xref: /freebsd/contrib/llvm-project/clang/lib/AST/ASTContext.cpp (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/SourceLocation.h"
62 #include "clang/Basic/SourceManager.h"
63 #include "clang/Basic/Specifiers.h"
64 #include "clang/Basic/TargetCXXABI.h"
65 #include "clang/Basic/TargetInfo.h"
66 #include "clang/Basic/XRayLists.h"
67 #include "llvm/ADT/APFixedPoint.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/PointerUnion.h"
75 #include "llvm/ADT/STLExtras.h"
76 #include "llvm/ADT/SmallPtrSet.h"
77 #include "llvm/ADT/SmallVector.h"
78 #include "llvm/ADT/StringExtras.h"
79 #include "llvm/ADT/StringRef.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/Capacity.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/MD5.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstddef>
91 #include <cstdint>
92 #include <cstdlib>
93 #include <map>
94 #include <memory>
95 #include <optional>
96 #include <string>
97 #include <tuple>
98 #include <utility>
99 
100 using namespace clang;
101 
102 enum FloatingRank {
103   BFloat16Rank,
104   Float16Rank,
105   HalfRank,
106   FloatRank,
107   DoubleRank,
108   LongDoubleRank,
109   Float128Rank,
110   Ibm128Rank
111 };
112 
113 /// \returns location that is relevant when searching for Doc comments related
114 /// to \p D.
115 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
116                                                  SourceManager &SourceMgr) {
117   assert(D);
118 
119   // User can not attach documentation to implicit declarations.
120   if (D->isImplicit())
121     return {};
122 
123   // User can not attach documentation to implicit instantiations.
124   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
125     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
126       return {};
127   }
128 
129   if (const auto *VD = dyn_cast<VarDecl>(D)) {
130     if (VD->isStaticDataMember() &&
131         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
132       return {};
133   }
134 
135   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
136     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
137       return {};
138   }
139 
140   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
141     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
142     if (TSK == TSK_ImplicitInstantiation ||
143         TSK == TSK_Undeclared)
144       return {};
145   }
146 
147   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
148     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
149       return {};
150   }
151   if (const auto *TD = dyn_cast<TagDecl>(D)) {
152     // When tag declaration (but not definition!) is part of the
153     // decl-specifier-seq of some other declaration, it doesn't get comment
154     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
155       return {};
156   }
157   // TODO: handle comments for function parameters properly.
158   if (isa<ParmVarDecl>(D))
159     return {};
160 
161   // TODO: we could look up template parameter documentation in the template
162   // documentation.
163   if (isa<TemplateTypeParmDecl>(D) ||
164       isa<NonTypeTemplateParmDecl>(D) ||
165       isa<TemplateTemplateParmDecl>(D))
166     return {};
167 
168   // Find declaration location.
169   // For Objective-C declarations we generally don't expect to have multiple
170   // declarators, thus use declaration starting location as the "declaration
171   // location".
172   // For all other declarations multiple declarators are used quite frequently,
173   // so we use the location of the identifier as the "declaration location".
174   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
175       isa<ObjCPropertyDecl>(D) ||
176       isa<RedeclarableTemplateDecl>(D) ||
177       isa<ClassTemplateSpecializationDecl>(D) ||
178       // Allow association with Y across {} in `typedef struct X {} Y`.
179       isa<TypedefDecl>(D))
180     return D->getBeginLoc();
181 
182   const SourceLocation DeclLoc = D->getLocation();
183   if (DeclLoc.isMacroID()) {
184     if (isa<TypedefDecl>(D)) {
185       // If location of the typedef name is in a macro, it is because being
186       // declared via a macro. Try using declaration's starting location as
187       // the "declaration location".
188       return D->getBeginLoc();
189     }
190 
191     if (const auto *TD = dyn_cast<TagDecl>(D)) {
192       // If location of the tag decl is inside a macro, but the spelling of
193       // the tag name comes from a macro argument, it looks like a special
194       // macro like NS_ENUM is being used to define the tag decl.  In that
195       // case, adjust the source location to the expansion loc so that we can
196       // attach the comment to the tag decl.
197       if (SourceMgr.isMacroArgExpansion(DeclLoc) && TD->isCompleteDefinition())
198         return SourceMgr.getExpansionLoc(DeclLoc);
199     }
200   }
201 
202   return DeclLoc;
203 }
204 
205 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
206     const Decl *D, const SourceLocation RepresentativeLocForDecl,
207     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
208   // If the declaration doesn't map directly to a location in a file, we
209   // can't find the comment.
210   if (RepresentativeLocForDecl.isInvalid() ||
211       !RepresentativeLocForDecl.isFileID())
212     return nullptr;
213 
214   // If there are no comments anywhere, we won't find anything.
215   if (CommentsInTheFile.empty())
216     return nullptr;
217 
218   // Decompose the location for the declaration and find the beginning of the
219   // file buffer.
220   const std::pair<FileID, unsigned> DeclLocDecomp =
221       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
222 
223   // Slow path.
224   auto OffsetCommentBehindDecl =
225       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
226 
227   // First check whether we have a trailing comment.
228   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
229     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
230     if ((CommentBehindDecl->isDocumentation() ||
231          LangOpts.CommentOpts.ParseAllComments) &&
232         CommentBehindDecl->isTrailingComment() &&
233         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
234          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
235 
236       // Check that Doxygen trailing comment comes after the declaration, starts
237       // on the same line and in the same file as the declaration.
238       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
239           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
240                                        OffsetCommentBehindDecl->first)) {
241         return CommentBehindDecl;
242       }
243     }
244   }
245 
246   // The comment just after the declaration was not a trailing comment.
247   // Let's look at the previous comment.
248   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
249     return nullptr;
250 
251   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
252   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
253 
254   // Check that we actually have a non-member Doxygen comment.
255   if (!(CommentBeforeDecl->isDocumentation() ||
256         LangOpts.CommentOpts.ParseAllComments) ||
257       CommentBeforeDecl->isTrailingComment())
258     return nullptr;
259 
260   // Decompose the end of the comment.
261   const unsigned CommentEndOffset =
262       Comments.getCommentEndOffset(CommentBeforeDecl);
263 
264   // Get the corresponding buffer.
265   bool Invalid = false;
266   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
267                                                &Invalid).data();
268   if (Invalid)
269     return nullptr;
270 
271   // Extract text between the comment and declaration.
272   StringRef Text(Buffer + CommentEndOffset,
273                  DeclLocDecomp.second - CommentEndOffset);
274 
275   // There should be no other declarations or preprocessor directives between
276   // comment and declaration.
277   if (Text.find_first_of(";{}#@") != StringRef::npos)
278     return nullptr;
279 
280   return CommentBeforeDecl;
281 }
282 
283 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
284   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
285 
286   // If the declaration doesn't map directly to a location in a file, we
287   // can't find the comment.
288   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
289     return nullptr;
290 
291   if (ExternalSource && !CommentsLoaded) {
292     ExternalSource->ReadComments();
293     CommentsLoaded = true;
294   }
295 
296   if (Comments.empty())
297     return nullptr;
298 
299   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
300   if (!File.isValid()) {
301     return nullptr;
302   }
303   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
304   if (!CommentsInThisFile || CommentsInThisFile->empty())
305     return nullptr;
306 
307   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
308 }
309 
310 void ASTContext::addComment(const RawComment &RC) {
311   assert(LangOpts.RetainCommentsFromSystemHeaders ||
312          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
313   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
314 }
315 
316 /// If we have a 'templated' declaration for a template, adjust 'D' to
317 /// refer to the actual template.
318 /// If we have an implicit instantiation, adjust 'D' to refer to template.
319 static const Decl &adjustDeclToTemplate(const Decl &D) {
320   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
321     // Is this function declaration part of a function template?
322     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
323       return *FTD;
324 
325     // Nothing to do if function is not an implicit instantiation.
326     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
327       return D;
328 
329     // Function is an implicit instantiation of a function template?
330     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
331       return *FTD;
332 
333     // Function is instantiated from a member definition of a class template?
334     if (const FunctionDecl *MemberDecl =
335             FD->getInstantiatedFromMemberFunction())
336       return *MemberDecl;
337 
338     return D;
339   }
340   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
341     // Static data member is instantiated from a member definition of a class
342     // template?
343     if (VD->isStaticDataMember())
344       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
345         return *MemberDecl;
346 
347     return D;
348   }
349   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
350     // Is this class declaration part of a class template?
351     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
352       return *CTD;
353 
354     // Class is an implicit instantiation of a class template or partial
355     // specialization?
356     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
357       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
358         return D;
359       llvm::PointerUnion<ClassTemplateDecl *,
360                          ClassTemplatePartialSpecializationDecl *>
361           PU = CTSD->getSpecializedTemplateOrPartial();
362       return PU.is<ClassTemplateDecl *>()
363                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
364                  : *static_cast<const Decl *>(
365                        PU.get<ClassTemplatePartialSpecializationDecl *>());
366     }
367 
368     // Class is instantiated from a member definition of a class template?
369     if (const MemberSpecializationInfo *Info =
370             CRD->getMemberSpecializationInfo())
371       return *Info->getInstantiatedFrom();
372 
373     return D;
374   }
375   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
376     // Enum is instantiated from a member definition of a class template?
377     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
378       return *MemberDecl;
379 
380     return D;
381   }
382   // FIXME: Adjust alias templates?
383   return D;
384 }
385 
386 const RawComment *ASTContext::getRawCommentForAnyRedecl(
387                                                 const Decl *D,
388                                                 const Decl **OriginalDecl) const {
389   if (!D) {
390     if (OriginalDecl)
391       OriginalDecl = nullptr;
392     return nullptr;
393   }
394 
395   D = &adjustDeclToTemplate(*D);
396 
397   // Any comment directly attached to D?
398   {
399     auto DeclComment = DeclRawComments.find(D);
400     if (DeclComment != DeclRawComments.end()) {
401       if (OriginalDecl)
402         *OriginalDecl = D;
403       return DeclComment->second;
404     }
405   }
406 
407   // Any comment attached to any redeclaration of D?
408   const Decl *CanonicalD = D->getCanonicalDecl();
409   if (!CanonicalD)
410     return nullptr;
411 
412   {
413     auto RedeclComment = RedeclChainComments.find(CanonicalD);
414     if (RedeclComment != RedeclChainComments.end()) {
415       if (OriginalDecl)
416         *OriginalDecl = RedeclComment->second;
417       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
418       assert(CommentAtRedecl != DeclRawComments.end() &&
419              "This decl is supposed to have comment attached.");
420       return CommentAtRedecl->second;
421     }
422   }
423 
424   // Any redeclarations of D that we haven't checked for comments yet?
425   // We can't use DenseMap::iterator directly since it'd get invalid.
426   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
427     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
428     if (LookupRes != CommentlessRedeclChains.end())
429       return LookupRes->second;
430     return nullptr;
431   }();
432 
433   for (const auto Redecl : D->redecls()) {
434     assert(Redecl);
435     // Skip all redeclarations that have been checked previously.
436     if (LastCheckedRedecl) {
437       if (LastCheckedRedecl == Redecl) {
438         LastCheckedRedecl = nullptr;
439       }
440       continue;
441     }
442     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
443     if (RedeclComment) {
444       cacheRawCommentForDecl(*Redecl, *RedeclComment);
445       if (OriginalDecl)
446         *OriginalDecl = Redecl;
447       return RedeclComment;
448     }
449     CommentlessRedeclChains[CanonicalD] = Redecl;
450   }
451 
452   if (OriginalDecl)
453     *OriginalDecl = nullptr;
454   return nullptr;
455 }
456 
457 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
458                                         const RawComment &Comment) const {
459   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
460   DeclRawComments.try_emplace(&OriginalD, &Comment);
461   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
462   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
463   CommentlessRedeclChains.erase(CanonicalDecl);
464 }
465 
466 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
467                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
468   const DeclContext *DC = ObjCMethod->getDeclContext();
469   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
470     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
471     if (!ID)
472       return;
473     // Add redeclared method here.
474     for (const auto *Ext : ID->known_extensions()) {
475       if (ObjCMethodDecl *RedeclaredMethod =
476             Ext->getMethod(ObjCMethod->getSelector(),
477                                   ObjCMethod->isInstanceMethod()))
478         Redeclared.push_back(RedeclaredMethod);
479     }
480   }
481 }
482 
483 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
484                                                  const Preprocessor *PP) {
485   if (Comments.empty() || Decls.empty())
486     return;
487 
488   FileID File;
489   for (Decl *D : Decls) {
490     SourceLocation Loc = D->getLocation();
491     if (Loc.isValid()) {
492       // See if there are any new comments that are not attached to a decl.
493       // The location doesn't have to be precise - we care only about the file.
494       File = SourceMgr.getDecomposedLoc(Loc).first;
495       break;
496     }
497   }
498 
499   if (File.isInvalid())
500     return;
501 
502   auto CommentsInThisFile = Comments.getCommentsInFile(File);
503   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
504       CommentsInThisFile->rbegin()->second->isAttached())
505     return;
506 
507   // There is at least one comment not attached to a decl.
508   // Maybe it should be attached to one of Decls?
509   //
510   // Note that this way we pick up not only comments that precede the
511   // declaration, but also comments that *follow* the declaration -- thanks to
512   // the lookahead in the lexer: we've consumed the semicolon and looked
513   // ahead through comments.
514 
515   for (const Decl *D : Decls) {
516     assert(D);
517     if (D->isInvalidDecl())
518       continue;
519 
520     D = &adjustDeclToTemplate(*D);
521 
522     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
523 
524     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
525       continue;
526 
527     if (DeclRawComments.count(D) > 0)
528       continue;
529 
530     if (RawComment *const DocComment =
531             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
532       cacheRawCommentForDecl(*D, *DocComment);
533       comments::FullComment *FC = DocComment->parse(*this, PP, D);
534       ParsedComments[D->getCanonicalDecl()] = FC;
535     }
536   }
537 }
538 
539 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
540                                                     const Decl *D) const {
541   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
542   ThisDeclInfo->CommentDecl = D;
543   ThisDeclInfo->IsFilled = false;
544   ThisDeclInfo->fill();
545   ThisDeclInfo->CommentDecl = FC->getDecl();
546   if (!ThisDeclInfo->TemplateParameters)
547     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
548   comments::FullComment *CFC =
549     new (*this) comments::FullComment(FC->getBlocks(),
550                                       ThisDeclInfo);
551   return CFC;
552 }
553 
554 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
555   const RawComment *RC = getRawCommentForDeclNoCache(D);
556   return RC ? RC->parse(*this, nullptr, D) : nullptr;
557 }
558 
559 comments::FullComment *ASTContext::getCommentForDecl(
560                                               const Decl *D,
561                                               const Preprocessor *PP) const {
562   if (!D || D->isInvalidDecl())
563     return nullptr;
564   D = &adjustDeclToTemplate(*D);
565 
566   const Decl *Canonical = D->getCanonicalDecl();
567   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
568       ParsedComments.find(Canonical);
569 
570   if (Pos != ParsedComments.end()) {
571     if (Canonical != D) {
572       comments::FullComment *FC = Pos->second;
573       comments::FullComment *CFC = cloneFullComment(FC, D);
574       return CFC;
575     }
576     return Pos->second;
577   }
578 
579   const Decl *OriginalDecl = nullptr;
580 
581   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
582   if (!RC) {
583     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
584       SmallVector<const NamedDecl*, 8> Overridden;
585       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
586       if (OMD && OMD->isPropertyAccessor())
587         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
588           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
589             return cloneFullComment(FC, D);
590       if (OMD)
591         addRedeclaredMethods(OMD, Overridden);
592       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
593       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
594         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
595           return cloneFullComment(FC, D);
596     }
597     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
598       // Attach any tag type's documentation to its typedef if latter
599       // does not have one of its own.
600       QualType QT = TD->getUnderlyingType();
601       if (const auto *TT = QT->getAs<TagType>())
602         if (const Decl *TD = TT->getDecl())
603           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
604             return cloneFullComment(FC, D);
605     }
606     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
607       while (IC->getSuperClass()) {
608         IC = IC->getSuperClass();
609         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
610           return cloneFullComment(FC, D);
611       }
612     }
613     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
614       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
615         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
616           return cloneFullComment(FC, D);
617     }
618     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
619       if (!(RD = RD->getDefinition()))
620         return nullptr;
621       // Check non-virtual bases.
622       for (const auto &I : RD->bases()) {
623         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
624           continue;
625         QualType Ty = I.getType();
626         if (Ty.isNull())
627           continue;
628         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
629           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
630             continue;
631 
632           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
633             return cloneFullComment(FC, D);
634         }
635       }
636       // Check virtual bases.
637       for (const auto &I : RD->vbases()) {
638         if (I.getAccessSpecifier() != AS_public)
639           continue;
640         QualType Ty = I.getType();
641         if (Ty.isNull())
642           continue;
643         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
644           if (!(VirtualBase= VirtualBase->getDefinition()))
645             continue;
646           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
647             return cloneFullComment(FC, D);
648         }
649       }
650     }
651     return nullptr;
652   }
653 
654   // If the RawComment was attached to other redeclaration of this Decl, we
655   // should parse the comment in context of that other Decl.  This is important
656   // because comments can contain references to parameter names which can be
657   // different across redeclarations.
658   if (D != OriginalDecl && OriginalDecl)
659     return getCommentForDecl(OriginalDecl, PP);
660 
661   comments::FullComment *FC = RC->parse(*this, PP, D);
662   ParsedComments[Canonical] = FC;
663   return FC;
664 }
665 
666 void
667 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
668                                                    const ASTContext &C,
669                                                TemplateTemplateParmDecl *Parm) {
670   ID.AddInteger(Parm->getDepth());
671   ID.AddInteger(Parm->getPosition());
672   ID.AddBoolean(Parm->isParameterPack());
673 
674   TemplateParameterList *Params = Parm->getTemplateParameters();
675   ID.AddInteger(Params->size());
676   for (TemplateParameterList::const_iterator P = Params->begin(),
677                                           PEnd = Params->end();
678        P != PEnd; ++P) {
679     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
680       ID.AddInteger(0);
681       ID.AddBoolean(TTP->isParameterPack());
682       const TypeConstraint *TC = TTP->getTypeConstraint();
683       ID.AddBoolean(TC != nullptr);
684       if (TC)
685         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
686                                                         /*Canonical=*/true);
687       if (TTP->isExpandedParameterPack()) {
688         ID.AddBoolean(true);
689         ID.AddInteger(TTP->getNumExpansionParameters());
690       } else
691         ID.AddBoolean(false);
692       continue;
693     }
694 
695     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
696       ID.AddInteger(1);
697       ID.AddBoolean(NTTP->isParameterPack());
698       const Expr *TC = NTTP->getPlaceholderTypeConstraint();
699       ID.AddBoolean(TC != nullptr);
700       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
701       if (TC)
702         TC->Profile(ID, C, /*Canonical=*/true);
703       if (NTTP->isExpandedParameterPack()) {
704         ID.AddBoolean(true);
705         ID.AddInteger(NTTP->getNumExpansionTypes());
706         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
707           QualType T = NTTP->getExpansionType(I);
708           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
709         }
710       } else
711         ID.AddBoolean(false);
712       continue;
713     }
714 
715     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
716     ID.AddInteger(2);
717     Profile(ID, C, TTP);
718   }
719   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
720   ID.AddBoolean(RequiresClause != nullptr);
721   if (RequiresClause)
722     RequiresClause->Profile(ID, C, /*Canonical=*/true);
723 }
724 
725 static Expr *
726 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
727                                           QualType ConstrainedType) {
728   // This is a bit ugly - we need to form a new immediately-declared
729   // constraint that references the new parameter; this would ideally
730   // require semantic analysis (e.g. template<C T> struct S {}; - the
731   // converted arguments of C<T> could be an argument pack if C is
732   // declared as template<typename... T> concept C = ...).
733   // We don't have semantic analysis here so we dig deep into the
734   // ready-made constraint expr and change the thing manually.
735   ConceptSpecializationExpr *CSE;
736   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
737     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
738   else
739     CSE = cast<ConceptSpecializationExpr>(IDC);
740   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
741   SmallVector<TemplateArgument, 3> NewConverted;
742   NewConverted.reserve(OldConverted.size());
743   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
744     // The case:
745     // template<typename... T> concept C = true;
746     // template<C<int> T> struct S; -> constraint is C<{T, int}>
747     NewConverted.push_back(ConstrainedType);
748     llvm::append_range(NewConverted,
749                        OldConverted.front().pack_elements().drop_front(1));
750     TemplateArgument NewPack(NewConverted);
751 
752     NewConverted.clear();
753     NewConverted.push_back(NewPack);
754     assert(OldConverted.size() == 1 &&
755            "Template parameter pack should be the last parameter");
756   } else {
757     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
758            "Unexpected first argument kind for immediately-declared "
759            "constraint");
760     NewConverted.push_back(ConstrainedType);
761     llvm::append_range(NewConverted, OldConverted.drop_front(1));
762   }
763   auto *CSD = ImplicitConceptSpecializationDecl::Create(
764       C, CSE->getNamedConcept()->getDeclContext(),
765       CSE->getNamedConcept()->getLocation(), NewConverted);
766 
767   Expr *NewIDC = ConceptSpecializationExpr::Create(
768       C, CSE->getNamedConcept(), CSE->getTemplateArgsAsWritten(), CSD,
769       /*Satisfaction=*/nullptr, CSE->isInstantiationDependent(),
770       CSE->containsUnexpandedParameterPack());
771 
772   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
773     NewIDC = new (C) CXXFoldExpr(
774         OrigFold->getType(), /*Callee*/ nullptr, SourceLocation(), NewIDC,
775         BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
776         SourceLocation(), /*NumExpansions=*/std::nullopt);
777   return NewIDC;
778 }
779 
780 TemplateTemplateParmDecl *
781 ASTContext::getCanonicalTemplateTemplateParmDecl(
782                                           TemplateTemplateParmDecl *TTP) const {
783   // Check if we already have a canonical template template parameter.
784   llvm::FoldingSetNodeID ID;
785   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
786   void *InsertPos = nullptr;
787   CanonicalTemplateTemplateParm *Canonical
788     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
789   if (Canonical)
790     return Canonical->getParam();
791 
792   // Build a canonical template parameter list.
793   TemplateParameterList *Params = TTP->getTemplateParameters();
794   SmallVector<NamedDecl *, 4> CanonParams;
795   CanonParams.reserve(Params->size());
796   for (TemplateParameterList::const_iterator P = Params->begin(),
797                                           PEnd = Params->end();
798        P != PEnd; ++P) {
799     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
800       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(
801           *this, getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
802           TTP->getDepth(), TTP->getIndex(), nullptr, false,
803           TTP->isParameterPack(), TTP->hasTypeConstraint(),
804           TTP->isExpandedParameterPack()
805               ? std::optional<unsigned>(TTP->getNumExpansionParameters())
806               : std::nullopt);
807       if (const auto *TC = TTP->getTypeConstraint()) {
808         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
809         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
810                 *this, TC->getImmediatelyDeclaredConstraint(),
811                 ParamAsArgument);
812         NewTTP->setTypeConstraint(
813             NestedNameSpecifierLoc(),
814             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
815                                 SourceLocation()), /*FoundDecl=*/nullptr,
816             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
817             // simply omit the ArgsAsWritten
818             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
819       }
820       CanonParams.push_back(NewTTP);
821     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
822       QualType T = getCanonicalType(NTTP->getType());
823       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
824       NonTypeTemplateParmDecl *Param;
825       if (NTTP->isExpandedParameterPack()) {
826         SmallVector<QualType, 2> ExpandedTypes;
827         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
828         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
829           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
830           ExpandedTInfos.push_back(
831                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
832         }
833 
834         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
835                                                 SourceLocation(),
836                                                 SourceLocation(),
837                                                 NTTP->getDepth(),
838                                                 NTTP->getPosition(), nullptr,
839                                                 T,
840                                                 TInfo,
841                                                 ExpandedTypes,
842                                                 ExpandedTInfos);
843       } else {
844         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
845                                                 SourceLocation(),
846                                                 SourceLocation(),
847                                                 NTTP->getDepth(),
848                                                 NTTP->getPosition(), nullptr,
849                                                 T,
850                                                 NTTP->isParameterPack(),
851                                                 TInfo);
852       }
853       if (AutoType *AT = T->getContainedAutoType()) {
854         if (AT->isConstrained()) {
855           Param->setPlaceholderTypeConstraint(
856               canonicalizeImmediatelyDeclaredConstraint(
857                   *this, NTTP->getPlaceholderTypeConstraint(), T));
858         }
859       }
860       CanonParams.push_back(Param);
861 
862     } else
863       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
864                                            cast<TemplateTemplateParmDecl>(*P)));
865   }
866 
867   Expr *CanonRequiresClause = nullptr;
868   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
869     CanonRequiresClause = RequiresClause;
870 
871   TemplateTemplateParmDecl *CanonTTP
872     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
873                                        SourceLocation(), TTP->getDepth(),
874                                        TTP->getPosition(),
875                                        TTP->isParameterPack(),
876                                        nullptr,
877                          TemplateParameterList::Create(*this, SourceLocation(),
878                                                        SourceLocation(),
879                                                        CanonParams,
880                                                        SourceLocation(),
881                                                        CanonRequiresClause));
882 
883   // Get the new insert position for the node we care about.
884   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
885   assert(!Canonical && "Shouldn't be in the map!");
886   (void)Canonical;
887 
888   // Create the canonical template template parameter entry.
889   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
890   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
891   return CanonTTP;
892 }
893 
894 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
895   auto Kind = getTargetInfo().getCXXABI().getKind();
896   return getLangOpts().CXXABI.value_or(Kind);
897 }
898 
899 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
900   if (!LangOpts.CPlusPlus) return nullptr;
901 
902   switch (getCXXABIKind()) {
903   case TargetCXXABI::AppleARM64:
904   case TargetCXXABI::Fuchsia:
905   case TargetCXXABI::GenericARM: // Same as Itanium at this level
906   case TargetCXXABI::iOS:
907   case TargetCXXABI::WatchOS:
908   case TargetCXXABI::GenericAArch64:
909   case TargetCXXABI::GenericMIPS:
910   case TargetCXXABI::GenericItanium:
911   case TargetCXXABI::WebAssembly:
912   case TargetCXXABI::XL:
913     return CreateItaniumCXXABI(*this);
914   case TargetCXXABI::Microsoft:
915     return CreateMicrosoftCXXABI(*this);
916   }
917   llvm_unreachable("Invalid CXXABI type!");
918 }
919 
920 interp::Context &ASTContext::getInterpContext() {
921   if (!InterpContext) {
922     InterpContext.reset(new interp::Context(*this));
923   }
924   return *InterpContext.get();
925 }
926 
927 ParentMapContext &ASTContext::getParentMapContext() {
928   if (!ParentMapCtx)
929     ParentMapCtx.reset(new ParentMapContext(*this));
930   return *ParentMapCtx.get();
931 }
932 
933 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
934                                           const LangOptions &LangOpts) {
935   switch (LangOpts.getAddressSpaceMapMangling()) {
936   case LangOptions::ASMM_Target:
937     return TI.useAddressSpaceMapMangling();
938   case LangOptions::ASMM_On:
939     return true;
940   case LangOptions::ASMM_Off:
941     return false;
942   }
943   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
944 }
945 
946 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
947                        IdentifierTable &idents, SelectorTable &sels,
948                        Builtin::Context &builtins, TranslationUnitKind TUKind)
949     : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize),
950       FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize),
951       TemplateSpecializationTypes(this_()),
952       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
953       SubstTemplateTemplateParmPacks(this_()),
954       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
955       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
956       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
957                                         LangOpts.XRayNeverInstrumentFiles,
958                                         LangOpts.XRayAttrListFiles, SM)),
959       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
960       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
961       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
962       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
963       CompCategories(this_()), LastSDM(nullptr, 0) {
964   addTranslationUnitDecl();
965 }
966 
967 void ASTContext::cleanup() {
968   // Release the DenseMaps associated with DeclContext objects.
969   // FIXME: Is this the ideal solution?
970   ReleaseDeclContextMaps();
971 
972   // Call all of the deallocation functions on all of their targets.
973   for (auto &Pair : Deallocations)
974     (Pair.first)(Pair.second);
975   Deallocations.clear();
976 
977   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
978   // because they can contain DenseMaps.
979   for (llvm::DenseMap<const ObjCContainerDecl*,
980        const ASTRecordLayout*>::iterator
981        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
982     // Increment in loop to prevent using deallocated memory.
983     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
984       R->Destroy(*this);
985   ObjCLayouts.clear();
986 
987   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
988        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
989     // Increment in loop to prevent using deallocated memory.
990     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
991       R->Destroy(*this);
992   }
993   ASTRecordLayouts.clear();
994 
995   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
996                                                     AEnd = DeclAttrs.end();
997        A != AEnd; ++A)
998     A->second->~AttrVec();
999   DeclAttrs.clear();
1000 
1001   for (const auto &Value : ModuleInitializers)
1002     Value.second->~PerModuleInitializers();
1003   ModuleInitializers.clear();
1004 }
1005 
1006 ASTContext::~ASTContext() { cleanup(); }
1007 
1008 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1009   TraversalScope = TopLevelDecls;
1010   getParentMapContext().clear();
1011 }
1012 
1013 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1014   Deallocations.push_back({Callback, Data});
1015 }
1016 
1017 void
1018 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1019   ExternalSource = std::move(Source);
1020 }
1021 
1022 void ASTContext::PrintStats() const {
1023   llvm::errs() << "\n*** AST Context Stats:\n";
1024   llvm::errs() << "  " << Types.size() << " types total.\n";
1025 
1026   unsigned counts[] = {
1027 #define TYPE(Name, Parent) 0,
1028 #define ABSTRACT_TYPE(Name, Parent)
1029 #include "clang/AST/TypeNodes.inc"
1030     0 // Extra
1031   };
1032 
1033   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1034     Type *T = Types[i];
1035     counts[(unsigned)T->getTypeClass()]++;
1036   }
1037 
1038   unsigned Idx = 0;
1039   unsigned TotalBytes = 0;
1040 #define TYPE(Name, Parent)                                              \
1041   if (counts[Idx])                                                      \
1042     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1043                  << " types, " << sizeof(Name##Type) << " each "        \
1044                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1045                  << " bytes)\n";                                        \
1046   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1047   ++Idx;
1048 #define ABSTRACT_TYPE(Name, Parent)
1049 #include "clang/AST/TypeNodes.inc"
1050 
1051   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1052 
1053   // Implicit special member functions.
1054   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1055                << NumImplicitDefaultConstructors
1056                << " implicit default constructors created\n";
1057   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1058                << NumImplicitCopyConstructors
1059                << " implicit copy constructors created\n";
1060   if (getLangOpts().CPlusPlus)
1061     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1062                  << NumImplicitMoveConstructors
1063                  << " implicit move constructors created\n";
1064   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1065                << NumImplicitCopyAssignmentOperators
1066                << " implicit copy assignment operators created\n";
1067   if (getLangOpts().CPlusPlus)
1068     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1069                  << NumImplicitMoveAssignmentOperators
1070                  << " implicit move assignment operators created\n";
1071   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1072                << NumImplicitDestructors
1073                << " implicit destructors created\n";
1074 
1075   if (ExternalSource) {
1076     llvm::errs() << "\n";
1077     ExternalSource->PrintStats();
1078   }
1079 
1080   BumpAlloc.PrintStats();
1081 }
1082 
1083 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1084                                            bool NotifyListeners) {
1085   if (NotifyListeners)
1086     if (auto *Listener = getASTMutationListener())
1087       Listener->RedefinedHiddenDefinition(ND, M);
1088 
1089   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1090 }
1091 
1092 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1093   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1094   if (It == MergedDefModules.end())
1095     return;
1096 
1097   auto &Merged = It->second;
1098   llvm::DenseSet<Module*> Found;
1099   for (Module *&M : Merged)
1100     if (!Found.insert(M).second)
1101       M = nullptr;
1102   llvm::erase_value(Merged, nullptr);
1103 }
1104 
1105 ArrayRef<Module *>
1106 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1107   auto MergedIt =
1108       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1109   if (MergedIt == MergedDefModules.end())
1110     return std::nullopt;
1111   return MergedIt->second;
1112 }
1113 
1114 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1115   if (LazyInitializers.empty())
1116     return;
1117 
1118   auto *Source = Ctx.getExternalSource();
1119   assert(Source && "lazy initializers but no external source");
1120 
1121   auto LazyInits = std::move(LazyInitializers);
1122   LazyInitializers.clear();
1123 
1124   for (auto ID : LazyInits)
1125     Initializers.push_back(Source->GetExternalDecl(ID));
1126 
1127   assert(LazyInitializers.empty() &&
1128          "GetExternalDecl for lazy module initializer added more inits");
1129 }
1130 
1131 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1132   // One special case: if we add a module initializer that imports another
1133   // module, and that module's only initializer is an ImportDecl, simplify.
1134   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1135     auto It = ModuleInitializers.find(ID->getImportedModule());
1136 
1137     // Maybe the ImportDecl does nothing at all. (Common case.)
1138     if (It == ModuleInitializers.end())
1139       return;
1140 
1141     // Maybe the ImportDecl only imports another ImportDecl.
1142     auto &Imported = *It->second;
1143     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1144       Imported.resolve(*this);
1145       auto *OnlyDecl = Imported.Initializers.front();
1146       if (isa<ImportDecl>(OnlyDecl))
1147         D = OnlyDecl;
1148     }
1149   }
1150 
1151   auto *&Inits = ModuleInitializers[M];
1152   if (!Inits)
1153     Inits = new (*this) PerModuleInitializers;
1154   Inits->Initializers.push_back(D);
1155 }
1156 
1157 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1158   auto *&Inits = ModuleInitializers[M];
1159   if (!Inits)
1160     Inits = new (*this) PerModuleInitializers;
1161   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1162                                  IDs.begin(), IDs.end());
1163 }
1164 
1165 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1166   auto It = ModuleInitializers.find(M);
1167   if (It == ModuleInitializers.end())
1168     return std::nullopt;
1169 
1170   auto *Inits = It->second;
1171   Inits->resolve(*this);
1172   return Inits->Initializers;
1173 }
1174 
1175 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1176   if (!ExternCContext)
1177     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1178 
1179   return ExternCContext;
1180 }
1181 
1182 BuiltinTemplateDecl *
1183 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1184                                      const IdentifierInfo *II) const {
1185   auto *BuiltinTemplate =
1186       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1187   BuiltinTemplate->setImplicit();
1188   getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1189 
1190   return BuiltinTemplate;
1191 }
1192 
1193 BuiltinTemplateDecl *
1194 ASTContext::getMakeIntegerSeqDecl() const {
1195   if (!MakeIntegerSeqDecl)
1196     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1197                                                   getMakeIntegerSeqName());
1198   return MakeIntegerSeqDecl;
1199 }
1200 
1201 BuiltinTemplateDecl *
1202 ASTContext::getTypePackElementDecl() const {
1203   if (!TypePackElementDecl)
1204     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1205                                                    getTypePackElementName());
1206   return TypePackElementDecl;
1207 }
1208 
1209 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1210                                             RecordDecl::TagKind TK) const {
1211   SourceLocation Loc;
1212   RecordDecl *NewDecl;
1213   if (getLangOpts().CPlusPlus)
1214     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1215                                     Loc, &Idents.get(Name));
1216   else
1217     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1218                                  &Idents.get(Name));
1219   NewDecl->setImplicit();
1220   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1221       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1222   return NewDecl;
1223 }
1224 
1225 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1226                                               StringRef Name) const {
1227   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1228   TypedefDecl *NewDecl = TypedefDecl::Create(
1229       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1230       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1231   NewDecl->setImplicit();
1232   return NewDecl;
1233 }
1234 
1235 TypedefDecl *ASTContext::getInt128Decl() const {
1236   if (!Int128Decl)
1237     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1238   return Int128Decl;
1239 }
1240 
1241 TypedefDecl *ASTContext::getUInt128Decl() const {
1242   if (!UInt128Decl)
1243     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1244   return UInt128Decl;
1245 }
1246 
1247 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1248   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1249   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1250   Types.push_back(Ty);
1251 }
1252 
1253 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1254                                   const TargetInfo *AuxTarget) {
1255   assert((!this->Target || this->Target == &Target) &&
1256          "Incorrect target reinitialization");
1257   assert(VoidTy.isNull() && "Context reinitialized?");
1258 
1259   this->Target = &Target;
1260   this->AuxTarget = AuxTarget;
1261 
1262   ABI.reset(createCXXABI(Target));
1263   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1264 
1265   // C99 6.2.5p19.
1266   InitBuiltinType(VoidTy,              BuiltinType::Void);
1267 
1268   // C99 6.2.5p2.
1269   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1270   // C99 6.2.5p3.
1271   if (LangOpts.CharIsSigned)
1272     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1273   else
1274     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1275   // C99 6.2.5p4.
1276   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1277   InitBuiltinType(ShortTy,             BuiltinType::Short);
1278   InitBuiltinType(IntTy,               BuiltinType::Int);
1279   InitBuiltinType(LongTy,              BuiltinType::Long);
1280   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1281 
1282   // C99 6.2.5p6.
1283   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1284   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1285   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1286   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1287   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1288 
1289   // C99 6.2.5p10.
1290   InitBuiltinType(FloatTy,             BuiltinType::Float);
1291   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1292   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1293 
1294   // GNU extension, __float128 for IEEE quadruple precision
1295   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1296 
1297   // __ibm128 for IBM extended precision
1298   InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
1299 
1300   // C11 extension ISO/IEC TS 18661-3
1301   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1302 
1303   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1304   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1305   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1306   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1307   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1308   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1309   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1310   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1311   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1312   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1313   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1314   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1315   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1316   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1317   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1318   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1319   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1320   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1321   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1322   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1323   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1324   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1325   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1326   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1327   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1328 
1329   // GNU extension, 128-bit integers.
1330   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1331   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1332 
1333   // C++ 3.9.1p5
1334   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1335     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1336   else  // -fshort-wchar makes wchar_t be unsigned.
1337     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1338   if (LangOpts.CPlusPlus && LangOpts.WChar)
1339     WideCharTy = WCharTy;
1340   else {
1341     // C99 (or C++ using -fno-wchar).
1342     WideCharTy = getFromTargetType(Target.getWCharType());
1343   }
1344 
1345   WIntTy = getFromTargetType(Target.getWIntType());
1346 
1347   // C++20 (proposed)
1348   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1349 
1350   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1351     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1352   else // C99
1353     Char16Ty = getFromTargetType(Target.getChar16Type());
1354 
1355   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1356     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1357   else // C99
1358     Char32Ty = getFromTargetType(Target.getChar32Type());
1359 
1360   // Placeholder type for type-dependent expressions whose type is
1361   // completely unknown. No code should ever check a type against
1362   // DependentTy and users should never see it; however, it is here to
1363   // help diagnose failures to properly check for type-dependent
1364   // expressions.
1365   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1366 
1367   // Placeholder type for functions.
1368   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1369 
1370   // Placeholder type for bound members.
1371   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1372 
1373   // Placeholder type for pseudo-objects.
1374   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1375 
1376   // "any" type; useful for debugger-like clients.
1377   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1378 
1379   // Placeholder type for unbridged ARC casts.
1380   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1381 
1382   // Placeholder type for builtin functions.
1383   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1384 
1385   // Placeholder type for OMP array sections.
1386   if (LangOpts.OpenMP) {
1387     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1388     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1389     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1390   }
1391   if (LangOpts.MatrixTypes)
1392     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1393 
1394   // Builtin types for 'id', 'Class', and 'SEL'.
1395   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1396   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1397   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1398 
1399   if (LangOpts.OpenCL) {
1400 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1401     InitBuiltinType(SingletonId, BuiltinType::Id);
1402 #include "clang/Basic/OpenCLImageTypes.def"
1403 
1404     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1405     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1406     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1407     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1408     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1409 
1410 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1411     InitBuiltinType(Id##Ty, BuiltinType::Id);
1412 #include "clang/Basic/OpenCLExtensionTypes.def"
1413   }
1414 
1415   if (Target.hasAArch64SVETypes()) {
1416 #define SVE_TYPE(Name, Id, SingletonId) \
1417     InitBuiltinType(SingletonId, BuiltinType::Id);
1418 #include "clang/Basic/AArch64SVEACLETypes.def"
1419   }
1420 
1421   if (Target.getTriple().isPPC64()) {
1422 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1423       InitBuiltinType(Id##Ty, BuiltinType::Id);
1424 #include "clang/Basic/PPCTypes.def"
1425 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1426     InitBuiltinType(Id##Ty, BuiltinType::Id);
1427 #include "clang/Basic/PPCTypes.def"
1428   }
1429 
1430   if (Target.hasRISCVVTypes()) {
1431 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1432   InitBuiltinType(SingletonId, BuiltinType::Id);
1433 #include "clang/Basic/RISCVVTypes.def"
1434   }
1435 
1436   // Builtin type for __objc_yes and __objc_no
1437   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1438                        SignedCharTy : BoolTy);
1439 
1440   ObjCConstantStringType = QualType();
1441 
1442   ObjCSuperType = QualType();
1443 
1444   // void * type
1445   if (LangOpts.OpenCLGenericAddressSpace) {
1446     auto Q = VoidTy.getQualifiers();
1447     Q.setAddressSpace(LangAS::opencl_generic);
1448     VoidPtrTy = getPointerType(getCanonicalType(
1449         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1450   } else {
1451     VoidPtrTy = getPointerType(VoidTy);
1452   }
1453 
1454   // nullptr type (C++0x 2.14.7)
1455   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1456 
1457   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1458   InitBuiltinType(HalfTy, BuiltinType::Half);
1459 
1460   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1461 
1462   // Builtin type used to help define __builtin_va_list.
1463   VaListTagDecl = nullptr;
1464 
1465   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1466   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1467     MSGuidTagDecl = buildImplicitRecord("_GUID");
1468     getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1469   }
1470 }
1471 
1472 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1473   return SourceMgr.getDiagnostics();
1474 }
1475 
1476 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1477   AttrVec *&Result = DeclAttrs[D];
1478   if (!Result) {
1479     void *Mem = Allocate(sizeof(AttrVec));
1480     Result = new (Mem) AttrVec;
1481   }
1482 
1483   return *Result;
1484 }
1485 
1486 /// Erase the attributes corresponding to the given declaration.
1487 void ASTContext::eraseDeclAttrs(const Decl *D) {
1488   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1489   if (Pos != DeclAttrs.end()) {
1490     Pos->second->~AttrVec();
1491     DeclAttrs.erase(Pos);
1492   }
1493 }
1494 
1495 // FIXME: Remove ?
1496 MemberSpecializationInfo *
1497 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1498   assert(Var->isStaticDataMember() && "Not a static data member");
1499   return getTemplateOrSpecializationInfo(Var)
1500       .dyn_cast<MemberSpecializationInfo *>();
1501 }
1502 
1503 ASTContext::TemplateOrSpecializationInfo
1504 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1505   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1506       TemplateOrInstantiation.find(Var);
1507   if (Pos == TemplateOrInstantiation.end())
1508     return {};
1509 
1510   return Pos->second;
1511 }
1512 
1513 void
1514 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1515                                                 TemplateSpecializationKind TSK,
1516                                           SourceLocation PointOfInstantiation) {
1517   assert(Inst->isStaticDataMember() && "Not a static data member");
1518   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1519   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1520                                             Tmpl, TSK, PointOfInstantiation));
1521 }
1522 
1523 void
1524 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1525                                             TemplateOrSpecializationInfo TSI) {
1526   assert(!TemplateOrInstantiation[Inst] &&
1527          "Already noted what the variable was instantiated from");
1528   TemplateOrInstantiation[Inst] = TSI;
1529 }
1530 
1531 NamedDecl *
1532 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1533   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1534   if (Pos == InstantiatedFromUsingDecl.end())
1535     return nullptr;
1536 
1537   return Pos->second;
1538 }
1539 
1540 void
1541 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1542   assert((isa<UsingDecl>(Pattern) ||
1543           isa<UnresolvedUsingValueDecl>(Pattern) ||
1544           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1545          "pattern decl is not a using decl");
1546   assert((isa<UsingDecl>(Inst) ||
1547           isa<UnresolvedUsingValueDecl>(Inst) ||
1548           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1549          "instantiation did not produce a using decl");
1550   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1551   InstantiatedFromUsingDecl[Inst] = Pattern;
1552 }
1553 
1554 UsingEnumDecl *
1555 ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1556   auto Pos = InstantiatedFromUsingEnumDecl.find(UUD);
1557   if (Pos == InstantiatedFromUsingEnumDecl.end())
1558     return nullptr;
1559 
1560   return Pos->second;
1561 }
1562 
1563 void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1564                                                   UsingEnumDecl *Pattern) {
1565   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
1566   InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1567 }
1568 
1569 UsingShadowDecl *
1570 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1571   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1572     = InstantiatedFromUsingShadowDecl.find(Inst);
1573   if (Pos == InstantiatedFromUsingShadowDecl.end())
1574     return nullptr;
1575 
1576   return Pos->second;
1577 }
1578 
1579 void
1580 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1581                                                UsingShadowDecl *Pattern) {
1582   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1583   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1584 }
1585 
1586 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1587   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1588     = InstantiatedFromUnnamedFieldDecl.find(Field);
1589   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1590     return nullptr;
1591 
1592   return Pos->second;
1593 }
1594 
1595 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1596                                                      FieldDecl *Tmpl) {
1597   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1598   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1599   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1600          "Already noted what unnamed field was instantiated from");
1601 
1602   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1603 }
1604 
1605 ASTContext::overridden_cxx_method_iterator
1606 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1607   return overridden_methods(Method).begin();
1608 }
1609 
1610 ASTContext::overridden_cxx_method_iterator
1611 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1612   return overridden_methods(Method).end();
1613 }
1614 
1615 unsigned
1616 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1617   auto Range = overridden_methods(Method);
1618   return Range.end() - Range.begin();
1619 }
1620 
1621 ASTContext::overridden_method_range
1622 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1623   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1624       OverriddenMethods.find(Method->getCanonicalDecl());
1625   if (Pos == OverriddenMethods.end())
1626     return overridden_method_range(nullptr, nullptr);
1627   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1628 }
1629 
1630 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1631                                      const CXXMethodDecl *Overridden) {
1632   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1633   OverriddenMethods[Method].push_back(Overridden);
1634 }
1635 
1636 void ASTContext::getOverriddenMethods(
1637                       const NamedDecl *D,
1638                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1639   assert(D);
1640 
1641   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1642     Overridden.append(overridden_methods_begin(CXXMethod),
1643                       overridden_methods_end(CXXMethod));
1644     return;
1645   }
1646 
1647   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1648   if (!Method)
1649     return;
1650 
1651   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1652   Method->getOverriddenMethods(OverDecls);
1653   Overridden.append(OverDecls.begin(), OverDecls.end());
1654 }
1655 
1656 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1657   assert(!Import->getNextLocalImport() &&
1658          "Import declaration already in the chain");
1659   assert(!Import->isFromASTFile() && "Non-local import declaration");
1660   if (!FirstLocalImport) {
1661     FirstLocalImport = Import;
1662     LastLocalImport = Import;
1663     return;
1664   }
1665 
1666   LastLocalImport->setNextLocalImport(Import);
1667   LastLocalImport = Import;
1668 }
1669 
1670 //===----------------------------------------------------------------------===//
1671 //                         Type Sizing and Analysis
1672 //===----------------------------------------------------------------------===//
1673 
1674 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1675 /// scalar floating point type.
1676 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1677   switch (T->castAs<BuiltinType>()->getKind()) {
1678   default:
1679     llvm_unreachable("Not a floating point type!");
1680   case BuiltinType::BFloat16:
1681     return Target->getBFloat16Format();
1682   case BuiltinType::Float16:
1683     return Target->getHalfFormat();
1684   case BuiltinType::Half:
1685     // For HLSL, when the native half type is disabled, half will be treat as
1686     // float.
1687     if (getLangOpts().HLSL)
1688       if (getLangOpts().NativeHalfType)
1689         return Target->getHalfFormat();
1690       else
1691         return Target->getFloatFormat();
1692     else
1693       return Target->getHalfFormat();
1694   case BuiltinType::Float:      return Target->getFloatFormat();
1695   case BuiltinType::Double:     return Target->getDoubleFormat();
1696   case BuiltinType::Ibm128:
1697     return Target->getIbm128Format();
1698   case BuiltinType::LongDouble:
1699     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1700       return AuxTarget->getLongDoubleFormat();
1701     return Target->getLongDoubleFormat();
1702   case BuiltinType::Float128:
1703     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1704       return AuxTarget->getFloat128Format();
1705     return Target->getFloat128Format();
1706   }
1707 }
1708 
1709 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1710   unsigned Align = Target->getCharWidth();
1711 
1712   bool UseAlignAttrOnly = false;
1713   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1714     Align = AlignFromAttr;
1715 
1716     // __attribute__((aligned)) can increase or decrease alignment
1717     // *except* on a struct or struct member, where it only increases
1718     // alignment unless 'packed' is also specified.
1719     //
1720     // It is an error for alignas to decrease alignment, so we can
1721     // ignore that possibility;  Sema should diagnose it.
1722     if (isa<FieldDecl>(D)) {
1723       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1724         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1725     } else {
1726       UseAlignAttrOnly = true;
1727     }
1728   }
1729   else if (isa<FieldDecl>(D))
1730       UseAlignAttrOnly =
1731         D->hasAttr<PackedAttr>() ||
1732         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1733 
1734   // If we're using the align attribute only, just ignore everything
1735   // else about the declaration and its type.
1736   if (UseAlignAttrOnly) {
1737     // do nothing
1738   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1739     QualType T = VD->getType();
1740     if (const auto *RT = T->getAs<ReferenceType>()) {
1741       if (ForAlignof)
1742         T = RT->getPointeeType();
1743       else
1744         T = getPointerType(RT->getPointeeType());
1745     }
1746     QualType BaseT = getBaseElementType(T);
1747     if (T->isFunctionType())
1748       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1749     else if (!BaseT->isIncompleteType()) {
1750       // Adjust alignments of declarations with array type by the
1751       // large-array alignment on the target.
1752       if (const ArrayType *arrayType = getAsArrayType(T)) {
1753         unsigned MinWidth = Target->getLargeArrayMinWidth();
1754         if (!ForAlignof && MinWidth) {
1755           if (isa<VariableArrayType>(arrayType))
1756             Align = std::max(Align, Target->getLargeArrayAlign());
1757           else if (isa<ConstantArrayType>(arrayType) &&
1758                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1759             Align = std::max(Align, Target->getLargeArrayAlign());
1760         }
1761       }
1762       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1763       if (BaseT.getQualifiers().hasUnaligned())
1764         Align = Target->getCharWidth();
1765       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1766         if (VD->hasGlobalStorage() && !ForAlignof) {
1767           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1768           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1769         }
1770       }
1771     }
1772 
1773     // Fields can be subject to extra alignment constraints, like if
1774     // the field is packed, the struct is packed, or the struct has a
1775     // a max-field-alignment constraint (#pragma pack).  So calculate
1776     // the actual alignment of the field within the struct, and then
1777     // (as we're expected to) constrain that by the alignment of the type.
1778     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1779       const RecordDecl *Parent = Field->getParent();
1780       // We can only produce a sensible answer if the record is valid.
1781       if (!Parent->isInvalidDecl()) {
1782         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1783 
1784         // Start with the record's overall alignment.
1785         unsigned FieldAlign = toBits(Layout.getAlignment());
1786 
1787         // Use the GCD of that and the offset within the record.
1788         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1789         if (Offset > 0) {
1790           // Alignment is always a power of 2, so the GCD will be a power of 2,
1791           // which means we get to do this crazy thing instead of Euclid's.
1792           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1793           if (LowBitOfOffset < FieldAlign)
1794             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1795         }
1796 
1797         Align = std::min(Align, FieldAlign);
1798       }
1799     }
1800   }
1801 
1802   // Some targets have hard limitation on the maximum requestable alignment in
1803   // aligned attribute for static variables.
1804   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1805   const auto *VD = dyn_cast<VarDecl>(D);
1806   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1807     Align = std::min(Align, MaxAlignedAttr);
1808 
1809   return toCharUnitsFromBits(Align);
1810 }
1811 
1812 CharUnits ASTContext::getExnObjectAlignment() const {
1813   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1814 }
1815 
1816 // getTypeInfoDataSizeInChars - Return the size of a type, in
1817 // chars. If the type is a record, its data size is returned.  This is
1818 // the size of the memcpy that's performed when assigning this type
1819 // using a trivial copy/move assignment operator.
1820 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1821   TypeInfoChars Info = getTypeInfoInChars(T);
1822 
1823   // In C++, objects can sometimes be allocated into the tail padding
1824   // of a base-class subobject.  We decide whether that's possible
1825   // during class layout, so here we can just trust the layout results.
1826   if (getLangOpts().CPlusPlus) {
1827     if (const auto *RT = T->getAs<RecordType>()) {
1828       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1829       Info.Width = layout.getDataSize();
1830     }
1831   }
1832 
1833   return Info;
1834 }
1835 
1836 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1837 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1838 TypeInfoChars
1839 static getConstantArrayInfoInChars(const ASTContext &Context,
1840                                    const ConstantArrayType *CAT) {
1841   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1842   uint64_t Size = CAT->getSize().getZExtValue();
1843   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1844               (uint64_t)(-1)/Size) &&
1845          "Overflow in array type char size evaluation");
1846   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1847   unsigned Align = EltInfo.Align.getQuantity();
1848   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1849       Context.getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1850     Width = llvm::alignTo(Width, Align);
1851   return TypeInfoChars(CharUnits::fromQuantity(Width),
1852                        CharUnits::fromQuantity(Align),
1853                        EltInfo.AlignRequirement);
1854 }
1855 
1856 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1857   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1858     return getConstantArrayInfoInChars(*this, CAT);
1859   TypeInfo Info = getTypeInfo(T);
1860   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1861                        toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
1862 }
1863 
1864 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1865   return getTypeInfoInChars(T.getTypePtr());
1866 }
1867 
1868 bool ASTContext::isPromotableIntegerType(QualType T) const {
1869   // HLSL doesn't promote all small integer types to int, it
1870   // just uses the rank-based promotion rules for all types.
1871   if (getLangOpts().HLSL)
1872     return false;
1873 
1874   if (const auto *BT = T->getAs<BuiltinType>())
1875     switch (BT->getKind()) {
1876     case BuiltinType::Bool:
1877     case BuiltinType::Char_S:
1878     case BuiltinType::Char_U:
1879     case BuiltinType::SChar:
1880     case BuiltinType::UChar:
1881     case BuiltinType::Short:
1882     case BuiltinType::UShort:
1883     case BuiltinType::WChar_S:
1884     case BuiltinType::WChar_U:
1885     case BuiltinType::Char8:
1886     case BuiltinType::Char16:
1887     case BuiltinType::Char32:
1888       return true;
1889     default:
1890       return false;
1891     }
1892 
1893   // Enumerated types are promotable to their compatible integer types
1894   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1895   if (const auto *ET = T->getAs<EnumType>()) {
1896     if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() ||
1897         ET->getDecl()->isScoped())
1898       return false;
1899 
1900     return true;
1901   }
1902 
1903   return false;
1904 }
1905 
1906 bool ASTContext::isAlignmentRequired(const Type *T) const {
1907   return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
1908 }
1909 
1910 bool ASTContext::isAlignmentRequired(QualType T) const {
1911   return isAlignmentRequired(T.getTypePtr());
1912 }
1913 
1914 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1915                                          bool NeedsPreferredAlignment) const {
1916   // An alignment on a typedef overrides anything else.
1917   if (const auto *TT = T->getAs<TypedefType>())
1918     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1919       return Align;
1920 
1921   // If we have an (array of) complete type, we're done.
1922   T = getBaseElementType(T);
1923   if (!T->isIncompleteType())
1924     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1925 
1926   // If we had an array type, its element type might be a typedef
1927   // type with an alignment attribute.
1928   if (const auto *TT = T->getAs<TypedefType>())
1929     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1930       return Align;
1931 
1932   // Otherwise, see if the declaration of the type had an attribute.
1933   if (const auto *TT = T->getAs<TagType>())
1934     return TT->getDecl()->getMaxAlignment();
1935 
1936   return 0;
1937 }
1938 
1939 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1940   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1941   if (I != MemoizedTypeInfo.end())
1942     return I->second;
1943 
1944   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1945   TypeInfo TI = getTypeInfoImpl(T);
1946   MemoizedTypeInfo[T] = TI;
1947   return TI;
1948 }
1949 
1950 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1951 /// method does not work on incomplete types.
1952 ///
1953 /// FIXME: Pointers into different addr spaces could have different sizes and
1954 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1955 /// should take a QualType, &c.
1956 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1957   uint64_t Width = 0;
1958   unsigned Align = 8;
1959   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1960   LangAS AS = LangAS::Default;
1961   switch (T->getTypeClass()) {
1962 #define TYPE(Class, Base)
1963 #define ABSTRACT_TYPE(Class, Base)
1964 #define NON_CANONICAL_TYPE(Class, Base)
1965 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1966 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1967   case Type::Class:                                                            \
1968   assert(!T->isDependentType() && "should not see dependent types here");      \
1969   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1970 #include "clang/AST/TypeNodes.inc"
1971     llvm_unreachable("Should not see dependent types");
1972 
1973   case Type::FunctionNoProto:
1974   case Type::FunctionProto:
1975     // GCC extension: alignof(function) = 32 bits
1976     Width = 0;
1977     Align = 32;
1978     break;
1979 
1980   case Type::IncompleteArray:
1981   case Type::VariableArray:
1982   case Type::ConstantArray: {
1983     // Model non-constant sized arrays as size zero, but track the alignment.
1984     uint64_t Size = 0;
1985     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1986       Size = CAT->getSize().getZExtValue();
1987 
1988     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1989     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1990            "Overflow in array type bit size evaluation");
1991     Width = EltInfo.Width * Size;
1992     Align = EltInfo.Align;
1993     AlignRequirement = EltInfo.AlignRequirement;
1994     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1995         getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1996       Width = llvm::alignTo(Width, Align);
1997     break;
1998   }
1999 
2000   case Type::ExtVector:
2001   case Type::Vector: {
2002     const auto *VT = cast<VectorType>(T);
2003     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
2004     Width = VT->isExtVectorBoolType() ? VT->getNumElements()
2005                                       : EltInfo.Width * VT->getNumElements();
2006     // Enforce at least byte alignment.
2007     Align = std::max<unsigned>(8, Width);
2008 
2009     // If the alignment is not a power of 2, round up to the next power of 2.
2010     // This happens for non-power-of-2 length vectors.
2011     if (Align & (Align-1)) {
2012       Align = llvm::NextPowerOf2(Align);
2013       Width = llvm::alignTo(Width, Align);
2014     }
2015     // Adjust the alignment based on the target max.
2016     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
2017     if (TargetVectorAlign && TargetVectorAlign < Align)
2018       Align = TargetVectorAlign;
2019     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
2020       // Adjust the alignment for fixed-length SVE vectors. This is important
2021       // for non-power-of-2 vector lengths.
2022       Align = 128;
2023     else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
2024       // Adjust the alignment for fixed-length SVE predicates.
2025       Align = 16;
2026     break;
2027   }
2028 
2029   case Type::ConstantMatrix: {
2030     const auto *MT = cast<ConstantMatrixType>(T);
2031     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
2032     // The internal layout of a matrix value is implementation defined.
2033     // Initially be ABI compatible with arrays with respect to alignment and
2034     // size.
2035     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
2036     Align = ElementInfo.Align;
2037     break;
2038   }
2039 
2040   case Type::Builtin:
2041     switch (cast<BuiltinType>(T)->getKind()) {
2042     default: llvm_unreachable("Unknown builtin type!");
2043     case BuiltinType::Void:
2044       // GCC extension: alignof(void) = 8 bits.
2045       Width = 0;
2046       Align = 8;
2047       break;
2048     case BuiltinType::Bool:
2049       Width = Target->getBoolWidth();
2050       Align = Target->getBoolAlign();
2051       break;
2052     case BuiltinType::Char_S:
2053     case BuiltinType::Char_U:
2054     case BuiltinType::UChar:
2055     case BuiltinType::SChar:
2056     case BuiltinType::Char8:
2057       Width = Target->getCharWidth();
2058       Align = Target->getCharAlign();
2059       break;
2060     case BuiltinType::WChar_S:
2061     case BuiltinType::WChar_U:
2062       Width = Target->getWCharWidth();
2063       Align = Target->getWCharAlign();
2064       break;
2065     case BuiltinType::Char16:
2066       Width = Target->getChar16Width();
2067       Align = Target->getChar16Align();
2068       break;
2069     case BuiltinType::Char32:
2070       Width = Target->getChar32Width();
2071       Align = Target->getChar32Align();
2072       break;
2073     case BuiltinType::UShort:
2074     case BuiltinType::Short:
2075       Width = Target->getShortWidth();
2076       Align = Target->getShortAlign();
2077       break;
2078     case BuiltinType::UInt:
2079     case BuiltinType::Int:
2080       Width = Target->getIntWidth();
2081       Align = Target->getIntAlign();
2082       break;
2083     case BuiltinType::ULong:
2084     case BuiltinType::Long:
2085       Width = Target->getLongWidth();
2086       Align = Target->getLongAlign();
2087       break;
2088     case BuiltinType::ULongLong:
2089     case BuiltinType::LongLong:
2090       Width = Target->getLongLongWidth();
2091       Align = Target->getLongLongAlign();
2092       break;
2093     case BuiltinType::Int128:
2094     case BuiltinType::UInt128:
2095       Width = 128;
2096       Align = Target->getInt128Align();
2097       break;
2098     case BuiltinType::ShortAccum:
2099     case BuiltinType::UShortAccum:
2100     case BuiltinType::SatShortAccum:
2101     case BuiltinType::SatUShortAccum:
2102       Width = Target->getShortAccumWidth();
2103       Align = Target->getShortAccumAlign();
2104       break;
2105     case BuiltinType::Accum:
2106     case BuiltinType::UAccum:
2107     case BuiltinType::SatAccum:
2108     case BuiltinType::SatUAccum:
2109       Width = Target->getAccumWidth();
2110       Align = Target->getAccumAlign();
2111       break;
2112     case BuiltinType::LongAccum:
2113     case BuiltinType::ULongAccum:
2114     case BuiltinType::SatLongAccum:
2115     case BuiltinType::SatULongAccum:
2116       Width = Target->getLongAccumWidth();
2117       Align = Target->getLongAccumAlign();
2118       break;
2119     case BuiltinType::ShortFract:
2120     case BuiltinType::UShortFract:
2121     case BuiltinType::SatShortFract:
2122     case BuiltinType::SatUShortFract:
2123       Width = Target->getShortFractWidth();
2124       Align = Target->getShortFractAlign();
2125       break;
2126     case BuiltinType::Fract:
2127     case BuiltinType::UFract:
2128     case BuiltinType::SatFract:
2129     case BuiltinType::SatUFract:
2130       Width = Target->getFractWidth();
2131       Align = Target->getFractAlign();
2132       break;
2133     case BuiltinType::LongFract:
2134     case BuiltinType::ULongFract:
2135     case BuiltinType::SatLongFract:
2136     case BuiltinType::SatULongFract:
2137       Width = Target->getLongFractWidth();
2138       Align = Target->getLongFractAlign();
2139       break;
2140     case BuiltinType::BFloat16:
2141       if (Target->hasBFloat16Type()) {
2142         Width = Target->getBFloat16Width();
2143         Align = Target->getBFloat16Align();
2144       }
2145       break;
2146     case BuiltinType::Float16:
2147     case BuiltinType::Half:
2148       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2149           !getLangOpts().OpenMPIsDevice) {
2150         Width = Target->getHalfWidth();
2151         Align = Target->getHalfAlign();
2152       } else {
2153         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2154                "Expected OpenMP device compilation.");
2155         Width = AuxTarget->getHalfWidth();
2156         Align = AuxTarget->getHalfAlign();
2157       }
2158       break;
2159     case BuiltinType::Float:
2160       Width = Target->getFloatWidth();
2161       Align = Target->getFloatAlign();
2162       break;
2163     case BuiltinType::Double:
2164       Width = Target->getDoubleWidth();
2165       Align = Target->getDoubleAlign();
2166       break;
2167     case BuiltinType::Ibm128:
2168       Width = Target->getIbm128Width();
2169       Align = Target->getIbm128Align();
2170       break;
2171     case BuiltinType::LongDouble:
2172       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2173           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2174            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2175         Width = AuxTarget->getLongDoubleWidth();
2176         Align = AuxTarget->getLongDoubleAlign();
2177       } else {
2178         Width = Target->getLongDoubleWidth();
2179         Align = Target->getLongDoubleAlign();
2180       }
2181       break;
2182     case BuiltinType::Float128:
2183       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2184           !getLangOpts().OpenMPIsDevice) {
2185         Width = Target->getFloat128Width();
2186         Align = Target->getFloat128Align();
2187       } else {
2188         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2189                "Expected OpenMP device compilation.");
2190         Width = AuxTarget->getFloat128Width();
2191         Align = AuxTarget->getFloat128Align();
2192       }
2193       break;
2194     case BuiltinType::NullPtr:
2195       // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*)
2196       Width = Target->getPointerWidth(LangAS::Default);
2197       Align = Target->getPointerAlign(LangAS::Default);
2198       break;
2199     case BuiltinType::ObjCId:
2200     case BuiltinType::ObjCClass:
2201     case BuiltinType::ObjCSel:
2202       Width = Target->getPointerWidth(LangAS::Default);
2203       Align = Target->getPointerAlign(LangAS::Default);
2204       break;
2205     case BuiltinType::OCLSampler:
2206     case BuiltinType::OCLEvent:
2207     case BuiltinType::OCLClkEvent:
2208     case BuiltinType::OCLQueue:
2209     case BuiltinType::OCLReserveID:
2210 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2211     case BuiltinType::Id:
2212 #include "clang/Basic/OpenCLImageTypes.def"
2213 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2214   case BuiltinType::Id:
2215 #include "clang/Basic/OpenCLExtensionTypes.def"
2216       AS = Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
2217       Width = Target->getPointerWidth(AS);
2218       Align = Target->getPointerAlign(AS);
2219       break;
2220     // The SVE types are effectively target-specific.  The length of an
2221     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2222     // of 128 bits.  There is one predicate bit for each vector byte, so the
2223     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2224     //
2225     // Because the length is only known at runtime, we use a dummy value
2226     // of 0 for the static length.  The alignment values are those defined
2227     // by the Procedure Call Standard for the Arm Architecture.
2228 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2229                         IsSigned, IsFP, IsBF)                                  \
2230   case BuiltinType::Id:                                                        \
2231     Width = 0;                                                                 \
2232     Align = 128;                                                               \
2233     break;
2234 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2235   case BuiltinType::Id:                                                        \
2236     Width = 0;                                                                 \
2237     Align = 16;                                                                \
2238     break;
2239 #include "clang/Basic/AArch64SVEACLETypes.def"
2240 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2241   case BuiltinType::Id:                                                        \
2242     Width = Size;                                                              \
2243     Align = Size;                                                              \
2244     break;
2245 #include "clang/Basic/PPCTypes.def"
2246 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2247                         IsFP)                                                  \
2248   case BuiltinType::Id:                                                        \
2249     Width = 0;                                                                 \
2250     Align = ElBits;                                                            \
2251     break;
2252 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2253   case BuiltinType::Id:                                                        \
2254     Width = 0;                                                                 \
2255     Align = 8;                                                                 \
2256     break;
2257 #include "clang/Basic/RISCVVTypes.def"
2258     }
2259     break;
2260   case Type::ObjCObjectPointer:
2261     Width = Target->getPointerWidth(LangAS::Default);
2262     Align = Target->getPointerAlign(LangAS::Default);
2263     break;
2264   case Type::BlockPointer:
2265     AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
2266     Width = Target->getPointerWidth(AS);
2267     Align = Target->getPointerAlign(AS);
2268     break;
2269   case Type::LValueReference:
2270   case Type::RValueReference:
2271     // alignof and sizeof should never enter this code path here, so we go
2272     // the pointer route.
2273     AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
2274     Width = Target->getPointerWidth(AS);
2275     Align = Target->getPointerAlign(AS);
2276     break;
2277   case Type::Pointer:
2278     AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
2279     Width = Target->getPointerWidth(AS);
2280     Align = Target->getPointerAlign(AS);
2281     break;
2282   case Type::MemberPointer: {
2283     const auto *MPT = cast<MemberPointerType>(T);
2284     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2285     Width = MPI.Width;
2286     Align = MPI.Align;
2287     break;
2288   }
2289   case Type::Complex: {
2290     // Complex types have the same alignment as their elements, but twice the
2291     // size.
2292     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2293     Width = EltInfo.Width * 2;
2294     Align = EltInfo.Align;
2295     break;
2296   }
2297   case Type::ObjCObject:
2298     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2299   case Type::Adjusted:
2300   case Type::Decayed:
2301     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2302   case Type::ObjCInterface: {
2303     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2304     if (ObjCI->getDecl()->isInvalidDecl()) {
2305       Width = 8;
2306       Align = 8;
2307       break;
2308     }
2309     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2310     Width = toBits(Layout.getSize());
2311     Align = toBits(Layout.getAlignment());
2312     break;
2313   }
2314   case Type::BitInt: {
2315     const auto *EIT = cast<BitIntType>(T);
2316     Align =
2317         std::min(static_cast<unsigned>(std::max(
2318                      getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2319                  Target->getLongLongAlign());
2320     Width = llvm::alignTo(EIT->getNumBits(), Align);
2321     break;
2322   }
2323   case Type::Record:
2324   case Type::Enum: {
2325     const auto *TT = cast<TagType>(T);
2326 
2327     if (TT->getDecl()->isInvalidDecl()) {
2328       Width = 8;
2329       Align = 8;
2330       break;
2331     }
2332 
2333     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2334       const EnumDecl *ED = ET->getDecl();
2335       TypeInfo Info =
2336           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2337       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2338         Info.Align = AttrAlign;
2339         Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
2340       }
2341       return Info;
2342     }
2343 
2344     const auto *RT = cast<RecordType>(TT);
2345     const RecordDecl *RD = RT->getDecl();
2346     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2347     Width = toBits(Layout.getSize());
2348     Align = toBits(Layout.getAlignment());
2349     AlignRequirement = RD->hasAttr<AlignedAttr>()
2350                            ? AlignRequirementKind::RequiredByRecord
2351                            : AlignRequirementKind::None;
2352     break;
2353   }
2354 
2355   case Type::SubstTemplateTypeParm:
2356     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2357                        getReplacementType().getTypePtr());
2358 
2359   case Type::Auto:
2360   case Type::DeducedTemplateSpecialization: {
2361     const auto *A = cast<DeducedType>(T);
2362     assert(!A->getDeducedType().isNull() &&
2363            "cannot request the size of an undeduced or dependent auto type");
2364     return getTypeInfo(A->getDeducedType().getTypePtr());
2365   }
2366 
2367   case Type::Paren:
2368     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2369 
2370   case Type::MacroQualified:
2371     return getTypeInfo(
2372         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2373 
2374   case Type::ObjCTypeParam:
2375     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2376 
2377   case Type::Using:
2378     return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr());
2379 
2380   case Type::Typedef: {
2381     const auto *TT = cast<TypedefType>(T);
2382     TypeInfo Info = getTypeInfo(TT->desugar().getTypePtr());
2383     // If the typedef has an aligned attribute on it, it overrides any computed
2384     // alignment we have.  This violates the GCC documentation (which says that
2385     // attribute(aligned) can only round up) but matches its implementation.
2386     if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) {
2387       Align = AttrAlign;
2388       AlignRequirement = AlignRequirementKind::RequiredByTypedef;
2389     } else {
2390       Align = Info.Align;
2391       AlignRequirement = Info.AlignRequirement;
2392     }
2393     Width = Info.Width;
2394     break;
2395   }
2396 
2397   case Type::Elaborated:
2398     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2399 
2400   case Type::Attributed:
2401     return getTypeInfo(
2402                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2403 
2404   case Type::BTFTagAttributed:
2405     return getTypeInfo(
2406         cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr());
2407 
2408   case Type::Atomic: {
2409     // Start with the base type information.
2410     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2411     Width = Info.Width;
2412     Align = Info.Align;
2413 
2414     if (!Width) {
2415       // An otherwise zero-sized type should still generate an
2416       // atomic operation.
2417       Width = Target->getCharWidth();
2418       assert(Align);
2419     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2420       // If the size of the type doesn't exceed the platform's max
2421       // atomic promotion width, make the size and alignment more
2422       // favorable to atomic operations:
2423 
2424       // Round the size up to a power of 2.
2425       if (!llvm::isPowerOf2_64(Width))
2426         Width = llvm::NextPowerOf2(Width);
2427 
2428       // Set the alignment equal to the size.
2429       Align = static_cast<unsigned>(Width);
2430     }
2431   }
2432   break;
2433 
2434   case Type::Pipe:
2435     Width = Target->getPointerWidth(LangAS::opencl_global);
2436     Align = Target->getPointerAlign(LangAS::opencl_global);
2437     break;
2438   }
2439 
2440   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2441   return TypeInfo(Width, Align, AlignRequirement);
2442 }
2443 
2444 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2445   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2446   if (I != MemoizedUnadjustedAlign.end())
2447     return I->second;
2448 
2449   unsigned UnadjustedAlign;
2450   if (const auto *RT = T->getAs<RecordType>()) {
2451     const RecordDecl *RD = RT->getDecl();
2452     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2453     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2454   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2455     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2456     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2457   } else {
2458     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2459   }
2460 
2461   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2462   return UnadjustedAlign;
2463 }
2464 
2465 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2466   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2467   return SimdAlign;
2468 }
2469 
2470 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2471 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2472   return CharUnits::fromQuantity(BitSize / getCharWidth());
2473 }
2474 
2475 /// toBits - Convert a size in characters to a size in characters.
2476 int64_t ASTContext::toBits(CharUnits CharSize) const {
2477   return CharSize.getQuantity() * getCharWidth();
2478 }
2479 
2480 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2481 /// This method does not work on incomplete types.
2482 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2483   return getTypeInfoInChars(T).Width;
2484 }
2485 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2486   return getTypeInfoInChars(T).Width;
2487 }
2488 
2489 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2490 /// characters. This method does not work on incomplete types.
2491 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2492   return toCharUnitsFromBits(getTypeAlign(T));
2493 }
2494 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2495   return toCharUnitsFromBits(getTypeAlign(T));
2496 }
2497 
2498 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2499 /// type, in characters, before alignment adjustments. This method does
2500 /// not work on incomplete types.
2501 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2502   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2503 }
2504 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2505   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2506 }
2507 
2508 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2509 /// type for the current target in bits.  This can be different than the ABI
2510 /// alignment in cases where it is beneficial for performance or backwards
2511 /// compatibility preserving to overalign a data type. (Note: despite the name,
2512 /// the preferred alignment is ABI-impacting, and not an optimization.)
2513 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2514   TypeInfo TI = getTypeInfo(T);
2515   unsigned ABIAlign = TI.Align;
2516 
2517   T = T->getBaseElementTypeUnsafe();
2518 
2519   // The preferred alignment of member pointers is that of a pointer.
2520   if (T->isMemberPointerType())
2521     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2522 
2523   if (!Target->allowsLargerPreferedTypeAlignment())
2524     return ABIAlign;
2525 
2526   if (const auto *RT = T->getAs<RecordType>()) {
2527     const RecordDecl *RD = RT->getDecl();
2528 
2529     // When used as part of a typedef, or together with a 'packed' attribute,
2530     // the 'aligned' attribute can be used to decrease alignment. Note that the
2531     // 'packed' case is already taken into consideration when computing the
2532     // alignment, we only need to handle the typedef case here.
2533     if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
2534         RD->isInvalidDecl())
2535       return ABIAlign;
2536 
2537     unsigned PreferredAlign = static_cast<unsigned>(
2538         toBits(getASTRecordLayout(RD).PreferredAlignment));
2539     assert(PreferredAlign >= ABIAlign &&
2540            "PreferredAlign should be at least as large as ABIAlign.");
2541     return PreferredAlign;
2542   }
2543 
2544   // Double (and, for targets supporting AIX `power` alignment, long double) and
2545   // long long should be naturally aligned (despite requiring less alignment) if
2546   // possible.
2547   if (const auto *CT = T->getAs<ComplexType>())
2548     T = CT->getElementType().getTypePtr();
2549   if (const auto *ET = T->getAs<EnumType>())
2550     T = ET->getDecl()->getIntegerType().getTypePtr();
2551   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2552       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2553       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2554       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2555        Target->defaultsToAIXPowerAlignment()))
2556     // Don't increase the alignment if an alignment attribute was specified on a
2557     // typedef declaration.
2558     if (!TI.isAlignRequired())
2559       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2560 
2561   return ABIAlign;
2562 }
2563 
2564 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2565 /// for __attribute__((aligned)) on this target, to be used if no alignment
2566 /// value is specified.
2567 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2568   return getTargetInfo().getDefaultAlignForAttributeAligned();
2569 }
2570 
2571 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2572 /// to a global variable of the specified type.
2573 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2574   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2575   return std::max(getPreferredTypeAlign(T),
2576                   getTargetInfo().getMinGlobalAlign(TypeSize));
2577 }
2578 
2579 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2580 /// should be given to a global variable of the specified type.
2581 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2582   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2583 }
2584 
2585 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2586   CharUnits Offset = CharUnits::Zero();
2587   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2588   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2589     Offset += Layout->getBaseClassOffset(Base);
2590     Layout = &getASTRecordLayout(Base);
2591   }
2592   return Offset;
2593 }
2594 
2595 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2596   const ValueDecl *MPD = MP.getMemberPointerDecl();
2597   CharUnits ThisAdjustment = CharUnits::Zero();
2598   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2599   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2600   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2601   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2602     const CXXRecordDecl *Base = RD;
2603     const CXXRecordDecl *Derived = Path[I];
2604     if (DerivedMember)
2605       std::swap(Base, Derived);
2606     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2607     RD = Path[I];
2608   }
2609   if (DerivedMember)
2610     ThisAdjustment = -ThisAdjustment;
2611   return ThisAdjustment;
2612 }
2613 
2614 /// DeepCollectObjCIvars -
2615 /// This routine first collects all declared, but not synthesized, ivars in
2616 /// super class and then collects all ivars, including those synthesized for
2617 /// current class. This routine is used for implementation of current class
2618 /// when all ivars, declared and synthesized are known.
2619 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2620                                       bool leafClass,
2621                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2622   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2623     DeepCollectObjCIvars(SuperClass, false, Ivars);
2624   if (!leafClass) {
2625     llvm::append_range(Ivars, OI->ivars());
2626   } else {
2627     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2628     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2629          Iv= Iv->getNextIvar())
2630       Ivars.push_back(Iv);
2631   }
2632 }
2633 
2634 /// CollectInheritedProtocols - Collect all protocols in current class and
2635 /// those inherited by it.
2636 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2637                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2638   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2639     // We can use protocol_iterator here instead of
2640     // all_referenced_protocol_iterator since we are walking all categories.
2641     for (auto *Proto : OI->all_referenced_protocols()) {
2642       CollectInheritedProtocols(Proto, Protocols);
2643     }
2644 
2645     // Categories of this Interface.
2646     for (const auto *Cat : OI->visible_categories())
2647       CollectInheritedProtocols(Cat, Protocols);
2648 
2649     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2650       while (SD) {
2651         CollectInheritedProtocols(SD, Protocols);
2652         SD = SD->getSuperClass();
2653       }
2654   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2655     for (auto *Proto : OC->protocols()) {
2656       CollectInheritedProtocols(Proto, Protocols);
2657     }
2658   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2659     // Insert the protocol.
2660     if (!Protocols.insert(
2661           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2662       return;
2663 
2664     for (auto *Proto : OP->protocols())
2665       CollectInheritedProtocols(Proto, Protocols);
2666   }
2667 }
2668 
2669 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2670                                                 const RecordDecl *RD) {
2671   assert(RD->isUnion() && "Must be union type");
2672   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2673 
2674   for (const auto *Field : RD->fields()) {
2675     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2676       return false;
2677     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2678     if (FieldSize != UnionSize)
2679       return false;
2680   }
2681   return !RD->field_empty();
2682 }
2683 
2684 static int64_t getSubobjectOffset(const FieldDecl *Field,
2685                                   const ASTContext &Context,
2686                                   const clang::ASTRecordLayout & /*Layout*/) {
2687   return Context.getFieldOffset(Field);
2688 }
2689 
2690 static int64_t getSubobjectOffset(const CXXRecordDecl *RD,
2691                                   const ASTContext &Context,
2692                                   const clang::ASTRecordLayout &Layout) {
2693   return Context.toBits(Layout.getBaseClassOffset(RD));
2694 }
2695 
2696 static std::optional<int64_t>
2697 structHasUniqueObjectRepresentations(const ASTContext &Context,
2698                                      const RecordDecl *RD);
2699 
2700 static std::optional<int64_t>
2701 getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context) {
2702   if (Field->getType()->isRecordType()) {
2703     const RecordDecl *RD = Field->getType()->getAsRecordDecl();
2704     if (!RD->isUnion())
2705       return structHasUniqueObjectRepresentations(Context, RD);
2706   }
2707 
2708   // A _BitInt type may not be unique if it has padding bits
2709   // but if it is a bitfield the padding bits are not used.
2710   bool IsBitIntType = Field->getType()->isBitIntType();
2711   if (!Field->getType()->isReferenceType() && !IsBitIntType &&
2712       !Context.hasUniqueObjectRepresentations(Field->getType()))
2713     return std::nullopt;
2714 
2715   int64_t FieldSizeInBits =
2716       Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2717   if (Field->isBitField()) {
2718     int64_t BitfieldSize = Field->getBitWidthValue(Context);
2719     if (IsBitIntType) {
2720       if ((unsigned)BitfieldSize >
2721           cast<BitIntType>(Field->getType())->getNumBits())
2722         return std::nullopt;
2723     } else if (BitfieldSize > FieldSizeInBits) {
2724       return std::nullopt;
2725     }
2726     FieldSizeInBits = BitfieldSize;
2727   } else if (IsBitIntType &&
2728              !Context.hasUniqueObjectRepresentations(Field->getType())) {
2729     return std::nullopt;
2730   }
2731   return FieldSizeInBits;
2732 }
2733 
2734 static std::optional<int64_t>
2735 getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context) {
2736   return structHasUniqueObjectRepresentations(Context, RD);
2737 }
2738 
2739 template <typename RangeT>
2740 static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations(
2741     const RangeT &Subobjects, int64_t CurOffsetInBits,
2742     const ASTContext &Context, const clang::ASTRecordLayout &Layout) {
2743   for (const auto *Subobject : Subobjects) {
2744     std::optional<int64_t> SizeInBits =
2745         getSubobjectSizeInBits(Subobject, Context);
2746     if (!SizeInBits)
2747       return std::nullopt;
2748     if (*SizeInBits != 0) {
2749       int64_t Offset = getSubobjectOffset(Subobject, Context, Layout);
2750       if (Offset != CurOffsetInBits)
2751         return std::nullopt;
2752       CurOffsetInBits += *SizeInBits;
2753     }
2754   }
2755   return CurOffsetInBits;
2756 }
2757 
2758 static std::optional<int64_t>
2759 structHasUniqueObjectRepresentations(const ASTContext &Context,
2760                                      const RecordDecl *RD) {
2761   assert(!RD->isUnion() && "Must be struct/class type");
2762   const auto &Layout = Context.getASTRecordLayout(RD);
2763 
2764   int64_t CurOffsetInBits = 0;
2765   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2766     if (ClassDecl->isDynamicClass())
2767       return std::nullopt;
2768 
2769     SmallVector<CXXRecordDecl *, 4> Bases;
2770     for (const auto &Base : ClassDecl->bases()) {
2771       // Empty types can be inherited from, and non-empty types can potentially
2772       // have tail padding, so just make sure there isn't an error.
2773       Bases.emplace_back(Base.getType()->getAsCXXRecordDecl());
2774     }
2775 
2776     llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
2777       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
2778     });
2779 
2780     std::optional<int64_t> OffsetAfterBases =
2781         structSubobjectsHaveUniqueObjectRepresentations(Bases, CurOffsetInBits,
2782                                                         Context, Layout);
2783     if (!OffsetAfterBases)
2784       return std::nullopt;
2785     CurOffsetInBits = *OffsetAfterBases;
2786   }
2787 
2788   std::optional<int64_t> OffsetAfterFields =
2789       structSubobjectsHaveUniqueObjectRepresentations(
2790           RD->fields(), CurOffsetInBits, Context, Layout);
2791   if (!OffsetAfterFields)
2792     return std::nullopt;
2793   CurOffsetInBits = *OffsetAfterFields;
2794 
2795   return CurOffsetInBits;
2796 }
2797 
2798 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2799   // C++17 [meta.unary.prop]:
2800   //   The predicate condition for a template specialization
2801   //   has_unique_object_representations<T> shall be
2802   //   satisfied if and only if:
2803   //     (9.1) - T is trivially copyable, and
2804   //     (9.2) - any two objects of type T with the same value have the same
2805   //     object representation, where two objects
2806   //   of array or non-union class type are considered to have the same value
2807   //   if their respective sequences of
2808   //   direct subobjects have the same values, and two objects of union type
2809   //   are considered to have the same
2810   //   value if they have the same active member and the corresponding members
2811   //   have the same value.
2812   //   The set of scalar types for which this condition holds is
2813   //   implementation-defined. [ Note: If a type has padding
2814   //   bits, the condition does not hold; otherwise, the condition holds true
2815   //   for unsigned integral types. -- end note ]
2816   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2817 
2818   // Arrays are unique only if their element type is unique.
2819   if (Ty->isArrayType())
2820     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2821 
2822   // (9.1) - T is trivially copyable...
2823   if (!Ty.isTriviallyCopyableType(*this))
2824     return false;
2825 
2826   // All integrals and enums are unique.
2827   if (Ty->isIntegralOrEnumerationType()) {
2828     // Except _BitInt types that have padding bits.
2829     if (const auto *BIT = dyn_cast<BitIntType>(Ty))
2830       return getTypeSize(BIT) == BIT->getNumBits();
2831 
2832     return true;
2833   }
2834 
2835   // All other pointers are unique.
2836   if (Ty->isPointerType())
2837     return true;
2838 
2839   if (Ty->isMemberPointerType()) {
2840     const auto *MPT = Ty->getAs<MemberPointerType>();
2841     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2842   }
2843 
2844   if (Ty->isRecordType()) {
2845     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2846 
2847     if (Record->isInvalidDecl())
2848       return false;
2849 
2850     if (Record->isUnion())
2851       return unionHasUniqueObjectRepresentations(*this, Record);
2852 
2853     std::optional<int64_t> StructSize =
2854         structHasUniqueObjectRepresentations(*this, Record);
2855 
2856     return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(Ty));
2857   }
2858 
2859   // FIXME: More cases to handle here (list by rsmith):
2860   // vectors (careful about, eg, vector of 3 foo)
2861   // _Complex int and friends
2862   // _Atomic T
2863   // Obj-C block pointers
2864   // Obj-C object pointers
2865   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2866   // clk_event_t, queue_t, reserve_id_t)
2867   // There're also Obj-C class types and the Obj-C selector type, but I think it
2868   // makes sense for those to return false here.
2869 
2870   return false;
2871 }
2872 
2873 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2874   unsigned count = 0;
2875   // Count ivars declared in class extension.
2876   for (const auto *Ext : OI->known_extensions())
2877     count += Ext->ivar_size();
2878 
2879   // Count ivar defined in this class's implementation.  This
2880   // includes synthesized ivars.
2881   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2882     count += ImplDecl->ivar_size();
2883 
2884   return count;
2885 }
2886 
2887 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2888   if (!E)
2889     return false;
2890 
2891   // nullptr_t is always treated as null.
2892   if (E->getType()->isNullPtrType()) return true;
2893 
2894   if (E->getType()->isAnyPointerType() &&
2895       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2896                                                 Expr::NPC_ValueDependentIsNull))
2897     return true;
2898 
2899   // Unfortunately, __null has type 'int'.
2900   if (isa<GNUNullExpr>(E)) return true;
2901 
2902   return false;
2903 }
2904 
2905 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2906 /// exists.
2907 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2908   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2909     I = ObjCImpls.find(D);
2910   if (I != ObjCImpls.end())
2911     return cast<ObjCImplementationDecl>(I->second);
2912   return nullptr;
2913 }
2914 
2915 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2916 /// exists.
2917 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2918   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2919     I = ObjCImpls.find(D);
2920   if (I != ObjCImpls.end())
2921     return cast<ObjCCategoryImplDecl>(I->second);
2922   return nullptr;
2923 }
2924 
2925 /// Set the implementation of ObjCInterfaceDecl.
2926 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2927                            ObjCImplementationDecl *ImplD) {
2928   assert(IFaceD && ImplD && "Passed null params");
2929   ObjCImpls[IFaceD] = ImplD;
2930 }
2931 
2932 /// Set the implementation of ObjCCategoryDecl.
2933 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2934                            ObjCCategoryImplDecl *ImplD) {
2935   assert(CatD && ImplD && "Passed null params");
2936   ObjCImpls[CatD] = ImplD;
2937 }
2938 
2939 const ObjCMethodDecl *
2940 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2941   return ObjCMethodRedecls.lookup(MD);
2942 }
2943 
2944 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2945                                             const ObjCMethodDecl *Redecl) {
2946   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2947   ObjCMethodRedecls[MD] = Redecl;
2948 }
2949 
2950 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2951                                               const NamedDecl *ND) const {
2952   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2953     return ID;
2954   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2955     return CD->getClassInterface();
2956   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2957     return IMD->getClassInterface();
2958 
2959   return nullptr;
2960 }
2961 
2962 /// Get the copy initialization expression of VarDecl, or nullptr if
2963 /// none exists.
2964 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2965   assert(VD && "Passed null params");
2966   assert(VD->hasAttr<BlocksAttr>() &&
2967          "getBlockVarCopyInits - not __block var");
2968   auto I = BlockVarCopyInits.find(VD);
2969   if (I != BlockVarCopyInits.end())
2970     return I->second;
2971   return {nullptr, false};
2972 }
2973 
2974 /// Set the copy initialization expression of a block var decl.
2975 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2976                                      bool CanThrow) {
2977   assert(VD && CopyExpr && "Passed null params");
2978   assert(VD->hasAttr<BlocksAttr>() &&
2979          "setBlockVarCopyInits - not __block var");
2980   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2981 }
2982 
2983 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2984                                                  unsigned DataSize) const {
2985   if (!DataSize)
2986     DataSize = TypeLoc::getFullDataSizeForType(T);
2987   else
2988     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2989            "incorrect data size provided to CreateTypeSourceInfo!");
2990 
2991   auto *TInfo =
2992     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2993   new (TInfo) TypeSourceInfo(T);
2994   return TInfo;
2995 }
2996 
2997 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2998                                                      SourceLocation L) const {
2999   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
3000   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
3001   return DI;
3002 }
3003 
3004 const ASTRecordLayout &
3005 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
3006   return getObjCLayout(D, nullptr);
3007 }
3008 
3009 const ASTRecordLayout &
3010 ASTContext::getASTObjCImplementationLayout(
3011                                         const ObjCImplementationDecl *D) const {
3012   return getObjCLayout(D->getClassInterface(), D);
3013 }
3014 
3015 static auto getCanonicalTemplateArguments(const ASTContext &C,
3016                                           ArrayRef<TemplateArgument> Args,
3017                                           bool &AnyNonCanonArgs) {
3018   SmallVector<TemplateArgument, 16> CanonArgs(Args);
3019   for (auto &Arg : CanonArgs) {
3020     TemplateArgument OrigArg = Arg;
3021     Arg = C.getCanonicalTemplateArgument(Arg);
3022     AnyNonCanonArgs |= !Arg.structurallyEquals(OrigArg);
3023   }
3024   return CanonArgs;
3025 }
3026 
3027 //===----------------------------------------------------------------------===//
3028 //                   Type creation/memoization methods
3029 //===----------------------------------------------------------------------===//
3030 
3031 QualType
3032 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
3033   unsigned fastQuals = quals.getFastQualifiers();
3034   quals.removeFastQualifiers();
3035 
3036   // Check if we've already instantiated this type.
3037   llvm::FoldingSetNodeID ID;
3038   ExtQuals::Profile(ID, baseType, quals);
3039   void *insertPos = nullptr;
3040   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
3041     assert(eq->getQualifiers() == quals);
3042     return QualType(eq, fastQuals);
3043   }
3044 
3045   // If the base type is not canonical, make the appropriate canonical type.
3046   QualType canon;
3047   if (!baseType->isCanonicalUnqualified()) {
3048     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
3049     canonSplit.Quals.addConsistentQualifiers(quals);
3050     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
3051 
3052     // Re-find the insert position.
3053     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
3054   }
3055 
3056   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
3057   ExtQualNodes.InsertNode(eq, insertPos);
3058   return QualType(eq, fastQuals);
3059 }
3060 
3061 QualType ASTContext::getAddrSpaceQualType(QualType T,
3062                                           LangAS AddressSpace) const {
3063   QualType CanT = getCanonicalType(T);
3064   if (CanT.getAddressSpace() == AddressSpace)
3065     return T;
3066 
3067   // If we are composing extended qualifiers together, merge together
3068   // into one ExtQuals node.
3069   QualifierCollector Quals;
3070   const Type *TypeNode = Quals.strip(T);
3071 
3072   // If this type already has an address space specified, it cannot get
3073   // another one.
3074   assert(!Quals.hasAddressSpace() &&
3075          "Type cannot be in multiple addr spaces!");
3076   Quals.addAddressSpace(AddressSpace);
3077 
3078   return getExtQualType(TypeNode, Quals);
3079 }
3080 
3081 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
3082   // If the type is not qualified with an address space, just return it
3083   // immediately.
3084   if (!T.hasAddressSpace())
3085     return T;
3086 
3087   // If we are composing extended qualifiers together, merge together
3088   // into one ExtQuals node.
3089   QualifierCollector Quals;
3090   const Type *TypeNode;
3091 
3092   while (T.hasAddressSpace()) {
3093     TypeNode = Quals.strip(T);
3094 
3095     // If the type no longer has an address space after stripping qualifiers,
3096     // jump out.
3097     if (!QualType(TypeNode, 0).hasAddressSpace())
3098       break;
3099 
3100     // There might be sugar in the way. Strip it and try again.
3101     T = T.getSingleStepDesugaredType(*this);
3102   }
3103 
3104   Quals.removeAddressSpace();
3105 
3106   // Removal of the address space can mean there are no longer any
3107   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3108   // or required.
3109   if (Quals.hasNonFastQualifiers())
3110     return getExtQualType(TypeNode, Quals);
3111   else
3112     return QualType(TypeNode, Quals.getFastQualifiers());
3113 }
3114 
3115 QualType ASTContext::getObjCGCQualType(QualType T,
3116                                        Qualifiers::GC GCAttr) const {
3117   QualType CanT = getCanonicalType(T);
3118   if (CanT.getObjCGCAttr() == GCAttr)
3119     return T;
3120 
3121   if (const auto *ptr = T->getAs<PointerType>()) {
3122     QualType Pointee = ptr->getPointeeType();
3123     if (Pointee->isAnyPointerType()) {
3124       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3125       return getPointerType(ResultType);
3126     }
3127   }
3128 
3129   // If we are composing extended qualifiers together, merge together
3130   // into one ExtQuals node.
3131   QualifierCollector Quals;
3132   const Type *TypeNode = Quals.strip(T);
3133 
3134   // If this type already has an ObjCGC specified, it cannot get
3135   // another one.
3136   assert(!Quals.hasObjCGCAttr() &&
3137          "Type cannot have multiple ObjCGCs!");
3138   Quals.addObjCGCAttr(GCAttr);
3139 
3140   return getExtQualType(TypeNode, Quals);
3141 }
3142 
3143 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3144   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3145     QualType Pointee = Ptr->getPointeeType();
3146     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3147       return getPointerType(removeAddrSpaceQualType(Pointee));
3148     }
3149   }
3150   return T;
3151 }
3152 
3153 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3154                                                    FunctionType::ExtInfo Info) {
3155   if (T->getExtInfo() == Info)
3156     return T;
3157 
3158   QualType Result;
3159   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3160     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3161   } else {
3162     const auto *FPT = cast<FunctionProtoType>(T);
3163     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3164     EPI.ExtInfo = Info;
3165     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3166   }
3167 
3168   return cast<FunctionType>(Result.getTypePtr());
3169 }
3170 
3171 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3172                                                  QualType ResultType) {
3173   FD = FD->getMostRecentDecl();
3174   while (true) {
3175     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3176     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3177     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3178     if (FunctionDecl *Next = FD->getPreviousDecl())
3179       FD = Next;
3180     else
3181       break;
3182   }
3183   if (ASTMutationListener *L = getASTMutationListener())
3184     L->DeducedReturnType(FD, ResultType);
3185 }
3186 
3187 /// Get a function type and produce the equivalent function type with the
3188 /// specified exception specification. Type sugar that can be present on a
3189 /// declaration of a function with an exception specification is permitted
3190 /// and preserved. Other type sugar (for instance, typedefs) is not.
3191 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3192     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const {
3193   // Might have some parens.
3194   if (const auto *PT = dyn_cast<ParenType>(Orig))
3195     return getParenType(
3196         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3197 
3198   // Might be wrapped in a macro qualified type.
3199   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3200     return getMacroQualifiedType(
3201         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3202         MQT->getMacroIdentifier());
3203 
3204   // Might have a calling-convention attribute.
3205   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3206     return getAttributedType(
3207         AT->getAttrKind(),
3208         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3209         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3210 
3211   // Anything else must be a function type. Rebuild it with the new exception
3212   // specification.
3213   const auto *Proto = Orig->castAs<FunctionProtoType>();
3214   return getFunctionType(
3215       Proto->getReturnType(), Proto->getParamTypes(),
3216       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3217 }
3218 
3219 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3220                                                           QualType U) const {
3221   return hasSameType(T, U) ||
3222          (getLangOpts().CPlusPlus17 &&
3223           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3224                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3225 }
3226 
3227 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3228   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3229     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3230     SmallVector<QualType, 16> Args(Proto->param_types().size());
3231     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3232       Args[i] = removePtrSizeAddrSpace(Proto->param_types()[i]);
3233     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3234   }
3235 
3236   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3237     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3238     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3239   }
3240 
3241   return T;
3242 }
3243 
3244 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3245   return hasSameType(T, U) ||
3246          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3247                      getFunctionTypeWithoutPtrSizes(U));
3248 }
3249 
3250 void ASTContext::adjustExceptionSpec(
3251     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3252     bool AsWritten) {
3253   // Update the type.
3254   QualType Updated =
3255       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3256   FD->setType(Updated);
3257 
3258   if (!AsWritten)
3259     return;
3260 
3261   // Update the type in the type source information too.
3262   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3263     // If the type and the type-as-written differ, we may need to update
3264     // the type-as-written too.
3265     if (TSInfo->getType() != FD->getType())
3266       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3267 
3268     // FIXME: When we get proper type location information for exceptions,
3269     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3270     // up the TypeSourceInfo;
3271     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3272                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3273            "TypeLoc size mismatch from updating exception specification");
3274     TSInfo->overrideType(Updated);
3275   }
3276 }
3277 
3278 /// getComplexType - Return the uniqued reference to the type for a complex
3279 /// number with the specified element type.
3280 QualType ASTContext::getComplexType(QualType T) const {
3281   // Unique pointers, to guarantee there is only one pointer of a particular
3282   // structure.
3283   llvm::FoldingSetNodeID ID;
3284   ComplexType::Profile(ID, T);
3285 
3286   void *InsertPos = nullptr;
3287   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3288     return QualType(CT, 0);
3289 
3290   // If the pointee type isn't canonical, this won't be a canonical type either,
3291   // so fill in the canonical type field.
3292   QualType Canonical;
3293   if (!T.isCanonical()) {
3294     Canonical = getComplexType(getCanonicalType(T));
3295 
3296     // Get the new insert position for the node we care about.
3297     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3298     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3299   }
3300   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3301   Types.push_back(New);
3302   ComplexTypes.InsertNode(New, InsertPos);
3303   return QualType(New, 0);
3304 }
3305 
3306 /// getPointerType - Return the uniqued reference to the type for a pointer to
3307 /// the specified type.
3308 QualType ASTContext::getPointerType(QualType T) const {
3309   // Unique pointers, to guarantee there is only one pointer of a particular
3310   // structure.
3311   llvm::FoldingSetNodeID ID;
3312   PointerType::Profile(ID, T);
3313 
3314   void *InsertPos = nullptr;
3315   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3316     return QualType(PT, 0);
3317 
3318   // If the pointee type isn't canonical, this won't be a canonical type either,
3319   // so fill in the canonical type field.
3320   QualType Canonical;
3321   if (!T.isCanonical()) {
3322     Canonical = getPointerType(getCanonicalType(T));
3323 
3324     // Get the new insert position for the node we care about.
3325     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3326     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3327   }
3328   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3329   Types.push_back(New);
3330   PointerTypes.InsertNode(New, InsertPos);
3331   return QualType(New, 0);
3332 }
3333 
3334 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3335   llvm::FoldingSetNodeID ID;
3336   AdjustedType::Profile(ID, Orig, New);
3337   void *InsertPos = nullptr;
3338   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3339   if (AT)
3340     return QualType(AT, 0);
3341 
3342   QualType Canonical = getCanonicalType(New);
3343 
3344   // Get the new insert position for the node we care about.
3345   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3346   assert(!AT && "Shouldn't be in the map!");
3347 
3348   AT = new (*this, TypeAlignment)
3349       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3350   Types.push_back(AT);
3351   AdjustedTypes.InsertNode(AT, InsertPos);
3352   return QualType(AT, 0);
3353 }
3354 
3355 QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const {
3356   llvm::FoldingSetNodeID ID;
3357   AdjustedType::Profile(ID, Orig, Decayed);
3358   void *InsertPos = nullptr;
3359   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3360   if (AT)
3361     return QualType(AT, 0);
3362 
3363   QualType Canonical = getCanonicalType(Decayed);
3364 
3365   // Get the new insert position for the node we care about.
3366   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3367   assert(!AT && "Shouldn't be in the map!");
3368 
3369   AT = new (*this, TypeAlignment) DecayedType(Orig, Decayed, Canonical);
3370   Types.push_back(AT);
3371   AdjustedTypes.InsertNode(AT, InsertPos);
3372   return QualType(AT, 0);
3373 }
3374 
3375 QualType ASTContext::getDecayedType(QualType T) const {
3376   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3377 
3378   QualType Decayed;
3379 
3380   // C99 6.7.5.3p7:
3381   //   A declaration of a parameter as "array of type" shall be
3382   //   adjusted to "qualified pointer to type", where the type
3383   //   qualifiers (if any) are those specified within the [ and ] of
3384   //   the array type derivation.
3385   if (T->isArrayType())
3386     Decayed = getArrayDecayedType(T);
3387 
3388   // C99 6.7.5.3p8:
3389   //   A declaration of a parameter as "function returning type"
3390   //   shall be adjusted to "pointer to function returning type", as
3391   //   in 6.3.2.1.
3392   if (T->isFunctionType())
3393     Decayed = getPointerType(T);
3394 
3395   return getDecayedType(T, Decayed);
3396 }
3397 
3398 /// getBlockPointerType - Return the uniqued reference to the type for
3399 /// a pointer to the specified block.
3400 QualType ASTContext::getBlockPointerType(QualType T) const {
3401   assert(T->isFunctionType() && "block of function types only");
3402   // Unique pointers, to guarantee there is only one block of a particular
3403   // structure.
3404   llvm::FoldingSetNodeID ID;
3405   BlockPointerType::Profile(ID, T);
3406 
3407   void *InsertPos = nullptr;
3408   if (BlockPointerType *PT =
3409         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3410     return QualType(PT, 0);
3411 
3412   // If the block pointee type isn't canonical, this won't be a canonical
3413   // type either so fill in the canonical type field.
3414   QualType Canonical;
3415   if (!T.isCanonical()) {
3416     Canonical = getBlockPointerType(getCanonicalType(T));
3417 
3418     // Get the new insert position for the node we care about.
3419     BlockPointerType *NewIP =
3420       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3421     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3422   }
3423   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3424   Types.push_back(New);
3425   BlockPointerTypes.InsertNode(New, InsertPos);
3426   return QualType(New, 0);
3427 }
3428 
3429 /// getLValueReferenceType - Return the uniqued reference to the type for an
3430 /// lvalue reference to the specified type.
3431 QualType
3432 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3433   assert((!T->isPlaceholderType() ||
3434           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3435          "Unresolved placeholder type");
3436 
3437   // Unique pointers, to guarantee there is only one pointer of a particular
3438   // structure.
3439   llvm::FoldingSetNodeID ID;
3440   ReferenceType::Profile(ID, T, SpelledAsLValue);
3441 
3442   void *InsertPos = nullptr;
3443   if (LValueReferenceType *RT =
3444         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3445     return QualType(RT, 0);
3446 
3447   const auto *InnerRef = T->getAs<ReferenceType>();
3448 
3449   // If the referencee type isn't canonical, this won't be a canonical type
3450   // either, so fill in the canonical type field.
3451   QualType Canonical;
3452   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3453     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3454     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3455 
3456     // Get the new insert position for the node we care about.
3457     LValueReferenceType *NewIP =
3458       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3459     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3460   }
3461 
3462   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3463                                                              SpelledAsLValue);
3464   Types.push_back(New);
3465   LValueReferenceTypes.InsertNode(New, InsertPos);
3466 
3467   return QualType(New, 0);
3468 }
3469 
3470 /// getRValueReferenceType - Return the uniqued reference to the type for an
3471 /// rvalue reference to the specified type.
3472 QualType ASTContext::getRValueReferenceType(QualType T) const {
3473   assert((!T->isPlaceholderType() ||
3474           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3475          "Unresolved placeholder type");
3476 
3477   // Unique pointers, to guarantee there is only one pointer of a particular
3478   // structure.
3479   llvm::FoldingSetNodeID ID;
3480   ReferenceType::Profile(ID, T, false);
3481 
3482   void *InsertPos = nullptr;
3483   if (RValueReferenceType *RT =
3484         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3485     return QualType(RT, 0);
3486 
3487   const auto *InnerRef = T->getAs<ReferenceType>();
3488 
3489   // If the referencee type isn't canonical, this won't be a canonical type
3490   // either, so fill in the canonical type field.
3491   QualType Canonical;
3492   if (InnerRef || !T.isCanonical()) {
3493     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3494     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3495 
3496     // Get the new insert position for the node we care about.
3497     RValueReferenceType *NewIP =
3498       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3499     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3500   }
3501 
3502   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3503   Types.push_back(New);
3504   RValueReferenceTypes.InsertNode(New, InsertPos);
3505   return QualType(New, 0);
3506 }
3507 
3508 /// getMemberPointerType - Return the uniqued reference to the type for a
3509 /// member pointer to the specified type, in the specified class.
3510 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3511   // Unique pointers, to guarantee there is only one pointer of a particular
3512   // structure.
3513   llvm::FoldingSetNodeID ID;
3514   MemberPointerType::Profile(ID, T, Cls);
3515 
3516   void *InsertPos = nullptr;
3517   if (MemberPointerType *PT =
3518       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3519     return QualType(PT, 0);
3520 
3521   // If the pointee or class type isn't canonical, this won't be a canonical
3522   // type either, so fill in the canonical type field.
3523   QualType Canonical;
3524   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3525     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3526 
3527     // Get the new insert position for the node we care about.
3528     MemberPointerType *NewIP =
3529       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3530     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3531   }
3532   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3533   Types.push_back(New);
3534   MemberPointerTypes.InsertNode(New, InsertPos);
3535   return QualType(New, 0);
3536 }
3537 
3538 /// getConstantArrayType - Return the unique reference to the type for an
3539 /// array of the specified element type.
3540 QualType ASTContext::getConstantArrayType(QualType EltTy,
3541                                           const llvm::APInt &ArySizeIn,
3542                                           const Expr *SizeExpr,
3543                                           ArrayType::ArraySizeModifier ASM,
3544                                           unsigned IndexTypeQuals) const {
3545   assert((EltTy->isDependentType() ||
3546           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3547          "Constant array of VLAs is illegal!");
3548 
3549   // We only need the size as part of the type if it's instantiation-dependent.
3550   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3551     SizeExpr = nullptr;
3552 
3553   // Convert the array size into a canonical width matching the pointer size for
3554   // the target.
3555   llvm::APInt ArySize(ArySizeIn);
3556   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3557 
3558   llvm::FoldingSetNodeID ID;
3559   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3560                              IndexTypeQuals);
3561 
3562   void *InsertPos = nullptr;
3563   if (ConstantArrayType *ATP =
3564       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3565     return QualType(ATP, 0);
3566 
3567   // If the element type isn't canonical or has qualifiers, or the array bound
3568   // is instantiation-dependent, this won't be a canonical type either, so fill
3569   // in the canonical type field.
3570   QualType Canon;
3571   // FIXME: Check below should look for qualifiers behind sugar.
3572   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3573     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3574     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3575                                  ASM, IndexTypeQuals);
3576     Canon = getQualifiedType(Canon, canonSplit.Quals);
3577 
3578     // Get the new insert position for the node we care about.
3579     ConstantArrayType *NewIP =
3580       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3581     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3582   }
3583 
3584   void *Mem = Allocate(
3585       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3586       TypeAlignment);
3587   auto *New = new (Mem)
3588     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3589   ConstantArrayTypes.InsertNode(New, InsertPos);
3590   Types.push_back(New);
3591   return QualType(New, 0);
3592 }
3593 
3594 /// getVariableArrayDecayedType - Turns the given type, which may be
3595 /// variably-modified, into the corresponding type with all the known
3596 /// sizes replaced with [*].
3597 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3598   // Vastly most common case.
3599   if (!type->isVariablyModifiedType()) return type;
3600 
3601   QualType result;
3602 
3603   SplitQualType split = type.getSplitDesugaredType();
3604   const Type *ty = split.Ty;
3605   switch (ty->getTypeClass()) {
3606 #define TYPE(Class, Base)
3607 #define ABSTRACT_TYPE(Class, Base)
3608 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3609 #include "clang/AST/TypeNodes.inc"
3610     llvm_unreachable("didn't desugar past all non-canonical types?");
3611 
3612   // These types should never be variably-modified.
3613   case Type::Builtin:
3614   case Type::Complex:
3615   case Type::Vector:
3616   case Type::DependentVector:
3617   case Type::ExtVector:
3618   case Type::DependentSizedExtVector:
3619   case Type::ConstantMatrix:
3620   case Type::DependentSizedMatrix:
3621   case Type::DependentAddressSpace:
3622   case Type::ObjCObject:
3623   case Type::ObjCInterface:
3624   case Type::ObjCObjectPointer:
3625   case Type::Record:
3626   case Type::Enum:
3627   case Type::UnresolvedUsing:
3628   case Type::TypeOfExpr:
3629   case Type::TypeOf:
3630   case Type::Decltype:
3631   case Type::UnaryTransform:
3632   case Type::DependentName:
3633   case Type::InjectedClassName:
3634   case Type::TemplateSpecialization:
3635   case Type::DependentTemplateSpecialization:
3636   case Type::TemplateTypeParm:
3637   case Type::SubstTemplateTypeParmPack:
3638   case Type::Auto:
3639   case Type::DeducedTemplateSpecialization:
3640   case Type::PackExpansion:
3641   case Type::BitInt:
3642   case Type::DependentBitInt:
3643     llvm_unreachable("type should never be variably-modified");
3644 
3645   // These types can be variably-modified but should never need to
3646   // further decay.
3647   case Type::FunctionNoProto:
3648   case Type::FunctionProto:
3649   case Type::BlockPointer:
3650   case Type::MemberPointer:
3651   case Type::Pipe:
3652     return type;
3653 
3654   // These types can be variably-modified.  All these modifications
3655   // preserve structure except as noted by comments.
3656   // TODO: if we ever care about optimizing VLAs, there are no-op
3657   // optimizations available here.
3658   case Type::Pointer:
3659     result = getPointerType(getVariableArrayDecayedType(
3660                               cast<PointerType>(ty)->getPointeeType()));
3661     break;
3662 
3663   case Type::LValueReference: {
3664     const auto *lv = cast<LValueReferenceType>(ty);
3665     result = getLValueReferenceType(
3666                  getVariableArrayDecayedType(lv->getPointeeType()),
3667                                     lv->isSpelledAsLValue());
3668     break;
3669   }
3670 
3671   case Type::RValueReference: {
3672     const auto *lv = cast<RValueReferenceType>(ty);
3673     result = getRValueReferenceType(
3674                  getVariableArrayDecayedType(lv->getPointeeType()));
3675     break;
3676   }
3677 
3678   case Type::Atomic: {
3679     const auto *at = cast<AtomicType>(ty);
3680     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3681     break;
3682   }
3683 
3684   case Type::ConstantArray: {
3685     const auto *cat = cast<ConstantArrayType>(ty);
3686     result = getConstantArrayType(
3687                  getVariableArrayDecayedType(cat->getElementType()),
3688                                   cat->getSize(),
3689                                   cat->getSizeExpr(),
3690                                   cat->getSizeModifier(),
3691                                   cat->getIndexTypeCVRQualifiers());
3692     break;
3693   }
3694 
3695   case Type::DependentSizedArray: {
3696     const auto *dat = cast<DependentSizedArrayType>(ty);
3697     result = getDependentSizedArrayType(
3698                  getVariableArrayDecayedType(dat->getElementType()),
3699                                         dat->getSizeExpr(),
3700                                         dat->getSizeModifier(),
3701                                         dat->getIndexTypeCVRQualifiers(),
3702                                         dat->getBracketsRange());
3703     break;
3704   }
3705 
3706   // Turn incomplete types into [*] types.
3707   case Type::IncompleteArray: {
3708     const auto *iat = cast<IncompleteArrayType>(ty);
3709     result = getVariableArrayType(
3710                  getVariableArrayDecayedType(iat->getElementType()),
3711                                   /*size*/ nullptr,
3712                                   ArrayType::Normal,
3713                                   iat->getIndexTypeCVRQualifiers(),
3714                                   SourceRange());
3715     break;
3716   }
3717 
3718   // Turn VLA types into [*] types.
3719   case Type::VariableArray: {
3720     const auto *vat = cast<VariableArrayType>(ty);
3721     result = getVariableArrayType(
3722                  getVariableArrayDecayedType(vat->getElementType()),
3723                                   /*size*/ nullptr,
3724                                   ArrayType::Star,
3725                                   vat->getIndexTypeCVRQualifiers(),
3726                                   vat->getBracketsRange());
3727     break;
3728   }
3729   }
3730 
3731   // Apply the top-level qualifiers from the original.
3732   return getQualifiedType(result, split.Quals);
3733 }
3734 
3735 /// getVariableArrayType - Returns a non-unique reference to the type for a
3736 /// variable array of the specified element type.
3737 QualType ASTContext::getVariableArrayType(QualType EltTy,
3738                                           Expr *NumElts,
3739                                           ArrayType::ArraySizeModifier ASM,
3740                                           unsigned IndexTypeQuals,
3741                                           SourceRange Brackets) const {
3742   // Since we don't unique expressions, it isn't possible to unique VLA's
3743   // that have an expression provided for their size.
3744   QualType Canon;
3745 
3746   // Be sure to pull qualifiers off the element type.
3747   // FIXME: Check below should look for qualifiers behind sugar.
3748   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3749     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3750     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3751                                  IndexTypeQuals, Brackets);
3752     Canon = getQualifiedType(Canon, canonSplit.Quals);
3753   }
3754 
3755   auto *New = new (*this, TypeAlignment)
3756     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3757 
3758   VariableArrayTypes.push_back(New);
3759   Types.push_back(New);
3760   return QualType(New, 0);
3761 }
3762 
3763 /// getDependentSizedArrayType - Returns a non-unique reference to
3764 /// the type for a dependently-sized array of the specified element
3765 /// type.
3766 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3767                                                 Expr *numElements,
3768                                                 ArrayType::ArraySizeModifier ASM,
3769                                                 unsigned elementTypeQuals,
3770                                                 SourceRange brackets) const {
3771   assert((!numElements || numElements->isTypeDependent() ||
3772           numElements->isValueDependent()) &&
3773          "Size must be type- or value-dependent!");
3774 
3775   // Dependently-sized array types that do not have a specified number
3776   // of elements will have their sizes deduced from a dependent
3777   // initializer.  We do no canonicalization here at all, which is okay
3778   // because they can't be used in most locations.
3779   if (!numElements) {
3780     auto *newType
3781       = new (*this, TypeAlignment)
3782           DependentSizedArrayType(*this, elementType, QualType(),
3783                                   numElements, ASM, elementTypeQuals,
3784                                   brackets);
3785     Types.push_back(newType);
3786     return QualType(newType, 0);
3787   }
3788 
3789   // Otherwise, we actually build a new type every time, but we
3790   // also build a canonical type.
3791 
3792   SplitQualType canonElementType = getCanonicalType(elementType).split();
3793 
3794   void *insertPos = nullptr;
3795   llvm::FoldingSetNodeID ID;
3796   DependentSizedArrayType::Profile(ID, *this,
3797                                    QualType(canonElementType.Ty, 0),
3798                                    ASM, elementTypeQuals, numElements);
3799 
3800   // Look for an existing type with these properties.
3801   DependentSizedArrayType *canonTy =
3802     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3803 
3804   // If we don't have one, build one.
3805   if (!canonTy) {
3806     canonTy = new (*this, TypeAlignment)
3807       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3808                               QualType(), numElements, ASM, elementTypeQuals,
3809                               brackets);
3810     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3811     Types.push_back(canonTy);
3812   }
3813 
3814   // Apply qualifiers from the element type to the array.
3815   QualType canon = getQualifiedType(QualType(canonTy,0),
3816                                     canonElementType.Quals);
3817 
3818   // If we didn't need extra canonicalization for the element type or the size
3819   // expression, then just use that as our result.
3820   if (QualType(canonElementType.Ty, 0) == elementType &&
3821       canonTy->getSizeExpr() == numElements)
3822     return canon;
3823 
3824   // Otherwise, we need to build a type which follows the spelling
3825   // of the element type.
3826   auto *sugaredType
3827     = new (*this, TypeAlignment)
3828         DependentSizedArrayType(*this, elementType, canon, numElements,
3829                                 ASM, elementTypeQuals, brackets);
3830   Types.push_back(sugaredType);
3831   return QualType(sugaredType, 0);
3832 }
3833 
3834 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3835                                             ArrayType::ArraySizeModifier ASM,
3836                                             unsigned elementTypeQuals) const {
3837   llvm::FoldingSetNodeID ID;
3838   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3839 
3840   void *insertPos = nullptr;
3841   if (IncompleteArrayType *iat =
3842        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3843     return QualType(iat, 0);
3844 
3845   // If the element type isn't canonical, this won't be a canonical type
3846   // either, so fill in the canonical type field.  We also have to pull
3847   // qualifiers off the element type.
3848   QualType canon;
3849 
3850   // FIXME: Check below should look for qualifiers behind sugar.
3851   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3852     SplitQualType canonSplit = getCanonicalType(elementType).split();
3853     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3854                                    ASM, elementTypeQuals);
3855     canon = getQualifiedType(canon, canonSplit.Quals);
3856 
3857     // Get the new insert position for the node we care about.
3858     IncompleteArrayType *existing =
3859       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3860     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3861   }
3862 
3863   auto *newType = new (*this, TypeAlignment)
3864     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3865 
3866   IncompleteArrayTypes.InsertNode(newType, insertPos);
3867   Types.push_back(newType);
3868   return QualType(newType, 0);
3869 }
3870 
3871 ASTContext::BuiltinVectorTypeInfo
3872 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3873 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3874   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3875    NUMVECTORS};
3876 
3877 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3878   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3879 
3880   switch (Ty->getKind()) {
3881   default:
3882     llvm_unreachable("Unsupported builtin vector type");
3883   case BuiltinType::SveInt8:
3884     return SVE_INT_ELTTY(8, 16, true, 1);
3885   case BuiltinType::SveUint8:
3886     return SVE_INT_ELTTY(8, 16, false, 1);
3887   case BuiltinType::SveInt8x2:
3888     return SVE_INT_ELTTY(8, 16, true, 2);
3889   case BuiltinType::SveUint8x2:
3890     return SVE_INT_ELTTY(8, 16, false, 2);
3891   case BuiltinType::SveInt8x3:
3892     return SVE_INT_ELTTY(8, 16, true, 3);
3893   case BuiltinType::SveUint8x3:
3894     return SVE_INT_ELTTY(8, 16, false, 3);
3895   case BuiltinType::SveInt8x4:
3896     return SVE_INT_ELTTY(8, 16, true, 4);
3897   case BuiltinType::SveUint8x4:
3898     return SVE_INT_ELTTY(8, 16, false, 4);
3899   case BuiltinType::SveInt16:
3900     return SVE_INT_ELTTY(16, 8, true, 1);
3901   case BuiltinType::SveUint16:
3902     return SVE_INT_ELTTY(16, 8, false, 1);
3903   case BuiltinType::SveInt16x2:
3904     return SVE_INT_ELTTY(16, 8, true, 2);
3905   case BuiltinType::SveUint16x2:
3906     return SVE_INT_ELTTY(16, 8, false, 2);
3907   case BuiltinType::SveInt16x3:
3908     return SVE_INT_ELTTY(16, 8, true, 3);
3909   case BuiltinType::SveUint16x3:
3910     return SVE_INT_ELTTY(16, 8, false, 3);
3911   case BuiltinType::SveInt16x4:
3912     return SVE_INT_ELTTY(16, 8, true, 4);
3913   case BuiltinType::SveUint16x4:
3914     return SVE_INT_ELTTY(16, 8, false, 4);
3915   case BuiltinType::SveInt32:
3916     return SVE_INT_ELTTY(32, 4, true, 1);
3917   case BuiltinType::SveUint32:
3918     return SVE_INT_ELTTY(32, 4, false, 1);
3919   case BuiltinType::SveInt32x2:
3920     return SVE_INT_ELTTY(32, 4, true, 2);
3921   case BuiltinType::SveUint32x2:
3922     return SVE_INT_ELTTY(32, 4, false, 2);
3923   case BuiltinType::SveInt32x3:
3924     return SVE_INT_ELTTY(32, 4, true, 3);
3925   case BuiltinType::SveUint32x3:
3926     return SVE_INT_ELTTY(32, 4, false, 3);
3927   case BuiltinType::SveInt32x4:
3928     return SVE_INT_ELTTY(32, 4, true, 4);
3929   case BuiltinType::SveUint32x4:
3930     return SVE_INT_ELTTY(32, 4, false, 4);
3931   case BuiltinType::SveInt64:
3932     return SVE_INT_ELTTY(64, 2, true, 1);
3933   case BuiltinType::SveUint64:
3934     return SVE_INT_ELTTY(64, 2, false, 1);
3935   case BuiltinType::SveInt64x2:
3936     return SVE_INT_ELTTY(64, 2, true, 2);
3937   case BuiltinType::SveUint64x2:
3938     return SVE_INT_ELTTY(64, 2, false, 2);
3939   case BuiltinType::SveInt64x3:
3940     return SVE_INT_ELTTY(64, 2, true, 3);
3941   case BuiltinType::SveUint64x3:
3942     return SVE_INT_ELTTY(64, 2, false, 3);
3943   case BuiltinType::SveInt64x4:
3944     return SVE_INT_ELTTY(64, 2, true, 4);
3945   case BuiltinType::SveUint64x4:
3946     return SVE_INT_ELTTY(64, 2, false, 4);
3947   case BuiltinType::SveBool:
3948     return SVE_ELTTY(BoolTy, 16, 1);
3949   case BuiltinType::SveFloat16:
3950     return SVE_ELTTY(HalfTy, 8, 1);
3951   case BuiltinType::SveFloat16x2:
3952     return SVE_ELTTY(HalfTy, 8, 2);
3953   case BuiltinType::SveFloat16x3:
3954     return SVE_ELTTY(HalfTy, 8, 3);
3955   case BuiltinType::SveFloat16x4:
3956     return SVE_ELTTY(HalfTy, 8, 4);
3957   case BuiltinType::SveFloat32:
3958     return SVE_ELTTY(FloatTy, 4, 1);
3959   case BuiltinType::SveFloat32x2:
3960     return SVE_ELTTY(FloatTy, 4, 2);
3961   case BuiltinType::SveFloat32x3:
3962     return SVE_ELTTY(FloatTy, 4, 3);
3963   case BuiltinType::SveFloat32x4:
3964     return SVE_ELTTY(FloatTy, 4, 4);
3965   case BuiltinType::SveFloat64:
3966     return SVE_ELTTY(DoubleTy, 2, 1);
3967   case BuiltinType::SveFloat64x2:
3968     return SVE_ELTTY(DoubleTy, 2, 2);
3969   case BuiltinType::SveFloat64x3:
3970     return SVE_ELTTY(DoubleTy, 2, 3);
3971   case BuiltinType::SveFloat64x4:
3972     return SVE_ELTTY(DoubleTy, 2, 4);
3973   case BuiltinType::SveBFloat16:
3974     return SVE_ELTTY(BFloat16Ty, 8, 1);
3975   case BuiltinType::SveBFloat16x2:
3976     return SVE_ELTTY(BFloat16Ty, 8, 2);
3977   case BuiltinType::SveBFloat16x3:
3978     return SVE_ELTTY(BFloat16Ty, 8, 3);
3979   case BuiltinType::SveBFloat16x4:
3980     return SVE_ELTTY(BFloat16Ty, 8, 4);
3981 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3982                             IsSigned)                                          \
3983   case BuiltinType::Id:                                                        \
3984     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3985             llvm::ElementCount::getScalable(NumEls), NF};
3986 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3987   case BuiltinType::Id:                                                        \
3988     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \
3989             llvm::ElementCount::getScalable(NumEls), NF};
3990 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3991   case BuiltinType::Id:                                                        \
3992     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3993 #include "clang/Basic/RISCVVTypes.def"
3994   }
3995 }
3996 
3997 /// getScalableVectorType - Return the unique reference to a scalable vector
3998 /// type of the specified element type and size. VectorType must be a built-in
3999 /// type.
4000 QualType ASTContext::getScalableVectorType(QualType EltTy,
4001                                            unsigned NumElts) const {
4002   if (Target->hasAArch64SVETypes()) {
4003     uint64_t EltTySize = getTypeSize(EltTy);
4004 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
4005                         IsSigned, IsFP, IsBF)                                  \
4006   if (!EltTy->isBooleanType() &&                                               \
4007       ((EltTy->hasIntegerRepresentation() &&                                   \
4008         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
4009        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
4010         IsFP && !IsBF) ||                                                      \
4011        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
4012         IsBF && !IsFP)) &&                                                     \
4013       EltTySize == ElBits && NumElts == NumEls) {                              \
4014     return SingletonId;                                                        \
4015   }
4016 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
4017   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
4018     return SingletonId;
4019 #include "clang/Basic/AArch64SVEACLETypes.def"
4020   } else if (Target->hasRISCVVTypes()) {
4021     uint64_t EltTySize = getTypeSize(EltTy);
4022 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
4023                         IsFP)                                                  \
4024     if (!EltTy->isBooleanType() &&                                             \
4025         ((EltTy->hasIntegerRepresentation() &&                                 \
4026           EltTy->hasSignedIntegerRepresentation() == IsSigned) ||              \
4027          (EltTy->hasFloatingRepresentation() && IsFP)) &&                      \
4028         EltTySize == ElBits && NumElts == NumEls)                              \
4029       return SingletonId;
4030 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
4031     if (EltTy->isBooleanType() && NumElts == NumEls)                           \
4032       return SingletonId;
4033 #include "clang/Basic/RISCVVTypes.def"
4034   }
4035   return QualType();
4036 }
4037 
4038 /// getVectorType - Return the unique reference to a vector type of
4039 /// the specified element type and size. VectorType must be a built-in type.
4040 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
4041                                    VectorType::VectorKind VecKind) const {
4042   assert(vecType->isBuiltinType() ||
4043          (vecType->isBitIntType() &&
4044           // Only support _BitInt elements with byte-sized power of 2 NumBits.
4045           llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) &&
4046           vecType->getAs<BitIntType>()->getNumBits() >= 8));
4047 
4048   // Check if we've already instantiated a vector of this type.
4049   llvm::FoldingSetNodeID ID;
4050   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
4051 
4052   void *InsertPos = nullptr;
4053   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4054     return QualType(VTP, 0);
4055 
4056   // If the element type isn't canonical, this won't be a canonical type either,
4057   // so fill in the canonical type field.
4058   QualType Canonical;
4059   if (!vecType.isCanonical()) {
4060     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
4061 
4062     // Get the new insert position for the node we care about.
4063     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4064     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4065   }
4066   auto *New = new (*this, TypeAlignment)
4067     VectorType(vecType, NumElts, Canonical, VecKind);
4068   VectorTypes.InsertNode(New, InsertPos);
4069   Types.push_back(New);
4070   return QualType(New, 0);
4071 }
4072 
4073 QualType
4074 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
4075                                    SourceLocation AttrLoc,
4076                                    VectorType::VectorKind VecKind) const {
4077   llvm::FoldingSetNodeID ID;
4078   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
4079                                VecKind);
4080   void *InsertPos = nullptr;
4081   DependentVectorType *Canon =
4082       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4083   DependentVectorType *New;
4084 
4085   if (Canon) {
4086     New = new (*this, TypeAlignment) DependentVectorType(
4087         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
4088   } else {
4089     QualType CanonVecTy = getCanonicalType(VecType);
4090     if (CanonVecTy == VecType) {
4091       New = new (*this, TypeAlignment) DependentVectorType(
4092           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
4093 
4094       DependentVectorType *CanonCheck =
4095           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4096       assert(!CanonCheck &&
4097              "Dependent-sized vector_size canonical type broken");
4098       (void)CanonCheck;
4099       DependentVectorTypes.InsertNode(New, InsertPos);
4100     } else {
4101       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
4102                                                 SourceLocation(), VecKind);
4103       New = new (*this, TypeAlignment) DependentVectorType(
4104           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
4105     }
4106   }
4107 
4108   Types.push_back(New);
4109   return QualType(New, 0);
4110 }
4111 
4112 /// getExtVectorType - Return the unique reference to an extended vector type of
4113 /// the specified element type and size. VectorType must be a built-in type.
4114 QualType ASTContext::getExtVectorType(QualType vecType,
4115                                       unsigned NumElts) const {
4116   assert(vecType->isBuiltinType() || vecType->isDependentType() ||
4117          (vecType->isBitIntType() &&
4118           // Only support _BitInt elements with byte-sized power of 2 NumBits.
4119           llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) &&
4120           vecType->getAs<BitIntType>()->getNumBits() >= 8));
4121 
4122   // Check if we've already instantiated a vector of this type.
4123   llvm::FoldingSetNodeID ID;
4124   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4125                       VectorType::GenericVector);
4126   void *InsertPos = nullptr;
4127   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4128     return QualType(VTP, 0);
4129 
4130   // If the element type isn't canonical, this won't be a canonical type either,
4131   // so fill in the canonical type field.
4132   QualType Canonical;
4133   if (!vecType.isCanonical()) {
4134     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4135 
4136     // Get the new insert position for the node we care about.
4137     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4138     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4139   }
4140   auto *New = new (*this, TypeAlignment)
4141     ExtVectorType(vecType, NumElts, Canonical);
4142   VectorTypes.InsertNode(New, InsertPos);
4143   Types.push_back(New);
4144   return QualType(New, 0);
4145 }
4146 
4147 QualType
4148 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4149                                            Expr *SizeExpr,
4150                                            SourceLocation AttrLoc) const {
4151   llvm::FoldingSetNodeID ID;
4152   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4153                                        SizeExpr);
4154 
4155   void *InsertPos = nullptr;
4156   DependentSizedExtVectorType *Canon
4157     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4158   DependentSizedExtVectorType *New;
4159   if (Canon) {
4160     // We already have a canonical version of this array type; use it as
4161     // the canonical type for a newly-built type.
4162     New = new (*this, TypeAlignment)
4163       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4164                                   SizeExpr, AttrLoc);
4165   } else {
4166     QualType CanonVecTy = getCanonicalType(vecType);
4167     if (CanonVecTy == vecType) {
4168       New = new (*this, TypeAlignment)
4169         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4170                                     AttrLoc);
4171 
4172       DependentSizedExtVectorType *CanonCheck
4173         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4174       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4175       (void)CanonCheck;
4176       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4177     } else {
4178       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4179                                                            SourceLocation());
4180       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4181           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4182     }
4183   }
4184 
4185   Types.push_back(New);
4186   return QualType(New, 0);
4187 }
4188 
4189 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4190                                            unsigned NumColumns) const {
4191   llvm::FoldingSetNodeID ID;
4192   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4193                               Type::ConstantMatrix);
4194 
4195   assert(MatrixType::isValidElementType(ElementTy) &&
4196          "need a valid element type");
4197   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4198          ConstantMatrixType::isDimensionValid(NumColumns) &&
4199          "need valid matrix dimensions");
4200   void *InsertPos = nullptr;
4201   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4202     return QualType(MTP, 0);
4203 
4204   QualType Canonical;
4205   if (!ElementTy.isCanonical()) {
4206     Canonical =
4207         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4208 
4209     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4210     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4211     (void)NewIP;
4212   }
4213 
4214   auto *New = new (*this, TypeAlignment)
4215       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4216   MatrixTypes.InsertNode(New, InsertPos);
4217   Types.push_back(New);
4218   return QualType(New, 0);
4219 }
4220 
4221 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4222                                                  Expr *RowExpr,
4223                                                  Expr *ColumnExpr,
4224                                                  SourceLocation AttrLoc) const {
4225   QualType CanonElementTy = getCanonicalType(ElementTy);
4226   llvm::FoldingSetNodeID ID;
4227   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4228                                     ColumnExpr);
4229 
4230   void *InsertPos = nullptr;
4231   DependentSizedMatrixType *Canon =
4232       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4233 
4234   if (!Canon) {
4235     Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4236         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4237 #ifndef NDEBUG
4238     DependentSizedMatrixType *CanonCheck =
4239         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4240     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4241 #endif
4242     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4243     Types.push_back(Canon);
4244   }
4245 
4246   // Already have a canonical version of the matrix type
4247   //
4248   // If it exactly matches the requested type, use it directly.
4249   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4250       Canon->getRowExpr() == ColumnExpr)
4251     return QualType(Canon, 0);
4252 
4253   // Use Canon as the canonical type for newly-built type.
4254   DependentSizedMatrixType *New = new (*this, TypeAlignment)
4255       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4256                                ColumnExpr, AttrLoc);
4257   Types.push_back(New);
4258   return QualType(New, 0);
4259 }
4260 
4261 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4262                                                   Expr *AddrSpaceExpr,
4263                                                   SourceLocation AttrLoc) const {
4264   assert(AddrSpaceExpr->isInstantiationDependent());
4265 
4266   QualType canonPointeeType = getCanonicalType(PointeeType);
4267 
4268   void *insertPos = nullptr;
4269   llvm::FoldingSetNodeID ID;
4270   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4271                                      AddrSpaceExpr);
4272 
4273   DependentAddressSpaceType *canonTy =
4274     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4275 
4276   if (!canonTy) {
4277     canonTy = new (*this, TypeAlignment)
4278       DependentAddressSpaceType(*this, canonPointeeType,
4279                                 QualType(), AddrSpaceExpr, AttrLoc);
4280     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4281     Types.push_back(canonTy);
4282   }
4283 
4284   if (canonPointeeType == PointeeType &&
4285       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4286     return QualType(canonTy, 0);
4287 
4288   auto *sugaredType
4289     = new (*this, TypeAlignment)
4290         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4291                                   AddrSpaceExpr, AttrLoc);
4292   Types.push_back(sugaredType);
4293   return QualType(sugaredType, 0);
4294 }
4295 
4296 /// Determine whether \p T is canonical as the result type of a function.
4297 static bool isCanonicalResultType(QualType T) {
4298   return T.isCanonical() &&
4299          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4300           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4301 }
4302 
4303 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4304 QualType
4305 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4306                                    const FunctionType::ExtInfo &Info) const {
4307   // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter
4308   // functionality creates a function without a prototype regardless of
4309   // language mode (so it makes them even in C++). Once the rewriter has been
4310   // fixed, this assertion can be enabled again.
4311   //assert(!LangOpts.requiresStrictPrototypes() &&
4312   //       "strict prototypes are disabled");
4313 
4314   // Unique functions, to guarantee there is only one function of a particular
4315   // structure.
4316   llvm::FoldingSetNodeID ID;
4317   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4318 
4319   void *InsertPos = nullptr;
4320   if (FunctionNoProtoType *FT =
4321         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4322     return QualType(FT, 0);
4323 
4324   QualType Canonical;
4325   if (!isCanonicalResultType(ResultTy)) {
4326     Canonical =
4327       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4328 
4329     // Get the new insert position for the node we care about.
4330     FunctionNoProtoType *NewIP =
4331       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4332     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4333   }
4334 
4335   auto *New = new (*this, TypeAlignment)
4336     FunctionNoProtoType(ResultTy, Canonical, Info);
4337   Types.push_back(New);
4338   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4339   return QualType(New, 0);
4340 }
4341 
4342 CanQualType
4343 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4344   CanQualType CanResultType = getCanonicalType(ResultType);
4345 
4346   // Canonical result types do not have ARC lifetime qualifiers.
4347   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4348     Qualifiers Qs = CanResultType.getQualifiers();
4349     Qs.removeObjCLifetime();
4350     return CanQualType::CreateUnsafe(
4351              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4352   }
4353 
4354   return CanResultType;
4355 }
4356 
4357 static bool isCanonicalExceptionSpecification(
4358     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4359   if (ESI.Type == EST_None)
4360     return true;
4361   if (!NoexceptInType)
4362     return false;
4363 
4364   // C++17 onwards: exception specification is part of the type, as a simple
4365   // boolean "can this function type throw".
4366   if (ESI.Type == EST_BasicNoexcept)
4367     return true;
4368 
4369   // A noexcept(expr) specification is (possibly) canonical if expr is
4370   // value-dependent.
4371   if (ESI.Type == EST_DependentNoexcept)
4372     return true;
4373 
4374   // A dynamic exception specification is canonical if it only contains pack
4375   // expansions (so we can't tell whether it's non-throwing) and all its
4376   // contained types are canonical.
4377   if (ESI.Type == EST_Dynamic) {
4378     bool AnyPackExpansions = false;
4379     for (QualType ET : ESI.Exceptions) {
4380       if (!ET.isCanonical())
4381         return false;
4382       if (ET->getAs<PackExpansionType>())
4383         AnyPackExpansions = true;
4384     }
4385     return AnyPackExpansions;
4386   }
4387 
4388   return false;
4389 }
4390 
4391 QualType ASTContext::getFunctionTypeInternal(
4392     QualType ResultTy, ArrayRef<QualType> ArgArray,
4393     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4394   size_t NumArgs = ArgArray.size();
4395 
4396   // Unique functions, to guarantee there is only one function of a particular
4397   // structure.
4398   llvm::FoldingSetNodeID ID;
4399   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4400                              *this, true);
4401 
4402   QualType Canonical;
4403   bool Unique = false;
4404 
4405   void *InsertPos = nullptr;
4406   if (FunctionProtoType *FPT =
4407         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4408     QualType Existing = QualType(FPT, 0);
4409 
4410     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4411     // it so long as our exception specification doesn't contain a dependent
4412     // noexcept expression, or we're just looking for a canonical type.
4413     // Otherwise, we're going to need to create a type
4414     // sugar node to hold the concrete expression.
4415     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4416         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4417       return Existing;
4418 
4419     // We need a new type sugar node for this one, to hold the new noexcept
4420     // expression. We do no canonicalization here, but that's OK since we don't
4421     // expect to see the same noexcept expression much more than once.
4422     Canonical = getCanonicalType(Existing);
4423     Unique = true;
4424   }
4425 
4426   bool NoexceptInType = getLangOpts().CPlusPlus17;
4427   bool IsCanonicalExceptionSpec =
4428       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4429 
4430   // Determine whether the type being created is already canonical or not.
4431   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4432                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4433   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4434     if (!ArgArray[i].isCanonicalAsParam())
4435       isCanonical = false;
4436 
4437   if (OnlyWantCanonical)
4438     assert(isCanonical &&
4439            "given non-canonical parameters constructing canonical type");
4440 
4441   // If this type isn't canonical, get the canonical version of it if we don't
4442   // already have it. The exception spec is only partially part of the
4443   // canonical type, and only in C++17 onwards.
4444   if (!isCanonical && Canonical.isNull()) {
4445     SmallVector<QualType, 16> CanonicalArgs;
4446     CanonicalArgs.reserve(NumArgs);
4447     for (unsigned i = 0; i != NumArgs; ++i)
4448       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4449 
4450     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4451     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4452     CanonicalEPI.HasTrailingReturn = false;
4453 
4454     if (IsCanonicalExceptionSpec) {
4455       // Exception spec is already OK.
4456     } else if (NoexceptInType) {
4457       switch (EPI.ExceptionSpec.Type) {
4458       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4459         // We don't know yet. It shouldn't matter what we pick here; no-one
4460         // should ever look at this.
4461         [[fallthrough]];
4462       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4463         CanonicalEPI.ExceptionSpec.Type = EST_None;
4464         break;
4465 
4466         // A dynamic exception specification is almost always "not noexcept",
4467         // with the exception that a pack expansion might expand to no types.
4468       case EST_Dynamic: {
4469         bool AnyPacks = false;
4470         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4471           if (ET->getAs<PackExpansionType>())
4472             AnyPacks = true;
4473           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4474         }
4475         if (!AnyPacks)
4476           CanonicalEPI.ExceptionSpec.Type = EST_None;
4477         else {
4478           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4479           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4480         }
4481         break;
4482       }
4483 
4484       case EST_DynamicNone:
4485       case EST_BasicNoexcept:
4486       case EST_NoexceptTrue:
4487       case EST_NoThrow:
4488         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4489         break;
4490 
4491       case EST_DependentNoexcept:
4492         llvm_unreachable("dependent noexcept is already canonical");
4493       }
4494     } else {
4495       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4496     }
4497 
4498     // Adjust the canonical function result type.
4499     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4500     Canonical =
4501         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4502 
4503     // Get the new insert position for the node we care about.
4504     FunctionProtoType *NewIP =
4505       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4506     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4507   }
4508 
4509   // Compute the needed size to hold this FunctionProtoType and the
4510   // various trailing objects.
4511   auto ESH = FunctionProtoType::getExceptionSpecSize(
4512       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4513   size_t Size = FunctionProtoType::totalSizeToAlloc<
4514       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4515       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4516       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4517       NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(),
4518       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4519       EPI.ExtParameterInfos ? NumArgs : 0,
4520       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4521 
4522   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4523   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4524   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4525   Types.push_back(FTP);
4526   if (!Unique)
4527     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4528   return QualType(FTP, 0);
4529 }
4530 
4531 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4532   llvm::FoldingSetNodeID ID;
4533   PipeType::Profile(ID, T, ReadOnly);
4534 
4535   void *InsertPos = nullptr;
4536   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4537     return QualType(PT, 0);
4538 
4539   // If the pipe element type isn't canonical, this won't be a canonical type
4540   // either, so fill in the canonical type field.
4541   QualType Canonical;
4542   if (!T.isCanonical()) {
4543     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4544 
4545     // Get the new insert position for the node we care about.
4546     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4547     assert(!NewIP && "Shouldn't be in the map!");
4548     (void)NewIP;
4549   }
4550   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4551   Types.push_back(New);
4552   PipeTypes.InsertNode(New, InsertPos);
4553   return QualType(New, 0);
4554 }
4555 
4556 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4557   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4558   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4559                          : Ty;
4560 }
4561 
4562 QualType ASTContext::getReadPipeType(QualType T) const {
4563   return getPipeType(T, true);
4564 }
4565 
4566 QualType ASTContext::getWritePipeType(QualType T) const {
4567   return getPipeType(T, false);
4568 }
4569 
4570 QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const {
4571   llvm::FoldingSetNodeID ID;
4572   BitIntType::Profile(ID, IsUnsigned, NumBits);
4573 
4574   void *InsertPos = nullptr;
4575   if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4576     return QualType(EIT, 0);
4577 
4578   auto *New = new (*this, TypeAlignment) BitIntType(IsUnsigned, NumBits);
4579   BitIntTypes.InsertNode(New, InsertPos);
4580   Types.push_back(New);
4581   return QualType(New, 0);
4582 }
4583 
4584 QualType ASTContext::getDependentBitIntType(bool IsUnsigned,
4585                                             Expr *NumBitsExpr) const {
4586   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4587   llvm::FoldingSetNodeID ID;
4588   DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4589 
4590   void *InsertPos = nullptr;
4591   if (DependentBitIntType *Existing =
4592           DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4593     return QualType(Existing, 0);
4594 
4595   auto *New = new (*this, TypeAlignment)
4596       DependentBitIntType(*this, IsUnsigned, NumBitsExpr);
4597   DependentBitIntTypes.InsertNode(New, InsertPos);
4598 
4599   Types.push_back(New);
4600   return QualType(New, 0);
4601 }
4602 
4603 #ifndef NDEBUG
4604 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4605   if (!isa<CXXRecordDecl>(D)) return false;
4606   const auto *RD = cast<CXXRecordDecl>(D);
4607   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4608     return true;
4609   if (RD->getDescribedClassTemplate() &&
4610       !isa<ClassTemplateSpecializationDecl>(RD))
4611     return true;
4612   return false;
4613 }
4614 #endif
4615 
4616 /// getInjectedClassNameType - Return the unique reference to the
4617 /// injected class name type for the specified templated declaration.
4618 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4619                                               QualType TST) const {
4620   assert(NeedsInjectedClassNameType(Decl));
4621   if (Decl->TypeForDecl) {
4622     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4623   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4624     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4625     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4626     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4627   } else {
4628     Type *newType =
4629       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4630     Decl->TypeForDecl = newType;
4631     Types.push_back(newType);
4632   }
4633   return QualType(Decl->TypeForDecl, 0);
4634 }
4635 
4636 /// getTypeDeclType - Return the unique reference to the type for the
4637 /// specified type declaration.
4638 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4639   assert(Decl && "Passed null for Decl param");
4640   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4641 
4642   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4643     return getTypedefType(Typedef);
4644 
4645   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4646          "Template type parameter types are always available.");
4647 
4648   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4649     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4650     assert(!NeedsInjectedClassNameType(Record));
4651     return getRecordType(Record);
4652   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4653     assert(Enum->isFirstDecl() && "enum has previous declaration");
4654     return getEnumType(Enum);
4655   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4656     return getUnresolvedUsingType(Using);
4657   } else
4658     llvm_unreachable("TypeDecl without a type?");
4659 
4660   return QualType(Decl->TypeForDecl, 0);
4661 }
4662 
4663 /// getTypedefType - Return the unique reference to the type for the
4664 /// specified typedef name decl.
4665 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4666                                     QualType Underlying) const {
4667   if (!Decl->TypeForDecl) {
4668     if (Underlying.isNull())
4669       Underlying = Decl->getUnderlyingType();
4670     auto *NewType = new (*this, TypeAlignment) TypedefType(
4671         Type::Typedef, Decl, QualType(), getCanonicalType(Underlying));
4672     Decl->TypeForDecl = NewType;
4673     Types.push_back(NewType);
4674     return QualType(NewType, 0);
4675   }
4676   if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying)
4677     return QualType(Decl->TypeForDecl, 0);
4678   assert(hasSameType(Decl->getUnderlyingType(), Underlying));
4679 
4680   llvm::FoldingSetNodeID ID;
4681   TypedefType::Profile(ID, Decl, Underlying);
4682 
4683   void *InsertPos = nullptr;
4684   if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4685     assert(!T->typeMatchesDecl() &&
4686            "non-divergent case should be handled with TypeDecl");
4687     return QualType(T, 0);
4688   }
4689 
4690   void *Mem =
4691       Allocate(TypedefType::totalSizeToAlloc<QualType>(true), TypeAlignment);
4692   auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying,
4693                                         getCanonicalType(Underlying));
4694   TypedefTypes.InsertNode(NewType, InsertPos);
4695   Types.push_back(NewType);
4696   return QualType(NewType, 0);
4697 }
4698 
4699 QualType ASTContext::getUsingType(const UsingShadowDecl *Found,
4700                                   QualType Underlying) const {
4701   llvm::FoldingSetNodeID ID;
4702   UsingType::Profile(ID, Found, Underlying);
4703 
4704   void *InsertPos = nullptr;
4705   if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos))
4706     return QualType(T, 0);
4707 
4708   const Type *TypeForDecl =
4709       cast<TypeDecl>(Found->getTargetDecl())->getTypeForDecl();
4710 
4711   assert(!Underlying.hasLocalQualifiers());
4712   QualType Canon = Underlying->getCanonicalTypeInternal();
4713   assert(TypeForDecl->getCanonicalTypeInternal() == Canon);
4714 
4715   if (Underlying.getTypePtr() == TypeForDecl)
4716     Underlying = QualType();
4717   void *Mem =
4718       Allocate(UsingType::totalSizeToAlloc<QualType>(!Underlying.isNull()),
4719                TypeAlignment);
4720   UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon);
4721   Types.push_back(NewType);
4722   UsingTypes.InsertNode(NewType, InsertPos);
4723   return QualType(NewType, 0);
4724 }
4725 
4726 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4727   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4728 
4729   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4730     if (PrevDecl->TypeForDecl)
4731       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4732 
4733   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4734   Decl->TypeForDecl = newType;
4735   Types.push_back(newType);
4736   return QualType(newType, 0);
4737 }
4738 
4739 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4740   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4741 
4742   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4743     if (PrevDecl->TypeForDecl)
4744       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4745 
4746   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4747   Decl->TypeForDecl = newType;
4748   Types.push_back(newType);
4749   return QualType(newType, 0);
4750 }
4751 
4752 QualType ASTContext::getUnresolvedUsingType(
4753     const UnresolvedUsingTypenameDecl *Decl) const {
4754   if (Decl->TypeForDecl)
4755     return QualType(Decl->TypeForDecl, 0);
4756 
4757   if (const UnresolvedUsingTypenameDecl *CanonicalDecl =
4758           Decl->getCanonicalDecl())
4759     if (CanonicalDecl->TypeForDecl)
4760       return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0);
4761 
4762   Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Decl);
4763   Decl->TypeForDecl = newType;
4764   Types.push_back(newType);
4765   return QualType(newType, 0);
4766 }
4767 
4768 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4769                                        QualType modifiedType,
4770                                        QualType equivalentType) const {
4771   llvm::FoldingSetNodeID id;
4772   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4773 
4774   void *insertPos = nullptr;
4775   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4776   if (type) return QualType(type, 0);
4777 
4778   QualType canon = getCanonicalType(equivalentType);
4779   type = new (*this, TypeAlignment)
4780       AttributedType(canon, attrKind, modifiedType, equivalentType);
4781 
4782   Types.push_back(type);
4783   AttributedTypes.InsertNode(type, insertPos);
4784 
4785   return QualType(type, 0);
4786 }
4787 
4788 QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
4789                                              QualType Wrapped) {
4790   llvm::FoldingSetNodeID ID;
4791   BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr);
4792 
4793   void *InsertPos = nullptr;
4794   BTFTagAttributedType *Ty =
4795       BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos);
4796   if (Ty)
4797     return QualType(Ty, 0);
4798 
4799   QualType Canon = getCanonicalType(Wrapped);
4800   Ty = new (*this, TypeAlignment) BTFTagAttributedType(Canon, Wrapped, BTFAttr);
4801 
4802   Types.push_back(Ty);
4803   BTFTagAttributedTypes.InsertNode(Ty, InsertPos);
4804 
4805   return QualType(Ty, 0);
4806 }
4807 
4808 /// Retrieve a substitution-result type.
4809 QualType ASTContext::getSubstTemplateTypeParmType(
4810     QualType Replacement, Decl *AssociatedDecl, unsigned Index,
4811     std::optional<unsigned> PackIndex) const {
4812   llvm::FoldingSetNodeID ID;
4813   SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index,
4814                                      PackIndex);
4815   void *InsertPos = nullptr;
4816   SubstTemplateTypeParmType *SubstParm =
4817       SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4818 
4819   if (!SubstParm) {
4820     void *Mem = Allocate(SubstTemplateTypeParmType::totalSizeToAlloc<QualType>(
4821                              !Replacement.isCanonical()),
4822                          TypeAlignment);
4823     SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl,
4824                                                     Index, PackIndex);
4825     Types.push_back(SubstParm);
4826     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4827   }
4828 
4829   return QualType(SubstParm, 0);
4830 }
4831 
4832 /// Retrieve a
4833 QualType
4834 ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
4835                                              unsigned Index, bool Final,
4836                                              const TemplateArgument &ArgPack) {
4837 #ifndef NDEBUG
4838   for (const auto &P : ArgPack.pack_elements())
4839     assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type");
4840 #endif
4841 
4842   llvm::FoldingSetNodeID ID;
4843   SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final,
4844                                          ArgPack);
4845   void *InsertPos = nullptr;
4846   if (SubstTemplateTypeParmPackType *SubstParm =
4847           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4848     return QualType(SubstParm, 0);
4849 
4850   QualType Canon;
4851   {
4852     TemplateArgument CanonArgPack = getCanonicalTemplateArgument(ArgPack);
4853     if (!AssociatedDecl->isCanonicalDecl() ||
4854         !CanonArgPack.structurallyEquals(ArgPack)) {
4855       Canon = getSubstTemplateTypeParmPackType(
4856           AssociatedDecl->getCanonicalDecl(), Index, Final, CanonArgPack);
4857       [[maybe_unused]] const auto *Nothing =
4858           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4859       assert(!Nothing);
4860     }
4861   }
4862 
4863   auto *SubstParm = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(
4864       Canon, AssociatedDecl, Index, Final, ArgPack);
4865   Types.push_back(SubstParm);
4866   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4867   return QualType(SubstParm, 0);
4868 }
4869 
4870 /// Retrieve the template type parameter type for a template
4871 /// parameter or parameter pack with the given depth, index, and (optionally)
4872 /// name.
4873 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4874                                              bool ParameterPack,
4875                                              TemplateTypeParmDecl *TTPDecl) const {
4876   llvm::FoldingSetNodeID ID;
4877   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4878   void *InsertPos = nullptr;
4879   TemplateTypeParmType *TypeParm
4880     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4881 
4882   if (TypeParm)
4883     return QualType(TypeParm, 0);
4884 
4885   if (TTPDecl) {
4886     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4887     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4888 
4889     TemplateTypeParmType *TypeCheck
4890       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4891     assert(!TypeCheck && "Template type parameter canonical type broken");
4892     (void)TypeCheck;
4893   } else
4894     TypeParm = new (*this, TypeAlignment)
4895       TemplateTypeParmType(Depth, Index, ParameterPack);
4896 
4897   Types.push_back(TypeParm);
4898   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4899 
4900   return QualType(TypeParm, 0);
4901 }
4902 
4903 TypeSourceInfo *
4904 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4905                                               SourceLocation NameLoc,
4906                                         const TemplateArgumentListInfo &Args,
4907                                               QualType Underlying) const {
4908   assert(!Name.getAsDependentTemplateName() &&
4909          "No dependent template names here!");
4910   QualType TST =
4911       getTemplateSpecializationType(Name, Args.arguments(), Underlying);
4912 
4913   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4914   TemplateSpecializationTypeLoc TL =
4915       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4916   TL.setTemplateKeywordLoc(SourceLocation());
4917   TL.setTemplateNameLoc(NameLoc);
4918   TL.setLAngleLoc(Args.getLAngleLoc());
4919   TL.setRAngleLoc(Args.getRAngleLoc());
4920   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4921     TL.setArgLocInfo(i, Args[i].getLocInfo());
4922   return DI;
4923 }
4924 
4925 QualType
4926 ASTContext::getTemplateSpecializationType(TemplateName Template,
4927                                           ArrayRef<TemplateArgumentLoc> Args,
4928                                           QualType Underlying) const {
4929   assert(!Template.getAsDependentTemplateName() &&
4930          "No dependent template names here!");
4931 
4932   SmallVector<TemplateArgument, 4> ArgVec;
4933   ArgVec.reserve(Args.size());
4934   for (const TemplateArgumentLoc &Arg : Args)
4935     ArgVec.push_back(Arg.getArgument());
4936 
4937   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4938 }
4939 
4940 #ifndef NDEBUG
4941 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4942   for (const TemplateArgument &Arg : Args)
4943     if (Arg.isPackExpansion())
4944       return true;
4945 
4946   return true;
4947 }
4948 #endif
4949 
4950 QualType
4951 ASTContext::getTemplateSpecializationType(TemplateName Template,
4952                                           ArrayRef<TemplateArgument> Args,
4953                                           QualType Underlying) const {
4954   assert(!Template.getAsDependentTemplateName() &&
4955          "No dependent template names here!");
4956   // Look through qualified template names.
4957   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4958     Template = QTN->getUnderlyingTemplate();
4959 
4960   const auto *TD = Template.getAsTemplateDecl();
4961   bool IsTypeAlias = TD && TD->isTypeAlias();
4962   QualType CanonType;
4963   if (!Underlying.isNull())
4964     CanonType = getCanonicalType(Underlying);
4965   else {
4966     // We can get here with an alias template when the specialization contains
4967     // a pack expansion that does not match up with a parameter pack.
4968     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4969            "Caller must compute aliased type");
4970     IsTypeAlias = false;
4971     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4972   }
4973 
4974   // Allocate the (non-canonical) template specialization type, but don't
4975   // try to unique it: these types typically have location information that
4976   // we don't unique and don't want to lose.
4977   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4978                        sizeof(TemplateArgument) * Args.size() +
4979                        (IsTypeAlias? sizeof(QualType) : 0),
4980                        TypeAlignment);
4981   auto *Spec
4982     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4983                                          IsTypeAlias ? Underlying : QualType());
4984 
4985   Types.push_back(Spec);
4986   return QualType(Spec, 0);
4987 }
4988 
4989 QualType ASTContext::getCanonicalTemplateSpecializationType(
4990     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4991   assert(!Template.getAsDependentTemplateName() &&
4992          "No dependent template names here!");
4993 
4994   // Look through qualified template names.
4995   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4996     Template = TemplateName(QTN->getUnderlyingTemplate());
4997 
4998   // Build the canonical template specialization type.
4999   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
5000   bool AnyNonCanonArgs = false;
5001   auto CanonArgs =
5002       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
5003 
5004   // Determine whether this canonical template specialization type already
5005   // exists.
5006   llvm::FoldingSetNodeID ID;
5007   TemplateSpecializationType::Profile(ID, CanonTemplate,
5008                                       CanonArgs, *this);
5009 
5010   void *InsertPos = nullptr;
5011   TemplateSpecializationType *Spec
5012     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5013 
5014   if (!Spec) {
5015     // Allocate a new canonical template specialization type.
5016     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
5017                           sizeof(TemplateArgument) * CanonArgs.size()),
5018                          TypeAlignment);
5019     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
5020                                                 CanonArgs,
5021                                                 QualType(), QualType());
5022     Types.push_back(Spec);
5023     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
5024   }
5025 
5026   assert(Spec->isDependentType() &&
5027          "Non-dependent template-id type must have a canonical type");
5028   return QualType(Spec, 0);
5029 }
5030 
5031 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
5032                                        NestedNameSpecifier *NNS,
5033                                        QualType NamedType,
5034                                        TagDecl *OwnedTagDecl) const {
5035   llvm::FoldingSetNodeID ID;
5036   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
5037 
5038   void *InsertPos = nullptr;
5039   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5040   if (T)
5041     return QualType(T, 0);
5042 
5043   QualType Canon = NamedType;
5044   if (!Canon.isCanonical()) {
5045     Canon = getCanonicalType(NamedType);
5046     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5047     assert(!CheckT && "Elaborated canonical type broken");
5048     (void)CheckT;
5049   }
5050 
5051   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
5052                        TypeAlignment);
5053   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
5054 
5055   Types.push_back(T);
5056   ElaboratedTypes.InsertNode(T, InsertPos);
5057   return QualType(T, 0);
5058 }
5059 
5060 QualType
5061 ASTContext::getParenType(QualType InnerType) const {
5062   llvm::FoldingSetNodeID ID;
5063   ParenType::Profile(ID, InnerType);
5064 
5065   void *InsertPos = nullptr;
5066   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5067   if (T)
5068     return QualType(T, 0);
5069 
5070   QualType Canon = InnerType;
5071   if (!Canon.isCanonical()) {
5072     Canon = getCanonicalType(InnerType);
5073     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5074     assert(!CheckT && "Paren canonical type broken");
5075     (void)CheckT;
5076   }
5077 
5078   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
5079   Types.push_back(T);
5080   ParenTypes.InsertNode(T, InsertPos);
5081   return QualType(T, 0);
5082 }
5083 
5084 QualType
5085 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
5086                                   const IdentifierInfo *MacroII) const {
5087   QualType Canon = UnderlyingTy;
5088   if (!Canon.isCanonical())
5089     Canon = getCanonicalType(UnderlyingTy);
5090 
5091   auto *newType = new (*this, TypeAlignment)
5092       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
5093   Types.push_back(newType);
5094   return QualType(newType, 0);
5095 }
5096 
5097 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
5098                                           NestedNameSpecifier *NNS,
5099                                           const IdentifierInfo *Name,
5100                                           QualType Canon) const {
5101   if (Canon.isNull()) {
5102     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5103     if (CanonNNS != NNS)
5104       Canon = getDependentNameType(Keyword, CanonNNS, Name);
5105   }
5106 
5107   llvm::FoldingSetNodeID ID;
5108   DependentNameType::Profile(ID, Keyword, NNS, Name);
5109 
5110   void *InsertPos = nullptr;
5111   DependentNameType *T
5112     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
5113   if (T)
5114     return QualType(T, 0);
5115 
5116   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
5117   Types.push_back(T);
5118   DependentNameTypes.InsertNode(T, InsertPos);
5119   return QualType(T, 0);
5120 }
5121 
5122 QualType ASTContext::getDependentTemplateSpecializationType(
5123     ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5124     const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const {
5125   // TODO: avoid this copy
5126   SmallVector<TemplateArgument, 16> ArgCopy;
5127   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5128     ArgCopy.push_back(Args[I].getArgument());
5129   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
5130 }
5131 
5132 QualType
5133 ASTContext::getDependentTemplateSpecializationType(
5134                                  ElaboratedTypeKeyword Keyword,
5135                                  NestedNameSpecifier *NNS,
5136                                  const IdentifierInfo *Name,
5137                                  ArrayRef<TemplateArgument> Args) const {
5138   assert((!NNS || NNS->isDependent()) &&
5139          "nested-name-specifier must be dependent");
5140 
5141   llvm::FoldingSetNodeID ID;
5142   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
5143                                                Name, Args);
5144 
5145   void *InsertPos = nullptr;
5146   DependentTemplateSpecializationType *T
5147     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5148   if (T)
5149     return QualType(T, 0);
5150 
5151   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5152 
5153   ElaboratedTypeKeyword CanonKeyword = Keyword;
5154   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
5155 
5156   bool AnyNonCanonArgs = false;
5157   auto CanonArgs =
5158       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
5159 
5160   QualType Canon;
5161   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
5162     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
5163                                                    Name,
5164                                                    CanonArgs);
5165 
5166     // Find the insert position again.
5167     [[maybe_unused]] auto *Nothing =
5168         DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5169     assert(!Nothing && "canonical type broken");
5170   }
5171 
5172   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
5173                         sizeof(TemplateArgument) * Args.size()),
5174                        TypeAlignment);
5175   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
5176                                                     Name, Args, Canon);
5177   Types.push_back(T);
5178   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
5179   return QualType(T, 0);
5180 }
5181 
5182 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
5183   TemplateArgument Arg;
5184   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5185     QualType ArgType = getTypeDeclType(TTP);
5186     if (TTP->isParameterPack())
5187       ArgType = getPackExpansionType(ArgType, std::nullopt);
5188 
5189     Arg = TemplateArgument(ArgType);
5190   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5191     QualType T =
5192         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
5193     // For class NTTPs, ensure we include the 'const' so the type matches that
5194     // of a real template argument.
5195     // FIXME: It would be more faithful to model this as something like an
5196     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
5197     if (T->isRecordType())
5198       T.addConst();
5199     Expr *E = new (*this) DeclRefExpr(
5200         *this, NTTP, /*RefersToEnclosingVariableOrCapture*/ false, T,
5201         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
5202 
5203     if (NTTP->isParameterPack())
5204       E = new (*this)
5205           PackExpansionExpr(DependentTy, E, NTTP->getLocation(), std::nullopt);
5206     Arg = TemplateArgument(E);
5207   } else {
5208     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5209     if (TTP->isParameterPack())
5210       Arg = TemplateArgument(TemplateName(TTP), std::optional<unsigned>());
5211     else
5212       Arg = TemplateArgument(TemplateName(TTP));
5213   }
5214 
5215   if (Param->isTemplateParameterPack())
5216     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5217 
5218   return Arg;
5219 }
5220 
5221 void
5222 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5223                                     SmallVectorImpl<TemplateArgument> &Args) {
5224   Args.reserve(Args.size() + Params->size());
5225 
5226   for (NamedDecl *Param : *Params)
5227     Args.push_back(getInjectedTemplateArg(Param));
5228 }
5229 
5230 QualType ASTContext::getPackExpansionType(QualType Pattern,
5231                                           std::optional<unsigned> NumExpansions,
5232                                           bool ExpectPackInType) {
5233   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5234          "Pack expansions must expand one or more parameter packs");
5235 
5236   llvm::FoldingSetNodeID ID;
5237   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5238 
5239   void *InsertPos = nullptr;
5240   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5241   if (T)
5242     return QualType(T, 0);
5243 
5244   QualType Canon;
5245   if (!Pattern.isCanonical()) {
5246     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5247                                  /*ExpectPackInType=*/false);
5248 
5249     // Find the insert position again, in case we inserted an element into
5250     // PackExpansionTypes and invalidated our insert position.
5251     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5252   }
5253 
5254   T = new (*this, TypeAlignment)
5255       PackExpansionType(Pattern, Canon, NumExpansions);
5256   Types.push_back(T);
5257   PackExpansionTypes.InsertNode(T, InsertPos);
5258   return QualType(T, 0);
5259 }
5260 
5261 /// CmpProtocolNames - Comparison predicate for sorting protocols
5262 /// alphabetically.
5263 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5264                             ObjCProtocolDecl *const *RHS) {
5265   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5266 }
5267 
5268 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5269   if (Protocols.empty()) return true;
5270 
5271   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5272     return false;
5273 
5274   for (unsigned i = 1; i != Protocols.size(); ++i)
5275     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5276         Protocols[i]->getCanonicalDecl() != Protocols[i])
5277       return false;
5278   return true;
5279 }
5280 
5281 static void
5282 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5283   // Sort protocols, keyed by name.
5284   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5285 
5286   // Canonicalize.
5287   for (ObjCProtocolDecl *&P : Protocols)
5288     P = P->getCanonicalDecl();
5289 
5290   // Remove duplicates.
5291   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5292   Protocols.erase(ProtocolsEnd, Protocols.end());
5293 }
5294 
5295 QualType ASTContext::getObjCObjectType(QualType BaseType,
5296                                        ObjCProtocolDecl * const *Protocols,
5297                                        unsigned NumProtocols) const {
5298   return getObjCObjectType(BaseType, {},
5299                            llvm::ArrayRef(Protocols, NumProtocols),
5300                            /*isKindOf=*/false);
5301 }
5302 
5303 QualType ASTContext::getObjCObjectType(
5304            QualType baseType,
5305            ArrayRef<QualType> typeArgs,
5306            ArrayRef<ObjCProtocolDecl *> protocols,
5307            bool isKindOf) const {
5308   // If the base type is an interface and there aren't any protocols or
5309   // type arguments to add, then the interface type will do just fine.
5310   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5311       isa<ObjCInterfaceType>(baseType))
5312     return baseType;
5313 
5314   // Look in the folding set for an existing type.
5315   llvm::FoldingSetNodeID ID;
5316   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5317   void *InsertPos = nullptr;
5318   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5319     return QualType(QT, 0);
5320 
5321   // Determine the type arguments to be used for canonicalization,
5322   // which may be explicitly specified here or written on the base
5323   // type.
5324   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5325   if (effectiveTypeArgs.empty()) {
5326     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5327       effectiveTypeArgs = baseObject->getTypeArgs();
5328   }
5329 
5330   // Build the canonical type, which has the canonical base type and a
5331   // sorted-and-uniqued list of protocols and the type arguments
5332   // canonicalized.
5333   QualType canonical;
5334   bool typeArgsAreCanonical = llvm::all_of(
5335       effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); });
5336   bool protocolsSorted = areSortedAndUniqued(protocols);
5337   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5338     // Determine the canonical type arguments.
5339     ArrayRef<QualType> canonTypeArgs;
5340     SmallVector<QualType, 4> canonTypeArgsVec;
5341     if (!typeArgsAreCanonical) {
5342       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5343       for (auto typeArg : effectiveTypeArgs)
5344         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5345       canonTypeArgs = canonTypeArgsVec;
5346     } else {
5347       canonTypeArgs = effectiveTypeArgs;
5348     }
5349 
5350     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5351     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5352     if (!protocolsSorted) {
5353       canonProtocolsVec.append(protocols.begin(), protocols.end());
5354       SortAndUniqueProtocols(canonProtocolsVec);
5355       canonProtocols = canonProtocolsVec;
5356     } else {
5357       canonProtocols = protocols;
5358     }
5359 
5360     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5361                                   canonProtocols, isKindOf);
5362 
5363     // Regenerate InsertPos.
5364     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5365   }
5366 
5367   unsigned size = sizeof(ObjCObjectTypeImpl);
5368   size += typeArgs.size() * sizeof(QualType);
5369   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5370   void *mem = Allocate(size, TypeAlignment);
5371   auto *T =
5372     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5373                                  isKindOf);
5374 
5375   Types.push_back(T);
5376   ObjCObjectTypes.InsertNode(T, InsertPos);
5377   return QualType(T, 0);
5378 }
5379 
5380 /// Apply Objective-C protocol qualifiers to the given type.
5381 /// If this is for the canonical type of a type parameter, we can apply
5382 /// protocol qualifiers on the ObjCObjectPointerType.
5383 QualType
5384 ASTContext::applyObjCProtocolQualifiers(QualType type,
5385                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5386                   bool allowOnPointerType) const {
5387   hasError = false;
5388 
5389   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5390     return getObjCTypeParamType(objT->getDecl(), protocols);
5391   }
5392 
5393   // Apply protocol qualifiers to ObjCObjectPointerType.
5394   if (allowOnPointerType) {
5395     if (const auto *objPtr =
5396             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5397       const ObjCObjectType *objT = objPtr->getObjectType();
5398       // Merge protocol lists and construct ObjCObjectType.
5399       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5400       protocolsVec.append(objT->qual_begin(),
5401                           objT->qual_end());
5402       protocolsVec.append(protocols.begin(), protocols.end());
5403       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5404       type = getObjCObjectType(
5405              objT->getBaseType(),
5406              objT->getTypeArgsAsWritten(),
5407              protocols,
5408              objT->isKindOfTypeAsWritten());
5409       return getObjCObjectPointerType(type);
5410     }
5411   }
5412 
5413   // Apply protocol qualifiers to ObjCObjectType.
5414   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5415     // FIXME: Check for protocols to which the class type is already
5416     // known to conform.
5417 
5418     return getObjCObjectType(objT->getBaseType(),
5419                              objT->getTypeArgsAsWritten(),
5420                              protocols,
5421                              objT->isKindOfTypeAsWritten());
5422   }
5423 
5424   // If the canonical type is ObjCObjectType, ...
5425   if (type->isObjCObjectType()) {
5426     // Silently overwrite any existing protocol qualifiers.
5427     // TODO: determine whether that's the right thing to do.
5428 
5429     // FIXME: Check for protocols to which the class type is already
5430     // known to conform.
5431     return getObjCObjectType(type, {}, protocols, false);
5432   }
5433 
5434   // id<protocol-list>
5435   if (type->isObjCIdType()) {
5436     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5437     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5438                                  objPtr->isKindOfType());
5439     return getObjCObjectPointerType(type);
5440   }
5441 
5442   // Class<protocol-list>
5443   if (type->isObjCClassType()) {
5444     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5445     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5446                                  objPtr->isKindOfType());
5447     return getObjCObjectPointerType(type);
5448   }
5449 
5450   hasError = true;
5451   return type;
5452 }
5453 
5454 QualType
5455 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5456                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5457   // Look in the folding set for an existing type.
5458   llvm::FoldingSetNodeID ID;
5459   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5460   void *InsertPos = nullptr;
5461   if (ObjCTypeParamType *TypeParam =
5462       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5463     return QualType(TypeParam, 0);
5464 
5465   // We canonicalize to the underlying type.
5466   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5467   if (!protocols.empty()) {
5468     // Apply the protocol qualifers.
5469     bool hasError;
5470     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5471         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5472     assert(!hasError && "Error when apply protocol qualifier to bound type");
5473   }
5474 
5475   unsigned size = sizeof(ObjCTypeParamType);
5476   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5477   void *mem = Allocate(size, TypeAlignment);
5478   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5479 
5480   Types.push_back(newType);
5481   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5482   return QualType(newType, 0);
5483 }
5484 
5485 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5486                                               ObjCTypeParamDecl *New) const {
5487   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5488   // Update TypeForDecl after updating TypeSourceInfo.
5489   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5490   SmallVector<ObjCProtocolDecl *, 8> protocols;
5491   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5492   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5493   New->setTypeForDecl(UpdatedTy.getTypePtr());
5494 }
5495 
5496 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5497 /// protocol list adopt all protocols in QT's qualified-id protocol
5498 /// list.
5499 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5500                                                 ObjCInterfaceDecl *IC) {
5501   if (!QT->isObjCQualifiedIdType())
5502     return false;
5503 
5504   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5505     // If both the right and left sides have qualifiers.
5506     for (auto *Proto : OPT->quals()) {
5507       if (!IC->ClassImplementsProtocol(Proto, false))
5508         return false;
5509     }
5510     return true;
5511   }
5512   return false;
5513 }
5514 
5515 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5516 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5517 /// of protocols.
5518 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5519                                                 ObjCInterfaceDecl *IDecl) {
5520   if (!QT->isObjCQualifiedIdType())
5521     return false;
5522   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5523   if (!OPT)
5524     return false;
5525   if (!IDecl->hasDefinition())
5526     return false;
5527   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5528   CollectInheritedProtocols(IDecl, InheritedProtocols);
5529   if (InheritedProtocols.empty())
5530     return false;
5531   // Check that if every protocol in list of id<plist> conforms to a protocol
5532   // of IDecl's, then bridge casting is ok.
5533   bool Conforms = false;
5534   for (auto *Proto : OPT->quals()) {
5535     Conforms = false;
5536     for (auto *PI : InheritedProtocols) {
5537       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5538         Conforms = true;
5539         break;
5540       }
5541     }
5542     if (!Conforms)
5543       break;
5544   }
5545   if (Conforms)
5546     return true;
5547 
5548   for (auto *PI : InheritedProtocols) {
5549     // If both the right and left sides have qualifiers.
5550     bool Adopts = false;
5551     for (auto *Proto : OPT->quals()) {
5552       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5553       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5554         break;
5555     }
5556     if (!Adopts)
5557       return false;
5558   }
5559   return true;
5560 }
5561 
5562 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5563 /// the given object type.
5564 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5565   llvm::FoldingSetNodeID ID;
5566   ObjCObjectPointerType::Profile(ID, ObjectT);
5567 
5568   void *InsertPos = nullptr;
5569   if (ObjCObjectPointerType *QT =
5570               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5571     return QualType(QT, 0);
5572 
5573   // Find the canonical object type.
5574   QualType Canonical;
5575   if (!ObjectT.isCanonical()) {
5576     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5577 
5578     // Regenerate InsertPos.
5579     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5580   }
5581 
5582   // No match.
5583   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5584   auto *QType =
5585     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5586 
5587   Types.push_back(QType);
5588   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5589   return QualType(QType, 0);
5590 }
5591 
5592 /// getObjCInterfaceType - Return the unique reference to the type for the
5593 /// specified ObjC interface decl. The list of protocols is optional.
5594 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5595                                           ObjCInterfaceDecl *PrevDecl) const {
5596   if (Decl->TypeForDecl)
5597     return QualType(Decl->TypeForDecl, 0);
5598 
5599   if (PrevDecl) {
5600     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5601     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5602     return QualType(PrevDecl->TypeForDecl, 0);
5603   }
5604 
5605   // Prefer the definition, if there is one.
5606   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5607     Decl = Def;
5608 
5609   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5610   auto *T = new (Mem) ObjCInterfaceType(Decl);
5611   Decl->TypeForDecl = T;
5612   Types.push_back(T);
5613   return QualType(T, 0);
5614 }
5615 
5616 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5617 /// TypeOfExprType AST's (since expression's are never shared). For example,
5618 /// multiple declarations that refer to "typeof(x)" all contain different
5619 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5620 /// on canonical type's (which are always unique).
5621 QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const {
5622   TypeOfExprType *toe;
5623   if (tofExpr->isTypeDependent()) {
5624     llvm::FoldingSetNodeID ID;
5625     DependentTypeOfExprType::Profile(ID, *this, tofExpr,
5626                                      Kind == TypeOfKind::Unqualified);
5627 
5628     void *InsertPos = nullptr;
5629     DependentTypeOfExprType *Canon =
5630         DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5631     if (Canon) {
5632       // We already have a "canonical" version of an identical, dependent
5633       // typeof(expr) type. Use that as our canonical type.
5634       toe = new (*this, TypeAlignment)
5635           TypeOfExprType(tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0));
5636     } else {
5637       // Build a new, canonical typeof(expr) type.
5638       Canon = new (*this, TypeAlignment)
5639           DependentTypeOfExprType(*this, tofExpr, Kind);
5640       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5641       toe = Canon;
5642     }
5643   } else {
5644     QualType Canonical = getCanonicalType(tofExpr->getType());
5645     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Kind, Canonical);
5646   }
5647   Types.push_back(toe);
5648   return QualType(toe, 0);
5649 }
5650 
5651 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5652 /// TypeOfType nodes. The only motivation to unique these nodes would be
5653 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5654 /// an issue. This doesn't affect the type checker, since it operates
5655 /// on canonical types (which are always unique).
5656 QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const {
5657   QualType Canonical = getCanonicalType(tofType);
5658   auto *tot =
5659       new (*this, TypeAlignment) TypeOfType(tofType, Canonical, Kind);
5660   Types.push_back(tot);
5661   return QualType(tot, 0);
5662 }
5663 
5664 /// getReferenceQualifiedType - Given an expr, will return the type for
5665 /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
5666 /// and class member access into account.
5667 QualType ASTContext::getReferenceQualifiedType(const Expr *E) const {
5668   // C++11 [dcl.type.simple]p4:
5669   //   [...]
5670   QualType T = E->getType();
5671   switch (E->getValueKind()) {
5672   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5673   //       type of e;
5674   case VK_XValue:
5675     return getRValueReferenceType(T);
5676   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5677   //       type of e;
5678   case VK_LValue:
5679     return getLValueReferenceType(T);
5680   //  - otherwise, decltype(e) is the type of e.
5681   case VK_PRValue:
5682     return T;
5683   }
5684   llvm_unreachable("Unknown value kind");
5685 }
5686 
5687 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5688 /// nodes. This would never be helpful, since each such type has its own
5689 /// expression, and would not give a significant memory saving, since there
5690 /// is an Expr tree under each such type.
5691 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5692   DecltypeType *dt;
5693 
5694   // C++11 [temp.type]p2:
5695   //   If an expression e involves a template parameter, decltype(e) denotes a
5696   //   unique dependent type. Two such decltype-specifiers refer to the same
5697   //   type only if their expressions are equivalent (14.5.6.1).
5698   if (e->isInstantiationDependent()) {
5699     llvm::FoldingSetNodeID ID;
5700     DependentDecltypeType::Profile(ID, *this, e);
5701 
5702     void *InsertPos = nullptr;
5703     DependentDecltypeType *Canon
5704       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5705     if (!Canon) {
5706       // Build a new, canonical decltype(expr) type.
5707       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5708       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5709     }
5710     dt = new (*this, TypeAlignment)
5711         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5712   } else {
5713     dt = new (*this, TypeAlignment)
5714         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5715   }
5716   Types.push_back(dt);
5717   return QualType(dt, 0);
5718 }
5719 
5720 /// getUnaryTransformationType - We don't unique these, since the memory
5721 /// savings are minimal and these are rare.
5722 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5723                                            QualType UnderlyingType,
5724                                            UnaryTransformType::UTTKind Kind)
5725     const {
5726   UnaryTransformType *ut = nullptr;
5727 
5728   if (BaseType->isDependentType()) {
5729     // Look in the folding set for an existing type.
5730     llvm::FoldingSetNodeID ID;
5731     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5732 
5733     void *InsertPos = nullptr;
5734     DependentUnaryTransformType *Canon
5735       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5736 
5737     if (!Canon) {
5738       // Build a new, canonical __underlying_type(type) type.
5739       Canon = new (*this, TypeAlignment)
5740              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5741                                          Kind);
5742       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5743     }
5744     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5745                                                         QualType(), Kind,
5746                                                         QualType(Canon, 0));
5747   } else {
5748     QualType CanonType = getCanonicalType(UnderlyingType);
5749     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5750                                                         UnderlyingType, Kind,
5751                                                         CanonType);
5752   }
5753   Types.push_back(ut);
5754   return QualType(ut, 0);
5755 }
5756 
5757 QualType ASTContext::getAutoTypeInternal(
5758     QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent,
5759     bool IsPack, ConceptDecl *TypeConstraintConcept,
5760     ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const {
5761   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5762       !TypeConstraintConcept && !IsDependent)
5763     return getAutoDeductType();
5764 
5765   // Look in the folding set for an existing type.
5766   void *InsertPos = nullptr;
5767   llvm::FoldingSetNodeID ID;
5768   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5769                     TypeConstraintConcept, TypeConstraintArgs);
5770   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5771     return QualType(AT, 0);
5772 
5773   QualType Canon;
5774   if (!IsCanon) {
5775     if (!DeducedType.isNull()) {
5776       Canon = DeducedType.getCanonicalType();
5777     } else if (TypeConstraintConcept) {
5778       Canon = getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack,
5779                                   nullptr, {}, true);
5780       // Find the insert position again.
5781       [[maybe_unused]] auto *Nothing =
5782           AutoTypes.FindNodeOrInsertPos(ID, InsertPos);
5783       assert(!Nothing && "canonical type broken");
5784     }
5785   }
5786 
5787   void *Mem = Allocate(sizeof(AutoType) +
5788                            sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5789                        TypeAlignment);
5790   auto *AT = new (Mem) AutoType(
5791       DeducedType, Keyword,
5792       (IsDependent ? TypeDependence::DependentInstantiation
5793                    : TypeDependence::None) |
5794           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5795       Canon, TypeConstraintConcept, TypeConstraintArgs);
5796   Types.push_back(AT);
5797   AutoTypes.InsertNode(AT, InsertPos);
5798   return QualType(AT, 0);
5799 }
5800 
5801 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5802 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5803 /// canonical deduced-but-dependent 'auto' type.
5804 QualType
5805 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5806                         bool IsDependent, bool IsPack,
5807                         ConceptDecl *TypeConstraintConcept,
5808                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5809   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5810   assert((!IsDependent || DeducedType.isNull()) &&
5811          "A dependent auto should be undeduced");
5812   return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack,
5813                              TypeConstraintConcept, TypeConstraintArgs);
5814 }
5815 
5816 /// Return the uniqued reference to the deduced template specialization type
5817 /// which has been deduced to the given type, or to the canonical undeduced
5818 /// such type, or the canonical deduced-but-dependent such type.
5819 QualType ASTContext::getDeducedTemplateSpecializationType(
5820     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5821   // Look in the folding set for an existing type.
5822   void *InsertPos = nullptr;
5823   llvm::FoldingSetNodeID ID;
5824   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5825                                              IsDependent);
5826   if (DeducedTemplateSpecializationType *DTST =
5827           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5828     return QualType(DTST, 0);
5829 
5830   auto *DTST = new (*this, TypeAlignment)
5831       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5832   llvm::FoldingSetNodeID TempID;
5833   DTST->Profile(TempID);
5834   assert(ID == TempID && "ID does not match");
5835   Types.push_back(DTST);
5836   DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5837   return QualType(DTST, 0);
5838 }
5839 
5840 /// getAtomicType - Return the uniqued reference to the atomic type for
5841 /// the given value type.
5842 QualType ASTContext::getAtomicType(QualType T) const {
5843   // Unique pointers, to guarantee there is only one pointer of a particular
5844   // structure.
5845   llvm::FoldingSetNodeID ID;
5846   AtomicType::Profile(ID, T);
5847 
5848   void *InsertPos = nullptr;
5849   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5850     return QualType(AT, 0);
5851 
5852   // If the atomic value type isn't canonical, this won't be a canonical type
5853   // either, so fill in the canonical type field.
5854   QualType Canonical;
5855   if (!T.isCanonical()) {
5856     Canonical = getAtomicType(getCanonicalType(T));
5857 
5858     // Get the new insert position for the node we care about.
5859     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5860     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5861   }
5862   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5863   Types.push_back(New);
5864   AtomicTypes.InsertNode(New, InsertPos);
5865   return QualType(New, 0);
5866 }
5867 
5868 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5869 QualType ASTContext::getAutoDeductType() const {
5870   if (AutoDeductTy.isNull())
5871     AutoDeductTy = QualType(new (*this, TypeAlignment)
5872                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5873                                          TypeDependence::None, QualType(),
5874                                          /*concept*/ nullptr, /*args*/ {}),
5875                             0);
5876   return AutoDeductTy;
5877 }
5878 
5879 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5880 QualType ASTContext::getAutoRRefDeductType() const {
5881   if (AutoRRefDeductTy.isNull())
5882     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5883   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5884   return AutoRRefDeductTy;
5885 }
5886 
5887 /// getTagDeclType - Return the unique reference to the type for the
5888 /// specified TagDecl (struct/union/class/enum) decl.
5889 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5890   assert(Decl);
5891   // FIXME: What is the design on getTagDeclType when it requires casting
5892   // away const?  mutable?
5893   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5894 }
5895 
5896 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5897 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5898 /// needs to agree with the definition in <stddef.h>.
5899 CanQualType ASTContext::getSizeType() const {
5900   return getFromTargetType(Target->getSizeType());
5901 }
5902 
5903 /// Return the unique signed counterpart of the integer type
5904 /// corresponding to size_t.
5905 CanQualType ASTContext::getSignedSizeType() const {
5906   return getFromTargetType(Target->getSignedSizeType());
5907 }
5908 
5909 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5910 CanQualType ASTContext::getIntMaxType() const {
5911   return getFromTargetType(Target->getIntMaxType());
5912 }
5913 
5914 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5915 CanQualType ASTContext::getUIntMaxType() const {
5916   return getFromTargetType(Target->getUIntMaxType());
5917 }
5918 
5919 /// getSignedWCharType - Return the type of "signed wchar_t".
5920 /// Used when in C++, as a GCC extension.
5921 QualType ASTContext::getSignedWCharType() const {
5922   // FIXME: derive from "Target" ?
5923   return WCharTy;
5924 }
5925 
5926 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5927 /// Used when in C++, as a GCC extension.
5928 QualType ASTContext::getUnsignedWCharType() const {
5929   // FIXME: derive from "Target" ?
5930   return UnsignedIntTy;
5931 }
5932 
5933 QualType ASTContext::getIntPtrType() const {
5934   return getFromTargetType(Target->getIntPtrType());
5935 }
5936 
5937 QualType ASTContext::getUIntPtrType() const {
5938   return getCorrespondingUnsignedType(getIntPtrType());
5939 }
5940 
5941 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5942 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5943 QualType ASTContext::getPointerDiffType() const {
5944   return getFromTargetType(Target->getPtrDiffType(LangAS::Default));
5945 }
5946 
5947 /// Return the unique unsigned counterpart of "ptrdiff_t"
5948 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5949 /// in the definition of %tu format specifier.
5950 QualType ASTContext::getUnsignedPointerDiffType() const {
5951   return getFromTargetType(Target->getUnsignedPtrDiffType(LangAS::Default));
5952 }
5953 
5954 /// Return the unique type for "pid_t" defined in
5955 /// <sys/types.h>. We need this to compute the correct type for vfork().
5956 QualType ASTContext::getProcessIDType() const {
5957   return getFromTargetType(Target->getProcessIDType());
5958 }
5959 
5960 //===----------------------------------------------------------------------===//
5961 //                              Type Operators
5962 //===----------------------------------------------------------------------===//
5963 
5964 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5965   // Push qualifiers into arrays, and then discard any remaining
5966   // qualifiers.
5967   T = getCanonicalType(T);
5968   T = getVariableArrayDecayedType(T);
5969   const Type *Ty = T.getTypePtr();
5970   QualType Result;
5971   if (isa<ArrayType>(Ty)) {
5972     Result = getArrayDecayedType(QualType(Ty,0));
5973   } else if (isa<FunctionType>(Ty)) {
5974     Result = getPointerType(QualType(Ty, 0));
5975   } else {
5976     Result = QualType(Ty, 0);
5977   }
5978 
5979   return CanQualType::CreateUnsafe(Result);
5980 }
5981 
5982 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5983                                              Qualifiers &quals) {
5984   SplitQualType splitType = type.getSplitUnqualifiedType();
5985 
5986   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5987   // the unqualified desugared type and then drops it on the floor.
5988   // We then have to strip that sugar back off with
5989   // getUnqualifiedDesugaredType(), which is silly.
5990   const auto *AT =
5991       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5992 
5993   // If we don't have an array, just use the results in splitType.
5994   if (!AT) {
5995     quals = splitType.Quals;
5996     return QualType(splitType.Ty, 0);
5997   }
5998 
5999   // Otherwise, recurse on the array's element type.
6000   QualType elementType = AT->getElementType();
6001   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
6002 
6003   // If that didn't change the element type, AT has no qualifiers, so we
6004   // can just use the results in splitType.
6005   if (elementType == unqualElementType) {
6006     assert(quals.empty()); // from the recursive call
6007     quals = splitType.Quals;
6008     return QualType(splitType.Ty, 0);
6009   }
6010 
6011   // Otherwise, add in the qualifiers from the outermost type, then
6012   // build the type back up.
6013   quals.addConsistentQualifiers(splitType.Quals);
6014 
6015   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
6016     return getConstantArrayType(unqualElementType, CAT->getSize(),
6017                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
6018   }
6019 
6020   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
6021     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
6022   }
6023 
6024   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
6025     return getVariableArrayType(unqualElementType,
6026                                 VAT->getSizeExpr(),
6027                                 VAT->getSizeModifier(),
6028                                 VAT->getIndexTypeCVRQualifiers(),
6029                                 VAT->getBracketsRange());
6030   }
6031 
6032   const auto *DSAT = cast<DependentSizedArrayType>(AT);
6033   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
6034                                     DSAT->getSizeModifier(), 0,
6035                                     SourceRange());
6036 }
6037 
6038 /// Attempt to unwrap two types that may both be array types with the same bound
6039 /// (or both be array types of unknown bound) for the purpose of comparing the
6040 /// cv-decomposition of two types per C++ [conv.qual].
6041 ///
6042 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6043 ///        C++20 [conv.qual], if permitted by the current language mode.
6044 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
6045                                          bool AllowPiMismatch) {
6046   while (true) {
6047     auto *AT1 = getAsArrayType(T1);
6048     if (!AT1)
6049       return;
6050 
6051     auto *AT2 = getAsArrayType(T2);
6052     if (!AT2)
6053       return;
6054 
6055     // If we don't have two array types with the same constant bound nor two
6056     // incomplete array types, we've unwrapped everything we can.
6057     // C++20 also permits one type to be a constant array type and the other
6058     // to be an incomplete array type.
6059     // FIXME: Consider also unwrapping array of unknown bound and VLA.
6060     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
6061       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
6062       if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) ||
6063             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6064              isa<IncompleteArrayType>(AT2))))
6065         return;
6066     } else if (isa<IncompleteArrayType>(AT1)) {
6067       if (!(isa<IncompleteArrayType>(AT2) ||
6068             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6069              isa<ConstantArrayType>(AT2))))
6070         return;
6071     } else {
6072       return;
6073     }
6074 
6075     T1 = AT1->getElementType();
6076     T2 = AT2->getElementType();
6077   }
6078 }
6079 
6080 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
6081 ///
6082 /// If T1 and T2 are both pointer types of the same kind, or both array types
6083 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
6084 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
6085 ///
6086 /// This function will typically be called in a loop that successively
6087 /// "unwraps" pointer and pointer-to-member types to compare them at each
6088 /// level.
6089 ///
6090 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6091 ///        C++20 [conv.qual], if permitted by the current language mode.
6092 ///
6093 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
6094 /// pair of types that can't be unwrapped further.
6095 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2,
6096                                     bool AllowPiMismatch) {
6097   UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch);
6098 
6099   const auto *T1PtrType = T1->getAs<PointerType>();
6100   const auto *T2PtrType = T2->getAs<PointerType>();
6101   if (T1PtrType && T2PtrType) {
6102     T1 = T1PtrType->getPointeeType();
6103     T2 = T2PtrType->getPointeeType();
6104     return true;
6105   }
6106 
6107   const auto *T1MPType = T1->getAs<MemberPointerType>();
6108   const auto *T2MPType = T2->getAs<MemberPointerType>();
6109   if (T1MPType && T2MPType &&
6110       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
6111                              QualType(T2MPType->getClass(), 0))) {
6112     T1 = T1MPType->getPointeeType();
6113     T2 = T2MPType->getPointeeType();
6114     return true;
6115   }
6116 
6117   if (getLangOpts().ObjC) {
6118     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
6119     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
6120     if (T1OPType && T2OPType) {
6121       T1 = T1OPType->getPointeeType();
6122       T2 = T2OPType->getPointeeType();
6123       return true;
6124     }
6125   }
6126 
6127   // FIXME: Block pointers, too?
6128 
6129   return false;
6130 }
6131 
6132 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
6133   while (true) {
6134     Qualifiers Quals;
6135     T1 = getUnqualifiedArrayType(T1, Quals);
6136     T2 = getUnqualifiedArrayType(T2, Quals);
6137     if (hasSameType(T1, T2))
6138       return true;
6139     if (!UnwrapSimilarTypes(T1, T2))
6140       return false;
6141   }
6142 }
6143 
6144 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
6145   while (true) {
6146     Qualifiers Quals1, Quals2;
6147     T1 = getUnqualifiedArrayType(T1, Quals1);
6148     T2 = getUnqualifiedArrayType(T2, Quals2);
6149 
6150     Quals1.removeCVRQualifiers();
6151     Quals2.removeCVRQualifiers();
6152     if (Quals1 != Quals2)
6153       return false;
6154 
6155     if (hasSameType(T1, T2))
6156       return true;
6157 
6158     if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false))
6159       return false;
6160   }
6161 }
6162 
6163 DeclarationNameInfo
6164 ASTContext::getNameForTemplate(TemplateName Name,
6165                                SourceLocation NameLoc) const {
6166   switch (Name.getKind()) {
6167   case TemplateName::QualifiedTemplate:
6168   case TemplateName::Template:
6169     // DNInfo work in progress: CHECKME: what about DNLoc?
6170     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
6171                                NameLoc);
6172 
6173   case TemplateName::OverloadedTemplate: {
6174     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
6175     // DNInfo work in progress: CHECKME: what about DNLoc?
6176     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
6177   }
6178 
6179   case TemplateName::AssumedTemplate: {
6180     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
6181     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
6182   }
6183 
6184   case TemplateName::DependentTemplate: {
6185     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6186     DeclarationName DName;
6187     if (DTN->isIdentifier()) {
6188       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
6189       return DeclarationNameInfo(DName, NameLoc);
6190     } else {
6191       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
6192       // DNInfo work in progress: FIXME: source locations?
6193       DeclarationNameLoc DNLoc =
6194           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
6195       return DeclarationNameInfo(DName, NameLoc, DNLoc);
6196     }
6197   }
6198 
6199   case TemplateName::SubstTemplateTemplateParm: {
6200     SubstTemplateTemplateParmStorage *subst
6201       = Name.getAsSubstTemplateTemplateParm();
6202     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
6203                                NameLoc);
6204   }
6205 
6206   case TemplateName::SubstTemplateTemplateParmPack: {
6207     SubstTemplateTemplateParmPackStorage *subst
6208       = Name.getAsSubstTemplateTemplateParmPack();
6209     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
6210                                NameLoc);
6211   }
6212   case TemplateName::UsingTemplate:
6213     return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(),
6214                                NameLoc);
6215   }
6216 
6217   llvm_unreachable("bad template name kind!");
6218 }
6219 
6220 TemplateName
6221 ASTContext::getCanonicalTemplateName(const TemplateName &Name) const {
6222   switch (Name.getKind()) {
6223   case TemplateName::UsingTemplate:
6224   case TemplateName::QualifiedTemplate:
6225   case TemplateName::Template: {
6226     TemplateDecl *Template = Name.getAsTemplateDecl();
6227     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
6228       Template = getCanonicalTemplateTemplateParmDecl(TTP);
6229 
6230     // The canonical template name is the canonical template declaration.
6231     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
6232   }
6233 
6234   case TemplateName::OverloadedTemplate:
6235   case TemplateName::AssumedTemplate:
6236     llvm_unreachable("cannot canonicalize unresolved template");
6237 
6238   case TemplateName::DependentTemplate: {
6239     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6240     assert(DTN && "Non-dependent template names must refer to template decls.");
6241     return DTN->CanonicalTemplateName;
6242   }
6243 
6244   case TemplateName::SubstTemplateTemplateParm: {
6245     SubstTemplateTemplateParmStorage *subst
6246       = Name.getAsSubstTemplateTemplateParm();
6247     return getCanonicalTemplateName(subst->getReplacement());
6248   }
6249 
6250   case TemplateName::SubstTemplateTemplateParmPack: {
6251     SubstTemplateTemplateParmPackStorage *subst =
6252         Name.getAsSubstTemplateTemplateParmPack();
6253     TemplateArgument canonArgPack =
6254         getCanonicalTemplateArgument(subst->getArgumentPack());
6255     return getSubstTemplateTemplateParmPack(
6256         canonArgPack, subst->getAssociatedDecl()->getCanonicalDecl(),
6257         subst->getFinal(), subst->getIndex());
6258   }
6259   }
6260 
6261   llvm_unreachable("bad template name!");
6262 }
6263 
6264 bool ASTContext::hasSameTemplateName(const TemplateName &X,
6265                                      const TemplateName &Y) const {
6266   return getCanonicalTemplateName(X).getAsVoidPointer() ==
6267          getCanonicalTemplateName(Y).getAsVoidPointer();
6268 }
6269 
6270 bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const {
6271   if (!XCE != !YCE)
6272     return false;
6273 
6274   if (!XCE)
6275     return true;
6276 
6277   llvm::FoldingSetNodeID XCEID, YCEID;
6278   XCE->Profile(XCEID, *this, /*Canonical=*/true);
6279   YCE->Profile(YCEID, *this, /*Canonical=*/true);
6280   return XCEID == YCEID;
6281 }
6282 
6283 bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC,
6284                                       const TypeConstraint *YTC) const {
6285   if (!XTC != !YTC)
6286     return false;
6287 
6288   if (!XTC)
6289     return true;
6290 
6291   auto *NCX = XTC->getNamedConcept();
6292   auto *NCY = YTC->getNamedConcept();
6293   if (!NCX || !NCY || !isSameEntity(NCX, NCY))
6294     return false;
6295   if (XTC->hasExplicitTemplateArgs() != YTC->hasExplicitTemplateArgs())
6296     return false;
6297   if (XTC->hasExplicitTemplateArgs())
6298     if (XTC->getTemplateArgsAsWritten()->NumTemplateArgs !=
6299         YTC->getTemplateArgsAsWritten()->NumTemplateArgs)
6300       return false;
6301 
6302   // Compare slowly by profiling.
6303   //
6304   // We couldn't compare the profiling result for the template
6305   // args here. Consider the following example in different modules:
6306   //
6307   // template <__integer_like _Tp, C<_Tp> Sentinel>
6308   // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const {
6309   //   return __t;
6310   // }
6311   //
6312   // When we compare the profiling result for `C<_Tp>` in different
6313   // modules, it will compare the type of `_Tp` in different modules.
6314   // However, the type of `_Tp` in different modules refer to different
6315   // types here naturally. So we couldn't compare the profiling result
6316   // for the template args directly.
6317   return isSameConstraintExpr(XTC->getImmediatelyDeclaredConstraint(),
6318                               YTC->getImmediatelyDeclaredConstraint());
6319 }
6320 
6321 bool ASTContext::isSameTemplateParameter(const NamedDecl *X,
6322                                          const NamedDecl *Y) const {
6323   if (X->getKind() != Y->getKind())
6324     return false;
6325 
6326   if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
6327     auto *TY = cast<TemplateTypeParmDecl>(Y);
6328     if (TX->isParameterPack() != TY->isParameterPack())
6329       return false;
6330     if (TX->hasTypeConstraint() != TY->hasTypeConstraint())
6331       return false;
6332     return isSameTypeConstraint(TX->getTypeConstraint(),
6333                                 TY->getTypeConstraint());
6334   }
6335 
6336   if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6337     auto *TY = cast<NonTypeTemplateParmDecl>(Y);
6338     return TX->isParameterPack() == TY->isParameterPack() &&
6339            TX->getASTContext().hasSameType(TX->getType(), TY->getType()) &&
6340            isSameConstraintExpr(TX->getPlaceholderTypeConstraint(),
6341                                 TY->getPlaceholderTypeConstraint());
6342   }
6343 
6344   auto *TX = cast<TemplateTemplateParmDecl>(X);
6345   auto *TY = cast<TemplateTemplateParmDecl>(Y);
6346   return TX->isParameterPack() == TY->isParameterPack() &&
6347          isSameTemplateParameterList(TX->getTemplateParameters(),
6348                                      TY->getTemplateParameters());
6349 }
6350 
6351 bool ASTContext::isSameTemplateParameterList(
6352     const TemplateParameterList *X, const TemplateParameterList *Y) const {
6353   if (X->size() != Y->size())
6354     return false;
6355 
6356   for (unsigned I = 0, N = X->size(); I != N; ++I)
6357     if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
6358       return false;
6359 
6360   return isSameConstraintExpr(X->getRequiresClause(), Y->getRequiresClause());
6361 }
6362 
6363 bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X,
6364                                                const NamedDecl *Y) const {
6365   // If the type parameter isn't the same already, we don't need to check the
6366   // default argument further.
6367   if (!isSameTemplateParameter(X, Y))
6368     return false;
6369 
6370   if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(X)) {
6371     auto *TTPY = cast<TemplateTypeParmDecl>(Y);
6372     if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6373       return false;
6374 
6375     return hasSameType(TTPX->getDefaultArgument(), TTPY->getDefaultArgument());
6376   }
6377 
6378   if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6379     auto *NTTPY = cast<NonTypeTemplateParmDecl>(Y);
6380     if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument())
6381       return false;
6382 
6383     Expr *DefaultArgumentX = NTTPX->getDefaultArgument()->IgnoreImpCasts();
6384     Expr *DefaultArgumentY = NTTPY->getDefaultArgument()->IgnoreImpCasts();
6385     llvm::FoldingSetNodeID XID, YID;
6386     DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true);
6387     DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true);
6388     return XID == YID;
6389   }
6390 
6391   auto *TTPX = cast<TemplateTemplateParmDecl>(X);
6392   auto *TTPY = cast<TemplateTemplateParmDecl>(Y);
6393 
6394   if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6395     return false;
6396 
6397   const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument();
6398   const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument();
6399   return hasSameTemplateName(TAX.getAsTemplate(), TAY.getAsTemplate());
6400 }
6401 
6402 static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
6403   if (auto *NS = X->getAsNamespace())
6404     return NS;
6405   if (auto *NAS = X->getAsNamespaceAlias())
6406     return NAS->getNamespace();
6407   return nullptr;
6408 }
6409 
6410 static bool isSameQualifier(const NestedNameSpecifier *X,
6411                             const NestedNameSpecifier *Y) {
6412   if (auto *NSX = getNamespace(X)) {
6413     auto *NSY = getNamespace(Y);
6414     if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
6415       return false;
6416   } else if (X->getKind() != Y->getKind())
6417     return false;
6418 
6419   // FIXME: For namespaces and types, we're permitted to check that the entity
6420   // is named via the same tokens. We should probably do so.
6421   switch (X->getKind()) {
6422   case NestedNameSpecifier::Identifier:
6423     if (X->getAsIdentifier() != Y->getAsIdentifier())
6424       return false;
6425     break;
6426   case NestedNameSpecifier::Namespace:
6427   case NestedNameSpecifier::NamespaceAlias:
6428     // We've already checked that we named the same namespace.
6429     break;
6430   case NestedNameSpecifier::TypeSpec:
6431   case NestedNameSpecifier::TypeSpecWithTemplate:
6432     if (X->getAsType()->getCanonicalTypeInternal() !=
6433         Y->getAsType()->getCanonicalTypeInternal())
6434       return false;
6435     break;
6436   case NestedNameSpecifier::Global:
6437   case NestedNameSpecifier::Super:
6438     return true;
6439   }
6440 
6441   // Recurse into earlier portion of NNS, if any.
6442   auto *PX = X->getPrefix();
6443   auto *PY = Y->getPrefix();
6444   if (PX && PY)
6445     return isSameQualifier(PX, PY);
6446   return !PX && !PY;
6447 }
6448 
6449 /// Determine whether the attributes we can overload on are identical for A and
6450 /// B. Will ignore any overloadable attrs represented in the type of A and B.
6451 static bool hasSameOverloadableAttrs(const FunctionDecl *A,
6452                                      const FunctionDecl *B) {
6453   // Note that pass_object_size attributes are represented in the function's
6454   // ExtParameterInfo, so we don't need to check them here.
6455 
6456   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
6457   auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>();
6458   auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>();
6459 
6460   for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) {
6461     std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
6462     std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
6463 
6464     // Return false if the number of enable_if attributes is different.
6465     if (!Cand1A || !Cand2A)
6466       return false;
6467 
6468     Cand1ID.clear();
6469     Cand2ID.clear();
6470 
6471     (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true);
6472     (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true);
6473 
6474     // Return false if any of the enable_if expressions of A and B are
6475     // different.
6476     if (Cand1ID != Cand2ID)
6477       return false;
6478   }
6479   return true;
6480 }
6481 
6482 bool ASTContext::FriendsDifferByConstraints(const FunctionDecl *X,
6483                                             const FunctionDecl *Y) const {
6484   // If these aren't friends, then they aren't friends that differ by
6485   // constraints.
6486   if (!X->getFriendObjectKind() || !Y->getFriendObjectKind())
6487     return false;
6488 
6489   // If the two functions share lexical declaration context, they are not in
6490   // separate instantations, and thus in the same scope.
6491   if (X->getLexicalDeclContext() == Y->getLexicalDeclContext())
6492     return false;
6493 
6494   if (!X->getDescribedFunctionTemplate()) {
6495     assert(!Y->getDescribedFunctionTemplate() &&
6496            "How would these be the same if they aren't both templates?");
6497 
6498     // If these friends don't have constraints, they aren't constrained, and
6499     // thus don't fall under temp.friend p9. Else the simple presence of a
6500     // constraint makes them unique.
6501     return X->getTrailingRequiresClause();
6502   }
6503 
6504   return X->FriendConstraintRefersToEnclosingTemplate();
6505 }
6506 
6507 bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const {
6508   if (X == Y)
6509     return true;
6510 
6511   if (X->getDeclName() != Y->getDeclName())
6512     return false;
6513 
6514   // Must be in the same context.
6515   //
6516   // Note that we can't use DeclContext::Equals here, because the DeclContexts
6517   // could be two different declarations of the same function. (We will fix the
6518   // semantic DC to refer to the primary definition after merging.)
6519   if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()),
6520                           cast<Decl>(Y->getDeclContext()->getRedeclContext())))
6521     return false;
6522 
6523   // Two typedefs refer to the same entity if they have the same underlying
6524   // type.
6525   if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X))
6526     if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y))
6527       return hasSameType(TypedefX->getUnderlyingType(),
6528                          TypedefY->getUnderlyingType());
6529 
6530   // Must have the same kind.
6531   if (X->getKind() != Y->getKind())
6532     return false;
6533 
6534   // Objective-C classes and protocols with the same name always match.
6535   if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
6536     return true;
6537 
6538   if (isa<ClassTemplateSpecializationDecl>(X)) {
6539     // No need to handle these here: we merge them when adding them to the
6540     // template.
6541     return false;
6542   }
6543 
6544   // Compatible tags match.
6545   if (const auto *TagX = dyn_cast<TagDecl>(X)) {
6546     const auto *TagY = cast<TagDecl>(Y);
6547     return (TagX->getTagKind() == TagY->getTagKind()) ||
6548            ((TagX->getTagKind() == TTK_Struct ||
6549              TagX->getTagKind() == TTK_Class ||
6550              TagX->getTagKind() == TTK_Interface) &&
6551             (TagY->getTagKind() == TTK_Struct ||
6552              TagY->getTagKind() == TTK_Class ||
6553              TagY->getTagKind() == TTK_Interface));
6554   }
6555 
6556   // Functions with the same type and linkage match.
6557   // FIXME: This needs to cope with merging of prototyped/non-prototyped
6558   // functions, etc.
6559   if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) {
6560     const auto *FuncY = cast<FunctionDecl>(Y);
6561     if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) {
6562       const auto *CtorY = cast<CXXConstructorDecl>(Y);
6563       if (CtorX->getInheritedConstructor() &&
6564           !isSameEntity(CtorX->getInheritedConstructor().getConstructor(),
6565                         CtorY->getInheritedConstructor().getConstructor()))
6566         return false;
6567     }
6568 
6569     if (FuncX->isMultiVersion() != FuncY->isMultiVersion())
6570       return false;
6571 
6572     // Multiversioned functions with different feature strings are represented
6573     // as separate declarations.
6574     if (FuncX->isMultiVersion()) {
6575       const auto *TAX = FuncX->getAttr<TargetAttr>();
6576       const auto *TAY = FuncY->getAttr<TargetAttr>();
6577       assert(TAX && TAY && "Multiversion Function without target attribute");
6578 
6579       if (TAX->getFeaturesStr() != TAY->getFeaturesStr())
6580         return false;
6581     }
6582 
6583     if (!isSameConstraintExpr(FuncX->getTrailingRequiresClause(),
6584                               FuncY->getTrailingRequiresClause()))
6585       return false;
6586 
6587     // Constrained friends are different in certain cases, see: [temp.friend]p9.
6588     if (FriendsDifferByConstraints(FuncX, FuncY))
6589       return false;
6590 
6591     auto GetTypeAsWritten = [](const FunctionDecl *FD) {
6592       // Map to the first declaration that we've already merged into this one.
6593       // The TSI of redeclarations might not match (due to calling conventions
6594       // being inherited onto the type but not the TSI), but the TSI type of
6595       // the first declaration of the function should match across modules.
6596       FD = FD->getCanonicalDecl();
6597       return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType()
6598                                      : FD->getType();
6599     };
6600     QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY);
6601     if (!hasSameType(XT, YT)) {
6602       // We can get functions with different types on the redecl chain in C++17
6603       // if they have differing exception specifications and at least one of
6604       // the excpetion specs is unresolved.
6605       auto *XFPT = XT->getAs<FunctionProtoType>();
6606       auto *YFPT = YT->getAs<FunctionProtoType>();
6607       if (getLangOpts().CPlusPlus17 && XFPT && YFPT &&
6608           (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) ||
6609            isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) &&
6610           hasSameFunctionTypeIgnoringExceptionSpec(XT, YT))
6611         return true;
6612       return false;
6613     }
6614 
6615     return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() &&
6616            hasSameOverloadableAttrs(FuncX, FuncY);
6617   }
6618 
6619   // Variables with the same type and linkage match.
6620   if (const auto *VarX = dyn_cast<VarDecl>(X)) {
6621     const auto *VarY = cast<VarDecl>(Y);
6622     if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) {
6623       if (hasSameType(VarX->getType(), VarY->getType()))
6624         return true;
6625 
6626       // We can get decls with different types on the redecl chain. Eg.
6627       // template <typename T> struct S { static T Var[]; }; // #1
6628       // template <typename T> T S<T>::Var[sizeof(T)]; // #2
6629       // Only? happens when completing an incomplete array type. In this case
6630       // when comparing #1 and #2 we should go through their element type.
6631       const ArrayType *VarXTy = getAsArrayType(VarX->getType());
6632       const ArrayType *VarYTy = getAsArrayType(VarY->getType());
6633       if (!VarXTy || !VarYTy)
6634         return false;
6635       if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType())
6636         return hasSameType(VarXTy->getElementType(), VarYTy->getElementType());
6637     }
6638     return false;
6639   }
6640 
6641   // Namespaces with the same name and inlinedness match.
6642   if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
6643     const auto *NamespaceY = cast<NamespaceDecl>(Y);
6644     return NamespaceX->isInline() == NamespaceY->isInline();
6645   }
6646 
6647   // Identical template names and kinds match if their template parameter lists
6648   // and patterns match.
6649   if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) {
6650     const auto *TemplateY = cast<TemplateDecl>(Y);
6651 
6652     // ConceptDecl wouldn't be the same if their constraint expression differs.
6653     if (const auto *ConceptX = dyn_cast<ConceptDecl>(X)) {
6654       const auto *ConceptY = cast<ConceptDecl>(Y);
6655       const Expr *XCE = ConceptX->getConstraintExpr();
6656       const Expr *YCE = ConceptY->getConstraintExpr();
6657       assert(XCE && YCE && "ConceptDecl without constraint expression?");
6658       llvm::FoldingSetNodeID XID, YID;
6659       XCE->Profile(XID, *this, /*Canonical=*/true);
6660       YCE->Profile(YID, *this, /*Canonical=*/true);
6661       if (XID != YID)
6662         return false;
6663     }
6664 
6665     return isSameEntity(TemplateX->getTemplatedDecl(),
6666                         TemplateY->getTemplatedDecl()) &&
6667            isSameTemplateParameterList(TemplateX->getTemplateParameters(),
6668                                        TemplateY->getTemplateParameters());
6669   }
6670 
6671   // Fields with the same name and the same type match.
6672   if (const auto *FDX = dyn_cast<FieldDecl>(X)) {
6673     const auto *FDY = cast<FieldDecl>(Y);
6674     // FIXME: Also check the bitwidth is odr-equivalent, if any.
6675     return hasSameType(FDX->getType(), FDY->getType());
6676   }
6677 
6678   // Indirect fields with the same target field match.
6679   if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
6680     const auto *IFDY = cast<IndirectFieldDecl>(Y);
6681     return IFDX->getAnonField()->getCanonicalDecl() ==
6682            IFDY->getAnonField()->getCanonicalDecl();
6683   }
6684 
6685   // Enumerators with the same name match.
6686   if (isa<EnumConstantDecl>(X))
6687     // FIXME: Also check the value is odr-equivalent.
6688     return true;
6689 
6690   // Using shadow declarations with the same target match.
6691   if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) {
6692     const auto *USY = cast<UsingShadowDecl>(Y);
6693     return USX->getTargetDecl() == USY->getTargetDecl();
6694   }
6695 
6696   // Using declarations with the same qualifier match. (We already know that
6697   // the name matches.)
6698   if (const auto *UX = dyn_cast<UsingDecl>(X)) {
6699     const auto *UY = cast<UsingDecl>(Y);
6700     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6701            UX->hasTypename() == UY->hasTypename() &&
6702            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6703   }
6704   if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
6705     const auto *UY = cast<UnresolvedUsingValueDecl>(Y);
6706     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6707            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6708   }
6709   if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) {
6710     return isSameQualifier(
6711         UX->getQualifier(),
6712         cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
6713   }
6714 
6715   // Using-pack declarations are only created by instantiation, and match if
6716   // they're instantiated from matching UnresolvedUsing...Decls.
6717   if (const auto *UX = dyn_cast<UsingPackDecl>(X)) {
6718     return declaresSameEntity(
6719         UX->getInstantiatedFromUsingDecl(),
6720         cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl());
6721   }
6722 
6723   // Namespace alias definitions with the same target match.
6724   if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
6725     const auto *NAY = cast<NamespaceAliasDecl>(Y);
6726     return NAX->getNamespace()->Equals(NAY->getNamespace());
6727   }
6728 
6729   return false;
6730 }
6731 
6732 TemplateArgument
6733 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
6734   switch (Arg.getKind()) {
6735     case TemplateArgument::Null:
6736       return Arg;
6737 
6738     case TemplateArgument::Expression:
6739       return Arg;
6740 
6741     case TemplateArgument::Declaration: {
6742       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6743       return TemplateArgument(D, getCanonicalType(Arg.getParamTypeForDecl()));
6744     }
6745 
6746     case TemplateArgument::NullPtr:
6747       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6748                               /*isNullPtr*/true);
6749 
6750     case TemplateArgument::Template:
6751       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
6752 
6753     case TemplateArgument::TemplateExpansion:
6754       return TemplateArgument(getCanonicalTemplateName(
6755                                          Arg.getAsTemplateOrTemplatePattern()),
6756                               Arg.getNumTemplateExpansions());
6757 
6758     case TemplateArgument::Integral:
6759       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6760 
6761     case TemplateArgument::Type:
6762       return TemplateArgument(getCanonicalType(Arg.getAsType()));
6763 
6764     case TemplateArgument::Pack: {
6765       bool AnyNonCanonArgs = false;
6766       auto CanonArgs = ::getCanonicalTemplateArguments(
6767           *this, Arg.pack_elements(), AnyNonCanonArgs);
6768       if (!AnyNonCanonArgs)
6769         return Arg;
6770       return TemplateArgument::CreatePackCopy(const_cast<ASTContext &>(*this),
6771                                               CanonArgs);
6772     }
6773   }
6774 
6775   // Silence GCC warning
6776   llvm_unreachable("Unhandled template argument kind");
6777 }
6778 
6779 NestedNameSpecifier *
6780 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6781   if (!NNS)
6782     return nullptr;
6783 
6784   switch (NNS->getKind()) {
6785   case NestedNameSpecifier::Identifier:
6786     // Canonicalize the prefix but keep the identifier the same.
6787     return NestedNameSpecifier::Create(*this,
6788                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6789                                        NNS->getAsIdentifier());
6790 
6791   case NestedNameSpecifier::Namespace:
6792     // A namespace is canonical; build a nested-name-specifier with
6793     // this namespace and no prefix.
6794     return NestedNameSpecifier::Create(*this, nullptr,
6795                                  NNS->getAsNamespace()->getOriginalNamespace());
6796 
6797   case NestedNameSpecifier::NamespaceAlias:
6798     // A namespace is canonical; build a nested-name-specifier with
6799     // this namespace and no prefix.
6800     return NestedNameSpecifier::Create(*this, nullptr,
6801                                     NNS->getAsNamespaceAlias()->getNamespace()
6802                                                       ->getOriginalNamespace());
6803 
6804   // The difference between TypeSpec and TypeSpecWithTemplate is that the
6805   // latter will have the 'template' keyword when printed.
6806   case NestedNameSpecifier::TypeSpec:
6807   case NestedNameSpecifier::TypeSpecWithTemplate: {
6808     const Type *T = getCanonicalType(NNS->getAsType());
6809 
6810     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6811     // break it apart into its prefix and identifier, then reconsititute those
6812     // as the canonical nested-name-specifier. This is required to canonicalize
6813     // a dependent nested-name-specifier involving typedefs of dependent-name
6814     // types, e.g.,
6815     //   typedef typename T::type T1;
6816     //   typedef typename T1::type T2;
6817     if (const auto *DNT = T->getAs<DependentNameType>())
6818       return NestedNameSpecifier::Create(
6819           *this, DNT->getQualifier(),
6820           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6821     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6822       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6823                                          const_cast<Type *>(T));
6824 
6825     // TODO: Set 'Template' parameter to true for other template types.
6826     return NestedNameSpecifier::Create(*this, nullptr, false,
6827                                        const_cast<Type *>(T));
6828   }
6829 
6830   case NestedNameSpecifier::Global:
6831   case NestedNameSpecifier::Super:
6832     // The global specifier and __super specifer are canonical and unique.
6833     return NNS;
6834   }
6835 
6836   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6837 }
6838 
6839 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6840   // Handle the non-qualified case efficiently.
6841   if (!T.hasLocalQualifiers()) {
6842     // Handle the common positive case fast.
6843     if (const auto *AT = dyn_cast<ArrayType>(T))
6844       return AT;
6845   }
6846 
6847   // Handle the common negative case fast.
6848   if (!isa<ArrayType>(T.getCanonicalType()))
6849     return nullptr;
6850 
6851   // Apply any qualifiers from the array type to the element type.  This
6852   // implements C99 6.7.3p8: "If the specification of an array type includes
6853   // any type qualifiers, the element type is so qualified, not the array type."
6854 
6855   // If we get here, we either have type qualifiers on the type, or we have
6856   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6857   // we must propagate them down into the element type.
6858 
6859   SplitQualType split = T.getSplitDesugaredType();
6860   Qualifiers qs = split.Quals;
6861 
6862   // If we have a simple case, just return now.
6863   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6864   if (!ATy || qs.empty())
6865     return ATy;
6866 
6867   // Otherwise, we have an array and we have qualifiers on it.  Push the
6868   // qualifiers into the array element type and return a new array type.
6869   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6870 
6871   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6872     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6873                                                 CAT->getSizeExpr(),
6874                                                 CAT->getSizeModifier(),
6875                                            CAT->getIndexTypeCVRQualifiers()));
6876   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6877     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6878                                                   IAT->getSizeModifier(),
6879                                            IAT->getIndexTypeCVRQualifiers()));
6880 
6881   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6882     return cast<ArrayType>(
6883                      getDependentSizedArrayType(NewEltTy,
6884                                                 DSAT->getSizeExpr(),
6885                                                 DSAT->getSizeModifier(),
6886                                               DSAT->getIndexTypeCVRQualifiers(),
6887                                                 DSAT->getBracketsRange()));
6888 
6889   const auto *VAT = cast<VariableArrayType>(ATy);
6890   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6891                                               VAT->getSizeExpr(),
6892                                               VAT->getSizeModifier(),
6893                                               VAT->getIndexTypeCVRQualifiers(),
6894                                               VAT->getBracketsRange()));
6895 }
6896 
6897 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6898   if (T->isArrayType() || T->isFunctionType())
6899     return getDecayedType(T);
6900   return T;
6901 }
6902 
6903 QualType ASTContext::getSignatureParameterType(QualType T) const {
6904   T = getVariableArrayDecayedType(T);
6905   T = getAdjustedParameterType(T);
6906   return T.getUnqualifiedType();
6907 }
6908 
6909 QualType ASTContext::getExceptionObjectType(QualType T) const {
6910   // C++ [except.throw]p3:
6911   //   A throw-expression initializes a temporary object, called the exception
6912   //   object, the type of which is determined by removing any top-level
6913   //   cv-qualifiers from the static type of the operand of throw and adjusting
6914   //   the type from "array of T" or "function returning T" to "pointer to T"
6915   //   or "pointer to function returning T", [...]
6916   T = getVariableArrayDecayedType(T);
6917   if (T->isArrayType() || T->isFunctionType())
6918     T = getDecayedType(T);
6919   return T.getUnqualifiedType();
6920 }
6921 
6922 /// getArrayDecayedType - Return the properly qualified result of decaying the
6923 /// specified array type to a pointer.  This operation is non-trivial when
6924 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6925 /// this returns a pointer to a properly qualified element of the array.
6926 ///
6927 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6928 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6929   // Get the element type with 'getAsArrayType' so that we don't lose any
6930   // typedefs in the element type of the array.  This also handles propagation
6931   // of type qualifiers from the array type into the element type if present
6932   // (C99 6.7.3p8).
6933   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6934   assert(PrettyArrayType && "Not an array type!");
6935 
6936   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6937 
6938   // int x[restrict 4] ->  int *restrict
6939   QualType Result = getQualifiedType(PtrTy,
6940                                      PrettyArrayType->getIndexTypeQualifiers());
6941 
6942   // int x[_Nullable] -> int * _Nullable
6943   if (auto Nullability = Ty->getNullability()) {
6944     Result = const_cast<ASTContext *>(this)->getAttributedType(
6945         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6946   }
6947   return Result;
6948 }
6949 
6950 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6951   return getBaseElementType(array->getElementType());
6952 }
6953 
6954 QualType ASTContext::getBaseElementType(QualType type) const {
6955   Qualifiers qs;
6956   while (true) {
6957     SplitQualType split = type.getSplitDesugaredType();
6958     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6959     if (!array) break;
6960 
6961     type = array->getElementType();
6962     qs.addConsistentQualifiers(split.Quals);
6963   }
6964 
6965   return getQualifiedType(type, qs);
6966 }
6967 
6968 /// getConstantArrayElementCount - Returns number of constant array elements.
6969 uint64_t
6970 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6971   uint64_t ElementCount = 1;
6972   do {
6973     ElementCount *= CA->getSize().getZExtValue();
6974     CA = dyn_cast_or_null<ConstantArrayType>(
6975       CA->getElementType()->getAsArrayTypeUnsafe());
6976   } while (CA);
6977   return ElementCount;
6978 }
6979 
6980 uint64_t ASTContext::getArrayInitLoopExprElementCount(
6981     const ArrayInitLoopExpr *AILE) const {
6982   if (!AILE)
6983     return 0;
6984 
6985   uint64_t ElementCount = 1;
6986 
6987   do {
6988     ElementCount *= AILE->getArraySize().getZExtValue();
6989     AILE = dyn_cast<ArrayInitLoopExpr>(AILE->getSubExpr());
6990   } while (AILE);
6991 
6992   return ElementCount;
6993 }
6994 
6995 /// getFloatingRank - Return a relative rank for floating point types.
6996 /// This routine will assert if passed a built-in type that isn't a float.
6997 static FloatingRank getFloatingRank(QualType T) {
6998   if (const auto *CT = T->getAs<ComplexType>())
6999     return getFloatingRank(CT->getElementType());
7000 
7001   switch (T->castAs<BuiltinType>()->getKind()) {
7002   default: llvm_unreachable("getFloatingRank(): not a floating type");
7003   case BuiltinType::Float16:    return Float16Rank;
7004   case BuiltinType::Half:       return HalfRank;
7005   case BuiltinType::Float:      return FloatRank;
7006   case BuiltinType::Double:     return DoubleRank;
7007   case BuiltinType::LongDouble: return LongDoubleRank;
7008   case BuiltinType::Float128:   return Float128Rank;
7009   case BuiltinType::BFloat16:   return BFloat16Rank;
7010   case BuiltinType::Ibm128:     return Ibm128Rank;
7011   }
7012 }
7013 
7014 /// getFloatingTypeOrder - Compare the rank of the two specified floating
7015 /// point types, ignoring the domain of the type (i.e. 'double' ==
7016 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7017 /// LHS < RHS, return -1.
7018 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
7019   FloatingRank LHSR = getFloatingRank(LHS);
7020   FloatingRank RHSR = getFloatingRank(RHS);
7021 
7022   if (LHSR == RHSR)
7023     return 0;
7024   if (LHSR > RHSR)
7025     return 1;
7026   return -1;
7027 }
7028 
7029 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
7030   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
7031     return 0;
7032   return getFloatingTypeOrder(LHS, RHS);
7033 }
7034 
7035 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
7036 /// routine will assert if passed a built-in type that isn't an integer or enum,
7037 /// or if it is not canonicalized.
7038 unsigned ASTContext::getIntegerRank(const Type *T) const {
7039   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
7040 
7041   // Results in this 'losing' to any type of the same size, but winning if
7042   // larger.
7043   if (const auto *EIT = dyn_cast<BitIntType>(T))
7044     return 0 + (EIT->getNumBits() << 3);
7045 
7046   switch (cast<BuiltinType>(T)->getKind()) {
7047   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
7048   case BuiltinType::Bool:
7049     return 1 + (getIntWidth(BoolTy) << 3);
7050   case BuiltinType::Char_S:
7051   case BuiltinType::Char_U:
7052   case BuiltinType::SChar:
7053   case BuiltinType::UChar:
7054     return 2 + (getIntWidth(CharTy) << 3);
7055   case BuiltinType::Short:
7056   case BuiltinType::UShort:
7057     return 3 + (getIntWidth(ShortTy) << 3);
7058   case BuiltinType::Int:
7059   case BuiltinType::UInt:
7060     return 4 + (getIntWidth(IntTy) << 3);
7061   case BuiltinType::Long:
7062   case BuiltinType::ULong:
7063     return 5 + (getIntWidth(LongTy) << 3);
7064   case BuiltinType::LongLong:
7065   case BuiltinType::ULongLong:
7066     return 6 + (getIntWidth(LongLongTy) << 3);
7067   case BuiltinType::Int128:
7068   case BuiltinType::UInt128:
7069     return 7 + (getIntWidth(Int128Ty) << 3);
7070 
7071   // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of
7072   // their underlying types" [c++20 conv.rank]
7073   case BuiltinType::Char8:
7074     return getIntegerRank(UnsignedCharTy.getTypePtr());
7075   case BuiltinType::Char16:
7076     return getIntegerRank(
7077         getFromTargetType(Target->getChar16Type()).getTypePtr());
7078   case BuiltinType::Char32:
7079     return getIntegerRank(
7080         getFromTargetType(Target->getChar32Type()).getTypePtr());
7081   case BuiltinType::WChar_S:
7082   case BuiltinType::WChar_U:
7083     return getIntegerRank(
7084         getFromTargetType(Target->getWCharType()).getTypePtr());
7085   }
7086 }
7087 
7088 /// Whether this is a promotable bitfield reference according
7089 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
7090 ///
7091 /// \returns the type this bit-field will promote to, or NULL if no
7092 /// promotion occurs.
7093 QualType ASTContext::isPromotableBitField(Expr *E) const {
7094   if (E->isTypeDependent() || E->isValueDependent())
7095     return {};
7096 
7097   // C++ [conv.prom]p5:
7098   //    If the bit-field has an enumerated type, it is treated as any other
7099   //    value of that type for promotion purposes.
7100   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
7101     return {};
7102 
7103   // FIXME: We should not do this unless E->refersToBitField() is true. This
7104   // matters in C where getSourceBitField() will find bit-fields for various
7105   // cases where the source expression is not a bit-field designator.
7106 
7107   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
7108   if (!Field)
7109     return {};
7110 
7111   QualType FT = Field->getType();
7112 
7113   uint64_t BitWidth = Field->getBitWidthValue(*this);
7114   uint64_t IntSize = getTypeSize(IntTy);
7115   // C++ [conv.prom]p5:
7116   //   A prvalue for an integral bit-field can be converted to a prvalue of type
7117   //   int if int can represent all the values of the bit-field; otherwise, it
7118   //   can be converted to unsigned int if unsigned int can represent all the
7119   //   values of the bit-field. If the bit-field is larger yet, no integral
7120   //   promotion applies to it.
7121   // C11 6.3.1.1/2:
7122   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
7123   //   If an int can represent all values of the original type (as restricted by
7124   //   the width, for a bit-field), the value is converted to an int; otherwise,
7125   //   it is converted to an unsigned int.
7126   //
7127   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
7128   //        We perform that promotion here to match GCC and C++.
7129   // FIXME: C does not permit promotion of an enum bit-field whose rank is
7130   //        greater than that of 'int'. We perform that promotion to match GCC.
7131   if (BitWidth < IntSize)
7132     return IntTy;
7133 
7134   if (BitWidth == IntSize)
7135     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
7136 
7137   // Bit-fields wider than int are not subject to promotions, and therefore act
7138   // like the base type. GCC has some weird bugs in this area that we
7139   // deliberately do not follow (GCC follows a pre-standard resolution to
7140   // C's DR315 which treats bit-width as being part of the type, and this leaks
7141   // into their semantics in some cases).
7142   return {};
7143 }
7144 
7145 /// getPromotedIntegerType - Returns the type that Promotable will
7146 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
7147 /// integer type.
7148 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
7149   assert(!Promotable.isNull());
7150   assert(isPromotableIntegerType(Promotable));
7151   if (const auto *ET = Promotable->getAs<EnumType>())
7152     return ET->getDecl()->getPromotionType();
7153 
7154   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
7155     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
7156     // (3.9.1) can be converted to a prvalue of the first of the following
7157     // types that can represent all the values of its underlying type:
7158     // int, unsigned int, long int, unsigned long int, long long int, or
7159     // unsigned long long int [...]
7160     // FIXME: Is there some better way to compute this?
7161     if (BT->getKind() == BuiltinType::WChar_S ||
7162         BT->getKind() == BuiltinType::WChar_U ||
7163         BT->getKind() == BuiltinType::Char8 ||
7164         BT->getKind() == BuiltinType::Char16 ||
7165         BT->getKind() == BuiltinType::Char32) {
7166       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
7167       uint64_t FromSize = getTypeSize(BT);
7168       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
7169                                   LongLongTy, UnsignedLongLongTy };
7170       for (const auto &PT : PromoteTypes) {
7171         uint64_t ToSize = getTypeSize(PT);
7172         if (FromSize < ToSize ||
7173             (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType()))
7174           return PT;
7175       }
7176       llvm_unreachable("char type should fit into long long");
7177     }
7178   }
7179 
7180   // At this point, we should have a signed or unsigned integer type.
7181   if (Promotable->isSignedIntegerType())
7182     return IntTy;
7183   uint64_t PromotableSize = getIntWidth(Promotable);
7184   uint64_t IntSize = getIntWidth(IntTy);
7185   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
7186   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
7187 }
7188 
7189 /// Recurses in pointer/array types until it finds an objc retainable
7190 /// type and returns its ownership.
7191 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
7192   while (!T.isNull()) {
7193     if (T.getObjCLifetime() != Qualifiers::OCL_None)
7194       return T.getObjCLifetime();
7195     if (T->isArrayType())
7196       T = getBaseElementType(T);
7197     else if (const auto *PT = T->getAs<PointerType>())
7198       T = PT->getPointeeType();
7199     else if (const auto *RT = T->getAs<ReferenceType>())
7200       T = RT->getPointeeType();
7201     else
7202       break;
7203   }
7204 
7205   return Qualifiers::OCL_None;
7206 }
7207 
7208 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
7209   // Incomplete enum types are not treated as integer types.
7210   // FIXME: In C++, enum types are never integer types.
7211   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
7212     return ET->getDecl()->getIntegerType().getTypePtr();
7213   return nullptr;
7214 }
7215 
7216 /// getIntegerTypeOrder - Returns the highest ranked integer type:
7217 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7218 /// LHS < RHS, return -1.
7219 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
7220   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
7221   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
7222 
7223   // Unwrap enums to their underlying type.
7224   if (const auto *ET = dyn_cast<EnumType>(LHSC))
7225     LHSC = getIntegerTypeForEnum(ET);
7226   if (const auto *ET = dyn_cast<EnumType>(RHSC))
7227     RHSC = getIntegerTypeForEnum(ET);
7228 
7229   if (LHSC == RHSC) return 0;
7230 
7231   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
7232   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
7233 
7234   unsigned LHSRank = getIntegerRank(LHSC);
7235   unsigned RHSRank = getIntegerRank(RHSC);
7236 
7237   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
7238     if (LHSRank == RHSRank) return 0;
7239     return LHSRank > RHSRank ? 1 : -1;
7240   }
7241 
7242   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
7243   if (LHSUnsigned) {
7244     // If the unsigned [LHS] type is larger, return it.
7245     if (LHSRank >= RHSRank)
7246       return 1;
7247 
7248     // If the signed type can represent all values of the unsigned type, it
7249     // wins.  Because we are dealing with 2's complement and types that are
7250     // powers of two larger than each other, this is always safe.
7251     return -1;
7252   }
7253 
7254   // If the unsigned [RHS] type is larger, return it.
7255   if (RHSRank >= LHSRank)
7256     return -1;
7257 
7258   // If the signed type can represent all values of the unsigned type, it
7259   // wins.  Because we are dealing with 2's complement and types that are
7260   // powers of two larger than each other, this is always safe.
7261   return 1;
7262 }
7263 
7264 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
7265   if (CFConstantStringTypeDecl)
7266     return CFConstantStringTypeDecl;
7267 
7268   assert(!CFConstantStringTagDecl &&
7269          "tag and typedef should be initialized together");
7270   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
7271   CFConstantStringTagDecl->startDefinition();
7272 
7273   struct {
7274     QualType Type;
7275     const char *Name;
7276   } Fields[5];
7277   unsigned Count = 0;
7278 
7279   /// Objective-C ABI
7280   ///
7281   ///    typedef struct __NSConstantString_tag {
7282   ///      const int *isa;
7283   ///      int flags;
7284   ///      const char *str;
7285   ///      long length;
7286   ///    } __NSConstantString;
7287   ///
7288   /// Swift ABI (4.1, 4.2)
7289   ///
7290   ///    typedef struct __NSConstantString_tag {
7291   ///      uintptr_t _cfisa;
7292   ///      uintptr_t _swift_rc;
7293   ///      _Atomic(uint64_t) _cfinfoa;
7294   ///      const char *_ptr;
7295   ///      uint32_t _length;
7296   ///    } __NSConstantString;
7297   ///
7298   /// Swift ABI (5.0)
7299   ///
7300   ///    typedef struct __NSConstantString_tag {
7301   ///      uintptr_t _cfisa;
7302   ///      uintptr_t _swift_rc;
7303   ///      _Atomic(uint64_t) _cfinfoa;
7304   ///      const char *_ptr;
7305   ///      uintptr_t _length;
7306   ///    } __NSConstantString;
7307 
7308   const auto CFRuntime = getLangOpts().CFRuntime;
7309   if (static_cast<unsigned>(CFRuntime) <
7310       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
7311     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
7312     Fields[Count++] = { IntTy, "flags" };
7313     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
7314     Fields[Count++] = { LongTy, "length" };
7315   } else {
7316     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
7317     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
7318     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
7319     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
7320     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
7321         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
7322       Fields[Count++] = { IntTy, "_ptr" };
7323     else
7324       Fields[Count++] = { getUIntPtrType(), "_ptr" };
7325   }
7326 
7327   // Create fields
7328   for (unsigned i = 0; i < Count; ++i) {
7329     FieldDecl *Field =
7330         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
7331                           SourceLocation(), &Idents.get(Fields[i].Name),
7332                           Fields[i].Type, /*TInfo=*/nullptr,
7333                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7334     Field->setAccess(AS_public);
7335     CFConstantStringTagDecl->addDecl(Field);
7336   }
7337 
7338   CFConstantStringTagDecl->completeDefinition();
7339   // This type is designed to be compatible with NSConstantString, but cannot
7340   // use the same name, since NSConstantString is an interface.
7341   auto tagType = getTagDeclType(CFConstantStringTagDecl);
7342   CFConstantStringTypeDecl =
7343       buildImplicitTypedef(tagType, "__NSConstantString");
7344 
7345   return CFConstantStringTypeDecl;
7346 }
7347 
7348 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
7349   if (!CFConstantStringTagDecl)
7350     getCFConstantStringDecl(); // Build the tag and the typedef.
7351   return CFConstantStringTagDecl;
7352 }
7353 
7354 // getCFConstantStringType - Return the type used for constant CFStrings.
7355 QualType ASTContext::getCFConstantStringType() const {
7356   return getTypedefType(getCFConstantStringDecl());
7357 }
7358 
7359 QualType ASTContext::getObjCSuperType() const {
7360   if (ObjCSuperType.isNull()) {
7361     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
7362     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
7363     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
7364   }
7365   return ObjCSuperType;
7366 }
7367 
7368 void ASTContext::setCFConstantStringType(QualType T) {
7369   const auto *TD = T->castAs<TypedefType>();
7370   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
7371   const auto *TagType =
7372       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
7373   CFConstantStringTagDecl = TagType->getDecl();
7374 }
7375 
7376 QualType ASTContext::getBlockDescriptorType() const {
7377   if (BlockDescriptorType)
7378     return getTagDeclType(BlockDescriptorType);
7379 
7380   RecordDecl *RD;
7381   // FIXME: Needs the FlagAppleBlock bit.
7382   RD = buildImplicitRecord("__block_descriptor");
7383   RD->startDefinition();
7384 
7385   QualType FieldTypes[] = {
7386     UnsignedLongTy,
7387     UnsignedLongTy,
7388   };
7389 
7390   static const char *const FieldNames[] = {
7391     "reserved",
7392     "Size"
7393   };
7394 
7395   for (size_t i = 0; i < 2; ++i) {
7396     FieldDecl *Field = FieldDecl::Create(
7397         *this, RD, SourceLocation(), SourceLocation(),
7398         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7399         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7400     Field->setAccess(AS_public);
7401     RD->addDecl(Field);
7402   }
7403 
7404   RD->completeDefinition();
7405 
7406   BlockDescriptorType = RD;
7407 
7408   return getTagDeclType(BlockDescriptorType);
7409 }
7410 
7411 QualType ASTContext::getBlockDescriptorExtendedType() const {
7412   if (BlockDescriptorExtendedType)
7413     return getTagDeclType(BlockDescriptorExtendedType);
7414 
7415   RecordDecl *RD;
7416   // FIXME: Needs the FlagAppleBlock bit.
7417   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
7418   RD->startDefinition();
7419 
7420   QualType FieldTypes[] = {
7421     UnsignedLongTy,
7422     UnsignedLongTy,
7423     getPointerType(VoidPtrTy),
7424     getPointerType(VoidPtrTy)
7425   };
7426 
7427   static const char *const FieldNames[] = {
7428     "reserved",
7429     "Size",
7430     "CopyFuncPtr",
7431     "DestroyFuncPtr"
7432   };
7433 
7434   for (size_t i = 0; i < 4; ++i) {
7435     FieldDecl *Field = FieldDecl::Create(
7436         *this, RD, SourceLocation(), SourceLocation(),
7437         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7438         /*BitWidth=*/nullptr,
7439         /*Mutable=*/false, ICIS_NoInit);
7440     Field->setAccess(AS_public);
7441     RD->addDecl(Field);
7442   }
7443 
7444   RD->completeDefinition();
7445 
7446   BlockDescriptorExtendedType = RD;
7447   return getTagDeclType(BlockDescriptorExtendedType);
7448 }
7449 
7450 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
7451   const auto *BT = dyn_cast<BuiltinType>(T);
7452 
7453   if (!BT) {
7454     if (isa<PipeType>(T))
7455       return OCLTK_Pipe;
7456 
7457     return OCLTK_Default;
7458   }
7459 
7460   switch (BT->getKind()) {
7461 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
7462   case BuiltinType::Id:                                                        \
7463     return OCLTK_Image;
7464 #include "clang/Basic/OpenCLImageTypes.def"
7465 
7466   case BuiltinType::OCLClkEvent:
7467     return OCLTK_ClkEvent;
7468 
7469   case BuiltinType::OCLEvent:
7470     return OCLTK_Event;
7471 
7472   case BuiltinType::OCLQueue:
7473     return OCLTK_Queue;
7474 
7475   case BuiltinType::OCLReserveID:
7476     return OCLTK_ReserveID;
7477 
7478   case BuiltinType::OCLSampler:
7479     return OCLTK_Sampler;
7480 
7481   default:
7482     return OCLTK_Default;
7483   }
7484 }
7485 
7486 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
7487   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
7488 }
7489 
7490 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
7491 /// requires copy/dispose. Note that this must match the logic
7492 /// in buildByrefHelpers.
7493 bool ASTContext::BlockRequiresCopying(QualType Ty,
7494                                       const VarDecl *D) {
7495   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
7496     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
7497     if (!copyExpr && record->hasTrivialDestructor()) return false;
7498 
7499     return true;
7500   }
7501 
7502   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
7503   // move or destroy.
7504   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
7505     return true;
7506 
7507   if (!Ty->isObjCRetainableType()) return false;
7508 
7509   Qualifiers qs = Ty.getQualifiers();
7510 
7511   // If we have lifetime, that dominates.
7512   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
7513     switch (lifetime) {
7514       case Qualifiers::OCL_None: llvm_unreachable("impossible");
7515 
7516       // These are just bits as far as the runtime is concerned.
7517       case Qualifiers::OCL_ExplicitNone:
7518       case Qualifiers::OCL_Autoreleasing:
7519         return false;
7520 
7521       // These cases should have been taken care of when checking the type's
7522       // non-triviality.
7523       case Qualifiers::OCL_Weak:
7524       case Qualifiers::OCL_Strong:
7525         llvm_unreachable("impossible");
7526     }
7527     llvm_unreachable("fell out of lifetime switch!");
7528   }
7529   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
7530           Ty->isObjCObjectPointerType());
7531 }
7532 
7533 bool ASTContext::getByrefLifetime(QualType Ty,
7534                               Qualifiers::ObjCLifetime &LifeTime,
7535                               bool &HasByrefExtendedLayout) const {
7536   if (!getLangOpts().ObjC ||
7537       getLangOpts().getGC() != LangOptions::NonGC)
7538     return false;
7539 
7540   HasByrefExtendedLayout = false;
7541   if (Ty->isRecordType()) {
7542     HasByrefExtendedLayout = true;
7543     LifeTime = Qualifiers::OCL_None;
7544   } else if ((LifeTime = Ty.getObjCLifetime())) {
7545     // Honor the ARC qualifiers.
7546   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
7547     // The MRR rule.
7548     LifeTime = Qualifiers::OCL_ExplicitNone;
7549   } else {
7550     LifeTime = Qualifiers::OCL_None;
7551   }
7552   return true;
7553 }
7554 
7555 CanQualType ASTContext::getNSUIntegerType() const {
7556   assert(Target && "Expected target to be initialized");
7557   const llvm::Triple &T = Target->getTriple();
7558   // Windows is LLP64 rather than LP64
7559   if (T.isOSWindows() && T.isArch64Bit())
7560     return UnsignedLongLongTy;
7561   return UnsignedLongTy;
7562 }
7563 
7564 CanQualType ASTContext::getNSIntegerType() const {
7565   assert(Target && "Expected target to be initialized");
7566   const llvm::Triple &T = Target->getTriple();
7567   // Windows is LLP64 rather than LP64
7568   if (T.isOSWindows() && T.isArch64Bit())
7569     return LongLongTy;
7570   return LongTy;
7571 }
7572 
7573 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
7574   if (!ObjCInstanceTypeDecl)
7575     ObjCInstanceTypeDecl =
7576         buildImplicitTypedef(getObjCIdType(), "instancetype");
7577   return ObjCInstanceTypeDecl;
7578 }
7579 
7580 // This returns true if a type has been typedefed to BOOL:
7581 // typedef <type> BOOL;
7582 static bool isTypeTypedefedAsBOOL(QualType T) {
7583   if (const auto *TT = dyn_cast<TypedefType>(T))
7584     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
7585       return II->isStr("BOOL");
7586 
7587   return false;
7588 }
7589 
7590 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
7591 /// purpose.
7592 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
7593   if (!type->isIncompleteArrayType() && type->isIncompleteType())
7594     return CharUnits::Zero();
7595 
7596   CharUnits sz = getTypeSizeInChars(type);
7597 
7598   // Make all integer and enum types at least as large as an int
7599   if (sz.isPositive() && type->isIntegralOrEnumerationType())
7600     sz = std::max(sz, getTypeSizeInChars(IntTy));
7601   // Treat arrays as pointers, since that's how they're passed in.
7602   else if (type->isArrayType())
7603     sz = getTypeSizeInChars(VoidPtrTy);
7604   return sz;
7605 }
7606 
7607 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
7608   return getTargetInfo().getCXXABI().isMicrosoft() &&
7609          VD->isStaticDataMember() &&
7610          VD->getType()->isIntegralOrEnumerationType() &&
7611          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
7612 }
7613 
7614 ASTContext::InlineVariableDefinitionKind
7615 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
7616   if (!VD->isInline())
7617     return InlineVariableDefinitionKind::None;
7618 
7619   // In almost all cases, it's a weak definition.
7620   auto *First = VD->getFirstDecl();
7621   if (First->isInlineSpecified() || !First->isStaticDataMember())
7622     return InlineVariableDefinitionKind::Weak;
7623 
7624   // If there's a file-context declaration in this translation unit, it's a
7625   // non-discardable definition.
7626   for (auto *D : VD->redecls())
7627     if (D->getLexicalDeclContext()->isFileContext() &&
7628         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
7629       return InlineVariableDefinitionKind::Strong;
7630 
7631   // If we've not seen one yet, we don't know.
7632   return InlineVariableDefinitionKind::WeakUnknown;
7633 }
7634 
7635 static std::string charUnitsToString(const CharUnits &CU) {
7636   return llvm::itostr(CU.getQuantity());
7637 }
7638 
7639 /// getObjCEncodingForBlock - Return the encoded type for this block
7640 /// declaration.
7641 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
7642   std::string S;
7643 
7644   const BlockDecl *Decl = Expr->getBlockDecl();
7645   QualType BlockTy =
7646       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
7647   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
7648   // Encode result type.
7649   if (getLangOpts().EncodeExtendedBlockSig)
7650     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
7651                                       true /*Extended*/);
7652   else
7653     getObjCEncodingForType(BlockReturnTy, S);
7654   // Compute size of all parameters.
7655   // Start with computing size of a pointer in number of bytes.
7656   // FIXME: There might(should) be a better way of doing this computation!
7657   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7658   CharUnits ParmOffset = PtrSize;
7659   for (auto *PI : Decl->parameters()) {
7660     QualType PType = PI->getType();
7661     CharUnits sz = getObjCEncodingTypeSize(PType);
7662     if (sz.isZero())
7663       continue;
7664     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
7665     ParmOffset += sz;
7666   }
7667   // Size of the argument frame
7668   S += charUnitsToString(ParmOffset);
7669   // Block pointer and offset.
7670   S += "@?0";
7671 
7672   // Argument types.
7673   ParmOffset = PtrSize;
7674   for (auto *PVDecl : Decl->parameters()) {
7675     QualType PType = PVDecl->getOriginalType();
7676     if (const auto *AT =
7677             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7678       // Use array's original type only if it has known number of
7679       // elements.
7680       if (!isa<ConstantArrayType>(AT))
7681         PType = PVDecl->getType();
7682     } else if (PType->isFunctionType())
7683       PType = PVDecl->getType();
7684     if (getLangOpts().EncodeExtendedBlockSig)
7685       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
7686                                       S, true /*Extended*/);
7687     else
7688       getObjCEncodingForType(PType, S);
7689     S += charUnitsToString(ParmOffset);
7690     ParmOffset += getObjCEncodingTypeSize(PType);
7691   }
7692 
7693   return S;
7694 }
7695 
7696 std::string
7697 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
7698   std::string S;
7699   // Encode result type.
7700   getObjCEncodingForType(Decl->getReturnType(), S);
7701   CharUnits ParmOffset;
7702   // Compute size of all parameters.
7703   for (auto *PI : Decl->parameters()) {
7704     QualType PType = PI->getType();
7705     CharUnits sz = getObjCEncodingTypeSize(PType);
7706     if (sz.isZero())
7707       continue;
7708 
7709     assert(sz.isPositive() &&
7710            "getObjCEncodingForFunctionDecl - Incomplete param type");
7711     ParmOffset += sz;
7712   }
7713   S += charUnitsToString(ParmOffset);
7714   ParmOffset = CharUnits::Zero();
7715 
7716   // Argument types.
7717   for (auto *PVDecl : Decl->parameters()) {
7718     QualType PType = PVDecl->getOriginalType();
7719     if (const auto *AT =
7720             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7721       // Use array's original type only if it has known number of
7722       // elements.
7723       if (!isa<ConstantArrayType>(AT))
7724         PType = PVDecl->getType();
7725     } else if (PType->isFunctionType())
7726       PType = PVDecl->getType();
7727     getObjCEncodingForType(PType, S);
7728     S += charUnitsToString(ParmOffset);
7729     ParmOffset += getObjCEncodingTypeSize(PType);
7730   }
7731 
7732   return S;
7733 }
7734 
7735 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
7736 /// method parameter or return type. If Extended, include class names and
7737 /// block object types.
7738 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7739                                                    QualType T, std::string& S,
7740                                                    bool Extended) const {
7741   // Encode type qualifier, 'in', 'inout', etc. for the parameter.
7742   getObjCEncodingForTypeQualifier(QT, S);
7743   // Encode parameter type.
7744   ObjCEncOptions Options = ObjCEncOptions()
7745                                .setExpandPointedToStructures()
7746                                .setExpandStructures()
7747                                .setIsOutermostType();
7748   if (Extended)
7749     Options.setEncodeBlockParameters().setEncodeClassNames();
7750   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7751 }
7752 
7753 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7754 /// declaration.
7755 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7756                                                      bool Extended) const {
7757   // FIXME: This is not very efficient.
7758   // Encode return type.
7759   std::string S;
7760   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7761                                     Decl->getReturnType(), S, Extended);
7762   // Compute size of all parameters.
7763   // Start with computing size of a pointer in number of bytes.
7764   // FIXME: There might(should) be a better way of doing this computation!
7765   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7766   // The first two arguments (self and _cmd) are pointers; account for
7767   // their size.
7768   CharUnits ParmOffset = 2 * PtrSize;
7769   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7770        E = Decl->sel_param_end(); PI != E; ++PI) {
7771     QualType PType = (*PI)->getType();
7772     CharUnits sz = getObjCEncodingTypeSize(PType);
7773     if (sz.isZero())
7774       continue;
7775 
7776     assert(sz.isPositive() &&
7777            "getObjCEncodingForMethodDecl - Incomplete param type");
7778     ParmOffset += sz;
7779   }
7780   S += charUnitsToString(ParmOffset);
7781   S += "@0:";
7782   S += charUnitsToString(PtrSize);
7783 
7784   // Argument types.
7785   ParmOffset = 2 * PtrSize;
7786   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7787        E = Decl->sel_param_end(); PI != E; ++PI) {
7788     const ParmVarDecl *PVDecl = *PI;
7789     QualType PType = PVDecl->getOriginalType();
7790     if (const auto *AT =
7791             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7792       // Use array's original type only if it has known number of
7793       // elements.
7794       if (!isa<ConstantArrayType>(AT))
7795         PType = PVDecl->getType();
7796     } else if (PType->isFunctionType())
7797       PType = PVDecl->getType();
7798     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7799                                       PType, S, Extended);
7800     S += charUnitsToString(ParmOffset);
7801     ParmOffset += getObjCEncodingTypeSize(PType);
7802   }
7803 
7804   return S;
7805 }
7806 
7807 ObjCPropertyImplDecl *
7808 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7809                                       const ObjCPropertyDecl *PD,
7810                                       const Decl *Container) const {
7811   if (!Container)
7812     return nullptr;
7813   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7814     for (auto *PID : CID->property_impls())
7815       if (PID->getPropertyDecl() == PD)
7816         return PID;
7817   } else {
7818     const auto *OID = cast<ObjCImplementationDecl>(Container);
7819     for (auto *PID : OID->property_impls())
7820       if (PID->getPropertyDecl() == PD)
7821         return PID;
7822   }
7823   return nullptr;
7824 }
7825 
7826 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7827 /// property declaration. If non-NULL, Container must be either an
7828 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7829 /// NULL when getting encodings for protocol properties.
7830 /// Property attributes are stored as a comma-delimited C string. The simple
7831 /// attributes readonly and bycopy are encoded as single characters. The
7832 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7833 /// encoded as single characters, followed by an identifier. Property types
7834 /// are also encoded as a parametrized attribute. The characters used to encode
7835 /// these attributes are defined by the following enumeration:
7836 /// @code
7837 /// enum PropertyAttributes {
7838 /// kPropertyReadOnly = 'R',   // property is read-only.
7839 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7840 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7841 /// kPropertyDynamic = 'D',    // property is dynamic
7842 /// kPropertyGetter = 'G',     // followed by getter selector name
7843 /// kPropertySetter = 'S',     // followed by setter selector name
7844 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7845 /// kPropertyType = 'T'              // followed by old-style type encoding.
7846 /// kPropertyWeak = 'W'              // 'weak' property
7847 /// kPropertyStrong = 'P'            // property GC'able
7848 /// kPropertyNonAtomic = 'N'         // property non-atomic
7849 /// };
7850 /// @endcode
7851 std::string
7852 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7853                                            const Decl *Container) const {
7854   // Collect information from the property implementation decl(s).
7855   bool Dynamic = false;
7856   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7857 
7858   if (ObjCPropertyImplDecl *PropertyImpDecl =
7859       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7860     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7861       Dynamic = true;
7862     else
7863       SynthesizePID = PropertyImpDecl;
7864   }
7865 
7866   // FIXME: This is not very efficient.
7867   std::string S = "T";
7868 
7869   // Encode result type.
7870   // GCC has some special rules regarding encoding of properties which
7871   // closely resembles encoding of ivars.
7872   getObjCEncodingForPropertyType(PD->getType(), S);
7873 
7874   if (PD->isReadOnly()) {
7875     S += ",R";
7876     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7877       S += ",C";
7878     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7879       S += ",&";
7880     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7881       S += ",W";
7882   } else {
7883     switch (PD->getSetterKind()) {
7884     case ObjCPropertyDecl::Assign: break;
7885     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7886     case ObjCPropertyDecl::Retain: S += ",&"; break;
7887     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7888     }
7889   }
7890 
7891   // It really isn't clear at all what this means, since properties
7892   // are "dynamic by default".
7893   if (Dynamic)
7894     S += ",D";
7895 
7896   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7897     S += ",N";
7898 
7899   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7900     S += ",G";
7901     S += PD->getGetterName().getAsString();
7902   }
7903 
7904   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7905     S += ",S";
7906     S += PD->getSetterName().getAsString();
7907   }
7908 
7909   if (SynthesizePID) {
7910     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7911     S += ",V";
7912     S += OID->getNameAsString();
7913   }
7914 
7915   // FIXME: OBJCGC: weak & strong
7916   return S;
7917 }
7918 
7919 /// getLegacyIntegralTypeEncoding -
7920 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7921 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7922 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
7923 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7924   if (PointeeTy->getAs<TypedefType>()) {
7925     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7926       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7927         PointeeTy = UnsignedIntTy;
7928       else
7929         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7930           PointeeTy = IntTy;
7931     }
7932   }
7933 }
7934 
7935 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7936                                         const FieldDecl *Field,
7937                                         QualType *NotEncodedT) const {
7938   // We follow the behavior of gcc, expanding structures which are
7939   // directly pointed to, and expanding embedded structures. Note that
7940   // these rules are sufficient to prevent recursive encoding of the
7941   // same type.
7942   getObjCEncodingForTypeImpl(T, S,
7943                              ObjCEncOptions()
7944                                  .setExpandPointedToStructures()
7945                                  .setExpandStructures()
7946                                  .setIsOutermostType(),
7947                              Field, NotEncodedT);
7948 }
7949 
7950 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7951                                                 std::string& S) const {
7952   // Encode result type.
7953   // GCC has some special rules regarding encoding of properties which
7954   // closely resembles encoding of ivars.
7955   getObjCEncodingForTypeImpl(T, S,
7956                              ObjCEncOptions()
7957                                  .setExpandPointedToStructures()
7958                                  .setExpandStructures()
7959                                  .setIsOutermostType()
7960                                  .setEncodingProperty(),
7961                              /*Field=*/nullptr);
7962 }
7963 
7964 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7965                                             const BuiltinType *BT) {
7966     BuiltinType::Kind kind = BT->getKind();
7967     switch (kind) {
7968     case BuiltinType::Void:       return 'v';
7969     case BuiltinType::Bool:       return 'B';
7970     case BuiltinType::Char8:
7971     case BuiltinType::Char_U:
7972     case BuiltinType::UChar:      return 'C';
7973     case BuiltinType::Char16:
7974     case BuiltinType::UShort:     return 'S';
7975     case BuiltinType::Char32:
7976     case BuiltinType::UInt:       return 'I';
7977     case BuiltinType::ULong:
7978         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7979     case BuiltinType::UInt128:    return 'T';
7980     case BuiltinType::ULongLong:  return 'Q';
7981     case BuiltinType::Char_S:
7982     case BuiltinType::SChar:      return 'c';
7983     case BuiltinType::Short:      return 's';
7984     case BuiltinType::WChar_S:
7985     case BuiltinType::WChar_U:
7986     case BuiltinType::Int:        return 'i';
7987     case BuiltinType::Long:
7988       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7989     case BuiltinType::LongLong:   return 'q';
7990     case BuiltinType::Int128:     return 't';
7991     case BuiltinType::Float:      return 'f';
7992     case BuiltinType::Double:     return 'd';
7993     case BuiltinType::LongDouble: return 'D';
7994     case BuiltinType::NullPtr:    return '*'; // like char*
7995 
7996     case BuiltinType::BFloat16:
7997     case BuiltinType::Float16:
7998     case BuiltinType::Float128:
7999     case BuiltinType::Ibm128:
8000     case BuiltinType::Half:
8001     case BuiltinType::ShortAccum:
8002     case BuiltinType::Accum:
8003     case BuiltinType::LongAccum:
8004     case BuiltinType::UShortAccum:
8005     case BuiltinType::UAccum:
8006     case BuiltinType::ULongAccum:
8007     case BuiltinType::ShortFract:
8008     case BuiltinType::Fract:
8009     case BuiltinType::LongFract:
8010     case BuiltinType::UShortFract:
8011     case BuiltinType::UFract:
8012     case BuiltinType::ULongFract:
8013     case BuiltinType::SatShortAccum:
8014     case BuiltinType::SatAccum:
8015     case BuiltinType::SatLongAccum:
8016     case BuiltinType::SatUShortAccum:
8017     case BuiltinType::SatUAccum:
8018     case BuiltinType::SatULongAccum:
8019     case BuiltinType::SatShortFract:
8020     case BuiltinType::SatFract:
8021     case BuiltinType::SatLongFract:
8022     case BuiltinType::SatUShortFract:
8023     case BuiltinType::SatUFract:
8024     case BuiltinType::SatULongFract:
8025       // FIXME: potentially need @encodes for these!
8026       return ' ';
8027 
8028 #define SVE_TYPE(Name, Id, SingletonId) \
8029     case BuiltinType::Id:
8030 #include "clang/Basic/AArch64SVEACLETypes.def"
8031 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
8032 #include "clang/Basic/RISCVVTypes.def"
8033       {
8034         DiagnosticsEngine &Diags = C->getDiagnostics();
8035         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
8036                                                 "cannot yet @encode type %0");
8037         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
8038         return ' ';
8039       }
8040 
8041     case BuiltinType::ObjCId:
8042     case BuiltinType::ObjCClass:
8043     case BuiltinType::ObjCSel:
8044       llvm_unreachable("@encoding ObjC primitive type");
8045 
8046     // OpenCL and placeholder types don't need @encodings.
8047 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8048     case BuiltinType::Id:
8049 #include "clang/Basic/OpenCLImageTypes.def"
8050 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
8051     case BuiltinType::Id:
8052 #include "clang/Basic/OpenCLExtensionTypes.def"
8053     case BuiltinType::OCLEvent:
8054     case BuiltinType::OCLClkEvent:
8055     case BuiltinType::OCLQueue:
8056     case BuiltinType::OCLReserveID:
8057     case BuiltinType::OCLSampler:
8058     case BuiltinType::Dependent:
8059 #define PPC_VECTOR_TYPE(Name, Id, Size) \
8060     case BuiltinType::Id:
8061 #include "clang/Basic/PPCTypes.def"
8062 #define BUILTIN_TYPE(KIND, ID)
8063 #define PLACEHOLDER_TYPE(KIND, ID) \
8064     case BuiltinType::KIND:
8065 #include "clang/AST/BuiltinTypes.def"
8066       llvm_unreachable("invalid builtin type for @encode");
8067     }
8068     llvm_unreachable("invalid BuiltinType::Kind value");
8069 }
8070 
8071 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
8072   EnumDecl *Enum = ET->getDecl();
8073 
8074   // The encoding of an non-fixed enum type is always 'i', regardless of size.
8075   if (!Enum->isFixed())
8076     return 'i';
8077 
8078   // The encoding of a fixed enum type matches its fixed underlying type.
8079   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
8080   return getObjCEncodingForPrimitiveType(C, BT);
8081 }
8082 
8083 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
8084                            QualType T, const FieldDecl *FD) {
8085   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
8086   S += 'b';
8087   // The NeXT runtime encodes bit fields as b followed by the number of bits.
8088   // The GNU runtime requires more information; bitfields are encoded as b,
8089   // then the offset (in bits) of the first element, then the type of the
8090   // bitfield, then the size in bits.  For example, in this structure:
8091   //
8092   // struct
8093   // {
8094   //    int integer;
8095   //    int flags:2;
8096   // };
8097   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
8098   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
8099   // information is not especially sensible, but we're stuck with it for
8100   // compatibility with GCC, although providing it breaks anything that
8101   // actually uses runtime introspection and wants to work on both runtimes...
8102   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
8103     uint64_t Offset;
8104 
8105     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
8106       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
8107                                          IVD);
8108     } else {
8109       const RecordDecl *RD = FD->getParent();
8110       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
8111       Offset = RL.getFieldOffset(FD->getFieldIndex());
8112     }
8113 
8114     S += llvm::utostr(Offset);
8115 
8116     if (const auto *ET = T->getAs<EnumType>())
8117       S += ObjCEncodingForEnumType(Ctx, ET);
8118     else {
8119       const auto *BT = T->castAs<BuiltinType>();
8120       S += getObjCEncodingForPrimitiveType(Ctx, BT);
8121     }
8122   }
8123   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
8124 }
8125 
8126 // Helper function for determining whether the encoded type string would include
8127 // a template specialization type.
8128 static bool hasTemplateSpecializationInEncodedString(const Type *T,
8129                                                      bool VisitBasesAndFields) {
8130   T = T->getBaseElementTypeUnsafe();
8131 
8132   if (auto *PT = T->getAs<PointerType>())
8133     return hasTemplateSpecializationInEncodedString(
8134         PT->getPointeeType().getTypePtr(), false);
8135 
8136   auto *CXXRD = T->getAsCXXRecordDecl();
8137 
8138   if (!CXXRD)
8139     return false;
8140 
8141   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
8142     return true;
8143 
8144   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
8145     return false;
8146 
8147   for (auto B : CXXRD->bases())
8148     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
8149                                                  true))
8150       return true;
8151 
8152   for (auto *FD : CXXRD->fields())
8153     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
8154                                                  true))
8155       return true;
8156 
8157   return false;
8158 }
8159 
8160 // FIXME: Use SmallString for accumulating string.
8161 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
8162                                             const ObjCEncOptions Options,
8163                                             const FieldDecl *FD,
8164                                             QualType *NotEncodedT) const {
8165   CanQualType CT = getCanonicalType(T);
8166   switch (CT->getTypeClass()) {
8167   case Type::Builtin:
8168   case Type::Enum:
8169     if (FD && FD->isBitField())
8170       return EncodeBitField(this, S, T, FD);
8171     if (const auto *BT = dyn_cast<BuiltinType>(CT))
8172       S += getObjCEncodingForPrimitiveType(this, BT);
8173     else
8174       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
8175     return;
8176 
8177   case Type::Complex:
8178     S += 'j';
8179     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
8180                                ObjCEncOptions(),
8181                                /*Field=*/nullptr);
8182     return;
8183 
8184   case Type::Atomic:
8185     S += 'A';
8186     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
8187                                ObjCEncOptions(),
8188                                /*Field=*/nullptr);
8189     return;
8190 
8191   // encoding for pointer or reference types.
8192   case Type::Pointer:
8193   case Type::LValueReference:
8194   case Type::RValueReference: {
8195     QualType PointeeTy;
8196     if (isa<PointerType>(CT)) {
8197       const auto *PT = T->castAs<PointerType>();
8198       if (PT->isObjCSelType()) {
8199         S += ':';
8200         return;
8201       }
8202       PointeeTy = PT->getPointeeType();
8203     } else {
8204       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
8205     }
8206 
8207     bool isReadOnly = false;
8208     // For historical/compatibility reasons, the read-only qualifier of the
8209     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
8210     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
8211     // Also, do not emit the 'r' for anything but the outermost type!
8212     if (T->getAs<TypedefType>()) {
8213       if (Options.IsOutermostType() && T.isConstQualified()) {
8214         isReadOnly = true;
8215         S += 'r';
8216       }
8217     } else if (Options.IsOutermostType()) {
8218       QualType P = PointeeTy;
8219       while (auto PT = P->getAs<PointerType>())
8220         P = PT->getPointeeType();
8221       if (P.isConstQualified()) {
8222         isReadOnly = true;
8223         S += 'r';
8224       }
8225     }
8226     if (isReadOnly) {
8227       // Another legacy compatibility encoding. Some ObjC qualifier and type
8228       // combinations need to be rearranged.
8229       // Rewrite "in const" from "nr" to "rn"
8230       if (StringRef(S).endswith("nr"))
8231         S.replace(S.end()-2, S.end(), "rn");
8232     }
8233 
8234     if (PointeeTy->isCharType()) {
8235       // char pointer types should be encoded as '*' unless it is a
8236       // type that has been typedef'd to 'BOOL'.
8237       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
8238         S += '*';
8239         return;
8240       }
8241     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
8242       // GCC binary compat: Need to convert "struct objc_class *" to "#".
8243       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
8244         S += '#';
8245         return;
8246       }
8247       // GCC binary compat: Need to convert "struct objc_object *" to "@".
8248       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
8249         S += '@';
8250         return;
8251       }
8252       // If the encoded string for the class includes template names, just emit
8253       // "^v" for pointers to the class.
8254       if (getLangOpts().CPlusPlus &&
8255           (!getLangOpts().EncodeCXXClassTemplateSpec &&
8256            hasTemplateSpecializationInEncodedString(
8257                RTy, Options.ExpandPointedToStructures()))) {
8258         S += "^v";
8259         return;
8260       }
8261       // fall through...
8262     }
8263     S += '^';
8264     getLegacyIntegralTypeEncoding(PointeeTy);
8265 
8266     ObjCEncOptions NewOptions;
8267     if (Options.ExpandPointedToStructures())
8268       NewOptions.setExpandStructures();
8269     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
8270                                /*Field=*/nullptr, NotEncodedT);
8271     return;
8272   }
8273 
8274   case Type::ConstantArray:
8275   case Type::IncompleteArray:
8276   case Type::VariableArray: {
8277     const auto *AT = cast<ArrayType>(CT);
8278 
8279     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
8280       // Incomplete arrays are encoded as a pointer to the array element.
8281       S += '^';
8282 
8283       getObjCEncodingForTypeImpl(
8284           AT->getElementType(), S,
8285           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
8286     } else {
8287       S += '[';
8288 
8289       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
8290         S += llvm::utostr(CAT->getSize().getZExtValue());
8291       else {
8292         //Variable length arrays are encoded as a regular array with 0 elements.
8293         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
8294                "Unknown array type!");
8295         S += '0';
8296       }
8297 
8298       getObjCEncodingForTypeImpl(
8299           AT->getElementType(), S,
8300           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
8301           NotEncodedT);
8302       S += ']';
8303     }
8304     return;
8305   }
8306 
8307   case Type::FunctionNoProto:
8308   case Type::FunctionProto:
8309     S += '?';
8310     return;
8311 
8312   case Type::Record: {
8313     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
8314     S += RDecl->isUnion() ? '(' : '{';
8315     // Anonymous structures print as '?'
8316     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
8317       S += II->getName();
8318       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
8319         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
8320         llvm::raw_string_ostream OS(S);
8321         printTemplateArgumentList(OS, TemplateArgs.asArray(),
8322                                   getPrintingPolicy());
8323       }
8324     } else {
8325       S += '?';
8326     }
8327     if (Options.ExpandStructures()) {
8328       S += '=';
8329       if (!RDecl->isUnion()) {
8330         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
8331       } else {
8332         for (const auto *Field : RDecl->fields()) {
8333           if (FD) {
8334             S += '"';
8335             S += Field->getNameAsString();
8336             S += '"';
8337           }
8338 
8339           // Special case bit-fields.
8340           if (Field->isBitField()) {
8341             getObjCEncodingForTypeImpl(Field->getType(), S,
8342                                        ObjCEncOptions().setExpandStructures(),
8343                                        Field);
8344           } else {
8345             QualType qt = Field->getType();
8346             getLegacyIntegralTypeEncoding(qt);
8347             getObjCEncodingForTypeImpl(
8348                 qt, S,
8349                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
8350                 NotEncodedT);
8351           }
8352         }
8353       }
8354     }
8355     S += RDecl->isUnion() ? ')' : '}';
8356     return;
8357   }
8358 
8359   case Type::BlockPointer: {
8360     const auto *BT = T->castAs<BlockPointerType>();
8361     S += "@?"; // Unlike a pointer-to-function, which is "^?".
8362     if (Options.EncodeBlockParameters()) {
8363       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
8364 
8365       S += '<';
8366       // Block return type
8367       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
8368                                  Options.forComponentType(), FD, NotEncodedT);
8369       // Block self
8370       S += "@?";
8371       // Block parameters
8372       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
8373         for (const auto &I : FPT->param_types())
8374           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
8375                                      NotEncodedT);
8376       }
8377       S += '>';
8378     }
8379     return;
8380   }
8381 
8382   case Type::ObjCObject: {
8383     // hack to match legacy encoding of *id and *Class
8384     QualType Ty = getObjCObjectPointerType(CT);
8385     if (Ty->isObjCIdType()) {
8386       S += "{objc_object=}";
8387       return;
8388     }
8389     else if (Ty->isObjCClassType()) {
8390       S += "{objc_class=}";
8391       return;
8392     }
8393     // TODO: Double check to make sure this intentionally falls through.
8394     [[fallthrough]];
8395   }
8396 
8397   case Type::ObjCInterface: {
8398     // Ignore protocol qualifiers when mangling at this level.
8399     // @encode(class_name)
8400     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
8401     S += '{';
8402     S += OI->getObjCRuntimeNameAsString();
8403     if (Options.ExpandStructures()) {
8404       S += '=';
8405       SmallVector<const ObjCIvarDecl*, 32> Ivars;
8406       DeepCollectObjCIvars(OI, true, Ivars);
8407       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
8408         const FieldDecl *Field = Ivars[i];
8409         if (Field->isBitField())
8410           getObjCEncodingForTypeImpl(Field->getType(), S,
8411                                      ObjCEncOptions().setExpandStructures(),
8412                                      Field);
8413         else
8414           getObjCEncodingForTypeImpl(Field->getType(), S,
8415                                      ObjCEncOptions().setExpandStructures(), FD,
8416                                      NotEncodedT);
8417       }
8418     }
8419     S += '}';
8420     return;
8421   }
8422 
8423   case Type::ObjCObjectPointer: {
8424     const auto *OPT = T->castAs<ObjCObjectPointerType>();
8425     if (OPT->isObjCIdType()) {
8426       S += '@';
8427       return;
8428     }
8429 
8430     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
8431       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
8432       // Since this is a binary compatibility issue, need to consult with
8433       // runtime folks. Fortunately, this is a *very* obscure construct.
8434       S += '#';
8435       return;
8436     }
8437 
8438     if (OPT->isObjCQualifiedIdType()) {
8439       getObjCEncodingForTypeImpl(
8440           getObjCIdType(), S,
8441           Options.keepingOnly(ObjCEncOptions()
8442                                   .setExpandPointedToStructures()
8443                                   .setExpandStructures()),
8444           FD);
8445       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
8446         // Note that we do extended encoding of protocol qualifier list
8447         // Only when doing ivar or property encoding.
8448         S += '"';
8449         for (const auto *I : OPT->quals()) {
8450           S += '<';
8451           S += I->getObjCRuntimeNameAsString();
8452           S += '>';
8453         }
8454         S += '"';
8455       }
8456       return;
8457     }
8458 
8459     S += '@';
8460     if (OPT->getInterfaceDecl() &&
8461         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
8462       S += '"';
8463       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
8464       for (const auto *I : OPT->quals()) {
8465         S += '<';
8466         S += I->getObjCRuntimeNameAsString();
8467         S += '>';
8468       }
8469       S += '"';
8470     }
8471     return;
8472   }
8473 
8474   // gcc just blithely ignores member pointers.
8475   // FIXME: we should do better than that.  'M' is available.
8476   case Type::MemberPointer:
8477   // This matches gcc's encoding, even though technically it is insufficient.
8478   //FIXME. We should do a better job than gcc.
8479   case Type::Vector:
8480   case Type::ExtVector:
8481   // Until we have a coherent encoding of these three types, issue warning.
8482     if (NotEncodedT)
8483       *NotEncodedT = T;
8484     return;
8485 
8486   case Type::ConstantMatrix:
8487     if (NotEncodedT)
8488       *NotEncodedT = T;
8489     return;
8490 
8491   case Type::BitInt:
8492     if (NotEncodedT)
8493       *NotEncodedT = T;
8494     return;
8495 
8496   // We could see an undeduced auto type here during error recovery.
8497   // Just ignore it.
8498   case Type::Auto:
8499   case Type::DeducedTemplateSpecialization:
8500     return;
8501 
8502   case Type::Pipe:
8503 #define ABSTRACT_TYPE(KIND, BASE)
8504 #define TYPE(KIND, BASE)
8505 #define DEPENDENT_TYPE(KIND, BASE) \
8506   case Type::KIND:
8507 #define NON_CANONICAL_TYPE(KIND, BASE) \
8508   case Type::KIND:
8509 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
8510   case Type::KIND:
8511 #include "clang/AST/TypeNodes.inc"
8512     llvm_unreachable("@encode for dependent type!");
8513   }
8514   llvm_unreachable("bad type kind!");
8515 }
8516 
8517 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
8518                                                  std::string &S,
8519                                                  const FieldDecl *FD,
8520                                                  bool includeVBases,
8521                                                  QualType *NotEncodedT) const {
8522   assert(RDecl && "Expected non-null RecordDecl");
8523   assert(!RDecl->isUnion() && "Should not be called for unions");
8524   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
8525     return;
8526 
8527   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
8528   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
8529   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
8530 
8531   if (CXXRec) {
8532     for (const auto &BI : CXXRec->bases()) {
8533       if (!BI.isVirtual()) {
8534         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8535         if (base->isEmpty())
8536           continue;
8537         uint64_t offs = toBits(layout.getBaseClassOffset(base));
8538         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8539                                   std::make_pair(offs, base));
8540       }
8541     }
8542   }
8543 
8544   unsigned i = 0;
8545   for (FieldDecl *Field : RDecl->fields()) {
8546     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
8547       continue;
8548     uint64_t offs = layout.getFieldOffset(i);
8549     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8550                               std::make_pair(offs, Field));
8551     ++i;
8552   }
8553 
8554   if (CXXRec && includeVBases) {
8555     for (const auto &BI : CXXRec->vbases()) {
8556       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8557       if (base->isEmpty())
8558         continue;
8559       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
8560       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
8561           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
8562         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
8563                                   std::make_pair(offs, base));
8564     }
8565   }
8566 
8567   CharUnits size;
8568   if (CXXRec) {
8569     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
8570   } else {
8571     size = layout.getSize();
8572   }
8573 
8574 #ifndef NDEBUG
8575   uint64_t CurOffs = 0;
8576 #endif
8577   std::multimap<uint64_t, NamedDecl *>::iterator
8578     CurLayObj = FieldOrBaseOffsets.begin();
8579 
8580   if (CXXRec && CXXRec->isDynamicClass() &&
8581       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
8582     if (FD) {
8583       S += "\"_vptr$";
8584       std::string recname = CXXRec->getNameAsString();
8585       if (recname.empty()) recname = "?";
8586       S += recname;
8587       S += '"';
8588     }
8589     S += "^^?";
8590 #ifndef NDEBUG
8591     CurOffs += getTypeSize(VoidPtrTy);
8592 #endif
8593   }
8594 
8595   if (!RDecl->hasFlexibleArrayMember()) {
8596     // Mark the end of the structure.
8597     uint64_t offs = toBits(size);
8598     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8599                               std::make_pair(offs, nullptr));
8600   }
8601 
8602   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
8603 #ifndef NDEBUG
8604     assert(CurOffs <= CurLayObj->first);
8605     if (CurOffs < CurLayObj->first) {
8606       uint64_t padding = CurLayObj->first - CurOffs;
8607       // FIXME: There doesn't seem to be a way to indicate in the encoding that
8608       // packing/alignment of members is different that normal, in which case
8609       // the encoding will be out-of-sync with the real layout.
8610       // If the runtime switches to just consider the size of types without
8611       // taking into account alignment, we could make padding explicit in the
8612       // encoding (e.g. using arrays of chars). The encoding strings would be
8613       // longer then though.
8614       CurOffs += padding;
8615     }
8616 #endif
8617 
8618     NamedDecl *dcl = CurLayObj->second;
8619     if (!dcl)
8620       break; // reached end of structure.
8621 
8622     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
8623       // We expand the bases without their virtual bases since those are going
8624       // in the initial structure. Note that this differs from gcc which
8625       // expands virtual bases each time one is encountered in the hierarchy,
8626       // making the encoding type bigger than it really is.
8627       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
8628                                       NotEncodedT);
8629       assert(!base->isEmpty());
8630 #ifndef NDEBUG
8631       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
8632 #endif
8633     } else {
8634       const auto *field = cast<FieldDecl>(dcl);
8635       if (FD) {
8636         S += '"';
8637         S += field->getNameAsString();
8638         S += '"';
8639       }
8640 
8641       if (field->isBitField()) {
8642         EncodeBitField(this, S, field->getType(), field);
8643 #ifndef NDEBUG
8644         CurOffs += field->getBitWidthValue(*this);
8645 #endif
8646       } else {
8647         QualType qt = field->getType();
8648         getLegacyIntegralTypeEncoding(qt);
8649         getObjCEncodingForTypeImpl(
8650             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
8651             FD, NotEncodedT);
8652 #ifndef NDEBUG
8653         CurOffs += getTypeSize(field->getType());
8654 #endif
8655       }
8656     }
8657   }
8658 }
8659 
8660 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
8661                                                  std::string& S) const {
8662   if (QT & Decl::OBJC_TQ_In)
8663     S += 'n';
8664   if (QT & Decl::OBJC_TQ_Inout)
8665     S += 'N';
8666   if (QT & Decl::OBJC_TQ_Out)
8667     S += 'o';
8668   if (QT & Decl::OBJC_TQ_Bycopy)
8669     S += 'O';
8670   if (QT & Decl::OBJC_TQ_Byref)
8671     S += 'R';
8672   if (QT & Decl::OBJC_TQ_Oneway)
8673     S += 'V';
8674 }
8675 
8676 TypedefDecl *ASTContext::getObjCIdDecl() const {
8677   if (!ObjCIdDecl) {
8678     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
8679     T = getObjCObjectPointerType(T);
8680     ObjCIdDecl = buildImplicitTypedef(T, "id");
8681   }
8682   return ObjCIdDecl;
8683 }
8684 
8685 TypedefDecl *ASTContext::getObjCSelDecl() const {
8686   if (!ObjCSelDecl) {
8687     QualType T = getPointerType(ObjCBuiltinSelTy);
8688     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
8689   }
8690   return ObjCSelDecl;
8691 }
8692 
8693 TypedefDecl *ASTContext::getObjCClassDecl() const {
8694   if (!ObjCClassDecl) {
8695     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
8696     T = getObjCObjectPointerType(T);
8697     ObjCClassDecl = buildImplicitTypedef(T, "Class");
8698   }
8699   return ObjCClassDecl;
8700 }
8701 
8702 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
8703   if (!ObjCProtocolClassDecl) {
8704     ObjCProtocolClassDecl
8705       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
8706                                   SourceLocation(),
8707                                   &Idents.get("Protocol"),
8708                                   /*typeParamList=*/nullptr,
8709                                   /*PrevDecl=*/nullptr,
8710                                   SourceLocation(), true);
8711   }
8712 
8713   return ObjCProtocolClassDecl;
8714 }
8715 
8716 //===----------------------------------------------------------------------===//
8717 // __builtin_va_list Construction Functions
8718 //===----------------------------------------------------------------------===//
8719 
8720 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
8721                                                  StringRef Name) {
8722   // typedef char* __builtin[_ms]_va_list;
8723   QualType T = Context->getPointerType(Context->CharTy);
8724   return Context->buildImplicitTypedef(T, Name);
8725 }
8726 
8727 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
8728   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
8729 }
8730 
8731 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
8732   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
8733 }
8734 
8735 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
8736   // typedef void* __builtin_va_list;
8737   QualType T = Context->getPointerType(Context->VoidTy);
8738   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8739 }
8740 
8741 static TypedefDecl *
8742 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8743   // struct __va_list
8744   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8745   if (Context->getLangOpts().CPlusPlus) {
8746     // namespace std { struct __va_list {
8747     auto *NS = NamespaceDecl::Create(
8748         const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(),
8749         /*Inline=*/false, SourceLocation(), SourceLocation(),
8750         &Context->Idents.get("std"),
8751         /*PrevDecl=*/nullptr, /*Nested=*/false);
8752     NS->setImplicit();
8753     VaListTagDecl->setDeclContext(NS);
8754   }
8755 
8756   VaListTagDecl->startDefinition();
8757 
8758   const size_t NumFields = 5;
8759   QualType FieldTypes[NumFields];
8760   const char *FieldNames[NumFields];
8761 
8762   // void *__stack;
8763   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8764   FieldNames[0] = "__stack";
8765 
8766   // void *__gr_top;
8767   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8768   FieldNames[1] = "__gr_top";
8769 
8770   // void *__vr_top;
8771   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8772   FieldNames[2] = "__vr_top";
8773 
8774   // int __gr_offs;
8775   FieldTypes[3] = Context->IntTy;
8776   FieldNames[3] = "__gr_offs";
8777 
8778   // int __vr_offs;
8779   FieldTypes[4] = Context->IntTy;
8780   FieldNames[4] = "__vr_offs";
8781 
8782   // Create fields
8783   for (unsigned i = 0; i < NumFields; ++i) {
8784     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8785                                          VaListTagDecl,
8786                                          SourceLocation(),
8787                                          SourceLocation(),
8788                                          &Context->Idents.get(FieldNames[i]),
8789                                          FieldTypes[i], /*TInfo=*/nullptr,
8790                                          /*BitWidth=*/nullptr,
8791                                          /*Mutable=*/false,
8792                                          ICIS_NoInit);
8793     Field->setAccess(AS_public);
8794     VaListTagDecl->addDecl(Field);
8795   }
8796   VaListTagDecl->completeDefinition();
8797   Context->VaListTagDecl = VaListTagDecl;
8798   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8799 
8800   // } __builtin_va_list;
8801   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8802 }
8803 
8804 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8805   // typedef struct __va_list_tag {
8806   RecordDecl *VaListTagDecl;
8807 
8808   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8809   VaListTagDecl->startDefinition();
8810 
8811   const size_t NumFields = 5;
8812   QualType FieldTypes[NumFields];
8813   const char *FieldNames[NumFields];
8814 
8815   //   unsigned char gpr;
8816   FieldTypes[0] = Context->UnsignedCharTy;
8817   FieldNames[0] = "gpr";
8818 
8819   //   unsigned char fpr;
8820   FieldTypes[1] = Context->UnsignedCharTy;
8821   FieldNames[1] = "fpr";
8822 
8823   //   unsigned short reserved;
8824   FieldTypes[2] = Context->UnsignedShortTy;
8825   FieldNames[2] = "reserved";
8826 
8827   //   void* overflow_arg_area;
8828   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8829   FieldNames[3] = "overflow_arg_area";
8830 
8831   //   void* reg_save_area;
8832   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8833   FieldNames[4] = "reg_save_area";
8834 
8835   // Create fields
8836   for (unsigned i = 0; i < NumFields; ++i) {
8837     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8838                                          SourceLocation(),
8839                                          SourceLocation(),
8840                                          &Context->Idents.get(FieldNames[i]),
8841                                          FieldTypes[i], /*TInfo=*/nullptr,
8842                                          /*BitWidth=*/nullptr,
8843                                          /*Mutable=*/false,
8844                                          ICIS_NoInit);
8845     Field->setAccess(AS_public);
8846     VaListTagDecl->addDecl(Field);
8847   }
8848   VaListTagDecl->completeDefinition();
8849   Context->VaListTagDecl = VaListTagDecl;
8850   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8851 
8852   // } __va_list_tag;
8853   TypedefDecl *VaListTagTypedefDecl =
8854       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8855 
8856   QualType VaListTagTypedefType =
8857     Context->getTypedefType(VaListTagTypedefDecl);
8858 
8859   // typedef __va_list_tag __builtin_va_list[1];
8860   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8861   QualType VaListTagArrayType
8862     = Context->getConstantArrayType(VaListTagTypedefType,
8863                                     Size, nullptr, ArrayType::Normal, 0);
8864   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8865 }
8866 
8867 static TypedefDecl *
8868 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8869   // struct __va_list_tag {
8870   RecordDecl *VaListTagDecl;
8871   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8872   VaListTagDecl->startDefinition();
8873 
8874   const size_t NumFields = 4;
8875   QualType FieldTypes[NumFields];
8876   const char *FieldNames[NumFields];
8877 
8878   //   unsigned gp_offset;
8879   FieldTypes[0] = Context->UnsignedIntTy;
8880   FieldNames[0] = "gp_offset";
8881 
8882   //   unsigned fp_offset;
8883   FieldTypes[1] = Context->UnsignedIntTy;
8884   FieldNames[1] = "fp_offset";
8885 
8886   //   void* overflow_arg_area;
8887   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8888   FieldNames[2] = "overflow_arg_area";
8889 
8890   //   void* reg_save_area;
8891   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8892   FieldNames[3] = "reg_save_area";
8893 
8894   // Create fields
8895   for (unsigned i = 0; i < NumFields; ++i) {
8896     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8897                                          VaListTagDecl,
8898                                          SourceLocation(),
8899                                          SourceLocation(),
8900                                          &Context->Idents.get(FieldNames[i]),
8901                                          FieldTypes[i], /*TInfo=*/nullptr,
8902                                          /*BitWidth=*/nullptr,
8903                                          /*Mutable=*/false,
8904                                          ICIS_NoInit);
8905     Field->setAccess(AS_public);
8906     VaListTagDecl->addDecl(Field);
8907   }
8908   VaListTagDecl->completeDefinition();
8909   Context->VaListTagDecl = VaListTagDecl;
8910   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8911 
8912   // };
8913 
8914   // typedef struct __va_list_tag __builtin_va_list[1];
8915   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8916   QualType VaListTagArrayType = Context->getConstantArrayType(
8917       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8918   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8919 }
8920 
8921 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8922   // typedef int __builtin_va_list[4];
8923   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8924   QualType IntArrayType = Context->getConstantArrayType(
8925       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8926   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8927 }
8928 
8929 static TypedefDecl *
8930 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8931   // struct __va_list
8932   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8933   if (Context->getLangOpts().CPlusPlus) {
8934     // namespace std { struct __va_list {
8935     NamespaceDecl *NS;
8936     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8937                                Context->getTranslationUnitDecl(),
8938                                /*Inline=*/false, SourceLocation(),
8939                                SourceLocation(), &Context->Idents.get("std"),
8940                                /*PrevDecl=*/nullptr, /*Nested=*/false);
8941     NS->setImplicit();
8942     VaListDecl->setDeclContext(NS);
8943   }
8944 
8945   VaListDecl->startDefinition();
8946 
8947   // void * __ap;
8948   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8949                                        VaListDecl,
8950                                        SourceLocation(),
8951                                        SourceLocation(),
8952                                        &Context->Idents.get("__ap"),
8953                                        Context->getPointerType(Context->VoidTy),
8954                                        /*TInfo=*/nullptr,
8955                                        /*BitWidth=*/nullptr,
8956                                        /*Mutable=*/false,
8957                                        ICIS_NoInit);
8958   Field->setAccess(AS_public);
8959   VaListDecl->addDecl(Field);
8960 
8961   // };
8962   VaListDecl->completeDefinition();
8963   Context->VaListTagDecl = VaListDecl;
8964 
8965   // typedef struct __va_list __builtin_va_list;
8966   QualType T = Context->getRecordType(VaListDecl);
8967   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8968 }
8969 
8970 static TypedefDecl *
8971 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8972   // struct __va_list_tag {
8973   RecordDecl *VaListTagDecl;
8974   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8975   VaListTagDecl->startDefinition();
8976 
8977   const size_t NumFields = 4;
8978   QualType FieldTypes[NumFields];
8979   const char *FieldNames[NumFields];
8980 
8981   //   long __gpr;
8982   FieldTypes[0] = Context->LongTy;
8983   FieldNames[0] = "__gpr";
8984 
8985   //   long __fpr;
8986   FieldTypes[1] = Context->LongTy;
8987   FieldNames[1] = "__fpr";
8988 
8989   //   void *__overflow_arg_area;
8990   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8991   FieldNames[2] = "__overflow_arg_area";
8992 
8993   //   void *__reg_save_area;
8994   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8995   FieldNames[3] = "__reg_save_area";
8996 
8997   // Create fields
8998   for (unsigned i = 0; i < NumFields; ++i) {
8999     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
9000                                          VaListTagDecl,
9001                                          SourceLocation(),
9002                                          SourceLocation(),
9003                                          &Context->Idents.get(FieldNames[i]),
9004                                          FieldTypes[i], /*TInfo=*/nullptr,
9005                                          /*BitWidth=*/nullptr,
9006                                          /*Mutable=*/false,
9007                                          ICIS_NoInit);
9008     Field->setAccess(AS_public);
9009     VaListTagDecl->addDecl(Field);
9010   }
9011   VaListTagDecl->completeDefinition();
9012   Context->VaListTagDecl = VaListTagDecl;
9013   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9014 
9015   // };
9016 
9017   // typedef __va_list_tag __builtin_va_list[1];
9018   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9019   QualType VaListTagArrayType = Context->getConstantArrayType(
9020       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
9021 
9022   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9023 }
9024 
9025 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
9026   // typedef struct __va_list_tag {
9027   RecordDecl *VaListTagDecl;
9028   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
9029   VaListTagDecl->startDefinition();
9030 
9031   const size_t NumFields = 3;
9032   QualType FieldTypes[NumFields];
9033   const char *FieldNames[NumFields];
9034 
9035   //   void *CurrentSavedRegisterArea;
9036   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
9037   FieldNames[0] = "__current_saved_reg_area_pointer";
9038 
9039   //   void *SavedRegAreaEnd;
9040   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
9041   FieldNames[1] = "__saved_reg_area_end_pointer";
9042 
9043   //   void *OverflowArea;
9044   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
9045   FieldNames[2] = "__overflow_area_pointer";
9046 
9047   // Create fields
9048   for (unsigned i = 0; i < NumFields; ++i) {
9049     FieldDecl *Field = FieldDecl::Create(
9050         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
9051         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
9052         /*TInfo=*/nullptr,
9053         /*BitWidth=*/nullptr,
9054         /*Mutable=*/false, ICIS_NoInit);
9055     Field->setAccess(AS_public);
9056     VaListTagDecl->addDecl(Field);
9057   }
9058   VaListTagDecl->completeDefinition();
9059   Context->VaListTagDecl = VaListTagDecl;
9060   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9061 
9062   // } __va_list_tag;
9063   TypedefDecl *VaListTagTypedefDecl =
9064       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
9065 
9066   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
9067 
9068   // typedef __va_list_tag __builtin_va_list[1];
9069   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9070   QualType VaListTagArrayType = Context->getConstantArrayType(
9071       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
9072 
9073   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9074 }
9075 
9076 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
9077                                      TargetInfo::BuiltinVaListKind Kind) {
9078   switch (Kind) {
9079   case TargetInfo::CharPtrBuiltinVaList:
9080     return CreateCharPtrBuiltinVaListDecl(Context);
9081   case TargetInfo::VoidPtrBuiltinVaList:
9082     return CreateVoidPtrBuiltinVaListDecl(Context);
9083   case TargetInfo::AArch64ABIBuiltinVaList:
9084     return CreateAArch64ABIBuiltinVaListDecl(Context);
9085   case TargetInfo::PowerABIBuiltinVaList:
9086     return CreatePowerABIBuiltinVaListDecl(Context);
9087   case TargetInfo::X86_64ABIBuiltinVaList:
9088     return CreateX86_64ABIBuiltinVaListDecl(Context);
9089   case TargetInfo::PNaClABIBuiltinVaList:
9090     return CreatePNaClABIBuiltinVaListDecl(Context);
9091   case TargetInfo::AAPCSABIBuiltinVaList:
9092     return CreateAAPCSABIBuiltinVaListDecl(Context);
9093   case TargetInfo::SystemZBuiltinVaList:
9094     return CreateSystemZBuiltinVaListDecl(Context);
9095   case TargetInfo::HexagonBuiltinVaList:
9096     return CreateHexagonBuiltinVaListDecl(Context);
9097   }
9098 
9099   llvm_unreachable("Unhandled __builtin_va_list type kind");
9100 }
9101 
9102 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
9103   if (!BuiltinVaListDecl) {
9104     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
9105     assert(BuiltinVaListDecl->isImplicit());
9106   }
9107 
9108   return BuiltinVaListDecl;
9109 }
9110 
9111 Decl *ASTContext::getVaListTagDecl() const {
9112   // Force the creation of VaListTagDecl by building the __builtin_va_list
9113   // declaration.
9114   if (!VaListTagDecl)
9115     (void)getBuiltinVaListDecl();
9116 
9117   return VaListTagDecl;
9118 }
9119 
9120 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
9121   if (!BuiltinMSVaListDecl)
9122     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
9123 
9124   return BuiltinMSVaListDecl;
9125 }
9126 
9127 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
9128   // Allow redecl custom type checking builtin for HLSL.
9129   if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin &&
9130       BuiltinInfo.hasCustomTypechecking(FD->getBuiltinID()))
9131     return true;
9132   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
9133 }
9134 
9135 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
9136   assert(ObjCConstantStringType.isNull() &&
9137          "'NSConstantString' type already set!");
9138 
9139   ObjCConstantStringType = getObjCInterfaceType(Decl);
9140 }
9141 
9142 /// Retrieve the template name that corresponds to a non-empty
9143 /// lookup.
9144 TemplateName
9145 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
9146                                       UnresolvedSetIterator End) const {
9147   unsigned size = End - Begin;
9148   assert(size > 1 && "set is not overloaded!");
9149 
9150   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
9151                           size * sizeof(FunctionTemplateDecl*));
9152   auto *OT = new (memory) OverloadedTemplateStorage(size);
9153 
9154   NamedDecl **Storage = OT->getStorage();
9155   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
9156     NamedDecl *D = *I;
9157     assert(isa<FunctionTemplateDecl>(D) ||
9158            isa<UnresolvedUsingValueDecl>(D) ||
9159            (isa<UsingShadowDecl>(D) &&
9160             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
9161     *Storage++ = D;
9162   }
9163 
9164   return TemplateName(OT);
9165 }
9166 
9167 /// Retrieve a template name representing an unqualified-id that has been
9168 /// assumed to name a template for ADL purposes.
9169 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
9170   auto *OT = new (*this) AssumedTemplateStorage(Name);
9171   return TemplateName(OT);
9172 }
9173 
9174 /// Retrieve the template name that represents a qualified
9175 /// template name such as \c std::vector.
9176 TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
9177                                                   bool TemplateKeyword,
9178                                                   TemplateName Template) const {
9179   assert(NNS && "Missing nested-name-specifier in qualified template name");
9180 
9181   // FIXME: Canonicalization?
9182   llvm::FoldingSetNodeID ID;
9183   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
9184 
9185   void *InsertPos = nullptr;
9186   QualifiedTemplateName *QTN =
9187     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9188   if (!QTN) {
9189     QTN = new (*this, alignof(QualifiedTemplateName))
9190         QualifiedTemplateName(NNS, TemplateKeyword, Template);
9191     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
9192   }
9193 
9194   return TemplateName(QTN);
9195 }
9196 
9197 /// Retrieve the template name that represents a dependent
9198 /// template name such as \c MetaFun::template apply.
9199 TemplateName
9200 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9201                                      const IdentifierInfo *Name) const {
9202   assert((!NNS || NNS->isDependent()) &&
9203          "Nested name specifier must be dependent");
9204 
9205   llvm::FoldingSetNodeID ID;
9206   DependentTemplateName::Profile(ID, NNS, Name);
9207 
9208   void *InsertPos = nullptr;
9209   DependentTemplateName *QTN =
9210     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9211 
9212   if (QTN)
9213     return TemplateName(QTN);
9214 
9215   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9216   if (CanonNNS == NNS) {
9217     QTN = new (*this, alignof(DependentTemplateName))
9218         DependentTemplateName(NNS, Name);
9219   } else {
9220     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
9221     QTN = new (*this, alignof(DependentTemplateName))
9222         DependentTemplateName(NNS, Name, Canon);
9223     DependentTemplateName *CheckQTN =
9224       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9225     assert(!CheckQTN && "Dependent type name canonicalization broken");
9226     (void)CheckQTN;
9227   }
9228 
9229   DependentTemplateNames.InsertNode(QTN, InsertPos);
9230   return TemplateName(QTN);
9231 }
9232 
9233 /// Retrieve the template name that represents a dependent
9234 /// template name such as \c MetaFun::template operator+.
9235 TemplateName
9236 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9237                                      OverloadedOperatorKind Operator) const {
9238   assert((!NNS || NNS->isDependent()) &&
9239          "Nested name specifier must be dependent");
9240 
9241   llvm::FoldingSetNodeID ID;
9242   DependentTemplateName::Profile(ID, NNS, Operator);
9243 
9244   void *InsertPos = nullptr;
9245   DependentTemplateName *QTN
9246     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9247 
9248   if (QTN)
9249     return TemplateName(QTN);
9250 
9251   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9252   if (CanonNNS == NNS) {
9253     QTN = new (*this, alignof(DependentTemplateName))
9254         DependentTemplateName(NNS, Operator);
9255   } else {
9256     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
9257     QTN = new (*this, alignof(DependentTemplateName))
9258         DependentTemplateName(NNS, Operator, Canon);
9259 
9260     DependentTemplateName *CheckQTN
9261       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9262     assert(!CheckQTN && "Dependent template name canonicalization broken");
9263     (void)CheckQTN;
9264   }
9265 
9266   DependentTemplateNames.InsertNode(QTN, InsertPos);
9267   return TemplateName(QTN);
9268 }
9269 
9270 TemplateName ASTContext::getSubstTemplateTemplateParm(
9271     TemplateName Replacement, Decl *AssociatedDecl, unsigned Index,
9272     std::optional<unsigned> PackIndex) const {
9273   llvm::FoldingSetNodeID ID;
9274   SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl,
9275                                             Index, PackIndex);
9276 
9277   void *insertPos = nullptr;
9278   SubstTemplateTemplateParmStorage *subst
9279     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
9280 
9281   if (!subst) {
9282     subst = new (*this) SubstTemplateTemplateParmStorage(
9283         Replacement, AssociatedDecl, Index, PackIndex);
9284     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
9285   }
9286 
9287   return TemplateName(subst);
9288 }
9289 
9290 TemplateName
9291 ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
9292                                              Decl *AssociatedDecl,
9293                                              unsigned Index, bool Final) const {
9294   auto &Self = const_cast<ASTContext &>(*this);
9295   llvm::FoldingSetNodeID ID;
9296   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, ArgPack,
9297                                                 AssociatedDecl, Index, Final);
9298 
9299   void *InsertPos = nullptr;
9300   SubstTemplateTemplateParmPackStorage *Subst
9301     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
9302 
9303   if (!Subst) {
9304     Subst = new (*this) SubstTemplateTemplateParmPackStorage(
9305         ArgPack.pack_elements(), AssociatedDecl, Index, Final);
9306     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
9307   }
9308 
9309   return TemplateName(Subst);
9310 }
9311 
9312 /// getFromTargetType - Given one of the integer types provided by
9313 /// TargetInfo, produce the corresponding type. The unsigned @p Type
9314 /// is actually a value of type @c TargetInfo::IntType.
9315 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
9316   switch (Type) {
9317   case TargetInfo::NoInt: return {};
9318   case TargetInfo::SignedChar: return SignedCharTy;
9319   case TargetInfo::UnsignedChar: return UnsignedCharTy;
9320   case TargetInfo::SignedShort: return ShortTy;
9321   case TargetInfo::UnsignedShort: return UnsignedShortTy;
9322   case TargetInfo::SignedInt: return IntTy;
9323   case TargetInfo::UnsignedInt: return UnsignedIntTy;
9324   case TargetInfo::SignedLong: return LongTy;
9325   case TargetInfo::UnsignedLong: return UnsignedLongTy;
9326   case TargetInfo::SignedLongLong: return LongLongTy;
9327   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
9328   }
9329 
9330   llvm_unreachable("Unhandled TargetInfo::IntType value");
9331 }
9332 
9333 //===----------------------------------------------------------------------===//
9334 //                        Type Predicates.
9335 //===----------------------------------------------------------------------===//
9336 
9337 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
9338 /// garbage collection attribute.
9339 ///
9340 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
9341   if (getLangOpts().getGC() == LangOptions::NonGC)
9342     return Qualifiers::GCNone;
9343 
9344   assert(getLangOpts().ObjC);
9345   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
9346 
9347   // Default behaviour under objective-C's gc is for ObjC pointers
9348   // (or pointers to them) be treated as though they were declared
9349   // as __strong.
9350   if (GCAttrs == Qualifiers::GCNone) {
9351     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
9352       return Qualifiers::Strong;
9353     else if (Ty->isPointerType())
9354       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
9355   } else {
9356     // It's not valid to set GC attributes on anything that isn't a
9357     // pointer.
9358 #ifndef NDEBUG
9359     QualType CT = Ty->getCanonicalTypeInternal();
9360     while (const auto *AT = dyn_cast<ArrayType>(CT))
9361       CT = AT->getElementType();
9362     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
9363 #endif
9364   }
9365   return GCAttrs;
9366 }
9367 
9368 //===----------------------------------------------------------------------===//
9369 //                        Type Compatibility Testing
9370 //===----------------------------------------------------------------------===//
9371 
9372 /// areCompatVectorTypes - Return true if the two specified vector types are
9373 /// compatible.
9374 static bool areCompatVectorTypes(const VectorType *LHS,
9375                                  const VectorType *RHS) {
9376   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9377   return LHS->getElementType() == RHS->getElementType() &&
9378          LHS->getNumElements() == RHS->getNumElements();
9379 }
9380 
9381 /// areCompatMatrixTypes - Return true if the two specified matrix types are
9382 /// compatible.
9383 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
9384                                  const ConstantMatrixType *RHS) {
9385   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9386   return LHS->getElementType() == RHS->getElementType() &&
9387          LHS->getNumRows() == RHS->getNumRows() &&
9388          LHS->getNumColumns() == RHS->getNumColumns();
9389 }
9390 
9391 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
9392                                           QualType SecondVec) {
9393   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
9394   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
9395 
9396   if (hasSameUnqualifiedType(FirstVec, SecondVec))
9397     return true;
9398 
9399   // Treat Neon vector types and most AltiVec vector types as if they are the
9400   // equivalent GCC vector types.
9401   const auto *First = FirstVec->castAs<VectorType>();
9402   const auto *Second = SecondVec->castAs<VectorType>();
9403   if (First->getNumElements() == Second->getNumElements() &&
9404       hasSameType(First->getElementType(), Second->getElementType()) &&
9405       First->getVectorKind() != VectorType::AltiVecPixel &&
9406       First->getVectorKind() != VectorType::AltiVecBool &&
9407       Second->getVectorKind() != VectorType::AltiVecPixel &&
9408       Second->getVectorKind() != VectorType::AltiVecBool &&
9409       First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9410       First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
9411       Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9412       Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
9413     return true;
9414 
9415   return false;
9416 }
9417 
9418 /// getSVETypeSize - Return SVE vector or predicate register size.
9419 static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
9420   assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type");
9421   return Ty->getKind() == BuiltinType::SveBool
9422              ? (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth()
9423              : Context.getLangOpts().VScaleMin * 128;
9424 }
9425 
9426 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
9427                                        QualType SecondType) {
9428   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
9429           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
9430          "Expected SVE builtin type and vector type!");
9431 
9432   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9433     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9434       if (const auto *VT = SecondType->getAs<VectorType>()) {
9435         // Predicates have the same representation as uint8 so we also have to
9436         // check the kind to make these types incompatible.
9437         if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
9438           return BT->getKind() == BuiltinType::SveBool;
9439         else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
9440           return VT->getElementType().getCanonicalType() ==
9441                  FirstType->getSveEltType(*this);
9442         else if (VT->getVectorKind() == VectorType::GenericVector)
9443           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
9444                  hasSameType(VT->getElementType(),
9445                              getBuiltinVectorTypeInfo(BT).ElementType);
9446       }
9447     }
9448     return false;
9449   };
9450 
9451   return IsValidCast(FirstType, SecondType) ||
9452          IsValidCast(SecondType, FirstType);
9453 }
9454 
9455 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
9456                                           QualType SecondType) {
9457   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
9458           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
9459          "Expected SVE builtin type and vector type!");
9460 
9461   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9462     const auto *BT = FirstType->getAs<BuiltinType>();
9463     if (!BT)
9464       return false;
9465 
9466     const auto *VecTy = SecondType->getAs<VectorType>();
9467     if (VecTy &&
9468         (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
9469          VecTy->getVectorKind() == VectorType::GenericVector)) {
9470       const LangOptions::LaxVectorConversionKind LVCKind =
9471           getLangOpts().getLaxVectorConversions();
9472 
9473       // Can not convert between sve predicates and sve vectors because of
9474       // different size.
9475       if (BT->getKind() == BuiltinType::SveBool &&
9476           VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector)
9477         return false;
9478 
9479       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
9480       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
9481       // converts to VLAT and VLAT implicitly converts to GNUT."
9482       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
9483       // predicates.
9484       if (VecTy->getVectorKind() == VectorType::GenericVector &&
9485           getTypeSize(SecondType) != getSVETypeSize(*this, BT))
9486         return false;
9487 
9488       // If -flax-vector-conversions=all is specified, the types are
9489       // certainly compatible.
9490       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9491         return true;
9492 
9493       // If -flax-vector-conversions=integer is specified, the types are
9494       // compatible if the elements are integer types.
9495       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9496         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9497                FirstType->getSveEltType(*this)->isIntegerType();
9498     }
9499 
9500     return false;
9501   };
9502 
9503   return IsLaxCompatible(FirstType, SecondType) ||
9504          IsLaxCompatible(SecondType, FirstType);
9505 }
9506 
9507 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
9508   while (true) {
9509     // __strong id
9510     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
9511       if (Attr->getAttrKind() == attr::ObjCOwnership)
9512         return true;
9513 
9514       Ty = Attr->getModifiedType();
9515 
9516     // X *__strong (...)
9517     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
9518       Ty = Paren->getInnerType();
9519 
9520     // We do not want to look through typedefs, typeof(expr),
9521     // typeof(type), or any other way that the type is somehow
9522     // abstracted.
9523     } else {
9524       return false;
9525     }
9526   }
9527 }
9528 
9529 //===----------------------------------------------------------------------===//
9530 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
9531 //===----------------------------------------------------------------------===//
9532 
9533 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
9534 /// inheritance hierarchy of 'rProto'.
9535 bool
9536 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
9537                                            ObjCProtocolDecl *rProto) const {
9538   if (declaresSameEntity(lProto, rProto))
9539     return true;
9540   for (auto *PI : rProto->protocols())
9541     if (ProtocolCompatibleWithProtocol(lProto, PI))
9542       return true;
9543   return false;
9544 }
9545 
9546 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
9547 /// Class<pr1, ...>.
9548 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
9549     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
9550   for (auto *lhsProto : lhs->quals()) {
9551     bool match = false;
9552     for (auto *rhsProto : rhs->quals()) {
9553       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
9554         match = true;
9555         break;
9556       }
9557     }
9558     if (!match)
9559       return false;
9560   }
9561   return true;
9562 }
9563 
9564 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
9565 /// ObjCQualifiedIDType.
9566 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
9567     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
9568     bool compare) {
9569   // Allow id<P..> and an 'id' in all cases.
9570   if (lhs->isObjCIdType() || rhs->isObjCIdType())
9571     return true;
9572 
9573   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
9574   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
9575       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
9576     return false;
9577 
9578   if (lhs->isObjCQualifiedIdType()) {
9579     if (rhs->qual_empty()) {
9580       // If the RHS is a unqualified interface pointer "NSString*",
9581       // make sure we check the class hierarchy.
9582       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9583         for (auto *I : lhs->quals()) {
9584           // when comparing an id<P> on lhs with a static type on rhs,
9585           // see if static class implements all of id's protocols, directly or
9586           // through its super class and categories.
9587           if (!rhsID->ClassImplementsProtocol(I, true))
9588             return false;
9589         }
9590       }
9591       // If there are no qualifiers and no interface, we have an 'id'.
9592       return true;
9593     }
9594     // Both the right and left sides have qualifiers.
9595     for (auto *lhsProto : lhs->quals()) {
9596       bool match = false;
9597 
9598       // when comparing an id<P> on lhs with a static type on rhs,
9599       // see if static class implements all of id's protocols, directly or
9600       // through its super class and categories.
9601       for (auto *rhsProto : rhs->quals()) {
9602         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9603             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9604           match = true;
9605           break;
9606         }
9607       }
9608       // If the RHS is a qualified interface pointer "NSString<P>*",
9609       // make sure we check the class hierarchy.
9610       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9611         for (auto *I : lhs->quals()) {
9612           // when comparing an id<P> on lhs with a static type on rhs,
9613           // see if static class implements all of id's protocols, directly or
9614           // through its super class and categories.
9615           if (rhsID->ClassImplementsProtocol(I, true)) {
9616             match = true;
9617             break;
9618           }
9619         }
9620       }
9621       if (!match)
9622         return false;
9623     }
9624 
9625     return true;
9626   }
9627 
9628   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
9629 
9630   if (lhs->getInterfaceType()) {
9631     // If both the right and left sides have qualifiers.
9632     for (auto *lhsProto : lhs->quals()) {
9633       bool match = false;
9634 
9635       // when comparing an id<P> on rhs with a static type on lhs,
9636       // see if static class implements all of id's protocols, directly or
9637       // through its super class and categories.
9638       // First, lhs protocols in the qualifier list must be found, direct
9639       // or indirect in rhs's qualifier list or it is a mismatch.
9640       for (auto *rhsProto : rhs->quals()) {
9641         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9642             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9643           match = true;
9644           break;
9645         }
9646       }
9647       if (!match)
9648         return false;
9649     }
9650 
9651     // Static class's protocols, or its super class or category protocols
9652     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
9653     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
9654       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
9655       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
9656       // This is rather dubious but matches gcc's behavior. If lhs has
9657       // no type qualifier and its class has no static protocol(s)
9658       // assume that it is mismatch.
9659       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
9660         return false;
9661       for (auto *lhsProto : LHSInheritedProtocols) {
9662         bool match = false;
9663         for (auto *rhsProto : rhs->quals()) {
9664           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9665               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9666             match = true;
9667             break;
9668           }
9669         }
9670         if (!match)
9671           return false;
9672       }
9673     }
9674     return true;
9675   }
9676   return false;
9677 }
9678 
9679 /// canAssignObjCInterfaces - Return true if the two interface types are
9680 /// compatible for assignment from RHS to LHS.  This handles validation of any
9681 /// protocol qualifiers on the LHS or RHS.
9682 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
9683                                          const ObjCObjectPointerType *RHSOPT) {
9684   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9685   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9686 
9687   // If either type represents the built-in 'id' type, return true.
9688   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
9689     return true;
9690 
9691   // Function object that propagates a successful result or handles
9692   // __kindof types.
9693   auto finish = [&](bool succeeded) -> bool {
9694     if (succeeded)
9695       return true;
9696 
9697     if (!RHS->isKindOfType())
9698       return false;
9699 
9700     // Strip off __kindof and protocol qualifiers, then check whether
9701     // we can assign the other way.
9702     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9703                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
9704   };
9705 
9706   // Casts from or to id<P> are allowed when the other side has compatible
9707   // protocols.
9708   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
9709     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
9710   }
9711 
9712   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
9713   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
9714     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
9715   }
9716 
9717   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
9718   if (LHS->isObjCClass() && RHS->isObjCClass()) {
9719     return true;
9720   }
9721 
9722   // If we have 2 user-defined types, fall into that path.
9723   if (LHS->getInterface() && RHS->getInterface()) {
9724     return finish(canAssignObjCInterfaces(LHS, RHS));
9725   }
9726 
9727   return false;
9728 }
9729 
9730 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
9731 /// for providing type-safety for objective-c pointers used to pass/return
9732 /// arguments in block literals. When passed as arguments, passing 'A*' where
9733 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
9734 /// not OK. For the return type, the opposite is not OK.
9735 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
9736                                          const ObjCObjectPointerType *LHSOPT,
9737                                          const ObjCObjectPointerType *RHSOPT,
9738                                          bool BlockReturnType) {
9739 
9740   // Function object that propagates a successful result or handles
9741   // __kindof types.
9742   auto finish = [&](bool succeeded) -> bool {
9743     if (succeeded)
9744       return true;
9745 
9746     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9747     if (!Expected->isKindOfType())
9748       return false;
9749 
9750     // Strip off __kindof and protocol qualifiers, then check whether
9751     // we can assign the other way.
9752     return canAssignObjCInterfacesInBlockPointer(
9753              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9754              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9755              BlockReturnType);
9756   };
9757 
9758   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9759     return true;
9760 
9761   if (LHSOPT->isObjCBuiltinType()) {
9762     return finish(RHSOPT->isObjCBuiltinType() ||
9763                   RHSOPT->isObjCQualifiedIdType());
9764   }
9765 
9766   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9767     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9768       // Use for block parameters previous type checking for compatibility.
9769       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9770                     // Or corrected type checking as in non-compat mode.
9771                     (!BlockReturnType &&
9772                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9773     else
9774       return finish(ObjCQualifiedIdTypesAreCompatible(
9775           (BlockReturnType ? LHSOPT : RHSOPT),
9776           (BlockReturnType ? RHSOPT : LHSOPT), false));
9777   }
9778 
9779   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9780   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9781   if (LHS && RHS)  { // We have 2 user-defined types.
9782     if (LHS != RHS) {
9783       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9784         return finish(BlockReturnType);
9785       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9786         return finish(!BlockReturnType);
9787     }
9788     else
9789       return true;
9790   }
9791   return false;
9792 }
9793 
9794 /// Comparison routine for Objective-C protocols to be used with
9795 /// llvm::array_pod_sort.
9796 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9797                                       ObjCProtocolDecl * const *rhs) {
9798   return (*lhs)->getName().compare((*rhs)->getName());
9799 }
9800 
9801 /// getIntersectionOfProtocols - This routine finds the intersection of set
9802 /// of protocols inherited from two distinct objective-c pointer objects with
9803 /// the given common base.
9804 /// It is used to build composite qualifier list of the composite type of
9805 /// the conditional expression involving two objective-c pointer objects.
9806 static
9807 void getIntersectionOfProtocols(ASTContext &Context,
9808                                 const ObjCInterfaceDecl *CommonBase,
9809                                 const ObjCObjectPointerType *LHSOPT,
9810                                 const ObjCObjectPointerType *RHSOPT,
9811       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9812 
9813   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9814   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9815   assert(LHS->getInterface() && "LHS must have an interface base");
9816   assert(RHS->getInterface() && "RHS must have an interface base");
9817 
9818   // Add all of the protocols for the LHS.
9819   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9820 
9821   // Start with the protocol qualifiers.
9822   for (auto *proto : LHS->quals()) {
9823     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9824   }
9825 
9826   // Also add the protocols associated with the LHS interface.
9827   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9828 
9829   // Add all of the protocols for the RHS.
9830   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9831 
9832   // Start with the protocol qualifiers.
9833   for (auto *proto : RHS->quals()) {
9834     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9835   }
9836 
9837   // Also add the protocols associated with the RHS interface.
9838   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9839 
9840   // Compute the intersection of the collected protocol sets.
9841   for (auto *proto : LHSProtocolSet) {
9842     if (RHSProtocolSet.count(proto))
9843       IntersectionSet.push_back(proto);
9844   }
9845 
9846   // Compute the set of protocols that is implied by either the common type or
9847   // the protocols within the intersection.
9848   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9849   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9850 
9851   // Remove any implied protocols from the list of inherited protocols.
9852   if (!ImpliedProtocols.empty()) {
9853     llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool {
9854       return ImpliedProtocols.contains(proto);
9855     });
9856   }
9857 
9858   // Sort the remaining protocols by name.
9859   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9860                        compareObjCProtocolsByName);
9861 }
9862 
9863 /// Determine whether the first type is a subtype of the second.
9864 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9865                                      QualType rhs) {
9866   // Common case: two object pointers.
9867   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9868   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9869   if (lhsOPT && rhsOPT)
9870     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9871 
9872   // Two block pointers.
9873   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9874   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9875   if (lhsBlock && rhsBlock)
9876     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9877 
9878   // If either is an unqualified 'id' and the other is a block, it's
9879   // acceptable.
9880   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9881       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9882     return true;
9883 
9884   return false;
9885 }
9886 
9887 // Check that the given Objective-C type argument lists are equivalent.
9888 static bool sameObjCTypeArgs(ASTContext &ctx,
9889                              const ObjCInterfaceDecl *iface,
9890                              ArrayRef<QualType> lhsArgs,
9891                              ArrayRef<QualType> rhsArgs,
9892                              bool stripKindOf) {
9893   if (lhsArgs.size() != rhsArgs.size())
9894     return false;
9895 
9896   ObjCTypeParamList *typeParams = iface->getTypeParamList();
9897   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9898     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9899       continue;
9900 
9901     switch (typeParams->begin()[i]->getVariance()) {
9902     case ObjCTypeParamVariance::Invariant:
9903       if (!stripKindOf ||
9904           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9905                            rhsArgs[i].stripObjCKindOfType(ctx))) {
9906         return false;
9907       }
9908       break;
9909 
9910     case ObjCTypeParamVariance::Covariant:
9911       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9912         return false;
9913       break;
9914 
9915     case ObjCTypeParamVariance::Contravariant:
9916       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9917         return false;
9918       break;
9919     }
9920   }
9921 
9922   return true;
9923 }
9924 
9925 QualType ASTContext::areCommonBaseCompatible(
9926            const ObjCObjectPointerType *Lptr,
9927            const ObjCObjectPointerType *Rptr) {
9928   const ObjCObjectType *LHS = Lptr->getObjectType();
9929   const ObjCObjectType *RHS = Rptr->getObjectType();
9930   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
9931   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
9932 
9933   if (!LDecl || !RDecl)
9934     return {};
9935 
9936   // When either LHS or RHS is a kindof type, we should return a kindof type.
9937   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
9938   // kindof(A).
9939   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
9940 
9941   // Follow the left-hand side up the class hierarchy until we either hit a
9942   // root or find the RHS. Record the ancestors in case we don't find it.
9943   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
9944     LHSAncestors;
9945   while (true) {
9946     // Record this ancestor. We'll need this if the common type isn't in the
9947     // path from the LHS to the root.
9948     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
9949 
9950     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
9951       // Get the type arguments.
9952       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
9953       bool anyChanges = false;
9954       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9955         // Both have type arguments, compare them.
9956         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9957                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9958                               /*stripKindOf=*/true))
9959           return {};
9960       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9961         // If only one has type arguments, the result will not have type
9962         // arguments.
9963         LHSTypeArgs = {};
9964         anyChanges = true;
9965       }
9966 
9967       // Compute the intersection of protocols.
9968       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9969       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
9970                                  Protocols);
9971       if (!Protocols.empty())
9972         anyChanges = true;
9973 
9974       // If anything in the LHS will have changed, build a new result type.
9975       // If we need to return a kindof type but LHS is not a kindof type, we
9976       // build a new result type.
9977       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
9978         QualType Result = getObjCInterfaceType(LHS->getInterface());
9979         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
9980                                    anyKindOf || LHS->isKindOfType());
9981         return getObjCObjectPointerType(Result);
9982       }
9983 
9984       return getObjCObjectPointerType(QualType(LHS, 0));
9985     }
9986 
9987     // Find the superclass.
9988     QualType LHSSuperType = LHS->getSuperClassType();
9989     if (LHSSuperType.isNull())
9990       break;
9991 
9992     LHS = LHSSuperType->castAs<ObjCObjectType>();
9993   }
9994 
9995   // We didn't find anything by following the LHS to its root; now check
9996   // the RHS against the cached set of ancestors.
9997   while (true) {
9998     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
9999     if (KnownLHS != LHSAncestors.end()) {
10000       LHS = KnownLHS->second;
10001 
10002       // Get the type arguments.
10003       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
10004       bool anyChanges = false;
10005       if (LHS->isSpecialized() && RHS->isSpecialized()) {
10006         // Both have type arguments, compare them.
10007         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
10008                               LHS->getTypeArgs(), RHS->getTypeArgs(),
10009                               /*stripKindOf=*/true))
10010           return {};
10011       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
10012         // If only one has type arguments, the result will not have type
10013         // arguments.
10014         RHSTypeArgs = {};
10015         anyChanges = true;
10016       }
10017 
10018       // Compute the intersection of protocols.
10019       SmallVector<ObjCProtocolDecl *, 8> Protocols;
10020       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
10021                                  Protocols);
10022       if (!Protocols.empty())
10023         anyChanges = true;
10024 
10025       // If we need to return a kindof type but RHS is not a kindof type, we
10026       // build a new result type.
10027       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
10028         QualType Result = getObjCInterfaceType(RHS->getInterface());
10029         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
10030                                    anyKindOf || RHS->isKindOfType());
10031         return getObjCObjectPointerType(Result);
10032       }
10033 
10034       return getObjCObjectPointerType(QualType(RHS, 0));
10035     }
10036 
10037     // Find the superclass of the RHS.
10038     QualType RHSSuperType = RHS->getSuperClassType();
10039     if (RHSSuperType.isNull())
10040       break;
10041 
10042     RHS = RHSSuperType->castAs<ObjCObjectType>();
10043   }
10044 
10045   return {};
10046 }
10047 
10048 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
10049                                          const ObjCObjectType *RHS) {
10050   assert(LHS->getInterface() && "LHS is not an interface type");
10051   assert(RHS->getInterface() && "RHS is not an interface type");
10052 
10053   // Verify that the base decls are compatible: the RHS must be a subclass of
10054   // the LHS.
10055   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
10056   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
10057   if (!IsSuperClass)
10058     return false;
10059 
10060   // If the LHS has protocol qualifiers, determine whether all of them are
10061   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
10062   // LHS).
10063   if (LHS->getNumProtocols() > 0) {
10064     // OK if conversion of LHS to SuperClass results in narrowing of types
10065     // ; i.e., SuperClass may implement at least one of the protocols
10066     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
10067     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
10068     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
10069     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
10070     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
10071     // qualifiers.
10072     for (auto *RHSPI : RHS->quals())
10073       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
10074     // If there is no protocols associated with RHS, it is not a match.
10075     if (SuperClassInheritedProtocols.empty())
10076       return false;
10077 
10078     for (const auto *LHSProto : LHS->quals()) {
10079       bool SuperImplementsProtocol = false;
10080       for (auto *SuperClassProto : SuperClassInheritedProtocols)
10081         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
10082           SuperImplementsProtocol = true;
10083           break;
10084         }
10085       if (!SuperImplementsProtocol)
10086         return false;
10087     }
10088   }
10089 
10090   // If the LHS is specialized, we may need to check type arguments.
10091   if (LHS->isSpecialized()) {
10092     // Follow the superclass chain until we've matched the LHS class in the
10093     // hierarchy. This substitutes type arguments through.
10094     const ObjCObjectType *RHSSuper = RHS;
10095     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
10096       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
10097 
10098     // If the RHS is specializd, compare type arguments.
10099     if (RHSSuper->isSpecialized() &&
10100         !sameObjCTypeArgs(*this, LHS->getInterface(),
10101                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
10102                           /*stripKindOf=*/true)) {
10103       return false;
10104     }
10105   }
10106 
10107   return true;
10108 }
10109 
10110 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
10111   // get the "pointed to" types
10112   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
10113   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
10114 
10115   if (!LHSOPT || !RHSOPT)
10116     return false;
10117 
10118   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
10119          canAssignObjCInterfaces(RHSOPT, LHSOPT);
10120 }
10121 
10122 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
10123   return canAssignObjCInterfaces(
10124       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
10125       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
10126 }
10127 
10128 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
10129 /// both shall have the identically qualified version of a compatible type.
10130 /// C99 6.2.7p1: Two types have compatible types if their types are the
10131 /// same. See 6.7.[2,3,5] for additional rules.
10132 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
10133                                     bool CompareUnqualified) {
10134   if (getLangOpts().CPlusPlus)
10135     return hasSameType(LHS, RHS);
10136 
10137   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
10138 }
10139 
10140 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
10141   return typesAreCompatible(LHS, RHS);
10142 }
10143 
10144 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
10145   return !mergeTypes(LHS, RHS, true).isNull();
10146 }
10147 
10148 /// mergeTransparentUnionType - if T is a transparent union type and a member
10149 /// of T is compatible with SubType, return the merged type, else return
10150 /// QualType()
10151 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
10152                                                bool OfBlockPointer,
10153                                                bool Unqualified) {
10154   if (const RecordType *UT = T->getAsUnionType()) {
10155     RecordDecl *UD = UT->getDecl();
10156     if (UD->hasAttr<TransparentUnionAttr>()) {
10157       for (const auto *I : UD->fields()) {
10158         QualType ET = I->getType().getUnqualifiedType();
10159         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
10160         if (!MT.isNull())
10161           return MT;
10162       }
10163     }
10164   }
10165 
10166   return {};
10167 }
10168 
10169 /// mergeFunctionParameterTypes - merge two types which appear as function
10170 /// parameter types
10171 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
10172                                                  bool OfBlockPointer,
10173                                                  bool Unqualified) {
10174   // GNU extension: two types are compatible if they appear as a function
10175   // argument, one of the types is a transparent union type and the other
10176   // type is compatible with a union member
10177   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
10178                                               Unqualified);
10179   if (!lmerge.isNull())
10180     return lmerge;
10181 
10182   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
10183                                               Unqualified);
10184   if (!rmerge.isNull())
10185     return rmerge;
10186 
10187   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
10188 }
10189 
10190 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
10191                                         bool OfBlockPointer, bool Unqualified,
10192                                         bool AllowCXX,
10193                                         bool IsConditionalOperator) {
10194   const auto *lbase = lhs->castAs<FunctionType>();
10195   const auto *rbase = rhs->castAs<FunctionType>();
10196   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
10197   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
10198   bool allLTypes = true;
10199   bool allRTypes = true;
10200 
10201   // Check return type
10202   QualType retType;
10203   if (OfBlockPointer) {
10204     QualType RHS = rbase->getReturnType();
10205     QualType LHS = lbase->getReturnType();
10206     bool UnqualifiedResult = Unqualified;
10207     if (!UnqualifiedResult)
10208       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
10209     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
10210   }
10211   else
10212     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
10213                          Unqualified);
10214   if (retType.isNull())
10215     return {};
10216 
10217   if (Unqualified)
10218     retType = retType.getUnqualifiedType();
10219 
10220   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
10221   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
10222   if (Unqualified) {
10223     LRetType = LRetType.getUnqualifiedType();
10224     RRetType = RRetType.getUnqualifiedType();
10225   }
10226 
10227   if (getCanonicalType(retType) != LRetType)
10228     allLTypes = false;
10229   if (getCanonicalType(retType) != RRetType)
10230     allRTypes = false;
10231 
10232   // FIXME: double check this
10233   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
10234   //                           rbase->getRegParmAttr() != 0 &&
10235   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
10236   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
10237   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
10238 
10239   // Compatible functions must have compatible calling conventions
10240   if (lbaseInfo.getCC() != rbaseInfo.getCC())
10241     return {};
10242 
10243   // Regparm is part of the calling convention.
10244   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
10245     return {};
10246   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
10247     return {};
10248 
10249   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
10250     return {};
10251   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
10252     return {};
10253   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
10254     return {};
10255 
10256   // When merging declarations, it's common for supplemental information like
10257   // attributes to only be present in one of the declarations, and we generally
10258   // want type merging to preserve the union of information.  So a merged
10259   // function type should be noreturn if it was noreturn in *either* operand
10260   // type.
10261   //
10262   // But for the conditional operator, this is backwards.  The result of the
10263   // operator could be either operand, and its type should conservatively
10264   // reflect that.  So a function type in a composite type is noreturn only
10265   // if it's noreturn in *both* operand types.
10266   //
10267   // Arguably, noreturn is a kind of subtype, and the conditional operator
10268   // ought to produce the most specific common supertype of its operand types.
10269   // That would differ from this rule in contravariant positions.  However,
10270   // neither C nor C++ generally uses this kind of subtype reasoning.  Also,
10271   // as a practical matter, it would only affect C code that does abstraction of
10272   // higher-order functions (taking noreturn callbacks!), which is uncommon to
10273   // say the least.  So we use the simpler rule.
10274   bool NoReturn = IsConditionalOperator
10275                       ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn()
10276                       : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
10277   if (lbaseInfo.getNoReturn() != NoReturn)
10278     allLTypes = false;
10279   if (rbaseInfo.getNoReturn() != NoReturn)
10280     allRTypes = false;
10281 
10282   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
10283 
10284   if (lproto && rproto) { // two C99 style function prototypes
10285     assert((AllowCXX ||
10286             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
10287            "C++ shouldn't be here");
10288     // Compatible functions must have the same number of parameters
10289     if (lproto->getNumParams() != rproto->getNumParams())
10290       return {};
10291 
10292     // Variadic and non-variadic functions aren't compatible
10293     if (lproto->isVariadic() != rproto->isVariadic())
10294       return {};
10295 
10296     if (lproto->getMethodQuals() != rproto->getMethodQuals())
10297       return {};
10298 
10299     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
10300     bool canUseLeft, canUseRight;
10301     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
10302                                newParamInfos))
10303       return {};
10304 
10305     if (!canUseLeft)
10306       allLTypes = false;
10307     if (!canUseRight)
10308       allRTypes = false;
10309 
10310     // Check parameter type compatibility
10311     SmallVector<QualType, 10> types;
10312     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
10313       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
10314       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
10315       QualType paramType = mergeFunctionParameterTypes(
10316           lParamType, rParamType, OfBlockPointer, Unqualified);
10317       if (paramType.isNull())
10318         return {};
10319 
10320       if (Unqualified)
10321         paramType = paramType.getUnqualifiedType();
10322 
10323       types.push_back(paramType);
10324       if (Unqualified) {
10325         lParamType = lParamType.getUnqualifiedType();
10326         rParamType = rParamType.getUnqualifiedType();
10327       }
10328 
10329       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
10330         allLTypes = false;
10331       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
10332         allRTypes = false;
10333     }
10334 
10335     if (allLTypes) return lhs;
10336     if (allRTypes) return rhs;
10337 
10338     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
10339     EPI.ExtInfo = einfo;
10340     EPI.ExtParameterInfos =
10341         newParamInfos.empty() ? nullptr : newParamInfos.data();
10342     return getFunctionType(retType, types, EPI);
10343   }
10344 
10345   if (lproto) allRTypes = false;
10346   if (rproto) allLTypes = false;
10347 
10348   const FunctionProtoType *proto = lproto ? lproto : rproto;
10349   if (proto) {
10350     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
10351     if (proto->isVariadic())
10352       return {};
10353     // Check that the types are compatible with the types that
10354     // would result from default argument promotions (C99 6.7.5.3p15).
10355     // The only types actually affected are promotable integer
10356     // types and floats, which would be passed as a different
10357     // type depending on whether the prototype is visible.
10358     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
10359       QualType paramTy = proto->getParamType(i);
10360 
10361       // Look at the converted type of enum types, since that is the type used
10362       // to pass enum values.
10363       if (const auto *Enum = paramTy->getAs<EnumType>()) {
10364         paramTy = Enum->getDecl()->getIntegerType();
10365         if (paramTy.isNull())
10366           return {};
10367       }
10368 
10369       if (isPromotableIntegerType(paramTy) ||
10370           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
10371         return {};
10372     }
10373 
10374     if (allLTypes) return lhs;
10375     if (allRTypes) return rhs;
10376 
10377     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
10378     EPI.ExtInfo = einfo;
10379     return getFunctionType(retType, proto->getParamTypes(), EPI);
10380   }
10381 
10382   if (allLTypes) return lhs;
10383   if (allRTypes) return rhs;
10384   return getFunctionNoProtoType(retType, einfo);
10385 }
10386 
10387 /// Given that we have an enum type and a non-enum type, try to merge them.
10388 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
10389                                      QualType other, bool isBlockReturnType) {
10390   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
10391   // a signed integer type, or an unsigned integer type.
10392   // Compatibility is based on the underlying type, not the promotion
10393   // type.
10394   QualType underlyingType = ET->getDecl()->getIntegerType();
10395   if (underlyingType.isNull())
10396     return {};
10397   if (Context.hasSameType(underlyingType, other))
10398     return other;
10399 
10400   // In block return types, we're more permissive and accept any
10401   // integral type of the same size.
10402   if (isBlockReturnType && other->isIntegerType() &&
10403       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
10404     return other;
10405 
10406   return {};
10407 }
10408 
10409 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer,
10410                                 bool Unqualified, bool BlockReturnType,
10411                                 bool IsConditionalOperator) {
10412   // For C++ we will not reach this code with reference types (see below),
10413   // for OpenMP variant call overloading we might.
10414   //
10415   // C++ [expr]: If an expression initially has the type "reference to T", the
10416   // type is adjusted to "T" prior to any further analysis, the expression
10417   // designates the object or function denoted by the reference, and the
10418   // expression is an lvalue unless the reference is an rvalue reference and
10419   // the expression is a function call (possibly inside parentheses).
10420   auto *LHSRefTy = LHS->getAs<ReferenceType>();
10421   auto *RHSRefTy = RHS->getAs<ReferenceType>();
10422   if (LangOpts.OpenMP && LHSRefTy && RHSRefTy &&
10423       LHS->getTypeClass() == RHS->getTypeClass())
10424     return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(),
10425                       OfBlockPointer, Unqualified, BlockReturnType);
10426   if (LHSRefTy || RHSRefTy)
10427     return {};
10428 
10429   if (Unqualified) {
10430     LHS = LHS.getUnqualifiedType();
10431     RHS = RHS.getUnqualifiedType();
10432   }
10433 
10434   QualType LHSCan = getCanonicalType(LHS),
10435            RHSCan = getCanonicalType(RHS);
10436 
10437   // If two types are identical, they are compatible.
10438   if (LHSCan == RHSCan)
10439     return LHS;
10440 
10441   // If the qualifiers are different, the types aren't compatible... mostly.
10442   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10443   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10444   if (LQuals != RQuals) {
10445     // If any of these qualifiers are different, we have a type
10446     // mismatch.
10447     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10448         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
10449         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
10450         LQuals.hasUnaligned() != RQuals.hasUnaligned())
10451       return {};
10452 
10453     // Exactly one GC qualifier difference is allowed: __strong is
10454     // okay if the other type has no GC qualifier but is an Objective
10455     // C object pointer (i.e. implicitly strong by default).  We fix
10456     // this by pretending that the unqualified type was actually
10457     // qualified __strong.
10458     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10459     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10460     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10461 
10462     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10463       return {};
10464 
10465     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
10466       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
10467     }
10468     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
10469       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
10470     }
10471     return {};
10472   }
10473 
10474   // Okay, qualifiers are equal.
10475 
10476   Type::TypeClass LHSClass = LHSCan->getTypeClass();
10477   Type::TypeClass RHSClass = RHSCan->getTypeClass();
10478 
10479   // We want to consider the two function types to be the same for these
10480   // comparisons, just force one to the other.
10481   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
10482   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
10483 
10484   // Same as above for arrays
10485   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
10486     LHSClass = Type::ConstantArray;
10487   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
10488     RHSClass = Type::ConstantArray;
10489 
10490   // ObjCInterfaces are just specialized ObjCObjects.
10491   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
10492   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
10493 
10494   // Canonicalize ExtVector -> Vector.
10495   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
10496   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
10497 
10498   // If the canonical type classes don't match.
10499   if (LHSClass != RHSClass) {
10500     // Note that we only have special rules for turning block enum
10501     // returns into block int returns, not vice-versa.
10502     if (const auto *ETy = LHS->getAs<EnumType>()) {
10503       return mergeEnumWithInteger(*this, ETy, RHS, false);
10504     }
10505     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
10506       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
10507     }
10508     // allow block pointer type to match an 'id' type.
10509     if (OfBlockPointer && !BlockReturnType) {
10510        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
10511          return LHS;
10512       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
10513         return RHS;
10514     }
10515     // Allow __auto_type to match anything; it merges to the type with more
10516     // information.
10517     if (const auto *AT = LHS->getAs<AutoType>()) {
10518       if (!AT->isDeduced() && AT->isGNUAutoType())
10519         return RHS;
10520     }
10521     if (const auto *AT = RHS->getAs<AutoType>()) {
10522       if (!AT->isDeduced() && AT->isGNUAutoType())
10523         return LHS;
10524     }
10525     return {};
10526   }
10527 
10528   // The canonical type classes match.
10529   switch (LHSClass) {
10530 #define TYPE(Class, Base)
10531 #define ABSTRACT_TYPE(Class, Base)
10532 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
10533 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
10534 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
10535 #include "clang/AST/TypeNodes.inc"
10536     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
10537 
10538   case Type::Auto:
10539   case Type::DeducedTemplateSpecialization:
10540   case Type::LValueReference:
10541   case Type::RValueReference:
10542   case Type::MemberPointer:
10543     llvm_unreachable("C++ should never be in mergeTypes");
10544 
10545   case Type::ObjCInterface:
10546   case Type::IncompleteArray:
10547   case Type::VariableArray:
10548   case Type::FunctionProto:
10549   case Type::ExtVector:
10550     llvm_unreachable("Types are eliminated above");
10551 
10552   case Type::Pointer:
10553   {
10554     // Merge two pointer types, while trying to preserve typedef info
10555     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
10556     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
10557     if (Unqualified) {
10558       LHSPointee = LHSPointee.getUnqualifiedType();
10559       RHSPointee = RHSPointee.getUnqualifiedType();
10560     }
10561     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
10562                                      Unqualified);
10563     if (ResultType.isNull())
10564       return {};
10565     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10566       return LHS;
10567     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10568       return RHS;
10569     return getPointerType(ResultType);
10570   }
10571   case Type::BlockPointer:
10572   {
10573     // Merge two block pointer types, while trying to preserve typedef info
10574     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
10575     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
10576     if (Unqualified) {
10577       LHSPointee = LHSPointee.getUnqualifiedType();
10578       RHSPointee = RHSPointee.getUnqualifiedType();
10579     }
10580     if (getLangOpts().OpenCL) {
10581       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
10582       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
10583       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
10584       // 6.12.5) thus the following check is asymmetric.
10585       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
10586         return {};
10587       LHSPteeQual.removeAddressSpace();
10588       RHSPteeQual.removeAddressSpace();
10589       LHSPointee =
10590           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
10591       RHSPointee =
10592           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
10593     }
10594     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
10595                                      Unqualified);
10596     if (ResultType.isNull())
10597       return {};
10598     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10599       return LHS;
10600     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10601       return RHS;
10602     return getBlockPointerType(ResultType);
10603   }
10604   case Type::Atomic:
10605   {
10606     // Merge two pointer types, while trying to preserve typedef info
10607     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
10608     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
10609     if (Unqualified) {
10610       LHSValue = LHSValue.getUnqualifiedType();
10611       RHSValue = RHSValue.getUnqualifiedType();
10612     }
10613     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
10614                                      Unqualified);
10615     if (ResultType.isNull())
10616       return {};
10617     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
10618       return LHS;
10619     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
10620       return RHS;
10621     return getAtomicType(ResultType);
10622   }
10623   case Type::ConstantArray:
10624   {
10625     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
10626     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
10627     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
10628       return {};
10629 
10630     QualType LHSElem = getAsArrayType(LHS)->getElementType();
10631     QualType RHSElem = getAsArrayType(RHS)->getElementType();
10632     if (Unqualified) {
10633       LHSElem = LHSElem.getUnqualifiedType();
10634       RHSElem = RHSElem.getUnqualifiedType();
10635     }
10636 
10637     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
10638     if (ResultType.isNull())
10639       return {};
10640 
10641     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
10642     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
10643 
10644     // If either side is a variable array, and both are complete, check whether
10645     // the current dimension is definite.
10646     if (LVAT || RVAT) {
10647       auto SizeFetch = [this](const VariableArrayType* VAT,
10648           const ConstantArrayType* CAT)
10649           -> std::pair<bool,llvm::APInt> {
10650         if (VAT) {
10651           std::optional<llvm::APSInt> TheInt;
10652           Expr *E = VAT->getSizeExpr();
10653           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
10654             return std::make_pair(true, *TheInt);
10655           return std::make_pair(false, llvm::APSInt());
10656         }
10657         if (CAT)
10658           return std::make_pair(true, CAT->getSize());
10659         return std::make_pair(false, llvm::APInt());
10660       };
10661 
10662       bool HaveLSize, HaveRSize;
10663       llvm::APInt LSize, RSize;
10664       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
10665       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
10666       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
10667         return {}; // Definite, but unequal, array dimension
10668     }
10669 
10670     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10671       return LHS;
10672     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10673       return RHS;
10674     if (LCAT)
10675       return getConstantArrayType(ResultType, LCAT->getSize(),
10676                                   LCAT->getSizeExpr(),
10677                                   ArrayType::ArraySizeModifier(), 0);
10678     if (RCAT)
10679       return getConstantArrayType(ResultType, RCAT->getSize(),
10680                                   RCAT->getSizeExpr(),
10681                                   ArrayType::ArraySizeModifier(), 0);
10682     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10683       return LHS;
10684     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10685       return RHS;
10686     if (LVAT) {
10687       // FIXME: This isn't correct! But tricky to implement because
10688       // the array's size has to be the size of LHS, but the type
10689       // has to be different.
10690       return LHS;
10691     }
10692     if (RVAT) {
10693       // FIXME: This isn't correct! But tricky to implement because
10694       // the array's size has to be the size of RHS, but the type
10695       // has to be different.
10696       return RHS;
10697     }
10698     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
10699     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
10700     return getIncompleteArrayType(ResultType,
10701                                   ArrayType::ArraySizeModifier(), 0);
10702   }
10703   case Type::FunctionNoProto:
10704     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified,
10705                               /*AllowCXX=*/false, IsConditionalOperator);
10706   case Type::Record:
10707   case Type::Enum:
10708     return {};
10709   case Type::Builtin:
10710     // Only exactly equal builtin types are compatible, which is tested above.
10711     return {};
10712   case Type::Complex:
10713     // Distinct complex types are incompatible.
10714     return {};
10715   case Type::Vector:
10716     // FIXME: The merged type should be an ExtVector!
10717     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
10718                              RHSCan->castAs<VectorType>()))
10719       return LHS;
10720     return {};
10721   case Type::ConstantMatrix:
10722     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
10723                              RHSCan->castAs<ConstantMatrixType>()))
10724       return LHS;
10725     return {};
10726   case Type::ObjCObject: {
10727     // Check if the types are assignment compatible.
10728     // FIXME: This should be type compatibility, e.g. whether
10729     // "LHS x; RHS x;" at global scope is legal.
10730     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
10731                                 RHS->castAs<ObjCObjectType>()))
10732       return LHS;
10733     return {};
10734   }
10735   case Type::ObjCObjectPointer:
10736     if (OfBlockPointer) {
10737       if (canAssignObjCInterfacesInBlockPointer(
10738               LHS->castAs<ObjCObjectPointerType>(),
10739               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
10740         return LHS;
10741       return {};
10742     }
10743     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
10744                                 RHS->castAs<ObjCObjectPointerType>()))
10745       return LHS;
10746     return {};
10747   case Type::Pipe:
10748     assert(LHS != RHS &&
10749            "Equivalent pipe types should have already been handled!");
10750     return {};
10751   case Type::BitInt: {
10752     // Merge two bit-precise int types, while trying to preserve typedef info.
10753     bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned();
10754     bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned();
10755     unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits();
10756     unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits();
10757 
10758     // Like unsigned/int, shouldn't have a type if they don't match.
10759     if (LHSUnsigned != RHSUnsigned)
10760       return {};
10761 
10762     if (LHSBits != RHSBits)
10763       return {};
10764     return LHS;
10765   }
10766   }
10767 
10768   llvm_unreachable("Invalid Type::Class!");
10769 }
10770 
10771 bool ASTContext::mergeExtParameterInfo(
10772     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10773     bool &CanUseFirst, bool &CanUseSecond,
10774     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10775   assert(NewParamInfos.empty() && "param info list not empty");
10776   CanUseFirst = CanUseSecond = true;
10777   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10778   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10779 
10780   // Fast path: if the first type doesn't have ext parameter infos,
10781   // we match if and only if the second type also doesn't have them.
10782   if (!FirstHasInfo && !SecondHasInfo)
10783     return true;
10784 
10785   bool NeedParamInfo = false;
10786   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10787                           : SecondFnType->getExtParameterInfos().size();
10788 
10789   for (size_t I = 0; I < E; ++I) {
10790     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10791     if (FirstHasInfo)
10792       FirstParam = FirstFnType->getExtParameterInfo(I);
10793     if (SecondHasInfo)
10794       SecondParam = SecondFnType->getExtParameterInfo(I);
10795 
10796     // Cannot merge unless everything except the noescape flag matches.
10797     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10798       return false;
10799 
10800     bool FirstNoEscape = FirstParam.isNoEscape();
10801     bool SecondNoEscape = SecondParam.isNoEscape();
10802     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10803     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10804     if (NewParamInfos.back().getOpaqueValue())
10805       NeedParamInfo = true;
10806     if (FirstNoEscape != IsNoEscape)
10807       CanUseFirst = false;
10808     if (SecondNoEscape != IsNoEscape)
10809       CanUseSecond = false;
10810   }
10811 
10812   if (!NeedParamInfo)
10813     NewParamInfos.clear();
10814 
10815   return true;
10816 }
10817 
10818 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10819   ObjCLayouts[CD] = nullptr;
10820 }
10821 
10822 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10823 /// 'RHS' attributes and returns the merged version; including for function
10824 /// return types.
10825 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10826   QualType LHSCan = getCanonicalType(LHS),
10827   RHSCan = getCanonicalType(RHS);
10828   // If two types are identical, they are compatible.
10829   if (LHSCan == RHSCan)
10830     return LHS;
10831   if (RHSCan->isFunctionType()) {
10832     if (!LHSCan->isFunctionType())
10833       return {};
10834     QualType OldReturnType =
10835         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10836     QualType NewReturnType =
10837         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10838     QualType ResReturnType =
10839       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10840     if (ResReturnType.isNull())
10841       return {};
10842     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10843       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10844       // In either case, use OldReturnType to build the new function type.
10845       const auto *F = LHS->castAs<FunctionType>();
10846       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10847         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10848         EPI.ExtInfo = getFunctionExtInfo(LHS);
10849         QualType ResultType =
10850             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10851         return ResultType;
10852       }
10853     }
10854     return {};
10855   }
10856 
10857   // If the qualifiers are different, the types can still be merged.
10858   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10859   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10860   if (LQuals != RQuals) {
10861     // If any of these qualifiers are different, we have a type mismatch.
10862     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10863         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10864       return {};
10865 
10866     // Exactly one GC qualifier difference is allowed: __strong is
10867     // okay if the other type has no GC qualifier but is an Objective
10868     // C object pointer (i.e. implicitly strong by default).  We fix
10869     // this by pretending that the unqualified type was actually
10870     // qualified __strong.
10871     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10872     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10873     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10874 
10875     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10876       return {};
10877 
10878     if (GC_L == Qualifiers::Strong)
10879       return LHS;
10880     if (GC_R == Qualifiers::Strong)
10881       return RHS;
10882     return {};
10883   }
10884 
10885   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10886     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10887     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10888     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10889     if (ResQT == LHSBaseQT)
10890       return LHS;
10891     if (ResQT == RHSBaseQT)
10892       return RHS;
10893   }
10894   return {};
10895 }
10896 
10897 //===----------------------------------------------------------------------===//
10898 //                         Integer Predicates
10899 //===----------------------------------------------------------------------===//
10900 
10901 unsigned ASTContext::getIntWidth(QualType T) const {
10902   if (const auto *ET = T->getAs<EnumType>())
10903     T = ET->getDecl()->getIntegerType();
10904   if (T->isBooleanType())
10905     return 1;
10906   if (const auto *EIT = T->getAs<BitIntType>())
10907     return EIT->getNumBits();
10908   // For builtin types, just use the standard type sizing method
10909   return (unsigned)getTypeSize(T);
10910 }
10911 
10912 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10913   assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||
10914           T->isFixedPointType()) &&
10915          "Unexpected type");
10916 
10917   // Turn <4 x signed int> -> <4 x unsigned int>
10918   if (const auto *VTy = T->getAs<VectorType>())
10919     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
10920                          VTy->getNumElements(), VTy->getVectorKind());
10921 
10922   // For _BitInt, return an unsigned _BitInt with same width.
10923   if (const auto *EITy = T->getAs<BitIntType>())
10924     return getBitIntType(/*Unsigned=*/true, EITy->getNumBits());
10925 
10926   // For enums, get the underlying integer type of the enum, and let the general
10927   // integer type signchanging code handle it.
10928   if (const auto *ETy = T->getAs<EnumType>())
10929     T = ETy->getDecl()->getIntegerType();
10930 
10931   switch (T->castAs<BuiltinType>()->getKind()) {
10932   case BuiltinType::Char_U:
10933     // Plain `char` is mapped to `unsigned char` even if it's already unsigned
10934   case BuiltinType::Char_S:
10935   case BuiltinType::SChar:
10936   case BuiltinType::Char8:
10937     return UnsignedCharTy;
10938   case BuiltinType::Short:
10939     return UnsignedShortTy;
10940   case BuiltinType::Int:
10941     return UnsignedIntTy;
10942   case BuiltinType::Long:
10943     return UnsignedLongTy;
10944   case BuiltinType::LongLong:
10945     return UnsignedLongLongTy;
10946   case BuiltinType::Int128:
10947     return UnsignedInt128Ty;
10948   // wchar_t is special. It is either signed or not, but when it's signed,
10949   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
10950   // version of its underlying type instead.
10951   case BuiltinType::WChar_S:
10952     return getUnsignedWCharType();
10953 
10954   case BuiltinType::ShortAccum:
10955     return UnsignedShortAccumTy;
10956   case BuiltinType::Accum:
10957     return UnsignedAccumTy;
10958   case BuiltinType::LongAccum:
10959     return UnsignedLongAccumTy;
10960   case BuiltinType::SatShortAccum:
10961     return SatUnsignedShortAccumTy;
10962   case BuiltinType::SatAccum:
10963     return SatUnsignedAccumTy;
10964   case BuiltinType::SatLongAccum:
10965     return SatUnsignedLongAccumTy;
10966   case BuiltinType::ShortFract:
10967     return UnsignedShortFractTy;
10968   case BuiltinType::Fract:
10969     return UnsignedFractTy;
10970   case BuiltinType::LongFract:
10971     return UnsignedLongFractTy;
10972   case BuiltinType::SatShortFract:
10973     return SatUnsignedShortFractTy;
10974   case BuiltinType::SatFract:
10975     return SatUnsignedFractTy;
10976   case BuiltinType::SatLongFract:
10977     return SatUnsignedLongFractTy;
10978   default:
10979     assert((T->hasUnsignedIntegerRepresentation() ||
10980             T->isUnsignedFixedPointType()) &&
10981            "Unexpected signed integer or fixed point type");
10982     return T;
10983   }
10984 }
10985 
10986 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
10987   assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||
10988           T->isFixedPointType()) &&
10989          "Unexpected type");
10990 
10991   // Turn <4 x unsigned int> -> <4 x signed int>
10992   if (const auto *VTy = T->getAs<VectorType>())
10993     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
10994                          VTy->getNumElements(), VTy->getVectorKind());
10995 
10996   // For _BitInt, return a signed _BitInt with same width.
10997   if (const auto *EITy = T->getAs<BitIntType>())
10998     return getBitIntType(/*Unsigned=*/false, EITy->getNumBits());
10999 
11000   // For enums, get the underlying integer type of the enum, and let the general
11001   // integer type signchanging code handle it.
11002   if (const auto *ETy = T->getAs<EnumType>())
11003     T = ETy->getDecl()->getIntegerType();
11004 
11005   switch (T->castAs<BuiltinType>()->getKind()) {
11006   case BuiltinType::Char_S:
11007     // Plain `char` is mapped to `signed char` even if it's already signed
11008   case BuiltinType::Char_U:
11009   case BuiltinType::UChar:
11010   case BuiltinType::Char8:
11011     return SignedCharTy;
11012   case BuiltinType::UShort:
11013     return ShortTy;
11014   case BuiltinType::UInt:
11015     return IntTy;
11016   case BuiltinType::ULong:
11017     return LongTy;
11018   case BuiltinType::ULongLong:
11019     return LongLongTy;
11020   case BuiltinType::UInt128:
11021     return Int128Ty;
11022   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
11023   // there's no matching "signed wchar_t". Therefore we return the signed
11024   // version of its underlying type instead.
11025   case BuiltinType::WChar_U:
11026     return getSignedWCharType();
11027 
11028   case BuiltinType::UShortAccum:
11029     return ShortAccumTy;
11030   case BuiltinType::UAccum:
11031     return AccumTy;
11032   case BuiltinType::ULongAccum:
11033     return LongAccumTy;
11034   case BuiltinType::SatUShortAccum:
11035     return SatShortAccumTy;
11036   case BuiltinType::SatUAccum:
11037     return SatAccumTy;
11038   case BuiltinType::SatULongAccum:
11039     return SatLongAccumTy;
11040   case BuiltinType::UShortFract:
11041     return ShortFractTy;
11042   case BuiltinType::UFract:
11043     return FractTy;
11044   case BuiltinType::ULongFract:
11045     return LongFractTy;
11046   case BuiltinType::SatUShortFract:
11047     return SatShortFractTy;
11048   case BuiltinType::SatUFract:
11049     return SatFractTy;
11050   case BuiltinType::SatULongFract:
11051     return SatLongFractTy;
11052   default:
11053     assert(
11054         (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
11055         "Unexpected signed integer or fixed point type");
11056     return T;
11057   }
11058 }
11059 
11060 ASTMutationListener::~ASTMutationListener() = default;
11061 
11062 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
11063                                             QualType ReturnType) {}
11064 
11065 //===----------------------------------------------------------------------===//
11066 //                          Builtin Type Computation
11067 //===----------------------------------------------------------------------===//
11068 
11069 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
11070 /// pointer over the consumed characters.  This returns the resultant type.  If
11071 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
11072 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
11073 /// a vector of "i*".
11074 ///
11075 /// RequiresICE is filled in on return to indicate whether the value is required
11076 /// to be an Integer Constant Expression.
11077 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
11078                                   ASTContext::GetBuiltinTypeError &Error,
11079                                   bool &RequiresICE,
11080                                   bool AllowTypeModifiers) {
11081   // Modifiers.
11082   int HowLong = 0;
11083   bool Signed = false, Unsigned = false;
11084   RequiresICE = false;
11085 
11086   // Read the prefixed modifiers first.
11087   bool Done = false;
11088   #ifndef NDEBUG
11089   bool IsSpecial = false;
11090   #endif
11091   while (!Done) {
11092     switch (*Str++) {
11093     default: Done = true; --Str; break;
11094     case 'I':
11095       RequiresICE = true;
11096       break;
11097     case 'S':
11098       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
11099       assert(!Signed && "Can't use 'S' modifier multiple times!");
11100       Signed = true;
11101       break;
11102     case 'U':
11103       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
11104       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
11105       Unsigned = true;
11106       break;
11107     case 'L':
11108       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
11109       assert(HowLong <= 2 && "Can't have LLLL modifier");
11110       ++HowLong;
11111       break;
11112     case 'N':
11113       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
11114       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11115       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
11116       #ifndef NDEBUG
11117       IsSpecial = true;
11118       #endif
11119       if (Context.getTargetInfo().getLongWidth() == 32)
11120         ++HowLong;
11121       break;
11122     case 'W':
11123       // This modifier represents int64 type.
11124       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11125       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
11126       #ifndef NDEBUG
11127       IsSpecial = true;
11128       #endif
11129       switch (Context.getTargetInfo().getInt64Type()) {
11130       default:
11131         llvm_unreachable("Unexpected integer type");
11132       case TargetInfo::SignedLong:
11133         HowLong = 1;
11134         break;
11135       case TargetInfo::SignedLongLong:
11136         HowLong = 2;
11137         break;
11138       }
11139       break;
11140     case 'Z':
11141       // This modifier represents int32 type.
11142       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11143       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
11144       #ifndef NDEBUG
11145       IsSpecial = true;
11146       #endif
11147       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
11148       default:
11149         llvm_unreachable("Unexpected integer type");
11150       case TargetInfo::SignedInt:
11151         HowLong = 0;
11152         break;
11153       case TargetInfo::SignedLong:
11154         HowLong = 1;
11155         break;
11156       case TargetInfo::SignedLongLong:
11157         HowLong = 2;
11158         break;
11159       }
11160       break;
11161     case 'O':
11162       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11163       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
11164       #ifndef NDEBUG
11165       IsSpecial = true;
11166       #endif
11167       if (Context.getLangOpts().OpenCL)
11168         HowLong = 1;
11169       else
11170         HowLong = 2;
11171       break;
11172     }
11173   }
11174 
11175   QualType Type;
11176 
11177   // Read the base type.
11178   switch (*Str++) {
11179   default: llvm_unreachable("Unknown builtin type letter!");
11180   case 'x':
11181     assert(HowLong == 0 && !Signed && !Unsigned &&
11182            "Bad modifiers used with 'x'!");
11183     Type = Context.Float16Ty;
11184     break;
11185   case 'y':
11186     assert(HowLong == 0 && !Signed && !Unsigned &&
11187            "Bad modifiers used with 'y'!");
11188     Type = Context.BFloat16Ty;
11189     break;
11190   case 'v':
11191     assert(HowLong == 0 && !Signed && !Unsigned &&
11192            "Bad modifiers used with 'v'!");
11193     Type = Context.VoidTy;
11194     break;
11195   case 'h':
11196     assert(HowLong == 0 && !Signed && !Unsigned &&
11197            "Bad modifiers used with 'h'!");
11198     Type = Context.HalfTy;
11199     break;
11200   case 'f':
11201     assert(HowLong == 0 && !Signed && !Unsigned &&
11202            "Bad modifiers used with 'f'!");
11203     Type = Context.FloatTy;
11204     break;
11205   case 'd':
11206     assert(HowLong < 3 && !Signed && !Unsigned &&
11207            "Bad modifiers used with 'd'!");
11208     if (HowLong == 1)
11209       Type = Context.LongDoubleTy;
11210     else if (HowLong == 2)
11211       Type = Context.Float128Ty;
11212     else
11213       Type = Context.DoubleTy;
11214     break;
11215   case 's':
11216     assert(HowLong == 0 && "Bad modifiers used with 's'!");
11217     if (Unsigned)
11218       Type = Context.UnsignedShortTy;
11219     else
11220       Type = Context.ShortTy;
11221     break;
11222   case 'i':
11223     if (HowLong == 3)
11224       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
11225     else if (HowLong == 2)
11226       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
11227     else if (HowLong == 1)
11228       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
11229     else
11230       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
11231     break;
11232   case 'c':
11233     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
11234     if (Signed)
11235       Type = Context.SignedCharTy;
11236     else if (Unsigned)
11237       Type = Context.UnsignedCharTy;
11238     else
11239       Type = Context.CharTy;
11240     break;
11241   case 'b': // boolean
11242     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
11243     Type = Context.BoolTy;
11244     break;
11245   case 'z':  // size_t.
11246     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
11247     Type = Context.getSizeType();
11248     break;
11249   case 'w':  // wchar_t.
11250     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
11251     Type = Context.getWideCharType();
11252     break;
11253   case 'F':
11254     Type = Context.getCFConstantStringType();
11255     break;
11256   case 'G':
11257     Type = Context.getObjCIdType();
11258     break;
11259   case 'H':
11260     Type = Context.getObjCSelType();
11261     break;
11262   case 'M':
11263     Type = Context.getObjCSuperType();
11264     break;
11265   case 'a':
11266     Type = Context.getBuiltinVaListType();
11267     assert(!Type.isNull() && "builtin va list type not initialized!");
11268     break;
11269   case 'A':
11270     // This is a "reference" to a va_list; however, what exactly
11271     // this means depends on how va_list is defined. There are two
11272     // different kinds of va_list: ones passed by value, and ones
11273     // passed by reference.  An example of a by-value va_list is
11274     // x86, where va_list is a char*. An example of by-ref va_list
11275     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
11276     // we want this argument to be a char*&; for x86-64, we want
11277     // it to be a __va_list_tag*.
11278     Type = Context.getBuiltinVaListType();
11279     assert(!Type.isNull() && "builtin va list type not initialized!");
11280     if (Type->isArrayType())
11281       Type = Context.getArrayDecayedType(Type);
11282     else
11283       Type = Context.getLValueReferenceType(Type);
11284     break;
11285   case 'q': {
11286     char *End;
11287     unsigned NumElements = strtoul(Str, &End, 10);
11288     assert(End != Str && "Missing vector size");
11289     Str = End;
11290 
11291     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11292                                              RequiresICE, false);
11293     assert(!RequiresICE && "Can't require vector ICE");
11294 
11295     Type = Context.getScalableVectorType(ElementType, NumElements);
11296     break;
11297   }
11298   case 'V': {
11299     char *End;
11300     unsigned NumElements = strtoul(Str, &End, 10);
11301     assert(End != Str && "Missing vector size");
11302     Str = End;
11303 
11304     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11305                                              RequiresICE, false);
11306     assert(!RequiresICE && "Can't require vector ICE");
11307 
11308     // TODO: No way to make AltiVec vectors in builtins yet.
11309     Type = Context.getVectorType(ElementType, NumElements,
11310                                  VectorType::GenericVector);
11311     break;
11312   }
11313   case 'E': {
11314     char *End;
11315 
11316     unsigned NumElements = strtoul(Str, &End, 10);
11317     assert(End != Str && "Missing vector size");
11318 
11319     Str = End;
11320 
11321     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11322                                              false);
11323     Type = Context.getExtVectorType(ElementType, NumElements);
11324     break;
11325   }
11326   case 'X': {
11327     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11328                                              false);
11329     assert(!RequiresICE && "Can't require complex ICE");
11330     Type = Context.getComplexType(ElementType);
11331     break;
11332   }
11333   case 'Y':
11334     Type = Context.getPointerDiffType();
11335     break;
11336   case 'P':
11337     Type = Context.getFILEType();
11338     if (Type.isNull()) {
11339       Error = ASTContext::GE_Missing_stdio;
11340       return {};
11341     }
11342     break;
11343   case 'J':
11344     if (Signed)
11345       Type = Context.getsigjmp_bufType();
11346     else
11347       Type = Context.getjmp_bufType();
11348 
11349     if (Type.isNull()) {
11350       Error = ASTContext::GE_Missing_setjmp;
11351       return {};
11352     }
11353     break;
11354   case 'K':
11355     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
11356     Type = Context.getucontext_tType();
11357 
11358     if (Type.isNull()) {
11359       Error = ASTContext::GE_Missing_ucontext;
11360       return {};
11361     }
11362     break;
11363   case 'p':
11364     Type = Context.getProcessIDType();
11365     break;
11366   }
11367 
11368   // If there are modifiers and if we're allowed to parse them, go for it.
11369   Done = !AllowTypeModifiers;
11370   while (!Done) {
11371     switch (char c = *Str++) {
11372     default: Done = true; --Str; break;
11373     case '*':
11374     case '&': {
11375       // Both pointers and references can have their pointee types
11376       // qualified with an address space.
11377       char *End;
11378       unsigned AddrSpace = strtoul(Str, &End, 10);
11379       if (End != Str) {
11380         // Note AddrSpace == 0 is not the same as an unspecified address space.
11381         Type = Context.getAddrSpaceQualType(
11382           Type,
11383           Context.getLangASForBuiltinAddressSpace(AddrSpace));
11384         Str = End;
11385       }
11386       if (c == '*')
11387         Type = Context.getPointerType(Type);
11388       else
11389         Type = Context.getLValueReferenceType(Type);
11390       break;
11391     }
11392     // FIXME: There's no way to have a built-in with an rvalue ref arg.
11393     case 'C':
11394       Type = Type.withConst();
11395       break;
11396     case 'D':
11397       Type = Context.getVolatileType(Type);
11398       break;
11399     case 'R':
11400       Type = Type.withRestrict();
11401       break;
11402     }
11403   }
11404 
11405   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
11406          "Integer constant 'I' type must be an integer");
11407 
11408   return Type;
11409 }
11410 
11411 // On some targets such as PowerPC, some of the builtins are defined with custom
11412 // type descriptors for target-dependent types. These descriptors are decoded in
11413 // other functions, but it may be useful to be able to fall back to default
11414 // descriptor decoding to define builtins mixing target-dependent and target-
11415 // independent types. This function allows decoding one type descriptor with
11416 // default decoding.
11417 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
11418                                    GetBuiltinTypeError &Error, bool &RequireICE,
11419                                    bool AllowTypeModifiers) const {
11420   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
11421 }
11422 
11423 /// GetBuiltinType - Return the type for the specified builtin.
11424 QualType ASTContext::GetBuiltinType(unsigned Id,
11425                                     GetBuiltinTypeError &Error,
11426                                     unsigned *IntegerConstantArgs) const {
11427   const char *TypeStr = BuiltinInfo.getTypeString(Id);
11428   if (TypeStr[0] == '\0') {
11429     Error = GE_Missing_type;
11430     return {};
11431   }
11432 
11433   SmallVector<QualType, 8> ArgTypes;
11434 
11435   bool RequiresICE = false;
11436   Error = GE_None;
11437   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
11438                                        RequiresICE, true);
11439   if (Error != GE_None)
11440     return {};
11441 
11442   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
11443 
11444   while (TypeStr[0] && TypeStr[0] != '.') {
11445     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
11446     if (Error != GE_None)
11447       return {};
11448 
11449     // If this argument is required to be an IntegerConstantExpression and the
11450     // caller cares, fill in the bitmask we return.
11451     if (RequiresICE && IntegerConstantArgs)
11452       *IntegerConstantArgs |= 1 << ArgTypes.size();
11453 
11454     // Do array -> pointer decay.  The builtin should use the decayed type.
11455     if (Ty->isArrayType())
11456       Ty = getArrayDecayedType(Ty);
11457 
11458     ArgTypes.push_back(Ty);
11459   }
11460 
11461   if (Id == Builtin::BI__GetExceptionInfo)
11462     return {};
11463 
11464   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
11465          "'.' should only occur at end of builtin type list!");
11466 
11467   bool Variadic = (TypeStr[0] == '.');
11468 
11469   FunctionType::ExtInfo EI(getDefaultCallingConvention(
11470       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
11471   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
11472 
11473 
11474   // We really shouldn't be making a no-proto type here.
11475   if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes())
11476     return getFunctionNoProtoType(ResType, EI);
11477 
11478   FunctionProtoType::ExtProtoInfo EPI;
11479   EPI.ExtInfo = EI;
11480   EPI.Variadic = Variadic;
11481   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
11482     EPI.ExceptionSpec.Type =
11483         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
11484 
11485   return getFunctionType(ResType, ArgTypes, EPI);
11486 }
11487 
11488 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
11489                                              const FunctionDecl *FD) {
11490   if (!FD->isExternallyVisible())
11491     return GVA_Internal;
11492 
11493   // Non-user-provided functions get emitted as weak definitions with every
11494   // use, no matter whether they've been explicitly instantiated etc.
11495   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
11496     if (!MD->isUserProvided())
11497       return GVA_DiscardableODR;
11498 
11499   GVALinkage External;
11500   switch (FD->getTemplateSpecializationKind()) {
11501   case TSK_Undeclared:
11502   case TSK_ExplicitSpecialization:
11503     External = GVA_StrongExternal;
11504     break;
11505 
11506   case TSK_ExplicitInstantiationDefinition:
11507     return GVA_StrongODR;
11508 
11509   // C++11 [temp.explicit]p10:
11510   //   [ Note: The intent is that an inline function that is the subject of
11511   //   an explicit instantiation declaration will still be implicitly
11512   //   instantiated when used so that the body can be considered for
11513   //   inlining, but that no out-of-line copy of the inline function would be
11514   //   generated in the translation unit. -- end note ]
11515   case TSK_ExplicitInstantiationDeclaration:
11516     return GVA_AvailableExternally;
11517 
11518   case TSK_ImplicitInstantiation:
11519     External = GVA_DiscardableODR;
11520     break;
11521   }
11522 
11523   if (!FD->isInlined())
11524     return External;
11525 
11526   if ((!Context.getLangOpts().CPlusPlus &&
11527        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11528        !FD->hasAttr<DLLExportAttr>()) ||
11529       FD->hasAttr<GNUInlineAttr>()) {
11530     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
11531 
11532     // GNU or C99 inline semantics. Determine whether this symbol should be
11533     // externally visible.
11534     if (FD->isInlineDefinitionExternallyVisible())
11535       return External;
11536 
11537     // C99 inline semantics, where the symbol is not externally visible.
11538     return GVA_AvailableExternally;
11539   }
11540 
11541   // Functions specified with extern and inline in -fms-compatibility mode
11542   // forcibly get emitted.  While the body of the function cannot be later
11543   // replaced, the function definition cannot be discarded.
11544   if (FD->isMSExternInline())
11545     return GVA_StrongODR;
11546 
11547   return GVA_DiscardableODR;
11548 }
11549 
11550 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
11551                                                 const Decl *D, GVALinkage L) {
11552   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
11553   // dllexport/dllimport on inline functions.
11554   if (D->hasAttr<DLLImportAttr>()) {
11555     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
11556       return GVA_AvailableExternally;
11557   } else if (D->hasAttr<DLLExportAttr>()) {
11558     if (L == GVA_DiscardableODR)
11559       return GVA_StrongODR;
11560   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
11561     // Device-side functions with __global__ attribute must always be
11562     // visible externally so they can be launched from host.
11563     if (D->hasAttr<CUDAGlobalAttr>() &&
11564         (L == GVA_DiscardableODR || L == GVA_Internal))
11565       return GVA_StrongODR;
11566     // Single source offloading languages like CUDA/HIP need to be able to
11567     // access static device variables from host code of the same compilation
11568     // unit. This is done by externalizing the static variable with a shared
11569     // name between the host and device compilation which is the same for the
11570     // same compilation unit whereas different among different compilation
11571     // units.
11572     if (Context.shouldExternalize(D))
11573       return GVA_StrongExternal;
11574   }
11575   return L;
11576 }
11577 
11578 /// Adjust the GVALinkage for a declaration based on what an external AST source
11579 /// knows about whether there can be other definitions of this declaration.
11580 static GVALinkage
11581 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
11582                                           GVALinkage L) {
11583   ExternalASTSource *Source = Ctx.getExternalSource();
11584   if (!Source)
11585     return L;
11586 
11587   switch (Source->hasExternalDefinitions(D)) {
11588   case ExternalASTSource::EK_Never:
11589     // Other translation units rely on us to provide the definition.
11590     if (L == GVA_DiscardableODR)
11591       return GVA_StrongODR;
11592     break;
11593 
11594   case ExternalASTSource::EK_Always:
11595     return GVA_AvailableExternally;
11596 
11597   case ExternalASTSource::EK_ReplyHazy:
11598     break;
11599   }
11600   return L;
11601 }
11602 
11603 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
11604   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
11605            adjustGVALinkageForAttributes(*this, FD,
11606              basicGVALinkageForFunction(*this, FD)));
11607 }
11608 
11609 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
11610                                              const VarDecl *VD) {
11611   if (!VD->isExternallyVisible())
11612     return GVA_Internal;
11613 
11614   if (VD->isStaticLocal()) {
11615     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
11616     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
11617       LexicalContext = LexicalContext->getLexicalParent();
11618 
11619     // ObjC Blocks can create local variables that don't have a FunctionDecl
11620     // LexicalContext.
11621     if (!LexicalContext)
11622       return GVA_DiscardableODR;
11623 
11624     // Otherwise, let the static local variable inherit its linkage from the
11625     // nearest enclosing function.
11626     auto StaticLocalLinkage =
11627         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
11628 
11629     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
11630     // be emitted in any object with references to the symbol for the object it
11631     // contains, whether inline or out-of-line."
11632     // Similar behavior is observed with MSVC. An alternative ABI could use
11633     // StrongODR/AvailableExternally to match the function, but none are
11634     // known/supported currently.
11635     if (StaticLocalLinkage == GVA_StrongODR ||
11636         StaticLocalLinkage == GVA_AvailableExternally)
11637       return GVA_DiscardableODR;
11638     return StaticLocalLinkage;
11639   }
11640 
11641   // MSVC treats in-class initialized static data members as definitions.
11642   // By giving them non-strong linkage, out-of-line definitions won't
11643   // cause link errors.
11644   if (Context.isMSStaticDataMemberInlineDefinition(VD))
11645     return GVA_DiscardableODR;
11646 
11647   // Most non-template variables have strong linkage; inline variables are
11648   // linkonce_odr or (occasionally, for compatibility) weak_odr.
11649   GVALinkage StrongLinkage;
11650   switch (Context.getInlineVariableDefinitionKind(VD)) {
11651   case ASTContext::InlineVariableDefinitionKind::None:
11652     StrongLinkage = GVA_StrongExternal;
11653     break;
11654   case ASTContext::InlineVariableDefinitionKind::Weak:
11655   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
11656     StrongLinkage = GVA_DiscardableODR;
11657     break;
11658   case ASTContext::InlineVariableDefinitionKind::Strong:
11659     StrongLinkage = GVA_StrongODR;
11660     break;
11661   }
11662 
11663   switch (VD->getTemplateSpecializationKind()) {
11664   case TSK_Undeclared:
11665     return StrongLinkage;
11666 
11667   case TSK_ExplicitSpecialization:
11668     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11669                    VD->isStaticDataMember()
11670                ? GVA_StrongODR
11671                : StrongLinkage;
11672 
11673   case TSK_ExplicitInstantiationDefinition:
11674     return GVA_StrongODR;
11675 
11676   case TSK_ExplicitInstantiationDeclaration:
11677     return GVA_AvailableExternally;
11678 
11679   case TSK_ImplicitInstantiation:
11680     return GVA_DiscardableODR;
11681   }
11682 
11683   llvm_unreachable("Invalid Linkage!");
11684 }
11685 
11686 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
11687   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
11688            adjustGVALinkageForAttributes(*this, VD,
11689              basicGVALinkageForVariable(*this, VD)));
11690 }
11691 
11692 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
11693   if (const auto *VD = dyn_cast<VarDecl>(D)) {
11694     if (!VD->isFileVarDecl())
11695       return false;
11696     // Global named register variables (GNU extension) are never emitted.
11697     if (VD->getStorageClass() == SC_Register)
11698       return false;
11699     if (VD->getDescribedVarTemplate() ||
11700         isa<VarTemplatePartialSpecializationDecl>(VD))
11701       return false;
11702   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11703     // We never need to emit an uninstantiated function template.
11704     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11705       return false;
11706   } else if (isa<PragmaCommentDecl>(D))
11707     return true;
11708   else if (isa<PragmaDetectMismatchDecl>(D))
11709     return true;
11710   else if (isa<OMPRequiresDecl>(D))
11711     return true;
11712   else if (isa<OMPThreadPrivateDecl>(D))
11713     return !D->getDeclContext()->isDependentContext();
11714   else if (isa<OMPAllocateDecl>(D))
11715     return !D->getDeclContext()->isDependentContext();
11716   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
11717     return !D->getDeclContext()->isDependentContext();
11718   else if (isa<ImportDecl>(D))
11719     return true;
11720   else
11721     return false;
11722 
11723   // If this is a member of a class template, we do not need to emit it.
11724   if (D->getDeclContext()->isDependentContext())
11725     return false;
11726 
11727   // Weak references don't produce any output by themselves.
11728   if (D->hasAttr<WeakRefAttr>())
11729     return false;
11730 
11731   // Aliases and used decls are required.
11732   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
11733     return true;
11734 
11735   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11736     // Forward declarations aren't required.
11737     if (!FD->doesThisDeclarationHaveABody())
11738       return FD->doesDeclarationForceExternallyVisibleDefinition();
11739 
11740     // Constructors and destructors are required.
11741     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
11742       return true;
11743 
11744     // The key function for a class is required.  This rule only comes
11745     // into play when inline functions can be key functions, though.
11746     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11747       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11748         const CXXRecordDecl *RD = MD->getParent();
11749         if (MD->isOutOfLine() && RD->isDynamicClass()) {
11750           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
11751           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
11752             return true;
11753         }
11754       }
11755     }
11756 
11757     GVALinkage Linkage = GetGVALinkageForFunction(FD);
11758 
11759     // static, static inline, always_inline, and extern inline functions can
11760     // always be deferred.  Normal inline functions can be deferred in C99/C++.
11761     // Implicit template instantiations can also be deferred in C++.
11762     return !isDiscardableGVALinkage(Linkage);
11763   }
11764 
11765   const auto *VD = cast<VarDecl>(D);
11766   assert(VD->isFileVarDecl() && "Expected file scoped var");
11767 
11768   // If the decl is marked as `declare target to`, it should be emitted for the
11769   // host and for the device.
11770   if (LangOpts.OpenMP &&
11771       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
11772     return true;
11773 
11774   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
11775       !isMSStaticDataMemberInlineDefinition(VD))
11776     return false;
11777 
11778   // Variables that can be needed in other TUs are required.
11779   auto Linkage = GetGVALinkageForVariable(VD);
11780   if (!isDiscardableGVALinkage(Linkage))
11781     return true;
11782 
11783   // We never need to emit a variable that is available in another TU.
11784   if (Linkage == GVA_AvailableExternally)
11785     return false;
11786 
11787   // Variables that have destruction with side-effects are required.
11788   if (VD->needsDestruction(*this))
11789     return true;
11790 
11791   // Variables that have initialization with side-effects are required.
11792   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11793       // We can get a value-dependent initializer during error recovery.
11794       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11795     return true;
11796 
11797   // Likewise, variables with tuple-like bindings are required if their
11798   // bindings have side-effects.
11799   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11800     for (const auto *BD : DD->bindings())
11801       if (const auto *BindingVD = BD->getHoldingVar())
11802         if (DeclMustBeEmitted(BindingVD))
11803           return true;
11804 
11805   return false;
11806 }
11807 
11808 void ASTContext::forEachMultiversionedFunctionVersion(
11809     const FunctionDecl *FD,
11810     llvm::function_ref<void(FunctionDecl *)> Pred) const {
11811   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
11812   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11813   FD = FD->getMostRecentDecl();
11814   // FIXME: The order of traversal here matters and depends on the order of
11815   // lookup results, which happens to be (mostly) oldest-to-newest, but we
11816   // shouldn't rely on that.
11817   for (auto *CurDecl :
11818        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11819     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11820     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11821         !llvm::is_contained(SeenDecls, CurFD)) {
11822       SeenDecls.insert(CurFD);
11823       Pred(CurFD);
11824     }
11825   }
11826 }
11827 
11828 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11829                                                     bool IsCXXMethod,
11830                                                     bool IsBuiltin) const {
11831   // Pass through to the C++ ABI object
11832   if (IsCXXMethod)
11833     return ABI->getDefaultMethodCallConv(IsVariadic);
11834 
11835   // Builtins ignore user-specified default calling convention and remain the
11836   // Target's default calling convention.
11837   if (!IsBuiltin) {
11838     switch (LangOpts.getDefaultCallingConv()) {
11839     case LangOptions::DCC_None:
11840       break;
11841     case LangOptions::DCC_CDecl:
11842       return CC_C;
11843     case LangOptions::DCC_FastCall:
11844       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11845         return CC_X86FastCall;
11846       break;
11847     case LangOptions::DCC_StdCall:
11848       if (!IsVariadic)
11849         return CC_X86StdCall;
11850       break;
11851     case LangOptions::DCC_VectorCall:
11852       // __vectorcall cannot be applied to variadic functions.
11853       if (!IsVariadic)
11854         return CC_X86VectorCall;
11855       break;
11856     case LangOptions::DCC_RegCall:
11857       // __regcall cannot be applied to variadic functions.
11858       if (!IsVariadic)
11859         return CC_X86RegCall;
11860       break;
11861     }
11862   }
11863   return Target->getDefaultCallingConv();
11864 }
11865 
11866 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11867   // Pass through to the C++ ABI object
11868   return ABI->isNearlyEmpty(RD);
11869 }
11870 
11871 VTableContextBase *ASTContext::getVTableContext() {
11872   if (!VTContext.get()) {
11873     auto ABI = Target->getCXXABI();
11874     if (ABI.isMicrosoft())
11875       VTContext.reset(new MicrosoftVTableContext(*this));
11876     else {
11877       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11878                                  ? ItaniumVTableContext::Relative
11879                                  : ItaniumVTableContext::Pointer;
11880       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
11881     }
11882   }
11883   return VTContext.get();
11884 }
11885 
11886 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
11887   if (!T)
11888     T = Target;
11889   switch (T->getCXXABI().getKind()) {
11890   case TargetCXXABI::AppleARM64:
11891   case TargetCXXABI::Fuchsia:
11892   case TargetCXXABI::GenericAArch64:
11893   case TargetCXXABI::GenericItanium:
11894   case TargetCXXABI::GenericARM:
11895   case TargetCXXABI::GenericMIPS:
11896   case TargetCXXABI::iOS:
11897   case TargetCXXABI::WebAssembly:
11898   case TargetCXXABI::WatchOS:
11899   case TargetCXXABI::XL:
11900     return ItaniumMangleContext::create(*this, getDiagnostics());
11901   case TargetCXXABI::Microsoft:
11902     return MicrosoftMangleContext::create(*this, getDiagnostics());
11903   }
11904   llvm_unreachable("Unsupported ABI");
11905 }
11906 
11907 MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
11908   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&
11909          "Device mangle context does not support Microsoft mangling.");
11910   switch (T.getCXXABI().getKind()) {
11911   case TargetCXXABI::AppleARM64:
11912   case TargetCXXABI::Fuchsia:
11913   case TargetCXXABI::GenericAArch64:
11914   case TargetCXXABI::GenericItanium:
11915   case TargetCXXABI::GenericARM:
11916   case TargetCXXABI::GenericMIPS:
11917   case TargetCXXABI::iOS:
11918   case TargetCXXABI::WebAssembly:
11919   case TargetCXXABI::WatchOS:
11920   case TargetCXXABI::XL:
11921     return ItaniumMangleContext::create(
11922         *this, getDiagnostics(),
11923         [](ASTContext &, const NamedDecl *ND) -> std::optional<unsigned> {
11924           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
11925             return RD->getDeviceLambdaManglingNumber();
11926           return std::nullopt;
11927         },
11928         /*IsAux=*/true);
11929   case TargetCXXABI::Microsoft:
11930     return MicrosoftMangleContext::create(*this, getDiagnostics(),
11931                                           /*IsAux=*/true);
11932   }
11933   llvm_unreachable("Unsupported ABI");
11934 }
11935 
11936 CXXABI::~CXXABI() = default;
11937 
11938 size_t ASTContext::getSideTableAllocatedMemory() const {
11939   return ASTRecordLayouts.getMemorySize() +
11940          llvm::capacity_in_bytes(ObjCLayouts) +
11941          llvm::capacity_in_bytes(KeyFunctions) +
11942          llvm::capacity_in_bytes(ObjCImpls) +
11943          llvm::capacity_in_bytes(BlockVarCopyInits) +
11944          llvm::capacity_in_bytes(DeclAttrs) +
11945          llvm::capacity_in_bytes(TemplateOrInstantiation) +
11946          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
11947          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
11948          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
11949          llvm::capacity_in_bytes(OverriddenMethods) +
11950          llvm::capacity_in_bytes(Types) +
11951          llvm::capacity_in_bytes(VariableArrayTypes);
11952 }
11953 
11954 /// getIntTypeForBitwidth -
11955 /// sets integer QualTy according to specified details:
11956 /// bitwidth, signed/unsigned.
11957 /// Returns empty type if there is no appropriate target types.
11958 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
11959                                            unsigned Signed) const {
11960   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
11961   CanQualType QualTy = getFromTargetType(Ty);
11962   if (!QualTy && DestWidth == 128)
11963     return Signed ? Int128Ty : UnsignedInt128Ty;
11964   return QualTy;
11965 }
11966 
11967 /// getRealTypeForBitwidth -
11968 /// sets floating point QualTy according to specified bitwidth.
11969 /// Returns empty type if there is no appropriate target types.
11970 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
11971                                             FloatModeKind ExplicitType) const {
11972   FloatModeKind Ty =
11973       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType);
11974   switch (Ty) {
11975   case FloatModeKind::Half:
11976     return HalfTy;
11977   case FloatModeKind::Float:
11978     return FloatTy;
11979   case FloatModeKind::Double:
11980     return DoubleTy;
11981   case FloatModeKind::LongDouble:
11982     return LongDoubleTy;
11983   case FloatModeKind::Float128:
11984     return Float128Ty;
11985   case FloatModeKind::Ibm128:
11986     return Ibm128Ty;
11987   case FloatModeKind::NoFloat:
11988     return {};
11989   }
11990 
11991   llvm_unreachable("Unhandled TargetInfo::RealType value");
11992 }
11993 
11994 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
11995   if (Number > 1)
11996     MangleNumbers[ND] = Number;
11997 }
11998 
11999 unsigned ASTContext::getManglingNumber(const NamedDecl *ND,
12000                                        bool ForAuxTarget) const {
12001   auto I = MangleNumbers.find(ND);
12002   unsigned Res = I != MangleNumbers.end() ? I->second : 1;
12003   // CUDA/HIP host compilation encodes host and device mangling numbers
12004   // as lower and upper half of 32 bit integer.
12005   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) {
12006     Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF;
12007   } else {
12008     assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling "
12009                             "number for aux target");
12010   }
12011   return Res > 1 ? Res : 1;
12012 }
12013 
12014 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
12015   if (Number > 1)
12016     StaticLocalNumbers[VD] = Number;
12017 }
12018 
12019 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
12020   auto I = StaticLocalNumbers.find(VD);
12021   return I != StaticLocalNumbers.end() ? I->second : 1;
12022 }
12023 
12024 MangleNumberingContext &
12025 ASTContext::getManglingNumberContext(const DeclContext *DC) {
12026   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
12027   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
12028   if (!MCtx)
12029     MCtx = createMangleNumberingContext();
12030   return *MCtx;
12031 }
12032 
12033 MangleNumberingContext &
12034 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
12035   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
12036   std::unique_ptr<MangleNumberingContext> &MCtx =
12037       ExtraMangleNumberingContexts[D];
12038   if (!MCtx)
12039     MCtx = createMangleNumberingContext();
12040   return *MCtx;
12041 }
12042 
12043 std::unique_ptr<MangleNumberingContext>
12044 ASTContext::createMangleNumberingContext() const {
12045   return ABI->createMangleNumberingContext();
12046 }
12047 
12048 const CXXConstructorDecl *
12049 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
12050   return ABI->getCopyConstructorForExceptionObject(
12051       cast<CXXRecordDecl>(RD->getFirstDecl()));
12052 }
12053 
12054 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
12055                                                       CXXConstructorDecl *CD) {
12056   return ABI->addCopyConstructorForExceptionObject(
12057       cast<CXXRecordDecl>(RD->getFirstDecl()),
12058       cast<CXXConstructorDecl>(CD->getFirstDecl()));
12059 }
12060 
12061 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
12062                                                  TypedefNameDecl *DD) {
12063   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
12064 }
12065 
12066 TypedefNameDecl *
12067 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
12068   return ABI->getTypedefNameForUnnamedTagDecl(TD);
12069 }
12070 
12071 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
12072                                                 DeclaratorDecl *DD) {
12073   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
12074 }
12075 
12076 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
12077   return ABI->getDeclaratorForUnnamedTagDecl(TD);
12078 }
12079 
12080 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
12081   ParamIndices[D] = index;
12082 }
12083 
12084 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
12085   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
12086   assert(I != ParamIndices.end() &&
12087          "ParmIndices lacks entry set by ParmVarDecl");
12088   return I->second;
12089 }
12090 
12091 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
12092                                                unsigned Length) const {
12093   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
12094   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
12095     EltTy = EltTy.withConst();
12096 
12097   EltTy = adjustStringLiteralBaseType(EltTy);
12098 
12099   // Get an array type for the string, according to C99 6.4.5. This includes
12100   // the null terminator character.
12101   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
12102                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
12103 }
12104 
12105 StringLiteral *
12106 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
12107   StringLiteral *&Result = StringLiteralCache[Key];
12108   if (!Result)
12109     Result = StringLiteral::Create(
12110         *this, Key, StringLiteral::Ordinary,
12111         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
12112         SourceLocation());
12113   return Result;
12114 }
12115 
12116 MSGuidDecl *
12117 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
12118   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
12119 
12120   llvm::FoldingSetNodeID ID;
12121   MSGuidDecl::Profile(ID, Parts);
12122 
12123   void *InsertPos;
12124   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
12125     return Existing;
12126 
12127   QualType GUIDType = getMSGuidType().withConst();
12128   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
12129   MSGuidDecls.InsertNode(New, InsertPos);
12130   return New;
12131 }
12132 
12133 UnnamedGlobalConstantDecl *
12134 ASTContext::getUnnamedGlobalConstantDecl(QualType Ty,
12135                                          const APValue &APVal) const {
12136   llvm::FoldingSetNodeID ID;
12137   UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal);
12138 
12139   void *InsertPos;
12140   if (UnnamedGlobalConstantDecl *Existing =
12141           UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos))
12142     return Existing;
12143 
12144   UnnamedGlobalConstantDecl *New =
12145       UnnamedGlobalConstantDecl::Create(*this, Ty, APVal);
12146   UnnamedGlobalConstantDecls.InsertNode(New, InsertPos);
12147   return New;
12148 }
12149 
12150 TemplateParamObjectDecl *
12151 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
12152   assert(T->isRecordType() && "template param object of unexpected type");
12153 
12154   // C++ [temp.param]p8:
12155   //   [...] a static storage duration object of type 'const T' [...]
12156   T.addConst();
12157 
12158   llvm::FoldingSetNodeID ID;
12159   TemplateParamObjectDecl::Profile(ID, T, V);
12160 
12161   void *InsertPos;
12162   if (TemplateParamObjectDecl *Existing =
12163           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
12164     return Existing;
12165 
12166   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
12167   TemplateParamObjectDecls.InsertNode(New, InsertPos);
12168   return New;
12169 }
12170 
12171 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
12172   const llvm::Triple &T = getTargetInfo().getTriple();
12173   if (!T.isOSDarwin())
12174     return false;
12175 
12176   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
12177       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
12178     return false;
12179 
12180   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
12181   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
12182   uint64_t Size = sizeChars.getQuantity();
12183   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
12184   unsigned Align = alignChars.getQuantity();
12185   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
12186   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
12187 }
12188 
12189 bool
12190 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
12191                                 const ObjCMethodDecl *MethodImpl) {
12192   // No point trying to match an unavailable/deprecated mothod.
12193   if (MethodDecl->hasAttr<UnavailableAttr>()
12194       || MethodDecl->hasAttr<DeprecatedAttr>())
12195     return false;
12196   if (MethodDecl->getObjCDeclQualifier() !=
12197       MethodImpl->getObjCDeclQualifier())
12198     return false;
12199   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
12200     return false;
12201 
12202   if (MethodDecl->param_size() != MethodImpl->param_size())
12203     return false;
12204 
12205   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
12206        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
12207        EF = MethodDecl->param_end();
12208        IM != EM && IF != EF; ++IM, ++IF) {
12209     const ParmVarDecl *DeclVar = (*IF);
12210     const ParmVarDecl *ImplVar = (*IM);
12211     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
12212       return false;
12213     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
12214       return false;
12215   }
12216 
12217   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
12218 }
12219 
12220 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
12221   LangAS AS;
12222   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
12223     AS = LangAS::Default;
12224   else
12225     AS = QT->getPointeeType().getAddressSpace();
12226 
12227   return getTargetInfo().getNullPointerValue(AS);
12228 }
12229 
12230 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
12231   return getTargetInfo().getTargetAddressSpace(AS);
12232 }
12233 
12234 bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const {
12235   if (X == Y)
12236     return true;
12237   if (!X || !Y)
12238     return false;
12239   llvm::FoldingSetNodeID IDX, IDY;
12240   X->Profile(IDX, *this, /*Canonical=*/true);
12241   Y->Profile(IDY, *this, /*Canonical=*/true);
12242   return IDX == IDY;
12243 }
12244 
12245 // The getCommon* helpers return, for given 'same' X and Y entities given as
12246 // inputs, another entity which is also the 'same' as the inputs, but which
12247 // is closer to the canonical form of the inputs, each according to a given
12248 // criteria.
12249 // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of
12250 // the regular ones.
12251 
12252 static Decl *getCommonDecl(Decl *X, Decl *Y) {
12253   if (!declaresSameEntity(X, Y))
12254     return nullptr;
12255   for (const Decl *DX : X->redecls()) {
12256     // If we reach Y before reaching the first decl, that means X is older.
12257     if (DX == Y)
12258       return X;
12259     // If we reach the first decl, then Y is older.
12260     if (DX->isFirstDecl())
12261       return Y;
12262   }
12263   llvm_unreachable("Corrupt redecls chain");
12264 }
12265 
12266 template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12267 static T *getCommonDecl(T *X, T *Y) {
12268   return cast_or_null<T>(
12269       getCommonDecl(const_cast<Decl *>(cast_or_null<Decl>(X)),
12270                     const_cast<Decl *>(cast_or_null<Decl>(Y))));
12271 }
12272 
12273 template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12274 static T *getCommonDeclChecked(T *X, T *Y) {
12275   return cast<T>(getCommonDecl(const_cast<Decl *>(cast<Decl>(X)),
12276                                const_cast<Decl *>(cast<Decl>(Y))));
12277 }
12278 
12279 static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X,
12280                                           TemplateName Y) {
12281   if (X.getAsVoidPointer() == Y.getAsVoidPointer())
12282     return X;
12283   // FIXME: There are cases here where we could find a common template name
12284   //        with more sugar. For example one could be a SubstTemplateTemplate*
12285   //        replacing the other.
12286   TemplateName CX = Ctx.getCanonicalTemplateName(X);
12287   if (CX.getAsVoidPointer() !=
12288       Ctx.getCanonicalTemplateName(Y).getAsVoidPointer())
12289     return TemplateName();
12290   return CX;
12291 }
12292 
12293 static TemplateName
12294 getCommonTemplateNameChecked(ASTContext &Ctx, TemplateName X, TemplateName Y) {
12295   TemplateName R = getCommonTemplateName(Ctx, X, Y);
12296   assert(R.getAsVoidPointer() != nullptr);
12297   return R;
12298 }
12299 
12300 static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs,
12301                            ArrayRef<QualType> Ys, bool Unqualified = false) {
12302   assert(Xs.size() == Ys.size());
12303   SmallVector<QualType, 8> Rs(Xs.size());
12304   for (size_t I = 0; I < Rs.size(); ++I)
12305     Rs[I] = Ctx.getCommonSugaredType(Xs[I], Ys[I], Unqualified);
12306   return Rs;
12307 }
12308 
12309 template <class T>
12310 static SourceLocation getCommonAttrLoc(const T *X, const T *Y) {
12311   return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc()
12312                                                       : SourceLocation();
12313 }
12314 
12315 static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx,
12316                                                   const TemplateArgument &X,
12317                                                   const TemplateArgument &Y) {
12318   if (X.getKind() != Y.getKind())
12319     return TemplateArgument();
12320 
12321   switch (X.getKind()) {
12322   case TemplateArgument::ArgKind::Type:
12323     if (!Ctx.hasSameType(X.getAsType(), Y.getAsType()))
12324       return TemplateArgument();
12325     return TemplateArgument(
12326         Ctx.getCommonSugaredType(X.getAsType(), Y.getAsType()));
12327   case TemplateArgument::ArgKind::NullPtr:
12328     if (!Ctx.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
12329       return TemplateArgument();
12330     return TemplateArgument(
12331         Ctx.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
12332         /*Unqualified=*/true);
12333   case TemplateArgument::ArgKind::Expression:
12334     if (!Ctx.hasSameType(X.getAsExpr()->getType(), Y.getAsExpr()->getType()))
12335       return TemplateArgument();
12336     // FIXME: Try to keep the common sugar.
12337     return X;
12338   case TemplateArgument::ArgKind::Template: {
12339     TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate();
12340     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12341     if (!CTN.getAsVoidPointer())
12342       return TemplateArgument();
12343     return TemplateArgument(CTN);
12344   }
12345   case TemplateArgument::ArgKind::TemplateExpansion: {
12346     TemplateName TX = X.getAsTemplateOrTemplatePattern(),
12347                  TY = Y.getAsTemplateOrTemplatePattern();
12348     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12349     if (!CTN.getAsVoidPointer())
12350       return TemplateName();
12351     auto NExpX = X.getNumTemplateExpansions();
12352     assert(NExpX == Y.getNumTemplateExpansions());
12353     return TemplateArgument(CTN, NExpX);
12354   }
12355   default:
12356     // FIXME: Handle the other argument kinds.
12357     return X;
12358   }
12359 }
12360 
12361 static bool getCommonTemplateArguments(ASTContext &Ctx,
12362                                        SmallVectorImpl<TemplateArgument> &R,
12363                                        ArrayRef<TemplateArgument> Xs,
12364                                        ArrayRef<TemplateArgument> Ys) {
12365   if (Xs.size() != Ys.size())
12366     return true;
12367   R.resize(Xs.size());
12368   for (size_t I = 0; I < R.size(); ++I) {
12369     R[I] = getCommonTemplateArgument(Ctx, Xs[I], Ys[I]);
12370     if (R[I].isNull())
12371       return true;
12372   }
12373   return false;
12374 }
12375 
12376 static auto getCommonTemplateArguments(ASTContext &Ctx,
12377                                        ArrayRef<TemplateArgument> Xs,
12378                                        ArrayRef<TemplateArgument> Ys) {
12379   SmallVector<TemplateArgument, 8> R;
12380   bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys);
12381   assert(!Different);
12382   (void)Different;
12383   return R;
12384 }
12385 
12386 template <class T>
12387 static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) {
12388   return X->getKeyword() == Y->getKeyword() ? X->getKeyword()
12389                                             : ElaboratedTypeKeyword::ETK_None;
12390 }
12391 
12392 template <class T>
12393 static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, const T *X,
12394                                          const T *Y) {
12395   // FIXME: Try to keep the common NNS sugar.
12396   return X->getQualifier() == Y->getQualifier()
12397              ? X->getQualifier()
12398              : Ctx.getCanonicalNestedNameSpecifier(X->getQualifier());
12399 }
12400 
12401 template <class T>
12402 static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) {
12403   return Ctx.getCommonSugaredType(X->getElementType(), Y->getElementType());
12404 }
12405 
12406 template <class T>
12407 static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X,
12408                                           Qualifiers &QX, const T *Y,
12409                                           Qualifiers &QY) {
12410   QualType EX = X->getElementType(), EY = Y->getElementType();
12411   QualType R = Ctx.getCommonSugaredType(EX, EY,
12412                                         /*Unqualified=*/true);
12413   Qualifiers RQ = R.getQualifiers();
12414   QX += EX.getQualifiers() - RQ;
12415   QY += EY.getQualifiers() - RQ;
12416   return R;
12417 }
12418 
12419 template <class T>
12420 static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) {
12421   return Ctx.getCommonSugaredType(X->getPointeeType(), Y->getPointeeType());
12422 }
12423 
12424 template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) {
12425   assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr()));
12426   return X->getSizeExpr();
12427 }
12428 
12429 static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) {
12430   assert(X->getSizeModifier() == Y->getSizeModifier());
12431   return X->getSizeModifier();
12432 }
12433 
12434 static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X,
12435                                             const ArrayType *Y) {
12436   assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers());
12437   return X->getIndexTypeCVRQualifiers();
12438 }
12439 
12440 // Merges two type lists such that the resulting vector will contain
12441 // each type (in a canonical sense) only once, in the order they appear
12442 // from X to Y. If they occur in both X and Y, the result will contain
12443 // the common sugared type between them.
12444 static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out,
12445                            ArrayRef<QualType> X, ArrayRef<QualType> Y) {
12446   llvm::DenseMap<QualType, unsigned> Found;
12447   for (auto Ts : {X, Y}) {
12448     for (QualType T : Ts) {
12449       auto Res = Found.try_emplace(Ctx.getCanonicalType(T), Out.size());
12450       if (!Res.second) {
12451         QualType &U = Out[Res.first->second];
12452         U = Ctx.getCommonSugaredType(U, T);
12453       } else {
12454         Out.emplace_back(T);
12455       }
12456     }
12457   }
12458 }
12459 
12460 FunctionProtoType::ExceptionSpecInfo
12461 ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
12462                                 FunctionProtoType::ExceptionSpecInfo ESI2,
12463                                 SmallVectorImpl<QualType> &ExceptionTypeStorage,
12464                                 bool AcceptDependent) {
12465   ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type;
12466 
12467   // If either of them can throw anything, that is the result.
12468   for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) {
12469     if (EST1 == I)
12470       return ESI1;
12471     if (EST2 == I)
12472       return ESI2;
12473   }
12474 
12475   // If either of them is non-throwing, the result is the other.
12476   for (auto I :
12477        {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) {
12478     if (EST1 == I)
12479       return ESI2;
12480     if (EST2 == I)
12481       return ESI1;
12482   }
12483 
12484   // If we're left with value-dependent computed noexcept expressions, we're
12485   // stuck. Before C++17, we can just drop the exception specification entirely,
12486   // since it's not actually part of the canonical type. And this should never
12487   // happen in C++17, because it would mean we were computing the composite
12488   // pointer type of dependent types, which should never happen.
12489   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
12490     assert(AcceptDependent &&
12491            "computing composite pointer type of dependent types");
12492     return FunctionProtoType::ExceptionSpecInfo();
12493   }
12494 
12495   // Switch over the possibilities so that people adding new values know to
12496   // update this function.
12497   switch (EST1) {
12498   case EST_None:
12499   case EST_DynamicNone:
12500   case EST_MSAny:
12501   case EST_BasicNoexcept:
12502   case EST_DependentNoexcept:
12503   case EST_NoexceptFalse:
12504   case EST_NoexceptTrue:
12505   case EST_NoThrow:
12506     llvm_unreachable("These ESTs should be handled above");
12507 
12508   case EST_Dynamic: {
12509     // This is the fun case: both exception specifications are dynamic. Form
12510     // the union of the two lists.
12511     assert(EST2 == EST_Dynamic && "other cases should already be handled");
12512     mergeTypeLists(*this, ExceptionTypeStorage, ESI1.Exceptions,
12513                    ESI2.Exceptions);
12514     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
12515     Result.Exceptions = ExceptionTypeStorage;
12516     return Result;
12517   }
12518 
12519   case EST_Unevaluated:
12520   case EST_Uninstantiated:
12521   case EST_Unparsed:
12522     llvm_unreachable("shouldn't see unresolved exception specifications here");
12523   }
12524 
12525   llvm_unreachable("invalid ExceptionSpecificationType");
12526 }
12527 
12528 static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X,
12529                                           Qualifiers &QX, const Type *Y,
12530                                           Qualifiers &QY) {
12531   Type::TypeClass TC = X->getTypeClass();
12532   assert(TC == Y->getTypeClass());
12533   switch (TC) {
12534 #define UNEXPECTED_TYPE(Class, Kind)                                           \
12535   case Type::Class:                                                            \
12536     llvm_unreachable("Unexpected " Kind ": " #Class);
12537 
12538 #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical")
12539 #define TYPE(Class, Base)
12540 #include "clang/AST/TypeNodes.inc"
12541 
12542 #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free")
12543     SUGAR_FREE_TYPE(Builtin)
12544     SUGAR_FREE_TYPE(Decltype)
12545     SUGAR_FREE_TYPE(DeducedTemplateSpecialization)
12546     SUGAR_FREE_TYPE(DependentBitInt)
12547     SUGAR_FREE_TYPE(Enum)
12548     SUGAR_FREE_TYPE(BitInt)
12549     SUGAR_FREE_TYPE(ObjCInterface)
12550     SUGAR_FREE_TYPE(Record)
12551     SUGAR_FREE_TYPE(SubstTemplateTypeParmPack)
12552     SUGAR_FREE_TYPE(UnresolvedUsing)
12553 #undef SUGAR_FREE_TYPE
12554 #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique")
12555     NON_UNIQUE_TYPE(TypeOfExpr)
12556     NON_UNIQUE_TYPE(VariableArray)
12557 #undef NON_UNIQUE_TYPE
12558 
12559     UNEXPECTED_TYPE(TypeOf, "sugar")
12560 
12561 #undef UNEXPECTED_TYPE
12562 
12563   case Type::Auto: {
12564     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
12565     assert(AX->getDeducedType().isNull());
12566     assert(AY->getDeducedType().isNull());
12567     assert(AX->getKeyword() == AY->getKeyword());
12568     assert(AX->isInstantiationDependentType() ==
12569            AY->isInstantiationDependentType());
12570     auto As = getCommonTemplateArguments(Ctx, AX->getTypeConstraintArguments(),
12571                                          AY->getTypeConstraintArguments());
12572     return Ctx.getAutoType(QualType(), AX->getKeyword(),
12573                            AX->isInstantiationDependentType(),
12574                            AX->containsUnexpandedParameterPack(),
12575                            getCommonDeclChecked(AX->getTypeConstraintConcept(),
12576                                                 AY->getTypeConstraintConcept()),
12577                            As);
12578   }
12579   case Type::IncompleteArray: {
12580     const auto *AX = cast<IncompleteArrayType>(X),
12581                *AY = cast<IncompleteArrayType>(Y);
12582     return Ctx.getIncompleteArrayType(
12583         getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12584         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12585   }
12586   case Type::DependentSizedArray: {
12587     const auto *AX = cast<DependentSizedArrayType>(X),
12588                *AY = cast<DependentSizedArrayType>(Y);
12589     return Ctx.getDependentSizedArrayType(
12590         getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12591         getCommonSizeExpr(Ctx, AX, AY), getCommonSizeModifier(AX, AY),
12592         getCommonIndexTypeCVRQualifiers(AX, AY),
12593         AX->getBracketsRange() == AY->getBracketsRange()
12594             ? AX->getBracketsRange()
12595             : SourceRange());
12596   }
12597   case Type::ConstantArray: {
12598     const auto *AX = cast<ConstantArrayType>(X),
12599                *AY = cast<ConstantArrayType>(Y);
12600     assert(AX->getSize() == AY->getSize());
12601     const Expr *SizeExpr = Ctx.hasSameExpr(AX->getSizeExpr(), AY->getSizeExpr())
12602                                ? AX->getSizeExpr()
12603                                : nullptr;
12604     return Ctx.getConstantArrayType(
12605         getCommonArrayElementType(Ctx, AX, QX, AY, QY), AX->getSize(), SizeExpr,
12606         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12607   }
12608   case Type::Atomic: {
12609     const auto *AX = cast<AtomicType>(X), *AY = cast<AtomicType>(Y);
12610     return Ctx.getAtomicType(
12611         Ctx.getCommonSugaredType(AX->getValueType(), AY->getValueType()));
12612   }
12613   case Type::Complex: {
12614     const auto *CX = cast<ComplexType>(X), *CY = cast<ComplexType>(Y);
12615     return Ctx.getComplexType(getCommonArrayElementType(Ctx, CX, QX, CY, QY));
12616   }
12617   case Type::Pointer: {
12618     const auto *PX = cast<PointerType>(X), *PY = cast<PointerType>(Y);
12619     return Ctx.getPointerType(getCommonPointeeType(Ctx, PX, PY));
12620   }
12621   case Type::BlockPointer: {
12622     const auto *PX = cast<BlockPointerType>(X), *PY = cast<BlockPointerType>(Y);
12623     return Ctx.getBlockPointerType(getCommonPointeeType(Ctx, PX, PY));
12624   }
12625   case Type::ObjCObjectPointer: {
12626     const auto *PX = cast<ObjCObjectPointerType>(X),
12627                *PY = cast<ObjCObjectPointerType>(Y);
12628     return Ctx.getObjCObjectPointerType(getCommonPointeeType(Ctx, PX, PY));
12629   }
12630   case Type::MemberPointer: {
12631     const auto *PX = cast<MemberPointerType>(X),
12632                *PY = cast<MemberPointerType>(Y);
12633     return Ctx.getMemberPointerType(
12634         getCommonPointeeType(Ctx, PX, PY),
12635         Ctx.getCommonSugaredType(QualType(PX->getClass(), 0),
12636                                  QualType(PY->getClass(), 0))
12637             .getTypePtr());
12638   }
12639   case Type::LValueReference: {
12640     const auto *PX = cast<LValueReferenceType>(X),
12641                *PY = cast<LValueReferenceType>(Y);
12642     // FIXME: Preserve PointeeTypeAsWritten.
12643     return Ctx.getLValueReferenceType(getCommonPointeeType(Ctx, PX, PY),
12644                                       PX->isSpelledAsLValue() ||
12645                                           PY->isSpelledAsLValue());
12646   }
12647   case Type::RValueReference: {
12648     const auto *PX = cast<RValueReferenceType>(X),
12649                *PY = cast<RValueReferenceType>(Y);
12650     // FIXME: Preserve PointeeTypeAsWritten.
12651     return Ctx.getRValueReferenceType(getCommonPointeeType(Ctx, PX, PY));
12652   }
12653   case Type::DependentAddressSpace: {
12654     const auto *PX = cast<DependentAddressSpaceType>(X),
12655                *PY = cast<DependentAddressSpaceType>(Y);
12656     assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr()));
12657     return Ctx.getDependentAddressSpaceType(getCommonPointeeType(Ctx, PX, PY),
12658                                             PX->getAddrSpaceExpr(),
12659                                             getCommonAttrLoc(PX, PY));
12660   }
12661   case Type::FunctionNoProto: {
12662     const auto *FX = cast<FunctionNoProtoType>(X),
12663                *FY = cast<FunctionNoProtoType>(Y);
12664     assert(FX->getExtInfo() == FY->getExtInfo());
12665     return Ctx.getFunctionNoProtoType(
12666         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()),
12667         FX->getExtInfo());
12668   }
12669   case Type::FunctionProto: {
12670     const auto *FX = cast<FunctionProtoType>(X),
12671                *FY = cast<FunctionProtoType>(Y);
12672     FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(),
12673                                     EPIY = FY->getExtProtoInfo();
12674     assert(EPIX.ExtInfo == EPIY.ExtInfo);
12675     assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos);
12676     assert(EPIX.RefQualifier == EPIY.RefQualifier);
12677     assert(EPIX.TypeQuals == EPIY.TypeQuals);
12678     assert(EPIX.Variadic == EPIY.Variadic);
12679 
12680     // FIXME: Can we handle an empty EllipsisLoc?
12681     //        Use emtpy EllipsisLoc if X and Y differ.
12682 
12683     EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn;
12684 
12685     QualType R =
12686         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType());
12687     auto P = getCommonTypes(Ctx, FX->param_types(), FY->param_types(),
12688                             /*Unqualified=*/true);
12689 
12690     SmallVector<QualType, 8> Exceptions;
12691     EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs(
12692         EPIX.ExceptionSpec, EPIY.ExceptionSpec, Exceptions, true);
12693     return Ctx.getFunctionType(R, P, EPIX);
12694   }
12695   case Type::ObjCObject: {
12696     const auto *OX = cast<ObjCObjectType>(X), *OY = cast<ObjCObjectType>(Y);
12697     assert(
12698         std::equal(OX->getProtocols().begin(), OX->getProtocols().end(),
12699                    OY->getProtocols().begin(), OY->getProtocols().end(),
12700                    [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) {
12701                      return P0->getCanonicalDecl() == P1->getCanonicalDecl();
12702                    }) &&
12703         "protocol lists must be the same");
12704     auto TAs = getCommonTypes(Ctx, OX->getTypeArgsAsWritten(),
12705                               OY->getTypeArgsAsWritten());
12706     return Ctx.getObjCObjectType(
12707         Ctx.getCommonSugaredType(OX->getBaseType(), OY->getBaseType()), TAs,
12708         OX->getProtocols(),
12709         OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten());
12710   }
12711   case Type::ConstantMatrix: {
12712     const auto *MX = cast<ConstantMatrixType>(X),
12713                *MY = cast<ConstantMatrixType>(Y);
12714     assert(MX->getNumRows() == MY->getNumRows());
12715     assert(MX->getNumColumns() == MY->getNumColumns());
12716     return Ctx.getConstantMatrixType(getCommonElementType(Ctx, MX, MY),
12717                                      MX->getNumRows(), MX->getNumColumns());
12718   }
12719   case Type::DependentSizedMatrix: {
12720     const auto *MX = cast<DependentSizedMatrixType>(X),
12721                *MY = cast<DependentSizedMatrixType>(Y);
12722     assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr()));
12723     assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr()));
12724     return Ctx.getDependentSizedMatrixType(
12725         getCommonElementType(Ctx, MX, MY), MX->getRowExpr(),
12726         MX->getColumnExpr(), getCommonAttrLoc(MX, MY));
12727   }
12728   case Type::Vector: {
12729     const auto *VX = cast<VectorType>(X), *VY = cast<VectorType>(Y);
12730     assert(VX->getNumElements() == VY->getNumElements());
12731     assert(VX->getVectorKind() == VY->getVectorKind());
12732     return Ctx.getVectorType(getCommonElementType(Ctx, VX, VY),
12733                              VX->getNumElements(), VX->getVectorKind());
12734   }
12735   case Type::ExtVector: {
12736     const auto *VX = cast<ExtVectorType>(X), *VY = cast<ExtVectorType>(Y);
12737     assert(VX->getNumElements() == VY->getNumElements());
12738     return Ctx.getExtVectorType(getCommonElementType(Ctx, VX, VY),
12739                                 VX->getNumElements());
12740   }
12741   case Type::DependentSizedExtVector: {
12742     const auto *VX = cast<DependentSizedExtVectorType>(X),
12743                *VY = cast<DependentSizedExtVectorType>(Y);
12744     return Ctx.getDependentSizedExtVectorType(getCommonElementType(Ctx, VX, VY),
12745                                               getCommonSizeExpr(Ctx, VX, VY),
12746                                               getCommonAttrLoc(VX, VY));
12747   }
12748   case Type::DependentVector: {
12749     const auto *VX = cast<DependentVectorType>(X),
12750                *VY = cast<DependentVectorType>(Y);
12751     assert(VX->getVectorKind() == VY->getVectorKind());
12752     return Ctx.getDependentVectorType(
12753         getCommonElementType(Ctx, VX, VY), getCommonSizeExpr(Ctx, VX, VY),
12754         getCommonAttrLoc(VX, VY), VX->getVectorKind());
12755   }
12756   case Type::InjectedClassName: {
12757     const auto *IX = cast<InjectedClassNameType>(X),
12758                *IY = cast<InjectedClassNameType>(Y);
12759     return Ctx.getInjectedClassNameType(
12760         getCommonDeclChecked(IX->getDecl(), IY->getDecl()),
12761         Ctx.getCommonSugaredType(IX->getInjectedSpecializationType(),
12762                                  IY->getInjectedSpecializationType()));
12763   }
12764   case Type::TemplateSpecialization: {
12765     const auto *TX = cast<TemplateSpecializationType>(X),
12766                *TY = cast<TemplateSpecializationType>(Y);
12767     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12768                                          TY->template_arguments());
12769     return Ctx.getTemplateSpecializationType(
12770         ::getCommonTemplateNameChecked(Ctx, TX->getTemplateName(),
12771                                        TY->getTemplateName()),
12772         As, X->getCanonicalTypeInternal());
12773   }
12774   case Type::DependentName: {
12775     const auto *NX = cast<DependentNameType>(X),
12776                *NY = cast<DependentNameType>(Y);
12777     assert(NX->getIdentifier() == NY->getIdentifier());
12778     return Ctx.getDependentNameType(
12779         getCommonTypeKeyword(NX, NY), getCommonNNS(Ctx, NX, NY),
12780         NX->getIdentifier(), NX->getCanonicalTypeInternal());
12781   }
12782   case Type::DependentTemplateSpecialization: {
12783     const auto *TX = cast<DependentTemplateSpecializationType>(X),
12784                *TY = cast<DependentTemplateSpecializationType>(Y);
12785     assert(TX->getIdentifier() == TY->getIdentifier());
12786     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12787                                          TY->template_arguments());
12788     return Ctx.getDependentTemplateSpecializationType(
12789         getCommonTypeKeyword(TX, TY), getCommonNNS(Ctx, TX, TY),
12790         TX->getIdentifier(), As);
12791   }
12792   case Type::UnaryTransform: {
12793     const auto *TX = cast<UnaryTransformType>(X),
12794                *TY = cast<UnaryTransformType>(Y);
12795     assert(TX->getUTTKind() == TY->getUTTKind());
12796     return Ctx.getUnaryTransformType(
12797         Ctx.getCommonSugaredType(TX->getBaseType(), TY->getBaseType()),
12798         Ctx.getCommonSugaredType(TX->getUnderlyingType(),
12799                                  TY->getUnderlyingType()),
12800         TX->getUTTKind());
12801   }
12802   case Type::PackExpansion: {
12803     const auto *PX = cast<PackExpansionType>(X),
12804                *PY = cast<PackExpansionType>(Y);
12805     assert(PX->getNumExpansions() == PY->getNumExpansions());
12806     return Ctx.getPackExpansionType(
12807         Ctx.getCommonSugaredType(PX->getPattern(), PY->getPattern()),
12808         PX->getNumExpansions(), false);
12809   }
12810   case Type::Pipe: {
12811     const auto *PX = cast<PipeType>(X), *PY = cast<PipeType>(Y);
12812     assert(PX->isReadOnly() == PY->isReadOnly());
12813     auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType
12814                                : &ASTContext::getWritePipeType;
12815     return (Ctx.*MP)(getCommonElementType(Ctx, PX, PY));
12816   }
12817   case Type::TemplateTypeParm: {
12818     const auto *TX = cast<TemplateTypeParmType>(X),
12819                *TY = cast<TemplateTypeParmType>(Y);
12820     assert(TX->getDepth() == TY->getDepth());
12821     assert(TX->getIndex() == TY->getIndex());
12822     assert(TX->isParameterPack() == TY->isParameterPack());
12823     return Ctx.getTemplateTypeParmType(
12824         TX->getDepth(), TX->getIndex(), TX->isParameterPack(),
12825         getCommonDecl(TX->getDecl(), TY->getDecl()));
12826   }
12827   }
12828   llvm_unreachable("Unknown Type Class");
12829 }
12830 
12831 static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X,
12832                                        const Type *Y,
12833                                        SplitQualType Underlying) {
12834   Type::TypeClass TC = X->getTypeClass();
12835   if (TC != Y->getTypeClass())
12836     return QualType();
12837   switch (TC) {
12838 #define UNEXPECTED_TYPE(Class, Kind)                                           \
12839   case Type::Class:                                                            \
12840     llvm_unreachable("Unexpected " Kind ": " #Class);
12841 #define TYPE(Class, Base)
12842 #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent")
12843 #include "clang/AST/TypeNodes.inc"
12844 
12845 #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical")
12846     CANONICAL_TYPE(Atomic)
12847     CANONICAL_TYPE(BitInt)
12848     CANONICAL_TYPE(BlockPointer)
12849     CANONICAL_TYPE(Builtin)
12850     CANONICAL_TYPE(Complex)
12851     CANONICAL_TYPE(ConstantArray)
12852     CANONICAL_TYPE(ConstantMatrix)
12853     CANONICAL_TYPE(Enum)
12854     CANONICAL_TYPE(ExtVector)
12855     CANONICAL_TYPE(FunctionNoProto)
12856     CANONICAL_TYPE(FunctionProto)
12857     CANONICAL_TYPE(IncompleteArray)
12858     CANONICAL_TYPE(LValueReference)
12859     CANONICAL_TYPE(MemberPointer)
12860     CANONICAL_TYPE(ObjCInterface)
12861     CANONICAL_TYPE(ObjCObject)
12862     CANONICAL_TYPE(ObjCObjectPointer)
12863     CANONICAL_TYPE(Pipe)
12864     CANONICAL_TYPE(Pointer)
12865     CANONICAL_TYPE(Record)
12866     CANONICAL_TYPE(RValueReference)
12867     CANONICAL_TYPE(VariableArray)
12868     CANONICAL_TYPE(Vector)
12869 #undef CANONICAL_TYPE
12870 
12871 #undef UNEXPECTED_TYPE
12872 
12873   case Type::Adjusted: {
12874     const auto *AX = cast<AdjustedType>(X), *AY = cast<AdjustedType>(Y);
12875     QualType OX = AX->getOriginalType(), OY = AY->getOriginalType();
12876     if (!Ctx.hasSameType(OX, OY))
12877       return QualType();
12878     // FIXME: It's inefficient to have to unify the original types.
12879     return Ctx.getAdjustedType(Ctx.getCommonSugaredType(OX, OY),
12880                                Ctx.getQualifiedType(Underlying));
12881   }
12882   case Type::Decayed: {
12883     const auto *DX = cast<DecayedType>(X), *DY = cast<DecayedType>(Y);
12884     QualType OX = DX->getOriginalType(), OY = DY->getOriginalType();
12885     if (!Ctx.hasSameType(OX, OY))
12886       return QualType();
12887     // FIXME: It's inefficient to have to unify the original types.
12888     return Ctx.getDecayedType(Ctx.getCommonSugaredType(OX, OY),
12889                               Ctx.getQualifiedType(Underlying));
12890   }
12891   case Type::Attributed: {
12892     const auto *AX = cast<AttributedType>(X), *AY = cast<AttributedType>(Y);
12893     AttributedType::Kind Kind = AX->getAttrKind();
12894     if (Kind != AY->getAttrKind())
12895       return QualType();
12896     QualType MX = AX->getModifiedType(), MY = AY->getModifiedType();
12897     if (!Ctx.hasSameType(MX, MY))
12898       return QualType();
12899     // FIXME: It's inefficient to have to unify the modified types.
12900     return Ctx.getAttributedType(Kind, Ctx.getCommonSugaredType(MX, MY),
12901                                  Ctx.getQualifiedType(Underlying));
12902   }
12903   case Type::BTFTagAttributed: {
12904     const auto *BX = cast<BTFTagAttributedType>(X);
12905     const BTFTypeTagAttr *AX = BX->getAttr();
12906     // The attribute is not uniqued, so just compare the tag.
12907     if (AX->getBTFTypeTag() !=
12908         cast<BTFTagAttributedType>(Y)->getAttr()->getBTFTypeTag())
12909       return QualType();
12910     return Ctx.getBTFTagAttributedType(AX, Ctx.getQualifiedType(Underlying));
12911   }
12912   case Type::Auto: {
12913     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
12914 
12915     AutoTypeKeyword KW = AX->getKeyword();
12916     if (KW != AY->getKeyword())
12917       return QualType();
12918 
12919     ConceptDecl *CD = ::getCommonDecl(AX->getTypeConstraintConcept(),
12920                                       AY->getTypeConstraintConcept());
12921     SmallVector<TemplateArgument, 8> As;
12922     if (CD &&
12923         getCommonTemplateArguments(Ctx, As, AX->getTypeConstraintArguments(),
12924                                    AY->getTypeConstraintArguments()))
12925       CD = nullptr; // The arguments differ, so make it unconstrained.
12926 
12927     // Both auto types can't be dependent, otherwise they wouldn't have been
12928     // sugar. This implies they can't contain unexpanded packs either.
12929     return Ctx.getAutoType(Ctx.getQualifiedType(Underlying), AX->getKeyword(),
12930                            /*IsDependent=*/false, /*IsPack=*/false, CD, As);
12931   }
12932   case Type::Decltype:
12933     return QualType();
12934   case Type::DeducedTemplateSpecialization:
12935     // FIXME: Try to merge these.
12936     return QualType();
12937 
12938   case Type::Elaborated: {
12939     const auto *EX = cast<ElaboratedType>(X), *EY = cast<ElaboratedType>(Y);
12940     return Ctx.getElaboratedType(
12941         ::getCommonTypeKeyword(EX, EY), ::getCommonNNS(Ctx, EX, EY),
12942         Ctx.getQualifiedType(Underlying),
12943         ::getCommonDecl(EX->getOwnedTagDecl(), EY->getOwnedTagDecl()));
12944   }
12945   case Type::MacroQualified: {
12946     const auto *MX = cast<MacroQualifiedType>(X),
12947                *MY = cast<MacroQualifiedType>(Y);
12948     const IdentifierInfo *IX = MX->getMacroIdentifier();
12949     if (IX != MY->getMacroIdentifier())
12950       return QualType();
12951     return Ctx.getMacroQualifiedType(Ctx.getQualifiedType(Underlying), IX);
12952   }
12953   case Type::SubstTemplateTypeParm: {
12954     const auto *SX = cast<SubstTemplateTypeParmType>(X),
12955                *SY = cast<SubstTemplateTypeParmType>(Y);
12956     Decl *CD =
12957         ::getCommonDecl(SX->getAssociatedDecl(), SY->getAssociatedDecl());
12958     if (!CD)
12959       return QualType();
12960     unsigned Index = SX->getIndex();
12961     if (Index != SY->getIndex())
12962       return QualType();
12963     auto PackIndex = SX->getPackIndex();
12964     if (PackIndex != SY->getPackIndex())
12965       return QualType();
12966     return Ctx.getSubstTemplateTypeParmType(Ctx.getQualifiedType(Underlying),
12967                                             CD, Index, PackIndex);
12968   }
12969   case Type::ObjCTypeParam:
12970     // FIXME: Try to merge these.
12971     return QualType();
12972   case Type::Paren:
12973     return Ctx.getParenType(Ctx.getQualifiedType(Underlying));
12974 
12975   case Type::TemplateSpecialization: {
12976     const auto *TX = cast<TemplateSpecializationType>(X),
12977                *TY = cast<TemplateSpecializationType>(Y);
12978     TemplateName CTN = ::getCommonTemplateName(Ctx, TX->getTemplateName(),
12979                                                TY->getTemplateName());
12980     if (!CTN.getAsVoidPointer())
12981       return QualType();
12982     SmallVector<TemplateArgument, 8> Args;
12983     if (getCommonTemplateArguments(Ctx, Args, TX->template_arguments(),
12984                                    TY->template_arguments()))
12985       return QualType();
12986     return Ctx.getTemplateSpecializationType(CTN, Args,
12987                                              Ctx.getQualifiedType(Underlying));
12988   }
12989   case Type::Typedef: {
12990     const auto *TX = cast<TypedefType>(X), *TY = cast<TypedefType>(Y);
12991     const TypedefNameDecl *CD = ::getCommonDecl(TX->getDecl(), TY->getDecl());
12992     if (!CD)
12993       return QualType();
12994     return Ctx.getTypedefType(CD, Ctx.getQualifiedType(Underlying));
12995   }
12996   case Type::TypeOf: {
12997     // The common sugar between two typeof expressions, where one is
12998     // potentially a typeof_unqual and the other is not, we unify to the
12999     // qualified type as that retains the most information along with the type.
13000     // We only return a typeof_unqual type when both types are unqual types.
13001     TypeOfKind Kind = TypeOfKind::Qualified;
13002     if (cast<TypeOfType>(X)->getKind() == cast<TypeOfType>(Y)->getKind() &&
13003         cast<TypeOfType>(X)->getKind() == TypeOfKind::Unqualified)
13004       Kind = TypeOfKind::Unqualified;
13005     return Ctx.getTypeOfType(Ctx.getQualifiedType(Underlying), Kind);
13006   }
13007   case Type::TypeOfExpr:
13008     return QualType();
13009 
13010   case Type::UnaryTransform: {
13011     const auto *UX = cast<UnaryTransformType>(X),
13012                *UY = cast<UnaryTransformType>(Y);
13013     UnaryTransformType::UTTKind KX = UX->getUTTKind();
13014     if (KX != UY->getUTTKind())
13015       return QualType();
13016     QualType BX = UX->getBaseType(), BY = UY->getBaseType();
13017     if (!Ctx.hasSameType(BX, BY))
13018       return QualType();
13019     // FIXME: It's inefficient to have to unify the base types.
13020     return Ctx.getUnaryTransformType(Ctx.getCommonSugaredType(BX, BY),
13021                                      Ctx.getQualifiedType(Underlying), KX);
13022   }
13023   case Type::Using: {
13024     const auto *UX = cast<UsingType>(X), *UY = cast<UsingType>(Y);
13025     const UsingShadowDecl *CD =
13026         ::getCommonDecl(UX->getFoundDecl(), UY->getFoundDecl());
13027     if (!CD)
13028       return QualType();
13029     return Ctx.getUsingType(CD, Ctx.getQualifiedType(Underlying));
13030   }
13031   }
13032   llvm_unreachable("Unhandled Type Class");
13033 }
13034 
13035 static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) {
13036   SmallVector<SplitQualType, 8> R;
13037   while (true) {
13038     QTotal += T.Quals;
13039     QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
13040     if (NT == QualType(T.Ty, 0))
13041       break;
13042     R.push_back(T);
13043     T = NT.split();
13044   }
13045   return R;
13046 }
13047 
13048 QualType ASTContext::getCommonSugaredType(QualType X, QualType Y,
13049                                           bool Unqualified) {
13050   assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y));
13051   if (X == Y)
13052     return X;
13053   if (!Unqualified) {
13054     if (X.isCanonical())
13055       return X;
13056     if (Y.isCanonical())
13057       return Y;
13058   }
13059 
13060   SplitQualType SX = X.split(), SY = Y.split();
13061   Qualifiers QX, QY;
13062   // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys,
13063   // until we reach their underlying "canonical nodes". Note these are not
13064   // necessarily canonical types, as they may still have sugared properties.
13065   // QX and QY will store the sum of all qualifiers in Xs and Ys respectively.
13066   auto Xs = ::unwrapSugar(SX, QX), Ys = ::unwrapSugar(SY, QY);
13067   if (SX.Ty != SY.Ty) {
13068     // The canonical nodes differ. Build a common canonical node out of the two,
13069     // unifying their sugar. This may recurse back here.
13070     SX.Ty =
13071         ::getCommonNonSugarTypeNode(*this, SX.Ty, QX, SY.Ty, QY).getTypePtr();
13072   } else {
13073     // The canonical nodes were identical: We may have desugared too much.
13074     // Add any common sugar back in.
13075     while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) {
13076       QX -= SX.Quals;
13077       QY -= SY.Quals;
13078       SX = Xs.pop_back_val();
13079       SY = Ys.pop_back_val();
13080     }
13081   }
13082   if (Unqualified)
13083     QX = Qualifiers::removeCommonQualifiers(QX, QY);
13084   else
13085     assert(QX == QY);
13086 
13087   // Even though the remaining sugar nodes in Xs and Ys differ, some may be
13088   // related. Walk up these nodes, unifying them and adding the result.
13089   while (!Xs.empty() && !Ys.empty()) {
13090     auto Underlying = SplitQualType(
13091         SX.Ty, Qualifiers::removeCommonQualifiers(SX.Quals, SY.Quals));
13092     SX = Xs.pop_back_val();
13093     SY = Ys.pop_back_val();
13094     SX.Ty = ::getCommonSugarTypeNode(*this, SX.Ty, SY.Ty, Underlying)
13095                 .getTypePtrOrNull();
13096     // Stop at the first pair which is unrelated.
13097     if (!SX.Ty) {
13098       SX.Ty = Underlying.Ty;
13099       break;
13100     }
13101     QX -= Underlying.Quals;
13102   };
13103 
13104   // Add back the missing accumulated qualifiers, which were stripped off
13105   // with the sugar nodes we could not unify.
13106   QualType R = getQualifiedType(SX.Ty, QX);
13107   assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X));
13108   return R;
13109 }
13110 
13111 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
13112   assert(Ty->isFixedPointType());
13113 
13114   if (Ty->isSaturatedFixedPointType()) return Ty;
13115 
13116   switch (Ty->castAs<BuiltinType>()->getKind()) {
13117     default:
13118       llvm_unreachable("Not a fixed point type!");
13119     case BuiltinType::ShortAccum:
13120       return SatShortAccumTy;
13121     case BuiltinType::Accum:
13122       return SatAccumTy;
13123     case BuiltinType::LongAccum:
13124       return SatLongAccumTy;
13125     case BuiltinType::UShortAccum:
13126       return SatUnsignedShortAccumTy;
13127     case BuiltinType::UAccum:
13128       return SatUnsignedAccumTy;
13129     case BuiltinType::ULongAccum:
13130       return SatUnsignedLongAccumTy;
13131     case BuiltinType::ShortFract:
13132       return SatShortFractTy;
13133     case BuiltinType::Fract:
13134       return SatFractTy;
13135     case BuiltinType::LongFract:
13136       return SatLongFractTy;
13137     case BuiltinType::UShortFract:
13138       return SatUnsignedShortFractTy;
13139     case BuiltinType::UFract:
13140       return SatUnsignedFractTy;
13141     case BuiltinType::ULongFract:
13142       return SatUnsignedLongFractTy;
13143   }
13144 }
13145 
13146 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
13147   if (LangOpts.OpenCL)
13148     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
13149 
13150   if (LangOpts.CUDA)
13151     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
13152 
13153   return getLangASFromTargetAS(AS);
13154 }
13155 
13156 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
13157 // doesn't include ASTContext.h
13158 template
13159 clang::LazyGenerationalUpdatePtr<
13160     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
13161 clang::LazyGenerationalUpdatePtr<
13162     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
13163         const clang::ASTContext &Ctx, Decl *Value);
13164 
13165 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
13166   assert(Ty->isFixedPointType());
13167 
13168   const TargetInfo &Target = getTargetInfo();
13169   switch (Ty->castAs<BuiltinType>()->getKind()) {
13170     default:
13171       llvm_unreachable("Not a fixed point type!");
13172     case BuiltinType::ShortAccum:
13173     case BuiltinType::SatShortAccum:
13174       return Target.getShortAccumScale();
13175     case BuiltinType::Accum:
13176     case BuiltinType::SatAccum:
13177       return Target.getAccumScale();
13178     case BuiltinType::LongAccum:
13179     case BuiltinType::SatLongAccum:
13180       return Target.getLongAccumScale();
13181     case BuiltinType::UShortAccum:
13182     case BuiltinType::SatUShortAccum:
13183       return Target.getUnsignedShortAccumScale();
13184     case BuiltinType::UAccum:
13185     case BuiltinType::SatUAccum:
13186       return Target.getUnsignedAccumScale();
13187     case BuiltinType::ULongAccum:
13188     case BuiltinType::SatULongAccum:
13189       return Target.getUnsignedLongAccumScale();
13190     case BuiltinType::ShortFract:
13191     case BuiltinType::SatShortFract:
13192       return Target.getShortFractScale();
13193     case BuiltinType::Fract:
13194     case BuiltinType::SatFract:
13195       return Target.getFractScale();
13196     case BuiltinType::LongFract:
13197     case BuiltinType::SatLongFract:
13198       return Target.getLongFractScale();
13199     case BuiltinType::UShortFract:
13200     case BuiltinType::SatUShortFract:
13201       return Target.getUnsignedShortFractScale();
13202     case BuiltinType::UFract:
13203     case BuiltinType::SatUFract:
13204       return Target.getUnsignedFractScale();
13205     case BuiltinType::ULongFract:
13206     case BuiltinType::SatULongFract:
13207       return Target.getUnsignedLongFractScale();
13208   }
13209 }
13210 
13211 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
13212   assert(Ty->isFixedPointType());
13213 
13214   const TargetInfo &Target = getTargetInfo();
13215   switch (Ty->castAs<BuiltinType>()->getKind()) {
13216     default:
13217       llvm_unreachable("Not a fixed point type!");
13218     case BuiltinType::ShortAccum:
13219     case BuiltinType::SatShortAccum:
13220       return Target.getShortAccumIBits();
13221     case BuiltinType::Accum:
13222     case BuiltinType::SatAccum:
13223       return Target.getAccumIBits();
13224     case BuiltinType::LongAccum:
13225     case BuiltinType::SatLongAccum:
13226       return Target.getLongAccumIBits();
13227     case BuiltinType::UShortAccum:
13228     case BuiltinType::SatUShortAccum:
13229       return Target.getUnsignedShortAccumIBits();
13230     case BuiltinType::UAccum:
13231     case BuiltinType::SatUAccum:
13232       return Target.getUnsignedAccumIBits();
13233     case BuiltinType::ULongAccum:
13234     case BuiltinType::SatULongAccum:
13235       return Target.getUnsignedLongAccumIBits();
13236     case BuiltinType::ShortFract:
13237     case BuiltinType::SatShortFract:
13238     case BuiltinType::Fract:
13239     case BuiltinType::SatFract:
13240     case BuiltinType::LongFract:
13241     case BuiltinType::SatLongFract:
13242     case BuiltinType::UShortFract:
13243     case BuiltinType::SatUShortFract:
13244     case BuiltinType::UFract:
13245     case BuiltinType::SatUFract:
13246     case BuiltinType::ULongFract:
13247     case BuiltinType::SatULongFract:
13248       return 0;
13249   }
13250 }
13251 
13252 llvm::FixedPointSemantics
13253 ASTContext::getFixedPointSemantics(QualType Ty) const {
13254   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
13255          "Can only get the fixed point semantics for a "
13256          "fixed point or integer type.");
13257   if (Ty->isIntegerType())
13258     return llvm::FixedPointSemantics::GetIntegerSemantics(
13259         getIntWidth(Ty), Ty->isSignedIntegerType());
13260 
13261   bool isSigned = Ty->isSignedFixedPointType();
13262   return llvm::FixedPointSemantics(
13263       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
13264       Ty->isSaturatedFixedPointType(),
13265       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
13266 }
13267 
13268 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
13269   assert(Ty->isFixedPointType());
13270   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
13271 }
13272 
13273 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
13274   assert(Ty->isFixedPointType());
13275   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
13276 }
13277 
13278 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
13279   assert(Ty->isUnsignedFixedPointType() &&
13280          "Expected unsigned fixed point type");
13281 
13282   switch (Ty->castAs<BuiltinType>()->getKind()) {
13283   case BuiltinType::UShortAccum:
13284     return ShortAccumTy;
13285   case BuiltinType::UAccum:
13286     return AccumTy;
13287   case BuiltinType::ULongAccum:
13288     return LongAccumTy;
13289   case BuiltinType::SatUShortAccum:
13290     return SatShortAccumTy;
13291   case BuiltinType::SatUAccum:
13292     return SatAccumTy;
13293   case BuiltinType::SatULongAccum:
13294     return SatLongAccumTy;
13295   case BuiltinType::UShortFract:
13296     return ShortFractTy;
13297   case BuiltinType::UFract:
13298     return FractTy;
13299   case BuiltinType::ULongFract:
13300     return LongFractTy;
13301   case BuiltinType::SatUShortFract:
13302     return SatShortFractTy;
13303   case BuiltinType::SatUFract:
13304     return SatFractTy;
13305   case BuiltinType::SatULongFract:
13306     return SatLongFractTy;
13307   default:
13308     llvm_unreachable("Unexpected unsigned fixed point type");
13309   }
13310 }
13311 
13312 std::vector<std::string> ASTContext::filterFunctionTargetVersionAttrs(
13313     const TargetVersionAttr *TV) const {
13314   assert(TV != nullptr);
13315   llvm::SmallVector<StringRef, 8> Feats;
13316   std::vector<std::string> ResFeats;
13317   TV->getFeatures(Feats);
13318   for (auto &Feature : Feats)
13319     if (Target->validateCpuSupports(Feature.str()))
13320       ResFeats.push_back("?" + Feature.str());
13321   return ResFeats;
13322 }
13323 
13324 ParsedTargetAttr
13325 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
13326   assert(TD != nullptr);
13327   ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(TD->getFeaturesStr());
13328 
13329   llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) {
13330     return !Target->isValidFeatureName(StringRef{Feat}.substr(1));
13331   });
13332   return ParsedAttr;
13333 }
13334 
13335 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13336                                        const FunctionDecl *FD) const {
13337   if (FD)
13338     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
13339   else
13340     Target->initFeatureMap(FeatureMap, getDiagnostics(),
13341                            Target->getTargetOpts().CPU,
13342                            Target->getTargetOpts().Features);
13343 }
13344 
13345 // Fills in the supplied string map with the set of target features for the
13346 // passed in function.
13347 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13348                                        GlobalDecl GD) const {
13349   StringRef TargetCPU = Target->getTargetOpts().CPU;
13350   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
13351   if (const auto *TD = FD->getAttr<TargetAttr>()) {
13352     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
13353 
13354     // Make a copy of the features as passed on the command line into the
13355     // beginning of the additional features from the function to override.
13356     ParsedAttr.Features.insert(
13357         ParsedAttr.Features.begin(),
13358         Target->getTargetOpts().FeaturesAsWritten.begin(),
13359         Target->getTargetOpts().FeaturesAsWritten.end());
13360 
13361     if (ParsedAttr.CPU != "" && Target->isValidCPUName(ParsedAttr.CPU))
13362       TargetCPU = ParsedAttr.CPU;
13363 
13364     // Now populate the feature map, first with the TargetCPU which is either
13365     // the default or a new one from the target attribute string. Then we'll use
13366     // the passed in features (FeaturesAsWritten) along with the new ones from
13367     // the attribute.
13368     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
13369                            ParsedAttr.Features);
13370   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
13371     llvm::SmallVector<StringRef, 32> FeaturesTmp;
13372     Target->getCPUSpecificCPUDispatchFeatures(
13373         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
13374     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
13375     Features.insert(Features.begin(),
13376                     Target->getTargetOpts().FeaturesAsWritten.begin(),
13377                     Target->getTargetOpts().FeaturesAsWritten.end());
13378     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13379   } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) {
13380     std::vector<std::string> Features;
13381     StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex());
13382     if (Target->getTriple().isAArch64()) {
13383       // TargetClones for AArch64
13384       if (VersionStr != "default") {
13385         SmallVector<StringRef, 1> VersionFeatures;
13386         VersionStr.split(VersionFeatures, "+");
13387         for (auto &VFeature : VersionFeatures) {
13388           VFeature = VFeature.trim();
13389           Features.push_back((StringRef{"?"} + VFeature).str());
13390         }
13391       }
13392       Features.insert(Features.begin(),
13393                       Target->getTargetOpts().FeaturesAsWritten.begin(),
13394                       Target->getTargetOpts().FeaturesAsWritten.end());
13395     } else {
13396       if (VersionStr.startswith("arch="))
13397         TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1);
13398       else if (VersionStr != "default")
13399         Features.push_back((StringRef{"+"} + VersionStr).str());
13400     }
13401     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13402   } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) {
13403     std::vector<std::string> Feats = filterFunctionTargetVersionAttrs(TV);
13404     Feats.insert(Feats.begin(),
13405                  Target->getTargetOpts().FeaturesAsWritten.begin(),
13406                  Target->getTargetOpts().FeaturesAsWritten.end());
13407     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Feats);
13408   } else {
13409     FeatureMap = Target->getTargetOpts().FeatureMap;
13410   }
13411 }
13412 
13413 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
13414   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
13415   return *OMPTraitInfoVector.back();
13416 }
13417 
13418 const StreamingDiagnostic &clang::
13419 operator<<(const StreamingDiagnostic &DB,
13420            const ASTContext::SectionInfo &Section) {
13421   if (Section.Decl)
13422     return DB << Section.Decl;
13423   return DB << "a prior #pragma section";
13424 }
13425 
13426 bool ASTContext::mayExternalize(const Decl *D) const {
13427   bool IsStaticVar =
13428       isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static;
13429   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
13430                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
13431                              (D->hasAttr<CUDAConstantAttr>() &&
13432                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
13433   // CUDA/HIP: static managed variables need to be externalized since it is
13434   // a declaration in IR, therefore cannot have internal linkage. Kernels in
13435   // anonymous name space needs to be externalized to avoid duplicate symbols.
13436   return (IsStaticVar &&
13437           (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) ||
13438          (D->hasAttr<CUDAGlobalAttr>() &&
13439           basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) ==
13440               GVA_Internal);
13441 }
13442 
13443 bool ASTContext::shouldExternalize(const Decl *D) const {
13444   return mayExternalize(D) &&
13445          (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() ||
13446           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
13447 }
13448 
13449 StringRef ASTContext::getCUIDHash() const {
13450   if (!CUIDHash.empty())
13451     return CUIDHash;
13452   if (LangOpts.CUID.empty())
13453     return StringRef();
13454   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
13455   return CUIDHash;
13456 }
13457