in C++, as a GCC extension.
5272 QualType ASTContext::getSignedWCharType() const {
5273   // FIXME: derive from "Target" ?
5274   return WCharTy;
5275 }
5276 
5277 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5278 /// Used when in C++, as a GCC extension.
5279 QualType ASTContext::getUnsignedWCharType() const {
5280   // FIXME: derive from "Target" ?
5281   return UnsignedIntTy;
5282 }
5283 
5284 QualType ASTContext::getIntPtrType() const {
5285   return getFromTargetType(Target->getIntPtrType());
5286 }
5287 
5288 QualType ASTContext::getUIntPtrType() const {
5289   return getCorrespondingUnsignedType(getIntPtrType());
5290 }
5291 
5292 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5293 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5294 QualType ASTContext::getPointerDiffType() const {
5295   return getFromTargetType(Target->getPtrDiffType(0));
5296 }
5297 
5298 /// Return the unique unsigned counterpart of "ptrdiff_t"
5299 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5300 /// in the definition of %tu format specifier.
5301 QualType ASTContext::getUnsignedPointerDiffType() const {
5302   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5303 }
5304 
5305 /// Return the unique type for "pid_t" defined in
5306 /// <sys/types.h>. We need this to compute the correct type for vfork().
5307 QualType ASTContext::getProcessIDType() const {
5308   return getFromTargetType(Target->getProcessIDType());
5309 }
5310 
5311 //===----------------------------------------------------------------------===//
5312 //                              Type Operators
5313 //===----------------------------------------------------------------------===//
5314 
5315 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5316   // Push qualifiers into arrays, and then discard any remaining
5317   // qualifiers.
5318   T = getCanonicalType(T);
5319   T = getVariableArrayDecayedType(T);
5320   const Type *Ty = T.getTypePtr();
5321   QualType Result;
5322   if (isa<ArrayType>(Ty)) {
5323     Result = getArrayDecayedType(QualType(Ty,0));
5324   } else if (isa<FunctionType>(Ty)) {
5325     Result = getPointerType(QualType(Ty, 0));
5326   } else {
5327     Result = QualType(Ty, 0);
5328   }
5329 
5330   return CanQualType::CreateUnsafe(Result);
5331 }
5332 
5333 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5334                                              Qualifiers &quals) {
5335   SplitQualType splitType = type.getSplitUnqualifiedType();
5336 
5337   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5338   // the unqualified desugared type and then drops it on the floor.
5339   // We then have to strip that sugar back off with
5340   // getUnqualifiedDesugaredType(), which is silly.
5341   const auto *AT =
5342       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5343 
5344   // If we don't have an array, just use the results in splitType.
5345   if (!AT) {
5346     quals = splitType.Quals;
5347     return QualType(splitType.Ty, 0);
5348   }
5349 
5350   // Otherwise, recurse on the array's element type.
5351   QualType elementType = AT->getElementType();
5352   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5353 
5354   // If that didn't change the element type, AT has no qualifiers, so we
5355   // can just use the results in splitType.
5356   if (elementType == unqualElementType) {
5357     assert(quals.empty()); // from the recursive call
5358     quals = splitType.Quals;
5359     return QualType(splitType.Ty, 0);
5360   }
5361 
5362   // Otherwise, add in the qualifiers from the outermost type, then
5363   // build the type back up.
5364   quals.addConsistentQualifiers(splitType.Quals);
5365 
5366   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5367     return getConstantArrayType(unqualElementType, CAT->getSize(),
5368                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5369   }
5370 
5371   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5372     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5373   }
5374 
5375   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5376     return getVariableArrayType(unqualElementType,
5377                                 VAT->getSizeExpr(),
5378                                 VAT->getSizeModifier(),
5379                                 VAT->getIndexTypeCVRQualifiers(),
5380                                 VAT->getBracketsRange());
5381   }
5382 
5383   const auto *DSAT = cast<DependentSizedArrayType>(AT);
5384   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5385                                     DSAT->getSizeModifier(), 0,
5386                                     SourceRange());
5387 }
5388 
5389 /// Attempt to unwrap two types that may both be array types with the same bound
5390 /// (or both be array types of unknown bound) for the purpose of comparing the
5391 /// cv-decomposition of two types per C++ [conv.qual].
5392 bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
5393   bool UnwrappedAny = false;
5394   while (true) {
5395     auto *AT1 = getAsArrayType(T1);
5396     if (!AT1) return UnwrappedAny;
5397 
5398     auto *AT2 = getAsArrayType(T2);
5399     if (!AT2) return UnwrappedAny;
5400 
5401     // If we don't have two array types with the same constant bound nor two
5402     // incomplete array types, we've unwrapped everything we can.
5403     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5404       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5405       if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5406         return UnwrappedAny;
5407     } else if (!isa<IncompleteArrayType>(AT1) ||
5408                !isa<IncompleteArrayType>(AT2)) {
5409       return UnwrappedAny;
5410     }
5411 
5412     T1 = AT1->getElementType();
5413     T2 = AT2->getElementType();
5414     UnwrappedAny = true;
5415   }
5416 }
5417 
5418 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5419 ///
5420 /// If T1 and T2 are both pointer types of the same kind, or both array types
5421 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5422 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5423 ///
5424 /// This function will typically be called in a loop that successively
5425 /// "unwraps" pointer and pointer-to-member types to compare them at each
5426 /// level.
5427 ///
5428 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5429 /// pair of types that can't be unwrapped further.
5430 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
5431   UnwrapSimilarArrayTypes(T1, T2);
5432 
5433   const auto *T1PtrType = T1->getAs<PointerType>();
5434   const auto *T2PtrType = T2->getAs<PointerType>();
5435   if (T1PtrType && T2PtrType) {
5436     T1 = T1PtrType->getPointeeType();
5437     T2 = T2PtrType->getPointeeType();
5438     return true;
5439   }
5440 
5441   const auto *T1MPType = T1->getAs<MemberPointerType>();
5442   const auto *T2MPType = T2->getAs<MemberPointerType>();
5443   if (T1MPType && T2MPType &&
5444       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5445                              QualType(T2MPType->getClass(), 0))) {
5446     T1 = T1MPType->getPointeeType();
5447     T2 = T2MPType->getPointeeType();
5448     return true;
5449   }
5450 
5451   if (getLangOpts().ObjC) {
5452     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5453     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5454     if (T1OPType && T2OPType) {
5455       T1 = T1OPType->getPointeeType();
5456       T2 = T2OPType->getPointeeType();
5457       return true;
5458     }
5459   }
5460 
5461   // FIXME: Block pointers, too?
5462 
5463   return false;
5464 }
5465 
5466 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5467   while (true) {
5468     Qualifiers Quals;
5469     T1 = getUnqualifiedArrayType(T1, Quals);
5470     T2 = getUnqualifiedArrayType(T2, Quals);
5471     if (hasSameType(T1, T2))
5472       return true;
5473     if (!UnwrapSimilarTypes(T1, T2))
5474       return false;
5475   }
5476 }
5477 
5478 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5479   while (true) {
5480     Qualifiers Quals1, Quals2;
5481     T1 = getUnqualifiedArrayType(T1, Quals1);
5482     T2 = getUnqualifiedArrayType(T2, Quals2);
5483 
5484     Quals1.removeCVRQualifiers();
5485     Quals2.removeCVRQualifiers();
5486     if (Quals1 != Quals2)
5487       return false;
5488 
5489     if (hasSameType(T1, T2))
5490       return true;
5491 
5492     if (!UnwrapSimilarTypes(T1, T2))
5493       return false;
5494   }
5495 }
5496 
5497 DeclarationNameInfo
5498 ASTContext::getNameForTemplate(TemplateName Name,
5499                                SourceLocation NameLoc) const {
5500   switch (Name.getKind()) {
5501   case TemplateName::QualifiedTemplate:
5502   case TemplateName::Template:
5503     // DNInfo work in progress: CHECKME: what about DNLoc?
5504     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5505                                NameLoc);
5506 
5507   case TemplateName::OverloadedTemplate: {
5508     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5509     // DNInfo work in progress: CHECKME: what about DNLoc?
5510     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5511   }
5512 
5513   case TemplateName::AssumedTemplate: {
5514     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
5515     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
5516   }
5517 
5518   case TemplateName::DependentTemplate: {
5519     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5520     DeclarationName DName;
5521     if (DTN->isIdentifier()) {
5522       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5523       return DeclarationNameInfo(DName, NameLoc);
5524     } else {
5525       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5526       // DNInfo work in progress: FIXME: source locations?
5527       DeclarationNameLoc DNLoc;
5528       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
5529       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
5530       return DeclarationNameInfo(DName, NameLoc, DNLoc);
5531     }
5532   }
5533 
5534   case TemplateName::SubstTemplateTemplateParm: {
5535     SubstTemplateTemplateParmStorage *subst
5536       = Name.getAsSubstTemplateTemplateParm();
5537     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5538                                NameLoc);
5539   }
5540 
5541   case TemplateName::SubstTemplateTemplateParmPack: {
5542     SubstTemplateTemplateParmPackStorage *subst
5543       = Name.getAsSubstTemplateTemplateParmPack();
5544     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
5545                                NameLoc);
5546   }
5547   }
5548 
5549   llvm_unreachable("bad template name kind!");
5550 }
5551 
5552 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
5553   switch (Name.getKind()) {
5554   case TemplateName::QualifiedTemplate:
5555   case TemplateName::Template: {
5556     TemplateDecl *Template = Name.getAsTemplateDecl();
5557     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
5558       Template = getCanonicalTemplateTemplateParmDecl(TTP);
5559 
5560     // The canonical template name is the canonical template declaration.
5561     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5562   }
5563 
5564   case TemplateName::OverloadedTemplate:
5565   case TemplateName::AssumedTemplate:
5566     llvm_unreachable("cannot canonicalize unresolved template");
5567 
5568   case TemplateName::DependentTemplate: {
5569     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5570     assert(DTN && "Non-dependent template names must refer to template decls.");
5571     return DTN->CanonicalTemplateName;
5572   }
5573 
5574   case TemplateName::SubstTemplateTemplateParm: {
5575     SubstTemplateTemplateParmStorage *subst
5576       = Name.getAsSubstTemplateTemplateParm();
5577     return getCanonicalTemplateName(subst->getReplacement());
5578   }
5579 
5580   case TemplateName::SubstTemplateTemplateParmPack: {
5581     SubstTemplateTemplateParmPackStorage *subst
5582                                   = Name.getAsSubstTemplateTemplateParmPack();
5583     TemplateTemplateParmDecl *canonParameter
5584       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5585     TemplateArgument canonArgPack
5586       = getCanonicalTemplateArgument(subst->getArgumentPack());
5587     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5588   }
5589   }
5590 
5591   llvm_unreachable("bad template name!");
5592 }
5593 
5594 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
5595   X = getCanonicalTemplateName(X);
5596   Y = getCanonicalTemplateName(Y);
5597   return X.getAsVoidPointer() == Y.getAsVoidPointer();
5598 }
5599 
5600 TemplateArgument
5601 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
5602   switch (Arg.getKind()) {
5603     case TemplateArgument::Null:
5604       return Arg;
5605 
5606     case TemplateArgument::Expression:
5607       return Arg;
5608 
5609     case TemplateArgument::Declaration: {
5610       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5611       return TemplateArgument(D, Arg.getParamTypeForDecl());
5612     }
5613 
5614     case TemplateArgument::NullPtr:
5615       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
5616                               /*isNullPtr*/true);
5617 
5618     case TemplateArgument::Template:
5619       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
5620 
5621     case TemplateArgument::TemplateExpansion:
5622       return TemplateArgument(getCanonicalTemplateName(
5623                                          Arg.getAsTemplateOrTemplatePattern()),
5624                               Arg.getNumTemplateExpansions());
5625 
5626     case TemplateArgument::Integral:
5627       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
5628 
5629     case TemplateArgument::Type:
5630       return TemplateArgument(getCanonicalType(Arg.getAsType()));
5631 
5632     case TemplateArgument::Pack: {
5633       if (Arg.pack_size() == 0)
5634         return Arg;
5635 
5636       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
5637       unsigned Idx = 0;
5638       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
5639                                         AEnd = Arg.pack_end();
5640            A != AEnd; (void)++A, ++Idx)
5641         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
5642 
5643       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
5644     }
5645   }
5646 
5647   // Silence GCC warning
5648   llvm_unreachable("Unhandled template argument kind");
5649 }
5650 
5651 NestedNameSpecifier *
5652 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
5653   if (!NNS)
5654     return nullptr;
5655 
5656   switch (NNS->getKind()) {
5657   case NestedNameSpecifier::Identifier:
5658     // Canonicalize the prefix but keep the identifier the same.
5659     return NestedNameSpecifier::Create(*this,
5660                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
5661                                        NNS->getAsIdentifier());
5662 
5663   case NestedNameSpecifier::Namespace:
5664     // A namespace is canonical; build a nested-name-specifier with
5665     // this namespace and no prefix.
5666     return NestedNameSpecifier::Create(*this, nullptr,
5667                                  NNS->getAsNamespace()->getOriginalNamespace());
5668 
5669   case NestedNameSpecifier::NamespaceAlias:
5670     // A namespace is canonical; build a nested-name-specifier with
5671     // this namespace and no prefix.
5672     return NestedNameSpecifier::Create(*this, nullptr,
5673                                     NNS->getAsNamespaceAlias()->getNamespace()
5674                                                       ->getOriginalNamespace());
5675 
5676   case NestedNameSpecifier::TypeSpec:
5677   case NestedNameSpecifier::TypeSpecWithTemplate: {
5678     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
5679 
5680     // If we have some kind of dependent-named type (e.g., "typename T::type"),
5681     // break it apart into its prefix and identifier, then reconsititute those
5682     // as the canonical nested-name-specifier. This is required to canonicalize
5683     // a dependent nested-name-specifier involving typedefs of dependent-name
5684     // types, e.g.,
5685     //   typedef typename T::type T1;
5686     //   typedef typename T1::type T2;
5687     if (const auto *DNT = T->getAs<DependentNameType>())
5688       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
5689                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
5690 
5691     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
5692     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
5693     // first place?
5694     return NestedNameSpecifier::Create(*this, nullptr, false,
5695                                        const_cast<Type *>(T.getTypePtr()));
5696   }
5697 
5698   case NestedNameSpecifier::Global:
5699   case NestedNameSpecifier::Super:
5700     // The global specifier and __super specifer are canonical and unique.
5701     return NNS;
5702   }
5703 
5704   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
5705 }
5706 
5707 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
5708   // Handle the non-qualified case efficiently.
5709   if (!T.hasLocalQualifiers()) {
5710     // Handle the common positive case fast.
5711     if (const auto *AT = dyn_cast<ArrayType>(T))
5712       return AT;
5713   }
5714 
5715   // Handle the common negative case fast.
5716   if (!isa<ArrayType>(T.getCanonicalType()))
5717     return nullptr;
5718 
5719   // Apply any qualifiers from the array type to the element type.  This
5720   // implements C99 6.7.3p8: "If the specification of an array type includes
5721   // any type qualifiers, the element type is so qualified, not the array type."
5722 
5723   // If we get here, we either have type qualifiers on the type, or we have
5724   // sugar such as a typedef in the way.  If we have type qualifiers on the type
5725   // we must propagate them down into the element type.
5726 
5727   SplitQualType split = T.getSplitDesugaredType();
5728   Qualifiers qs = split.Quals;
5729 
5730   // If we have a simple case, just return now.
5731   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
5732   if (!ATy || qs.empty())
5733     return ATy;
5734 
5735   // Otherwise, we have an array and we have qualifiers on it.  Push the
5736   // qualifiers into the array element type and return a new array type.
5737   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
5738 
5739   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
5740     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
5741                                                 CAT->getSizeExpr(),
5742                                                 CAT->getSizeModifier(),
5743                                            CAT->getIndexTypeCVRQualifiers()));
5744   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
5745     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
5746                                                   IAT->getSizeModifier(),
5747                                            IAT->getIndexTypeCVRQualifiers()));
5748 
5749   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
5750     return cast<ArrayType>(
5751                      getDependentSizedArrayType(NewEltTy,
5752                                                 DSAT->getSizeExpr(),
5753                                                 DSAT->getSizeModifier(),
5754                                               DSAT->getIndexTypeCVRQualifiers(),
5755                                                 DSAT->getBracketsRange()));
5756 
5757   const auto *VAT = cast<VariableArrayType>(ATy);
5758   return cast<ArrayType>(getVariableArrayType(NewEltTy,
5759                                               VAT->getSizeExpr(),
5760                                               VAT->getSizeModifier(),
5761                                               VAT->getIndexTypeCVRQualifiers(),
5762                                               VAT->getBracketsRange()));
5763 }
5764 
5765 QualType ASTContext::getAdjustedParameterType(QualType T) const {
5766   if (T->isArrayType() || T->isFunctionType())
5767     return getDecayedType(T);
5768   return T;
5769 }
5770 
5771 QualType ASTContext::getSignatureParameterType(QualType T) const {
5772   T = getVariableArrayDecayedType(T);
5773   T = getAdjustedParameterType(T);
5774   return T.getUnqualifiedType();
5775 }
5776 
5777 QualType ASTContext::getExceptionObjectType(QualType T) const {
5778   // C++ [except.throw]p3:
5779   //   A throw-expression initializes a temporary object, called the exception
5780   //   object, the type of which is determined by removing any top-level
5781   //   cv-qualifiers from the static type of the operand of throw and adjusting
5782   //   the type from "array of T" or "function returning T" to "pointer to T"
5783   //   or "pointer to function returning T", [...]
5784   T = getVariableArrayDecayedType(T);
5785   if (T->isArrayType() || T->isFunctionType())
5786     T = getDecayedType(T);
5787   return T.getUnqualifiedType();
5788 }
5789 
5790 /// getArrayDecayedType - Return the properly qualified result of decaying the
5791 /// specified array type to a pointer.  This operation is non-trivial when
5792 /// handling typedefs etc.  The canonical type of "T" must be an array type,
5793 /// this returns a pointer to a properly qualified element of the array.
5794 ///
5795 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
5796 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
5797   // Get the element type with 'getAsArrayType' so that we don't lose any
5798   // typedefs in the element type of the array.  This also handles propagation
5799   // of type qualifiers from the array type into the element type if present
5800   // (C99 6.7.3p8).
5801   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
5802   assert(PrettyArrayType && "Not an array type!");
5803 
5804   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
5805 
5806   // int x[restrict 4] ->  int *restrict
5807   QualType Result = getQualifiedType(PtrTy,
5808                                      PrettyArrayType->getIndexTypeQualifiers());
5809 
5810   // int x[_Nullable] -> int * _Nullable
5811   if (auto Nullability = Ty->getNullability(*this)) {
5812     Result = const_cast<ASTContext *>(this)->getAttributedType(
5813         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
5814   }
5815   return Result;
5816 }
5817 
5818 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
5819   return getBaseElementType(array->getElementType());
5820 }
5821 
5822 QualType ASTContext::getBaseElementType(QualType type) const {
5823   Qualifiers qs;
5824   while (true) {
5825     SplitQualType split = type.getSplitDesugaredType();
5826     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
5827     if (!array) break;
5828 
5829     type = array->getElementType();
5830     qs.addConsistentQualifiers(split.Quals);
5831   }
5832 
5833   return getQualifiedType(type, qs);
5834 }
5835 
5836 /// getConstantArrayElementCount - Returns number of constant array elements.
5837 uint64_t
5838 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
5839   uint64_t ElementCount = 1;
5840   do {
5841     ElementCount *= CA->getSize().getZExtValue();
5842     CA = dyn_cast_or_null<ConstantArrayType>(
5843       CA->getElementType()->getAsArrayTypeUnsafe());
5844   } while (CA);
5845   return ElementCount;
5846 }
5847 
5848 /// getFloatingRank - Return a relative rank for floating point types.
5849 /// This routine will assert if passed a built-in type that isn't a float.
5850 static FloatingRank getFloatingRank(QualType T) {
5851   if (const auto *CT = T->getAs<ComplexType>())
5852     return getFloatingRank(CT->getElementType());
5853 
5854   switch (T->castAs<BuiltinType>()->getKind()) {
5855   default: llvm_unreachable("getFloatingRank(): not a floating type");
5856   case BuiltinType::Float16:    return Float16Rank;
5857   case BuiltinType::Half:       return HalfRank;
5858   case BuiltinType::Float:      return FloatRank;
5859   case BuiltinType::Double:     return DoubleRank;
5860   case BuiltinType::LongDouble: return LongDoubleRank;
5861   case BuiltinType::Float128:   return Float128Rank;
5862   }
5863 }
5864 
5865 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
5866 /// point or a complex type (based on typeDomain/typeSize).
5867 /// 'typeDomain' is a real floating point or complex type.
5868 /// 'typeSize' is a real floating point or complex type.
5869 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
5870                                                        QualType Domain) const {
5871   FloatingRank EltRank = getFloatingRank(Size);
5872   if (Domain->isComplexType()) {
5873     switch (EltRank) {
5874     case Float16Rank:
5875     case HalfRank: llvm_unreachable("Complex half is not supported");
5876     case FloatRank:      return FloatComplexTy;
5877     case DoubleRank:     return DoubleComplexTy;
5878     case LongDoubleRank: return LongDoubleComplexTy;
5879     case Float128Rank:   return Float128ComplexTy;
5880     }
5881   }
5882 
5883   assert(Domain->isRealFloatingType() && "Unknown domain!");
5884   switch (EltRank) {
5885   case Float16Rank:    return HalfTy;
5886   case HalfRank:       return HalfTy;
5887   case FloatRank:      return FloatTy;
5888   case DoubleRank:     return DoubleTy;
5889   case LongDoubleRank: return LongDoubleTy;
5890   case Float128Rank:   return Float128Ty;
5891   }
5892   llvm_unreachable("getFloatingRank(): illegal value for rank");
5893 }
5894 
5895 /// getFloatingTypeOrder - Compare the rank of the two specified floating
5896 /// point types, ignoring the domain of the type (i.e. 'double' ==
5897 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
5898 /// LHS < RHS, return -1.
5899 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
5900   FloatingRank LHSR = getFloatingRank(LHS);
5901   FloatingRank RHSR = getFloatingRank(RHS);
5902 
5903   if (LHSR == RHSR)
5904     return 0;
5905   if (LHSR > RHSR)
5906     return 1;
5907   return -1;
5908 }
5909 
5910 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
5911   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
5912     return 0;
5913   return getFloatingTypeOrder(LHS, RHS);
5914 }
5915 
5916 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
5917 /// routine will assert if passed a built-in type that isn't an integer or enum,
5918 /// or if it is not canonicalized.
5919 unsigned ASTContext::getIntegerRank(const Type *T) const {
5920   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
5921 
5922   switch (cast<BuiltinType>(T)->getKind()) {
5923   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
5924   case BuiltinType::Bool:
5925     return 1 + (getIntWidth(BoolTy) << 3);
5926   case BuiltinType::Char_S:
5927   case BuiltinType::Char_U:
5928   case BuiltinType::SChar:
5929   case BuiltinType::UChar:
5930     return 2 + (getIntWidth(CharTy) << 3);
5931   case BuiltinType::Short:
5932   case BuiltinType::UShort:
5933     return 3 + (getIntWidth(ShortTy) << 3);
5934   case BuiltinType::Int:
5935   case BuiltinType::UInt:
5936     return 4 + (getIntWidth(IntTy) << 3);
5937   case BuiltinType::Long:
5938   case BuiltinType::ULong:
5939     return 5 + (getIntWidth(LongTy) << 3);
5940   case BuiltinType::LongLong:
5941   case BuiltinType::ULongLong:
5942     return 6 + (getIntWidth(LongLongTy) << 3);
5943   case BuiltinType::Int128:
5944   case BuiltinType::UInt128:
5945     return 7 + (getIntWidth(Int128Ty) << 3);
5946   }
5947 }
5948 
5949 /// Whether this is a promotable bitfield reference according
5950 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
5951 ///
5952 /// \returns the type this bit-field will promote to, or NULL if no
5953 /// promotion occurs.
5954 QualType ASTContext::isPromotableBitField(Expr *E) const {
5955   if (E->isTypeDependent() || E->isValueDependent())
5956     return {};
5957 
5958   // C++ [conv.prom]p5:
5959   //    If the bit-field has an enumerated type, it is treated as any other
5960   //    value of that type for promotion purposes.
5961   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
5962     return {};
5963 
5964   // FIXME: We should not do this unless E->refersToBitField() is true. This
5965   // matters in C where getSourceBitField() will find bit-fields for various
5966   // cases where the source expression is not a bit-field designator.
5967 
5968   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
5969   if (!Field)
5970     return {};
5971 
5972   QualType FT = Field->getType();
5973 
5974   uint64_t BitWidth = Field->getBitWidthValue(*this);
5975   uint64_t IntSize = getTypeSize(IntTy);
5976   // C++ [conv.prom]p5:
5977   //   A prvalue for an integral bit-field can be converted to a prvalue of type
5978   //   int if int can represent all the values of the bit-field; otherwise, it
5979   //   can be converted to unsigned int if unsigned int can represent all the
5980   //   values of the bit-field. If the bit-field is larger yet, no integral
5981   //   promotion applies to it.
5982   // C11 6.3.1.1/2:
5983   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
5984   //   If an int can represent all values of the original type (as restricted by
5985   //   the width, for a bit-field), the value is converted to an int; otherwise,
5986   //   it is converted to an unsigned int.
5987   //
5988   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
5989   //        We perform that promotion here to match GCC and C++.
5990   // FIXME: C does not permit promotion of an enum bit-field whose rank is
5991   //        greater than that of 'int'. We perform that promotion to match GCC.
5992   if (BitWidth < IntSize)
5993     return IntTy;
5994 
5995   if (BitWidth == IntSize)
5996     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
5997 
5998   // Bit-fields wider than int are not subject to promotions, and therefore act
5999   // like the base type. GCC has some weird bugs in this area that we
6000   // deliberately do not follow (GCC follows a pre-standard resolution to
6001   // C's DR315 which treats bit-width as being part of the type, and this leaks
6002   // into their semantics in some cases).
6003   return {};
6004 }
6005 
6006 /// getPromotedIntegerType - Returns the type that Promotable will
6007 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6008 /// integer type.
6009 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6010   assert(!Promotable.isNull());
6011   assert(Promotable->isPromotableIntegerType());
6012   if (const auto *ET = Promotable->getAs<EnumType>())
6013     return ET->getDecl()->getPromotionType();
6014 
6015   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6016     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6017     // (3.9.1) can be converted to a prvalue of the first of the following
6018     // types that can represent all the values of its underlying type:
6019     // int, unsigned int, long int, unsigned long int, long long int, or
6020     // unsigned long long int [...]
6021     // FIXME: Is there some better way to compute this?
6022     if (BT->getKind() == BuiltinType::WChar_S ||
6023         BT->getKind() == BuiltinType::WChar_U ||
6024         BT->getKind() == BuiltinType::Char8 ||
6025         BT->getKind() == BuiltinType::Char16 ||
6026         BT->getKind() == BuiltinType::Char32) {
6027       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6028       uint64_t FromSize = getTypeSize(BT);
6029       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6030                                   LongLongTy, UnsignedLongLongTy };
6031       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6032         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6033         if (FromSize < ToSize ||
6034             (FromSize == ToSize &&
6035              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6036           return PromoteTypes[Idx];
6037       }
6038       llvm_unreachable("char type should fit into long long");
6039     }
6040   }
6041 
6042   // At this point, we should have a signed or unsigned integer type.
6043   if (Promotable->isSignedIntegerType())
6044     return IntTy;
6045   uint64_t PromotableSize = getIntWidth(Promotable);
6046   uint64_t IntSize = getIntWidth(IntTy);
6047   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6048   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6049 }
6050 
6051 /// Recurses in pointer/array types until it finds an objc retainable
6052 /// type and returns its ownership.
6053 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6054   while (!T.isNull()) {
6055     if (T.getObjCLifetime() != Qualifiers::OCL_None)
6056       return T.getObjCLifetime();
6057     if (T->isArrayType())
6058       T = getBaseElementType(T);
6059     else if (const auto *PT = T->getAs<PointerType>())
6060       T = PT->getPointeeType();
6061     else if (const auto *RT = T->getAs<ReferenceType>())
6062       T = RT->getPointeeType();
6063     else
6064       break;
6065   }
6066 
6067   return Qualifiers::OCL_None;
6068 }
6069 
6070 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
6071   // Incomplete enum types are not treated as integer types.
6072   // FIXME: In C++, enum types are never integer types.
6073   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
6074     return ET->getDecl()->getIntegerType().getTypePtr();
6075   return nullptr;
6076 }
6077 
6078 /// getIntegerTypeOrder - Returns the highest ranked integer type:
6079 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6080 /// LHS < RHS, return -1.
6081 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
6082   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
6083   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
6084 
6085   // Unwrap enums to their underlying type.
6086   if (const auto *ET = dyn_cast<EnumType>(LHSC))
6087     LHSC = getIntegerTypeForEnum(ET);
6088   if (const auto *ET = dyn_cast<EnumType>(RHSC))
6089     RHSC = getIntegerTypeForEnum(ET);
6090 
6091   if (LHSC == RHSC) return 0;
6092 
6093   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
6094   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
6095 
6096   unsigned LHSRank = getIntegerRank(LHSC);
6097   unsigned RHSRank = getIntegerRank(RHSC);
6098 
6099   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
6100     if (LHSRank == RHSRank) return 0;
6101     return LHSRank > RHSRank ? 1 : -1;
6102   }
6103 
6104   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
6105   if (LHSUnsigned) {
6106     // If the unsigned [LHS] type is larger, return it.
6107     if (LHSRank >= RHSRank)
6108       return 1;
6109 
6110     // If the signed type can represent all values of the unsigned type, it
6111     // wins.  Because we are dealing with 2's complement and types that are
6112     // powers of two larger than each other, this is always safe.
6113     return -1;
6114   }
6115 
6116   // If the unsigned [RHS] type is larger, return it.
6117   if (RHSRank >= LHSRank)
6118     return -1;
6119 
6120   // If the signed type can represent all values of the unsigned type, it
6121   // wins.  Because we are dealing with 2's complement and types that are
6122   // powers of two larger than each other, this is always safe.
6123   return 1;
6124 }
6125 
6126 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
6127   if (CFConstantStringTypeDecl)
6128     return CFConstantStringTypeDecl;
6129 
6130   assert(!CFConstantStringTagDecl &&
6131          "tag and typedef should be initialized together");
6132   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
6133   CFConstantStringTagDecl->startDefinition();
6134 
6135   struct {
6136     QualType Type;
6137     const char *Name;
6138   } Fields[5];
6139   unsigned Count = 0;
6140 
6141   /// Objective-C ABI
6142   ///
6143   ///    typedef struct __NSConstantString_tag {
6144   ///      const int *isa;
6145   ///      int flags;
6146   ///      const char *str;
6147   ///      long length;
6148   ///    } __NSConstantString;
6149   ///
6150   /// Swift ABI (4.1, 4.2)
6151   ///
6152   ///    typedef struct __NSConstantString_tag {
6153   ///      uintptr_t _cfisa;
6154   ///      uintptr_t _swift_rc;
6155   ///      _Atomic(uint64_t) _cfinfoa;
6156   ///      const char *_ptr;
6157   ///      uint32_t _length;
6158   ///    } __NSConstantString;
6159   ///
6160   /// Swift ABI (5.0)
6161   ///
6162   ///    typedef struct __NSConstantString_tag {
6163   ///      uintptr_t _cfisa;
6164   ///      uintptr_t _swift_rc;
6165   ///      _Atomic(uint64_t) _cfinfoa;
6166   ///      const char *_ptr;
6167   ///      uintptr_t _length;
6168   ///    } __NSConstantString;
6169 
6170   const auto CFRuntime = getLangOpts().CFRuntime;
6171   if (static_cast<unsigned>(CFRuntime) <
6172       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
6173     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
6174     Fields[Count++] = { IntTy, "flags" };
6175     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
6176     Fields[Count++] = { LongTy, "length" };
6177   } else {
6178     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
6179     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
6180     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
6181     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
6182     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6183         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6184       Fields[Count++] = { IntTy, "_ptr" };
6185     else
6186       Fields[Count++] = { getUIntPtrType(), "_ptr" };
6187   }
6188 
6189   // Create fields
6190   for (unsigned i = 0; i < Count; ++i) {
6191     FieldDecl *Field =
6192         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
6193                           SourceLocation(), &Idents.get(Fields[i].Name),
6194                           Fields[i].Type, /*TInfo=*/nullptr,
6195                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6196     Field->setAccess(AS_public);
6197     CFConstantStringTagDecl->addDecl(Field);
6198   }
6199 
6200   CFConstantStringTagDecl->completeDefinition();
6201   // This type is designed to be compatible with NSConstantString, but cannot
6202   // use the same name, since NSConstantString is an interface.
6203   auto tagType = getTagDeclType(CFConstantStringTagDecl);
6204   CFConstantStringTypeDecl =
6205       buildImplicitTypedef(tagType, "__NSConstantString");
6206 
6207   return CFConstantStringTypeDecl;
6208 }
6209 
6210 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
6211   if (!CFConstantStringTagDecl)
6212     getCFConstantStringDecl(); // Build the tag and the typedef.
6213   return CFConstantStringTagDecl;
6214 }
6215 
6216 // getCFConstantStringType - Return the type used for constant CFStrings.
6217 QualType ASTContext::getCFConstantStringType() const {
6218   return getTypedefType(getCFConstantStringDecl());
6219 }
6220 
6221 QualType ASTContext::getObjCSuperType() const {
6222   if (ObjCSuperType.isNull()) {
6223     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
6224     TUDecl->addDecl(ObjCSuperTypeDecl);
6225     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
6226   }
6227   return ObjCSuperType;
6228 }
6229 
6230 void ASTContext::setCFConstantStringType(QualType T) {
6231   const auto *TD = T->castAs<TypedefType>();
6232   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
6233   const auto *TagType =
6234       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
6235   CFConstantStringTagDecl = TagType->getDecl();
6236 }
6237 
6238 QualType ASTContext::getBlockDescriptorType() const {
6239   if (BlockDescriptorType)
6240     return getTagDeclType(BlockDescriptorType);
6241 
6242   RecordDecl *RD;
6243   // FIXME: Needs the FlagAppleBlock bit.
6244   RD = buildImplicitRecord("__block_descriptor");
6245   RD->startDefinition();
6246 
6247   QualType FieldTypes[] = {
6248     UnsignedLongTy,
6249     UnsignedLongTy,
6250   };
6251 
6252   static const char *const FieldNames[] = {
6253     "reserved",
6254     "Size"
6255   };
6256 
6257   for (size_t i = 0; i < 2; ++i) {
6258     FieldDecl *Field = FieldDecl::Create(
6259         *this, RD, SourceLocation(), SourceLocation(),
6260         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6261         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6262     Field->setAccess(AS_public);
6263     RD->addDecl(Field);
6264   }
6265 
6266   RD->completeDefinition();
6267 
6268   BlockDescriptorType = RD;
6269 
6270   return getTagDeclType(BlockDescriptorType);
6271 }
6272 
6273 QualType ASTContext::getBlockDescriptorExtendedType() const {
6274   if (BlockDescriptorExtendedType)
6275     return getTagDeclType(BlockDescriptorExtendedType);
6276 
6277   RecordDecl *RD;
6278   // FIXME: Needs the FlagAppleBlock bit.
6279   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
6280   RD->startDefinition();
6281 
6282   QualType FieldTypes[] = {
6283     UnsignedLongTy,
6284     UnsignedLongTy,
6285     getPointerType(VoidPtrTy),
6286     getPointerType(VoidPtrTy)
6287   };
6288 
6289   static const char *const FieldNames[] = {
6290     "reserved",
6291     "Size",
6292     "CopyFuncPtr",
6293     "DestroyFuncPtr"
6294   };
6295 
6296   for (size_t i = 0; i < 4; ++i) {
6297     FieldDecl *Field = FieldDecl::Create(
6298         *this, RD, SourceLocation(), SourceLocation(),
6299         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6300         /*BitWidth=*/nullptr,
6301         /*Mutable=*/false, ICIS_NoInit);
6302     Field->setAccess(AS_public);
6303     RD->addDecl(Field);
6304   }
6305 
6306   RD->completeDefinition();
6307 
6308   BlockDescriptorExtendedType = RD;
6309   return getTagDeclType(BlockDescriptorExtendedType);
6310 }
6311 
6312 TargetInfo::OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6313   const auto *BT = dyn_cast<BuiltinType>(T);
6314 
6315   if (!BT) {
6316     if (isa<PipeType>(T))
6317       return TargetInfo::OCLTK_Pipe;
6318 
6319     return TargetInfo::OCLTK_Default;
6320   }
6321 
6322   switch (BT->getKind()) {
6323 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
6324   case BuiltinType::Id:                                                        \
6325     return TargetInfo::OCLTK_Image;
6326 #include "clang/Basic/OpenCLImageTypes.def"
6327 
6328   case BuiltinType::OCLClkEvent:
6329     return TargetInfo::OCLTK_ClkEvent;
6330 
6331   case BuiltinType::OCLEvent:
6332     return TargetInfo::OCLTK_Event;
6333 
6334   case BuiltinType::OCLQueue:
6335     return TargetInfo::OCLTK_Queue;
6336 
6337   case BuiltinType::OCLReserveID:
6338     return TargetInfo::OCLTK_ReserveID;
6339 
6340   case BuiltinType::OCLSampler:
6341     return TargetInfo::OCLTK_Sampler;
6342 
6343   default:
6344     return TargetInfo::OCLTK_Default;
6345   }
6346 }
6347 
6348 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6349   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6350 }
6351 
6352 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6353 /// requires copy/dispose. Note that this must match the logic
6354 /// in buildByrefHelpers.
6355 bool ASTContext::BlockRequiresCopying(QualType Ty,
6356                                       const VarDecl *D) {
6357   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6358     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6359     if (!copyExpr && record->hasTrivialDestructor()) return false;
6360 
6361     return true;
6362   }
6363 
6364   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6365   // move or destroy.
6366   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6367     return true;
6368 
6369   if (!Ty->isObjCRetainableType()) return false;
6370 
6371   Qualifiers qs = Ty.getQualifiers();
6372 
6373   // If we have lifetime, that dominates.
6374   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6375     switch (lifetime) {
6376       case Qualifiers::OCL_None: llvm_unreachable("impossible");
6377 
6378       // These are just bits as far as the runtime is concerned.
6379       case Qualifiers::OCL_ExplicitNone:
6380       case Qualifiers::OCL_Autoreleasing:
6381         return false;
6382 
6383       // These cases should have been taken care of when checking the type's
6384       // non-triviality.
6385       case Qualifiers::OCL_Weak:
6386       case Qualifiers::OCL_Strong:
6387         llvm_unreachable("impossible");
6388     }
6389     llvm_unreachable("fell out of lifetime switch!");
6390   }
6391   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6392           Ty->isObjCObjectPointerType());
6393 }
6394 
6395 bool ASTContext::getByrefLifetime(QualType Ty,
6396                               Qualifiers::ObjCLifetime &LifeTime,
6397                               bool &HasByrefExtendedLayout) const {
6398   if (!getLangOpts().ObjC ||
6399       getLangOpts().getGC() != LangOptions::NonGC)
6400     return false;
6401 
6402   HasByrefExtendedLayout = false;
6403   if (Ty->isRecordType()) {
6404     HasByrefExtendedLayout = true;
6405     LifeTime = Qualifiers::OCL_None;
6406   } else if ((LifeTime = Ty.getObjCLifetime())) {
6407     // Honor the ARC qualifiers.
6408   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6409     // The MRR rule.
6410     LifeTime = Qualifiers::OCL_ExplicitNone;
6411   } else {
6412     LifeTime = Qualifiers::OCL_None;
6413   }
6414   return true;
6415 }
6416 
6417 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6418   if (!ObjCInstanceTypeDecl)
6419     ObjCInstanceTypeDecl =
6420         buildImplicitTypedef(getObjCIdType(), "instancetype");
6421   return ObjCInstanceTypeDecl;
6422 }
6423 
6424 // This returns true if a type has been typedefed to BOOL:
6425 // typedef <type> BOOL;
6426 static bool isTypeTypedefedAsBOOL(QualType T) {
6427   if (const auto *TT = dyn_cast<TypedefType>(T))
6428     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6429       return II->isStr("BOOL");
6430 
6431   return false;
6432 }
6433 
6434 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
6435 /// purpose.
6436 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6437   if (!type->isIncompleteArrayType() && type->isIncompleteType())
6438     return CharUnits::Zero();
6439 
6440   CharUnits sz = getTypeSizeInChars(type);
6441 
6442   // Make all integer and enum types at least as large as an int
6443   if (sz.isPositive() && type->isIntegralOrEnumerationType())
6444     sz = std::max(sz, getTypeSizeInChars(IntTy));
6445   // Treat arrays as pointers, since that's how they're passed in.
6446   else if (type->isArrayType())
6447     sz = getTypeSizeInChars(VoidPtrTy);
6448   return sz;
6449 }
6450 
6451 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6452   return getTargetInfo().getCXXABI().isMicrosoft() &&
6453          VD->isStaticDataMember() &&
6454          VD->getType()->isIntegralOrEnumerationType() &&
6455          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6456 }
6457 
6458 ASTContext::InlineVariableDefinitionKind
6459 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6460   if (!VD->isInline())
6461     return InlineVariableDefinitionKind::None;
6462 
6463   // In almost all cases, it's a weak definition.
6464   auto *First = VD->getFirstDecl();
6465   if (First->isInlineSpecified() || !First->isStaticDataMember())
6466     return InlineVariableDefinitionKind::Weak;
6467 
6468   // If there's a file-context declaration in this translation unit, it's a
6469   // non-discardable definition.
6470   for (auto *D : VD->redecls())
6471     if (D->getLexicalDeclContext()->isFileContext() &&
6472         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6473       return InlineVariableDefinitionKind::Strong;
6474 
6475   // If we've not seen one yet, we don't know.
6476   return InlineVariableDefinitionKind::WeakUnknown;
6477 }
6478 
6479 static std::string charUnitsToString(const CharUnits &CU) {
6480   return llvm::itostr(CU.getQuantity());
6481 }
6482 
6483 /// getObjCEncodingForBlock - Return the encoded type for this block
6484 /// declaration.
6485 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6486   std::string S;
6487 
6488   const BlockDecl *Decl = Expr->getBlockDecl();
6489   QualType BlockTy =
6490       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
6491   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
6492   // Encode result type.
6493   if (getLangOpts().EncodeExtendedBlockSig)
6494     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
6495                                       true /*Extended*/);
6496   else
6497     getObjCEncodingForType(BlockReturnTy, S);
6498   // Compute size of all parameters.
6499   // Start with computing size of a pointer in number of bytes.
6500   // FIXME: There might(should) be a better way of doing this computation!
6501   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6502   CharUnits ParmOffset = PtrSize;
6503   for (auto PI : Decl->parameters()) {
6504     QualType PType = PI->getType();
6505     CharUnits sz = getObjCEncodingTypeSize(PType);
6506     if (sz.isZero())
6507       continue;
6508     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
6509     ParmOffset += sz;
6510   }
6511   // Size of the argument frame
6512   S += charUnitsToString(ParmOffset);
6513   // Block pointer and offset.
6514   S += "@?0";
6515 
6516   // Argument types.
6517   ParmOffset = PtrSize;
6518   for (auto PVDecl : Decl->parameters()) {
6519     QualType PType = PVDecl->getOriginalType();
6520     if (const auto *AT =
6521             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6522       // Use array's original type only if it has known number of
6523       // elements.
6524       if (!isa<ConstantArrayType>(AT))
6525         PType = PVDecl->getType();
6526     } else if (PType->isFunctionType())
6527       PType = PVDecl->getType();
6528     if (getLangOpts().EncodeExtendedBlockSig)
6529       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
6530                                       S, true /*Extended*/);
6531     else
6532       getObjCEncodingForType(PType, S);
6533     S += charUnitsToString(ParmOffset);
6534     ParmOffset += getObjCEncodingTypeSize(PType);
6535   }
6536 
6537   return S;
6538 }
6539 
6540 std::string
6541 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
6542   std::string S;
6543   // Encode result type.
6544   getObjCEncodingForType(Decl->getReturnType(), S);
6545   CharUnits ParmOffset;
6546   // Compute size of all parameters.
6547   for (auto PI : Decl->parameters()) {
6548     QualType PType = PI->getType();
6549     CharUnits sz = getObjCEncodingTypeSize(PType);
6550     if (sz.isZero())
6551       continue;
6552 
6553     assert(sz.isPositive() &&
6554            "getObjCEncodingForFunctionDecl - Incomplete param type");
6555     ParmOffset += sz;
6556   }
6557   S += charUnitsToString(ParmOffset);
6558   ParmOffset = CharUnits::Zero();
6559 
6560   // Argument types.
6561   for (auto PVDecl : Decl->parameters()) {
6562     QualType PType = PVDecl->getOriginalType();
6563     if (const auto *AT =
6564             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6565       // Use array's original type only if it has known number of
6566       // elements.
6567       if (!isa<ConstantArrayType>(AT))
6568         PType = PVDecl->getType();
6569     } else if (PType->isFunctionType())
6570       PType = PVDecl->getType();
6571     getObjCEncodingForType(PType, S);
6572     S += charUnitsToString(ParmOffset);
6573     ParmOffset += getObjCEncodingTypeSize(PType);
6574   }
6575 
6576   return S;
6577 }
6578 
6579 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
6580 /// method parameter or return type. If Extended, include class names and
6581 /// block object types.
6582 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
6583                                                    QualType T, std::string& S,
6584                                                    bool Extended) const {
6585   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
6586   getObjCEncodingForTypeQualifier(QT, S);
6587   // Encode parameter type.
6588   ObjCEncOptions Options = ObjCEncOptions()
6589                                .setExpandPointedToStructures()
6590                                .setExpandStructures()
6591                                .setIsOutermostType();
6592   if (Extended)
6593     Options.setEncodeBlockParameters().setEncodeClassNames();
6594   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
6595 }
6596 
6597 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
6598 /// declaration.
6599 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
6600                                                      bool Extended) const {
6601   // FIXME: This is not very efficient.
6602   // Encode return type.
6603   std::string S;
6604   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
6605                                     Decl->getReturnType(), S, Extended);
6606   // Compute size of all parameters.
6607   // Start with computing size of a pointer in number of bytes.
6608   // FIXME: There might(should) be a better way of doing this computation!
6609   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6610   // The first two arguments (self and _cmd) are pointers; account for
6611   // their size.
6612   CharUnits ParmOffset = 2 * PtrSize;
6613   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6614        E = Decl->sel_param_end(); PI != E; ++PI) {
6615     QualType PType = (*PI)->getType();
6616     CharUnits sz = getObjCEncodingTypeSize(PType);
6617     if (sz.isZero())
6618       continue;
6619 
6620     assert(sz.isPositive() &&
6621            "getObjCEncodingForMethodDecl - Incomplete param type");
6622     ParmOffset += sz;
6623   }
6624   S += charUnitsToString(ParmOffset);
6625   S += "@0:";
6626   S += charUnitsToString(PtrSize);
6627 
6628   // Argument types.
6629   ParmOffset = 2 * PtrSize;
6630   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6631        E = Decl->sel_param_end(); PI != E; ++PI) {
6632     const ParmVarDecl *PVDecl = *PI;
6633     QualType PType = PVDecl->getOriginalType();
6634     if (const auto *AT =
6635             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6636       // Use array's original type only if it has known number of
6637       // elements.
6638       if (!isa<ConstantArrayType>(AT))
6639         PType = PVDecl->getType();
6640     } else if (PType->isFunctionType())
6641       PType = PVDecl->getType();
6642     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
6643                                       PType, S, Extended);
6644     S += charUnitsToString(ParmOffset);
6645     ParmOffset += getObjCEncodingTypeSize(PType);
6646   }
6647 
6648   return S;
6649 }
6650 
6651 ObjCPropertyImplDecl *
6652 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
6653                                       const ObjCPropertyDecl *PD,
6654                                       const Decl *Container) const {
6655   if (!Container)
6656     return nullptr;
6657   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
6658     for (auto *PID : CID->property_impls())
6659       if (PID->getPropertyDecl() == PD)
6660         return PID;
6661   } else {
6662     const auto *OID = cast<ObjCImplementationDecl>(Container);
6663     for (auto *PID : OID->property_impls())
6664       if (PID->getPropertyDecl() == PD)
6665         return PID;
6666   }
6667   return nullptr;
6668 }
6669 
6670 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
6671 /// property declaration. If non-NULL, Container must be either an
6672 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
6673 /// NULL when getting encodings for protocol properties.
6674 /// Property attributes are stored as a comma-delimited C string. The simple
6675 /// attributes readonly and bycopy are encoded as single characters. The
6676 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
6677 /// encoded as single characters, followed by an identifier. Property types
6678 /// are also encoded as a parametrized attribute. The characters used to encode
6679 /// these attributes are defined by the following enumeration:
6680 /// @code
6681 /// enum PropertyAttributes {
6682 /// kPropertyReadOnly = 'R',   // property is read-only.
6683 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
6684 /// kPropertyByref = '&',  // property is a reference to the value last assigned
6685 /// kPropertyDynamic = 'D',    // property is dynamic
6686 /// kPropertyGetter = 'G',     // followed by getter selector name
6687 /// kPropertySetter = 'S',     // followed by setter selector name
6688 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
6689 /// kPropertyType = 'T'              // followed by old-style type encoding.
6690 /// kPropertyWeak = 'W'              // 'weak' property
6691 /// kPropertyStrong = 'P'            // property GC'able
6692 /// kPropertyNonAtomic = 'N'         // property non-atomic
6693 /// };
6694 /// @endcode
6695 std::string
6696 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
6697                                            const Decl *Container) const {
6698   // Collect information from the property implementation decl(s).
6699   bool Dynamic = false;
6700   ObjCPropertyImplDecl *SynthesizePID = nullptr;
6701 
6702   if (ObjCPropertyImplDecl *PropertyImpDecl =
6703       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
6704     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
6705       Dynamic = true;
6706     else
6707       SynthesizePID = PropertyImpDecl;
6708   }
6709 
6710   // FIXME: This is not very efficient.
6711   std::string S = "T";
6712 
6713   // Encode result type.
6714   // GCC has some special rules regarding encoding of properties which
6715   // closely resembles encoding of ivars.
6716   getObjCEncodingForPropertyType(PD->getType(), S);
6717 
6718   if (PD->isReadOnly()) {
6719     S += ",R";
6720     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
6721       S += ",C";
6722     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
6723       S += ",&";
6724     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
6725       S += ",W";
6726   } else {
6727     switch (PD->getSetterKind()) {
6728     case ObjCPropertyDecl::Assign: break;
6729     case ObjCPropertyDecl::Copy:   S += ",C"; break;
6730     case ObjCPropertyDecl::Retain: S += ",&"; break;
6731     case ObjCPropertyDecl::Weak:   S += ",W"; break;
6732     }
6733   }
6734 
6735   // It really isn't clear at all what this means, since properties
6736   // are "dynamic by default".
6737   if (Dynamic)
6738     S += ",D";
6739 
6740   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
6741     S += ",N";
6742 
6743   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
6744     S += ",G";
6745     S += PD->getGetterName().getAsString();
6746   }
6747 
6748   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
6749     S += ",S";
6750     S += PD->getSetterName().getAsString();
6751   }
6752 
6753   if (SynthesizePID) {
6754     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
6755     S += ",V";
6756     S += OID->getNameAsString();
6757   }
6758 
6759   // FIXME: OBJCGC: weak & strong
6760   return S;
6761 }
6762 
6763 /// getLegacyIntegralTypeEncoding -
6764 /// Another legacy compatibility encoding: 32-bit longs are encoded as
6765 /// 'l' or 'L' , but not always.  For typedefs, we need to use
6766 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
6767 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
6768   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
6769     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
6770       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
6771         PointeeTy = UnsignedIntTy;
6772       else
6773         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
6774           PointeeTy = IntTy;
6775     }
6776   }
6777 }
6778 
6779 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
6780                                         const FieldDecl *Field,
6781                                         QualType *NotEncodedT) const {
6782   // We follow the behavior of gcc, expanding structures which are
6783   // directly pointed to, and expanding embedded structures. Note that
6784   // these rules are sufficient to prevent recursive encoding of the
6785   // same type.
6786   getObjCEncodingForTypeImpl(T, S,
6787                              ObjCEncOptions()
6788                                  .setExpandPointedToStructures()
6789                                  .setExpandStructures()
6790                                  .setIsOutermostType(),
6791                              Field, NotEncodedT);
6792 }
6793 
6794 void ASTContext::getObjCEncodingForPropertyType(QualType T,
6795                                                 std::string& S) const {
6796   // Encode result type.
6797   // GCC has some special rules regarding encoding of properties which
6798   // closely resembles encoding of ivars.
6799   getObjCEncodingForTypeImpl(T, S,
6800                              ObjCEncOptions()
6801                                  .setExpandPointedToStructures()
6802                                  .setExpandStructures()
6803                                  .setIsOutermostType()
6804                                  .setEncodingProperty(),
6805                              /*Field=*/nullptr);
6806 }
6807 
6808 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
6809                                             const BuiltinType *BT) {
6810     BuiltinType::Kind kind = BT->getKind();
6811     switch (kind) {
6812     case BuiltinType::Void:       return 'v';
6813     case BuiltinType::Bool:       return 'B';
6814     case BuiltinType::Char8:
6815     case BuiltinType::Char_U:
6816     case BuiltinType::UChar:      return 'C';
6817     case BuiltinType::Char16:
6818     case BuiltinType::UShort:     return 'S';
6819     case BuiltinType::Char32:
6820     case BuiltinType::UInt:       return 'I';
6821     case BuiltinType::ULong:
6822         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
6823     case BuiltinType::UInt128:    return 'T';
6824     case BuiltinType::ULongLong:  return 'Q';
6825     case BuiltinType::Char_S:
6826     case BuiltinType::SChar:      return 'c';
6827     case BuiltinType::Short:      return 's';
6828     case BuiltinType::WChar_S:
6829     case BuiltinType::WChar_U:
6830     case BuiltinType::Int:        return 'i';
6831     case BuiltinType::Long:
6832       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
6833     case BuiltinType::LongLong:   return 'q';
6834     case BuiltinType::Int128:     return 't';
6835     case BuiltinType::Float:      return 'f';
6836     case BuiltinType::Double:     return 'd';
6837     case BuiltinType::LongDouble: return 'D';
6838     case BuiltinType::NullPtr:    return '*'; // like char*
6839 
6840     case BuiltinType::Float16:
6841     case BuiltinType::Float128:
6842     case BuiltinType::Half:
6843     case BuiltinType::ShortAccum:
6844     case BuiltinType::Accum:
6845     case BuiltinType::LongAccum:
6846     case BuiltinType::UShortAccum:
6847     case BuiltinType::UAccum:
6848     case BuiltinType::ULongAccum:
6849     case BuiltinType::ShortFract:
6850     case BuiltinType::Fract:
6851     case BuiltinType::LongFract:
6852     case BuiltinType::UShortFract:
6853     case BuiltinType::UFract:
6854     case BuiltinType::ULongFract:
6855     case BuiltinType::SatShortAccum:
6856     case BuiltinType::SatAccum:
6857     case BuiltinType::SatLongAccum:
6858     case BuiltinType::SatUShortAccum:
6859     case BuiltinType::SatUAccum:
6860     case BuiltinType::SatULongAccum:
6861     case BuiltinType::SatShortFract:
6862     case BuiltinType::SatFract:
6863     case BuiltinType::SatLongFract:
6864     case BuiltinType::SatUShortFract:
6865     case BuiltinType::SatUFract:
6866     case BuiltinType::SatULongFract:
6867       // FIXME: potentially need @encodes for these!
6868       return ' ';
6869 
6870 #define SVE_TYPE(Name, Id, SingletonId) \
6871     case BuiltinType::Id:
6872 #include "clang/Basic/AArch64SVEACLETypes.def"
6873     {
6874       DiagnosticsEngine &Diags = C->getDiagnostics();
6875       unsigned DiagID = Diags.getCustomDiagID(
6876           DiagnosticsEngine::Error, "cannot yet @encode type %0");
6877       Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
6878       return ' ';
6879     }
6880 
6881     case BuiltinType::ObjCId:
6882     case BuiltinType::ObjCClass:
6883     case BuiltinType::ObjCSel:
6884       llvm_unreachable("@encoding ObjC primitive type");
6885 
6886     // OpenCL and placeholder types don't need @encodings.
6887 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6888     case BuiltinType::Id:
6889 #include "clang/Basic/OpenCLImageTypes.def"
6890 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6891     case BuiltinType::Id:
6892 #include "clang/Basic/OpenCLExtensionTypes.def"
6893     case BuiltinType::OCLEvent:
6894     case BuiltinType::OCLClkEvent:
6895     case BuiltinType::OCLQueue:
6896     case BuiltinType::OCLReserveID:
6897     case BuiltinType::OCLSampler:
6898     case BuiltinType::Dependent:
6899 #define BUILTIN_TYPE(KIND, ID)
6900 #define PLACEHOLDER_TYPE(KIND, ID) \
6901     case BuiltinType::KIND:
6902 #include "clang/AST/BuiltinTypes.def"
6903       llvm_unreachable("invalid builtin type for @encode");
6904     }
6905     llvm_unreachable("invalid BuiltinType::Kind value");
6906 }
6907 
6908 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
6909   EnumDecl *Enum = ET->getDecl();
6910 
6911   // The encoding of an non-fixed enum type is always 'i', regardless of size.
6912   if (!Enum->isFixed())
6913     return 'i';
6914 
6915   // The encoding of a fixed enum type matches its fixed underlying type.
6916   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
6917   return getObjCEncodingForPrimitiveType(C, BT);
6918 }
6919 
6920 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
6921                            QualType T, const FieldDecl *FD) {
6922   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
6923   S += 'b';
6924   // The NeXT runtime encodes bit fields as b followed by the number of bits.
6925   // The GNU runtime requires more information; bitfields are encoded as b,
6926   // then the offset (in bits) of the first element, then the type of the
6927   // bitfield, then the size in bits.  For example, in this structure:
6928   //
6929   // struct
6930   // {
6931   //    int integer;
6932   //    int flags:2;
6933   // };
6934   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
6935   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
6936   // information is not especially sensible, but we're stuck with it for
6937   // compatibility with GCC, although providing it breaks anything that
6938   // actually uses runtime introspection and wants to work on both runtimes...
6939   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
6940     uint64_t Offset;
6941 
6942     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
6943       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
6944                                          IVD);
6945     } else {
6946       const RecordDecl *RD = FD->getParent();
6947       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
6948       Offset = RL.getFieldOffset(FD->getFieldIndex());
6949     }
6950 
6951     S += llvm::utostr(Offset);
6952 
6953     if (const auto *ET = T->getAs<EnumType>())
6954       S += ObjCEncodingForEnumType(Ctx, ET);
6955     else {
6956       const auto *BT = T->castAs<BuiltinType>();
6957       S += getObjCEncodingForPrimitiveType(Ctx, BT);
6958     }
6959   }
6960   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
6961 }
6962 
6963 // FIXME: Use SmallString for accumulating string.
6964 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
6965                                             const ObjCEncOptions Options,
6966                                             const FieldDecl *FD,
6967                                             QualType *NotEncodedT) const {
6968   CanQualType CT = getCanonicalType(T);
6969   switch (CT->getTypeClass()) {
6970   case Type::Builtin:
6971   case Type::Enum:
6972     if (FD && FD->isBitField())
6973       return EncodeBitField(this, S, T, FD);
6974     if (const auto *BT = dyn_cast<BuiltinType>(CT))
6975       S += getObjCEncodingForPrimitiveType(this, BT);
6976     else
6977       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
6978     return;
6979 
6980   case Type::Complex:
6981     S += 'j';
6982     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
6983                                ObjCEncOptions(),
6984                                /*Field=*/nullptr);
6985     return;
6986 
6987   case Type::Atomic:
6988     S += 'A';
6989     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
6990                                ObjCEncOptions(),
6991                                /*Field=*/nullptr);
6992     return;
6993 
6994   // encoding for pointer or reference types.
6995   case Type::Pointer:
6996   case Type::LValueReference:
6997   case Type::RValueReference: {
6998     QualType PointeeTy;
6999     if (isa<PointerType>(CT)) {
7000       const auto *PT = T->castAs<PointerType>();
7001       if (PT->isObjCSelType()) {
7002         S += ':';
7003         return;
7004       }
7005       PointeeTy = PT->getPointeeType();
7006     } else {
7007       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
7008     }
7009 
7010     bool isReadOnly = false;
7011     // For historical/compatibility reasons, the read-only qualifier of the
7012     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
7013     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
7014     // Also, do not emit the 'r' for anything but the outermost type!
7015     if (isa<TypedefType>(T.getTypePtr())) {
7016       if (Options.IsOutermostType() && T.isConstQualified()) {
7017         isReadOnly = true;
7018         S += 'r';
7019       }
7020     } else if (Options.IsOutermostType()) {
7021       QualType P = PointeeTy;
7022       while (auto PT = P->getAs<PointerType>())
7023         P = PT->getPointeeType();
7024       if (P.isConstQualified()) {
7025         isReadOnly = true;
7026         S += 'r';
7027       }
7028     }
7029     if (isReadOnly) {
7030       // Another legacy compatibility encoding. Some ObjC qualifier and type
7031       // combinations need to be rearranged.
7032       // Rewrite "in const" from "nr" to "rn"
7033       if (StringRef(S).endswith("nr"))
7034         S.replace(S.end()-2, S.end(), "rn");
7035     }
7036 
7037     if (PointeeTy->isCharType()) {
7038       // char pointer types should be encoded as '*' unless it is a
7039       // type that has been typedef'd to 'BOOL'.
7040       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
7041         S += '*';
7042         return;
7043       }
7044     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
7045       // GCC binary compat: Need to convert "struct objc_class *" to "#".
7046       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
7047         S += '#';
7048         return;
7049       }
7050       // GCC binary compat: Need to convert "struct objc_object *" to "@".
7051       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
7052         S += '@';
7053         return;
7054       }
7055       // fall through...
7056     }
7057     S += '^';
7058     getLegacyIntegralTypeEncoding(PointeeTy);
7059 
7060     ObjCEncOptions NewOptions;
7061     if (Options.ExpandPointedToStructures())
7062       NewOptions.setExpandStructures();
7063     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
7064                                /*Field=*/nullptr, NotEncodedT);
7065     return;
7066   }
7067 
7068   case Type::ConstantArray:
7069   case Type::IncompleteArray:
7070   case Type::VariableArray: {
7071     const auto *AT = cast<ArrayType>(CT);
7072 
7073     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
7074       // Incomplete arrays are encoded as a pointer to the array element.
7075       S += '^';
7076 
7077       getObjCEncodingForTypeImpl(
7078           AT->getElementType(), S,
7079           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
7080     } else {
7081       S += '[';
7082 
7083       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
7084         S += llvm::utostr(CAT->getSize().getZExtValue());
7085       else {
7086         //Variable length arrays are encoded as a regular array with 0 elements.
7087         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
7088                "Unknown array type!");
7089         S += '0';
7090       }
7091 
7092       getObjCEncodingForTypeImpl(
7093           AT->getElementType(), S,
7094           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
7095           NotEncodedT);
7096       S += ']';
7097     }
7098     return;
7099   }
7100 
7101   case Type::FunctionNoProto:
7102   case Type::FunctionProto:
7103     S += '?';
7104     return;
7105 
7106   case Type::Record: {
7107     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
7108     S += RDecl->isUnion() ? '(' : '{';
7109     // Anonymous structures print as '?'
7110     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
7111       S += II->getName();
7112       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
7113         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
7114         llvm::raw_string_ostream OS(S);
7115         printTemplateArgumentList(OS, TemplateArgs.asArray(),
7116                                   getPrintingPolicy());
7117       }
7118     } else {
7119       S += '?';
7120     }
7121     if (Options.ExpandStructures()) {
7122       S += '=';
7123       if (!RDecl->isUnion()) {
7124         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
7125       } else {
7126         for (const auto *Field : RDecl->fields()) {
7127           if (FD) {
7128             S += '"';
7129             S += Field->getNameAsString();
7130             S += '"';
7131           }
7132 
7133           // Special case bit-fields.
7134           if (Field->isBitField()) {
7135             getObjCEncodingForTypeImpl(Field->getType(), S,
7136                                        ObjCEncOptions().setExpandStructures(),
7137                                        Field);
7138           } else {
7139             QualType qt = Field->getType();
7140             getLegacyIntegralTypeEncoding(qt);
7141             getObjCEncodingForTypeImpl(
7142                 qt, S,
7143                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
7144                 NotEncodedT);
7145           }
7146         }
7147       }
7148     }
7149     S += RDecl->isUnion() ? ')' : '}';
7150     return;
7151   }
7152 
7153   case Type::BlockPointer: {
7154     const auto *BT = T->castAs<BlockPointerType>();
7155     S += "@?"; // Unlike a pointer-to-function, which is "^?".
7156     if (Options.EncodeBlockParameters()) {
7157       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
7158 
7159       S += '<';
7160       // Block return type
7161       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
7162                                  Options.forComponentType(), FD, NotEncodedT);
7163       // Block self
7164       S += "@?";
7165       // Block parameters
7166       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
7167         for (const auto &I : FPT->param_types())
7168           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
7169                                      NotEncodedT);
7170       }
7171       S += '>';
7172     }
7173     return;
7174   }
7175 
7176   case Type::ObjCObject: {
7177     // hack to match legacy encoding of *id and *Class
7178     QualType Ty = getObjCObjectPointerType(CT);
7179     if (Ty->isObjCIdType()) {
7180       S += "{objc_object=}";
7181       return;
7182     }
7183     else if (Ty->isObjCClassType()) {
7184       S += "{objc_class=}";
7185       return;
7186     }
7187     // TODO: Double check to make sure this intentionally falls through.
7188     LLVM_FALLTHROUGH;
7189   }
7190 
7191   case Type::ObjCInterface: {
7192     // Ignore protocol qualifiers when mangling at this level.
7193     // @encode(class_name)
7194     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
7195     S += '{';
7196     S += OI->getObjCRuntimeNameAsString();
7197     if (Options.ExpandStructures()) {
7198       S += '=';
7199       SmallVector<const ObjCIvarDecl*, 32> Ivars;
7200       DeepCollectObjCIvars(OI, true, Ivars);
7201       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
7202         const FieldDecl *Field = Ivars[i];
7203         if (Field->isBitField())
7204           getObjCEncodingForTypeImpl(Field->getType(), S,
7205                                      ObjCEncOptions().setExpandStructures(),
7206                                      Field);
7207         else
7208           getObjCEncodingForTypeImpl(Field->getType(), S,
7209                                      ObjCEncOptions().setExpandStructures(), FD,
7210                                      NotEncodedT);
7211       }
7212     }
7213     S += '}';
7214     return;
7215   }
7216 
7217   case Type::ObjCObjectPointer: {
7218     const auto *OPT = T->castAs<ObjCObjectPointerType>();
7219     if (OPT->isObjCIdType()) {
7220       S += '@';
7221       return;
7222     }
7223 
7224     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
7225       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
7226       // Since this is a binary compatibility issue, need to consult with
7227       // runtime folks. Fortunately, this is a *very* obscure construct.
7228       S += '#';
7229       return;
7230     }
7231 
7232     if (OPT->isObjCQualifiedIdType()) {
7233       getObjCEncodingForTypeImpl(
7234           getObjCIdType(), S,
7235           Options.keepingOnly(ObjCEncOptions()
7236                                   .setExpandPointedToStructures()
7237                                   .setExpandStructures()),
7238           FD);
7239       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
7240         // Note that we do extended encoding of protocol qualifer list
7241         // Only when doing ivar or property encoding.
7242         S += '"';
7243         for (const auto *I : OPT->quals()) {
7244           S += '<';
7245           S += I->getObjCRuntimeNameAsString();
7246           S += '>';
7247         }
7248         S += '"';
7249       }
7250       return;
7251     }
7252 
7253     S += '@';
7254     if (OPT->getInterfaceDecl() &&
7255         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
7256       S += '"';
7257       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
7258       for (const auto *I : OPT->quals()) {
7259         S += '<';
7260         S += I->getObjCRuntimeNameAsString();
7261         S += '>';
7262       }
7263       S += '"';
7264     }
7265     return;
7266   }
7267 
7268   // gcc just blithely ignores member pointers.
7269   // FIXME: we should do better than that.  'M' is available.
7270   case Type::MemberPointer:
7271   // This matches gcc's encoding, even though technically it is insufficient.
7272   //FIXME. We should do a better job than gcc.
7273   case Type::Vector:
7274   case Type::ExtVector:
7275   // Until we have a coherent encoding of these three types, issue warning.
7276     if (NotEncodedT)
7277       *NotEncodedT = T;
7278     return;
7279 
7280   // We could see an undeduced auto type here during error recovery.
7281   // Just ignore it.
7282   case Type::Auto:
7283   case Type::DeducedTemplateSpecialization:
7284     return;
7285 
7286   case Type::Pipe:
7287 #define ABSTRACT_TYPE(KIND, BASE)
7288 #define TYPE(KIND, BASE)
7289 #define DEPENDENT_TYPE(KIND, BASE) \
7290   case Type::KIND:
7291 #define NON_CANONICAL_TYPE(KIND, BASE) \
7292   case Type::KIND:
7293 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7294   case Type::KIND:
7295 #include "clang/AST/TypeNodes.inc"
7296     llvm_unreachable("@encode for dependent type!");
7297   }
7298   llvm_unreachable("bad type kind!");
7299 }
7300 
7301 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7302                                                  std::string &S,
7303                                                  const FieldDecl *FD,
7304                                                  bool includeVBases,
7305                                                  QualType *NotEncodedT) const {
7306   assert(RDecl && "Expected non-null RecordDecl");
7307   assert(!RDecl->isUnion() && "Should not be called for unions");
7308   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7309     return;
7310 
7311   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7312   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7313   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7314 
7315   if (CXXRec) {
7316     for (const auto &BI : CXXRec->bases()) {
7317       if (!BI.isVirtual()) {
7318         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7319         if (base->isEmpty())
7320           continue;
7321         uint64_t offs = toBits(layout.getBaseClassOffset(base));
7322         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7323                                   std::make_pair(offs, base));
7324       }
7325     }
7326   }
7327 
7328   unsigned i = 0;
7329   for (auto *Field : RDecl->fields()) {
7330     uint64_t offs = layout.getFieldOffset(i);
7331     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7332                               std::make_pair(offs, Field));
7333     ++i;
7334   }
7335 
7336   if (CXXRec && includeVBases) {
7337     for (const auto &BI : CXXRec->vbases()) {
7338       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7339       if (base->isEmpty())
7340         continue;
7341       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7342       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7343           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7344         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7345                                   std::make_pair(offs, base));
7346     }
7347   }
7348 
7349   CharUnits size;
7350   if (CXXRec) {
7351     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7352   } else {
7353     size = layout.getSize();
7354   }
7355 
7356 #ifndef NDEBUG
7357   uint64_t CurOffs = 0;
7358 #endif
7359   std::multimap<uint64_t, NamedDecl *>::iterator
7360     CurLayObj = FieldOrBaseOffsets.begin();
7361 
7362   if (CXXRec && CXXRec->isDynamicClass() &&
7363       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7364     if (FD) {
7365       S += "\"_vptr$";
7366       std::string recname = CXXRec->getNameAsString();
7367       if (recname.empty()) recname = "?";
7368       S += recname;
7369       S += '"';
7370     }
7371     S += "^^?";
7372 #ifndef NDEBUG
7373     CurOffs += getTypeSize(VoidPtrTy);
7374 #endif
7375   }
7376 
7377   if (!RDecl->hasFlexibleArrayMember()) {
7378     // Mark the end of the structure.
7379     uint64_t offs = toBits(size);
7380     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7381                               std::make_pair(offs, nullptr));
7382   }
7383 
7384   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7385 #ifndef NDEBUG
7386     assert(CurOffs <= CurLayObj->first);
7387     if (CurOffs < CurLayObj->first) {
7388       uint64_t padding = CurLayObj->first - CurOffs;
7389       // FIXME: There doesn't seem to be a way to indicate in the encoding that
7390       // packing/alignment of members is different that normal, in which case
7391       // the encoding will be out-of-sync with the real layout.
7392       // If the runtime switches to just consider the size of types without
7393       // taking into account alignment, we could make padding explicit in the
7394       // encoding (e.g. using arrays of chars). The encoding strings would be
7395       // longer then though.
7396       CurOffs += padding;
7397     }
7398 #endif
7399 
7400     NamedDecl *dcl = CurLayObj->second;
7401     if (!dcl)
7402       break; // reached end of structure.
7403 
7404     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7405       // We expand the bases without their virtual bases since those are going
7406       // in the initial structure. Note that this differs from gcc which
7407       // expands virtual bases each time one is encountered in the hierarchy,
7408       // making the encoding type bigger than it really is.
7409       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7410                                       NotEncodedT);
7411       assert(!base->isEmpty());
7412 #ifndef NDEBUG
7413       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7414 #endif
7415     } else {
7416       const auto *field = cast<FieldDecl>(dcl);
7417       if (FD) {
7418         S += '"';
7419         S += field->getNameAsString();
7420         S += '"';
7421       }
7422 
7423       if (field->isBitField()) {
7424         EncodeBitField(this, S, field->getType(), field);
7425 #ifndef NDEBUG
7426         CurOffs += field->getBitWidthValue(*this);
7427 #endif
7428       } else {
7429         QualType qt = field->getType();
7430         getLegacyIntegralTypeEncoding(qt);
7431         getObjCEncodingForTypeImpl(
7432             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
7433             FD, NotEncodedT);
7434 #ifndef NDEBUG
7435         CurOffs += getTypeSize(field->getType());
7436 #endif
7437       }
7438     }
7439   }
7440 }
7441 
7442 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
7443                                                  std::string& S) const {
7444   if (QT & Decl::OBJC_TQ_In)
7445     S += 'n';
7446   if (QT & Decl::OBJC_TQ_Inout)
7447     S += 'N';
7448   if (QT & Decl::OBJC_TQ_Out)
7449     S += 'o';
7450   if (QT & Decl::OBJC_TQ_Bycopy)
7451     S += 'O';
7452   if (QT & Decl::OBJC_TQ_Byref)
7453     S += 'R';
7454   if (QT & Decl::OBJC_TQ_Oneway)
7455     S += 'V';
7456 }
7457 
7458 TypedefDecl *ASTContext::getObjCIdDecl() const {
7459   if (!ObjCIdDecl) {
7460     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
7461     T = getObjCObjectPointerType(T);
7462     ObjCIdDecl = buildImplicitTypedef(T, "id");
7463   }
7464   return ObjCIdDecl;
7465 }
7466 
7467 TypedefDecl *ASTContext::getObjCSelDecl() const {
7468   if (!ObjCSelDecl) {
7469     QualType T = getPointerType(ObjCBuiltinSelTy);
7470     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
7471   }
7472   return ObjCSelDecl;
7473 }
7474 
7475 TypedefDecl *ASTContext::getObjCClassDecl() const {
7476   if (!ObjCClassDecl) {
7477     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
7478     T = getObjCObjectPointerType(T);
7479     ObjCClassDecl = buildImplicitTypedef(T, "Class");
7480   }
7481   return ObjCClassDecl;
7482 }
7483 
7484 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
7485   if (!ObjCProtocolClassDecl) {
7486     ObjCProtocolClassDecl
7487       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
7488                                   SourceLocation(),
7489                                   &Idents.get("Protocol"),
7490                                   /*typeParamList=*/nullptr,
7491                                   /*PrevDecl=*/nullptr,
7492                                   SourceLocation(), true);
7493   }
7494 
7495   return ObjCProtocolClassDecl;
7496 }
7497 
7498 //===----------------------------------------------------------------------===//
7499 // __builtin_va_list Construction Functions
7500 //===----------------------------------------------------------------------===//
7501 
7502 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
7503                                                  StringRef Name) {
7504   // typedef char* __builtin[_ms]_va_list;
7505   QualType T = Context->getPointerType(Context->CharTy);
7506   return Context->buildImplicitTypedef(T, Name);
7507 }
7508 
7509 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
7510   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
7511 }
7512 
7513 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
7514   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
7515 }
7516 
7517 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
7518   // typedef void* __builtin_va_list;
7519   QualType T = Context->getPointerType(Context->VoidTy);
7520   return Context->buildImplicitTypedef(T, "__builtin_va_list");
7521 }
7522 
7523 static TypedefDecl *
7524 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
7525   // struct __va_list
7526   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
7527   if (Context->getLangOpts().CPlusPlus) {
7528     // namespace std { struct __va_list {
7529     NamespaceDecl *NS;
7530     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7531                                Context->getTranslationUnitDecl(),
7532                                /*Inline*/ false, SourceLocation(),
7533                                SourceLocation(), &Context->Idents.get("std"),
7534                                /*PrevDecl*/ nullptr);
7535     NS->setImplicit();
7536     VaListTagDecl->setDeclContext(NS);
7537   }
7538 
7539   VaListTagDecl->startDefinition();
7540 
7541   const size_t NumFields = 5;
7542   QualType FieldTypes[NumFields];
7543   const char *FieldNames[NumFields];
7544 
7545   // void *__stack;
7546   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
7547   FieldNames[0] = "__stack";
7548 
7549   // void *__gr_top;
7550   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
7551   FieldNames[1] = "__gr_top";
7552 
7553   // void *__vr_top;
7554   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7555   FieldNames[2] = "__vr_top";
7556 
7557   // int __gr_offs;
7558   FieldTypes[3] = Context->IntTy;
7559   FieldNames[3] = "__gr_offs";
7560 
7561   // int __vr_offs;
7562   FieldTypes[4] = Context->IntTy;
7563   FieldNames[4] = "__vr_offs";
7564 
7565   // Create fields
7566   for (unsigned i = 0; i < NumFields; ++i) {
7567     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7568                                          VaListTagDecl,
7569                                          SourceLocation(),
7570                                          SourceLocation(),
7571                                          &Context->Idents.get(FieldNames[i]),
7572                                          FieldTypes[i], /*TInfo=*/nullptr,
7573                                          /*BitWidth=*/nullptr,
7574                                          /*Mutable=*/false,
7575                                          ICIS_NoInit);
7576     Field->setAccess(AS_public);
7577     VaListTagDecl->addDecl(Field);
7578   }
7579   VaListTagDecl->completeDefinition();
7580   Context->VaListTagDecl = VaListTagDecl;
7581   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7582 
7583   // } __builtin_va_list;
7584   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
7585 }
7586 
7587 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
7588   // typedef struct __va_list_tag {
7589   RecordDecl *VaListTagDecl;
7590 
7591   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7592   VaListTagDecl->startDefinition();
7593 
7594   const size_t NumFields = 5;
7595   QualType FieldTypes[NumFields];
7596   const char *FieldNames[NumFields];
7597 
7598   //   unsigned char gpr;
7599   FieldTypes[0] = Context->UnsignedCharTy;
7600   FieldNames[0] = "gpr";
7601 
7602   //   unsigned char fpr;
7603   FieldTypes[1] = Context->UnsignedCharTy;
7604   FieldNames[1] = "fpr";
7605 
7606   //   unsigned short reserved;
7607   FieldTypes[2] = Context->UnsignedShortTy;
7608   FieldNames[2] = "reserved";
7609 
7610   //   void* overflow_arg_area;
7611   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7612   FieldNames[3] = "overflow_arg_area";
7613 
7614   //   void* reg_save_area;
7615   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
7616   FieldNames[4] = "reg_save_area";
7617 
7618   // Create fields
7619   for (unsigned i = 0; i < NumFields; ++i) {
7620     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
7621                                          SourceLocation(),
7622                                          SourceLocation(),
7623                                          &Context->Idents.get(FieldNames[i]),
7624                                          FieldTypes[i], /*TInfo=*/nullptr,
7625                                          /*BitWidth=*/nullptr,
7626                                          /*Mutable=*/false,
7627                                          ICIS_NoInit);
7628     Field->setAccess(AS_public);
7629     VaListTagDecl->addDecl(Field);
7630   }
7631   VaListTagDecl->completeDefinition();
7632   Context->VaListTagDecl = VaListTagDecl;
7633   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7634 
7635   // } __va_list_tag;
7636   TypedefDecl *VaListTagTypedefDecl =
7637       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
7638 
7639   QualType VaListTagTypedefType =
7640     Context->getTypedefType(VaListTagTypedefDecl);
7641 
7642   // typedef __va_list_tag __builtin_va_list[1];
7643   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7644   QualType VaListTagArrayType
7645     = Context->getConstantArrayType(VaListTagTypedefType,
7646                                     Size, nullptr, ArrayType::Normal, 0);
7647   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7648 }
7649 
7650 static TypedefDecl *
7651 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
7652   // struct __va_list_tag {
7653   RecordDecl *VaListTagDecl;
7654   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7655   VaListTagDecl->startDefinition();
7656 
7657   const size_t NumFields = 4;
7658   QualType FieldTypes[NumFields];
7659   const char *FieldNames[NumFields];
7660 
7661   //   unsigned gp_offset;
7662   FieldTypes[0] = Context->UnsignedIntTy;
7663   FieldNames[0] = "gp_offset";
7664 
7665   //   unsigned fp_offset;
7666   FieldTypes[1] = Context->UnsignedIntTy;
7667   FieldNames[1] = "fp_offset";
7668 
7669   //   void* overflow_arg_area;
7670   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7671   FieldNames[2] = "overflow_arg_area";
7672 
7673   //   void* reg_save_area;
7674   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7675   FieldNames[3] = "reg_save_area";
7676 
7677   // Create fields
7678   for (unsigned i = 0; i < NumFields; ++i) {
7679     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7680                                          VaListTagDecl,
7681                                          SourceLocation(),
7682                                          SourceLocation(),
7683                                          &Context->Idents.get(FieldNames[i]),
7684                                          FieldTypes[i], /*TInfo=*/nullptr,
7685                                          /*BitWidth=*/nullptr,
7686                                          /*Mutable=*/false,
7687                                          ICIS_NoInit);
7688     Field->setAccess(AS_public);
7689     VaListTagDecl->addDecl(Field);
7690   }
7691   VaListTagDecl->completeDefinition();
7692   Context->VaListTagDecl = VaListTagDecl;
7693   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7694 
7695   // };
7696 
7697   // typedef struct __va_list_tag __builtin_va_list[1];
7698   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7699   QualType VaListTagArrayType = Context->getConstantArrayType(
7700       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
7701   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7702 }
7703 
7704 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
7705   // typedef int __builtin_va_list[4];
7706   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
7707   QualType IntArrayType = Context->getConstantArrayType(
7708       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
7709   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
7710 }
7711 
7712 static TypedefDecl *
7713 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
7714   // struct __va_list
7715   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
7716   if (Context->getLangOpts().CPlusPlus) {
7717     // namespace std { struct __va_list {
7718     NamespaceDecl *NS;
7719     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7720                                Context->getTranslationUnitDecl(),
7721                                /*Inline*/false, SourceLocation(),
7722                                SourceLocation(), &Context->Idents.get("std"),
7723                                /*PrevDecl*/ nullptr);
7724     NS->setImplicit();
7725     VaListDecl->setDeclContext(NS);
7726   }
7727 
7728   VaListDecl->startDefinition();
7729 
7730   // void * __ap;
7731   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7732                                        VaListDecl,
7733                                        SourceLocation(),
7734                                        SourceLocation(),
7735                                        &Context->Idents.get("__ap"),
7736                                        Context->getPointerType(Context->VoidTy),
7737                                        /*TInfo=*/nullptr,
7738                                        /*BitWidth=*/nullptr,
7739                                        /*Mutable=*/false,
7740                                        ICIS_NoInit);
7741   Field->setAccess(AS_public);
7742   VaListDecl->addDecl(Field);
7743 
7744   // };
7745   VaListDecl->completeDefinition();
7746   Context->VaListTagDecl = VaListDecl;
7747 
7748   // typedef struct __va_list __builtin_va_list;
7749   QualType T = Context->getRecordType(VaListDecl);
7750   return Context->buildImplicitTypedef(T, "__builtin_va_list");
7751 }
7752 
7753 static TypedefDecl *
7754 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
7755   // struct __va_list_tag {
7756   RecordDecl *VaListTagDecl;
7757   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7758   VaListTagDecl->startDefinition();
7759 
7760   const size_t NumFields = 4;
7761   QualType FieldTypes[NumFields];
7762   const char *FieldNames[NumFields];
7763 
7764   //   long __gpr;
7765   FieldTypes[0] = Context->LongTy;
7766   FieldNames[0] = "__gpr";
7767 
7768   //   long __fpr;
7769   FieldTypes[1] = Context->LongTy;
7770   FieldNames[1] = "__fpr";
7771 
7772   //   void *__overflow_arg_area;
7773   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7774   FieldNames[2] = "__overflow_arg_area";
7775 
7776   //   void *__reg_save_area;
7777   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7778   FieldNames[3] = "__reg_save_area";
7779 
7780   // Create fields
7781   for (unsigned i = 0; i < NumFields; ++i) {
7782     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7783                                          VaListTagDecl,
7784                                          SourceLocation(),
7785                                          SourceLocation(),
7786                                          &Context->Idents.get(FieldNames[i]),
7787                                          FieldTypes[i], /*TInfo=*/nullptr,
7788                                          /*BitWidth=*/nullptr,
7789                                          /*Mutable=*/false,
7790                                          ICIS_NoInit);
7791     Field->setAccess(AS_public);
7792     VaListTagDecl->addDecl(Field);
7793   }
7794   VaListTagDecl->completeDefinition();
7795   Context->VaListTagDecl = VaListTagDecl;
7796   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7797 
7798   // };
7799 
7800   // typedef __va_list_tag __builtin_va_list[1];
7801   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7802   QualType VaListTagArrayType = Context->getConstantArrayType(
7803       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
7804 
7805   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7806 }
7807 
7808 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
7809                                      TargetInfo::BuiltinVaListKind Kind) {
7810   switch (Kind) {
7811   case TargetInfo::CharPtrBuiltinVaList:
7812     return CreateCharPtrBuiltinVaListDecl(Context);
7813   case TargetInfo::VoidPtrBuiltinVaList:
7814     return CreateVoidPtrBuiltinVaListDecl(Context);
7815   case TargetInfo::AArch64ABIBuiltinVaList:
7816     return CreateAArch64ABIBuiltinVaListDecl(Context);
7817   case TargetInfo::PowerABIBuiltinVaList:
7818     return CreatePowerABIBuiltinVaListDecl(Context);
7819   case TargetInfo::X86_64ABIBuiltinVaList:
7820     return CreateX86_64ABIBuiltinVaListDecl(Context);
7821   case TargetInfo::PNaClABIBuiltinVaList:
7822     return CreatePNaClABIBuiltinVaListDecl(Context);
7823   case TargetInfo::AAPCSABIBuiltinVaList:
7824     return CreateAAPCSABIBuiltinVaListDecl(Context);
7825   case TargetInfo::SystemZBuiltinVaList:
7826     return CreateSystemZBuiltinVaListDecl(Context);
7827   }
7828 
7829   llvm_unreachable("Unhandled __builtin_va_list type kind");
7830 }
7831 
7832 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
7833   if (!BuiltinVaListDecl) {
7834     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
7835     assert(BuiltinVaListDecl->isImplicit());
7836   }
7837 
7838   return BuiltinVaListDecl;
7839 }
7840 
7841 Decl *ASTContext::getVaListTagDecl() const {
7842   // Force the creation of VaListTagDecl by building the __builtin_va_list
7843   // declaration.
7844   if (!VaListTagDecl)
7845     (void)getBuiltinVaListDecl();
7846 
7847   return VaListTagDecl;
7848 }
7849 
7850 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
7851   if (!BuiltinMSVaListDecl)
7852     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
7853 
7854   return BuiltinMSVaListDecl;
7855 }
7856 
7857 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
7858   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
7859 }
7860 
7861 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
7862   assert(ObjCConstantStringType.isNull() &&
7863          "'NSConstantString' type already set!");
7864 
7865   ObjCConstantStringType = getObjCInterfaceType(Decl);
7866 }
7867 
7868 /// Retrieve the template name that corresponds to a non-empty
7869 /// lookup.
7870 TemplateName
7871 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
7872                                       UnresolvedSetIterator End) const {
7873   unsigned size = End - Begin;
7874   assert(size > 1 && "set is not overloaded!");
7875 
7876   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
7877                           size * sizeof(FunctionTemplateDecl*));
7878   auto *OT = new (memory) OverloadedTemplateStorage(size);
7879 
7880   NamedDecl **Storage = OT->getStorage();
7881   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
7882     NamedDecl *D = *I;
7883     assert(isa<FunctionTemplateDecl>(D) ||
7884            isa<UnresolvedUsingValueDecl>(D) ||
7885            (isa<UsingShadowDecl>(D) &&
7886             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
7887     *Storage++ = D;
7888   }
7889 
7890   return TemplateName(OT);
7891 }
7892 
7893 /// Retrieve a template name representing an unqualified-id that has been
7894 /// assumed to name a template for ADL purposes.
7895 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
7896   auto *OT = new (*this) AssumedTemplateStorage(Name);
7897   return TemplateName(OT);
7898 }
7899 
7900 /// Retrieve the template name that represents a qualified
7901 /// template name such as \c std::vector.
7902 TemplateName
7903 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
7904                                      bool TemplateKeyword,
7905                                      TemplateDecl *Template) const {
7906   assert(NNS && "Missing nested-name-specifier in qualified template name");
7907 
7908   // FIXME: Canonicalization?
7909   llvm::FoldingSetNodeID ID;
7910   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
7911 
7912   void *InsertPos = nullptr;
7913   QualifiedTemplateName *QTN =
7914     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7915   if (!QTN) {
7916     QTN = new (*this, alignof(QualifiedTemplateName))
7917         QualifiedTemplateName(NNS, TemplateKeyword, Template);
7918     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
7919   }
7920 
7921   return TemplateName(QTN);
7922 }
7923 
7924 /// Retrieve the template name that represents a dependent
7925 /// template name such as \c MetaFun::template apply.
7926 TemplateName
7927 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7928                                      const IdentifierInfo *Name) const {
7929   assert((!NNS || NNS->isDependent()) &&
7930          "Nested name specifier must be dependent");
7931 
7932   llvm::FoldingSetNodeID ID;
7933   DependentTemplateName::Profile(ID, NNS, Name);
7934 
7935   void *InsertPos = nullptr;
7936   DependentTemplateName *QTN =
7937     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7938 
7939   if (QTN)
7940     return TemplateName(QTN);
7941 
7942   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7943   if (CanonNNS == NNS) {
7944     QTN = new (*this, alignof(DependentTemplateName))
7945         DependentTemplateName(NNS, Name);
7946   } else {
7947     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
7948     QTN = new (*this, alignof(DependentTemplateName))
7949         DependentTemplateName(NNS, Name, Canon);
7950     DependentTemplateName *CheckQTN =
7951       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7952     assert(!CheckQTN && "Dependent type name canonicalization broken");
7953     (void)CheckQTN;
7954   }
7955 
7956   DependentTemplateNames.InsertNode(QTN, InsertPos);
7957   return TemplateName(QTN);
7958 }
7959 
7960 /// Retrieve the template name that represents a dependent
7961 /// template name such as \c MetaFun::template operator+.
7962 TemplateName
7963 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7964                                      OverloadedOperatorKind Operator) const {
7965   assert((!NNS || NNS->isDependent()) &&
7966          "Nested name specifier must be dependent");
7967 
7968   llvm::FoldingSetNodeID ID;
7969   DependentTemplateName::Profile(ID, NNS, Operator);
7970 
7971   void *InsertPos = nullptr;
7972   DependentTemplateName *QTN
7973     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7974 
7975   if (QTN)
7976     return TemplateName(QTN);
7977 
7978   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7979   if (CanonNNS == NNS) {
7980     QTN = new (*this, alignof(DependentTemplateName))
7981         DependentTemplateName(NNS, Operator);
7982   } else {
7983     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
7984     QTN = new (*this, alignof(DependentTemplateName))
7985         DependentTemplateName(NNS, Operator, Canon);
7986 
7987     DependentTemplateName *CheckQTN
7988       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7989     assert(!CheckQTN && "Dependent template name canonicalization broken");
7990     (void)CheckQTN;
7991   }
7992 
7993   DependentTemplateNames.InsertNode(QTN, InsertPos);
7994   return TemplateName(QTN);
7995 }
7996 
7997 TemplateName
7998 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
7999                                          TemplateName replacement) const {
8000   llvm::FoldingSetNodeID ID;
8001   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
8002 
8003   void *insertPos = nullptr;
8004   SubstTemplateTemplateParmStorage *subst
8005     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
8006 
8007   if (!subst) {
8008     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
8009     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
8010   }
8011 
8012   return TemplateName(subst);
8013 }
8014 
8015 TemplateName
8016 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
8017                                        const TemplateArgument &ArgPack) const {
8018   auto &Self = const_cast<ASTContext &>(*this);
8019   llvm::FoldingSetNodeID ID;
8020   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
8021 
8022   void *InsertPos = nullptr;
8023   SubstTemplateTemplateParmPackStorage *Subst
8024     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
8025 
8026   if (!Subst) {
8027     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
8028                                                            ArgPack.pack_size(),
8029                                                          ArgPack.pack_begin());
8030     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
8031   }
8032 
8033   return TemplateName(Subst);
8034 }
8035 
8036 /// getFromTargetType - Given one of the integer types provided by
8037 /// TargetInfo, produce the corresponding type. The unsigned @p Type
8038 /// is actually a value of type @c TargetInfo::IntType.
8039 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
8040   switch (Type) {
8041   case TargetInfo::NoInt: return {};
8042   case TargetInfo::SignedChar: return SignedCharTy;
8043   case TargetInfo::UnsignedChar: return UnsignedCharTy;
8044   case TargetInfo::SignedShort: return ShortTy;
8045   case TargetInfo::UnsignedShort: return UnsignedShortTy;
8046   case TargetInfo::SignedInt: return IntTy;
8047   case TargetInfo::UnsignedInt: return UnsignedIntTy;
8048   case TargetInfo::SignedLong: return LongTy;
8049   case TargetInfo::UnsignedLong: return UnsignedLongTy;
8050   case TargetInfo::SignedLongLong: return LongLongTy;
8051   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
8052   }
8053 
8054   llvm_unreachable("Unhandled TargetInfo::IntType value");
8055 }
8056 
8057 //===----------------------------------------------------------------------===//
8058 //                        Type Predicates.
8059 //===----------------------------------------------------------------------===//
8060 
8061 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
8062 /// garbage collection attribute.
8063 ///
8064 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
8065   if (getLangOpts().getGC() == LangOptions::NonGC)
8066     return Qualifiers::GCNone;
8067 
8068   assert(getLangOpts().ObjC);
8069   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
8070 
8071   // Default behaviour under objective-C's gc is for ObjC pointers
8072   // (or pointers to them) be treated as though they were declared
8073   // as __strong.
8074   if (GCAttrs == Qualifiers::GCNone) {
8075     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
8076       return Qualifiers::Strong;
8077     else if (Ty->isPointerType())
8078       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
8079   } else {
8080     // It's not valid to set GC attributes on anything that isn't a
8081     // pointer.
8082 #ifndef NDEBUG
8083     QualType CT = Ty->getCanonicalTypeInternal();
8084     while (const auto *AT = dyn_cast<ArrayType>(CT))
8085       CT = AT->getElementType();
8086     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
8087 #endif
8088   }
8089   return GCAttrs;
8090 }
8091 
8092 //===----------------------------------------------------------------------===//
8093 //                        Type Compatibility Testing
8094 //===----------------------------------------------------------------------===//
8095 
8096 /// areCompatVectorTypes - Return true if the two specified vector types are
8097 /// compatible.
8098 static bool areCompatVectorTypes(const VectorType *LHS,
8099                                  const VectorType *RHS) {
8100   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8101   return LHS->getElementType() == RHS->getElementType() &&
8102          LHS->getNumElements() == RHS->getNumElements();
8103 }
8104 
8105 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
8106                                           QualType SecondVec) {
8107   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
8108   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
8109 
8110   if (hasSameUnqualifiedType(FirstVec, SecondVec))
8111     return true;
8112 
8113   // Treat Neon vector types and most AltiVec vector types as if they are the
8114   // equivalent GCC vector types.
8115   const auto *First = FirstVec->castAs<VectorType>();
8116   const auto *Second = SecondVec->castAs<VectorType>();
8117   if (First->getNumElements() == Second->getNumElements() &&
8118       hasSameType(First->getElementType(), Second->getElementType()) &&
8119       First->getVectorKind() != VectorType::AltiVecPixel &&
8120       First->getVectorKind() != VectorType::AltiVecBool &&
8121       Second->getVectorKind() != VectorType::AltiVecPixel &&
8122       Second->getVectorKind() != VectorType::AltiVecBool)
8123     return true;
8124 
8125   return false;
8126 }
8127 
8128 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
8129   while (true) {
8130     // __strong id
8131     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
8132       if (Attr->getAttrKind() == attr::ObjCOwnership)
8133         return true;
8134 
8135       Ty = Attr->getModifiedType();
8136 
8137     // X *__strong (...)
8138     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
8139       Ty = Paren->getInnerType();
8140 
8141     // We do not want to look through typedefs, typeof(expr),
8142     // typeof(type), or any other way that the type is somehow
8143     // abstracted.
8144     } else {
8145       return false;
8146     }
8147   }
8148 }
8149 
8150 //===----------------------------------------------------------------------===//
8151 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
8152 //===----------------------------------------------------------------------===//
8153 
8154 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
8155 /// inheritance hierarchy of 'rProto'.
8156 bool
8157 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
8158                                            ObjCProtocolDecl *rProto) const {
8159   if (declaresSameEntity(lProto, rProto))
8160     return true;
8161   for (auto *PI : rProto->protocols())
8162     if (ProtocolCompatibleWithProtocol(lProto, PI))
8163       return true;
8164   return false;
8165 }
8166 
8167 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
8168 /// Class<pr1, ...>.
8169 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
8170     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
8171   for (auto *lhsProto : lhs->quals()) {
8172     bool match = false;
8173     for (auto *rhsProto : rhs->quals()) {
8174       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
8175         match = true;
8176         break;
8177       }
8178     }
8179     if (!match)
8180       return false;
8181   }
8182   return true;
8183 }
8184 
8185 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
8186 /// ObjCQualifiedIDType.
8187 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
8188     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
8189     bool compare) {
8190   // Allow id<P..> and an 'id' in all cases.
8191   if (lhs->isObjCIdType() || rhs->isObjCIdType())
8192     return true;
8193 
8194   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
8195   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
8196       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
8197     return false;
8198 
8199   if (lhs->isObjCQualifiedIdType()) {
8200     if (rhs->qual_empty()) {
8201       // If the RHS is a unqualified interface pointer "NSString*",
8202       // make sure we check the class hierarchy.
8203       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8204         for (auto *I : lhs->quals()) {
8205           // when comparing an id<P> on lhs with a static type on rhs,
8206           // see if static class implements all of id's protocols, directly or
8207           // through its super class and categories.
8208           if (!rhsID->ClassImplementsProtocol(I, true))
8209             return false;
8210         }
8211       }
8212       // If there are no qualifiers and no interface, we have an 'id'.
8213       return true;
8214     }
8215     // Both the right and left sides have qualifiers.
8216     for (auto *lhsProto : lhs->quals()) {
8217       bool match = false;
8218 
8219       // when comparing an id<P> on lhs with a static type on rhs,
8220       // see if static class implements all of id's protocols, directly or
8221       // through its super class and categories.
8222       for (auto *rhsProto : rhs->quals()) {
8223         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8224             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8225           match = true;
8226           break;
8227         }
8228       }
8229       // If the RHS is a qualified interface pointer "NSString<P>*",
8230       // make sure we check the class hierarchy.
8231       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8232         for (auto *I : lhs->quals()) {
8233           // when comparing an id<P> on lhs with a static type on rhs,
8234           // see if static class implements all of id's protocols, directly or
8235           // through its super class and categories.
8236           if (rhsID->ClassImplementsProtocol(I, true)) {
8237             match = true;
8238             break;
8239           }
8240         }
8241       }
8242       if (!match)
8243         return false;
8244     }
8245 
8246     return true;
8247   }
8248 
8249   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
8250 
8251   if (lhs->getInterfaceType()) {
8252     // If both the right and left sides have qualifiers.
8253     for (auto *lhsProto : lhs->quals()) {
8254       bool match = false;
8255 
8256       // when comparing an id<P> on rhs with a static type on lhs,
8257       // see if static class implements all of id's protocols, directly or
8258       // through its super class and categories.
8259       // First, lhs protocols in the qualifier list must be found, direct
8260       // or indirect in rhs's qualifier list or it is a mismatch.
8261       for (auto *rhsProto : rhs->quals()) {
8262         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8263             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8264           match = true;
8265           break;
8266         }
8267       }
8268       if (!match)
8269         return false;
8270     }
8271 
8272     // Static class's protocols, or its super class or category protocols
8273     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
8274     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
8275       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
8276       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
8277       // This is rather dubious but matches gcc's behavior. If lhs has
8278       // no type qualifier and its class has no static protocol(s)
8279       // assume that it is mismatch.
8280       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
8281         return false;
8282       for (auto *lhsProto : LHSInheritedProtocols) {
8283         bool match = false;
8284         for (auto *rhsProto : rhs->quals()) {
8285           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8286               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8287             match = true;
8288             break;
8289           }
8290         }
8291         if (!match)
8292           return false;
8293       }
8294     }
8295     return true;
8296   }
8297   return false;
8298 }
8299 
8300 /// canAssignObjCInterfaces - Return true if the two interface types are
8301 /// compatible for assignment from RHS to LHS.  This handles validation of any
8302 /// protocol qualifiers on the LHS or RHS.
8303 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
8304                                          const ObjCObjectPointerType *RHSOPT) {
8305   const ObjCObjectType* LHS = LHSOPT->getObjectType();
8306   const ObjCObjectType* RHS = RHSOPT->getObjectType();
8307 
8308   // If either type represents the built-in 'id' type, return true.
8309   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
8310     return true;
8311 
8312   // Function object that propagates a successful result or handles
8313   // __kindof types.
8314   auto finish = [&](bool succeeded) -> bool {
8315     if (succeeded)
8316       return true;
8317 
8318     if (!RHS->isKindOfType())
8319       return false;
8320 
8321     // Strip off __kindof and protocol qualifiers, then check whether
8322     // we can assign the other way.
8323     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8324                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
8325   };
8326 
8327   // Casts from or to id<P> are allowed when the other side has compatible
8328   // protocols.
8329   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
8330     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
8331   }
8332 
8333   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
8334   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
8335     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
8336   }
8337 
8338   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
8339   if (LHS->isObjCClass() && RHS->isObjCClass()) {
8340     return true;
8341   }
8342 
8343   // If we have 2 user-defined types, fall into that path.
8344   if (LHS->getInterface() && RHS->getInterface()) {
8345     return finish(canAssignObjCInterfaces(LHS, RHS));
8346   }
8347 
8348   return false;
8349 }
8350 
8351 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
8352 /// for providing type-safety for objective-c pointers used to pass/return
8353 /// arguments in block literals. When passed as arguments, passing 'A*' where
8354 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
8355 /// not OK. For the return type, the opposite is not OK.
8356 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
8357                                          const ObjCObjectPointerType *LHSOPT,
8358                                          const ObjCObjectPointerType *RHSOPT,
8359                                          bool BlockReturnType) {
8360 
8361   // Function object that propagates a successful result or handles
8362   // __kindof types.
8363   auto finish = [&](bool succeeded) -> bool {
8364     if (succeeded)
8365       return true;
8366 
8367     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
8368     if (!Expected->isKindOfType())
8369       return false;
8370 
8371     // Strip off __kindof and protocol qualifiers, then check whether
8372     // we can assign the other way.
8373     return canAssignObjCInterfacesInBlockPointer(
8374              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8375              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
8376              BlockReturnType);
8377   };
8378 
8379   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
8380     return true;
8381 
8382   if (LHSOPT->isObjCBuiltinType()) {
8383     return finish(RHSOPT->isObjCBuiltinType() ||
8384                   RHSOPT->isObjCQualifiedIdType());
8385   }
8386 
8387   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
8388     return finish(ObjCQualifiedIdTypesAreCompatible(
8389         (BlockReturnType ? LHSOPT : RHSOPT),
8390         (BlockReturnType ? RHSOPT : LHSOPT), false));
8391 
8392   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
8393   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
8394   if (LHS && RHS)  { // We have 2 user-defined types.
8395     if (LHS != RHS) {
8396       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
8397         return finish(BlockReturnType);
8398       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
8399         return finish(!BlockReturnType);
8400     }
8401     else
8402       return true;
8403   }
8404   return false;
8405 }
8406 
8407 /// Comparison routine for Objective-C protocols to be used with
8408 /// llvm::array_pod_sort.
8409 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
8410                                       ObjCProtocolDecl * const *rhs) {
8411   return (*lhs)->getName().compare((*rhs)->getName());
8412 }
8413 
8414 /// getIntersectionOfProtocols - This routine finds the intersection of set
8415 /// of protocols inherited from two distinct objective-c pointer objects with
8416 /// the given common base.
8417 /// It is used to build composite qualifier list of the composite type of
8418 /// the conditional expression involving two objective-c pointer objects.
8419 static
8420 void getIntersectionOfProtocols(ASTContext &Context,
8421                                 const ObjCInterfaceDecl *CommonBase,
8422                                 const ObjCObjectPointerType *LHSOPT,
8423                                 const ObjCObjectPointerType *RHSOPT,
8424       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
8425 
8426   const ObjCObjectType* LHS = LHSOPT->getObjectType();
8427   const ObjCObjectType* RHS = RHSOPT->getObjectType();
8428   assert(LHS->getInterface() && "LHS must have an interface base");
8429   assert(RHS->getInterface() && "RHS must have an interface base");
8430 
8431   // Add all of the protocols for the LHS.
8432   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
8433 
8434   // Start with the protocol qualifiers.
8435   for (auto proto : LHS->quals()) {
8436     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
8437   }
8438 
8439   // Also add the protocols associated with the LHS interface.
8440   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
8441 
8442   // Add all of the protocols for the RHS.
8443   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
8444 
8445   // Start with the protocol qualifiers.
8446   for (auto proto : RHS->quals()) {
8447     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
8448   }
8449 
8450   // Also add the protocols associated with the RHS interface.
8451   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
8452 
8453   // Compute the intersection of the collected protocol sets.
8454   for (auto proto : LHSProtocolSet) {
8455     if (RHSProtocolSet.count(proto))
8456       IntersectionSet.push_back(proto);
8457   }
8458 
8459   // Compute the set of protocols that is implied by either the common type or
8460   // the protocols within the intersection.
8461   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
8462   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
8463 
8464   // Remove any implied protocols from the list of inherited protocols.
8465   if (!ImpliedProtocols.empty()) {
8466     IntersectionSet.erase(
8467       std::remove_if(IntersectionSet.begin(),
8468                      IntersectionSet.end(),
8469                      [&](ObjCProtocolDecl *proto) -> bool {
8470                        return ImpliedProtocols.count(proto) > 0;
8471                      }),
8472       IntersectionSet.end());
8473   }
8474 
8475   // Sort the remaining protocols by name.
8476   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
8477                        compareObjCProtocolsByName);
8478 }
8479 
8480 /// Determine whether the first type is a subtype of the second.
8481 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
8482                                      QualType rhs) {
8483   // Common case: two object pointers.
8484   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
8485   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
8486   if (lhsOPT && rhsOPT)
8487     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
8488 
8489   // Two block pointers.
8490   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
8491   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
8492   if (lhsBlock && rhsBlock)
8493     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
8494 
8495   // If either is an unqualified 'id' and the other is a block, it's
8496   // acceptable.
8497   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
8498       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
8499     return true;
8500 
8501   return false;
8502 }
8503 
8504 // Check that the given Objective-C type argument lists are equivalent.
8505 static bool sameObjCTypeArgs(ASTContext &ctx,
8506                              const ObjCInterfaceDecl *iface,
8507                              ArrayRef<QualType> lhsArgs,
8508                              ArrayRef<QualType> rhsArgs,
8509                              bool stripKindOf) {
8510   if (lhsArgs.size() != rhsArgs.size())
8511     return false;
8512 
8513   ObjCTypeParamList *typeParams = iface->getTypeParamList();
8514   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
8515     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
8516       continue;
8517 
8518     switch (typeParams->begin()[i]->getVariance()) {
8519     case ObjCTypeParamVariance::Invariant:
8520       if (!stripKindOf ||
8521           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
8522                            rhsArgs[i].stripObjCKindOfType(ctx))) {
8523         return false;
8524       }
8525       break;
8526 
8527     case ObjCTypeParamVariance::Covariant:
8528       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
8529         return false;
8530       break;
8531 
8532     case ObjCTypeParamVariance::Contravariant:
8533       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
8534         return false;
8535       break;
8536     }
8537   }
8538 
8539   return true;
8540 }
8541 
8542 QualType ASTContext::areCommonBaseCompatible(
8543            const ObjCObjectPointerType *Lptr,
8544            const ObjCObjectPointerType *Rptr) {
8545   const ObjCObjectType *LHS = Lptr->getObjectType();
8546   const ObjCObjectType *RHS = Rptr->getObjectType();
8547   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
8548   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
8549 
8550   if (!LDecl || !RDecl)
8551     return {};
8552 
8553   // When either LHS or RHS is a kindof type, we should return a kindof type.
8554   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
8555   // kindof(A).
8556   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
8557 
8558   // Follow the left-hand side up the class hierarchy until we either hit a
8559   // root or find the RHS. Record the ancestors in case we don't find it.
8560   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
8561     LHSAncestors;
8562   while (true) {
8563     // Record this ancestor. We'll need this if the common type isn't in the
8564     // path from the LHS to the root.
8565     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
8566 
8567     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
8568       // Get the type arguments.
8569       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
8570       bool anyChanges = false;
8571       if (LHS->isSpecialized() && RHS->isSpecialized()) {
8572         // Both have type arguments, compare them.
8573         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8574                               LHS->getTypeArgs(), RHS->getTypeArgs(),
8575                               /*stripKindOf=*/true))
8576           return {};
8577       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8578         // If only one has type arguments, the result will not have type
8579         // arguments.
8580         LHSTypeArgs = {};
8581         anyChanges = true;
8582       }
8583 
8584       // Compute the intersection of protocols.
8585       SmallVector<ObjCProtocolDecl *, 8> Protocols;
8586       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
8587                                  Protocols);
8588       if (!Protocols.empty())
8589         anyChanges = true;
8590 
8591       // If anything in the LHS will have changed, build a new result type.
8592       // If we need to return a kindof type but LHS is not a kindof type, we
8593       // build a new result type.
8594       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
8595         QualType Result = getObjCInterfaceType(LHS->getInterface());
8596         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
8597                                    anyKindOf || LHS->isKindOfType());
8598         return getObjCObjectPointerType(Result);
8599       }
8600 
8601       return getObjCObjectPointerType(QualType(LHS, 0));
8602     }
8603 
8604     // Find the superclass.
8605     QualType LHSSuperType = LHS->getSuperClassType();
8606     if (LHSSuperType.isNull())
8607       break;
8608 
8609     LHS = LHSSuperType->castAs<ObjCObjectType>();
8610   }
8611 
8612   // We didn't find anything by following the LHS to its root; now check
8613   // the RHS against the cached set of ancestors.
8614   while (true) {
8615     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
8616     if (KnownLHS != LHSAncestors.end()) {
8617       LHS = KnownLHS->second;
8618 
8619       // Get the type arguments.
8620       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
8621       bool anyChanges = false;
8622       if (LHS->isSpecialized() && RHS->isSpecialized()) {
8623         // Both have type arguments, compare them.
8624         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8625                               LHS->getTypeArgs(), RHS->getTypeArgs(),
8626                               /*stripKindOf=*/true))
8627           return {};
8628       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8629         // If only one has type arguments, the result will not have type
8630         // arguments.
8631         RHSTypeArgs = {};
8632         anyChanges = true;
8633       }
8634 
8635       // Compute the intersection of protocols.
8636       SmallVector<ObjCProtocolDecl *, 8> Protocols;
8637       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
8638                                  Protocols);
8639       if (!Protocols.empty())
8640         anyChanges = true;
8641 
8642       // If we need to return a kindof type but RHS is not a kindof type, we
8643       // build a new result type.
8644       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
8645         QualType Result = getObjCInterfaceType(RHS->getInterface());
8646         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
8647                                    anyKindOf || RHS->isKindOfType());
8648         return getObjCObjectPointerType(Result);
8649       }
8650 
8651       return getObjCObjectPointerType(QualType(RHS, 0));
8652     }
8653 
8654     // Find the superclass of the RHS.
8655     QualType RHSSuperType = RHS->getSuperClassType();
8656     if (RHSSuperType.isNull())
8657       break;
8658 
8659     RHS = RHSSuperType->castAs<ObjCObjectType>();
8660   }
8661 
8662   return {};
8663 }
8664 
8665 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
8666                                          const ObjCObjectType *RHS) {
8667   assert(LHS->getInterface() && "LHS is not an interface type");
8668   assert(RHS->getInterface() && "RHS is not an interface type");
8669 
8670   // Verify that the base decls are compatible: the RHS must be a subclass of
8671   // the LHS.
8672   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
8673   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
8674   if (!IsSuperClass)
8675     return false;
8676 
8677   // If the LHS has protocol qualifiers, determine whether all of them are
8678   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
8679   // LHS).
8680   if (LHS->getNumProtocols() > 0) {
8681     // OK if conversion of LHS to SuperClass results in narrowing of types
8682     // ; i.e., SuperClass may implement at least one of the protocols
8683     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
8684     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
8685     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
8686     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
8687     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
8688     // qualifiers.
8689     for (auto *RHSPI : RHS->quals())
8690       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
8691     // If there is no protocols associated with RHS, it is not a match.
8692     if (SuperClassInheritedProtocols.empty())
8693       return false;
8694 
8695     for (const auto *LHSProto : LHS->quals()) {
8696       bool SuperImplementsProtocol = false;
8697       for (auto *SuperClassProto : SuperClassInheritedProtocols)
8698         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
8699           SuperImplementsProtocol = true;
8700           break;
8701         }
8702       if (!SuperImplementsProtocol)
8703         return false;
8704     }
8705   }
8706 
8707   // If the LHS is specialized, we may need to check type arguments.
8708   if (LHS->isSpecialized()) {
8709     // Follow the superclass chain until we've matched the LHS class in the
8710     // hierarchy. This substitutes type arguments through.
8711     const ObjCObjectType *RHSSuper = RHS;
8712     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
8713       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
8714 
8715     // If the RHS is specializd, compare type arguments.
8716     if (RHSSuper->isSpecialized() &&
8717         !sameObjCTypeArgs(*this, LHS->getInterface(),
8718                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
8719                           /*stripKindOf=*/true)) {
8720       return false;
8721     }
8722   }
8723 
8724   return true;
8725 }
8726 
8727 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
8728   // get the "pointed to" types
8729   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
8730   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
8731 
8732   if (!LHSOPT || !RHSOPT)
8733     return false;
8734 
8735   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
8736          canAssignObjCInterfaces(RHSOPT, LHSOPT);
8737 }
8738 
8739 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
8740   return canAssignObjCInterfaces(
8741                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
8742                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
8743 }
8744 
8745 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
8746 /// both shall have the identically qualified version of a compatible type.
8747 /// C99 6.2.7p1: Two types have compatible types if their types are the
8748 /// same. See 6.7.[2,3,5] for additional rules.
8749 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
8750                                     bool CompareUnqualified) {
8751   if (getLangOpts().CPlusPlus)
8752     return hasSameType(LHS, RHS);
8753 
8754   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
8755 }
8756 
8757 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
8758   return typesAreCompatible(LHS, RHS);
8759 }
8760 
8761 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
8762   return !mergeTypes(LHS, RHS, true).isNull();
8763 }
8764 
8765 /// mergeTransparentUnionType - if T is a transparent union type and a member
8766 /// of T is compatible with SubType, return the merged type, else return
8767 /// QualType()
8768 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
8769                                                bool OfBlockPointer,
8770                                                bool Unqualified) {
8771   if (const RecordType *UT = T->getAsUnionType()) {
8772     RecordDecl *UD = UT->getDecl();
8773     if (UD->hasAttr<TransparentUnionAttr>()) {
8774       for (const auto *I : UD->fields()) {
8775         QualType ET = I->getType().getUnqualifiedType();
8776         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
8777         if (!MT.isNull())
8778           return MT;
8779       }
8780     }
8781   }
8782 
8783   return {};
8784 }
8785 
8786 /// mergeFunctionParameterTypes - merge two types which appear as function
8787 /// parameter types
8788 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
8789                                                  bool OfBlockPointer,
8790                                                  bool Unqualified) {
8791   // GNU extension: two types are compatible if they appear as a function
8792   // argument, one of the types is a transparent union type and the other
8793   // type is compatible with a union member
8794   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
8795                                               Unqualified);
8796   if (!lmerge.isNull())
8797     return lmerge;
8798 
8799   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
8800                                               Unqualified);
8801   if (!rmerge.isNull())
8802     return rmerge;
8803 
8804   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
8805 }
8806 
8807 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
8808                                         bool OfBlockPointer,
8809                                         bool Unqualified) {
8810   const auto *lbase = lhs->castAs<FunctionType>();
8811   const auto *rbase = rhs->castAs<FunctionType>();
8812   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
8813   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
8814   bool allLTypes = true;
8815   bool allRTypes = true;
8816 
8817   // Check return type
8818   QualType retType;
8819   if (OfBlockPointer) {
8820     QualType RHS = rbase->getReturnType();
8821     QualType LHS = lbase->getReturnType();
8822     bool UnqualifiedResult = Unqualified;
8823     if (!UnqualifiedResult)
8824       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
8825     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
8826   }
8827   else
8828     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
8829                          Unqualified);
8830   if (retType.isNull())
8831     return {};
8832 
8833   if (Unqualified)
8834     retType = retType.getUnqualifiedType();
8835 
8836   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
8837   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
8838   if (Unqualified) {
8839     LRetType = LRetType.getUnqualifiedType();
8840     RRetType = RRetType.getUnqualifiedType();
8841   }
8842 
8843   if (getCanonicalType(retType) != LRetType)
8844     allLTypes = false;
8845   if (getCanonicalType(retType) != RRetType)
8846     allRTypes = false;
8847 
8848   // FIXME: double check this
8849   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
8850   //                           rbase->getRegParmAttr() != 0 &&
8851   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
8852   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
8853   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
8854 
8855   // Compatible functions must have compatible calling conventions
8856   if (lbaseInfo.getCC() != rbaseInfo.getCC())
8857     return {};
8858 
8859   // Regparm is part of the calling convention.
8860   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
8861     return {};
8862   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
8863     return {};
8864 
8865   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
8866     return {};
8867   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
8868     return {};
8869   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
8870     return {};
8871 
8872   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
8873   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
8874 
8875   if (lbaseInfo.getNoReturn() != NoReturn)
8876     allLTypes = false;
8877   if (rbaseInfo.getNoReturn() != NoReturn)
8878     allRTypes = false;
8879 
8880   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
8881 
8882   if (lproto && rproto) { // two C99 style function prototypes
8883     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
8884            "C++ shouldn't be here");
8885     // Compatible functions must have the same number of parameters
8886     if (lproto->getNumParams() != rproto->getNumParams())
8887       return {};
8888 
8889     // Variadic and non-variadic functions aren't compatible
8890     if (lproto->isVariadic() != rproto->isVariadic())
8891       return {};
8892 
8893     if (lproto->getMethodQuals() != rproto->getMethodQuals())
8894       return {};
8895 
8896     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
8897     bool canUseLeft, canUseRight;
8898     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
8899                                newParamInfos))
8900       return {};
8901 
8902     if (!canUseLeft)
8903       allLTypes = false;
8904     if (!canUseRight)
8905       allRTypes = false;
8906 
8907     // Check parameter type compatibility
8908     SmallVector<QualType, 10> types;
8909     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
8910       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
8911       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
8912       QualType paramType = mergeFunctionParameterTypes(
8913           lParamType, rParamType, OfBlockPointer, Unqualified);
8914       if (paramType.isNull())
8915         return {};
8916 
8917       if (Unqualified)
8918         paramType = paramType.getUnqualifiedType();
8919 
8920       types.push_back(paramType);
8921       if (Unqualified) {
8922         lParamType = lParamType.getUnqualifiedType();
8923         rParamType = rParamType.getUnqualifiedType();
8924       }
8925 
8926       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
8927         allLTypes = false;
8928       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
8929         allRTypes = false;
8930     }
8931 
8932     if (allLTypes) return lhs;
8933     if (allRTypes) return rhs;
8934 
8935     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
8936     EPI.ExtInfo = einfo;
8937     EPI.ExtParameterInfos =
8938         newParamInfos.empty() ? nullptr : newParamInfos.data();
8939     return getFunctionType(retType, types, EPI);
8940   }
8941 
8942   if (lproto) allRTypes = false;
8943   if (rproto) allLTypes = false;
8944 
8945   const FunctionProtoType *proto = lproto ? lproto : rproto;
8946   if (proto) {
8947     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
8948     if (proto->isVariadic())
8949       return {};
8950     // Check that the types are compatible with the types that
8951     // would result from default argument promotions (C99 6.7.5.3p15).
8952     // The only types actually affected are promotable integer
8953     // types and floats, which would be passed as a different
8954     // type depending on whether the prototype is visible.
8955     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
8956       QualType paramTy = proto->getParamType(i);
8957 
8958       // Look at the converted type of enum types, since that is the type used
8959       // to pass enum values.
8960       if (const auto *Enum = paramTy->getAs<EnumType>()) {
8961         paramTy = Enum->getDecl()->getIntegerType();
8962         if (paramTy.isNull())
8963           return {};
8964       }
8965 
8966       if (paramTy->isPromotableIntegerType() ||
8967           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
8968         return {};
8969     }
8970 
8971     if (allLTypes) return lhs;
8972     if (allRTypes) return rhs;
8973 
8974     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
8975     EPI.ExtInfo = einfo;
8976     return getFunctionType(retType, proto->getParamTypes(), EPI);
8977   }
8978 
8979   if (allLTypes) return lhs;
8980   if (allRTypes) return rhs;
8981   return getFunctionNoProtoType(retType, einfo);
8982 }
8983 
8984 /// Given that we have an enum type and a non-enum type, try to merge them.
8985 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
8986                                      QualType other, bool isBlockReturnType) {
8987   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
8988   // a signed integer type, or an unsigned integer type.
8989   // Compatibility is based on the underlying type, not the promotion
8990   // type.
8991   QualType underlyingType = ET->getDecl()->getIntegerType();
8992   if (underlyingType.isNull())
8993     return {};
8994   if (Context.hasSameType(underlyingType, other))
8995     return other;
8996 
8997   // In block return types, we're more permissive and accept any
8998   // integral type of the same size.
8999   if (isBlockReturnType && other->isIntegerType() &&
9000       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
9001     return other;
9002 
9003   return {};
9004 }
9005 
9006 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
9007                                 bool OfBlockPointer,
9008                                 bool Unqualified, bool BlockReturnType) {
9009   // C++ [expr]: If an expression initially has the type "reference to T", the
9010   // type is adjusted to "T" prior to any further analysis, the expression
9011   // designates the object or function denoted by the reference, and the
9012   // expression is an lvalue unless the reference is an rvalue reference and
9013   // the expression is a function call (possibly inside parentheses).
9014   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
9015   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
9016 
9017   if (Unqualified) {
9018     LHS = LHS.getUnqualifiedType();
9019     RHS = RHS.getUnqualifiedType();
9020   }
9021 
9022   QualType LHSCan = getCanonicalType(LHS),
9023            RHSCan = getCanonicalType(RHS);
9024 
9025   // If two types are identical, they are compatible.
9026   if (LHSCan == RHSCan)
9027     return LHS;
9028 
9029   // If the qualifiers are different, the types aren't compatible... mostly.
9030   Qualifiers LQuals = LHSCan.getLocalQualifiers();
9031   Qualifiers RQuals = RHSCan.getLocalQualifiers();
9032   if (LQuals != RQuals) {
9033     // If any of these qualifiers are different, we have a type
9034     // mismatch.
9035     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9036         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
9037         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
9038         LQuals.hasUnaligned() != RQuals.hasUnaligned())
9039       return {};
9040 
9041     // Exactly one GC qualifier difference is allowed: __strong is
9042     // okay if the other type has no GC qualifier but is an Objective
9043     // C object pointer (i.e. implicitly strong by default).  We fix
9044     // this by pretending that the unqualified type was actually
9045     // qualified __strong.
9046     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9047     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9048     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9049 
9050     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9051       return {};
9052 
9053     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
9054       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
9055     }
9056     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
9057       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
9058     }
9059     return {};
9060   }
9061 
9062   // Okay, qualifiers are equal.
9063 
9064   Type::TypeClass LHSClass = LHSCan->getTypeClass();
9065   Type::TypeClass RHSClass = RHSCan->getTypeClass();
9066 
9067   // We want to consider the two function types to be the same for these
9068   // comparisons, just force one to the other.
9069   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
9070   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
9071 
9072   // Same as above for arrays
9073   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
9074     LHSClass = Type::ConstantArray;
9075   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
9076     RHSClass = Type::ConstantArray;
9077 
9078   // ObjCInterfaces are just specialized ObjCObjects.
9079   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
9080   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
9081 
9082   // Canonicalize ExtVector -> Vector.
9083   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
9084   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
9085 
9086   // If the canonical type classes don't match.
9087   if (LHSClass != RHSClass) {
9088     // Note that we only have special rules for turning block enum
9089     // returns into block int returns, not vice-versa.
9090     if (const auto *ETy = LHS->getAs<EnumType>()) {
9091       return mergeEnumWithInteger(*this, ETy, RHS, false);
9092     }
9093     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
9094       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
9095     }
9096     // allow block pointer type to match an 'id' type.
9097     if (OfBlockPointer && !BlockReturnType) {
9098        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
9099          return LHS;
9100       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
9101         return RHS;
9102     }
9103 
9104     return {};
9105   }
9106 
9107   // The canonical type classes match.
9108   switch (LHSClass) {
9109 #define TYPE(Class, Base)
9110 #define ABSTRACT_TYPE(Class, Base)
9111 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
9112 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
9113 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
9114 #include "clang/AST/TypeNodes.inc"
9115     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
9116 
9117   case Type::Auto:
9118   case Type::DeducedTemplateSpecialization:
9119   case Type::LValueReference:
9120   case Type::RValueReference:
9121   case Type::MemberPointer:
9122     llvm_unreachable("C++ should never be in mergeTypes");
9123 
9124   case Type::ObjCInterface:
9125   case Type::IncompleteArray:
9126   case Type::VariableArray:
9127   case Type::FunctionProto:
9128   case Type::ExtVector:
9129     llvm_unreachable("Types are eliminated above");
9130 
9131   case Type::Pointer:
9132   {
9133     // Merge two pointer types, while trying to preserve typedef info
9134     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
9135     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
9136     if (Unqualified) {
9137       LHSPointee = LHSPointee.getUnqualifiedType();
9138       RHSPointee = RHSPointee.getUnqualifiedType();
9139     }
9140     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
9141                                      Unqualified);
9142     if (ResultType.isNull())
9143       return {};
9144     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9145       return LHS;
9146     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9147       return RHS;
9148     return getPointerType(ResultType);
9149   }
9150   case Type::BlockPointer:
9151   {
9152     // Merge two block pointer types, while trying to preserve typedef info
9153     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
9154     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
9155     if (Unqualified) {
9156       LHSPointee = LHSPointee.getUnqualifiedType();
9157       RHSPointee = RHSPointee.getUnqualifiedType();
9158     }
9159     if (getLangOpts().OpenCL) {
9160       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
9161       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
9162       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
9163       // 6.12.5) thus the following check is asymmetric.
9164       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
9165         return {};
9166       LHSPteeQual.removeAddressSpace();
9167       RHSPteeQual.removeAddressSpace();
9168       LHSPointee =
9169           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
9170       RHSPointee =
9171           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
9172     }
9173     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
9174                                      Unqualified);
9175     if (ResultType.isNull())
9176       return {};
9177     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9178       return LHS;
9179     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9180       return RHS;
9181     return getBlockPointerType(ResultType);
9182   }
9183   case Type::Atomic:
9184   {
9185     // Merge two pointer types, while trying to preserve typedef info
9186     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
9187     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
9188     if (Unqualified) {
9189       LHSValue = LHSValue.getUnqualifiedType();
9190       RHSValue = RHSValue.getUnqualifiedType();
9191     }
9192     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
9193                                      Unqualified);
9194     if (ResultType.isNull())
9195       return {};
9196     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
9197       return LHS;
9198     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
9199       return RHS;
9200     return getAtomicType(ResultType);
9201   }
9202   case Type::ConstantArray:
9203   {
9204     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
9205     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
9206     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
9207       return {};
9208 
9209     QualType LHSElem = getAsArrayType(LHS)->getElementType();
9210     QualType RHSElem = getAsArrayType(RHS)->getElementType();
9211     if (Unqualified) {
9212       LHSElem = LHSElem.getUnqualifiedType();
9213       RHSElem = RHSElem.getUnqualifiedType();
9214     }
9215 
9216     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
9217     if (ResultType.isNull())
9218       return {};
9219 
9220     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
9221     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
9222 
9223     // If either side is a variable array, and both are complete, check whether
9224     // the current dimension is definite.
9225     if (LVAT || RVAT) {
9226       auto SizeFetch = [this](const VariableArrayType* VAT,
9227           const ConstantArrayType* CAT)
9228           -> std::pair<bool,llvm::APInt> {
9229         if (VAT) {
9230           llvm::APSInt TheInt;
9231           Expr *E = VAT->getSizeExpr();
9232           if (E && E->isIntegerConstantExpr(TheInt, *this))
9233             return std::make_pair(true, TheInt);
9234           else
9235             return std::make_pair(false, TheInt);
9236         } else if (CAT) {
9237             return std::make_pair(true, CAT->getSize());
9238         } else {
9239             return std::make_pair(false, llvm::APInt());
9240         }
9241       };
9242 
9243       bool HaveLSize, HaveRSize;
9244       llvm::APInt LSize, RSize;
9245       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
9246       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
9247       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
9248         return {}; // Definite, but unequal, array dimension
9249     }
9250 
9251     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9252       return LHS;
9253     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9254       return RHS;
9255     if (LCAT)
9256       return getConstantArrayType(ResultType, LCAT->getSize(),
9257                                   LCAT->getSizeExpr(),
9258                                   ArrayType::ArraySizeModifier(), 0);
9259     if (RCAT)
9260       return getConstantArrayType(ResultType, RCAT->getSize(),
9261                                   RCAT->getSizeExpr(),
9262                                   ArrayType::ArraySizeModifier(), 0);
9263     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9264       return LHS;
9265     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9266       return RHS;
9267     if (LVAT) {
9268       // FIXME: This isn't correct! But tricky to implement because
9269       // the array's size has to be the size of LHS, but the type
9270       // has to be different.
9271       return LHS;
9272     }
9273     if (RVAT) {
9274       // FIXME: This isn't correct! But tricky to implement because
9275       // the array's size has to be the size of RHS, but the type
9276       // has to be different.
9277       return RHS;
9278     }
9279     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
9280     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
9281     return getIncompleteArrayType(ResultType,
9282                                   ArrayType::ArraySizeModifier(), 0);
9283   }
9284   case Type::FunctionNoProto:
9285     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
9286   case Type::Record:
9287   case Type::Enum:
9288     return {};
9289   case Type::Builtin:
9290     // Only exactly equal builtin types are compatible, which is tested above.
9291     return {};
9292   case Type::Complex:
9293     // Distinct complex types are incompatible.
9294     return {};
9295   case Type::Vector:
9296     // FIXME: The merged type should be an ExtVector!
9297     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
9298                              RHSCan->castAs<VectorType>()))
9299       return LHS;
9300     return {};
9301   case Type::ObjCObject: {
9302     // Check if the types are assignment compatible.
9303     // FIXME: This should be type compatibility, e.g. whether
9304     // "LHS x; RHS x;" at global scope is legal.
9305     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
9306                                 RHS->castAs<ObjCObjectType>()))
9307       return LHS;
9308     return {};
9309   }
9310   case Type::ObjCObjectPointer:
9311     if (OfBlockPointer) {
9312       if (canAssignObjCInterfacesInBlockPointer(
9313               LHS->castAs<ObjCObjectPointerType>(),
9314               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
9315         return LHS;
9316       return {};
9317     }
9318     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
9319                                 RHS->castAs<ObjCObjectPointerType>()))
9320       return LHS;
9321     return {};
9322   case Type::Pipe:
9323     assert(LHS != RHS &&
9324            "Equivalent pipe types should have already been handled!");
9325     return {};
9326   }
9327 
9328   llvm_unreachable("Invalid Type::Class!");
9329 }
9330 
9331 bool ASTContext::mergeExtParameterInfo(
9332     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
9333     bool &CanUseFirst, bool &CanUseSecond,
9334     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
9335   assert(NewParamInfos.empty() && "param info list not empty");
9336   CanUseFirst = CanUseSecond = true;
9337   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
9338   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
9339 
9340   // Fast path: if the first type doesn't have ext parameter infos,
9341   // we match if and only if the second type also doesn't have them.
9342   if (!FirstHasInfo && !SecondHasInfo)
9343     return true;
9344 
9345   bool NeedParamInfo = false;
9346   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
9347                           : SecondFnType->getExtParameterInfos().size();
9348 
9349   for (size_t I = 0; I < E; ++I) {
9350     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
9351     if (FirstHasInfo)
9352       FirstParam = FirstFnType->getExtParameterInfo(I);
9353     if (SecondHasInfo)
9354       SecondParam = SecondFnType->getExtParameterInfo(I);
9355 
9356     // Cannot merge unless everything except the noescape flag matches.
9357     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
9358       return false;
9359 
9360     bool FirstNoEscape = FirstParam.isNoEscape();
9361     bool SecondNoEscape = SecondParam.isNoEscape();
9362     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
9363     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
9364     if (NewParamInfos.back().getOpaqueValue())
9365       NeedParamInfo = true;
9366     if (FirstNoEscape != IsNoEscape)
9367       CanUseFirst = false;
9368     if (SecondNoEscape != IsNoEscape)
9369       CanUseSecond = false;
9370   }
9371 
9372   if (!NeedParamInfo)
9373     NewParamInfos.clear();
9374 
9375   return true;
9376 }
9377 
9378 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
9379   ObjCLayouts[CD] = nullptr;
9380 }
9381 
9382 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
9383 /// 'RHS' attributes and returns the merged version; including for function
9384 /// return types.
9385 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
9386   QualType LHSCan = getCanonicalType(LHS),
9387   RHSCan = getCanonicalType(RHS);
9388   // If two types are identical, they are compatible.
9389   if (LHSCan == RHSCan)
9390     return LHS;
9391   if (RHSCan->isFunctionType()) {
9392     if (!LHSCan->isFunctionType())
9393       return {};
9394     QualType OldReturnType =
9395         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
9396     QualType NewReturnType =
9397         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
9398     QualType ResReturnType =
9399       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
9400     if (ResReturnType.isNull())
9401       return {};
9402     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
9403       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
9404       // In either case, use OldReturnType to build the new function type.
9405       const auto *F = LHS->castAs<FunctionType>();
9406       if (const auto *FPT = cast<FunctionProtoType>(F)) {
9407         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9408         EPI.ExtInfo = getFunctionExtInfo(LHS);
9409         QualType ResultType =
9410             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
9411         return ResultType;
9412       }
9413     }
9414     return {};
9415   }
9416 
9417   // If the qualifiers are different, the types can still be merged.
9418   Qualifiers LQuals = LHSCan.getLocalQualifiers();
9419   Qualifiers RQuals = RHSCan.getLocalQualifiers();
9420   if (LQuals != RQuals) {
9421     // If any of these qualifiers are different, we have a type mismatch.
9422     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9423         LQuals.getAddressSpace() != RQuals.getAddressSpace())
9424       return {};
9425 
9426     // Exactly one GC qualifier difference is allowed: __strong is
9427     // okay if the other type has no GC qualifier but is an Objective
9428     // C object pointer (i.e. implicitly strong by default).  We fix
9429     // this by pretending that the unqualified type was actually
9430     // qualified __strong.
9431     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9432     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9433     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9434 
9435     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9436       return {};
9437 
9438     if (GC_L == Qualifiers::Strong)
9439       return LHS;
9440     if (GC_R == Qualifiers::Strong)
9441       return RHS;
9442     return {};
9443   }
9444 
9445   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
9446     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9447     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9448     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
9449     if (ResQT == LHSBaseQT)
9450       return LHS;
9451     if (ResQT == RHSBaseQT)
9452       return RHS;
9453   }
9454   return {};
9455 }
9456 
9457 //===----------------------------------------------------------------------===//
9458 //                         Integer Predicates
9459 //===----------------------------------------------------------------------===//
9460 
9461 unsigned ASTContext::getIntWidth(QualType T) const {
9462   if (const auto *ET = T->getAs<EnumType>())
9463     T = ET->getDecl()->getIntegerType();
9464   if (T->isBooleanType())
9465     return 1;
9466   // For builtin types, just use the standard type sizing method
9467   return (unsigned)getTypeSize(T);
9468 }
9469 
9470 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
9471   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
9472          "Unexpected type");
9473 
9474   // Turn <4 x signed int> -> <4 x unsigned int>
9475   if (const auto *VTy = T->getAs<VectorType>())
9476     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
9477                          VTy->getNumElements(), VTy->getVectorKind());
9478 
9479   // For enums, we return the unsigned version of the base type.
9480   if (const auto *ETy = T->getAs<EnumType>())
9481     T = ETy->getDecl()->getIntegerType();
9482 
9483   switch (T->castAs<BuiltinType>()->getKind()) {
9484   case BuiltinType::Char_S:
9485   case BuiltinType::SChar:
9486     return UnsignedCharTy;
9487   case BuiltinType::Short:
9488     return UnsignedShortTy;
9489   case BuiltinType::Int:
9490     return UnsignedIntTy;
9491   case BuiltinType::Long:
9492     return UnsignedLongTy;
9493   case BuiltinType::LongLong:
9494     return UnsignedLongLongTy;
9495   case BuiltinType::Int128:
9496     return UnsignedInt128Ty;
9497 
9498   case BuiltinType::ShortAccum:
9499     return UnsignedShortAccumTy;
9500   case BuiltinType::Accum:
9501     return UnsignedAccumTy;
9502   case BuiltinType::LongAccum:
9503     return UnsignedLongAccumTy;
9504   case BuiltinType::SatShortAccum:
9505     return SatUnsignedShortAccumTy;
9506   case BuiltinType::SatAccum:
9507     return SatUnsignedAccumTy;
9508   case BuiltinType::SatLongAccum:
9509     return SatUnsignedLongAccumTy;
9510   case BuiltinType::ShortFract:
9511     return UnsignedShortFractTy;
9512   case BuiltinType::Fract:
9513     return UnsignedFractTy;
9514   case BuiltinType::LongFract:
9515     return UnsignedLongFractTy;
9516   case BuiltinType::SatShortFract:
9517     return SatUnsignedShortFractTy;
9518   case BuiltinType::SatFract:
9519     return SatUnsignedFractTy;
9520   case BuiltinType::SatLongFract:
9521     return SatUnsignedLongFractTy;
9522   default:
9523     llvm_unreachable("Unexpected signed integer or fixed point type");
9524   }
9525 }
9526 
9527 ASTMutationListener::~ASTMutationListener() = default;
9528 
9529 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
9530                                             QualType ReturnType) {}
9531 
9532 //===----------------------------------------------------------------------===//
9533 //                          Builtin Type Computation
9534 //===----------------------------------------------------------------------===//
9535 
9536 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
9537 /// pointer over the consumed characters.  This returns the resultant type.  If
9538 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
9539 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
9540 /// a vector of "i*".
9541 ///
9542 /// RequiresICE is filled in on return to indicate whether the value is required
9543 /// to be an Integer Constant Expression.
9544 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
9545                                   ASTContext::GetBuiltinTypeError &Error,
9546                                   bool &RequiresICE,
9547                                   bool AllowTypeModifiers) {
9548   // Modifiers.
9549   int HowLong = 0;
9550   bool Signed = false, Unsigned = false;
9551   RequiresICE = false;
9552 
9553   // Read the prefixed modifiers first.
9554   bool Done = false;
9555   #ifndef NDEBUG
9556   bool IsSpecial = false;
9557   #endif
9558   while (!Done) {
9559     switch (*Str++) {
9560     default: Done = true; --Str; break;
9561     case 'I':
9562       RequiresICE = true;
9563       break;
9564     case 'S':
9565       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
9566       assert(!Signed && "Can't use 'S' modifier multiple times!");
9567       Signed = true;
9568       break;
9569     case 'U':
9570       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
9571       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
9572       Unsigned = true;
9573       break;
9574     case 'L':
9575       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
9576       assert(HowLong <= 2 && "Can't have LLLL modifier");
9577       ++HowLong;
9578       break;
9579     case 'N':
9580       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
9581       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9582       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
9583       #ifndef NDEBUG
9584       IsSpecial = true;
9585       #endif
9586       if (Context.getTargetInfo().getLongWidth() == 32)
9587         ++HowLong;
9588       break;
9589     case 'W':
9590       // This modifier represents int64 type.
9591       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9592       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
9593       #ifndef NDEBUG
9594       IsSpecial = true;
9595       #endif
9596       switch (Context.getTargetInfo().getInt64Type()) {
9597       default:
9598         llvm_unreachable("Unexpected integer type");
9599       case TargetInfo::SignedLong:
9600         HowLong = 1;
9601         break;
9602       case TargetInfo::SignedLongLong:
9603         HowLong = 2;
9604         break;
9605       }
9606       break;
9607     case 'Z':
9608       // This modifier represents int32 type.
9609       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9610       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
9611       #ifndef NDEBUG
9612       IsSpecial = true;
9613       #endif
9614       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
9615       default:
9616         llvm_unreachable("Unexpected integer type");
9617       case TargetInfo::SignedInt:
9618         HowLong = 0;
9619         break;
9620       case TargetInfo::SignedLong:
9621         HowLong = 1;
9622         break;
9623       case TargetInfo::SignedLongLong:
9624         HowLong = 2;
9625         break;
9626       }
9627       break;
9628     case 'O':
9629       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9630       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
9631       #ifndef NDEBUG
9632       IsSpecial = true;
9633       #endif
9634       if (Context.getLangOpts().OpenCL)
9635         HowLong = 1;
9636       else
9637         HowLong = 2;
9638       break;
9639     }
9640   }
9641 
9642   QualType Type;
9643 
9644   // Read the base type.
9645   switch (*Str++) {
9646   default: llvm_unreachable("Unknown builtin type letter!");
9647   case 'v':
9648     assert(HowLong == 0 && !Signed && !Unsigned &&
9649            "Bad modifiers used with 'v'!");
9650     Type = Context.VoidTy;
9651     break;
9652   case 'h':
9653     assert(HowLong == 0 && !Signed && !Unsigned &&
9654            "Bad modifiers used with 'h'!");
9655     Type = Context.HalfTy;
9656     break;
9657   case 'f':
9658     assert(HowLong == 0 && !Signed && !Unsigned &&
9659            "Bad modifiers used with 'f'!");
9660     Type = Context.FloatTy;
9661     break;
9662   case 'd':
9663     assert(HowLong < 3 && !Signed && !Unsigned &&
9664            "Bad modifiers used with 'd'!");
9665     if (HowLong == 1)
9666       Type = Context.LongDoubleTy;
9667     else if (HowLong == 2)
9668       Type = Context.Float128Ty;
9669     else
9670       Type = Context.DoubleTy;
9671     break;
9672   case 's':
9673     assert(HowLong == 0 && "Bad modifiers used with 's'!");
9674     if (Unsigned)
9675       Type = Context.UnsignedShortTy;
9676     else
9677       Type = Context.ShortTy;
9678     break;
9679   case 'i':
9680     if (HowLong == 3)
9681       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
9682     else if (HowLong == 2)
9683       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
9684     else if (HowLong == 1)
9685       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
9686     else
9687       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
9688     break;
9689   case 'c':
9690     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
9691     if (Signed)
9692       Type = Context.SignedCharTy;
9693     else if (Unsigned)
9694       Type = Context.UnsignedCharTy;
9695     else
9696       Type = Context.CharTy;
9697     break;
9698   case 'b': // boolean
9699     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
9700     Type = Context.BoolTy;
9701     break;
9702   case 'z':  // size_t.
9703     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
9704     Type = Context.getSizeType();
9705     break;
9706   case 'w':  // wchar_t.
9707     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
9708     Type = Context.getWideCharType();
9709     break;
9710   case 'F':
9711     Type = Context.getCFConstantStringType();
9712     break;
9713   case 'G':
9714     Type = Context.getObjCIdType();
9715     break;
9716   case 'H':
9717     Type = Context.getObjCSelType();
9718     break;
9719   case 'M':
9720     Type = Context.getObjCSuperType();
9721     break;
9722   case 'a':
9723     Type = Context.getBuiltinVaListType();
9724     assert(!Type.isNull() && "builtin va list type not initialized!");
9725     break;
9726   case 'A':
9727     // This is a "reference" to a va_list; however, what exactly
9728     // this means depends on how va_list is defined. There are two
9729     // different kinds of va_list: ones passed by value, and ones
9730     // passed by reference.  An example of a by-value va_list is
9731     // x86, where va_list is a char*. An example of by-ref va_list
9732     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
9733     // we want this argument to be a char*&; for x86-64, we want
9734     // it to be a __va_list_tag*.
9735     Type = Context.getBuiltinVaListType();
9736     assert(!Type.isNull() && "builtin va list type not initialized!");
9737     if (Type->isArrayType())
9738       Type = Context.getArrayDecayedType(Type);
9739     else
9740       Type = Context.getLValueReferenceType(Type);
9741     break;
9742   case 'V': {
9743     char *End;
9744     unsigned NumElements = strtoul(Str, &End, 10);
9745     assert(End != Str && "Missing vector size");
9746     Str = End;
9747 
9748     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
9749                                              RequiresICE, false);
9750     assert(!RequiresICE && "Can't require vector ICE");
9751 
9752     // TODO: No way to make AltiVec vectors in builtins yet.
9753     Type = Context.getVectorType(ElementType, NumElements,
9754                                  VectorType::GenericVector);
9755     break;
9756   }
9757   case 'E': {
9758     char *End;
9759 
9760     unsigned NumElements = strtoul(Str, &End, 10);
9761     assert(End != Str && "Missing vector size");
9762 
9763     Str = End;
9764 
9765     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
9766                                              false);
9767     Type = Context.getExtVectorType(ElementType, NumElements);
9768     break;
9769   }
9770   case 'X': {
9771     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
9772                                              false);
9773     assert(!RequiresICE && "Can't require complex ICE");
9774     Type = Context.getComplexType(ElementType);
9775     break;
9776   }
9777   case 'Y':
9778     Type = Context.getPointerDiffType();
9779     break;
9780   case 'P':
9781     Type = Context.getFILEType();
9782     if (Type.isNull()) {
9783       Error = ASTContext::GE_Missing_stdio;
9784       return {};
9785     }
9786     break;
9787   case 'J':
9788     if (Signed)
9789       Type = Context.getsigjmp_bufType();
9790     else
9791       Type = Context.getjmp_bufType();
9792 
9793     if (Type.isNull()) {
9794       Error = ASTContext::GE_Missing_setjmp;
9795       return {};
9796     }
9797     break;
9798   case 'K':
9799     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
9800     Type = Context.getucontext_tType();
9801 
9802     if (Type.isNull()) {
9803       Error = ASTContext::GE_Missing_ucontext;
9804       return {};
9805     }
9806     break;
9807   case 'p':
9808     Type = Context.getProcessIDType();
9809     break;
9810   }
9811 
9812   // If there are modifiers and if we're allowed to parse them, go for it.
9813   Done = !AllowTypeModifiers;
9814   while (!Done) {
9815     switch (char c = *Str++) {
9816     default: Done = true; --Str; break;
9817     case '*':
9818     case '&': {
9819       // Both pointers and references can have their pointee types
9820       // qualified with an address space.
9821       char *End;
9822       unsigned AddrSpace = strtoul(Str, &End, 10);
9823       if (End != Str) {
9824         // Note AddrSpace == 0 is not the same as an unspecified address space.
9825         Type = Context.getAddrSpaceQualType(
9826           Type,
9827           Context.getLangASForBuiltinAddressSpace(AddrSpace));
9828         Str = End;
9829       }
9830       if (c == '*')
9831         Type = Context.getPointerType(Type);
9832       else
9833         Type = Context.getLValueReferenceType(Type);
9834       break;
9835     }
9836     // FIXME: There's no way to have a built-in with an rvalue ref arg.
9837     case 'C':
9838       Type = Type.withConst();
9839       break;
9840     case 'D':
9841       Type = Context.getVolatileType(Type);
9842       break;
9843     case 'R':
9844       Type = Type.withRestrict();
9845       break;
9846     }
9847   }
9848 
9849   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
9850          "Integer constant 'I' type must be an integer");
9851 
9852   return Type;
9853 }
9854 
9855 /// GetBuiltinType - Return the type for the specified builtin.
9856 QualType ASTContext::GetBuiltinType(unsigned Id,
9857                                     GetBuiltinTypeError &Error,
9858                                     unsigned *IntegerConstantArgs) const {
9859   const char *TypeStr = BuiltinInfo.getTypeString(Id);
9860   if (TypeStr[0] == '\0') {
9861     Error = GE_Missing_type;
9862     return {};
9863   }
9864 
9865   SmallVector<QualType, 8> ArgTypes;
9866 
9867   bool RequiresICE = false;
9868   Error = GE_None;
9869   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
9870                                        RequiresICE, true);
9871   if (Error != GE_None)
9872     return {};
9873 
9874   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
9875 
9876   while (TypeStr[0] && TypeStr[0] != '.') {
9877     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
9878     if (Error != GE_None)
9879       return {};
9880 
9881     // If this argument is required to be an IntegerConstantExpression and the
9882     // caller cares, fill in the bitmask we return.
9883     if (RequiresICE && IntegerConstantArgs)
9884       *IntegerConstantArgs |= 1 << ArgTypes.size();
9885 
9886     // Do array -> pointer decay.  The builtin should use the decayed type.
9887     if (Ty->isArrayType())
9888       Ty = getArrayDecayedType(Ty);
9889 
9890     ArgTypes.push_back(Ty);
9891   }
9892 
9893   if (Id == Builtin::BI__GetExceptionInfo)
9894     return {};
9895 
9896   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
9897          "'.' should only occur at end of builtin type list!");
9898 
9899   bool Variadic = (TypeStr[0] == '.');
9900 
9901   FunctionType::ExtInfo EI(getDefaultCallingConvention(
9902       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
9903   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
9904 
9905 
9906   // We really shouldn't be making a no-proto type here.
9907   if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
9908     return getFunctionNoProtoType(ResType, EI);
9909 
9910   FunctionProtoType::ExtProtoInfo EPI;
9911   EPI.ExtInfo = EI;
9912   EPI.Variadic = Variadic;
9913   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
9914     EPI.ExceptionSpec.Type =
9915         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
9916 
9917   return getFunctionType(ResType, ArgTypes, EPI);
9918 }
9919 
9920 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
9921                                              const FunctionDecl *FD) {
9922   if (!FD->isExternallyVisible())
9923     return GVA_Internal;
9924 
9925   // Non-user-provided functions get emitted as weak definitions with every
9926   // use, no matter whether they've been explicitly instantiated etc.
9927   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
9928     if (!MD->isUserProvided())
9929       return GVA_DiscardableODR;
9930 
9931   GVALinkage External;
9932   switch (FD->getTemplateSpecializationKind()) {
9933   case TSK_Undeclared:
9934   case TSK_ExplicitSpecialization:
9935     External = GVA_StrongExternal;
9936     break;
9937 
9938   case TSK_ExplicitInstantiationDefinition:
9939     return GVA_StrongODR;
9940 
9941   // C++11 [temp.explicit]p10:
9942   //   [ Note: The intent is that an inline function that is the subject of
9943   //   an explicit instantiation declaration will still be implicitly
9944   //   instantiated when used so that the body can be considered for
9945   //   inlining, but that no out-of-line copy of the inline function would be
9946   //   generated in the translation unit. -- end note ]
9947   case TSK_ExplicitInstantiationDeclaration:
9948     return GVA_AvailableExternally;
9949 
9950   case TSK_ImplicitInstantiation:
9951     External = GVA_DiscardableODR;
9952     break;
9953   }
9954 
9955   if (!FD->isInlined())
9956     return External;
9957 
9958   if ((!Context.getLangOpts().CPlusPlus &&
9959        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9960        !FD->hasAttr<DLLExportAttr>()) ||
9961       FD->hasAttr<GNUInlineAttr>()) {
9962     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
9963 
9964     // GNU or C99 inline semantics. Determine whether this symbol should be
9965     // externally visible.
9966     if (FD->isInlineDefinitionExternallyVisible())
9967       return External;
9968 
9969     // C99 inline semantics, where the symbol is not externally visible.
9970     return GVA_AvailableExternally;
9971   }
9972 
9973   // Functions specified with extern and inline in -fms-compatibility mode
9974   // forcibly get emitted.  While the body of the function cannot be later
9975   // replaced, the function definition cannot be discarded.
9976   if (FD->isMSExternInline())
9977     return GVA_StrongODR;
9978 
9979   return GVA_DiscardableODR;
9980 }
9981 
9982 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
9983                                                 const Decl *D, GVALinkage L) {
9984   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
9985   // dllexport/dllimport on inline functions.
9986   if (D->hasAttr<DLLImportAttr>()) {
9987     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
9988       return GVA_AvailableExternally;
9989   } else if (D->hasAttr<DLLExportAttr>()) {
9990     if (L == GVA_DiscardableODR)
9991       return GVA_StrongODR;
9992   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice &&
9993              D->hasAttr<CUDAGlobalAttr>()) {
9994     // Device-side functions with __global__ attribute must always be
9995     // visible externally so they can be launched from host.
9996     if (L == GVA_DiscardableODR || L == GVA_Internal)
9997       return GVA_StrongODR;
9998   }
9999   return L;
10000 }
10001 
10002 /// Adjust the GVALinkage for a declaration based on what an external AST source
10003 /// knows about whether there can be other definitions of this declaration.
10004 static GVALinkage
10005 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
10006                                           GVALinkage L) {
10007   ExternalASTSource *Source = Ctx.getExternalSource();
10008   if (!Source)
10009     return L;
10010 
10011   switch (Source->hasExternalDefinitions(D)) {
10012   case ExternalASTSource::EK_Never:
10013     // Other translation units rely on us to provide the definition.
10014     if (L == GVA_DiscardableODR)
10015       return GVA_StrongODR;
10016     break;
10017 
10018   case ExternalASTSource::EK_Always:
10019     return GVA_AvailableExternally;
10020 
10021   case ExternalASTSource::EK_ReplyHazy:
10022     break;
10023   }
10024   return L;
10025 }
10026 
10027 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
10028   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
10029            adjustGVALinkageForAttributes(*this, FD,
10030              basicGVALinkageForFunction(*this, FD)));
10031 }
10032 
10033 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
10034                                              const VarDecl *VD) {
10035   if (!VD->isExternallyVisible())
10036     return GVA_Internal;
10037 
10038   if (VD->isStaticLocal()) {
10039     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
10040     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
10041       LexicalContext = LexicalContext->getLexicalParent();
10042 
10043     // ObjC Blocks can create local variables that don't have a FunctionDecl
10044     // LexicalContext.
10045     if (!LexicalContext)
10046       return GVA_DiscardableODR;
10047 
10048     // Otherwise, let the static local variable inherit its linkage from the
10049     // nearest enclosing function.
10050     auto StaticLocalLinkage =
10051         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
10052 
10053     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
10054     // be emitted in any object with references to the symbol for the object it
10055     // contains, whether inline or out-of-line."
10056     // Similar behavior is observed with MSVC. An alternative ABI could use
10057     // StrongODR/AvailableExternally to match the function, but none are
10058     // known/supported currently.
10059     if (StaticLocalLinkage == GVA_StrongODR ||
10060         StaticLocalLinkage == GVA_AvailableExternally)
10061       return GVA_DiscardableODR;
10062     return StaticLocalLinkage;
10063   }
10064 
10065   // MSVC treats in-class initialized static data members as definitions.
10066   // By giving them non-strong linkage, out-of-line definitions won't
10067   // cause link errors.
10068   if (Context.isMSStaticDataMemberInlineDefinition(VD))
10069     return GVA_DiscardableODR;
10070 
10071   // Most non-template variables have strong linkage; inline variables are
10072   // linkonce_odr or (occasionally, for compatibility) weak_odr.
10073   GVALinkage StrongLinkage;
10074   switch (Context.getInlineVariableDefinitionKind(VD)) {
10075   case ASTContext::InlineVariableDefinitionKind::None:
10076     StrongLinkage = GVA_StrongExternal;
10077     break;
10078   case ASTContext::InlineVariableDefinitionKind::Weak:
10079   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
10080     StrongLinkage = GVA_DiscardableODR;
10081     break;
10082   case ASTContext::InlineVariableDefinitionKind::Strong:
10083     StrongLinkage = GVA_StrongODR;
10084     break;
10085   }
10086 
10087   switch (VD->getTemplateSpecializationKind()) {
10088   case TSK_Undeclared:
10089     return StrongLinkage;
10090 
10091   case TSK_ExplicitSpecialization:
10092     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10093                    VD->isStaticDataMember()
10094                ? GVA_StrongODR
10095                : StrongLinkage;
10096 
10097   case TSK_ExplicitInstantiationDefinition:
10098     return GVA_StrongODR;
10099 
10100   case TSK_ExplicitInstantiationDeclaration:
10101     return GVA_AvailableExternally;
10102 
10103   case TSK_ImplicitInstantiation:
10104     return GVA_DiscardableODR;
10105   }
10106 
10107   llvm_unreachable("Invalid Linkage!");
10108 }
10109 
10110 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
10111   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
10112            adjustGVALinkageForAttributes(*this, VD,
10113              basicGVALinkageForVariable(*this, VD)));
10114 }
10115 
10116 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
10117   if (const auto *VD = dyn_cast<VarDecl>(D)) {
10118     if (!VD->isFileVarDecl())
10119       return false;
10120     // Global named register variables (GNU extension) are never emitted.
10121     if (VD->getStorageClass() == SC_Register)
10122       return false;
10123     if (VD->getDescribedVarTemplate() ||
10124         isa<VarTemplatePartialSpecializationDecl>(VD))
10125       return false;
10126   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10127     // We never need to emit an uninstantiated function template.
10128     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10129       return false;
10130   } else if (isa<PragmaCommentDecl>(D))
10131     return true;
10132   else if (isa<PragmaDetectMismatchDecl>(D))
10133     return true;
10134   else if (isa<OMPThreadPrivateDecl>(D))
10135     return !D->getDeclContext()->isDependentContext();
10136   else if (isa<OMPAllocateDecl>(D))
10137     return !D->getDeclContext()->isDependentContext();
10138   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
10139     return !D->getDeclContext()->isDependentContext();
10140   else if (isa<ImportDecl>(D))
10141     return true;
10142   else
10143     return false;
10144 
10145   if (D->isFromASTFile() && !LangOpts.BuildingPCHWithObjectFile) {
10146     assert(getExternalSource() && "It's from an AST file; must have a source.");
10147     // On Windows, PCH files are built together with an object file. If this
10148     // declaration comes from such a PCH and DeclMustBeEmitted would return
10149     // true, it would have returned true and the decl would have been emitted
10150     // into that object file, so it doesn't need to be emitted here.
10151     // Note that decls are still emitted if they're referenced, as usual;
10152     // DeclMustBeEmitted is used to decide whether a decl must be emitted even
10153     // if it's not referenced.
10154     //
10155     // Explicit template instantiation definitions are tricky. If there was an
10156     // explicit template instantiation decl in the PCH before, it will look like
10157     // the definition comes from there, even if that was just the declaration.
10158     // (Explicit instantiation defs of variable templates always get emitted.)
10159     bool IsExpInstDef =
10160         isa<FunctionDecl>(D) &&
10161         cast<FunctionDecl>(D)->getTemplateSpecializationKind() ==
10162             TSK_ExplicitInstantiationDefinition;
10163 
10164     // Implicit member function definitions, such as operator= might not be
10165     // marked as template specializations, since they're not coming from a
10166     // template but synthesized directly on the class.
10167     IsExpInstDef |=
10168         isa<CXXMethodDecl>(D) &&
10169         cast<CXXMethodDecl>(D)->getParent()->getTemplateSpecializationKind() ==
10170             TSK_ExplicitInstantiationDefinition;
10171 
10172     if (getExternalSource()->DeclIsFromPCHWithObjectFile(D) && !IsExpInstDef)
10173       return false;
10174   }
10175 
10176   // If this is a member of a class template, we do not need to emit it.
10177   if (D->getDeclContext()->isDependentContext())
10178     return false;
10179 
10180   // Weak references don't produce any output by themselves.
10181   if (D->hasAttr<WeakRefAttr>())
10182     return false;
10183 
10184   // Aliases and used decls are required.
10185   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
10186     return true;
10187 
10188   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10189     // Forward declarations aren't required.
10190     if (!FD->doesThisDeclarationHaveABody())
10191       return FD->doesDeclarationForceExternallyVisibleDefinition();
10192 
10193     // Constructors and destructors are required.
10194     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
10195       return true;
10196 
10197     // The key function for a class is required.  This rule only comes
10198     // into play when inline functions can be key functions, though.
10199     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10200       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10201         const CXXRecordDecl *RD = MD->getParent();
10202         if (MD->isOutOfLine() && RD->isDynamicClass()) {
10203           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
10204           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
10205             return true;
10206         }
10207       }
10208     }
10209 
10210     GVALinkage Linkage = GetGVALinkageForFunction(FD);
10211 
10212     // static, static inline, always_inline, and extern inline functions can
10213     // always be deferred.  Normal inline functions can be deferred in C99/C++.
10214     // Implicit template instantiations can also be deferred in C++.
10215     return !isDiscardableGVALinkage(Linkage);
10216   }
10217 
10218   const auto *VD = cast<VarDecl>(D);
10219   assert(VD->isFileVarDecl() && "Expected file scoped var");
10220 
10221   // If the decl is marked as `declare target to`, it should be emitted for the
10222   // host and for the device.
10223   if (LangOpts.OpenMP &&
10224       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
10225     return true;
10226 
10227   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
10228       !isMSStaticDataMemberInlineDefinition(VD))
10229     return false;
10230 
10231   // Variables that can be needed in other TUs are required.
10232   auto Linkage = GetGVALinkageForVariable(VD);
10233   if (!isDiscardableGVALinkage(Linkage))
10234     return true;
10235 
10236   // We never need to emit a variable that is available in another TU.
10237   if (Linkage == GVA_AvailableExternally)
10238     return false;
10239 
10240   // Variables that have destruction with side-effects are required.
10241   if (VD->needsDestruction(*this))
10242     return true;
10243 
10244   // Variables that have initialization with side-effects are required.
10245   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
10246       // We can get a value-dependent initializer during error recovery.
10247       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
10248     return true;
10249 
10250   // Likewise, variables with tuple-like bindings are required if their
10251   // bindings have side-effects.
10252   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
10253     for (const auto *BD : DD->bindings())
10254       if (const auto *BindingVD = BD->getHoldingVar())
10255         if (DeclMustBeEmitted(BindingVD))
10256           return true;
10257 
10258   return false;
10259 }
10260 
10261 void ASTContext::forEachMultiversionedFunctionVersion(
10262     const FunctionDecl *FD,
10263     llvm::function_ref<void(FunctionDecl *)> Pred) const {
10264   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
10265   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
10266   FD = FD->getMostRecentDecl();
10267   for (auto *CurDecl :
10268        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
10269     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
10270     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
10271         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
10272       SeenDecls.insert(CurFD);
10273       Pred(CurFD);
10274     }
10275   }
10276 }
10277 
10278 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
10279                                                     bool IsCXXMethod,
10280                                                     bool IsBuiltin) const {
10281   // Pass through to the C++ ABI object
10282   if (IsCXXMethod)
10283     return ABI->getDefaultMethodCallConv(IsVariadic);
10284 
10285   // Builtins ignore user-specified default calling convention and remain the
10286   // Target's default calling convention.
10287   if (!IsBuiltin) {
10288     switch (LangOpts.getDefaultCallingConv()) {
10289     case LangOptions::DCC_None:
10290       break;
10291     case LangOptions::DCC_CDecl:
10292       return CC_C;
10293     case LangOptions::DCC_FastCall:
10294       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
10295         return CC_X86FastCall;
10296       break;
10297     case LangOptions::DCC_StdCall:
10298       if (!IsVariadic)
10299         return CC_X86StdCall;
10300       break;
10301     case LangOptions::DCC_VectorCall:
10302       // __vectorcall cannot be applied to variadic functions.
10303       if (!IsVariadic)
10304         return CC_X86VectorCall;
10305       break;
10306     case LangOptions::DCC_RegCall:
10307       // __regcall cannot be applied to variadic functions.
10308       if (!IsVariadic)
10309         return CC_X86RegCall;
10310       break;
10311     }
10312   }
10313   return Target->getDefaultCallingConv();
10314 }
10315 
10316 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
10317   // Pass through to the C++ ABI object
10318   return ABI->isNearlyEmpty(RD);
10319 }
10320 
10321 VTableContextBase *ASTContext::getVTableContext() {
10322   if (!VTContext.get()) {
10323     if (Target->getCXXABI().isMicrosoft())
10324       VTContext.reset(new MicrosoftVTableContext(*this));
10325     else
10326       VTContext.reset(new ItaniumVTableContext(*this));
10327   }
10328   return VTContext.get();
10329 }
10330 
10331 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
10332   if (!T)
10333     T = Target;
10334   switch (T->getCXXABI().getKind()) {
10335   case TargetCXXABI::Fuchsia:
10336   case TargetCXXABI::GenericAArch64:
10337   case TargetCXXABI::GenericItanium:
10338   case TargetCXXABI::GenericARM:
10339   case TargetCXXABI::GenericMIPS:
10340   case TargetCXXABI::iOS:
10341   case TargetCXXABI::iOS64:
10342   case TargetCXXABI::WebAssembly:
10343   case TargetCXXABI::WatchOS:
10344     return ItaniumMangleContext::create(*this, getDiagnostics());
10345   case TargetCXXABI::Microsoft:
10346     return MicrosoftMangleContext::create(*this, getDiagnostics());
10347   }
10348   llvm_unreachable("Unsupported ABI");
10349 }
10350 
10351 CXXABI::~CXXABI() = default;
10352 
10353 size_t ASTContext::getSideTableAllocatedMemory() const {
10354   return ASTRecordLayouts.getMemorySize() +
10355          llvm::capacity_in_bytes(ObjCLayouts) +
10356          llvm::capacity_in_bytes(KeyFunctions) +
10357          llvm::capacity_in_bytes(ObjCImpls) +
10358          llvm::capacity_in_bytes(BlockVarCopyInits) +
10359          llvm::capacity_in_bytes(DeclAttrs) +
10360          llvm::capacity_in_bytes(TemplateOrInstantiation) +
10361          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
10362          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
10363          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
10364          llvm::capacity_in_bytes(OverriddenMethods) +
10365          llvm::capacity_in_bytes(Types) +
10366          llvm::capacity_in_bytes(VariableArrayTypes);
10367 }
10368 
10369 /// getIntTypeForBitwidth -
10370 /// sets integer QualTy according to specified details:
10371 /// bitwidth, signed/unsigned.
10372 /// Returns empty type if there is no appropriate target types.
10373 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
10374                                            unsigned Signed) const {
10375   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
10376   CanQualType QualTy = getFromTargetType(Ty);
10377   if (!QualTy && DestWidth == 128)
10378     return Signed ? Int128Ty : UnsignedInt128Ty;
10379   return QualTy;
10380 }
10381 
10382 /// getRealTypeForBitwidth -
10383 /// sets floating point QualTy according to specified bitwidth.
10384 /// Returns empty type if there is no appropriate target types.
10385 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
10386   TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
10387   switch (Ty) {
10388   case TargetInfo::Float:
10389     return FloatTy;
10390   case TargetInfo::Double:
10391     return DoubleTy;
10392   case TargetInfo::LongDouble:
10393     return LongDoubleTy;
10394   case TargetInfo::Float128:
10395     return Float128Ty;
10396   case TargetInfo::NoFloat:
10397     return {};
10398   }
10399 
10400   llvm_unreachable("Unhandled TargetInfo::RealType value");
10401 }
10402 
10403 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
10404   if (Number > 1)
10405     MangleNumbers[ND] = Number;
10406 }
10407 
10408 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
10409   auto I = MangleNumbers.find(ND);
10410   return I != MangleNumbers.end() ? I->second : 1;
10411 }
10412 
10413 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
10414   if (Number > 1)
10415     StaticLocalNumbers[VD] = Number;
10416 }
10417 
10418 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
10419   auto I = StaticLocalNumbers.find(VD);
10420   return I != StaticLocalNumbers.end() ? I->second : 1;
10421 }
10422 
10423 MangleNumberingContext &
10424 ASTContext::getManglingNumberContext(const DeclContext *DC) {
10425   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
10426   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
10427   if (!MCtx)
10428     MCtx = createMangleNumberingContext();
10429   return *MCtx;
10430 }
10431 
10432 MangleNumberingContext &
10433 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
10434   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
10435   std::unique_ptr<MangleNumberingContext> &MCtx =
10436       ExtraMangleNumberingContexts[D];
10437   if (!MCtx)
10438     MCtx = createMangleNumberingContext();
10439   return *MCtx;
10440 }
10441 
10442 std::unique_ptr<MangleNumberingContext>
10443 ASTContext::createMangleNumberingContext() const {
10444   return ABI->createMangleNumberingContext();
10445 }
10446 
10447 const CXXConstructorDecl *
10448 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
10449   return ABI->getCopyConstructorForExceptionObject(
10450       cast<CXXRecordDecl>(RD->getFirstDecl()));
10451 }
10452 
10453 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
10454                                                       CXXConstructorDecl *CD) {
10455   return ABI->addCopyConstructorForExceptionObject(
10456       cast<CXXRecordDecl>(RD->getFirstDecl()),
10457       cast<CXXConstructorDecl>(CD->getFirstDecl()));
10458 }
10459 
10460 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
10461                                                  TypedefNameDecl *DD) {
10462   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
10463 }
10464 
10465 TypedefNameDecl *
10466 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
10467   return ABI->getTypedefNameForUnnamedTagDecl(TD);
10468 }
10469 
10470 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
10471                                                 DeclaratorDecl *DD) {
10472   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
10473 }
10474 
10475 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
10476   return ABI->getDeclaratorForUnnamedTagDecl(TD);
10477 }
10478 
10479 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
10480   ParamIndices[D] = index;
10481 }
10482 
10483 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
10484   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
10485   assert(I != ParamIndices.end() &&
10486          "ParmIndices lacks entry set by ParmVarDecl");
10487   return I->second;
10488 }
10489 
10490 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
10491                                                unsigned Length) const {
10492   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
10493   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
10494     EltTy = EltTy.withConst();
10495 
10496   EltTy = adjustStringLiteralBaseType(EltTy);
10497 
10498   // Get an array type for the string, according to C99 6.4.5. This includes
10499   // the null terminator character.
10500   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
10501                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
10502 }
10503 
10504 StringLiteral *
10505 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
10506   StringLiteral *&Result = StringLiteralCache[Key];
10507   if (!Result)
10508     Result = StringLiteral::Create(
10509         *this, Key, StringLiteral::Ascii,
10510         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
10511         SourceLocation());
10512   return Result;
10513 }
10514 
10515 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
10516   const llvm::Triple &T = getTargetInfo().getTriple();
10517   if (!T.isOSDarwin())
10518     return false;
10519 
10520   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
10521       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
10522     return false;
10523 
10524   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
10525   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
10526   uint64_t Size = sizeChars.getQuantity();
10527   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
10528   unsigned Align = alignChars.getQuantity();
10529   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
10530   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
10531 }
10532 
10533 /// Template specializations to abstract away from pointers and TypeLocs.
10534 /// @{
10535 template <typename T>
10536 static ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) {
10537   return ast_type_traits::DynTypedNode::create(*Node);
10538 }
10539 template <>
10540 ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) {
10541   return ast_type_traits::DynTypedNode::create(Node);
10542 }
10543 template <>
10544 ast_type_traits::DynTypedNode
10545 createDynTypedNode(const NestedNameSpecifierLoc &Node) {
10546   return ast_type_traits::DynTypedNode::create(Node);
10547 }
10548 /// @}
10549 
10550 /// A \c RecursiveASTVisitor that builds a map from nodes to their
10551 /// parents as defined by the \c RecursiveASTVisitor.
10552 ///
10553 /// Note that the relationship described here is purely in terms of AST
10554 /// traversal - there are other relationships (for example declaration context)
10555 /// in the AST that are better modeled by special matchers.
10556 ///
10557 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
10558 class ASTContext::ParentMap::ASTVisitor
10559     : public RecursiveASTVisitor<ASTVisitor> {
10560 public:
10561   ASTVisitor(ParentMap &Map, ASTContext &Context)
10562       : Map(Map), Context(Context) {}
10563 
10564 private:
10565   friend class RecursiveASTVisitor<ASTVisitor>;
10566 
10567   using VisitorBase = RecursiveASTVisitor<ASTVisitor>;
10568 
10569   bool shouldVisitTemplateInstantiations() const { return true; }
10570 
10571   bool shouldVisitImplicitCode() const { return true; }
10572 
10573   template <typename T, typename MapNodeTy, typename BaseTraverseFn,
10574             typename MapTy>
10575   bool TraverseNode(T Node, MapNodeTy MapNode, BaseTraverseFn BaseTraverse,
10576                     MapTy *Parents) {
10577     if (!Node)
10578       return true;
10579     if (ParentStack.size() > 0) {
10580       // FIXME: Currently we add the same parent multiple times, but only
10581       // when no memoization data is available for the type.
10582       // For example when we visit all subexpressions of template
10583       // instantiations; this is suboptimal, but benign: the only way to
10584       // visit those is with hasAncestor / hasParent, and those do not create
10585       // new matches.
10586       // The plan is to enable DynTypedNode to be storable in a map or hash
10587       // map. The main problem there is to implement hash functions /
10588       // comparison operators for all types that DynTypedNode supports that
10589       // do not have pointer identity.
10590       auto &NodeOrVector = (*Parents)[MapNode];
10591       if (NodeOrVector.isNull()) {
10592         if (const auto *D = ParentStack.back().get<Decl>())
10593           NodeOrVector = D;
10594         else if (const auto *S = ParentStack.back().get<Stmt>())
10595           NodeOrVector = S;
10596         else
10597           NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
10598       } else {
10599         if (!NodeOrVector.template is<ParentVector *>()) {
10600           auto *Vector = new ParentVector(
10601               1, getSingleDynTypedNodeFromParentMap(NodeOrVector));
10602           delete NodeOrVector
10603               .template dyn_cast<ast_type_traits::DynTypedNode *>();
10604           NodeOrVector = Vector;
10605         }
10606 
10607         auto *Vector = NodeOrVector.template get<ParentVector *>();
10608         // Skip duplicates for types that have memoization data.
10609         // We must check that the type has memoization data before calling
10610         // std::find() because DynTypedNode::operator== can't compare all
10611         // types.
10612         bool Found = ParentStack.back().getMemoizationData() &&
10613                      std::find(Vector->begin(), Vector->end(),
10614                                ParentStack.back()) != Vector->end();
10615         if (!Found)
10616           Vector->push_back(ParentStack.back());
10617       }
10618     }
10619     ParentStack.push_back(createDynTypedNode(Node));
10620     bool Result = BaseTraverse();
10621     ParentStack.pop_back();
10622     return Result;
10623   }
10624 
10625   bool TraverseDecl(Decl *DeclNode) {
10626     return TraverseNode(
10627         DeclNode, DeclNode, [&] { return VisitorBase::TraverseDecl(DeclNode); },
10628         &Map.PointerParents);
10629   }
10630 
10631   bool TraverseStmt(Stmt *StmtNode) {
10632     Stmt *FilteredNode = StmtNode;
10633     if (auto *ExprNode = dyn_cast_or_null<Expr>(FilteredNode))
10634       FilteredNode = Context.traverseIgnored(ExprNode);
10635     return TraverseNode(FilteredNode, FilteredNode,
10636                         [&] { return VisitorBase::TraverseStmt(FilteredNode); },
10637                         &Map.PointerParents);
10638   }
10639 
10640   bool TraverseTypeLoc(TypeLoc TypeLocNode) {
10641     return TraverseNode(
10642         TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode),
10643         [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); },
10644         &Map.OtherParents);
10645   }
10646 
10647   bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) {
10648     return TraverseNode(
10649         NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode),
10650         [&] { return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); },
10651         &Map.OtherParents);
10652   }
10653 
10654   ParentMap &Map;
10655   ASTContext &Context;
10656   llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
10657 };
10658 
10659 ASTContext::ParentMap::ParentMap(ASTContext &Ctx) {
10660   ASTVisitor(*this, Ctx).TraverseAST(Ctx);
10661 }
10662 
10663 ASTContext::DynTypedNodeList
10664 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
10665   std::unique_ptr<ParentMap> &P = Parents[Traversal];
10666   if (!P)
10667     // We build the parent map for the traversal scope (usually whole TU), as
10668     // hasAncestor can escape any subtree.
10669     P = std::make_unique<ParentMap>(*this);
10670   return P->getParents(Node);
10671 }
10672 
10673 bool
10674 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
10675                                 const ObjCMethodDecl *MethodImpl) {
10676   // No point trying to match an unavailable/deprecated mothod.
10677   if (MethodDecl->hasAttr<UnavailableAttr>()
10678       || MethodDecl->hasAttr<DeprecatedAttr>())
10679     return false;
10680   if (MethodDecl->getObjCDeclQualifier() !=
10681       MethodImpl->getObjCDeclQualifier())
10682     return false;
10683   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
10684     return false;
10685 
10686   if (MethodDecl->param_size() != MethodImpl->param_size())
10687     return false;
10688 
10689   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
10690        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
10691        EF = MethodDecl->param_end();
10692        IM != EM && IF != EF; ++IM, ++IF) {
10693     const ParmVarDecl *DeclVar = (*IF);
10694     const ParmVarDecl *ImplVar = (*IM);
10695     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
10696       return false;
10697     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
10698       return false;
10699   }
10700 
10701   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
10702 }
10703 
10704 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
10705   LangAS AS;
10706   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
10707     AS = LangAS::Default;
10708   else
10709     AS = QT->getPointeeType().getAddressSpace();
10710 
10711   return getTargetInfo().getNullPointerValue(AS);
10712 }
10713 
10714 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
10715   if (isTargetAddressSpace(AS))
10716     return toTargetAddressSpace(AS);
10717   else
10718     return (*AddrSpaceMap)[(unsigned)AS];
10719 }
10720 
10721 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
10722   assert(Ty->isFixedPointType());
10723 
10724   if (Ty->isSaturatedFixedPointType()) return Ty;
10725 
10726   switch (Ty->castAs<BuiltinType>()->getKind()) {
10727     default:
10728       llvm_unreachable("Not a fixed point type!");
10729     case BuiltinType::ShortAccum:
10730       return SatShortAccumTy;
10731     case BuiltinType::Accum:
10732       return SatAccumTy;
10733     case BuiltinType::LongAccum:
10734       return SatLongAccumTy;
10735     case BuiltinType::UShortAccum:
10736       return SatUnsignedShortAccumTy;
10737     case BuiltinType::UAccum:
10738       return SatUnsignedAccumTy;
10739     case BuiltinType::ULongAccum:
10740       return SatUnsignedLongAccumTy;
10741     case BuiltinType::ShortFract:
10742       return SatShortFractTy;
10743     case BuiltinType::Fract:
10744       return SatFractTy;
10745     case BuiltinType::LongFract:
10746       return SatLongFractTy;
10747     case BuiltinType::UShortFract:
10748       return SatUnsignedShortFractTy;
10749     case BuiltinType::UFract:
10750       return SatUnsignedFractTy;
10751     case BuiltinType::ULongFract:
10752       return SatUnsignedLongFractTy;
10753   }
10754 }
10755 
10756 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
10757   if (LangOpts.OpenCL)
10758     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
10759 
10760   if (LangOpts.CUDA)
10761     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
10762 
10763   return getLangASFromTargetAS(AS);
10764 }
10765 
10766 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
10767 // doesn't include ASTContext.h
10768 template
10769 clang::LazyGenerationalUpdatePtr<
10770     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
10771 clang::LazyGenerationalUpdatePtr<
10772     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
10773         const clang::ASTContext &Ctx, Decl *Value);
10774 
10775 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
10776   assert(Ty->isFixedPointType());
10777 
10778   const TargetInfo &Target = getTargetInfo();
10779   switch (Ty->castAs<BuiltinType>()->getKind()) {
10780     default:
10781       llvm_unreachable("Not a fixed point type!");
10782     case BuiltinType::ShortAccum:
10783     case BuiltinType::SatShortAccum:
10784       return Target.getShortAccumScale();
10785     case BuiltinType::Accum:
10786     case BuiltinType::SatAccum:
10787       return Target.getAccumScale();
10788     case BuiltinType::LongAccum:
10789     case BuiltinType::SatLongAccum:
10790       return Target.getLongAccumScale();
10791     case BuiltinType::UShortAccum:
10792     case BuiltinType::SatUShortAccum:
10793       return Target.getUnsignedShortAccumScale();
10794     case BuiltinType::UAccum:
10795     case BuiltinType::SatUAccum:
10796       return Target.getUnsignedAccumScale();
10797     case BuiltinType::ULongAccum:
10798     case BuiltinType::SatULongAccum:
10799       return Target.getUnsignedLongAccumScale();
10800     case BuiltinType::ShortFract:
10801     case BuiltinType::SatShortFract:
10802       return Target.getShortFractScale();
10803     case BuiltinType::Fract:
10804     case BuiltinType::SatFract:
10805       return Target.getFractScale();
10806     case BuiltinType::LongFract:
10807     case BuiltinType::SatLongFract:
10808       return Target.getLongFractScale();
10809     case BuiltinType::UShortFract:
10810     case BuiltinType::SatUShortFract:
10811       return Target.getUnsignedShortFractScale();
10812     case BuiltinType::UFract:
10813     case BuiltinType::SatUFract:
10814       return Target.getUnsignedFractScale();
10815     case BuiltinType::ULongFract:
10816     case BuiltinType::SatULongFract:
10817       return Target.getUnsignedLongFractScale();
10818   }
10819 }
10820 
10821 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
10822   assert(Ty->isFixedPointType());
10823 
10824   const TargetInfo &Target = getTargetInfo();
10825   switch (Ty->castAs<BuiltinType>()->getKind()) {
10826     default:
10827       llvm_unreachable("Not a fixed point type!");
10828     case BuiltinType::ShortAccum:
10829     case BuiltinType::SatShortAccum:
10830       return Target.getShortAccumIBits();
10831     case BuiltinType::Accum:
10832     case BuiltinType::SatAccum:
10833       return Target.getAccumIBits();
10834     case BuiltinType::LongAccum:
10835     case BuiltinType::SatLongAccum:
10836       return Target.getLongAccumIBits();
10837     case BuiltinType::UShortAccum:
10838     case BuiltinType::SatUShortAccum:
10839       return Target.getUnsignedShortAccumIBits();
10840     case BuiltinType::UAccum:
10841     case BuiltinType::SatUAccum:
10842       return Target.getUnsignedAccumIBits();
10843     case BuiltinType::ULongAccum:
10844     case BuiltinType::SatULongAccum:
10845       return Target.getUnsignedLongAccumIBits();
10846     case BuiltinType::ShortFract:
10847     case BuiltinType::SatShortFract:
10848     case BuiltinType::Fract:
10849     case BuiltinType::SatFract:
10850     case BuiltinType::LongFract:
10851     case BuiltinType::SatLongFract:
10852     case BuiltinType::UShortFract:
10853     case BuiltinType::SatUShortFract:
10854     case BuiltinType::UFract:
10855     case BuiltinType::SatUFract:
10856     case BuiltinType::ULongFract:
10857     case BuiltinType::SatULongFract:
10858       return 0;
10859   }
10860 }
10861 
10862 FixedPointSemantics ASTContext::getFixedPointSemantics(QualType Ty) const {
10863   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
10864          "Can only get the fixed point semantics for a "
10865          "fixed point or integer type.");
10866   if (Ty->isIntegerType())
10867     return FixedPointSemantics::GetIntegerSemantics(getIntWidth(Ty),
10868                                                     Ty->isSignedIntegerType());
10869 
10870   bool isSigned = Ty->isSignedFixedPointType();
10871   return FixedPointSemantics(
10872       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
10873       Ty->isSaturatedFixedPointType(),
10874       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
10875 }
10876 
10877 APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
10878   assert(Ty->isFixedPointType());
10879   return APFixedPoint::getMax(getFixedPointSemantics(Ty));
10880 }
10881 
10882 APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
10883   assert(Ty->isFixedPointType());
10884   return APFixedPoint::getMin(getFixedPointSemantics(Ty));
10885 }
10886 
10887 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
10888   assert(Ty->isUnsignedFixedPointType() &&
10889          "Expected unsigned fixed point type");
10890 
10891   switch (Ty->castAs<BuiltinType>()->getKind()) {
10892   case BuiltinType::UShortAccum:
10893     return ShortAccumTy;
10894   case BuiltinType::UAccum:
10895     return AccumTy;
10896   case BuiltinType::ULongAccum:
10897     return LongAccumTy;
10898   case BuiltinType::SatUShortAccum:
10899     return SatShortAccumTy;
10900   case BuiltinType::SatUAccum:
10901     return SatAccumTy;
10902   case BuiltinType::SatULongAccum:
10903     return SatLongAccumTy;
10904   case BuiltinType::UShortFract:
10905     return ShortFractTy;
10906   case BuiltinType::UFract:
10907     return FractTy;
10908   case BuiltinType::ULongFract:
10909     return LongFractTy;
10910   case BuiltinType::SatUShortFract:
10911     return SatShortFractTy;
10912   case BuiltinType::SatUFract:
10913     return SatFractTy;
10914   case BuiltinType::SatULongFract:
10915     return SatLongFractTy;
10916   default:
10917     llvm_unreachable("Unexpected unsigned fixed point type");
10918   }
10919 }
10920 
10921 ParsedTargetAttr
10922 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
10923   assert(TD != nullptr);
10924   ParsedTargetAttr ParsedAttr = TD->parse();
10925 
10926   ParsedAttr.Features.erase(
10927       llvm::remove_if(ParsedAttr.Features,
10928                       [&](const std::string &Feat) {
10929                         return !Target->isValidFeatureName(
10930                             StringRef{Feat}.substr(1));
10931                       }),
10932       ParsedAttr.Features.end());
10933   return ParsedAttr;
10934 }
10935 
10936 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
10937                                        const FunctionDecl *FD) const {
10938   if (FD)
10939     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
10940   else
10941     Target->initFeatureMap(FeatureMap, getDiagnostics(),
10942                            Target->getTargetOpts().CPU,
10943                            Target->getTargetOpts().Features);
10944 }
10945 
10946 // Fills in the supplied string map with the set of target features for the
10947 // passed in function.
10948 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
10949                                        GlobalDecl GD) const {
10950   StringRef TargetCPU = Target->getTargetOpts().CPU;
10951   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
10952   if (const auto *TD = FD->getAttr<TargetAttr>()) {
10953     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
10954 
10955     // Make a copy of the features as passed on the command line into the
10956     // beginning of the additional features from the function to override.
10957     ParsedAttr.Features.insert(
10958         ParsedAttr.Features.begin(),
10959         Target->getTargetOpts().FeaturesAsWritten.begin(),
10960         Target->getTargetOpts().FeaturesAsWritten.end());
10961 
10962     if (ParsedAttr.Architecture != "" &&
10963         Target->isValidCPUName(ParsedAttr.Architecture))
10964       TargetCPU = ParsedAttr.Architecture;
10965 
10966     // Now populate the feature map, first with the TargetCPU which is either
10967     // the default or a new one from the target attribute string. Then we'll use
10968     // the passed in features (FeaturesAsWritten) along with the new ones from
10969     // the attribute.
10970     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
10971                            ParsedAttr.Features);
10972   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
10973     llvm::SmallVector<StringRef, 32> FeaturesTmp;
10974     Target->getCPUSpecificCPUDispatchFeatures(
10975         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
10976     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
10977     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
10978   } else {
10979     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
10980                            Target->getTargetOpts().Features);
10981   }
10982 }
10983