xref: /freebsd/contrib/llvm-project/clang/lib/AST/ASTContext.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/SourceLocation.h"
62 #include "clang/Basic/SourceManager.h"
63 #include "clang/Basic/Specifiers.h"
64 #include "clang/Basic/TargetCXXABI.h"
65 #include "clang/Basic/TargetInfo.h"
66 #include "clang/Basic/XRayLists.h"
67 #include "llvm/ADT/APFixedPoint.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/None.h"
75 #include "llvm/ADT/Optional.h"
76 #include "llvm/ADT/PointerUnion.h"
77 #include "llvm/ADT/STLExtras.h"
78 #include "llvm/ADT/SmallPtrSet.h"
79 #include "llvm/ADT/SmallVector.h"
80 #include "llvm/ADT/StringExtras.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Triple.h"
83 #include "llvm/Support/Capacity.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MD5.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstddef>
93 #include <cstdint>
94 #include <cstdlib>
95 #include <map>
96 #include <memory>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace clang;
102 
103 enum FloatingRank {
104   BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
105 };
106 
107 /// \returns location that is relevant when searching for Doc comments related
108 /// to \p D.
109 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
110                                                  SourceManager &SourceMgr) {
111   assert(D);
112 
113   // User can not attach documentation to implicit declarations.
114   if (D->isImplicit())
115     return {};
116 
117   // User can not attach documentation to implicit instantiations.
118   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
119     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
120       return {};
121   }
122 
123   if (const auto *VD = dyn_cast<VarDecl>(D)) {
124     if (VD->isStaticDataMember() &&
125         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
126       return {};
127   }
128 
129   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
130     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
131       return {};
132   }
133 
134   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
135     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
136     if (TSK == TSK_ImplicitInstantiation ||
137         TSK == TSK_Undeclared)
138       return {};
139   }
140 
141   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
142     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
143       return {};
144   }
145   if (const auto *TD = dyn_cast<TagDecl>(D)) {
146     // When tag declaration (but not definition!) is part of the
147     // decl-specifier-seq of some other declaration, it doesn't get comment
148     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
149       return {};
150   }
151   // TODO: handle comments for function parameters properly.
152   if (isa<ParmVarDecl>(D))
153     return {};
154 
155   // TODO: we could look up template parameter documentation in the template
156   // documentation.
157   if (isa<TemplateTypeParmDecl>(D) ||
158       isa<NonTypeTemplateParmDecl>(D) ||
159       isa<TemplateTemplateParmDecl>(D))
160     return {};
161 
162   // Find declaration location.
163   // For Objective-C declarations we generally don't expect to have multiple
164   // declarators, thus use declaration starting location as the "declaration
165   // location".
166   // For all other declarations multiple declarators are used quite frequently,
167   // so we use the location of the identifier as the "declaration location".
168   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
169       isa<ObjCPropertyDecl>(D) ||
170       isa<RedeclarableTemplateDecl>(D) ||
171       isa<ClassTemplateSpecializationDecl>(D) ||
172       // Allow association with Y across {} in `typedef struct X {} Y`.
173       isa<TypedefDecl>(D))
174     return D->getBeginLoc();
175   else {
176     const SourceLocation DeclLoc = D->getLocation();
177     if (DeclLoc.isMacroID()) {
178       if (isa<TypedefDecl>(D)) {
179         // If location of the typedef name is in a macro, it is because being
180         // declared via a macro. Try using declaration's starting location as
181         // the "declaration location".
182         return D->getBeginLoc();
183       } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
184         // If location of the tag decl is inside a macro, but the spelling of
185         // the tag name comes from a macro argument, it looks like a special
186         // macro like NS_ENUM is being used to define the tag decl.  In that
187         // case, adjust the source location to the expansion loc so that we can
188         // attach the comment to the tag decl.
189         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
190             TD->isCompleteDefinition())
191           return SourceMgr.getExpansionLoc(DeclLoc);
192       }
193     }
194     return DeclLoc;
195   }
196 
197   return {};
198 }
199 
200 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
201     const Decl *D, const SourceLocation RepresentativeLocForDecl,
202     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
203   // If the declaration doesn't map directly to a location in a file, we
204   // can't find the comment.
205   if (RepresentativeLocForDecl.isInvalid() ||
206       !RepresentativeLocForDecl.isFileID())
207     return nullptr;
208 
209   // If there are no comments anywhere, we won't find anything.
210   if (CommentsInTheFile.empty())
211     return nullptr;
212 
213   // Decompose the location for the declaration and find the beginning of the
214   // file buffer.
215   const std::pair<FileID, unsigned> DeclLocDecomp =
216       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
217 
218   // Slow path.
219   auto OffsetCommentBehindDecl =
220       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
221 
222   // First check whether we have a trailing comment.
223   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
224     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
225     if ((CommentBehindDecl->isDocumentation() ||
226          LangOpts.CommentOpts.ParseAllComments) &&
227         CommentBehindDecl->isTrailingComment() &&
228         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
229          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
230 
231       // Check that Doxygen trailing comment comes after the declaration, starts
232       // on the same line and in the same file as the declaration.
233       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
234           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
235                                        OffsetCommentBehindDecl->first)) {
236         return CommentBehindDecl;
237       }
238     }
239   }
240 
241   // The comment just after the declaration was not a trailing comment.
242   // Let's look at the previous comment.
243   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
244     return nullptr;
245 
246   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
247   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
248 
249   // Check that we actually have a non-member Doxygen comment.
250   if (!(CommentBeforeDecl->isDocumentation() ||
251         LangOpts.CommentOpts.ParseAllComments) ||
252       CommentBeforeDecl->isTrailingComment())
253     return nullptr;
254 
255   // Decompose the end of the comment.
256   const unsigned CommentEndOffset =
257       Comments.getCommentEndOffset(CommentBeforeDecl);
258 
259   // Get the corresponding buffer.
260   bool Invalid = false;
261   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
262                                                &Invalid).data();
263   if (Invalid)
264     return nullptr;
265 
266   // Extract text between the comment and declaration.
267   StringRef Text(Buffer + CommentEndOffset,
268                  DeclLocDecomp.second - CommentEndOffset);
269 
270   // There should be no other declarations or preprocessor directives between
271   // comment and declaration.
272   if (Text.find_first_of(";{}#@") != StringRef::npos)
273     return nullptr;
274 
275   return CommentBeforeDecl;
276 }
277 
278 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
279   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
280 
281   // If the declaration doesn't map directly to a location in a file, we
282   // can't find the comment.
283   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
284     return nullptr;
285 
286   if (ExternalSource && !CommentsLoaded) {
287     ExternalSource->ReadComments();
288     CommentsLoaded = true;
289   }
290 
291   if (Comments.empty())
292     return nullptr;
293 
294   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
295   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
296   if (!CommentsInThisFile || CommentsInThisFile->empty())
297     return nullptr;
298 
299   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
300 }
301 
302 void ASTContext::addComment(const RawComment &RC) {
303   assert(LangOpts.RetainCommentsFromSystemHeaders ||
304          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
305   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
306 }
307 
308 /// If we have a 'templated' declaration for a template, adjust 'D' to
309 /// refer to the actual template.
310 /// If we have an implicit instantiation, adjust 'D' to refer to template.
311 static const Decl &adjustDeclToTemplate(const Decl &D) {
312   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
313     // Is this function declaration part of a function template?
314     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
315       return *FTD;
316 
317     // Nothing to do if function is not an implicit instantiation.
318     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
319       return D;
320 
321     // Function is an implicit instantiation of a function template?
322     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
323       return *FTD;
324 
325     // Function is instantiated from a member definition of a class template?
326     if (const FunctionDecl *MemberDecl =
327             FD->getInstantiatedFromMemberFunction())
328       return *MemberDecl;
329 
330     return D;
331   }
332   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
333     // Static data member is instantiated from a member definition of a class
334     // template?
335     if (VD->isStaticDataMember())
336       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
337         return *MemberDecl;
338 
339     return D;
340   }
341   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
342     // Is this class declaration part of a class template?
343     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
344       return *CTD;
345 
346     // Class is an implicit instantiation of a class template or partial
347     // specialization?
348     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
349       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
350         return D;
351       llvm::PointerUnion<ClassTemplateDecl *,
352                          ClassTemplatePartialSpecializationDecl *>
353           PU = CTSD->getSpecializedTemplateOrPartial();
354       return PU.is<ClassTemplateDecl *>()
355                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
356                  : *static_cast<const Decl *>(
357                        PU.get<ClassTemplatePartialSpecializationDecl *>());
358     }
359 
360     // Class is instantiated from a member definition of a class template?
361     if (const MemberSpecializationInfo *Info =
362             CRD->getMemberSpecializationInfo())
363       return *Info->getInstantiatedFrom();
364 
365     return D;
366   }
367   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
368     // Enum is instantiated from a member definition of a class template?
369     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
370       return *MemberDecl;
371 
372     return D;
373   }
374   // FIXME: Adjust alias templates?
375   return D;
376 }
377 
378 const RawComment *ASTContext::getRawCommentForAnyRedecl(
379                                                 const Decl *D,
380                                                 const Decl **OriginalDecl) const {
381   if (!D) {
382     if (OriginalDecl)
383       OriginalDecl = nullptr;
384     return nullptr;
385   }
386 
387   D = &adjustDeclToTemplate(*D);
388 
389   // Any comment directly attached to D?
390   {
391     auto DeclComment = DeclRawComments.find(D);
392     if (DeclComment != DeclRawComments.end()) {
393       if (OriginalDecl)
394         *OriginalDecl = D;
395       return DeclComment->second;
396     }
397   }
398 
399   // Any comment attached to any redeclaration of D?
400   const Decl *CanonicalD = D->getCanonicalDecl();
401   if (!CanonicalD)
402     return nullptr;
403 
404   {
405     auto RedeclComment = RedeclChainComments.find(CanonicalD);
406     if (RedeclComment != RedeclChainComments.end()) {
407       if (OriginalDecl)
408         *OriginalDecl = RedeclComment->second;
409       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
410       assert(CommentAtRedecl != DeclRawComments.end() &&
411              "This decl is supposed to have comment attached.");
412       return CommentAtRedecl->second;
413     }
414   }
415 
416   // Any redeclarations of D that we haven't checked for comments yet?
417   // We can't use DenseMap::iterator directly since it'd get invalid.
418   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
419     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
420     if (LookupRes != CommentlessRedeclChains.end())
421       return LookupRes->second;
422     return nullptr;
423   }();
424 
425   for (const auto Redecl : D->redecls()) {
426     assert(Redecl);
427     // Skip all redeclarations that have been checked previously.
428     if (LastCheckedRedecl) {
429       if (LastCheckedRedecl == Redecl) {
430         LastCheckedRedecl = nullptr;
431       }
432       continue;
433     }
434     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
435     if (RedeclComment) {
436       cacheRawCommentForDecl(*Redecl, *RedeclComment);
437       if (OriginalDecl)
438         *OriginalDecl = Redecl;
439       return RedeclComment;
440     }
441     CommentlessRedeclChains[CanonicalD] = Redecl;
442   }
443 
444   if (OriginalDecl)
445     *OriginalDecl = nullptr;
446   return nullptr;
447 }
448 
449 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
450                                         const RawComment &Comment) const {
451   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
452   DeclRawComments.try_emplace(&OriginalD, &Comment);
453   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
454   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
455   CommentlessRedeclChains.erase(CanonicalDecl);
456 }
457 
458 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
459                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
460   const DeclContext *DC = ObjCMethod->getDeclContext();
461   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
462     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
463     if (!ID)
464       return;
465     // Add redeclared method here.
466     for (const auto *Ext : ID->known_extensions()) {
467       if (ObjCMethodDecl *RedeclaredMethod =
468             Ext->getMethod(ObjCMethod->getSelector(),
469                                   ObjCMethod->isInstanceMethod()))
470         Redeclared.push_back(RedeclaredMethod);
471     }
472   }
473 }
474 
475 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
476                                                  const Preprocessor *PP) {
477   if (Comments.empty() || Decls.empty())
478     return;
479 
480   FileID File;
481   for (Decl *D : Decls) {
482     SourceLocation Loc = D->getLocation();
483     if (Loc.isValid()) {
484       // See if there are any new comments that are not attached to a decl.
485       // The location doesn't have to be precise - we care only about the file.
486       File = SourceMgr.getDecomposedLoc(Loc).first;
487       break;
488     }
489   }
490 
491   if (File.isInvalid())
492     return;
493 
494   auto CommentsInThisFile = Comments.getCommentsInFile(File);
495   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
496       CommentsInThisFile->rbegin()->second->isAttached())
497     return;
498 
499   // There is at least one comment not attached to a decl.
500   // Maybe it should be attached to one of Decls?
501   //
502   // Note that this way we pick up not only comments that precede the
503   // declaration, but also comments that *follow* the declaration -- thanks to
504   // the lookahead in the lexer: we've consumed the semicolon and looked
505   // ahead through comments.
506 
507   for (const Decl *D : Decls) {
508     assert(D);
509     if (D->isInvalidDecl())
510       continue;
511 
512     D = &adjustDeclToTemplate(*D);
513 
514     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
515 
516     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
517       continue;
518 
519     if (DeclRawComments.count(D) > 0)
520       continue;
521 
522     if (RawComment *const DocComment =
523             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
524       cacheRawCommentForDecl(*D, *DocComment);
525       comments::FullComment *FC = DocComment->parse(*this, PP, D);
526       ParsedComments[D->getCanonicalDecl()] = FC;
527     }
528   }
529 }
530 
531 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
532                                                     const Decl *D) const {
533   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
534   ThisDeclInfo->CommentDecl = D;
535   ThisDeclInfo->IsFilled = false;
536   ThisDeclInfo->fill();
537   ThisDeclInfo->CommentDecl = FC->getDecl();
538   if (!ThisDeclInfo->TemplateParameters)
539     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
540   comments::FullComment *CFC =
541     new (*this) comments::FullComment(FC->getBlocks(),
542                                       ThisDeclInfo);
543   return CFC;
544 }
545 
546 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
547   const RawComment *RC = getRawCommentForDeclNoCache(D);
548   return RC ? RC->parse(*this, nullptr, D) : nullptr;
549 }
550 
551 comments::FullComment *ASTContext::getCommentForDecl(
552                                               const Decl *D,
553                                               const Preprocessor *PP) const {
554   if (!D || D->isInvalidDecl())
555     return nullptr;
556   D = &adjustDeclToTemplate(*D);
557 
558   const Decl *Canonical = D->getCanonicalDecl();
559   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
560       ParsedComments.find(Canonical);
561 
562   if (Pos != ParsedComments.end()) {
563     if (Canonical != D) {
564       comments::FullComment *FC = Pos->second;
565       comments::FullComment *CFC = cloneFullComment(FC, D);
566       return CFC;
567     }
568     return Pos->second;
569   }
570 
571   const Decl *OriginalDecl = nullptr;
572 
573   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
574   if (!RC) {
575     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
576       SmallVector<const NamedDecl*, 8> Overridden;
577       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
578       if (OMD && OMD->isPropertyAccessor())
579         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
580           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
581             return cloneFullComment(FC, D);
582       if (OMD)
583         addRedeclaredMethods(OMD, Overridden);
584       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
585       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
586         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
587           return cloneFullComment(FC, D);
588     }
589     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
590       // Attach any tag type's documentation to its typedef if latter
591       // does not have one of its own.
592       QualType QT = TD->getUnderlyingType();
593       if (const auto *TT = QT->getAs<TagType>())
594         if (const Decl *TD = TT->getDecl())
595           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
596             return cloneFullComment(FC, D);
597     }
598     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
599       while (IC->getSuperClass()) {
600         IC = IC->getSuperClass();
601         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
602           return cloneFullComment(FC, D);
603       }
604     }
605     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
606       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
607         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608           return cloneFullComment(FC, D);
609     }
610     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
611       if (!(RD = RD->getDefinition()))
612         return nullptr;
613       // Check non-virtual bases.
614       for (const auto &I : RD->bases()) {
615         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
616           continue;
617         QualType Ty = I.getType();
618         if (Ty.isNull())
619           continue;
620         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
621           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
622             continue;
623 
624           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
625             return cloneFullComment(FC, D);
626         }
627       }
628       // Check virtual bases.
629       for (const auto &I : RD->vbases()) {
630         if (I.getAccessSpecifier() != AS_public)
631           continue;
632         QualType Ty = I.getType();
633         if (Ty.isNull())
634           continue;
635         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
636           if (!(VirtualBase= VirtualBase->getDefinition()))
637             continue;
638           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
639             return cloneFullComment(FC, D);
640         }
641       }
642     }
643     return nullptr;
644   }
645 
646   // If the RawComment was attached to other redeclaration of this Decl, we
647   // should parse the comment in context of that other Decl.  This is important
648   // because comments can contain references to parameter names which can be
649   // different across redeclarations.
650   if (D != OriginalDecl && OriginalDecl)
651     return getCommentForDecl(OriginalDecl, PP);
652 
653   comments::FullComment *FC = RC->parse(*this, PP, D);
654   ParsedComments[Canonical] = FC;
655   return FC;
656 }
657 
658 void
659 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
660                                                    const ASTContext &C,
661                                                TemplateTemplateParmDecl *Parm) {
662   ID.AddInteger(Parm->getDepth());
663   ID.AddInteger(Parm->getPosition());
664   ID.AddBoolean(Parm->isParameterPack());
665 
666   TemplateParameterList *Params = Parm->getTemplateParameters();
667   ID.AddInteger(Params->size());
668   for (TemplateParameterList::const_iterator P = Params->begin(),
669                                           PEnd = Params->end();
670        P != PEnd; ++P) {
671     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
672       ID.AddInteger(0);
673       ID.AddBoolean(TTP->isParameterPack());
674       const TypeConstraint *TC = TTP->getTypeConstraint();
675       ID.AddBoolean(TC != nullptr);
676       if (TC)
677         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
678                                                         /*Canonical=*/true);
679       if (TTP->isExpandedParameterPack()) {
680         ID.AddBoolean(true);
681         ID.AddInteger(TTP->getNumExpansionParameters());
682       } else
683         ID.AddBoolean(false);
684       continue;
685     }
686 
687     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
688       ID.AddInteger(1);
689       ID.AddBoolean(NTTP->isParameterPack());
690       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
691       if (NTTP->isExpandedParameterPack()) {
692         ID.AddBoolean(true);
693         ID.AddInteger(NTTP->getNumExpansionTypes());
694         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
695           QualType T = NTTP->getExpansionType(I);
696           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
697         }
698       } else
699         ID.AddBoolean(false);
700       continue;
701     }
702 
703     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
704     ID.AddInteger(2);
705     Profile(ID, C, TTP);
706   }
707   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
708   ID.AddBoolean(RequiresClause != nullptr);
709   if (RequiresClause)
710     RequiresClause->Profile(ID, C, /*Canonical=*/true);
711 }
712 
713 static Expr *
714 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
715                                           QualType ConstrainedType) {
716   // This is a bit ugly - we need to form a new immediately-declared
717   // constraint that references the new parameter; this would ideally
718   // require semantic analysis (e.g. template<C T> struct S {}; - the
719   // converted arguments of C<T> could be an argument pack if C is
720   // declared as template<typename... T> concept C = ...).
721   // We don't have semantic analysis here so we dig deep into the
722   // ready-made constraint expr and change the thing manually.
723   ConceptSpecializationExpr *CSE;
724   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
725     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
726   else
727     CSE = cast<ConceptSpecializationExpr>(IDC);
728   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
729   SmallVector<TemplateArgument, 3> NewConverted;
730   NewConverted.reserve(OldConverted.size());
731   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
732     // The case:
733     // template<typename... T> concept C = true;
734     // template<C<int> T> struct S; -> constraint is C<{T, int}>
735     NewConverted.push_back(ConstrainedType);
736     for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
737       NewConverted.push_back(Arg);
738     TemplateArgument NewPack(NewConverted);
739 
740     NewConverted.clear();
741     NewConverted.push_back(NewPack);
742     assert(OldConverted.size() == 1 &&
743            "Template parameter pack should be the last parameter");
744   } else {
745     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
746            "Unexpected first argument kind for immediately-declared "
747            "constraint");
748     NewConverted.push_back(ConstrainedType);
749     for (auto &Arg : OldConverted.drop_front(1))
750       NewConverted.push_back(Arg);
751   }
752   Expr *NewIDC = ConceptSpecializationExpr::Create(
753       C, CSE->getNamedConcept(), NewConverted, nullptr,
754       CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
755 
756   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
757     NewIDC = new (C) CXXFoldExpr(
758         OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
759         BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
760         SourceLocation(), /*NumExpansions=*/None);
761   return NewIDC;
762 }
763 
764 TemplateTemplateParmDecl *
765 ASTContext::getCanonicalTemplateTemplateParmDecl(
766                                           TemplateTemplateParmDecl *TTP) const {
767   // Check if we already have a canonical template template parameter.
768   llvm::FoldingSetNodeID ID;
769   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
770   void *InsertPos = nullptr;
771   CanonicalTemplateTemplateParm *Canonical
772     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
773   if (Canonical)
774     return Canonical->getParam();
775 
776   // Build a canonical template parameter list.
777   TemplateParameterList *Params = TTP->getTemplateParameters();
778   SmallVector<NamedDecl *, 4> CanonParams;
779   CanonParams.reserve(Params->size());
780   for (TemplateParameterList::const_iterator P = Params->begin(),
781                                           PEnd = Params->end();
782        P != PEnd; ++P) {
783     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
784       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
785           getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
786           TTP->getDepth(), TTP->getIndex(), nullptr, false,
787           TTP->isParameterPack(), TTP->hasTypeConstraint(),
788           TTP->isExpandedParameterPack() ?
789           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
790       if (const auto *TC = TTP->getTypeConstraint()) {
791         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
792         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
793                 *this, TC->getImmediatelyDeclaredConstraint(),
794                 ParamAsArgument);
795         TemplateArgumentListInfo CanonArgsAsWritten;
796         if (auto *Args = TC->getTemplateArgsAsWritten())
797           for (const auto &ArgLoc : Args->arguments())
798             CanonArgsAsWritten.addArgument(
799                 TemplateArgumentLoc(ArgLoc.getArgument(),
800                                     TemplateArgumentLocInfo()));
801         NewTTP->setTypeConstraint(
802             NestedNameSpecifierLoc(),
803             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
804                                 SourceLocation()), /*FoundDecl=*/nullptr,
805             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
806             // simply omit the ArgsAsWritten
807             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
808       }
809       CanonParams.push_back(NewTTP);
810     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
811       QualType T = getCanonicalType(NTTP->getType());
812       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
813       NonTypeTemplateParmDecl *Param;
814       if (NTTP->isExpandedParameterPack()) {
815         SmallVector<QualType, 2> ExpandedTypes;
816         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
817         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
818           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
819           ExpandedTInfos.push_back(
820                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
821         }
822 
823         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
824                                                 SourceLocation(),
825                                                 SourceLocation(),
826                                                 NTTP->getDepth(),
827                                                 NTTP->getPosition(), nullptr,
828                                                 T,
829                                                 TInfo,
830                                                 ExpandedTypes,
831                                                 ExpandedTInfos);
832       } else {
833         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
834                                                 SourceLocation(),
835                                                 SourceLocation(),
836                                                 NTTP->getDepth(),
837                                                 NTTP->getPosition(), nullptr,
838                                                 T,
839                                                 NTTP->isParameterPack(),
840                                                 TInfo);
841       }
842       if (AutoType *AT = T->getContainedAutoType()) {
843         if (AT->isConstrained()) {
844           Param->setPlaceholderTypeConstraint(
845               canonicalizeImmediatelyDeclaredConstraint(
846                   *this, NTTP->getPlaceholderTypeConstraint(), T));
847         }
848       }
849       CanonParams.push_back(Param);
850 
851     } else
852       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
853                                            cast<TemplateTemplateParmDecl>(*P)));
854   }
855 
856   Expr *CanonRequiresClause = nullptr;
857   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
858     CanonRequiresClause = RequiresClause;
859 
860   TemplateTemplateParmDecl *CanonTTP
861     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
862                                        SourceLocation(), TTP->getDepth(),
863                                        TTP->getPosition(),
864                                        TTP->isParameterPack(),
865                                        nullptr,
866                          TemplateParameterList::Create(*this, SourceLocation(),
867                                                        SourceLocation(),
868                                                        CanonParams,
869                                                        SourceLocation(),
870                                                        CanonRequiresClause));
871 
872   // Get the new insert position for the node we care about.
873   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
874   assert(!Canonical && "Shouldn't be in the map!");
875   (void)Canonical;
876 
877   // Create the canonical template template parameter entry.
878   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
879   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
880   return CanonTTP;
881 }
882 
883 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
884   auto Kind = getTargetInfo().getCXXABI().getKind();
885   return getLangOpts().CXXABI.getValueOr(Kind);
886 }
887 
888 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
889   if (!LangOpts.CPlusPlus) return nullptr;
890 
891   switch (getCXXABIKind()) {
892   case TargetCXXABI::AppleARM64:
893   case TargetCXXABI::Fuchsia:
894   case TargetCXXABI::GenericARM: // Same as Itanium at this level
895   case TargetCXXABI::iOS:
896   case TargetCXXABI::WatchOS:
897   case TargetCXXABI::GenericAArch64:
898   case TargetCXXABI::GenericMIPS:
899   case TargetCXXABI::GenericItanium:
900   case TargetCXXABI::WebAssembly:
901   case TargetCXXABI::XL:
902     return CreateItaniumCXXABI(*this);
903   case TargetCXXABI::Microsoft:
904     return CreateMicrosoftCXXABI(*this);
905   }
906   llvm_unreachable("Invalid CXXABI type!");
907 }
908 
909 interp::Context &ASTContext::getInterpContext() {
910   if (!InterpContext) {
911     InterpContext.reset(new interp::Context(*this));
912   }
913   return *InterpContext.get();
914 }
915 
916 ParentMapContext &ASTContext::getParentMapContext() {
917   if (!ParentMapCtx)
918     ParentMapCtx.reset(new ParentMapContext(*this));
919   return *ParentMapCtx.get();
920 }
921 
922 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
923                                            const LangOptions &LOpts) {
924   if (LOpts.FakeAddressSpaceMap) {
925     // The fake address space map must have a distinct entry for each
926     // language-specific address space.
927     static const unsigned FakeAddrSpaceMap[] = {
928         0,  // Default
929         1,  // opencl_global
930         3,  // opencl_local
931         2,  // opencl_constant
932         0,  // opencl_private
933         4,  // opencl_generic
934         5,  // opencl_global_device
935         6,  // opencl_global_host
936         7,  // cuda_device
937         8,  // cuda_constant
938         9,  // cuda_shared
939         1,  // sycl_global
940         5,  // sycl_global_device
941         6,  // sycl_global_host
942         3,  // sycl_local
943         0,  // sycl_private
944         10, // ptr32_sptr
945         11, // ptr32_uptr
946         12  // ptr64
947     };
948     return &FakeAddrSpaceMap;
949   } else {
950     return &T.getAddressSpaceMap();
951   }
952 }
953 
954 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
955                                           const LangOptions &LangOpts) {
956   switch (LangOpts.getAddressSpaceMapMangling()) {
957   case LangOptions::ASMM_Target:
958     return TI.useAddressSpaceMapMangling();
959   case LangOptions::ASMM_On:
960     return true;
961   case LangOptions::ASMM_Off:
962     return false;
963   }
964   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
965 }
966 
967 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
968                        IdentifierTable &idents, SelectorTable &sels,
969                        Builtin::Context &builtins, TranslationUnitKind TUKind)
970     : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
971       TemplateSpecializationTypes(this_()),
972       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
973       SubstTemplateTemplateParmPacks(this_()),
974       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
975       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
976       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
977                                         LangOpts.XRayNeverInstrumentFiles,
978                                         LangOpts.XRayAttrListFiles, SM)),
979       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
980       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
981       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
982       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
983       CompCategories(this_()), LastSDM(nullptr, 0) {
984   addTranslationUnitDecl();
985 }
986 
987 ASTContext::~ASTContext() {
988   // Release the DenseMaps associated with DeclContext objects.
989   // FIXME: Is this the ideal solution?
990   ReleaseDeclContextMaps();
991 
992   // Call all of the deallocation functions on all of their targets.
993   for (auto &Pair : Deallocations)
994     (Pair.first)(Pair.second);
995 
996   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
997   // because they can contain DenseMaps.
998   for (llvm::DenseMap<const ObjCContainerDecl*,
999        const ASTRecordLayout*>::iterator
1000        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
1001     // Increment in loop to prevent using deallocated memory.
1002     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1003       R->Destroy(*this);
1004 
1005   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
1006        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
1007     // Increment in loop to prevent using deallocated memory.
1008     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1009       R->Destroy(*this);
1010   }
1011 
1012   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1013                                                     AEnd = DeclAttrs.end();
1014        A != AEnd; ++A)
1015     A->second->~AttrVec();
1016 
1017   for (const auto &Value : ModuleInitializers)
1018     Value.second->~PerModuleInitializers();
1019 }
1020 
1021 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1022   TraversalScope = TopLevelDecls;
1023   getParentMapContext().clear();
1024 }
1025 
1026 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1027   Deallocations.push_back({Callback, Data});
1028 }
1029 
1030 void
1031 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1032   ExternalSource = std::move(Source);
1033 }
1034 
1035 void ASTContext::PrintStats() const {
1036   llvm::errs() << "\n*** AST Context Stats:\n";
1037   llvm::errs() << "  " << Types.size() << " types total.\n";
1038 
1039   unsigned counts[] = {
1040 #define TYPE(Name, Parent) 0,
1041 #define ABSTRACT_TYPE(Name, Parent)
1042 #include "clang/AST/TypeNodes.inc"
1043     0 // Extra
1044   };
1045 
1046   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1047     Type *T = Types[i];
1048     counts[(unsigned)T->getTypeClass()]++;
1049   }
1050 
1051   unsigned Idx = 0;
1052   unsigned TotalBytes = 0;
1053 #define TYPE(Name, Parent)                                              \
1054   if (counts[Idx])                                                      \
1055     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1056                  << " types, " << sizeof(Name##Type) << " each "        \
1057                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1058                  << " bytes)\n";                                        \
1059   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1060   ++Idx;
1061 #define ABSTRACT_TYPE(Name, Parent)
1062 #include "clang/AST/TypeNodes.inc"
1063 
1064   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1065 
1066   // Implicit special member functions.
1067   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1068                << NumImplicitDefaultConstructors
1069                << " implicit default constructors created\n";
1070   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1071                << NumImplicitCopyConstructors
1072                << " implicit copy constructors created\n";
1073   if (getLangOpts().CPlusPlus)
1074     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1075                  << NumImplicitMoveConstructors
1076                  << " implicit move constructors created\n";
1077   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1078                << NumImplicitCopyAssignmentOperators
1079                << " implicit copy assignment operators created\n";
1080   if (getLangOpts().CPlusPlus)
1081     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1082                  << NumImplicitMoveAssignmentOperators
1083                  << " implicit move assignment operators created\n";
1084   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1085                << NumImplicitDestructors
1086                << " implicit destructors created\n";
1087 
1088   if (ExternalSource) {
1089     llvm::errs() << "\n";
1090     ExternalSource->PrintStats();
1091   }
1092 
1093   BumpAlloc.PrintStats();
1094 }
1095 
1096 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1097                                            bool NotifyListeners) {
1098   if (NotifyListeners)
1099     if (auto *Listener = getASTMutationListener())
1100       Listener->RedefinedHiddenDefinition(ND, M);
1101 
1102   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1103 }
1104 
1105 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1106   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1107   if (It == MergedDefModules.end())
1108     return;
1109 
1110   auto &Merged = It->second;
1111   llvm::DenseSet<Module*> Found;
1112   for (Module *&M : Merged)
1113     if (!Found.insert(M).second)
1114       M = nullptr;
1115   Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1116 }
1117 
1118 ArrayRef<Module *>
1119 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1120   auto MergedIt =
1121       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1122   if (MergedIt == MergedDefModules.end())
1123     return None;
1124   return MergedIt->second;
1125 }
1126 
1127 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1128   if (LazyInitializers.empty())
1129     return;
1130 
1131   auto *Source = Ctx.getExternalSource();
1132   assert(Source && "lazy initializers but no external source");
1133 
1134   auto LazyInits = std::move(LazyInitializers);
1135   LazyInitializers.clear();
1136 
1137   for (auto ID : LazyInits)
1138     Initializers.push_back(Source->GetExternalDecl(ID));
1139 
1140   assert(LazyInitializers.empty() &&
1141          "GetExternalDecl for lazy module initializer added more inits");
1142 }
1143 
1144 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1145   // One special case: if we add a module initializer that imports another
1146   // module, and that module's only initializer is an ImportDecl, simplify.
1147   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1148     auto It = ModuleInitializers.find(ID->getImportedModule());
1149 
1150     // Maybe the ImportDecl does nothing at all. (Common case.)
1151     if (It == ModuleInitializers.end())
1152       return;
1153 
1154     // Maybe the ImportDecl only imports another ImportDecl.
1155     auto &Imported = *It->second;
1156     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1157       Imported.resolve(*this);
1158       auto *OnlyDecl = Imported.Initializers.front();
1159       if (isa<ImportDecl>(OnlyDecl))
1160         D = OnlyDecl;
1161     }
1162   }
1163 
1164   auto *&Inits = ModuleInitializers[M];
1165   if (!Inits)
1166     Inits = new (*this) PerModuleInitializers;
1167   Inits->Initializers.push_back(D);
1168 }
1169 
1170 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1171   auto *&Inits = ModuleInitializers[M];
1172   if (!Inits)
1173     Inits = new (*this) PerModuleInitializers;
1174   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1175                                  IDs.begin(), IDs.end());
1176 }
1177 
1178 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1179   auto It = ModuleInitializers.find(M);
1180   if (It == ModuleInitializers.end())
1181     return None;
1182 
1183   auto *Inits = It->second;
1184   Inits->resolve(*this);
1185   return Inits->Initializers;
1186 }
1187 
1188 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1189   if (!ExternCContext)
1190     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1191 
1192   return ExternCContext;
1193 }
1194 
1195 BuiltinTemplateDecl *
1196 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1197                                      const IdentifierInfo *II) const {
1198   auto *BuiltinTemplate =
1199       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1200   BuiltinTemplate->setImplicit();
1201   getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1202 
1203   return BuiltinTemplate;
1204 }
1205 
1206 BuiltinTemplateDecl *
1207 ASTContext::getMakeIntegerSeqDecl() const {
1208   if (!MakeIntegerSeqDecl)
1209     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1210                                                   getMakeIntegerSeqName());
1211   return MakeIntegerSeqDecl;
1212 }
1213 
1214 BuiltinTemplateDecl *
1215 ASTContext::getTypePackElementDecl() const {
1216   if (!TypePackElementDecl)
1217     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1218                                                    getTypePackElementName());
1219   return TypePackElementDecl;
1220 }
1221 
1222 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1223                                             RecordDecl::TagKind TK) const {
1224   SourceLocation Loc;
1225   RecordDecl *NewDecl;
1226   if (getLangOpts().CPlusPlus)
1227     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1228                                     Loc, &Idents.get(Name));
1229   else
1230     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1231                                  &Idents.get(Name));
1232   NewDecl->setImplicit();
1233   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1234       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1235   return NewDecl;
1236 }
1237 
1238 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1239                                               StringRef Name) const {
1240   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1241   TypedefDecl *NewDecl = TypedefDecl::Create(
1242       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1243       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1244   NewDecl->setImplicit();
1245   return NewDecl;
1246 }
1247 
1248 TypedefDecl *ASTContext::getInt128Decl() const {
1249   if (!Int128Decl)
1250     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1251   return Int128Decl;
1252 }
1253 
1254 TypedefDecl *ASTContext::getUInt128Decl() const {
1255   if (!UInt128Decl)
1256     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1257   return UInt128Decl;
1258 }
1259 
1260 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1261   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1262   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1263   Types.push_back(Ty);
1264 }
1265 
1266 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1267                                   const TargetInfo *AuxTarget) {
1268   assert((!this->Target || this->Target == &Target) &&
1269          "Incorrect target reinitialization");
1270   assert(VoidTy.isNull() && "Context reinitialized?");
1271 
1272   this->Target = &Target;
1273   this->AuxTarget = AuxTarget;
1274 
1275   ABI.reset(createCXXABI(Target));
1276   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1277   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1278 
1279   // C99 6.2.5p19.
1280   InitBuiltinType(VoidTy,              BuiltinType::Void);
1281 
1282   // C99 6.2.5p2.
1283   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1284   // C99 6.2.5p3.
1285   if (LangOpts.CharIsSigned)
1286     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1287   else
1288     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1289   // C99 6.2.5p4.
1290   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1291   InitBuiltinType(ShortTy,             BuiltinType::Short);
1292   InitBuiltinType(IntTy,               BuiltinType::Int);
1293   InitBuiltinType(LongTy,              BuiltinType::Long);
1294   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1295 
1296   // C99 6.2.5p6.
1297   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1298   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1299   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1300   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1301   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1302 
1303   // C99 6.2.5p10.
1304   InitBuiltinType(FloatTy,             BuiltinType::Float);
1305   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1306   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1307 
1308   // GNU extension, __float128 for IEEE quadruple precision
1309   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1310 
1311   // C11 extension ISO/IEC TS 18661-3
1312   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1313 
1314   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1315   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1316   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1317   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1318   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1319   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1320   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1321   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1322   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1323   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1324   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1325   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1326   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1327   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1328   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1329   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1330   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1331   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1332   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1333   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1334   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1335   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1336   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1337   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1338   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1339 
1340   // GNU extension, 128-bit integers.
1341   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1342   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1343 
1344   // C++ 3.9.1p5
1345   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1346     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1347   else  // -fshort-wchar makes wchar_t be unsigned.
1348     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1349   if (LangOpts.CPlusPlus && LangOpts.WChar)
1350     WideCharTy = WCharTy;
1351   else {
1352     // C99 (or C++ using -fno-wchar).
1353     WideCharTy = getFromTargetType(Target.getWCharType());
1354   }
1355 
1356   WIntTy = getFromTargetType(Target.getWIntType());
1357 
1358   // C++20 (proposed)
1359   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1360 
1361   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1362     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1363   else // C99
1364     Char16Ty = getFromTargetType(Target.getChar16Type());
1365 
1366   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1367     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1368   else // C99
1369     Char32Ty = getFromTargetType(Target.getChar32Type());
1370 
1371   // Placeholder type for type-dependent expressions whose type is
1372   // completely unknown. No code should ever check a type against
1373   // DependentTy and users should never see it; however, it is here to
1374   // help diagnose failures to properly check for type-dependent
1375   // expressions.
1376   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1377 
1378   // Placeholder type for functions.
1379   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1380 
1381   // Placeholder type for bound members.
1382   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1383 
1384   // Placeholder type for pseudo-objects.
1385   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1386 
1387   // "any" type; useful for debugger-like clients.
1388   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1389 
1390   // Placeholder type for unbridged ARC casts.
1391   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1392 
1393   // Placeholder type for builtin functions.
1394   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1395 
1396   // Placeholder type for OMP array sections.
1397   if (LangOpts.OpenMP) {
1398     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1399     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1400     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1401   }
1402   if (LangOpts.MatrixTypes)
1403     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1404 
1405   // C99 6.2.5p11.
1406   FloatComplexTy      = getComplexType(FloatTy);
1407   DoubleComplexTy     = getComplexType(DoubleTy);
1408   LongDoubleComplexTy = getComplexType(LongDoubleTy);
1409   Float128ComplexTy   = getComplexType(Float128Ty);
1410 
1411   // Builtin types for 'id', 'Class', and 'SEL'.
1412   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1413   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1414   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1415 
1416   if (LangOpts.OpenCL) {
1417 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1418     InitBuiltinType(SingletonId, BuiltinType::Id);
1419 #include "clang/Basic/OpenCLImageTypes.def"
1420 
1421     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1422     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1423     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1424     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1425     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1426 
1427 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1428     InitBuiltinType(Id##Ty, BuiltinType::Id);
1429 #include "clang/Basic/OpenCLExtensionTypes.def"
1430   }
1431 
1432   if (Target.hasAArch64SVETypes()) {
1433 #define SVE_TYPE(Name, Id, SingletonId) \
1434     InitBuiltinType(SingletonId, BuiltinType::Id);
1435 #include "clang/Basic/AArch64SVEACLETypes.def"
1436   }
1437 
1438   if (Target.getTriple().isPPC64() &&
1439       Target.hasFeature("paired-vector-memops")) {
1440     if (Target.hasFeature("mma")) {
1441 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1442       InitBuiltinType(Id##Ty, BuiltinType::Id);
1443 #include "clang/Basic/PPCTypes.def"
1444     }
1445 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1446     InitBuiltinType(Id##Ty, BuiltinType::Id);
1447 #include "clang/Basic/PPCTypes.def"
1448   }
1449 
1450   if (Target.hasRISCVVTypes()) {
1451 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1452   InitBuiltinType(SingletonId, BuiltinType::Id);
1453 #include "clang/Basic/RISCVVTypes.def"
1454   }
1455 
1456   // Builtin type for __objc_yes and __objc_no
1457   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1458                        SignedCharTy : BoolTy);
1459 
1460   ObjCConstantStringType = QualType();
1461 
1462   ObjCSuperType = QualType();
1463 
1464   // void * type
1465   if (LangOpts.OpenCLGenericAddressSpace) {
1466     auto Q = VoidTy.getQualifiers();
1467     Q.setAddressSpace(LangAS::opencl_generic);
1468     VoidPtrTy = getPointerType(getCanonicalType(
1469         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1470   } else {
1471     VoidPtrTy = getPointerType(VoidTy);
1472   }
1473 
1474   // nullptr type (C++0x 2.14.7)
1475   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1476 
1477   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1478   InitBuiltinType(HalfTy, BuiltinType::Half);
1479 
1480   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1481 
1482   // Builtin type used to help define __builtin_va_list.
1483   VaListTagDecl = nullptr;
1484 
1485   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1486   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1487     MSGuidTagDecl = buildImplicitRecord("_GUID");
1488     getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1489   }
1490 }
1491 
1492 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1493   return SourceMgr.getDiagnostics();
1494 }
1495 
1496 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1497   AttrVec *&Result = DeclAttrs[D];
1498   if (!Result) {
1499     void *Mem = Allocate(sizeof(AttrVec));
1500     Result = new (Mem) AttrVec;
1501   }
1502 
1503   return *Result;
1504 }
1505 
1506 /// Erase the attributes corresponding to the given declaration.
1507 void ASTContext::eraseDeclAttrs(const Decl *D) {
1508   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1509   if (Pos != DeclAttrs.end()) {
1510     Pos->second->~AttrVec();
1511     DeclAttrs.erase(Pos);
1512   }
1513 }
1514 
1515 // FIXME: Remove ?
1516 MemberSpecializationInfo *
1517 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1518   assert(Var->isStaticDataMember() && "Not a static data member");
1519   return getTemplateOrSpecializationInfo(Var)
1520       .dyn_cast<MemberSpecializationInfo *>();
1521 }
1522 
1523 ASTContext::TemplateOrSpecializationInfo
1524 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1525   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1526       TemplateOrInstantiation.find(Var);
1527   if (Pos == TemplateOrInstantiation.end())
1528     return {};
1529 
1530   return Pos->second;
1531 }
1532 
1533 void
1534 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1535                                                 TemplateSpecializationKind TSK,
1536                                           SourceLocation PointOfInstantiation) {
1537   assert(Inst->isStaticDataMember() && "Not a static data member");
1538   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1539   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1540                                             Tmpl, TSK, PointOfInstantiation));
1541 }
1542 
1543 void
1544 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1545                                             TemplateOrSpecializationInfo TSI) {
1546   assert(!TemplateOrInstantiation[Inst] &&
1547          "Already noted what the variable was instantiated from");
1548   TemplateOrInstantiation[Inst] = TSI;
1549 }
1550 
1551 NamedDecl *
1552 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1553   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1554   if (Pos == InstantiatedFromUsingDecl.end())
1555     return nullptr;
1556 
1557   return Pos->second;
1558 }
1559 
1560 void
1561 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1562   assert((isa<UsingDecl>(Pattern) ||
1563           isa<UnresolvedUsingValueDecl>(Pattern) ||
1564           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1565          "pattern decl is not a using decl");
1566   assert((isa<UsingDecl>(Inst) ||
1567           isa<UnresolvedUsingValueDecl>(Inst) ||
1568           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1569          "instantiation did not produce a using decl");
1570   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1571   InstantiatedFromUsingDecl[Inst] = Pattern;
1572 }
1573 
1574 UsingEnumDecl *
1575 ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1576   auto Pos = InstantiatedFromUsingEnumDecl.find(UUD);
1577   if (Pos == InstantiatedFromUsingEnumDecl.end())
1578     return nullptr;
1579 
1580   return Pos->second;
1581 }
1582 
1583 void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1584                                                   UsingEnumDecl *Pattern) {
1585   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
1586   InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1587 }
1588 
1589 UsingShadowDecl *
1590 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1591   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1592     = InstantiatedFromUsingShadowDecl.find(Inst);
1593   if (Pos == InstantiatedFromUsingShadowDecl.end())
1594     return nullptr;
1595 
1596   return Pos->second;
1597 }
1598 
1599 void
1600 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1601                                                UsingShadowDecl *Pattern) {
1602   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1603   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1604 }
1605 
1606 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1607   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1608     = InstantiatedFromUnnamedFieldDecl.find(Field);
1609   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1610     return nullptr;
1611 
1612   return Pos->second;
1613 }
1614 
1615 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1616                                                      FieldDecl *Tmpl) {
1617   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1618   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1619   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1620          "Already noted what unnamed field was instantiated from");
1621 
1622   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1623 }
1624 
1625 ASTContext::overridden_cxx_method_iterator
1626 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1627   return overridden_methods(Method).begin();
1628 }
1629 
1630 ASTContext::overridden_cxx_method_iterator
1631 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1632   return overridden_methods(Method).end();
1633 }
1634 
1635 unsigned
1636 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1637   auto Range = overridden_methods(Method);
1638   return Range.end() - Range.begin();
1639 }
1640 
1641 ASTContext::overridden_method_range
1642 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1643   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1644       OverriddenMethods.find(Method->getCanonicalDecl());
1645   if (Pos == OverriddenMethods.end())
1646     return overridden_method_range(nullptr, nullptr);
1647   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1648 }
1649 
1650 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1651                                      const CXXMethodDecl *Overridden) {
1652   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1653   OverriddenMethods[Method].push_back(Overridden);
1654 }
1655 
1656 void ASTContext::getOverriddenMethods(
1657                       const NamedDecl *D,
1658                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1659   assert(D);
1660 
1661   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1662     Overridden.append(overridden_methods_begin(CXXMethod),
1663                       overridden_methods_end(CXXMethod));
1664     return;
1665   }
1666 
1667   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1668   if (!Method)
1669     return;
1670 
1671   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1672   Method->getOverriddenMethods(OverDecls);
1673   Overridden.append(OverDecls.begin(), OverDecls.end());
1674 }
1675 
1676 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1677   assert(!Import->getNextLocalImport() &&
1678          "Import declaration already in the chain");
1679   assert(!Import->isFromASTFile() && "Non-local import declaration");
1680   if (!FirstLocalImport) {
1681     FirstLocalImport = Import;
1682     LastLocalImport = Import;
1683     return;
1684   }
1685 
1686   LastLocalImport->setNextLocalImport(Import);
1687   LastLocalImport = Import;
1688 }
1689 
1690 //===----------------------------------------------------------------------===//
1691 //                         Type Sizing and Analysis
1692 //===----------------------------------------------------------------------===//
1693 
1694 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1695 /// scalar floating point type.
1696 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1697   switch (T->castAs<BuiltinType>()->getKind()) {
1698   default:
1699     llvm_unreachable("Not a floating point type!");
1700   case BuiltinType::BFloat16:
1701     return Target->getBFloat16Format();
1702   case BuiltinType::Float16:
1703   case BuiltinType::Half:
1704     return Target->getHalfFormat();
1705   case BuiltinType::Float:      return Target->getFloatFormat();
1706   case BuiltinType::Double:     return Target->getDoubleFormat();
1707   case BuiltinType::LongDouble:
1708     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1709       return AuxTarget->getLongDoubleFormat();
1710     return Target->getLongDoubleFormat();
1711   case BuiltinType::Float128:
1712     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1713       return AuxTarget->getFloat128Format();
1714     return Target->getFloat128Format();
1715   }
1716 }
1717 
1718 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1719   unsigned Align = Target->getCharWidth();
1720 
1721   bool UseAlignAttrOnly = false;
1722   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1723     Align = AlignFromAttr;
1724 
1725     // __attribute__((aligned)) can increase or decrease alignment
1726     // *except* on a struct or struct member, where it only increases
1727     // alignment unless 'packed' is also specified.
1728     //
1729     // It is an error for alignas to decrease alignment, so we can
1730     // ignore that possibility;  Sema should diagnose it.
1731     if (isa<FieldDecl>(D)) {
1732       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1733         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1734     } else {
1735       UseAlignAttrOnly = true;
1736     }
1737   }
1738   else if (isa<FieldDecl>(D))
1739       UseAlignAttrOnly =
1740         D->hasAttr<PackedAttr>() ||
1741         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1742 
1743   // If we're using the align attribute only, just ignore everything
1744   // else about the declaration and its type.
1745   if (UseAlignAttrOnly) {
1746     // do nothing
1747   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1748     QualType T = VD->getType();
1749     if (const auto *RT = T->getAs<ReferenceType>()) {
1750       if (ForAlignof)
1751         T = RT->getPointeeType();
1752       else
1753         T = getPointerType(RT->getPointeeType());
1754     }
1755     QualType BaseT = getBaseElementType(T);
1756     if (T->isFunctionType())
1757       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1758     else if (!BaseT->isIncompleteType()) {
1759       // Adjust alignments of declarations with array type by the
1760       // large-array alignment on the target.
1761       if (const ArrayType *arrayType = getAsArrayType(T)) {
1762         unsigned MinWidth = Target->getLargeArrayMinWidth();
1763         if (!ForAlignof && MinWidth) {
1764           if (isa<VariableArrayType>(arrayType))
1765             Align = std::max(Align, Target->getLargeArrayAlign());
1766           else if (isa<ConstantArrayType>(arrayType) &&
1767                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1768             Align = std::max(Align, Target->getLargeArrayAlign());
1769         }
1770       }
1771       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1772       if (BaseT.getQualifiers().hasUnaligned())
1773         Align = Target->getCharWidth();
1774       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1775         if (VD->hasGlobalStorage() && !ForAlignof) {
1776           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1777           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1778         }
1779       }
1780     }
1781 
1782     // Fields can be subject to extra alignment constraints, like if
1783     // the field is packed, the struct is packed, or the struct has a
1784     // a max-field-alignment constraint (#pragma pack).  So calculate
1785     // the actual alignment of the field within the struct, and then
1786     // (as we're expected to) constrain that by the alignment of the type.
1787     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1788       const RecordDecl *Parent = Field->getParent();
1789       // We can only produce a sensible answer if the record is valid.
1790       if (!Parent->isInvalidDecl()) {
1791         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1792 
1793         // Start with the record's overall alignment.
1794         unsigned FieldAlign = toBits(Layout.getAlignment());
1795 
1796         // Use the GCD of that and the offset within the record.
1797         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1798         if (Offset > 0) {
1799           // Alignment is always a power of 2, so the GCD will be a power of 2,
1800           // which means we get to do this crazy thing instead of Euclid's.
1801           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1802           if (LowBitOfOffset < FieldAlign)
1803             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1804         }
1805 
1806         Align = std::min(Align, FieldAlign);
1807       }
1808     }
1809   }
1810 
1811   // Some targets have hard limitation on the maximum requestable alignment in
1812   // aligned attribute for static variables.
1813   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1814   const auto *VD = dyn_cast<VarDecl>(D);
1815   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1816     Align = std::min(Align, MaxAlignedAttr);
1817 
1818   return toCharUnitsFromBits(Align);
1819 }
1820 
1821 CharUnits ASTContext::getExnObjectAlignment() const {
1822   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1823 }
1824 
1825 // getTypeInfoDataSizeInChars - Return the size of a type, in
1826 // chars. If the type is a record, its data size is returned.  This is
1827 // the size of the memcpy that's performed when assigning this type
1828 // using a trivial copy/move assignment operator.
1829 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1830   TypeInfoChars Info = getTypeInfoInChars(T);
1831 
1832   // In C++, objects can sometimes be allocated into the tail padding
1833   // of a base-class subobject.  We decide whether that's possible
1834   // during class layout, so here we can just trust the layout results.
1835   if (getLangOpts().CPlusPlus) {
1836     if (const auto *RT = T->getAs<RecordType>()) {
1837       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1838       Info.Width = layout.getDataSize();
1839     }
1840   }
1841 
1842   return Info;
1843 }
1844 
1845 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1846 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1847 TypeInfoChars
1848 static getConstantArrayInfoInChars(const ASTContext &Context,
1849                                    const ConstantArrayType *CAT) {
1850   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1851   uint64_t Size = CAT->getSize().getZExtValue();
1852   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1853               (uint64_t)(-1)/Size) &&
1854          "Overflow in array type char size evaluation");
1855   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1856   unsigned Align = EltInfo.Align.getQuantity();
1857   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1858       Context.getTargetInfo().getPointerWidth(0) == 64)
1859     Width = llvm::alignTo(Width, Align);
1860   return TypeInfoChars(CharUnits::fromQuantity(Width),
1861                        CharUnits::fromQuantity(Align),
1862                        EltInfo.AlignIsRequired);
1863 }
1864 
1865 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1866   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1867     return getConstantArrayInfoInChars(*this, CAT);
1868   TypeInfo Info = getTypeInfo(T);
1869   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1870                        toCharUnitsFromBits(Info.Align),
1871                        Info.AlignIsRequired);
1872 }
1873 
1874 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1875   return getTypeInfoInChars(T.getTypePtr());
1876 }
1877 
1878 bool ASTContext::isAlignmentRequired(const Type *T) const {
1879   return getTypeInfo(T).AlignIsRequired;
1880 }
1881 
1882 bool ASTContext::isAlignmentRequired(QualType T) const {
1883   return isAlignmentRequired(T.getTypePtr());
1884 }
1885 
1886 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1887                                          bool NeedsPreferredAlignment) const {
1888   // An alignment on a typedef overrides anything else.
1889   if (const auto *TT = T->getAs<TypedefType>())
1890     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1891       return Align;
1892 
1893   // If we have an (array of) complete type, we're done.
1894   T = getBaseElementType(T);
1895   if (!T->isIncompleteType())
1896     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1897 
1898   // If we had an array type, its element type might be a typedef
1899   // type with an alignment attribute.
1900   if (const auto *TT = T->getAs<TypedefType>())
1901     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1902       return Align;
1903 
1904   // Otherwise, see if the declaration of the type had an attribute.
1905   if (const auto *TT = T->getAs<TagType>())
1906     return TT->getDecl()->getMaxAlignment();
1907 
1908   return 0;
1909 }
1910 
1911 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1912   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1913   if (I != MemoizedTypeInfo.end())
1914     return I->second;
1915 
1916   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1917   TypeInfo TI = getTypeInfoImpl(T);
1918   MemoizedTypeInfo[T] = TI;
1919   return TI;
1920 }
1921 
1922 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1923 /// method does not work on incomplete types.
1924 ///
1925 /// FIXME: Pointers into different addr spaces could have different sizes and
1926 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1927 /// should take a QualType, &c.
1928 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1929   uint64_t Width = 0;
1930   unsigned Align = 8;
1931   bool AlignIsRequired = false;
1932   unsigned AS = 0;
1933   switch (T->getTypeClass()) {
1934 #define TYPE(Class, Base)
1935 #define ABSTRACT_TYPE(Class, Base)
1936 #define NON_CANONICAL_TYPE(Class, Base)
1937 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1938 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1939   case Type::Class:                                                            \
1940   assert(!T->isDependentType() && "should not see dependent types here");      \
1941   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1942 #include "clang/AST/TypeNodes.inc"
1943     llvm_unreachable("Should not see dependent types");
1944 
1945   case Type::FunctionNoProto:
1946   case Type::FunctionProto:
1947     // GCC extension: alignof(function) = 32 bits
1948     Width = 0;
1949     Align = 32;
1950     break;
1951 
1952   case Type::IncompleteArray:
1953   case Type::VariableArray:
1954   case Type::ConstantArray: {
1955     // Model non-constant sized arrays as size zero, but track the alignment.
1956     uint64_t Size = 0;
1957     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1958       Size = CAT->getSize().getZExtValue();
1959 
1960     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1961     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1962            "Overflow in array type bit size evaluation");
1963     Width = EltInfo.Width * Size;
1964     Align = EltInfo.Align;
1965     AlignIsRequired = EltInfo.AlignIsRequired;
1966     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1967         getTargetInfo().getPointerWidth(0) == 64)
1968       Width = llvm::alignTo(Width, Align);
1969     break;
1970   }
1971 
1972   case Type::ExtVector:
1973   case Type::Vector: {
1974     const auto *VT = cast<VectorType>(T);
1975     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1976     Width = EltInfo.Width * VT->getNumElements();
1977     Align = Width;
1978     // If the alignment is not a power of 2, round up to the next power of 2.
1979     // This happens for non-power-of-2 length vectors.
1980     if (Align & (Align-1)) {
1981       Align = llvm::NextPowerOf2(Align);
1982       Width = llvm::alignTo(Width, Align);
1983     }
1984     // Adjust the alignment based on the target max.
1985     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1986     if (TargetVectorAlign && TargetVectorAlign < Align)
1987       Align = TargetVectorAlign;
1988     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
1989       // Adjust the alignment for fixed-length SVE vectors. This is important
1990       // for non-power-of-2 vector lengths.
1991       Align = 128;
1992     else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
1993       // Adjust the alignment for fixed-length SVE predicates.
1994       Align = 16;
1995     break;
1996   }
1997 
1998   case Type::ConstantMatrix: {
1999     const auto *MT = cast<ConstantMatrixType>(T);
2000     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
2001     // The internal layout of a matrix value is implementation defined.
2002     // Initially be ABI compatible with arrays with respect to alignment and
2003     // size.
2004     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
2005     Align = ElementInfo.Align;
2006     break;
2007   }
2008 
2009   case Type::Builtin:
2010     switch (cast<BuiltinType>(T)->getKind()) {
2011     default: llvm_unreachable("Unknown builtin type!");
2012     case BuiltinType::Void:
2013       // GCC extension: alignof(void) = 8 bits.
2014       Width = 0;
2015       Align = 8;
2016       break;
2017     case BuiltinType::Bool:
2018       Width = Target->getBoolWidth();
2019       Align = Target->getBoolAlign();
2020       break;
2021     case BuiltinType::Char_S:
2022     case BuiltinType::Char_U:
2023     case BuiltinType::UChar:
2024     case BuiltinType::SChar:
2025     case BuiltinType::Char8:
2026       Width = Target->getCharWidth();
2027       Align = Target->getCharAlign();
2028       break;
2029     case BuiltinType::WChar_S:
2030     case BuiltinType::WChar_U:
2031       Width = Target->getWCharWidth();
2032       Align = Target->getWCharAlign();
2033       break;
2034     case BuiltinType::Char16:
2035       Width = Target->getChar16Width();
2036       Align = Target->getChar16Align();
2037       break;
2038     case BuiltinType::Char32:
2039       Width = Target->getChar32Width();
2040       Align = Target->getChar32Align();
2041       break;
2042     case BuiltinType::UShort:
2043     case BuiltinType::Short:
2044       Width = Target->getShortWidth();
2045       Align = Target->getShortAlign();
2046       break;
2047     case BuiltinType::UInt:
2048     case BuiltinType::Int:
2049       Width = Target->getIntWidth();
2050       Align = Target->getIntAlign();
2051       break;
2052     case BuiltinType::ULong:
2053     case BuiltinType::Long:
2054       Width = Target->getLongWidth();
2055       Align = Target->getLongAlign();
2056       break;
2057     case BuiltinType::ULongLong:
2058     case BuiltinType::LongLong:
2059       Width = Target->getLongLongWidth();
2060       Align = Target->getLongLongAlign();
2061       break;
2062     case BuiltinType::Int128:
2063     case BuiltinType::UInt128:
2064       Width = 128;
2065       Align = 128; // int128_t is 128-bit aligned on all targets.
2066       break;
2067     case BuiltinType::ShortAccum:
2068     case BuiltinType::UShortAccum:
2069     case BuiltinType::SatShortAccum:
2070     case BuiltinType::SatUShortAccum:
2071       Width = Target->getShortAccumWidth();
2072       Align = Target->getShortAccumAlign();
2073       break;
2074     case BuiltinType::Accum:
2075     case BuiltinType::UAccum:
2076     case BuiltinType::SatAccum:
2077     case BuiltinType::SatUAccum:
2078       Width = Target->getAccumWidth();
2079       Align = Target->getAccumAlign();
2080       break;
2081     case BuiltinType::LongAccum:
2082     case BuiltinType::ULongAccum:
2083     case BuiltinType::SatLongAccum:
2084     case BuiltinType::SatULongAccum:
2085       Width = Target->getLongAccumWidth();
2086       Align = Target->getLongAccumAlign();
2087       break;
2088     case BuiltinType::ShortFract:
2089     case BuiltinType::UShortFract:
2090     case BuiltinType::SatShortFract:
2091     case BuiltinType::SatUShortFract:
2092       Width = Target->getShortFractWidth();
2093       Align = Target->getShortFractAlign();
2094       break;
2095     case BuiltinType::Fract:
2096     case BuiltinType::UFract:
2097     case BuiltinType::SatFract:
2098     case BuiltinType::SatUFract:
2099       Width = Target->getFractWidth();
2100       Align = Target->getFractAlign();
2101       break;
2102     case BuiltinType::LongFract:
2103     case BuiltinType::ULongFract:
2104     case BuiltinType::SatLongFract:
2105     case BuiltinType::SatULongFract:
2106       Width = Target->getLongFractWidth();
2107       Align = Target->getLongFractAlign();
2108       break;
2109     case BuiltinType::BFloat16:
2110       Width = Target->getBFloat16Width();
2111       Align = Target->getBFloat16Align();
2112       break;
2113     case BuiltinType::Float16:
2114     case BuiltinType::Half:
2115       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2116           !getLangOpts().OpenMPIsDevice) {
2117         Width = Target->getHalfWidth();
2118         Align = Target->getHalfAlign();
2119       } else {
2120         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2121                "Expected OpenMP device compilation.");
2122         Width = AuxTarget->getHalfWidth();
2123         Align = AuxTarget->getHalfAlign();
2124       }
2125       break;
2126     case BuiltinType::Float:
2127       Width = Target->getFloatWidth();
2128       Align = Target->getFloatAlign();
2129       break;
2130     case BuiltinType::Double:
2131       Width = Target->getDoubleWidth();
2132       Align = Target->getDoubleAlign();
2133       break;
2134     case BuiltinType::LongDouble:
2135       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2136           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2137            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2138         Width = AuxTarget->getLongDoubleWidth();
2139         Align = AuxTarget->getLongDoubleAlign();
2140       } else {
2141         Width = Target->getLongDoubleWidth();
2142         Align = Target->getLongDoubleAlign();
2143       }
2144       break;
2145     case BuiltinType::Float128:
2146       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2147           !getLangOpts().OpenMPIsDevice) {
2148         Width = Target->getFloat128Width();
2149         Align = Target->getFloat128Align();
2150       } else {
2151         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2152                "Expected OpenMP device compilation.");
2153         Width = AuxTarget->getFloat128Width();
2154         Align = AuxTarget->getFloat128Align();
2155       }
2156       break;
2157     case BuiltinType::NullPtr:
2158       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2159       Align = Target->getPointerAlign(0); //   == sizeof(void*)
2160       break;
2161     case BuiltinType::ObjCId:
2162     case BuiltinType::ObjCClass:
2163     case BuiltinType::ObjCSel:
2164       Width = Target->getPointerWidth(0);
2165       Align = Target->getPointerAlign(0);
2166       break;
2167     case BuiltinType::OCLSampler:
2168     case BuiltinType::OCLEvent:
2169     case BuiltinType::OCLClkEvent:
2170     case BuiltinType::OCLQueue:
2171     case BuiltinType::OCLReserveID:
2172 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2173     case BuiltinType::Id:
2174 #include "clang/Basic/OpenCLImageTypes.def"
2175 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2176   case BuiltinType::Id:
2177 #include "clang/Basic/OpenCLExtensionTypes.def"
2178       AS = getTargetAddressSpace(
2179           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2180       Width = Target->getPointerWidth(AS);
2181       Align = Target->getPointerAlign(AS);
2182       break;
2183     // The SVE types are effectively target-specific.  The length of an
2184     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2185     // of 128 bits.  There is one predicate bit for each vector byte, so the
2186     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2187     //
2188     // Because the length is only known at runtime, we use a dummy value
2189     // of 0 for the static length.  The alignment values are those defined
2190     // by the Procedure Call Standard for the Arm Architecture.
2191 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2192                         IsSigned, IsFP, IsBF)                                  \
2193   case BuiltinType::Id:                                                        \
2194     Width = 0;                                                                 \
2195     Align = 128;                                                               \
2196     break;
2197 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2198   case BuiltinType::Id:                                                        \
2199     Width = 0;                                                                 \
2200     Align = 16;                                                                \
2201     break;
2202 #include "clang/Basic/AArch64SVEACLETypes.def"
2203 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2204   case BuiltinType::Id:                                                        \
2205     Width = Size;                                                              \
2206     Align = Size;                                                              \
2207     break;
2208 #include "clang/Basic/PPCTypes.def"
2209 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2210                         IsFP)                                                  \
2211   case BuiltinType::Id:                                                        \
2212     Width = 0;                                                                 \
2213     Align = ElBits;                                                            \
2214     break;
2215 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2216   case BuiltinType::Id:                                                        \
2217     Width = 0;                                                                 \
2218     Align = 8;                                                                 \
2219     break;
2220 #include "clang/Basic/RISCVVTypes.def"
2221     }
2222     break;
2223   case Type::ObjCObjectPointer:
2224     Width = Target->getPointerWidth(0);
2225     Align = Target->getPointerAlign(0);
2226     break;
2227   case Type::BlockPointer:
2228     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2229     Width = Target->getPointerWidth(AS);
2230     Align = Target->getPointerAlign(AS);
2231     break;
2232   case Type::LValueReference:
2233   case Type::RValueReference:
2234     // alignof and sizeof should never enter this code path here, so we go
2235     // the pointer route.
2236     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2237     Width = Target->getPointerWidth(AS);
2238     Align = Target->getPointerAlign(AS);
2239     break;
2240   case Type::Pointer:
2241     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2242     Width = Target->getPointerWidth(AS);
2243     Align = Target->getPointerAlign(AS);
2244     break;
2245   case Type::MemberPointer: {
2246     const auto *MPT = cast<MemberPointerType>(T);
2247     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2248     Width = MPI.Width;
2249     Align = MPI.Align;
2250     break;
2251   }
2252   case Type::Complex: {
2253     // Complex types have the same alignment as their elements, but twice the
2254     // size.
2255     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2256     Width = EltInfo.Width * 2;
2257     Align = EltInfo.Align;
2258     break;
2259   }
2260   case Type::ObjCObject:
2261     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2262   case Type::Adjusted:
2263   case Type::Decayed:
2264     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2265   case Type::ObjCInterface: {
2266     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2267     if (ObjCI->getDecl()->isInvalidDecl()) {
2268       Width = 8;
2269       Align = 8;
2270       break;
2271     }
2272     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2273     Width = toBits(Layout.getSize());
2274     Align = toBits(Layout.getAlignment());
2275     break;
2276   }
2277   case Type::ExtInt: {
2278     const auto *EIT = cast<ExtIntType>(T);
2279     Align =
2280         std::min(static_cast<unsigned>(std::max(
2281                      getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2282                  Target->getLongLongAlign());
2283     Width = llvm::alignTo(EIT->getNumBits(), Align);
2284     break;
2285   }
2286   case Type::Record:
2287   case Type::Enum: {
2288     const auto *TT = cast<TagType>(T);
2289 
2290     if (TT->getDecl()->isInvalidDecl()) {
2291       Width = 8;
2292       Align = 8;
2293       break;
2294     }
2295 
2296     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2297       const EnumDecl *ED = ET->getDecl();
2298       TypeInfo Info =
2299           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2300       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2301         Info.Align = AttrAlign;
2302         Info.AlignIsRequired = true;
2303       }
2304       return Info;
2305     }
2306 
2307     const auto *RT = cast<RecordType>(TT);
2308     const RecordDecl *RD = RT->getDecl();
2309     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2310     Width = toBits(Layout.getSize());
2311     Align = toBits(Layout.getAlignment());
2312     AlignIsRequired = RD->hasAttr<AlignedAttr>();
2313     break;
2314   }
2315 
2316   case Type::SubstTemplateTypeParm:
2317     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2318                        getReplacementType().getTypePtr());
2319 
2320   case Type::Auto:
2321   case Type::DeducedTemplateSpecialization: {
2322     const auto *A = cast<DeducedType>(T);
2323     assert(!A->getDeducedType().isNull() &&
2324            "cannot request the size of an undeduced or dependent auto type");
2325     return getTypeInfo(A->getDeducedType().getTypePtr());
2326   }
2327 
2328   case Type::Paren:
2329     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2330 
2331   case Type::MacroQualified:
2332     return getTypeInfo(
2333         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2334 
2335   case Type::ObjCTypeParam:
2336     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2337 
2338   case Type::Typedef: {
2339     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2340     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2341     // If the typedef has an aligned attribute on it, it overrides any computed
2342     // alignment we have.  This violates the GCC documentation (which says that
2343     // attribute(aligned) can only round up) but matches its implementation.
2344     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2345       Align = AttrAlign;
2346       AlignIsRequired = true;
2347     } else {
2348       Align = Info.Align;
2349       AlignIsRequired = Info.AlignIsRequired;
2350     }
2351     Width = Info.Width;
2352     break;
2353   }
2354 
2355   case Type::Elaborated:
2356     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2357 
2358   case Type::Attributed:
2359     return getTypeInfo(
2360                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2361 
2362   case Type::Atomic: {
2363     // Start with the base type information.
2364     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2365     Width = Info.Width;
2366     Align = Info.Align;
2367 
2368     if (!Width) {
2369       // An otherwise zero-sized type should still generate an
2370       // atomic operation.
2371       Width = Target->getCharWidth();
2372       assert(Align);
2373     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2374       // If the size of the type doesn't exceed the platform's max
2375       // atomic promotion width, make the size and alignment more
2376       // favorable to atomic operations:
2377 
2378       // Round the size up to a power of 2.
2379       if (!llvm::isPowerOf2_64(Width))
2380         Width = llvm::NextPowerOf2(Width);
2381 
2382       // Set the alignment equal to the size.
2383       Align = static_cast<unsigned>(Width);
2384     }
2385   }
2386   break;
2387 
2388   case Type::Pipe:
2389     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2390     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2391     break;
2392   }
2393 
2394   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2395   return TypeInfo(Width, Align, AlignIsRequired);
2396 }
2397 
2398 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2399   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2400   if (I != MemoizedUnadjustedAlign.end())
2401     return I->second;
2402 
2403   unsigned UnadjustedAlign;
2404   if (const auto *RT = T->getAs<RecordType>()) {
2405     const RecordDecl *RD = RT->getDecl();
2406     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2407     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2408   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2409     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2410     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2411   } else {
2412     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2413   }
2414 
2415   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2416   return UnadjustedAlign;
2417 }
2418 
2419 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2420   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2421   return SimdAlign;
2422 }
2423 
2424 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2425 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2426   return CharUnits::fromQuantity(BitSize / getCharWidth());
2427 }
2428 
2429 /// toBits - Convert a size in characters to a size in characters.
2430 int64_t ASTContext::toBits(CharUnits CharSize) const {
2431   return CharSize.getQuantity() * getCharWidth();
2432 }
2433 
2434 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2435 /// This method does not work on incomplete types.
2436 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2437   return getTypeInfoInChars(T).Width;
2438 }
2439 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2440   return getTypeInfoInChars(T).Width;
2441 }
2442 
2443 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2444 /// characters. This method does not work on incomplete types.
2445 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2446   return toCharUnitsFromBits(getTypeAlign(T));
2447 }
2448 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2449   return toCharUnitsFromBits(getTypeAlign(T));
2450 }
2451 
2452 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2453 /// type, in characters, before alignment adustments. This method does
2454 /// not work on incomplete types.
2455 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2456   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2457 }
2458 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2459   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2460 }
2461 
2462 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2463 /// type for the current target in bits.  This can be different than the ABI
2464 /// alignment in cases where it is beneficial for performance or backwards
2465 /// compatibility preserving to overalign a data type. (Note: despite the name,
2466 /// the preferred alignment is ABI-impacting, and not an optimization.)
2467 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2468   TypeInfo TI = getTypeInfo(T);
2469   unsigned ABIAlign = TI.Align;
2470 
2471   T = T->getBaseElementTypeUnsafe();
2472 
2473   // The preferred alignment of member pointers is that of a pointer.
2474   if (T->isMemberPointerType())
2475     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2476 
2477   if (!Target->allowsLargerPreferedTypeAlignment())
2478     return ABIAlign;
2479 
2480   if (const auto *RT = T->getAs<RecordType>()) {
2481     if (TI.AlignIsRequired || RT->getDecl()->isInvalidDecl())
2482       return ABIAlign;
2483 
2484     unsigned PreferredAlign = static_cast<unsigned>(
2485         toBits(getASTRecordLayout(RT->getDecl()).PreferredAlignment));
2486     assert(PreferredAlign >= ABIAlign &&
2487            "PreferredAlign should be at least as large as ABIAlign.");
2488     return PreferredAlign;
2489   }
2490 
2491   // Double (and, for targets supporting AIX `power` alignment, long double) and
2492   // long long should be naturally aligned (despite requiring less alignment) if
2493   // possible.
2494   if (const auto *CT = T->getAs<ComplexType>())
2495     T = CT->getElementType().getTypePtr();
2496   if (const auto *ET = T->getAs<EnumType>())
2497     T = ET->getDecl()->getIntegerType().getTypePtr();
2498   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2499       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2500       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2501       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2502        Target->defaultsToAIXPowerAlignment()))
2503     // Don't increase the alignment if an alignment attribute was specified on a
2504     // typedef declaration.
2505     if (!TI.AlignIsRequired)
2506       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2507 
2508   return ABIAlign;
2509 }
2510 
2511 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2512 /// for __attribute__((aligned)) on this target, to be used if no alignment
2513 /// value is specified.
2514 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2515   return getTargetInfo().getDefaultAlignForAttributeAligned();
2516 }
2517 
2518 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2519 /// to a global variable of the specified type.
2520 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2521   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2522   return std::max(getPreferredTypeAlign(T),
2523                   getTargetInfo().getMinGlobalAlign(TypeSize));
2524 }
2525 
2526 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2527 /// should be given to a global variable of the specified type.
2528 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2529   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2530 }
2531 
2532 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2533   CharUnits Offset = CharUnits::Zero();
2534   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2535   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2536     Offset += Layout->getBaseClassOffset(Base);
2537     Layout = &getASTRecordLayout(Base);
2538   }
2539   return Offset;
2540 }
2541 
2542 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2543   const ValueDecl *MPD = MP.getMemberPointerDecl();
2544   CharUnits ThisAdjustment = CharUnits::Zero();
2545   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2546   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2547   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2548   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2549     const CXXRecordDecl *Base = RD;
2550     const CXXRecordDecl *Derived = Path[I];
2551     if (DerivedMember)
2552       std::swap(Base, Derived);
2553     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2554     RD = Path[I];
2555   }
2556   if (DerivedMember)
2557     ThisAdjustment = -ThisAdjustment;
2558   return ThisAdjustment;
2559 }
2560 
2561 /// DeepCollectObjCIvars -
2562 /// This routine first collects all declared, but not synthesized, ivars in
2563 /// super class and then collects all ivars, including those synthesized for
2564 /// current class. This routine is used for implementation of current class
2565 /// when all ivars, declared and synthesized are known.
2566 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2567                                       bool leafClass,
2568                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2569   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2570     DeepCollectObjCIvars(SuperClass, false, Ivars);
2571   if (!leafClass) {
2572     for (const auto *I : OI->ivars())
2573       Ivars.push_back(I);
2574   } else {
2575     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2576     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2577          Iv= Iv->getNextIvar())
2578       Ivars.push_back(Iv);
2579   }
2580 }
2581 
2582 /// CollectInheritedProtocols - Collect all protocols in current class and
2583 /// those inherited by it.
2584 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2585                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2586   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2587     // We can use protocol_iterator here instead of
2588     // all_referenced_protocol_iterator since we are walking all categories.
2589     for (auto *Proto : OI->all_referenced_protocols()) {
2590       CollectInheritedProtocols(Proto, Protocols);
2591     }
2592 
2593     // Categories of this Interface.
2594     for (const auto *Cat : OI->visible_categories())
2595       CollectInheritedProtocols(Cat, Protocols);
2596 
2597     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2598       while (SD) {
2599         CollectInheritedProtocols(SD, Protocols);
2600         SD = SD->getSuperClass();
2601       }
2602   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2603     for (auto *Proto : OC->protocols()) {
2604       CollectInheritedProtocols(Proto, Protocols);
2605     }
2606   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2607     // Insert the protocol.
2608     if (!Protocols.insert(
2609           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2610       return;
2611 
2612     for (auto *Proto : OP->protocols())
2613       CollectInheritedProtocols(Proto, Protocols);
2614   }
2615 }
2616 
2617 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2618                                                 const RecordDecl *RD) {
2619   assert(RD->isUnion() && "Must be union type");
2620   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2621 
2622   for (const auto *Field : RD->fields()) {
2623     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2624       return false;
2625     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2626     if (FieldSize != UnionSize)
2627       return false;
2628   }
2629   return !RD->field_empty();
2630 }
2631 
2632 static bool isStructEmpty(QualType Ty) {
2633   const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2634 
2635   if (!RD->field_empty())
2636     return false;
2637 
2638   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2639     return ClassDecl->isEmpty();
2640 
2641   return true;
2642 }
2643 
2644 static llvm::Optional<int64_t>
2645 structHasUniqueObjectRepresentations(const ASTContext &Context,
2646                                      const RecordDecl *RD) {
2647   assert(!RD->isUnion() && "Must be struct/class type");
2648   const auto &Layout = Context.getASTRecordLayout(RD);
2649 
2650   int64_t CurOffsetInBits = 0;
2651   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2652     if (ClassDecl->isDynamicClass())
2653       return llvm::None;
2654 
2655     SmallVector<std::pair<QualType, int64_t>, 4> Bases;
2656     for (const auto &Base : ClassDecl->bases()) {
2657       // Empty types can be inherited from, and non-empty types can potentially
2658       // have tail padding, so just make sure there isn't an error.
2659       if (!isStructEmpty(Base.getType())) {
2660         llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
2661             Context, Base.getType()->castAs<RecordType>()->getDecl());
2662         if (!Size)
2663           return llvm::None;
2664         Bases.emplace_back(Base.getType(), Size.getValue());
2665       }
2666     }
2667 
2668     llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2669                           const std::pair<QualType, int64_t> &R) {
2670       return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2671              Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2672     });
2673 
2674     for (const auto &Base : Bases) {
2675       int64_t BaseOffset = Context.toBits(
2676           Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2677       int64_t BaseSize = Base.second;
2678       if (BaseOffset != CurOffsetInBits)
2679         return llvm::None;
2680       CurOffsetInBits = BaseOffset + BaseSize;
2681     }
2682   }
2683 
2684   for (const auto *Field : RD->fields()) {
2685     if (!Field->getType()->isReferenceType() &&
2686         !Context.hasUniqueObjectRepresentations(Field->getType()))
2687       return llvm::None;
2688 
2689     int64_t FieldSizeInBits =
2690         Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2691     if (Field->isBitField()) {
2692       int64_t BitfieldSize = Field->getBitWidthValue(Context);
2693 
2694       if (BitfieldSize > FieldSizeInBits)
2695         return llvm::None;
2696       FieldSizeInBits = BitfieldSize;
2697     }
2698 
2699     int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2700 
2701     if (FieldOffsetInBits != CurOffsetInBits)
2702       return llvm::None;
2703 
2704     CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2705   }
2706 
2707   return CurOffsetInBits;
2708 }
2709 
2710 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2711   // C++17 [meta.unary.prop]:
2712   //   The predicate condition for a template specialization
2713   //   has_unique_object_representations<T> shall be
2714   //   satisfied if and only if:
2715   //     (9.1) - T is trivially copyable, and
2716   //     (9.2) - any two objects of type T with the same value have the same
2717   //     object representation, where two objects
2718   //   of array or non-union class type are considered to have the same value
2719   //   if their respective sequences of
2720   //   direct subobjects have the same values, and two objects of union type
2721   //   are considered to have the same
2722   //   value if they have the same active member and the corresponding members
2723   //   have the same value.
2724   //   The set of scalar types for which this condition holds is
2725   //   implementation-defined. [ Note: If a type has padding
2726   //   bits, the condition does not hold; otherwise, the condition holds true
2727   //   for unsigned integral types. -- end note ]
2728   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2729 
2730   // Arrays are unique only if their element type is unique.
2731   if (Ty->isArrayType())
2732     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2733 
2734   // (9.1) - T is trivially copyable...
2735   if (!Ty.isTriviallyCopyableType(*this))
2736     return false;
2737 
2738   // All integrals and enums are unique.
2739   if (Ty->isIntegralOrEnumerationType())
2740     return true;
2741 
2742   // All other pointers are unique.
2743   if (Ty->isPointerType())
2744     return true;
2745 
2746   if (Ty->isMemberPointerType()) {
2747     const auto *MPT = Ty->getAs<MemberPointerType>();
2748     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2749   }
2750 
2751   if (Ty->isRecordType()) {
2752     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2753 
2754     if (Record->isInvalidDecl())
2755       return false;
2756 
2757     if (Record->isUnion())
2758       return unionHasUniqueObjectRepresentations(*this, Record);
2759 
2760     Optional<int64_t> StructSize =
2761         structHasUniqueObjectRepresentations(*this, Record);
2762 
2763     return StructSize &&
2764            StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2765   }
2766 
2767   // FIXME: More cases to handle here (list by rsmith):
2768   // vectors (careful about, eg, vector of 3 foo)
2769   // _Complex int and friends
2770   // _Atomic T
2771   // Obj-C block pointers
2772   // Obj-C object pointers
2773   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2774   // clk_event_t, queue_t, reserve_id_t)
2775   // There're also Obj-C class types and the Obj-C selector type, but I think it
2776   // makes sense for those to return false here.
2777 
2778   return false;
2779 }
2780 
2781 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2782   unsigned count = 0;
2783   // Count ivars declared in class extension.
2784   for (const auto *Ext : OI->known_extensions())
2785     count += Ext->ivar_size();
2786 
2787   // Count ivar defined in this class's implementation.  This
2788   // includes synthesized ivars.
2789   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2790     count += ImplDecl->ivar_size();
2791 
2792   return count;
2793 }
2794 
2795 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2796   if (!E)
2797     return false;
2798 
2799   // nullptr_t is always treated as null.
2800   if (E->getType()->isNullPtrType()) return true;
2801 
2802   if (E->getType()->isAnyPointerType() &&
2803       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2804                                                 Expr::NPC_ValueDependentIsNull))
2805     return true;
2806 
2807   // Unfortunately, __null has type 'int'.
2808   if (isa<GNUNullExpr>(E)) return true;
2809 
2810   return false;
2811 }
2812 
2813 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2814 /// exists.
2815 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2816   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2817     I = ObjCImpls.find(D);
2818   if (I != ObjCImpls.end())
2819     return cast<ObjCImplementationDecl>(I->second);
2820   return nullptr;
2821 }
2822 
2823 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2824 /// exists.
2825 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2826   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2827     I = ObjCImpls.find(D);
2828   if (I != ObjCImpls.end())
2829     return cast<ObjCCategoryImplDecl>(I->second);
2830   return nullptr;
2831 }
2832 
2833 /// Set the implementation of ObjCInterfaceDecl.
2834 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2835                            ObjCImplementationDecl *ImplD) {
2836   assert(IFaceD && ImplD && "Passed null params");
2837   ObjCImpls[IFaceD] = ImplD;
2838 }
2839 
2840 /// Set the implementation of ObjCCategoryDecl.
2841 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2842                            ObjCCategoryImplDecl *ImplD) {
2843   assert(CatD && ImplD && "Passed null params");
2844   ObjCImpls[CatD] = ImplD;
2845 }
2846 
2847 const ObjCMethodDecl *
2848 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2849   return ObjCMethodRedecls.lookup(MD);
2850 }
2851 
2852 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2853                                             const ObjCMethodDecl *Redecl) {
2854   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2855   ObjCMethodRedecls[MD] = Redecl;
2856 }
2857 
2858 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2859                                               const NamedDecl *ND) const {
2860   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2861     return ID;
2862   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2863     return CD->getClassInterface();
2864   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2865     return IMD->getClassInterface();
2866 
2867   return nullptr;
2868 }
2869 
2870 /// Get the copy initialization expression of VarDecl, or nullptr if
2871 /// none exists.
2872 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2873   assert(VD && "Passed null params");
2874   assert(VD->hasAttr<BlocksAttr>() &&
2875          "getBlockVarCopyInits - not __block var");
2876   auto I = BlockVarCopyInits.find(VD);
2877   if (I != BlockVarCopyInits.end())
2878     return I->second;
2879   return {nullptr, false};
2880 }
2881 
2882 /// Set the copy initialization expression of a block var decl.
2883 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2884                                      bool CanThrow) {
2885   assert(VD && CopyExpr && "Passed null params");
2886   assert(VD->hasAttr<BlocksAttr>() &&
2887          "setBlockVarCopyInits - not __block var");
2888   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2889 }
2890 
2891 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2892                                                  unsigned DataSize) const {
2893   if (!DataSize)
2894     DataSize = TypeLoc::getFullDataSizeForType(T);
2895   else
2896     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2897            "incorrect data size provided to CreateTypeSourceInfo!");
2898 
2899   auto *TInfo =
2900     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2901   new (TInfo) TypeSourceInfo(T);
2902   return TInfo;
2903 }
2904 
2905 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2906                                                      SourceLocation L) const {
2907   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2908   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2909   return DI;
2910 }
2911 
2912 const ASTRecordLayout &
2913 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2914   return getObjCLayout(D, nullptr);
2915 }
2916 
2917 const ASTRecordLayout &
2918 ASTContext::getASTObjCImplementationLayout(
2919                                         const ObjCImplementationDecl *D) const {
2920   return getObjCLayout(D->getClassInterface(), D);
2921 }
2922 
2923 //===----------------------------------------------------------------------===//
2924 //                   Type creation/memoization methods
2925 //===----------------------------------------------------------------------===//
2926 
2927 QualType
2928 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2929   unsigned fastQuals = quals.getFastQualifiers();
2930   quals.removeFastQualifiers();
2931 
2932   // Check if we've already instantiated this type.
2933   llvm::FoldingSetNodeID ID;
2934   ExtQuals::Profile(ID, baseType, quals);
2935   void *insertPos = nullptr;
2936   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2937     assert(eq->getQualifiers() == quals);
2938     return QualType(eq, fastQuals);
2939   }
2940 
2941   // If the base type is not canonical, make the appropriate canonical type.
2942   QualType canon;
2943   if (!baseType->isCanonicalUnqualified()) {
2944     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2945     canonSplit.Quals.addConsistentQualifiers(quals);
2946     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2947 
2948     // Re-find the insert position.
2949     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2950   }
2951 
2952   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2953   ExtQualNodes.InsertNode(eq, insertPos);
2954   return QualType(eq, fastQuals);
2955 }
2956 
2957 QualType ASTContext::getAddrSpaceQualType(QualType T,
2958                                           LangAS AddressSpace) const {
2959   QualType CanT = getCanonicalType(T);
2960   if (CanT.getAddressSpace() == AddressSpace)
2961     return T;
2962 
2963   // If we are composing extended qualifiers together, merge together
2964   // into one ExtQuals node.
2965   QualifierCollector Quals;
2966   const Type *TypeNode = Quals.strip(T);
2967 
2968   // If this type already has an address space specified, it cannot get
2969   // another one.
2970   assert(!Quals.hasAddressSpace() &&
2971          "Type cannot be in multiple addr spaces!");
2972   Quals.addAddressSpace(AddressSpace);
2973 
2974   return getExtQualType(TypeNode, Quals);
2975 }
2976 
2977 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2978   // If the type is not qualified with an address space, just return it
2979   // immediately.
2980   if (!T.hasAddressSpace())
2981     return T;
2982 
2983   // If we are composing extended qualifiers together, merge together
2984   // into one ExtQuals node.
2985   QualifierCollector Quals;
2986   const Type *TypeNode;
2987 
2988   while (T.hasAddressSpace()) {
2989     TypeNode = Quals.strip(T);
2990 
2991     // If the type no longer has an address space after stripping qualifiers,
2992     // jump out.
2993     if (!QualType(TypeNode, 0).hasAddressSpace())
2994       break;
2995 
2996     // There might be sugar in the way. Strip it and try again.
2997     T = T.getSingleStepDesugaredType(*this);
2998   }
2999 
3000   Quals.removeAddressSpace();
3001 
3002   // Removal of the address space can mean there are no longer any
3003   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3004   // or required.
3005   if (Quals.hasNonFastQualifiers())
3006     return getExtQualType(TypeNode, Quals);
3007   else
3008     return QualType(TypeNode, Quals.getFastQualifiers());
3009 }
3010 
3011 QualType ASTContext::getObjCGCQualType(QualType T,
3012                                        Qualifiers::GC GCAttr) const {
3013   QualType CanT = getCanonicalType(T);
3014   if (CanT.getObjCGCAttr() == GCAttr)
3015     return T;
3016 
3017   if (const auto *ptr = T->getAs<PointerType>()) {
3018     QualType Pointee = ptr->getPointeeType();
3019     if (Pointee->isAnyPointerType()) {
3020       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3021       return getPointerType(ResultType);
3022     }
3023   }
3024 
3025   // If we are composing extended qualifiers together, merge together
3026   // into one ExtQuals node.
3027   QualifierCollector Quals;
3028   const Type *TypeNode = Quals.strip(T);
3029 
3030   // If this type already has an ObjCGC specified, it cannot get
3031   // another one.
3032   assert(!Quals.hasObjCGCAttr() &&
3033          "Type cannot have multiple ObjCGCs!");
3034   Quals.addObjCGCAttr(GCAttr);
3035 
3036   return getExtQualType(TypeNode, Quals);
3037 }
3038 
3039 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3040   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3041     QualType Pointee = Ptr->getPointeeType();
3042     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3043       return getPointerType(removeAddrSpaceQualType(Pointee));
3044     }
3045   }
3046   return T;
3047 }
3048 
3049 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3050                                                    FunctionType::ExtInfo Info) {
3051   if (T->getExtInfo() == Info)
3052     return T;
3053 
3054   QualType Result;
3055   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3056     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3057   } else {
3058     const auto *FPT = cast<FunctionProtoType>(T);
3059     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3060     EPI.ExtInfo = Info;
3061     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3062   }
3063 
3064   return cast<FunctionType>(Result.getTypePtr());
3065 }
3066 
3067 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3068                                                  QualType ResultType) {
3069   FD = FD->getMostRecentDecl();
3070   while (true) {
3071     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3072     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3073     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3074     if (FunctionDecl *Next = FD->getPreviousDecl())
3075       FD = Next;
3076     else
3077       break;
3078   }
3079   if (ASTMutationListener *L = getASTMutationListener())
3080     L->DeducedReturnType(FD, ResultType);
3081 }
3082 
3083 /// Get a function type and produce the equivalent function type with the
3084 /// specified exception specification. Type sugar that can be present on a
3085 /// declaration of a function with an exception specification is permitted
3086 /// and preserved. Other type sugar (for instance, typedefs) is not.
3087 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3088     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
3089   // Might have some parens.
3090   if (const auto *PT = dyn_cast<ParenType>(Orig))
3091     return getParenType(
3092         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3093 
3094   // Might be wrapped in a macro qualified type.
3095   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3096     return getMacroQualifiedType(
3097         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3098         MQT->getMacroIdentifier());
3099 
3100   // Might have a calling-convention attribute.
3101   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3102     return getAttributedType(
3103         AT->getAttrKind(),
3104         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3105         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3106 
3107   // Anything else must be a function type. Rebuild it with the new exception
3108   // specification.
3109   const auto *Proto = Orig->castAs<FunctionProtoType>();
3110   return getFunctionType(
3111       Proto->getReturnType(), Proto->getParamTypes(),
3112       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3113 }
3114 
3115 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3116                                                           QualType U) {
3117   return hasSameType(T, U) ||
3118          (getLangOpts().CPlusPlus17 &&
3119           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3120                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3121 }
3122 
3123 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3124   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3125     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3126     SmallVector<QualType, 16> Args(Proto->param_types());
3127     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3128       Args[i] = removePtrSizeAddrSpace(Args[i]);
3129     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3130   }
3131 
3132   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3133     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3134     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3135   }
3136 
3137   return T;
3138 }
3139 
3140 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3141   return hasSameType(T, U) ||
3142          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3143                      getFunctionTypeWithoutPtrSizes(U));
3144 }
3145 
3146 void ASTContext::adjustExceptionSpec(
3147     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3148     bool AsWritten) {
3149   // Update the type.
3150   QualType Updated =
3151       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3152   FD->setType(Updated);
3153 
3154   if (!AsWritten)
3155     return;
3156 
3157   // Update the type in the type source information too.
3158   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3159     // If the type and the type-as-written differ, we may need to update
3160     // the type-as-written too.
3161     if (TSInfo->getType() != FD->getType())
3162       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3163 
3164     // FIXME: When we get proper type location information for exceptions,
3165     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3166     // up the TypeSourceInfo;
3167     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3168                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3169            "TypeLoc size mismatch from updating exception specification");
3170     TSInfo->overrideType(Updated);
3171   }
3172 }
3173 
3174 /// getComplexType - Return the uniqued reference to the type for a complex
3175 /// number with the specified element type.
3176 QualType ASTContext::getComplexType(QualType T) const {
3177   // Unique pointers, to guarantee there is only one pointer of a particular
3178   // structure.
3179   llvm::FoldingSetNodeID ID;
3180   ComplexType::Profile(ID, T);
3181 
3182   void *InsertPos = nullptr;
3183   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3184     return QualType(CT, 0);
3185 
3186   // If the pointee type isn't canonical, this won't be a canonical type either,
3187   // so fill in the canonical type field.
3188   QualType Canonical;
3189   if (!T.isCanonical()) {
3190     Canonical = getComplexType(getCanonicalType(T));
3191 
3192     // Get the new insert position for the node we care about.
3193     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3194     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3195   }
3196   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3197   Types.push_back(New);
3198   ComplexTypes.InsertNode(New, InsertPos);
3199   return QualType(New, 0);
3200 }
3201 
3202 /// getPointerType - Return the uniqued reference to the type for a pointer to
3203 /// the specified type.
3204 QualType ASTContext::getPointerType(QualType T) const {
3205   // Unique pointers, to guarantee there is only one pointer of a particular
3206   // structure.
3207   llvm::FoldingSetNodeID ID;
3208   PointerType::Profile(ID, T);
3209 
3210   void *InsertPos = nullptr;
3211   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3212     return QualType(PT, 0);
3213 
3214   // If the pointee type isn't canonical, this won't be a canonical type either,
3215   // so fill in the canonical type field.
3216   QualType Canonical;
3217   if (!T.isCanonical()) {
3218     Canonical = getPointerType(getCanonicalType(T));
3219 
3220     // Get the new insert position for the node we care about.
3221     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3222     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3223   }
3224   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3225   Types.push_back(New);
3226   PointerTypes.InsertNode(New, InsertPos);
3227   return QualType(New, 0);
3228 }
3229 
3230 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3231   llvm::FoldingSetNodeID ID;
3232   AdjustedType::Profile(ID, Orig, New);
3233   void *InsertPos = nullptr;
3234   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3235   if (AT)
3236     return QualType(AT, 0);
3237 
3238   QualType Canonical = getCanonicalType(New);
3239 
3240   // Get the new insert position for the node we care about.
3241   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3242   assert(!AT && "Shouldn't be in the map!");
3243 
3244   AT = new (*this, TypeAlignment)
3245       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3246   Types.push_back(AT);
3247   AdjustedTypes.InsertNode(AT, InsertPos);
3248   return QualType(AT, 0);
3249 }
3250 
3251 QualType ASTContext::getDecayedType(QualType T) const {
3252   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3253 
3254   QualType Decayed;
3255 
3256   // C99 6.7.5.3p7:
3257   //   A declaration of a parameter as "array of type" shall be
3258   //   adjusted to "qualified pointer to type", where the type
3259   //   qualifiers (if any) are those specified within the [ and ] of
3260   //   the array type derivation.
3261   if (T->isArrayType())
3262     Decayed = getArrayDecayedType(T);
3263 
3264   // C99 6.7.5.3p8:
3265   //   A declaration of a parameter as "function returning type"
3266   //   shall be adjusted to "pointer to function returning type", as
3267   //   in 6.3.2.1.
3268   if (T->isFunctionType())
3269     Decayed = getPointerType(T);
3270 
3271   llvm::FoldingSetNodeID ID;
3272   AdjustedType::Profile(ID, T, Decayed);
3273   void *InsertPos = nullptr;
3274   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3275   if (AT)
3276     return QualType(AT, 0);
3277 
3278   QualType Canonical = getCanonicalType(Decayed);
3279 
3280   // Get the new insert position for the node we care about.
3281   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3282   assert(!AT && "Shouldn't be in the map!");
3283 
3284   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3285   Types.push_back(AT);
3286   AdjustedTypes.InsertNode(AT, InsertPos);
3287   return QualType(AT, 0);
3288 }
3289 
3290 /// getBlockPointerType - Return the uniqued reference to the type for
3291 /// a pointer to the specified block.
3292 QualType ASTContext::getBlockPointerType(QualType T) const {
3293   assert(T->isFunctionType() && "block of function types only");
3294   // Unique pointers, to guarantee there is only one block of a particular
3295   // structure.
3296   llvm::FoldingSetNodeID ID;
3297   BlockPointerType::Profile(ID, T);
3298 
3299   void *InsertPos = nullptr;
3300   if (BlockPointerType *PT =
3301         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3302     return QualType(PT, 0);
3303 
3304   // If the block pointee type isn't canonical, this won't be a canonical
3305   // type either so fill in the canonical type field.
3306   QualType Canonical;
3307   if (!T.isCanonical()) {
3308     Canonical = getBlockPointerType(getCanonicalType(T));
3309 
3310     // Get the new insert position for the node we care about.
3311     BlockPointerType *NewIP =
3312       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3313     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3314   }
3315   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3316   Types.push_back(New);
3317   BlockPointerTypes.InsertNode(New, InsertPos);
3318   return QualType(New, 0);
3319 }
3320 
3321 /// getLValueReferenceType - Return the uniqued reference to the type for an
3322 /// lvalue reference to the specified type.
3323 QualType
3324 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3325   assert(getCanonicalType(T) != OverloadTy &&
3326          "Unresolved overloaded function type");
3327 
3328   // Unique pointers, to guarantee there is only one pointer of a particular
3329   // structure.
3330   llvm::FoldingSetNodeID ID;
3331   ReferenceType::Profile(ID, T, SpelledAsLValue);
3332 
3333   void *InsertPos = nullptr;
3334   if (LValueReferenceType *RT =
3335         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3336     return QualType(RT, 0);
3337 
3338   const auto *InnerRef = T->getAs<ReferenceType>();
3339 
3340   // If the referencee type isn't canonical, this won't be a canonical type
3341   // either, so fill in the canonical type field.
3342   QualType Canonical;
3343   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3344     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3345     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3346 
3347     // Get the new insert position for the node we care about.
3348     LValueReferenceType *NewIP =
3349       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3350     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3351   }
3352 
3353   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3354                                                              SpelledAsLValue);
3355   Types.push_back(New);
3356   LValueReferenceTypes.InsertNode(New, InsertPos);
3357 
3358   return QualType(New, 0);
3359 }
3360 
3361 /// getRValueReferenceType - Return the uniqued reference to the type for an
3362 /// rvalue reference to the specified type.
3363 QualType ASTContext::getRValueReferenceType(QualType T) const {
3364   // Unique pointers, to guarantee there is only one pointer of a particular
3365   // structure.
3366   llvm::FoldingSetNodeID ID;
3367   ReferenceType::Profile(ID, T, false);
3368 
3369   void *InsertPos = nullptr;
3370   if (RValueReferenceType *RT =
3371         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3372     return QualType(RT, 0);
3373 
3374   const auto *InnerRef = T->getAs<ReferenceType>();
3375 
3376   // If the referencee type isn't canonical, this won't be a canonical type
3377   // either, so fill in the canonical type field.
3378   QualType Canonical;
3379   if (InnerRef || !T.isCanonical()) {
3380     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3381     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3382 
3383     // Get the new insert position for the node we care about.
3384     RValueReferenceType *NewIP =
3385       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3386     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3387   }
3388 
3389   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3390   Types.push_back(New);
3391   RValueReferenceTypes.InsertNode(New, InsertPos);
3392   return QualType(New, 0);
3393 }
3394 
3395 /// getMemberPointerType - Return the uniqued reference to the type for a
3396 /// member pointer to the specified type, in the specified class.
3397 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3398   // Unique pointers, to guarantee there is only one pointer of a particular
3399   // structure.
3400   llvm::FoldingSetNodeID ID;
3401   MemberPointerType::Profile(ID, T, Cls);
3402 
3403   void *InsertPos = nullptr;
3404   if (MemberPointerType *PT =
3405       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3406     return QualType(PT, 0);
3407 
3408   // If the pointee or class type isn't canonical, this won't be a canonical
3409   // type either, so fill in the canonical type field.
3410   QualType Canonical;
3411   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3412     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3413 
3414     // Get the new insert position for the node we care about.
3415     MemberPointerType *NewIP =
3416       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3417     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3418   }
3419   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3420   Types.push_back(New);
3421   MemberPointerTypes.InsertNode(New, InsertPos);
3422   return QualType(New, 0);
3423 }
3424 
3425 /// getConstantArrayType - Return the unique reference to the type for an
3426 /// array of the specified element type.
3427 QualType ASTContext::getConstantArrayType(QualType EltTy,
3428                                           const llvm::APInt &ArySizeIn,
3429                                           const Expr *SizeExpr,
3430                                           ArrayType::ArraySizeModifier ASM,
3431                                           unsigned IndexTypeQuals) const {
3432   assert((EltTy->isDependentType() ||
3433           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3434          "Constant array of VLAs is illegal!");
3435 
3436   // We only need the size as part of the type if it's instantiation-dependent.
3437   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3438     SizeExpr = nullptr;
3439 
3440   // Convert the array size into a canonical width matching the pointer size for
3441   // the target.
3442   llvm::APInt ArySize(ArySizeIn);
3443   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3444 
3445   llvm::FoldingSetNodeID ID;
3446   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3447                              IndexTypeQuals);
3448 
3449   void *InsertPos = nullptr;
3450   if (ConstantArrayType *ATP =
3451       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3452     return QualType(ATP, 0);
3453 
3454   // If the element type isn't canonical or has qualifiers, or the array bound
3455   // is instantiation-dependent, this won't be a canonical type either, so fill
3456   // in the canonical type field.
3457   QualType Canon;
3458   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3459     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3460     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3461                                  ASM, IndexTypeQuals);
3462     Canon = getQualifiedType(Canon, canonSplit.Quals);
3463 
3464     // Get the new insert position for the node we care about.
3465     ConstantArrayType *NewIP =
3466       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3467     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3468   }
3469 
3470   void *Mem = Allocate(
3471       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3472       TypeAlignment);
3473   auto *New = new (Mem)
3474     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3475   ConstantArrayTypes.InsertNode(New, InsertPos);
3476   Types.push_back(New);
3477   return QualType(New, 0);
3478 }
3479 
3480 /// getVariableArrayDecayedType - Turns the given type, which may be
3481 /// variably-modified, into the corresponding type with all the known
3482 /// sizes replaced with [*].
3483 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3484   // Vastly most common case.
3485   if (!type->isVariablyModifiedType()) return type;
3486 
3487   QualType result;
3488 
3489   SplitQualType split = type.getSplitDesugaredType();
3490   const Type *ty = split.Ty;
3491   switch (ty->getTypeClass()) {
3492 #define TYPE(Class, Base)
3493 #define ABSTRACT_TYPE(Class, Base)
3494 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3495 #include "clang/AST/TypeNodes.inc"
3496     llvm_unreachable("didn't desugar past all non-canonical types?");
3497 
3498   // These types should never be variably-modified.
3499   case Type::Builtin:
3500   case Type::Complex:
3501   case Type::Vector:
3502   case Type::DependentVector:
3503   case Type::ExtVector:
3504   case Type::DependentSizedExtVector:
3505   case Type::ConstantMatrix:
3506   case Type::DependentSizedMatrix:
3507   case Type::DependentAddressSpace:
3508   case Type::ObjCObject:
3509   case Type::ObjCInterface:
3510   case Type::ObjCObjectPointer:
3511   case Type::Record:
3512   case Type::Enum:
3513   case Type::UnresolvedUsing:
3514   case Type::TypeOfExpr:
3515   case Type::TypeOf:
3516   case Type::Decltype:
3517   case Type::UnaryTransform:
3518   case Type::DependentName:
3519   case Type::InjectedClassName:
3520   case Type::TemplateSpecialization:
3521   case Type::DependentTemplateSpecialization:
3522   case Type::TemplateTypeParm:
3523   case Type::SubstTemplateTypeParmPack:
3524   case Type::Auto:
3525   case Type::DeducedTemplateSpecialization:
3526   case Type::PackExpansion:
3527   case Type::ExtInt:
3528   case Type::DependentExtInt:
3529     llvm_unreachable("type should never be variably-modified");
3530 
3531   // These types can be variably-modified but should never need to
3532   // further decay.
3533   case Type::FunctionNoProto:
3534   case Type::FunctionProto:
3535   case Type::BlockPointer:
3536   case Type::MemberPointer:
3537   case Type::Pipe:
3538     return type;
3539 
3540   // These types can be variably-modified.  All these modifications
3541   // preserve structure except as noted by comments.
3542   // TODO: if we ever care about optimizing VLAs, there are no-op
3543   // optimizations available here.
3544   case Type::Pointer:
3545     result = getPointerType(getVariableArrayDecayedType(
3546                               cast<PointerType>(ty)->getPointeeType()));
3547     break;
3548 
3549   case Type::LValueReference: {
3550     const auto *lv = cast<LValueReferenceType>(ty);
3551     result = getLValueReferenceType(
3552                  getVariableArrayDecayedType(lv->getPointeeType()),
3553                                     lv->isSpelledAsLValue());
3554     break;
3555   }
3556 
3557   case Type::RValueReference: {
3558     const auto *lv = cast<RValueReferenceType>(ty);
3559     result = getRValueReferenceType(
3560                  getVariableArrayDecayedType(lv->getPointeeType()));
3561     break;
3562   }
3563 
3564   case Type::Atomic: {
3565     const auto *at = cast<AtomicType>(ty);
3566     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3567     break;
3568   }
3569 
3570   case Type::ConstantArray: {
3571     const auto *cat = cast<ConstantArrayType>(ty);
3572     result = getConstantArrayType(
3573                  getVariableArrayDecayedType(cat->getElementType()),
3574                                   cat->getSize(),
3575                                   cat->getSizeExpr(),
3576                                   cat->getSizeModifier(),
3577                                   cat->getIndexTypeCVRQualifiers());
3578     break;
3579   }
3580 
3581   case Type::DependentSizedArray: {
3582     const auto *dat = cast<DependentSizedArrayType>(ty);
3583     result = getDependentSizedArrayType(
3584                  getVariableArrayDecayedType(dat->getElementType()),
3585                                         dat->getSizeExpr(),
3586                                         dat->getSizeModifier(),
3587                                         dat->getIndexTypeCVRQualifiers(),
3588                                         dat->getBracketsRange());
3589     break;
3590   }
3591 
3592   // Turn incomplete types into [*] types.
3593   case Type::IncompleteArray: {
3594     const auto *iat = cast<IncompleteArrayType>(ty);
3595     result = getVariableArrayType(
3596                  getVariableArrayDecayedType(iat->getElementType()),
3597                                   /*size*/ nullptr,
3598                                   ArrayType::Normal,
3599                                   iat->getIndexTypeCVRQualifiers(),
3600                                   SourceRange());
3601     break;
3602   }
3603 
3604   // Turn VLA types into [*] types.
3605   case Type::VariableArray: {
3606     const auto *vat = cast<VariableArrayType>(ty);
3607     result = getVariableArrayType(
3608                  getVariableArrayDecayedType(vat->getElementType()),
3609                                   /*size*/ nullptr,
3610                                   ArrayType::Star,
3611                                   vat->getIndexTypeCVRQualifiers(),
3612                                   vat->getBracketsRange());
3613     break;
3614   }
3615   }
3616 
3617   // Apply the top-level qualifiers from the original.
3618   return getQualifiedType(result, split.Quals);
3619 }
3620 
3621 /// getVariableArrayType - Returns a non-unique reference to the type for a
3622 /// variable array of the specified element type.
3623 QualType ASTContext::getVariableArrayType(QualType EltTy,
3624                                           Expr *NumElts,
3625                                           ArrayType::ArraySizeModifier ASM,
3626                                           unsigned IndexTypeQuals,
3627                                           SourceRange Brackets) const {
3628   // Since we don't unique expressions, it isn't possible to unique VLA's
3629   // that have an expression provided for their size.
3630   QualType Canon;
3631 
3632   // Be sure to pull qualifiers off the element type.
3633   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3634     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3635     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3636                                  IndexTypeQuals, Brackets);
3637     Canon = getQualifiedType(Canon, canonSplit.Quals);
3638   }
3639 
3640   auto *New = new (*this, TypeAlignment)
3641     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3642 
3643   VariableArrayTypes.push_back(New);
3644   Types.push_back(New);
3645   return QualType(New, 0);
3646 }
3647 
3648 /// getDependentSizedArrayType - Returns a non-unique reference to
3649 /// the type for a dependently-sized array of the specified element
3650 /// type.
3651 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3652                                                 Expr *numElements,
3653                                                 ArrayType::ArraySizeModifier ASM,
3654                                                 unsigned elementTypeQuals,
3655                                                 SourceRange brackets) const {
3656   assert((!numElements || numElements->isTypeDependent() ||
3657           numElements->isValueDependent()) &&
3658          "Size must be type- or value-dependent!");
3659 
3660   // Dependently-sized array types that do not have a specified number
3661   // of elements will have their sizes deduced from a dependent
3662   // initializer.  We do no canonicalization here at all, which is okay
3663   // because they can't be used in most locations.
3664   if (!numElements) {
3665     auto *newType
3666       = new (*this, TypeAlignment)
3667           DependentSizedArrayType(*this, elementType, QualType(),
3668                                   numElements, ASM, elementTypeQuals,
3669                                   brackets);
3670     Types.push_back(newType);
3671     return QualType(newType, 0);
3672   }
3673 
3674   // Otherwise, we actually build a new type every time, but we
3675   // also build a canonical type.
3676 
3677   SplitQualType canonElementType = getCanonicalType(elementType).split();
3678 
3679   void *insertPos = nullptr;
3680   llvm::FoldingSetNodeID ID;
3681   DependentSizedArrayType::Profile(ID, *this,
3682                                    QualType(canonElementType.Ty, 0),
3683                                    ASM, elementTypeQuals, numElements);
3684 
3685   // Look for an existing type with these properties.
3686   DependentSizedArrayType *canonTy =
3687     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3688 
3689   // If we don't have one, build one.
3690   if (!canonTy) {
3691     canonTy = new (*this, TypeAlignment)
3692       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3693                               QualType(), numElements, ASM, elementTypeQuals,
3694                               brackets);
3695     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3696     Types.push_back(canonTy);
3697   }
3698 
3699   // Apply qualifiers from the element type to the array.
3700   QualType canon = getQualifiedType(QualType(canonTy,0),
3701                                     canonElementType.Quals);
3702 
3703   // If we didn't need extra canonicalization for the element type or the size
3704   // expression, then just use that as our result.
3705   if (QualType(canonElementType.Ty, 0) == elementType &&
3706       canonTy->getSizeExpr() == numElements)
3707     return canon;
3708 
3709   // Otherwise, we need to build a type which follows the spelling
3710   // of the element type.
3711   auto *sugaredType
3712     = new (*this, TypeAlignment)
3713         DependentSizedArrayType(*this, elementType, canon, numElements,
3714                                 ASM, elementTypeQuals, brackets);
3715   Types.push_back(sugaredType);
3716   return QualType(sugaredType, 0);
3717 }
3718 
3719 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3720                                             ArrayType::ArraySizeModifier ASM,
3721                                             unsigned elementTypeQuals) const {
3722   llvm::FoldingSetNodeID ID;
3723   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3724 
3725   void *insertPos = nullptr;
3726   if (IncompleteArrayType *iat =
3727        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3728     return QualType(iat, 0);
3729 
3730   // If the element type isn't canonical, this won't be a canonical type
3731   // either, so fill in the canonical type field.  We also have to pull
3732   // qualifiers off the element type.
3733   QualType canon;
3734 
3735   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3736     SplitQualType canonSplit = getCanonicalType(elementType).split();
3737     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3738                                    ASM, elementTypeQuals);
3739     canon = getQualifiedType(canon, canonSplit.Quals);
3740 
3741     // Get the new insert position for the node we care about.
3742     IncompleteArrayType *existing =
3743       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3744     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3745   }
3746 
3747   auto *newType = new (*this, TypeAlignment)
3748     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3749 
3750   IncompleteArrayTypes.InsertNode(newType, insertPos);
3751   Types.push_back(newType);
3752   return QualType(newType, 0);
3753 }
3754 
3755 ASTContext::BuiltinVectorTypeInfo
3756 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3757 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3758   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3759    NUMVECTORS};
3760 
3761 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3762   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3763 
3764   switch (Ty->getKind()) {
3765   default:
3766     llvm_unreachable("Unsupported builtin vector type");
3767   case BuiltinType::SveInt8:
3768     return SVE_INT_ELTTY(8, 16, true, 1);
3769   case BuiltinType::SveUint8:
3770     return SVE_INT_ELTTY(8, 16, false, 1);
3771   case BuiltinType::SveInt8x2:
3772     return SVE_INT_ELTTY(8, 16, true, 2);
3773   case BuiltinType::SveUint8x2:
3774     return SVE_INT_ELTTY(8, 16, false, 2);
3775   case BuiltinType::SveInt8x3:
3776     return SVE_INT_ELTTY(8, 16, true, 3);
3777   case BuiltinType::SveUint8x3:
3778     return SVE_INT_ELTTY(8, 16, false, 3);
3779   case BuiltinType::SveInt8x4:
3780     return SVE_INT_ELTTY(8, 16, true, 4);
3781   case BuiltinType::SveUint8x4:
3782     return SVE_INT_ELTTY(8, 16, false, 4);
3783   case BuiltinType::SveInt16:
3784     return SVE_INT_ELTTY(16, 8, true, 1);
3785   case BuiltinType::SveUint16:
3786     return SVE_INT_ELTTY(16, 8, false, 1);
3787   case BuiltinType::SveInt16x2:
3788     return SVE_INT_ELTTY(16, 8, true, 2);
3789   case BuiltinType::SveUint16x2:
3790     return SVE_INT_ELTTY(16, 8, false, 2);
3791   case BuiltinType::SveInt16x3:
3792     return SVE_INT_ELTTY(16, 8, true, 3);
3793   case BuiltinType::SveUint16x3:
3794     return SVE_INT_ELTTY(16, 8, false, 3);
3795   case BuiltinType::SveInt16x4:
3796     return SVE_INT_ELTTY(16, 8, true, 4);
3797   case BuiltinType::SveUint16x4:
3798     return SVE_INT_ELTTY(16, 8, false, 4);
3799   case BuiltinType::SveInt32:
3800     return SVE_INT_ELTTY(32, 4, true, 1);
3801   case BuiltinType::SveUint32:
3802     return SVE_INT_ELTTY(32, 4, false, 1);
3803   case BuiltinType::SveInt32x2:
3804     return SVE_INT_ELTTY(32, 4, true, 2);
3805   case BuiltinType::SveUint32x2:
3806     return SVE_INT_ELTTY(32, 4, false, 2);
3807   case BuiltinType::SveInt32x3:
3808     return SVE_INT_ELTTY(32, 4, true, 3);
3809   case BuiltinType::SveUint32x3:
3810     return SVE_INT_ELTTY(32, 4, false, 3);
3811   case BuiltinType::SveInt32x4:
3812     return SVE_INT_ELTTY(32, 4, true, 4);
3813   case BuiltinType::SveUint32x4:
3814     return SVE_INT_ELTTY(32, 4, false, 4);
3815   case BuiltinType::SveInt64:
3816     return SVE_INT_ELTTY(64, 2, true, 1);
3817   case BuiltinType::SveUint64:
3818     return SVE_INT_ELTTY(64, 2, false, 1);
3819   case BuiltinType::SveInt64x2:
3820     return SVE_INT_ELTTY(64, 2, true, 2);
3821   case BuiltinType::SveUint64x2:
3822     return SVE_INT_ELTTY(64, 2, false, 2);
3823   case BuiltinType::SveInt64x3:
3824     return SVE_INT_ELTTY(64, 2, true, 3);
3825   case BuiltinType::SveUint64x3:
3826     return SVE_INT_ELTTY(64, 2, false, 3);
3827   case BuiltinType::SveInt64x4:
3828     return SVE_INT_ELTTY(64, 2, true, 4);
3829   case BuiltinType::SveUint64x4:
3830     return SVE_INT_ELTTY(64, 2, false, 4);
3831   case BuiltinType::SveBool:
3832     return SVE_ELTTY(BoolTy, 16, 1);
3833   case BuiltinType::SveFloat16:
3834     return SVE_ELTTY(HalfTy, 8, 1);
3835   case BuiltinType::SveFloat16x2:
3836     return SVE_ELTTY(HalfTy, 8, 2);
3837   case BuiltinType::SveFloat16x3:
3838     return SVE_ELTTY(HalfTy, 8, 3);
3839   case BuiltinType::SveFloat16x4:
3840     return SVE_ELTTY(HalfTy, 8, 4);
3841   case BuiltinType::SveFloat32:
3842     return SVE_ELTTY(FloatTy, 4, 1);
3843   case BuiltinType::SveFloat32x2:
3844     return SVE_ELTTY(FloatTy, 4, 2);
3845   case BuiltinType::SveFloat32x3:
3846     return SVE_ELTTY(FloatTy, 4, 3);
3847   case BuiltinType::SveFloat32x4:
3848     return SVE_ELTTY(FloatTy, 4, 4);
3849   case BuiltinType::SveFloat64:
3850     return SVE_ELTTY(DoubleTy, 2, 1);
3851   case BuiltinType::SveFloat64x2:
3852     return SVE_ELTTY(DoubleTy, 2, 2);
3853   case BuiltinType::SveFloat64x3:
3854     return SVE_ELTTY(DoubleTy, 2, 3);
3855   case BuiltinType::SveFloat64x4:
3856     return SVE_ELTTY(DoubleTy, 2, 4);
3857   case BuiltinType::SveBFloat16:
3858     return SVE_ELTTY(BFloat16Ty, 8, 1);
3859   case BuiltinType::SveBFloat16x2:
3860     return SVE_ELTTY(BFloat16Ty, 8, 2);
3861   case BuiltinType::SveBFloat16x3:
3862     return SVE_ELTTY(BFloat16Ty, 8, 3);
3863   case BuiltinType::SveBFloat16x4:
3864     return SVE_ELTTY(BFloat16Ty, 8, 4);
3865 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3866                             IsSigned)                                          \
3867   case BuiltinType::Id:                                                        \
3868     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3869             llvm::ElementCount::getScalable(NumEls), NF};
3870 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3871   case BuiltinType::Id:                                                        \
3872     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \
3873             llvm::ElementCount::getScalable(NumEls), NF};
3874 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3875   case BuiltinType::Id:                                                        \
3876     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3877 #include "clang/Basic/RISCVVTypes.def"
3878   }
3879 }
3880 
3881 /// getScalableVectorType - Return the unique reference to a scalable vector
3882 /// type of the specified element type and size. VectorType must be a built-in
3883 /// type.
3884 QualType ASTContext::getScalableVectorType(QualType EltTy,
3885                                            unsigned NumElts) const {
3886   if (Target->hasAArch64SVETypes()) {
3887     uint64_t EltTySize = getTypeSize(EltTy);
3888 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3889                         IsSigned, IsFP, IsBF)                                  \
3890   if (!EltTy->isBooleanType() &&                                               \
3891       ((EltTy->hasIntegerRepresentation() &&                                   \
3892         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3893        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3894         IsFP && !IsBF) ||                                                      \
3895        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3896         IsBF && !IsFP)) &&                                                     \
3897       EltTySize == ElBits && NumElts == NumEls) {                              \
3898     return SingletonId;                                                        \
3899   }
3900 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3901   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3902     return SingletonId;
3903 #include "clang/Basic/AArch64SVEACLETypes.def"
3904   } else if (Target->hasRISCVVTypes()) {
3905     uint64_t EltTySize = getTypeSize(EltTy);
3906 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
3907                         IsFP)                                                  \
3908     if (!EltTy->isBooleanType() &&                                             \
3909         ((EltTy->hasIntegerRepresentation() &&                                 \
3910           EltTy->hasSignedIntegerRepresentation() == IsSigned) ||              \
3911          (EltTy->hasFloatingRepresentation() && IsFP)) &&                      \
3912         EltTySize == ElBits && NumElts == NumEls)                              \
3913       return SingletonId;
3914 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3915     if (EltTy->isBooleanType() && NumElts == NumEls)                           \
3916       return SingletonId;
3917 #include "clang/Basic/RISCVVTypes.def"
3918   }
3919   return QualType();
3920 }
3921 
3922 /// getVectorType - Return the unique reference to a vector type of
3923 /// the specified element type and size. VectorType must be a built-in type.
3924 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3925                                    VectorType::VectorKind VecKind) const {
3926   assert(vecType->isBuiltinType());
3927 
3928   // Check if we've already instantiated a vector of this type.
3929   llvm::FoldingSetNodeID ID;
3930   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3931 
3932   void *InsertPos = nullptr;
3933   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3934     return QualType(VTP, 0);
3935 
3936   // If the element type isn't canonical, this won't be a canonical type either,
3937   // so fill in the canonical type field.
3938   QualType Canonical;
3939   if (!vecType.isCanonical()) {
3940     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3941 
3942     // Get the new insert position for the node we care about.
3943     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3944     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3945   }
3946   auto *New = new (*this, TypeAlignment)
3947     VectorType(vecType, NumElts, Canonical, VecKind);
3948   VectorTypes.InsertNode(New, InsertPos);
3949   Types.push_back(New);
3950   return QualType(New, 0);
3951 }
3952 
3953 QualType
3954 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3955                                    SourceLocation AttrLoc,
3956                                    VectorType::VectorKind VecKind) const {
3957   llvm::FoldingSetNodeID ID;
3958   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3959                                VecKind);
3960   void *InsertPos = nullptr;
3961   DependentVectorType *Canon =
3962       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3963   DependentVectorType *New;
3964 
3965   if (Canon) {
3966     New = new (*this, TypeAlignment) DependentVectorType(
3967         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3968   } else {
3969     QualType CanonVecTy = getCanonicalType(VecType);
3970     if (CanonVecTy == VecType) {
3971       New = new (*this, TypeAlignment) DependentVectorType(
3972           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3973 
3974       DependentVectorType *CanonCheck =
3975           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3976       assert(!CanonCheck &&
3977              "Dependent-sized vector_size canonical type broken");
3978       (void)CanonCheck;
3979       DependentVectorTypes.InsertNode(New, InsertPos);
3980     } else {
3981       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
3982                                                 SourceLocation(), VecKind);
3983       New = new (*this, TypeAlignment) DependentVectorType(
3984           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
3985     }
3986   }
3987 
3988   Types.push_back(New);
3989   return QualType(New, 0);
3990 }
3991 
3992 /// getExtVectorType - Return the unique reference to an extended vector type of
3993 /// the specified element type and size. VectorType must be a built-in type.
3994 QualType
3995 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3996   assert(vecType->isBuiltinType() || vecType->isDependentType());
3997 
3998   // Check if we've already instantiated a vector of this type.
3999   llvm::FoldingSetNodeID ID;
4000   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4001                       VectorType::GenericVector);
4002   void *InsertPos = nullptr;
4003   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4004     return QualType(VTP, 0);
4005 
4006   // If the element type isn't canonical, this won't be a canonical type either,
4007   // so fill in the canonical type field.
4008   QualType Canonical;
4009   if (!vecType.isCanonical()) {
4010     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4011 
4012     // Get the new insert position for the node we care about.
4013     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4014     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4015   }
4016   auto *New = new (*this, TypeAlignment)
4017     ExtVectorType(vecType, NumElts, Canonical);
4018   VectorTypes.InsertNode(New, InsertPos);
4019   Types.push_back(New);
4020   return QualType(New, 0);
4021 }
4022 
4023 QualType
4024 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4025                                            Expr *SizeExpr,
4026                                            SourceLocation AttrLoc) const {
4027   llvm::FoldingSetNodeID ID;
4028   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4029                                        SizeExpr);
4030 
4031   void *InsertPos = nullptr;
4032   DependentSizedExtVectorType *Canon
4033     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4034   DependentSizedExtVectorType *New;
4035   if (Canon) {
4036     // We already have a canonical version of this array type; use it as
4037     // the canonical type for a newly-built type.
4038     New = new (*this, TypeAlignment)
4039       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4040                                   SizeExpr, AttrLoc);
4041   } else {
4042     QualType CanonVecTy = getCanonicalType(vecType);
4043     if (CanonVecTy == vecType) {
4044       New = new (*this, TypeAlignment)
4045         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4046                                     AttrLoc);
4047 
4048       DependentSizedExtVectorType *CanonCheck
4049         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4050       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4051       (void)CanonCheck;
4052       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4053     } else {
4054       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4055                                                            SourceLocation());
4056       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4057           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4058     }
4059   }
4060 
4061   Types.push_back(New);
4062   return QualType(New, 0);
4063 }
4064 
4065 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4066                                            unsigned NumColumns) const {
4067   llvm::FoldingSetNodeID ID;
4068   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4069                               Type::ConstantMatrix);
4070 
4071   assert(MatrixType::isValidElementType(ElementTy) &&
4072          "need a valid element type");
4073   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4074          ConstantMatrixType::isDimensionValid(NumColumns) &&
4075          "need valid matrix dimensions");
4076   void *InsertPos = nullptr;
4077   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4078     return QualType(MTP, 0);
4079 
4080   QualType Canonical;
4081   if (!ElementTy.isCanonical()) {
4082     Canonical =
4083         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4084 
4085     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4086     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4087     (void)NewIP;
4088   }
4089 
4090   auto *New = new (*this, TypeAlignment)
4091       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4092   MatrixTypes.InsertNode(New, InsertPos);
4093   Types.push_back(New);
4094   return QualType(New, 0);
4095 }
4096 
4097 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4098                                                  Expr *RowExpr,
4099                                                  Expr *ColumnExpr,
4100                                                  SourceLocation AttrLoc) const {
4101   QualType CanonElementTy = getCanonicalType(ElementTy);
4102   llvm::FoldingSetNodeID ID;
4103   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4104                                     ColumnExpr);
4105 
4106   void *InsertPos = nullptr;
4107   DependentSizedMatrixType *Canon =
4108       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4109 
4110   if (!Canon) {
4111     Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4112         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4113 #ifndef NDEBUG
4114     DependentSizedMatrixType *CanonCheck =
4115         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4116     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4117 #endif
4118     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4119     Types.push_back(Canon);
4120   }
4121 
4122   // Already have a canonical version of the matrix type
4123   //
4124   // If it exactly matches the requested type, use it directly.
4125   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4126       Canon->getRowExpr() == ColumnExpr)
4127     return QualType(Canon, 0);
4128 
4129   // Use Canon as the canonical type for newly-built type.
4130   DependentSizedMatrixType *New = new (*this, TypeAlignment)
4131       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4132                                ColumnExpr, AttrLoc);
4133   Types.push_back(New);
4134   return QualType(New, 0);
4135 }
4136 
4137 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4138                                                   Expr *AddrSpaceExpr,
4139                                                   SourceLocation AttrLoc) const {
4140   assert(AddrSpaceExpr->isInstantiationDependent());
4141 
4142   QualType canonPointeeType = getCanonicalType(PointeeType);
4143 
4144   void *insertPos = nullptr;
4145   llvm::FoldingSetNodeID ID;
4146   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4147                                      AddrSpaceExpr);
4148 
4149   DependentAddressSpaceType *canonTy =
4150     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4151 
4152   if (!canonTy) {
4153     canonTy = new (*this, TypeAlignment)
4154       DependentAddressSpaceType(*this, canonPointeeType,
4155                                 QualType(), AddrSpaceExpr, AttrLoc);
4156     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4157     Types.push_back(canonTy);
4158   }
4159 
4160   if (canonPointeeType == PointeeType &&
4161       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4162     return QualType(canonTy, 0);
4163 
4164   auto *sugaredType
4165     = new (*this, TypeAlignment)
4166         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4167                                   AddrSpaceExpr, AttrLoc);
4168   Types.push_back(sugaredType);
4169   return QualType(sugaredType, 0);
4170 }
4171 
4172 /// Determine whether \p T is canonical as the result type of a function.
4173 static bool isCanonicalResultType(QualType T) {
4174   return T.isCanonical() &&
4175          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4176           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4177 }
4178 
4179 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4180 QualType
4181 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4182                                    const FunctionType::ExtInfo &Info) const {
4183   // Unique functions, to guarantee there is only one function of a particular
4184   // structure.
4185   llvm::FoldingSetNodeID ID;
4186   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4187 
4188   void *InsertPos = nullptr;
4189   if (FunctionNoProtoType *FT =
4190         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4191     return QualType(FT, 0);
4192 
4193   QualType Canonical;
4194   if (!isCanonicalResultType(ResultTy)) {
4195     Canonical =
4196       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4197 
4198     // Get the new insert position for the node we care about.
4199     FunctionNoProtoType *NewIP =
4200       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4201     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4202   }
4203 
4204   auto *New = new (*this, TypeAlignment)
4205     FunctionNoProtoType(ResultTy, Canonical, Info);
4206   Types.push_back(New);
4207   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4208   return QualType(New, 0);
4209 }
4210 
4211 CanQualType
4212 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4213   CanQualType CanResultType = getCanonicalType(ResultType);
4214 
4215   // Canonical result types do not have ARC lifetime qualifiers.
4216   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4217     Qualifiers Qs = CanResultType.getQualifiers();
4218     Qs.removeObjCLifetime();
4219     return CanQualType::CreateUnsafe(
4220              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4221   }
4222 
4223   return CanResultType;
4224 }
4225 
4226 static bool isCanonicalExceptionSpecification(
4227     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4228   if (ESI.Type == EST_None)
4229     return true;
4230   if (!NoexceptInType)
4231     return false;
4232 
4233   // C++17 onwards: exception specification is part of the type, as a simple
4234   // boolean "can this function type throw".
4235   if (ESI.Type == EST_BasicNoexcept)
4236     return true;
4237 
4238   // A noexcept(expr) specification is (possibly) canonical if expr is
4239   // value-dependent.
4240   if (ESI.Type == EST_DependentNoexcept)
4241     return true;
4242 
4243   // A dynamic exception specification is canonical if it only contains pack
4244   // expansions (so we can't tell whether it's non-throwing) and all its
4245   // contained types are canonical.
4246   if (ESI.Type == EST_Dynamic) {
4247     bool AnyPackExpansions = false;
4248     for (QualType ET : ESI.Exceptions) {
4249       if (!ET.isCanonical())
4250         return false;
4251       if (ET->getAs<PackExpansionType>())
4252         AnyPackExpansions = true;
4253     }
4254     return AnyPackExpansions;
4255   }
4256 
4257   return false;
4258 }
4259 
4260 QualType ASTContext::getFunctionTypeInternal(
4261     QualType ResultTy, ArrayRef<QualType> ArgArray,
4262     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4263   size_t NumArgs = ArgArray.size();
4264 
4265   // Unique functions, to guarantee there is only one function of a particular
4266   // structure.
4267   llvm::FoldingSetNodeID ID;
4268   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4269                              *this, true);
4270 
4271   QualType Canonical;
4272   bool Unique = false;
4273 
4274   void *InsertPos = nullptr;
4275   if (FunctionProtoType *FPT =
4276         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4277     QualType Existing = QualType(FPT, 0);
4278 
4279     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4280     // it so long as our exception specification doesn't contain a dependent
4281     // noexcept expression, or we're just looking for a canonical type.
4282     // Otherwise, we're going to need to create a type
4283     // sugar node to hold the concrete expression.
4284     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4285         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4286       return Existing;
4287 
4288     // We need a new type sugar node for this one, to hold the new noexcept
4289     // expression. We do no canonicalization here, but that's OK since we don't
4290     // expect to see the same noexcept expression much more than once.
4291     Canonical = getCanonicalType(Existing);
4292     Unique = true;
4293   }
4294 
4295   bool NoexceptInType = getLangOpts().CPlusPlus17;
4296   bool IsCanonicalExceptionSpec =
4297       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4298 
4299   // Determine whether the type being created is already canonical or not.
4300   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4301                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4302   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4303     if (!ArgArray[i].isCanonicalAsParam())
4304       isCanonical = false;
4305 
4306   if (OnlyWantCanonical)
4307     assert(isCanonical &&
4308            "given non-canonical parameters constructing canonical type");
4309 
4310   // If this type isn't canonical, get the canonical version of it if we don't
4311   // already have it. The exception spec is only partially part of the
4312   // canonical type, and only in C++17 onwards.
4313   if (!isCanonical && Canonical.isNull()) {
4314     SmallVector<QualType, 16> CanonicalArgs;
4315     CanonicalArgs.reserve(NumArgs);
4316     for (unsigned i = 0; i != NumArgs; ++i)
4317       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4318 
4319     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4320     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4321     CanonicalEPI.HasTrailingReturn = false;
4322 
4323     if (IsCanonicalExceptionSpec) {
4324       // Exception spec is already OK.
4325     } else if (NoexceptInType) {
4326       switch (EPI.ExceptionSpec.Type) {
4327       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4328         // We don't know yet. It shouldn't matter what we pick here; no-one
4329         // should ever look at this.
4330         LLVM_FALLTHROUGH;
4331       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4332         CanonicalEPI.ExceptionSpec.Type = EST_None;
4333         break;
4334 
4335         // A dynamic exception specification is almost always "not noexcept",
4336         // with the exception that a pack expansion might expand to no types.
4337       case EST_Dynamic: {
4338         bool AnyPacks = false;
4339         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4340           if (ET->getAs<PackExpansionType>())
4341             AnyPacks = true;
4342           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4343         }
4344         if (!AnyPacks)
4345           CanonicalEPI.ExceptionSpec.Type = EST_None;
4346         else {
4347           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4348           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4349         }
4350         break;
4351       }
4352 
4353       case EST_DynamicNone:
4354       case EST_BasicNoexcept:
4355       case EST_NoexceptTrue:
4356       case EST_NoThrow:
4357         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4358         break;
4359 
4360       case EST_DependentNoexcept:
4361         llvm_unreachable("dependent noexcept is already canonical");
4362       }
4363     } else {
4364       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4365     }
4366 
4367     // Adjust the canonical function result type.
4368     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4369     Canonical =
4370         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4371 
4372     // Get the new insert position for the node we care about.
4373     FunctionProtoType *NewIP =
4374       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4375     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4376   }
4377 
4378   // Compute the needed size to hold this FunctionProtoType and the
4379   // various trailing objects.
4380   auto ESH = FunctionProtoType::getExceptionSpecSize(
4381       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4382   size_t Size = FunctionProtoType::totalSizeToAlloc<
4383       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4384       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4385       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4386       NumArgs, EPI.Variadic,
4387       FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4388       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4389       EPI.ExtParameterInfos ? NumArgs : 0,
4390       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4391 
4392   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4393   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4394   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4395   Types.push_back(FTP);
4396   if (!Unique)
4397     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4398   return QualType(FTP, 0);
4399 }
4400 
4401 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4402   llvm::FoldingSetNodeID ID;
4403   PipeType::Profile(ID, T, ReadOnly);
4404 
4405   void *InsertPos = nullptr;
4406   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4407     return QualType(PT, 0);
4408 
4409   // If the pipe element type isn't canonical, this won't be a canonical type
4410   // either, so fill in the canonical type field.
4411   QualType Canonical;
4412   if (!T.isCanonical()) {
4413     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4414 
4415     // Get the new insert position for the node we care about.
4416     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4417     assert(!NewIP && "Shouldn't be in the map!");
4418     (void)NewIP;
4419   }
4420   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4421   Types.push_back(New);
4422   PipeTypes.InsertNode(New, InsertPos);
4423   return QualType(New, 0);
4424 }
4425 
4426 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4427   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4428   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4429                          : Ty;
4430 }
4431 
4432 QualType ASTContext::getReadPipeType(QualType T) const {
4433   return getPipeType(T, true);
4434 }
4435 
4436 QualType ASTContext::getWritePipeType(QualType T) const {
4437   return getPipeType(T, false);
4438 }
4439 
4440 QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const {
4441   llvm::FoldingSetNodeID ID;
4442   ExtIntType::Profile(ID, IsUnsigned, NumBits);
4443 
4444   void *InsertPos = nullptr;
4445   if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4446     return QualType(EIT, 0);
4447 
4448   auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits);
4449   ExtIntTypes.InsertNode(New, InsertPos);
4450   Types.push_back(New);
4451   return QualType(New, 0);
4452 }
4453 
4454 QualType ASTContext::getDependentExtIntType(bool IsUnsigned,
4455                                             Expr *NumBitsExpr) const {
4456   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4457   llvm::FoldingSetNodeID ID;
4458   DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4459 
4460   void *InsertPos = nullptr;
4461   if (DependentExtIntType *Existing =
4462           DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4463     return QualType(Existing, 0);
4464 
4465   auto *New = new (*this, TypeAlignment)
4466       DependentExtIntType(*this, IsUnsigned, NumBitsExpr);
4467   DependentExtIntTypes.InsertNode(New, InsertPos);
4468 
4469   Types.push_back(New);
4470   return QualType(New, 0);
4471 }
4472 
4473 #ifndef NDEBUG
4474 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4475   if (!isa<CXXRecordDecl>(D)) return false;
4476   const auto *RD = cast<CXXRecordDecl>(D);
4477   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4478     return true;
4479   if (RD->getDescribedClassTemplate() &&
4480       !isa<ClassTemplateSpecializationDecl>(RD))
4481     return true;
4482   return false;
4483 }
4484 #endif
4485 
4486 /// getInjectedClassNameType - Return the unique reference to the
4487 /// injected class name type for the specified templated declaration.
4488 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4489                                               QualType TST) const {
4490   assert(NeedsInjectedClassNameType(Decl));
4491   if (Decl->TypeForDecl) {
4492     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4493   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4494     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4495     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4496     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4497   } else {
4498     Type *newType =
4499       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4500     Decl->TypeForDecl = newType;
4501     Types.push_back(newType);
4502   }
4503   return QualType(Decl->TypeForDecl, 0);
4504 }
4505 
4506 /// getTypeDeclType - Return the unique reference to the type for the
4507 /// specified type declaration.
4508 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4509   assert(Decl && "Passed null for Decl param");
4510   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4511 
4512   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4513     return getTypedefType(Typedef);
4514 
4515   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4516          "Template type parameter types are always available.");
4517 
4518   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4519     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4520     assert(!NeedsInjectedClassNameType(Record));
4521     return getRecordType(Record);
4522   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4523     assert(Enum->isFirstDecl() && "enum has previous declaration");
4524     return getEnumType(Enum);
4525   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4526     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
4527     Decl->TypeForDecl = newType;
4528     Types.push_back(newType);
4529   } else
4530     llvm_unreachable("TypeDecl without a type?");
4531 
4532   return QualType(Decl->TypeForDecl, 0);
4533 }
4534 
4535 /// getTypedefType - Return the unique reference to the type for the
4536 /// specified typedef name decl.
4537 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4538                                     QualType Underlying) const {
4539   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4540 
4541   if (Underlying.isNull())
4542     Underlying = Decl->getUnderlyingType();
4543   QualType Canonical = getCanonicalType(Underlying);
4544   auto *newType = new (*this, TypeAlignment)
4545       TypedefType(Type::Typedef, Decl, Underlying, Canonical);
4546   Decl->TypeForDecl = newType;
4547   Types.push_back(newType);
4548   return QualType(newType, 0);
4549 }
4550 
4551 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4552   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4553 
4554   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4555     if (PrevDecl->TypeForDecl)
4556       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4557 
4558   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4559   Decl->TypeForDecl = newType;
4560   Types.push_back(newType);
4561   return QualType(newType, 0);
4562 }
4563 
4564 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4565   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4566 
4567   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4568     if (PrevDecl->TypeForDecl)
4569       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4570 
4571   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4572   Decl->TypeForDecl = newType;
4573   Types.push_back(newType);
4574   return QualType(newType, 0);
4575 }
4576 
4577 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4578                                        QualType modifiedType,
4579                                        QualType equivalentType) {
4580   llvm::FoldingSetNodeID id;
4581   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4582 
4583   void *insertPos = nullptr;
4584   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4585   if (type) return QualType(type, 0);
4586 
4587   QualType canon = getCanonicalType(equivalentType);
4588   type = new (*this, TypeAlignment)
4589       AttributedType(canon, attrKind, modifiedType, equivalentType);
4590 
4591   Types.push_back(type);
4592   AttributedTypes.InsertNode(type, insertPos);
4593 
4594   return QualType(type, 0);
4595 }
4596 
4597 /// Retrieve a substitution-result type.
4598 QualType
4599 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4600                                          QualType Replacement) const {
4601   assert(Replacement.isCanonical()
4602          && "replacement types must always be canonical");
4603 
4604   llvm::FoldingSetNodeID ID;
4605   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4606   void *InsertPos = nullptr;
4607   SubstTemplateTypeParmType *SubstParm
4608     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4609 
4610   if (!SubstParm) {
4611     SubstParm = new (*this, TypeAlignment)
4612       SubstTemplateTypeParmType(Parm, Replacement);
4613     Types.push_back(SubstParm);
4614     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4615   }
4616 
4617   return QualType(SubstParm, 0);
4618 }
4619 
4620 /// Retrieve a
4621 QualType ASTContext::getSubstTemplateTypeParmPackType(
4622                                           const TemplateTypeParmType *Parm,
4623                                               const TemplateArgument &ArgPack) {
4624 #ifndef NDEBUG
4625   for (const auto &P : ArgPack.pack_elements()) {
4626     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4627     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4628   }
4629 #endif
4630 
4631   llvm::FoldingSetNodeID ID;
4632   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4633   void *InsertPos = nullptr;
4634   if (SubstTemplateTypeParmPackType *SubstParm
4635         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4636     return QualType(SubstParm, 0);
4637 
4638   QualType Canon;
4639   if (!Parm->isCanonicalUnqualified()) {
4640     Canon = getCanonicalType(QualType(Parm, 0));
4641     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4642                                              ArgPack);
4643     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4644   }
4645 
4646   auto *SubstParm
4647     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4648                                                                ArgPack);
4649   Types.push_back(SubstParm);
4650   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4651   return QualType(SubstParm, 0);
4652 }
4653 
4654 /// Retrieve the template type parameter type for a template
4655 /// parameter or parameter pack with the given depth, index, and (optionally)
4656 /// name.
4657 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4658                                              bool ParameterPack,
4659                                              TemplateTypeParmDecl *TTPDecl) const {
4660   llvm::FoldingSetNodeID ID;
4661   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4662   void *InsertPos = nullptr;
4663   TemplateTypeParmType *TypeParm
4664     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4665 
4666   if (TypeParm)
4667     return QualType(TypeParm, 0);
4668 
4669   if (TTPDecl) {
4670     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4671     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4672 
4673     TemplateTypeParmType *TypeCheck
4674       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4675     assert(!TypeCheck && "Template type parameter canonical type broken");
4676     (void)TypeCheck;
4677   } else
4678     TypeParm = new (*this, TypeAlignment)
4679       TemplateTypeParmType(Depth, Index, ParameterPack);
4680 
4681   Types.push_back(TypeParm);
4682   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4683 
4684   return QualType(TypeParm, 0);
4685 }
4686 
4687 TypeSourceInfo *
4688 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4689                                               SourceLocation NameLoc,
4690                                         const TemplateArgumentListInfo &Args,
4691                                               QualType Underlying) const {
4692   assert(!Name.getAsDependentTemplateName() &&
4693          "No dependent template names here!");
4694   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4695 
4696   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4697   TemplateSpecializationTypeLoc TL =
4698       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4699   TL.setTemplateKeywordLoc(SourceLocation());
4700   TL.setTemplateNameLoc(NameLoc);
4701   TL.setLAngleLoc(Args.getLAngleLoc());
4702   TL.setRAngleLoc(Args.getRAngleLoc());
4703   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4704     TL.setArgLocInfo(i, Args[i].getLocInfo());
4705   return DI;
4706 }
4707 
4708 QualType
4709 ASTContext::getTemplateSpecializationType(TemplateName Template,
4710                                           const TemplateArgumentListInfo &Args,
4711                                           QualType Underlying) const {
4712   assert(!Template.getAsDependentTemplateName() &&
4713          "No dependent template names here!");
4714 
4715   SmallVector<TemplateArgument, 4> ArgVec;
4716   ArgVec.reserve(Args.size());
4717   for (const TemplateArgumentLoc &Arg : Args.arguments())
4718     ArgVec.push_back(Arg.getArgument());
4719 
4720   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4721 }
4722 
4723 #ifndef NDEBUG
4724 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4725   for (const TemplateArgument &Arg : Args)
4726     if (Arg.isPackExpansion())
4727       return true;
4728 
4729   return true;
4730 }
4731 #endif
4732 
4733 QualType
4734 ASTContext::getTemplateSpecializationType(TemplateName Template,
4735                                           ArrayRef<TemplateArgument> Args,
4736                                           QualType Underlying) const {
4737   assert(!Template.getAsDependentTemplateName() &&
4738          "No dependent template names here!");
4739   // Look through qualified template names.
4740   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4741     Template = TemplateName(QTN->getTemplateDecl());
4742 
4743   bool IsTypeAlias =
4744     Template.getAsTemplateDecl() &&
4745     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4746   QualType CanonType;
4747   if (!Underlying.isNull())
4748     CanonType = getCanonicalType(Underlying);
4749   else {
4750     // We can get here with an alias template when the specialization contains
4751     // a pack expansion that does not match up with a parameter pack.
4752     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4753            "Caller must compute aliased type");
4754     IsTypeAlias = false;
4755     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4756   }
4757 
4758   // Allocate the (non-canonical) template specialization type, but don't
4759   // try to unique it: these types typically have location information that
4760   // we don't unique and don't want to lose.
4761   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4762                        sizeof(TemplateArgument) * Args.size() +
4763                        (IsTypeAlias? sizeof(QualType) : 0),
4764                        TypeAlignment);
4765   auto *Spec
4766     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4767                                          IsTypeAlias ? Underlying : QualType());
4768 
4769   Types.push_back(Spec);
4770   return QualType(Spec, 0);
4771 }
4772 
4773 QualType ASTContext::getCanonicalTemplateSpecializationType(
4774     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4775   assert(!Template.getAsDependentTemplateName() &&
4776          "No dependent template names here!");
4777 
4778   // Look through qualified template names.
4779   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4780     Template = TemplateName(QTN->getTemplateDecl());
4781 
4782   // Build the canonical template specialization type.
4783   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4784   SmallVector<TemplateArgument, 4> CanonArgs;
4785   unsigned NumArgs = Args.size();
4786   CanonArgs.reserve(NumArgs);
4787   for (const TemplateArgument &Arg : Args)
4788     CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4789 
4790   // Determine whether this canonical template specialization type already
4791   // exists.
4792   llvm::FoldingSetNodeID ID;
4793   TemplateSpecializationType::Profile(ID, CanonTemplate,
4794                                       CanonArgs, *this);
4795 
4796   void *InsertPos = nullptr;
4797   TemplateSpecializationType *Spec
4798     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4799 
4800   if (!Spec) {
4801     // Allocate a new canonical template specialization type.
4802     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4803                           sizeof(TemplateArgument) * NumArgs),
4804                          TypeAlignment);
4805     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4806                                                 CanonArgs,
4807                                                 QualType(), QualType());
4808     Types.push_back(Spec);
4809     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4810   }
4811 
4812   assert(Spec->isDependentType() &&
4813          "Non-dependent template-id type must have a canonical type");
4814   return QualType(Spec, 0);
4815 }
4816 
4817 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4818                                        NestedNameSpecifier *NNS,
4819                                        QualType NamedType,
4820                                        TagDecl *OwnedTagDecl) const {
4821   llvm::FoldingSetNodeID ID;
4822   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4823 
4824   void *InsertPos = nullptr;
4825   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4826   if (T)
4827     return QualType(T, 0);
4828 
4829   QualType Canon = NamedType;
4830   if (!Canon.isCanonical()) {
4831     Canon = getCanonicalType(NamedType);
4832     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4833     assert(!CheckT && "Elaborated canonical type broken");
4834     (void)CheckT;
4835   }
4836 
4837   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4838                        TypeAlignment);
4839   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4840 
4841   Types.push_back(T);
4842   ElaboratedTypes.InsertNode(T, InsertPos);
4843   return QualType(T, 0);
4844 }
4845 
4846 QualType
4847 ASTContext::getParenType(QualType InnerType) const {
4848   llvm::FoldingSetNodeID ID;
4849   ParenType::Profile(ID, InnerType);
4850 
4851   void *InsertPos = nullptr;
4852   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4853   if (T)
4854     return QualType(T, 0);
4855 
4856   QualType Canon = InnerType;
4857   if (!Canon.isCanonical()) {
4858     Canon = getCanonicalType(InnerType);
4859     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4860     assert(!CheckT && "Paren canonical type broken");
4861     (void)CheckT;
4862   }
4863 
4864   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4865   Types.push_back(T);
4866   ParenTypes.InsertNode(T, InsertPos);
4867   return QualType(T, 0);
4868 }
4869 
4870 QualType
4871 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4872                                   const IdentifierInfo *MacroII) const {
4873   QualType Canon = UnderlyingTy;
4874   if (!Canon.isCanonical())
4875     Canon = getCanonicalType(UnderlyingTy);
4876 
4877   auto *newType = new (*this, TypeAlignment)
4878       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4879   Types.push_back(newType);
4880   return QualType(newType, 0);
4881 }
4882 
4883 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4884                                           NestedNameSpecifier *NNS,
4885                                           const IdentifierInfo *Name,
4886                                           QualType Canon) const {
4887   if (Canon.isNull()) {
4888     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4889     if (CanonNNS != NNS)
4890       Canon = getDependentNameType(Keyword, CanonNNS, Name);
4891   }
4892 
4893   llvm::FoldingSetNodeID ID;
4894   DependentNameType::Profile(ID, Keyword, NNS, Name);
4895 
4896   void *InsertPos = nullptr;
4897   DependentNameType *T
4898     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4899   if (T)
4900     return QualType(T, 0);
4901 
4902   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4903   Types.push_back(T);
4904   DependentNameTypes.InsertNode(T, InsertPos);
4905   return QualType(T, 0);
4906 }
4907 
4908 QualType
4909 ASTContext::getDependentTemplateSpecializationType(
4910                                  ElaboratedTypeKeyword Keyword,
4911                                  NestedNameSpecifier *NNS,
4912                                  const IdentifierInfo *Name,
4913                                  const TemplateArgumentListInfo &Args) const {
4914   // TODO: avoid this copy
4915   SmallVector<TemplateArgument, 16> ArgCopy;
4916   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4917     ArgCopy.push_back(Args[I].getArgument());
4918   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4919 }
4920 
4921 QualType
4922 ASTContext::getDependentTemplateSpecializationType(
4923                                  ElaboratedTypeKeyword Keyword,
4924                                  NestedNameSpecifier *NNS,
4925                                  const IdentifierInfo *Name,
4926                                  ArrayRef<TemplateArgument> Args) const {
4927   assert((!NNS || NNS->isDependent()) &&
4928          "nested-name-specifier must be dependent");
4929 
4930   llvm::FoldingSetNodeID ID;
4931   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4932                                                Name, Args);
4933 
4934   void *InsertPos = nullptr;
4935   DependentTemplateSpecializationType *T
4936     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4937   if (T)
4938     return QualType(T, 0);
4939 
4940   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4941 
4942   ElaboratedTypeKeyword CanonKeyword = Keyword;
4943   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4944 
4945   bool AnyNonCanonArgs = false;
4946   unsigned NumArgs = Args.size();
4947   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4948   for (unsigned I = 0; I != NumArgs; ++I) {
4949     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4950     if (!CanonArgs[I].structurallyEquals(Args[I]))
4951       AnyNonCanonArgs = true;
4952   }
4953 
4954   QualType Canon;
4955   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4956     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4957                                                    Name,
4958                                                    CanonArgs);
4959 
4960     // Find the insert position again.
4961     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4962   }
4963 
4964   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4965                         sizeof(TemplateArgument) * NumArgs),
4966                        TypeAlignment);
4967   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4968                                                     Name, Args, Canon);
4969   Types.push_back(T);
4970   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4971   return QualType(T, 0);
4972 }
4973 
4974 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
4975   TemplateArgument Arg;
4976   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4977     QualType ArgType = getTypeDeclType(TTP);
4978     if (TTP->isParameterPack())
4979       ArgType = getPackExpansionType(ArgType, None);
4980 
4981     Arg = TemplateArgument(ArgType);
4982   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4983     QualType T =
4984         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
4985     // For class NTTPs, ensure we include the 'const' so the type matches that
4986     // of a real template argument.
4987     // FIXME: It would be more faithful to model this as something like an
4988     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
4989     if (T->isRecordType())
4990       T.addConst();
4991     Expr *E = new (*this) DeclRefExpr(
4992         *this, NTTP, /*enclosing*/ false, T,
4993         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4994 
4995     if (NTTP->isParameterPack())
4996       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4997                                         None);
4998     Arg = TemplateArgument(E);
4999   } else {
5000     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5001     if (TTP->isParameterPack())
5002       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
5003     else
5004       Arg = TemplateArgument(TemplateName(TTP));
5005   }
5006 
5007   if (Param->isTemplateParameterPack())
5008     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5009 
5010   return Arg;
5011 }
5012 
5013 void
5014 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5015                                     SmallVectorImpl<TemplateArgument> &Args) {
5016   Args.reserve(Args.size() + Params->size());
5017 
5018   for (NamedDecl *Param : *Params)
5019     Args.push_back(getInjectedTemplateArg(Param));
5020 }
5021 
5022 QualType ASTContext::getPackExpansionType(QualType Pattern,
5023                                           Optional<unsigned> NumExpansions,
5024                                           bool ExpectPackInType) {
5025   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5026          "Pack expansions must expand one or more parameter packs");
5027 
5028   llvm::FoldingSetNodeID ID;
5029   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5030 
5031   void *InsertPos = nullptr;
5032   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5033   if (T)
5034     return QualType(T, 0);
5035 
5036   QualType Canon;
5037   if (!Pattern.isCanonical()) {
5038     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5039                                  /*ExpectPackInType=*/false);
5040 
5041     // Find the insert position again, in case we inserted an element into
5042     // PackExpansionTypes and invalidated our insert position.
5043     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5044   }
5045 
5046   T = new (*this, TypeAlignment)
5047       PackExpansionType(Pattern, Canon, NumExpansions);
5048   Types.push_back(T);
5049   PackExpansionTypes.InsertNode(T, InsertPos);
5050   return QualType(T, 0);
5051 }
5052 
5053 /// CmpProtocolNames - Comparison predicate for sorting protocols
5054 /// alphabetically.
5055 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5056                             ObjCProtocolDecl *const *RHS) {
5057   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5058 }
5059 
5060 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5061   if (Protocols.empty()) return true;
5062 
5063   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5064     return false;
5065 
5066   for (unsigned i = 1; i != Protocols.size(); ++i)
5067     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5068         Protocols[i]->getCanonicalDecl() != Protocols[i])
5069       return false;
5070   return true;
5071 }
5072 
5073 static void
5074 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5075   // Sort protocols, keyed by name.
5076   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5077 
5078   // Canonicalize.
5079   for (ObjCProtocolDecl *&P : Protocols)
5080     P = P->getCanonicalDecl();
5081 
5082   // Remove duplicates.
5083   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5084   Protocols.erase(ProtocolsEnd, Protocols.end());
5085 }
5086 
5087 QualType ASTContext::getObjCObjectType(QualType BaseType,
5088                                        ObjCProtocolDecl * const *Protocols,
5089                                        unsigned NumProtocols) const {
5090   return getObjCObjectType(BaseType, {},
5091                            llvm::makeArrayRef(Protocols, NumProtocols),
5092                            /*isKindOf=*/false);
5093 }
5094 
5095 QualType ASTContext::getObjCObjectType(
5096            QualType baseType,
5097            ArrayRef<QualType> typeArgs,
5098            ArrayRef<ObjCProtocolDecl *> protocols,
5099            bool isKindOf) const {
5100   // If the base type is an interface and there aren't any protocols or
5101   // type arguments to add, then the interface type will do just fine.
5102   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5103       isa<ObjCInterfaceType>(baseType))
5104     return baseType;
5105 
5106   // Look in the folding set for an existing type.
5107   llvm::FoldingSetNodeID ID;
5108   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5109   void *InsertPos = nullptr;
5110   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5111     return QualType(QT, 0);
5112 
5113   // Determine the type arguments to be used for canonicalization,
5114   // which may be explicitly specified here or written on the base
5115   // type.
5116   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5117   if (effectiveTypeArgs.empty()) {
5118     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5119       effectiveTypeArgs = baseObject->getTypeArgs();
5120   }
5121 
5122   // Build the canonical type, which has the canonical base type and a
5123   // sorted-and-uniqued list of protocols and the type arguments
5124   // canonicalized.
5125   QualType canonical;
5126   bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
5127                                           effectiveTypeArgs.end(),
5128                                           [&](QualType type) {
5129                                             return type.isCanonical();
5130                                           });
5131   bool protocolsSorted = areSortedAndUniqued(protocols);
5132   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5133     // Determine the canonical type arguments.
5134     ArrayRef<QualType> canonTypeArgs;
5135     SmallVector<QualType, 4> canonTypeArgsVec;
5136     if (!typeArgsAreCanonical) {
5137       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5138       for (auto typeArg : effectiveTypeArgs)
5139         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5140       canonTypeArgs = canonTypeArgsVec;
5141     } else {
5142       canonTypeArgs = effectiveTypeArgs;
5143     }
5144 
5145     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5146     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5147     if (!protocolsSorted) {
5148       canonProtocolsVec.append(protocols.begin(), protocols.end());
5149       SortAndUniqueProtocols(canonProtocolsVec);
5150       canonProtocols = canonProtocolsVec;
5151     } else {
5152       canonProtocols = protocols;
5153     }
5154 
5155     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5156                                   canonProtocols, isKindOf);
5157 
5158     // Regenerate InsertPos.
5159     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5160   }
5161 
5162   unsigned size = sizeof(ObjCObjectTypeImpl);
5163   size += typeArgs.size() * sizeof(QualType);
5164   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5165   void *mem = Allocate(size, TypeAlignment);
5166   auto *T =
5167     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5168                                  isKindOf);
5169 
5170   Types.push_back(T);
5171   ObjCObjectTypes.InsertNode(T, InsertPos);
5172   return QualType(T, 0);
5173 }
5174 
5175 /// Apply Objective-C protocol qualifiers to the given type.
5176 /// If this is for the canonical type of a type parameter, we can apply
5177 /// protocol qualifiers on the ObjCObjectPointerType.
5178 QualType
5179 ASTContext::applyObjCProtocolQualifiers(QualType type,
5180                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5181                   bool allowOnPointerType) const {
5182   hasError = false;
5183 
5184   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5185     return getObjCTypeParamType(objT->getDecl(), protocols);
5186   }
5187 
5188   // Apply protocol qualifiers to ObjCObjectPointerType.
5189   if (allowOnPointerType) {
5190     if (const auto *objPtr =
5191             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5192       const ObjCObjectType *objT = objPtr->getObjectType();
5193       // Merge protocol lists and construct ObjCObjectType.
5194       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5195       protocolsVec.append(objT->qual_begin(),
5196                           objT->qual_end());
5197       protocolsVec.append(protocols.begin(), protocols.end());
5198       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5199       type = getObjCObjectType(
5200              objT->getBaseType(),
5201              objT->getTypeArgsAsWritten(),
5202              protocols,
5203              objT->isKindOfTypeAsWritten());
5204       return getObjCObjectPointerType(type);
5205     }
5206   }
5207 
5208   // Apply protocol qualifiers to ObjCObjectType.
5209   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5210     // FIXME: Check for protocols to which the class type is already
5211     // known to conform.
5212 
5213     return getObjCObjectType(objT->getBaseType(),
5214                              objT->getTypeArgsAsWritten(),
5215                              protocols,
5216                              objT->isKindOfTypeAsWritten());
5217   }
5218 
5219   // If the canonical type is ObjCObjectType, ...
5220   if (type->isObjCObjectType()) {
5221     // Silently overwrite any existing protocol qualifiers.
5222     // TODO: determine whether that's the right thing to do.
5223 
5224     // FIXME: Check for protocols to which the class type is already
5225     // known to conform.
5226     return getObjCObjectType(type, {}, protocols, false);
5227   }
5228 
5229   // id<protocol-list>
5230   if (type->isObjCIdType()) {
5231     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5232     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5233                                  objPtr->isKindOfType());
5234     return getObjCObjectPointerType(type);
5235   }
5236 
5237   // Class<protocol-list>
5238   if (type->isObjCClassType()) {
5239     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5240     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5241                                  objPtr->isKindOfType());
5242     return getObjCObjectPointerType(type);
5243   }
5244 
5245   hasError = true;
5246   return type;
5247 }
5248 
5249 QualType
5250 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5251                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5252   // Look in the folding set for an existing type.
5253   llvm::FoldingSetNodeID ID;
5254   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5255   void *InsertPos = nullptr;
5256   if (ObjCTypeParamType *TypeParam =
5257       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5258     return QualType(TypeParam, 0);
5259 
5260   // We canonicalize to the underlying type.
5261   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5262   if (!protocols.empty()) {
5263     // Apply the protocol qualifers.
5264     bool hasError;
5265     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5266         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5267     assert(!hasError && "Error when apply protocol qualifier to bound type");
5268   }
5269 
5270   unsigned size = sizeof(ObjCTypeParamType);
5271   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5272   void *mem = Allocate(size, TypeAlignment);
5273   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5274 
5275   Types.push_back(newType);
5276   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5277   return QualType(newType, 0);
5278 }
5279 
5280 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5281                                               ObjCTypeParamDecl *New) const {
5282   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5283   // Update TypeForDecl after updating TypeSourceInfo.
5284   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5285   SmallVector<ObjCProtocolDecl *, 8> protocols;
5286   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5287   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5288   New->setTypeForDecl(UpdatedTy.getTypePtr());
5289 }
5290 
5291 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5292 /// protocol list adopt all protocols in QT's qualified-id protocol
5293 /// list.
5294 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5295                                                 ObjCInterfaceDecl *IC) {
5296   if (!QT->isObjCQualifiedIdType())
5297     return false;
5298 
5299   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5300     // If both the right and left sides have qualifiers.
5301     for (auto *Proto : OPT->quals()) {
5302       if (!IC->ClassImplementsProtocol(Proto, false))
5303         return false;
5304     }
5305     return true;
5306   }
5307   return false;
5308 }
5309 
5310 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5311 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5312 /// of protocols.
5313 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5314                                                 ObjCInterfaceDecl *IDecl) {
5315   if (!QT->isObjCQualifiedIdType())
5316     return false;
5317   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5318   if (!OPT)
5319     return false;
5320   if (!IDecl->hasDefinition())
5321     return false;
5322   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5323   CollectInheritedProtocols(IDecl, InheritedProtocols);
5324   if (InheritedProtocols.empty())
5325     return false;
5326   // Check that if every protocol in list of id<plist> conforms to a protocol
5327   // of IDecl's, then bridge casting is ok.
5328   bool Conforms = false;
5329   for (auto *Proto : OPT->quals()) {
5330     Conforms = false;
5331     for (auto *PI : InheritedProtocols) {
5332       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5333         Conforms = true;
5334         break;
5335       }
5336     }
5337     if (!Conforms)
5338       break;
5339   }
5340   if (Conforms)
5341     return true;
5342 
5343   for (auto *PI : InheritedProtocols) {
5344     // If both the right and left sides have qualifiers.
5345     bool Adopts = false;
5346     for (auto *Proto : OPT->quals()) {
5347       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5348       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5349         break;
5350     }
5351     if (!Adopts)
5352       return false;
5353   }
5354   return true;
5355 }
5356 
5357 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5358 /// the given object type.
5359 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5360   llvm::FoldingSetNodeID ID;
5361   ObjCObjectPointerType::Profile(ID, ObjectT);
5362 
5363   void *InsertPos = nullptr;
5364   if (ObjCObjectPointerType *QT =
5365               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5366     return QualType(QT, 0);
5367 
5368   // Find the canonical object type.
5369   QualType Canonical;
5370   if (!ObjectT.isCanonical()) {
5371     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5372 
5373     // Regenerate InsertPos.
5374     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5375   }
5376 
5377   // No match.
5378   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5379   auto *QType =
5380     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5381 
5382   Types.push_back(QType);
5383   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5384   return QualType(QType, 0);
5385 }
5386 
5387 /// getObjCInterfaceType - Return the unique reference to the type for the
5388 /// specified ObjC interface decl. The list of protocols is optional.
5389 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5390                                           ObjCInterfaceDecl *PrevDecl) const {
5391   if (Decl->TypeForDecl)
5392     return QualType(Decl->TypeForDecl, 0);
5393 
5394   if (PrevDecl) {
5395     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5396     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5397     return QualType(PrevDecl->TypeForDecl, 0);
5398   }
5399 
5400   // Prefer the definition, if there is one.
5401   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5402     Decl = Def;
5403 
5404   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5405   auto *T = new (Mem) ObjCInterfaceType(Decl);
5406   Decl->TypeForDecl = T;
5407   Types.push_back(T);
5408   return QualType(T, 0);
5409 }
5410 
5411 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5412 /// TypeOfExprType AST's (since expression's are never shared). For example,
5413 /// multiple declarations that refer to "typeof(x)" all contain different
5414 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5415 /// on canonical type's (which are always unique).
5416 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5417   TypeOfExprType *toe;
5418   if (tofExpr->isTypeDependent()) {
5419     llvm::FoldingSetNodeID ID;
5420     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5421 
5422     void *InsertPos = nullptr;
5423     DependentTypeOfExprType *Canon
5424       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5425     if (Canon) {
5426       // We already have a "canonical" version of an identical, dependent
5427       // typeof(expr) type. Use that as our canonical type.
5428       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5429                                           QualType((TypeOfExprType*)Canon, 0));
5430     } else {
5431       // Build a new, canonical typeof(expr) type.
5432       Canon
5433         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5434       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5435       toe = Canon;
5436     }
5437   } else {
5438     QualType Canonical = getCanonicalType(tofExpr->getType());
5439     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5440   }
5441   Types.push_back(toe);
5442   return QualType(toe, 0);
5443 }
5444 
5445 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5446 /// TypeOfType nodes. The only motivation to unique these nodes would be
5447 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5448 /// an issue. This doesn't affect the type checker, since it operates
5449 /// on canonical types (which are always unique).
5450 QualType ASTContext::getTypeOfType(QualType tofType) const {
5451   QualType Canonical = getCanonicalType(tofType);
5452   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5453   Types.push_back(tot);
5454   return QualType(tot, 0);
5455 }
5456 
5457 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5458 /// nodes. This would never be helpful, since each such type has its own
5459 /// expression, and would not give a significant memory saving, since there
5460 /// is an Expr tree under each such type.
5461 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5462   DecltypeType *dt;
5463 
5464   // C++11 [temp.type]p2:
5465   //   If an expression e involves a template parameter, decltype(e) denotes a
5466   //   unique dependent type. Two such decltype-specifiers refer to the same
5467   //   type only if their expressions are equivalent (14.5.6.1).
5468   if (e->isInstantiationDependent()) {
5469     llvm::FoldingSetNodeID ID;
5470     DependentDecltypeType::Profile(ID, *this, e);
5471 
5472     void *InsertPos = nullptr;
5473     DependentDecltypeType *Canon
5474       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5475     if (!Canon) {
5476       // Build a new, canonical decltype(expr) type.
5477       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5478       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5479     }
5480     dt = new (*this, TypeAlignment)
5481         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5482   } else {
5483     dt = new (*this, TypeAlignment)
5484         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5485   }
5486   Types.push_back(dt);
5487   return QualType(dt, 0);
5488 }
5489 
5490 /// getUnaryTransformationType - We don't unique these, since the memory
5491 /// savings are minimal and these are rare.
5492 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5493                                            QualType UnderlyingType,
5494                                            UnaryTransformType::UTTKind Kind)
5495     const {
5496   UnaryTransformType *ut = nullptr;
5497 
5498   if (BaseType->isDependentType()) {
5499     // Look in the folding set for an existing type.
5500     llvm::FoldingSetNodeID ID;
5501     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5502 
5503     void *InsertPos = nullptr;
5504     DependentUnaryTransformType *Canon
5505       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5506 
5507     if (!Canon) {
5508       // Build a new, canonical __underlying_type(type) type.
5509       Canon = new (*this, TypeAlignment)
5510              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5511                                          Kind);
5512       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5513     }
5514     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5515                                                         QualType(), Kind,
5516                                                         QualType(Canon, 0));
5517   } else {
5518     QualType CanonType = getCanonicalType(UnderlyingType);
5519     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5520                                                         UnderlyingType, Kind,
5521                                                         CanonType);
5522   }
5523   Types.push_back(ut);
5524   return QualType(ut, 0);
5525 }
5526 
5527 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5528 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5529 /// canonical deduced-but-dependent 'auto' type.
5530 QualType
5531 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5532                         bool IsDependent, bool IsPack,
5533                         ConceptDecl *TypeConstraintConcept,
5534                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5535   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5536   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5537       !TypeConstraintConcept && !IsDependent)
5538     return getAutoDeductType();
5539 
5540   // Look in the folding set for an existing type.
5541   void *InsertPos = nullptr;
5542   llvm::FoldingSetNodeID ID;
5543   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5544                     TypeConstraintConcept, TypeConstraintArgs);
5545   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5546     return QualType(AT, 0);
5547 
5548   void *Mem = Allocate(sizeof(AutoType) +
5549                        sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5550                        TypeAlignment);
5551   auto *AT = new (Mem) AutoType(
5552       DeducedType, Keyword,
5553       (IsDependent ? TypeDependence::DependentInstantiation
5554                    : TypeDependence::None) |
5555           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5556       TypeConstraintConcept, TypeConstraintArgs);
5557   Types.push_back(AT);
5558   if (InsertPos)
5559     AutoTypes.InsertNode(AT, InsertPos);
5560   return QualType(AT, 0);
5561 }
5562 
5563 /// Return the uniqued reference to the deduced template specialization type
5564 /// which has been deduced to the given type, or to the canonical undeduced
5565 /// such type, or the canonical deduced-but-dependent such type.
5566 QualType ASTContext::getDeducedTemplateSpecializationType(
5567     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5568   // Look in the folding set for an existing type.
5569   void *InsertPos = nullptr;
5570   llvm::FoldingSetNodeID ID;
5571   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5572                                              IsDependent);
5573   if (DeducedTemplateSpecializationType *DTST =
5574           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5575     return QualType(DTST, 0);
5576 
5577   auto *DTST = new (*this, TypeAlignment)
5578       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5579   Types.push_back(DTST);
5580   if (InsertPos)
5581     DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5582   return QualType(DTST, 0);
5583 }
5584 
5585 /// getAtomicType - Return the uniqued reference to the atomic type for
5586 /// the given value type.
5587 QualType ASTContext::getAtomicType(QualType T) const {
5588   // Unique pointers, to guarantee there is only one pointer of a particular
5589   // structure.
5590   llvm::FoldingSetNodeID ID;
5591   AtomicType::Profile(ID, T);
5592 
5593   void *InsertPos = nullptr;
5594   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5595     return QualType(AT, 0);
5596 
5597   // If the atomic value type isn't canonical, this won't be a canonical type
5598   // either, so fill in the canonical type field.
5599   QualType Canonical;
5600   if (!T.isCanonical()) {
5601     Canonical = getAtomicType(getCanonicalType(T));
5602 
5603     // Get the new insert position for the node we care about.
5604     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5605     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5606   }
5607   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5608   Types.push_back(New);
5609   AtomicTypes.InsertNode(New, InsertPos);
5610   return QualType(New, 0);
5611 }
5612 
5613 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5614 QualType ASTContext::getAutoDeductType() const {
5615   if (AutoDeductTy.isNull())
5616     AutoDeductTy = QualType(new (*this, TypeAlignment)
5617                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5618                                          TypeDependence::None,
5619                                          /*concept*/ nullptr, /*args*/ {}),
5620                             0);
5621   return AutoDeductTy;
5622 }
5623 
5624 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5625 QualType ASTContext::getAutoRRefDeductType() const {
5626   if (AutoRRefDeductTy.isNull())
5627     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5628   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5629   return AutoRRefDeductTy;
5630 }
5631 
5632 /// getTagDeclType - Return the unique reference to the type for the
5633 /// specified TagDecl (struct/union/class/enum) decl.
5634 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5635   assert(Decl);
5636   // FIXME: What is the design on getTagDeclType when it requires casting
5637   // away const?  mutable?
5638   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5639 }
5640 
5641 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5642 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5643 /// needs to agree with the definition in <stddef.h>.
5644 CanQualType ASTContext::getSizeType() const {
5645   return getFromTargetType(Target->getSizeType());
5646 }
5647 
5648 /// Return the unique signed counterpart of the integer type
5649 /// corresponding to size_t.
5650 CanQualType ASTContext::getSignedSizeType() const {
5651   return getFromTargetType(Target->getSignedSizeType());
5652 }
5653 
5654 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5655 CanQualType ASTContext::getIntMaxType() const {
5656   return getFromTargetType(Target->getIntMaxType());
5657 }
5658 
5659 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5660 CanQualType ASTContext::getUIntMaxType() const {
5661   return getFromTargetType(Target->getUIntMaxType());
5662 }
5663 
5664 /// getSignedWCharType - Return the type of "signed wchar_t".
5665 /// Used when in C++, as a GCC extension.
5666 QualType ASTContext::getSignedWCharType() const {
5667   // FIXME: derive from "Target" ?
5668   return WCharTy;
5669 }
5670 
5671 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5672 /// Used when in C++, as a GCC extension.
5673 QualType ASTContext::getUnsignedWCharType() const {
5674   // FIXME: derive from "Target" ?
5675   return UnsignedIntTy;
5676 }
5677 
5678 QualType ASTContext::getIntPtrType() const {
5679   return getFromTargetType(Target->getIntPtrType());
5680 }
5681 
5682 QualType ASTContext::getUIntPtrType() const {
5683   return getCorrespondingUnsignedType(getIntPtrType());
5684 }
5685 
5686 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5687 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5688 QualType ASTContext::getPointerDiffType() const {
5689   return getFromTargetType(Target->getPtrDiffType(0));
5690 }
5691 
5692 /// Return the unique unsigned counterpart of "ptrdiff_t"
5693 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5694 /// in the definition of %tu format specifier.
5695 QualType ASTContext::getUnsignedPointerDiffType() const {
5696   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5697 }
5698 
5699 /// Return the unique type for "pid_t" defined in
5700 /// <sys/types.h>. We need this to compute the correct type for vfork().
5701 QualType ASTContext::getProcessIDType() const {
5702   return getFromTargetType(Target->getProcessIDType());
5703 }
5704 
5705 //===----------------------------------------------------------------------===//
5706 //                              Type Operators
5707 //===----------------------------------------------------------------------===//
5708 
5709 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5710   // Push qualifiers into arrays, and then discard any remaining
5711   // qualifiers.
5712   T = getCanonicalType(T);
5713   T = getVariableArrayDecayedType(T);
5714   const Type *Ty = T.getTypePtr();
5715   QualType Result;
5716   if (isa<ArrayType>(Ty)) {
5717     Result = getArrayDecayedType(QualType(Ty,0));
5718   } else if (isa<FunctionType>(Ty)) {
5719     Result = getPointerType(QualType(Ty, 0));
5720   } else {
5721     Result = QualType(Ty, 0);
5722   }
5723 
5724   return CanQualType::CreateUnsafe(Result);
5725 }
5726 
5727 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5728                                              Qualifiers &quals) {
5729   SplitQualType splitType = type.getSplitUnqualifiedType();
5730 
5731   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5732   // the unqualified desugared type and then drops it on the floor.
5733   // We then have to strip that sugar back off with
5734   // getUnqualifiedDesugaredType(), which is silly.
5735   const auto *AT =
5736       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5737 
5738   // If we don't have an array, just use the results in splitType.
5739   if (!AT) {
5740     quals = splitType.Quals;
5741     return QualType(splitType.Ty, 0);
5742   }
5743 
5744   // Otherwise, recurse on the array's element type.
5745   QualType elementType = AT->getElementType();
5746   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5747 
5748   // If that didn't change the element type, AT has no qualifiers, so we
5749   // can just use the results in splitType.
5750   if (elementType == unqualElementType) {
5751     assert(quals.empty()); // from the recursive call
5752     quals = splitType.Quals;
5753     return QualType(splitType.Ty, 0);
5754   }
5755 
5756   // Otherwise, add in the qualifiers from the outermost type, then
5757   // build the type back up.
5758   quals.addConsistentQualifiers(splitType.Quals);
5759 
5760   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5761     return getConstantArrayType(unqualElementType, CAT->getSize(),
5762                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5763   }
5764 
5765   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5766     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5767   }
5768 
5769   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5770     return getVariableArrayType(unqualElementType,
5771                                 VAT->getSizeExpr(),
5772                                 VAT->getSizeModifier(),
5773                                 VAT->getIndexTypeCVRQualifiers(),
5774                                 VAT->getBracketsRange());
5775   }
5776 
5777   const auto *DSAT = cast<DependentSizedArrayType>(AT);
5778   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5779                                     DSAT->getSizeModifier(), 0,
5780                                     SourceRange());
5781 }
5782 
5783 /// Attempt to unwrap two types that may both be array types with the same bound
5784 /// (or both be array types of unknown bound) for the purpose of comparing the
5785 /// cv-decomposition of two types per C++ [conv.qual].
5786 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
5787   while (true) {
5788     auto *AT1 = getAsArrayType(T1);
5789     if (!AT1)
5790       return;
5791 
5792     auto *AT2 = getAsArrayType(T2);
5793     if (!AT2)
5794       return;
5795 
5796     // If we don't have two array types with the same constant bound nor two
5797     // incomplete array types, we've unwrapped everything we can.
5798     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5799       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5800       if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5801         return;
5802     } else if (!isa<IncompleteArrayType>(AT1) ||
5803                !isa<IncompleteArrayType>(AT2)) {
5804       return;
5805     }
5806 
5807     T1 = AT1->getElementType();
5808     T2 = AT2->getElementType();
5809   }
5810 }
5811 
5812 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5813 ///
5814 /// If T1 and T2 are both pointer types of the same kind, or both array types
5815 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5816 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5817 ///
5818 /// This function will typically be called in a loop that successively
5819 /// "unwraps" pointer and pointer-to-member types to compare them at each
5820 /// level.
5821 ///
5822 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5823 /// pair of types that can't be unwrapped further.
5824 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
5825   UnwrapSimilarArrayTypes(T1, T2);
5826 
5827   const auto *T1PtrType = T1->getAs<PointerType>();
5828   const auto *T2PtrType = T2->getAs<PointerType>();
5829   if (T1PtrType && T2PtrType) {
5830     T1 = T1PtrType->getPointeeType();
5831     T2 = T2PtrType->getPointeeType();
5832     return true;
5833   }
5834 
5835   const auto *T1MPType = T1->getAs<MemberPointerType>();
5836   const auto *T2MPType = T2->getAs<MemberPointerType>();
5837   if (T1MPType && T2MPType &&
5838       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5839                              QualType(T2MPType->getClass(), 0))) {
5840     T1 = T1MPType->getPointeeType();
5841     T2 = T2MPType->getPointeeType();
5842     return true;
5843   }
5844 
5845   if (getLangOpts().ObjC) {
5846     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5847     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5848     if (T1OPType && T2OPType) {
5849       T1 = T1OPType->getPointeeType();
5850       T2 = T2OPType->getPointeeType();
5851       return true;
5852     }
5853   }
5854 
5855   // FIXME: Block pointers, too?
5856 
5857   return false;
5858 }
5859 
5860 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5861   while (true) {
5862     Qualifiers Quals;
5863     T1 = getUnqualifiedArrayType(T1, Quals);
5864     T2 = getUnqualifiedArrayType(T2, Quals);
5865     if (hasSameType(T1, T2))
5866       return true;
5867     if (!UnwrapSimilarTypes(T1, T2))
5868       return false;
5869   }
5870 }
5871 
5872 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5873   while (true) {
5874     Qualifiers Quals1, Quals2;
5875     T1 = getUnqualifiedArrayType(T1, Quals1);
5876     T2 = getUnqualifiedArrayType(T2, Quals2);
5877 
5878     Quals1.removeCVRQualifiers();
5879     Quals2.removeCVRQualifiers();
5880     if (Quals1 != Quals2)
5881       return false;
5882 
5883     if (hasSameType(T1, T2))
5884       return true;
5885 
5886     if (!UnwrapSimilarTypes(T1, T2))
5887       return false;
5888   }
5889 }
5890 
5891 DeclarationNameInfo
5892 ASTContext::getNameForTemplate(TemplateName Name,
5893                                SourceLocation NameLoc) const {
5894   switch (Name.getKind()) {
5895   case TemplateName::QualifiedTemplate:
5896   case TemplateName::Template:
5897     // DNInfo work in progress: CHECKME: what about DNLoc?
5898     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5899                                NameLoc);
5900 
5901   case TemplateName::OverloadedTemplate: {
5902     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5903     // DNInfo work in progress: CHECKME: what about DNLoc?
5904     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5905   }
5906 
5907   case TemplateName::AssumedTemplate: {
5908     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
5909     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
5910   }
5911 
5912   case TemplateName::DependentTemplate: {
5913     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5914     DeclarationName DName;
5915     if (DTN->isIdentifier()) {
5916       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5917       return DeclarationNameInfo(DName, NameLoc);
5918     } else {
5919       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5920       // DNInfo work in progress: FIXME: source locations?
5921       DeclarationNameLoc DNLoc =
5922           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
5923       return DeclarationNameInfo(DName, NameLoc, DNLoc);
5924     }
5925   }
5926 
5927   case TemplateName::SubstTemplateTemplateParm: {
5928     SubstTemplateTemplateParmStorage *subst
5929       = Name.getAsSubstTemplateTemplateParm();
5930     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5931                                NameLoc);
5932   }
5933 
5934   case TemplateName::SubstTemplateTemplateParmPack: {
5935     SubstTemplateTemplateParmPackStorage *subst
5936       = Name.getAsSubstTemplateTemplateParmPack();
5937     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
5938                                NameLoc);
5939   }
5940   }
5941 
5942   llvm_unreachable("bad template name kind!");
5943 }
5944 
5945 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
5946   switch (Name.getKind()) {
5947   case TemplateName::QualifiedTemplate:
5948   case TemplateName::Template: {
5949     TemplateDecl *Template = Name.getAsTemplateDecl();
5950     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
5951       Template = getCanonicalTemplateTemplateParmDecl(TTP);
5952 
5953     // The canonical template name is the canonical template declaration.
5954     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5955   }
5956 
5957   case TemplateName::OverloadedTemplate:
5958   case TemplateName::AssumedTemplate:
5959     llvm_unreachable("cannot canonicalize unresolved template");
5960 
5961   case TemplateName::DependentTemplate: {
5962     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5963     assert(DTN && "Non-dependent template names must refer to template decls.");
5964     return DTN->CanonicalTemplateName;
5965   }
5966 
5967   case TemplateName::SubstTemplateTemplateParm: {
5968     SubstTemplateTemplateParmStorage *subst
5969       = Name.getAsSubstTemplateTemplateParm();
5970     return getCanonicalTemplateName(subst->getReplacement());
5971   }
5972 
5973   case TemplateName::SubstTemplateTemplateParmPack: {
5974     SubstTemplateTemplateParmPackStorage *subst
5975                                   = Name.getAsSubstTemplateTemplateParmPack();
5976     TemplateTemplateParmDecl *canonParameter
5977       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5978     TemplateArgument canonArgPack
5979       = getCanonicalTemplateArgument(subst->getArgumentPack());
5980     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5981   }
5982   }
5983 
5984   llvm_unreachable("bad template name!");
5985 }
5986 
5987 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
5988   X = getCanonicalTemplateName(X);
5989   Y = getCanonicalTemplateName(Y);
5990   return X.getAsVoidPointer() == Y.getAsVoidPointer();
5991 }
5992 
5993 TemplateArgument
5994 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
5995   switch (Arg.getKind()) {
5996     case TemplateArgument::Null:
5997       return Arg;
5998 
5999     case TemplateArgument::Expression:
6000       return Arg;
6001 
6002     case TemplateArgument::Declaration: {
6003       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6004       return TemplateArgument(D, Arg.getParamTypeForDecl());
6005     }
6006 
6007     case TemplateArgument::NullPtr:
6008       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6009                               /*isNullPtr*/true);
6010 
6011     case TemplateArgument::Template:
6012       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
6013 
6014     case TemplateArgument::TemplateExpansion:
6015       return TemplateArgument(getCanonicalTemplateName(
6016                                          Arg.getAsTemplateOrTemplatePattern()),
6017                               Arg.getNumTemplateExpansions());
6018 
6019     case TemplateArgument::Integral:
6020       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6021 
6022     case TemplateArgument::Type:
6023       return TemplateArgument(getCanonicalType(Arg.getAsType()));
6024 
6025     case TemplateArgument::Pack: {
6026       if (Arg.pack_size() == 0)
6027         return Arg;
6028 
6029       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
6030       unsigned Idx = 0;
6031       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
6032                                         AEnd = Arg.pack_end();
6033            A != AEnd; (void)++A, ++Idx)
6034         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
6035 
6036       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
6037     }
6038   }
6039 
6040   // Silence GCC warning
6041   llvm_unreachable("Unhandled template argument kind");
6042 }
6043 
6044 NestedNameSpecifier *
6045 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6046   if (!NNS)
6047     return nullptr;
6048 
6049   switch (NNS->getKind()) {
6050   case NestedNameSpecifier::Identifier:
6051     // Canonicalize the prefix but keep the identifier the same.
6052     return NestedNameSpecifier::Create(*this,
6053                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6054                                        NNS->getAsIdentifier());
6055 
6056   case NestedNameSpecifier::Namespace:
6057     // A namespace is canonical; build a nested-name-specifier with
6058     // this namespace and no prefix.
6059     return NestedNameSpecifier::Create(*this, nullptr,
6060                                  NNS->getAsNamespace()->getOriginalNamespace());
6061 
6062   case NestedNameSpecifier::NamespaceAlias:
6063     // A namespace is canonical; build a nested-name-specifier with
6064     // this namespace and no prefix.
6065     return NestedNameSpecifier::Create(*this, nullptr,
6066                                     NNS->getAsNamespaceAlias()->getNamespace()
6067                                                       ->getOriginalNamespace());
6068 
6069   // The difference between TypeSpec and TypeSpecWithTemplate is that the
6070   // latter will have the 'template' keyword when printed.
6071   case NestedNameSpecifier::TypeSpec:
6072   case NestedNameSpecifier::TypeSpecWithTemplate: {
6073     const Type *T = getCanonicalType(NNS->getAsType());
6074 
6075     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6076     // break it apart into its prefix and identifier, then reconsititute those
6077     // as the canonical nested-name-specifier. This is required to canonicalize
6078     // a dependent nested-name-specifier involving typedefs of dependent-name
6079     // types, e.g.,
6080     //   typedef typename T::type T1;
6081     //   typedef typename T1::type T2;
6082     if (const auto *DNT = T->getAs<DependentNameType>())
6083       return NestedNameSpecifier::Create(
6084           *this, DNT->getQualifier(),
6085           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6086     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6087       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6088                                          const_cast<Type *>(T));
6089 
6090     // TODO: Set 'Template' parameter to true for other template types.
6091     return NestedNameSpecifier::Create(*this, nullptr, false,
6092                                        const_cast<Type *>(T));
6093   }
6094 
6095   case NestedNameSpecifier::Global:
6096   case NestedNameSpecifier::Super:
6097     // The global specifier and __super specifer are canonical and unique.
6098     return NNS;
6099   }
6100 
6101   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6102 }
6103 
6104 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6105   // Handle the non-qualified case efficiently.
6106   if (!T.hasLocalQualifiers()) {
6107     // Handle the common positive case fast.
6108     if (const auto *AT = dyn_cast<ArrayType>(T))
6109       return AT;
6110   }
6111 
6112   // Handle the common negative case fast.
6113   if (!isa<ArrayType>(T.getCanonicalType()))
6114     return nullptr;
6115 
6116   // Apply any qualifiers from the array type to the element type.  This
6117   // implements C99 6.7.3p8: "If the specification of an array type includes
6118   // any type qualifiers, the element type is so qualified, not the array type."
6119 
6120   // If we get here, we either have type qualifiers on the type, or we have
6121   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6122   // we must propagate them down into the element type.
6123 
6124   SplitQualType split = T.getSplitDesugaredType();
6125   Qualifiers qs = split.Quals;
6126 
6127   // If we have a simple case, just return now.
6128   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6129   if (!ATy || qs.empty())
6130     return ATy;
6131 
6132   // Otherwise, we have an array and we have qualifiers on it.  Push the
6133   // qualifiers into the array element type and return a new array type.
6134   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6135 
6136   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6137     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6138                                                 CAT->getSizeExpr(),
6139                                                 CAT->getSizeModifier(),
6140                                            CAT->getIndexTypeCVRQualifiers()));
6141   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6142     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6143                                                   IAT->getSizeModifier(),
6144                                            IAT->getIndexTypeCVRQualifiers()));
6145 
6146   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6147     return cast<ArrayType>(
6148                      getDependentSizedArrayType(NewEltTy,
6149                                                 DSAT->getSizeExpr(),
6150                                                 DSAT->getSizeModifier(),
6151                                               DSAT->getIndexTypeCVRQualifiers(),
6152                                                 DSAT->getBracketsRange()));
6153 
6154   const auto *VAT = cast<VariableArrayType>(ATy);
6155   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6156                                               VAT->getSizeExpr(),
6157                                               VAT->getSizeModifier(),
6158                                               VAT->getIndexTypeCVRQualifiers(),
6159                                               VAT->getBracketsRange()));
6160 }
6161 
6162 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6163   if (T->isArrayType() || T->isFunctionType())
6164     return getDecayedType(T);
6165   return T;
6166 }
6167 
6168 QualType ASTContext::getSignatureParameterType(QualType T) const {
6169   T = getVariableArrayDecayedType(T);
6170   T = getAdjustedParameterType(T);
6171   return T.getUnqualifiedType();
6172 }
6173 
6174 QualType ASTContext::getExceptionObjectType(QualType T) const {
6175   // C++ [except.throw]p3:
6176   //   A throw-expression initializes a temporary object, called the exception
6177   //   object, the type of which is determined by removing any top-level
6178   //   cv-qualifiers from the static type of the operand of throw and adjusting
6179   //   the type from "array of T" or "function returning T" to "pointer to T"
6180   //   or "pointer to function returning T", [...]
6181   T = getVariableArrayDecayedType(T);
6182   if (T->isArrayType() || T->isFunctionType())
6183     T = getDecayedType(T);
6184   return T.getUnqualifiedType();
6185 }
6186 
6187 /// getArrayDecayedType - Return the properly qualified result of decaying the
6188 /// specified array type to a pointer.  This operation is non-trivial when
6189 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6190 /// this returns a pointer to a properly qualified element of the array.
6191 ///
6192 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6193 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6194   // Get the element type with 'getAsArrayType' so that we don't lose any
6195   // typedefs in the element type of the array.  This also handles propagation
6196   // of type qualifiers from the array type into the element type if present
6197   // (C99 6.7.3p8).
6198   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6199   assert(PrettyArrayType && "Not an array type!");
6200 
6201   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6202 
6203   // int x[restrict 4] ->  int *restrict
6204   QualType Result = getQualifiedType(PtrTy,
6205                                      PrettyArrayType->getIndexTypeQualifiers());
6206 
6207   // int x[_Nullable] -> int * _Nullable
6208   if (auto Nullability = Ty->getNullability(*this)) {
6209     Result = const_cast<ASTContext *>(this)->getAttributedType(
6210         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6211   }
6212   return Result;
6213 }
6214 
6215 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6216   return getBaseElementType(array->getElementType());
6217 }
6218 
6219 QualType ASTContext::getBaseElementType(QualType type) const {
6220   Qualifiers qs;
6221   while (true) {
6222     SplitQualType split = type.getSplitDesugaredType();
6223     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6224     if (!array) break;
6225 
6226     type = array->getElementType();
6227     qs.addConsistentQualifiers(split.Quals);
6228   }
6229 
6230   return getQualifiedType(type, qs);
6231 }
6232 
6233 /// getConstantArrayElementCount - Returns number of constant array elements.
6234 uint64_t
6235 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6236   uint64_t ElementCount = 1;
6237   do {
6238     ElementCount *= CA->getSize().getZExtValue();
6239     CA = dyn_cast_or_null<ConstantArrayType>(
6240       CA->getElementType()->getAsArrayTypeUnsafe());
6241   } while (CA);
6242   return ElementCount;
6243 }
6244 
6245 /// getFloatingRank - Return a relative rank for floating point types.
6246 /// This routine will assert if passed a built-in type that isn't a float.
6247 static FloatingRank getFloatingRank(QualType T) {
6248   if (const auto *CT = T->getAs<ComplexType>())
6249     return getFloatingRank(CT->getElementType());
6250 
6251   switch (T->castAs<BuiltinType>()->getKind()) {
6252   default: llvm_unreachable("getFloatingRank(): not a floating type");
6253   case BuiltinType::Float16:    return Float16Rank;
6254   case BuiltinType::Half:       return HalfRank;
6255   case BuiltinType::Float:      return FloatRank;
6256   case BuiltinType::Double:     return DoubleRank;
6257   case BuiltinType::LongDouble: return LongDoubleRank;
6258   case BuiltinType::Float128:   return Float128Rank;
6259   case BuiltinType::BFloat16:   return BFloat16Rank;
6260   }
6261 }
6262 
6263 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
6264 /// point or a complex type (based on typeDomain/typeSize).
6265 /// 'typeDomain' is a real floating point or complex type.
6266 /// 'typeSize' is a real floating point or complex type.
6267 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
6268                                                        QualType Domain) const {
6269   FloatingRank EltRank = getFloatingRank(Size);
6270   if (Domain->isComplexType()) {
6271     switch (EltRank) {
6272     case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported");
6273     case Float16Rank:
6274     case HalfRank: llvm_unreachable("Complex half is not supported");
6275     case FloatRank:      return FloatComplexTy;
6276     case DoubleRank:     return DoubleComplexTy;
6277     case LongDoubleRank: return LongDoubleComplexTy;
6278     case Float128Rank:   return Float128ComplexTy;
6279     }
6280   }
6281 
6282   assert(Domain->isRealFloatingType() && "Unknown domain!");
6283   switch (EltRank) {
6284   case Float16Rank:    return HalfTy;
6285   case BFloat16Rank:   return BFloat16Ty;
6286   case HalfRank:       return HalfTy;
6287   case FloatRank:      return FloatTy;
6288   case DoubleRank:     return DoubleTy;
6289   case LongDoubleRank: return LongDoubleTy;
6290   case Float128Rank:   return Float128Ty;
6291   }
6292   llvm_unreachable("getFloatingRank(): illegal value for rank");
6293 }
6294 
6295 /// getFloatingTypeOrder - Compare the rank of the two specified floating
6296 /// point types, ignoring the domain of the type (i.e. 'double' ==
6297 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6298 /// LHS < RHS, return -1.
6299 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
6300   FloatingRank LHSR = getFloatingRank(LHS);
6301   FloatingRank RHSR = getFloatingRank(RHS);
6302 
6303   if (LHSR == RHSR)
6304     return 0;
6305   if (LHSR > RHSR)
6306     return 1;
6307   return -1;
6308 }
6309 
6310 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
6311   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
6312     return 0;
6313   return getFloatingTypeOrder(LHS, RHS);
6314 }
6315 
6316 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
6317 /// routine will assert if passed a built-in type that isn't an integer or enum,
6318 /// or if it is not canonicalized.
6319 unsigned ASTContext::getIntegerRank(const Type *T) const {
6320   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
6321 
6322   // Results in this 'losing' to any type of the same size, but winning if
6323   // larger.
6324   if (const auto *EIT = dyn_cast<ExtIntType>(T))
6325     return 0 + (EIT->getNumBits() << 3);
6326 
6327   switch (cast<BuiltinType>(T)->getKind()) {
6328   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
6329   case BuiltinType::Bool:
6330     return 1 + (getIntWidth(BoolTy) << 3);
6331   case BuiltinType::Char_S:
6332   case BuiltinType::Char_U:
6333   case BuiltinType::SChar:
6334   case BuiltinType::UChar:
6335     return 2 + (getIntWidth(CharTy) << 3);
6336   case BuiltinType::Short:
6337   case BuiltinType::UShort:
6338     return 3 + (getIntWidth(ShortTy) << 3);
6339   case BuiltinType::Int:
6340   case BuiltinType::UInt:
6341     return 4 + (getIntWidth(IntTy) << 3);
6342   case BuiltinType::Long:
6343   case BuiltinType::ULong:
6344     return 5 + (getIntWidth(LongTy) << 3);
6345   case BuiltinType::LongLong:
6346   case BuiltinType::ULongLong:
6347     return 6 + (getIntWidth(LongLongTy) << 3);
6348   case BuiltinType::Int128:
6349   case BuiltinType::UInt128:
6350     return 7 + (getIntWidth(Int128Ty) << 3);
6351   }
6352 }
6353 
6354 /// Whether this is a promotable bitfield reference according
6355 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
6356 ///
6357 /// \returns the type this bit-field will promote to, or NULL if no
6358 /// promotion occurs.
6359 QualType ASTContext::isPromotableBitField(Expr *E) const {
6360   if (E->isTypeDependent() || E->isValueDependent())
6361     return {};
6362 
6363   // C++ [conv.prom]p5:
6364   //    If the bit-field has an enumerated type, it is treated as any other
6365   //    value of that type for promotion purposes.
6366   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
6367     return {};
6368 
6369   // FIXME: We should not do this unless E->refersToBitField() is true. This
6370   // matters in C where getSourceBitField() will find bit-fields for various
6371   // cases where the source expression is not a bit-field designator.
6372 
6373   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
6374   if (!Field)
6375     return {};
6376 
6377   QualType FT = Field->getType();
6378 
6379   uint64_t BitWidth = Field->getBitWidthValue(*this);
6380   uint64_t IntSize = getTypeSize(IntTy);
6381   // C++ [conv.prom]p5:
6382   //   A prvalue for an integral bit-field can be converted to a prvalue of type
6383   //   int if int can represent all the values of the bit-field; otherwise, it
6384   //   can be converted to unsigned int if unsigned int can represent all the
6385   //   values of the bit-field. If the bit-field is larger yet, no integral
6386   //   promotion applies to it.
6387   // C11 6.3.1.1/2:
6388   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
6389   //   If an int can represent all values of the original type (as restricted by
6390   //   the width, for a bit-field), the value is converted to an int; otherwise,
6391   //   it is converted to an unsigned int.
6392   //
6393   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
6394   //        We perform that promotion here to match GCC and C++.
6395   // FIXME: C does not permit promotion of an enum bit-field whose rank is
6396   //        greater than that of 'int'. We perform that promotion to match GCC.
6397   if (BitWidth < IntSize)
6398     return IntTy;
6399 
6400   if (BitWidth == IntSize)
6401     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
6402 
6403   // Bit-fields wider than int are not subject to promotions, and therefore act
6404   // like the base type. GCC has some weird bugs in this area that we
6405   // deliberately do not follow (GCC follows a pre-standard resolution to
6406   // C's DR315 which treats bit-width as being part of the type, and this leaks
6407   // into their semantics in some cases).
6408   return {};
6409 }
6410 
6411 /// getPromotedIntegerType - Returns the type that Promotable will
6412 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6413 /// integer type.
6414 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6415   assert(!Promotable.isNull());
6416   assert(Promotable->isPromotableIntegerType());
6417   if (const auto *ET = Promotable->getAs<EnumType>())
6418     return ET->getDecl()->getPromotionType();
6419 
6420   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6421     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6422     // (3.9.1) can be converted to a prvalue of the first of the following
6423     // types that can represent all the values of its underlying type:
6424     // int, unsigned int, long int, unsigned long int, long long int, or
6425     // unsigned long long int [...]
6426     // FIXME: Is there some better way to compute this?
6427     if (BT->getKind() == BuiltinType::WChar_S ||
6428         BT->getKind() == BuiltinType::WChar_U ||
6429         BT->getKind() == BuiltinType::Char8 ||
6430         BT->getKind() == BuiltinType::Char16 ||
6431         BT->getKind() == BuiltinType::Char32) {
6432       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6433       uint64_t FromSize = getTypeSize(BT);
6434       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6435                                   LongLongTy, UnsignedLongLongTy };
6436       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6437         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6438         if (FromSize < ToSize ||
6439             (FromSize == ToSize &&
6440              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6441           return PromoteTypes[Idx];
6442       }
6443       llvm_unreachable("char type should fit into long long");
6444     }
6445   }
6446 
6447   // At this point, we should have a signed or unsigned integer type.
6448   if (Promotable->isSignedIntegerType())
6449     return IntTy;
6450   uint64_t PromotableSize = getIntWidth(Promotable);
6451   uint64_t IntSize = getIntWidth(IntTy);
6452   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6453   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6454 }
6455 
6456 /// Recurses in pointer/array types until it finds an objc retainable
6457 /// type and returns its ownership.
6458 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6459   while (!T.isNull()) {
6460     if (T.getObjCLifetime() != Qualifiers::OCL_None)
6461       return T.getObjCLifetime();
6462     if (T->isArrayType())
6463       T = getBaseElementType(T);
6464     else if (const auto *PT = T->getAs<PointerType>())
6465       T = PT->getPointeeType();
6466     else if (const auto *RT = T->getAs<ReferenceType>())
6467       T = RT->getPointeeType();
6468     else
6469       break;
6470   }
6471 
6472   return Qualifiers::OCL_None;
6473 }
6474 
6475 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
6476   // Incomplete enum types are not treated as integer types.
6477   // FIXME: In C++, enum types are never integer types.
6478   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
6479     return ET->getDecl()->getIntegerType().getTypePtr();
6480   return nullptr;
6481 }
6482 
6483 /// getIntegerTypeOrder - Returns the highest ranked integer type:
6484 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6485 /// LHS < RHS, return -1.
6486 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
6487   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
6488   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
6489 
6490   // Unwrap enums to their underlying type.
6491   if (const auto *ET = dyn_cast<EnumType>(LHSC))
6492     LHSC = getIntegerTypeForEnum(ET);
6493   if (const auto *ET = dyn_cast<EnumType>(RHSC))
6494     RHSC = getIntegerTypeForEnum(ET);
6495 
6496   if (LHSC == RHSC) return 0;
6497 
6498   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
6499   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
6500 
6501   unsigned LHSRank = getIntegerRank(LHSC);
6502   unsigned RHSRank = getIntegerRank(RHSC);
6503 
6504   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
6505     if (LHSRank == RHSRank) return 0;
6506     return LHSRank > RHSRank ? 1 : -1;
6507   }
6508 
6509   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
6510   if (LHSUnsigned) {
6511     // If the unsigned [LHS] type is larger, return it.
6512     if (LHSRank >= RHSRank)
6513       return 1;
6514 
6515     // If the signed type can represent all values of the unsigned type, it
6516     // wins.  Because we are dealing with 2's complement and types that are
6517     // powers of two larger than each other, this is always safe.
6518     return -1;
6519   }
6520 
6521   // If the unsigned [RHS] type is larger, return it.
6522   if (RHSRank >= LHSRank)
6523     return -1;
6524 
6525   // If the signed type can represent all values of the unsigned type, it
6526   // wins.  Because we are dealing with 2's complement and types that are
6527   // powers of two larger than each other, this is always safe.
6528   return 1;
6529 }
6530 
6531 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
6532   if (CFConstantStringTypeDecl)
6533     return CFConstantStringTypeDecl;
6534 
6535   assert(!CFConstantStringTagDecl &&
6536          "tag and typedef should be initialized together");
6537   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
6538   CFConstantStringTagDecl->startDefinition();
6539 
6540   struct {
6541     QualType Type;
6542     const char *Name;
6543   } Fields[5];
6544   unsigned Count = 0;
6545 
6546   /// Objective-C ABI
6547   ///
6548   ///    typedef struct __NSConstantString_tag {
6549   ///      const int *isa;
6550   ///      int flags;
6551   ///      const char *str;
6552   ///      long length;
6553   ///    } __NSConstantString;
6554   ///
6555   /// Swift ABI (4.1, 4.2)
6556   ///
6557   ///    typedef struct __NSConstantString_tag {
6558   ///      uintptr_t _cfisa;
6559   ///      uintptr_t _swift_rc;
6560   ///      _Atomic(uint64_t) _cfinfoa;
6561   ///      const char *_ptr;
6562   ///      uint32_t _length;
6563   ///    } __NSConstantString;
6564   ///
6565   /// Swift ABI (5.0)
6566   ///
6567   ///    typedef struct __NSConstantString_tag {
6568   ///      uintptr_t _cfisa;
6569   ///      uintptr_t _swift_rc;
6570   ///      _Atomic(uint64_t) _cfinfoa;
6571   ///      const char *_ptr;
6572   ///      uintptr_t _length;
6573   ///    } __NSConstantString;
6574 
6575   const auto CFRuntime = getLangOpts().CFRuntime;
6576   if (static_cast<unsigned>(CFRuntime) <
6577       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
6578     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
6579     Fields[Count++] = { IntTy, "flags" };
6580     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
6581     Fields[Count++] = { LongTy, "length" };
6582   } else {
6583     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
6584     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
6585     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
6586     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
6587     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6588         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6589       Fields[Count++] = { IntTy, "_ptr" };
6590     else
6591       Fields[Count++] = { getUIntPtrType(), "_ptr" };
6592   }
6593 
6594   // Create fields
6595   for (unsigned i = 0; i < Count; ++i) {
6596     FieldDecl *Field =
6597         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
6598                           SourceLocation(), &Idents.get(Fields[i].Name),
6599                           Fields[i].Type, /*TInfo=*/nullptr,
6600                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6601     Field->setAccess(AS_public);
6602     CFConstantStringTagDecl->addDecl(Field);
6603   }
6604 
6605   CFConstantStringTagDecl->completeDefinition();
6606   // This type is designed to be compatible with NSConstantString, but cannot
6607   // use the same name, since NSConstantString is an interface.
6608   auto tagType = getTagDeclType(CFConstantStringTagDecl);
6609   CFConstantStringTypeDecl =
6610       buildImplicitTypedef(tagType, "__NSConstantString");
6611 
6612   return CFConstantStringTypeDecl;
6613 }
6614 
6615 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
6616   if (!CFConstantStringTagDecl)
6617     getCFConstantStringDecl(); // Build the tag and the typedef.
6618   return CFConstantStringTagDecl;
6619 }
6620 
6621 // getCFConstantStringType - Return the type used for constant CFStrings.
6622 QualType ASTContext::getCFConstantStringType() const {
6623   return getTypedefType(getCFConstantStringDecl());
6624 }
6625 
6626 QualType ASTContext::getObjCSuperType() const {
6627   if (ObjCSuperType.isNull()) {
6628     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
6629     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
6630     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
6631   }
6632   return ObjCSuperType;
6633 }
6634 
6635 void ASTContext::setCFConstantStringType(QualType T) {
6636   const auto *TD = T->castAs<TypedefType>();
6637   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
6638   const auto *TagType =
6639       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
6640   CFConstantStringTagDecl = TagType->getDecl();
6641 }
6642 
6643 QualType ASTContext::getBlockDescriptorType() const {
6644   if (BlockDescriptorType)
6645     return getTagDeclType(BlockDescriptorType);
6646 
6647   RecordDecl *RD;
6648   // FIXME: Needs the FlagAppleBlock bit.
6649   RD = buildImplicitRecord("__block_descriptor");
6650   RD->startDefinition();
6651 
6652   QualType FieldTypes[] = {
6653     UnsignedLongTy,
6654     UnsignedLongTy,
6655   };
6656 
6657   static const char *const FieldNames[] = {
6658     "reserved",
6659     "Size"
6660   };
6661 
6662   for (size_t i = 0; i < 2; ++i) {
6663     FieldDecl *Field = FieldDecl::Create(
6664         *this, RD, SourceLocation(), SourceLocation(),
6665         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6666         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6667     Field->setAccess(AS_public);
6668     RD->addDecl(Field);
6669   }
6670 
6671   RD->completeDefinition();
6672 
6673   BlockDescriptorType = RD;
6674 
6675   return getTagDeclType(BlockDescriptorType);
6676 }
6677 
6678 QualType ASTContext::getBlockDescriptorExtendedType() const {
6679   if (BlockDescriptorExtendedType)
6680     return getTagDeclType(BlockDescriptorExtendedType);
6681 
6682   RecordDecl *RD;
6683   // FIXME: Needs the FlagAppleBlock bit.
6684   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
6685   RD->startDefinition();
6686 
6687   QualType FieldTypes[] = {
6688     UnsignedLongTy,
6689     UnsignedLongTy,
6690     getPointerType(VoidPtrTy),
6691     getPointerType(VoidPtrTy)
6692   };
6693 
6694   static const char *const FieldNames[] = {
6695     "reserved",
6696     "Size",
6697     "CopyFuncPtr",
6698     "DestroyFuncPtr"
6699   };
6700 
6701   for (size_t i = 0; i < 4; ++i) {
6702     FieldDecl *Field = FieldDecl::Create(
6703         *this, RD, SourceLocation(), SourceLocation(),
6704         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6705         /*BitWidth=*/nullptr,
6706         /*Mutable=*/false, ICIS_NoInit);
6707     Field->setAccess(AS_public);
6708     RD->addDecl(Field);
6709   }
6710 
6711   RD->completeDefinition();
6712 
6713   BlockDescriptorExtendedType = RD;
6714   return getTagDeclType(BlockDescriptorExtendedType);
6715 }
6716 
6717 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6718   const auto *BT = dyn_cast<BuiltinType>(T);
6719 
6720   if (!BT) {
6721     if (isa<PipeType>(T))
6722       return OCLTK_Pipe;
6723 
6724     return OCLTK_Default;
6725   }
6726 
6727   switch (BT->getKind()) {
6728 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
6729   case BuiltinType::Id:                                                        \
6730     return OCLTK_Image;
6731 #include "clang/Basic/OpenCLImageTypes.def"
6732 
6733   case BuiltinType::OCLClkEvent:
6734     return OCLTK_ClkEvent;
6735 
6736   case BuiltinType::OCLEvent:
6737     return OCLTK_Event;
6738 
6739   case BuiltinType::OCLQueue:
6740     return OCLTK_Queue;
6741 
6742   case BuiltinType::OCLReserveID:
6743     return OCLTK_ReserveID;
6744 
6745   case BuiltinType::OCLSampler:
6746     return OCLTK_Sampler;
6747 
6748   default:
6749     return OCLTK_Default;
6750   }
6751 }
6752 
6753 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6754   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6755 }
6756 
6757 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6758 /// requires copy/dispose. Note that this must match the logic
6759 /// in buildByrefHelpers.
6760 bool ASTContext::BlockRequiresCopying(QualType Ty,
6761                                       const VarDecl *D) {
6762   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6763     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6764     if (!copyExpr && record->hasTrivialDestructor()) return false;
6765 
6766     return true;
6767   }
6768 
6769   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6770   // move or destroy.
6771   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6772     return true;
6773 
6774   if (!Ty->isObjCRetainableType()) return false;
6775 
6776   Qualifiers qs = Ty.getQualifiers();
6777 
6778   // If we have lifetime, that dominates.
6779   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6780     switch (lifetime) {
6781       case Qualifiers::OCL_None: llvm_unreachable("impossible");
6782 
6783       // These are just bits as far as the runtime is concerned.
6784       case Qualifiers::OCL_ExplicitNone:
6785       case Qualifiers::OCL_Autoreleasing:
6786         return false;
6787 
6788       // These cases should have been taken care of when checking the type's
6789       // non-triviality.
6790       case Qualifiers::OCL_Weak:
6791       case Qualifiers::OCL_Strong:
6792         llvm_unreachable("impossible");
6793     }
6794     llvm_unreachable("fell out of lifetime switch!");
6795   }
6796   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6797           Ty->isObjCObjectPointerType());
6798 }
6799 
6800 bool ASTContext::getByrefLifetime(QualType Ty,
6801                               Qualifiers::ObjCLifetime &LifeTime,
6802                               bool &HasByrefExtendedLayout) const {
6803   if (!getLangOpts().ObjC ||
6804       getLangOpts().getGC() != LangOptions::NonGC)
6805     return false;
6806 
6807   HasByrefExtendedLayout = false;
6808   if (Ty->isRecordType()) {
6809     HasByrefExtendedLayout = true;
6810     LifeTime = Qualifiers::OCL_None;
6811   } else if ((LifeTime = Ty.getObjCLifetime())) {
6812     // Honor the ARC qualifiers.
6813   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6814     // The MRR rule.
6815     LifeTime = Qualifiers::OCL_ExplicitNone;
6816   } else {
6817     LifeTime = Qualifiers::OCL_None;
6818   }
6819   return true;
6820 }
6821 
6822 CanQualType ASTContext::getNSUIntegerType() const {
6823   assert(Target && "Expected target to be initialized");
6824   const llvm::Triple &T = Target->getTriple();
6825   // Windows is LLP64 rather than LP64
6826   if (T.isOSWindows() && T.isArch64Bit())
6827     return UnsignedLongLongTy;
6828   return UnsignedLongTy;
6829 }
6830 
6831 CanQualType ASTContext::getNSIntegerType() const {
6832   assert(Target && "Expected target to be initialized");
6833   const llvm::Triple &T = Target->getTriple();
6834   // Windows is LLP64 rather than LP64
6835   if (T.isOSWindows() && T.isArch64Bit())
6836     return LongLongTy;
6837   return LongTy;
6838 }
6839 
6840 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6841   if (!ObjCInstanceTypeDecl)
6842     ObjCInstanceTypeDecl =
6843         buildImplicitTypedef(getObjCIdType(), "instancetype");
6844   return ObjCInstanceTypeDecl;
6845 }
6846 
6847 // This returns true if a type has been typedefed to BOOL:
6848 // typedef <type> BOOL;
6849 static bool isTypeTypedefedAsBOOL(QualType T) {
6850   if (const auto *TT = dyn_cast<TypedefType>(T))
6851     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6852       return II->isStr("BOOL");
6853 
6854   return false;
6855 }
6856 
6857 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
6858 /// purpose.
6859 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6860   if (!type->isIncompleteArrayType() && type->isIncompleteType())
6861     return CharUnits::Zero();
6862 
6863   CharUnits sz = getTypeSizeInChars(type);
6864 
6865   // Make all integer and enum types at least as large as an int
6866   if (sz.isPositive() && type->isIntegralOrEnumerationType())
6867     sz = std::max(sz, getTypeSizeInChars(IntTy));
6868   // Treat arrays as pointers, since that's how they're passed in.
6869   else if (type->isArrayType())
6870     sz = getTypeSizeInChars(VoidPtrTy);
6871   return sz;
6872 }
6873 
6874 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6875   return getTargetInfo().getCXXABI().isMicrosoft() &&
6876          VD->isStaticDataMember() &&
6877          VD->getType()->isIntegralOrEnumerationType() &&
6878          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6879 }
6880 
6881 ASTContext::InlineVariableDefinitionKind
6882 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6883   if (!VD->isInline())
6884     return InlineVariableDefinitionKind::None;
6885 
6886   // In almost all cases, it's a weak definition.
6887   auto *First = VD->getFirstDecl();
6888   if (First->isInlineSpecified() || !First->isStaticDataMember())
6889     return InlineVariableDefinitionKind::Weak;
6890 
6891   // If there's a file-context declaration in this translation unit, it's a
6892   // non-discardable definition.
6893   for (auto *D : VD->redecls())
6894     if (D->getLexicalDeclContext()->isFileContext() &&
6895         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6896       return InlineVariableDefinitionKind::Strong;
6897 
6898   // If we've not seen one yet, we don't know.
6899   return InlineVariableDefinitionKind::WeakUnknown;
6900 }
6901 
6902 static std::string charUnitsToString(const CharUnits &CU) {
6903   return llvm::itostr(CU.getQuantity());
6904 }
6905 
6906 /// getObjCEncodingForBlock - Return the encoded type for this block
6907 /// declaration.
6908 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6909   std::string S;
6910 
6911   const BlockDecl *Decl = Expr->getBlockDecl();
6912   QualType BlockTy =
6913       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
6914   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
6915   // Encode result type.
6916   if (getLangOpts().EncodeExtendedBlockSig)
6917     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
6918                                       true /*Extended*/);
6919   else
6920     getObjCEncodingForType(BlockReturnTy, S);
6921   // Compute size of all parameters.
6922   // Start with computing size of a pointer in number of bytes.
6923   // FIXME: There might(should) be a better way of doing this computation!
6924   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6925   CharUnits ParmOffset = PtrSize;
6926   for (auto PI : Decl->parameters()) {
6927     QualType PType = PI->getType();
6928     CharUnits sz = getObjCEncodingTypeSize(PType);
6929     if (sz.isZero())
6930       continue;
6931     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
6932     ParmOffset += sz;
6933   }
6934   // Size of the argument frame
6935   S += charUnitsToString(ParmOffset);
6936   // Block pointer and offset.
6937   S += "@?0";
6938 
6939   // Argument types.
6940   ParmOffset = PtrSize;
6941   for (auto PVDecl : Decl->parameters()) {
6942     QualType PType = PVDecl->getOriginalType();
6943     if (const auto *AT =
6944             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6945       // Use array's original type only if it has known number of
6946       // elements.
6947       if (!isa<ConstantArrayType>(AT))
6948         PType = PVDecl->getType();
6949     } else if (PType->isFunctionType())
6950       PType = PVDecl->getType();
6951     if (getLangOpts().EncodeExtendedBlockSig)
6952       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
6953                                       S, true /*Extended*/);
6954     else
6955       getObjCEncodingForType(PType, S);
6956     S += charUnitsToString(ParmOffset);
6957     ParmOffset += getObjCEncodingTypeSize(PType);
6958   }
6959 
6960   return S;
6961 }
6962 
6963 std::string
6964 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
6965   std::string S;
6966   // Encode result type.
6967   getObjCEncodingForType(Decl->getReturnType(), S);
6968   CharUnits ParmOffset;
6969   // Compute size of all parameters.
6970   for (auto PI : Decl->parameters()) {
6971     QualType PType = PI->getType();
6972     CharUnits sz = getObjCEncodingTypeSize(PType);
6973     if (sz.isZero())
6974       continue;
6975 
6976     assert(sz.isPositive() &&
6977            "getObjCEncodingForFunctionDecl - Incomplete param type");
6978     ParmOffset += sz;
6979   }
6980   S += charUnitsToString(ParmOffset);
6981   ParmOffset = CharUnits::Zero();
6982 
6983   // Argument types.
6984   for (auto PVDecl : Decl->parameters()) {
6985     QualType PType = PVDecl->getOriginalType();
6986     if (const auto *AT =
6987             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6988       // Use array's original type only if it has known number of
6989       // elements.
6990       if (!isa<ConstantArrayType>(AT))
6991         PType = PVDecl->getType();
6992     } else if (PType->isFunctionType())
6993       PType = PVDecl->getType();
6994     getObjCEncodingForType(PType, S);
6995     S += charUnitsToString(ParmOffset);
6996     ParmOffset += getObjCEncodingTypeSize(PType);
6997   }
6998 
6999   return S;
7000 }
7001 
7002 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
7003 /// method parameter or return type. If Extended, include class names and
7004 /// block object types.
7005 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7006                                                    QualType T, std::string& S,
7007                                                    bool Extended) const {
7008   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
7009   getObjCEncodingForTypeQualifier(QT, S);
7010   // Encode parameter type.
7011   ObjCEncOptions Options = ObjCEncOptions()
7012                                .setExpandPointedToStructures()
7013                                .setExpandStructures()
7014                                .setIsOutermostType();
7015   if (Extended)
7016     Options.setEncodeBlockParameters().setEncodeClassNames();
7017   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7018 }
7019 
7020 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7021 /// declaration.
7022 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7023                                                      bool Extended) const {
7024   // FIXME: This is not very efficient.
7025   // Encode return type.
7026   std::string S;
7027   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7028                                     Decl->getReturnType(), S, Extended);
7029   // Compute size of all parameters.
7030   // Start with computing size of a pointer in number of bytes.
7031   // FIXME: There might(should) be a better way of doing this computation!
7032   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7033   // The first two arguments (self and _cmd) are pointers; account for
7034   // their size.
7035   CharUnits ParmOffset = 2 * PtrSize;
7036   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7037        E = Decl->sel_param_end(); PI != E; ++PI) {
7038     QualType PType = (*PI)->getType();
7039     CharUnits sz = getObjCEncodingTypeSize(PType);
7040     if (sz.isZero())
7041       continue;
7042 
7043     assert(sz.isPositive() &&
7044            "getObjCEncodingForMethodDecl - Incomplete param type");
7045     ParmOffset += sz;
7046   }
7047   S += charUnitsToString(ParmOffset);
7048   S += "@0:";
7049   S += charUnitsToString(PtrSize);
7050 
7051   // Argument types.
7052   ParmOffset = 2 * PtrSize;
7053   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7054        E = Decl->sel_param_end(); PI != E; ++PI) {
7055     const ParmVarDecl *PVDecl = *PI;
7056     QualType PType = PVDecl->getOriginalType();
7057     if (const auto *AT =
7058             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7059       // Use array's original type only if it has known number of
7060       // elements.
7061       if (!isa<ConstantArrayType>(AT))
7062         PType = PVDecl->getType();
7063     } else if (PType->isFunctionType())
7064       PType = PVDecl->getType();
7065     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7066                                       PType, S, Extended);
7067     S += charUnitsToString(ParmOffset);
7068     ParmOffset += getObjCEncodingTypeSize(PType);
7069   }
7070 
7071   return S;
7072 }
7073 
7074 ObjCPropertyImplDecl *
7075 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7076                                       const ObjCPropertyDecl *PD,
7077                                       const Decl *Container) const {
7078   if (!Container)
7079     return nullptr;
7080   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7081     for (auto *PID : CID->property_impls())
7082       if (PID->getPropertyDecl() == PD)
7083         return PID;
7084   } else {
7085     const auto *OID = cast<ObjCImplementationDecl>(Container);
7086     for (auto *PID : OID->property_impls())
7087       if (PID->getPropertyDecl() == PD)
7088         return PID;
7089   }
7090   return nullptr;
7091 }
7092 
7093 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7094 /// property declaration. If non-NULL, Container must be either an
7095 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7096 /// NULL when getting encodings for protocol properties.
7097 /// Property attributes are stored as a comma-delimited C string. The simple
7098 /// attributes readonly and bycopy are encoded as single characters. The
7099 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7100 /// encoded as single characters, followed by an identifier. Property types
7101 /// are also encoded as a parametrized attribute. The characters used to encode
7102 /// these attributes are defined by the following enumeration:
7103 /// @code
7104 /// enum PropertyAttributes {
7105 /// kPropertyReadOnly = 'R',   // property is read-only.
7106 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7107 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7108 /// kPropertyDynamic = 'D',    // property is dynamic
7109 /// kPropertyGetter = 'G',     // followed by getter selector name
7110 /// kPropertySetter = 'S',     // followed by setter selector name
7111 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7112 /// kPropertyType = 'T'              // followed by old-style type encoding.
7113 /// kPropertyWeak = 'W'              // 'weak' property
7114 /// kPropertyStrong = 'P'            // property GC'able
7115 /// kPropertyNonAtomic = 'N'         // property non-atomic
7116 /// };
7117 /// @endcode
7118 std::string
7119 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7120                                            const Decl *Container) const {
7121   // Collect information from the property implementation decl(s).
7122   bool Dynamic = false;
7123   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7124 
7125   if (ObjCPropertyImplDecl *PropertyImpDecl =
7126       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7127     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7128       Dynamic = true;
7129     else
7130       SynthesizePID = PropertyImpDecl;
7131   }
7132 
7133   // FIXME: This is not very efficient.
7134   std::string S = "T";
7135 
7136   // Encode result type.
7137   // GCC has some special rules regarding encoding of properties which
7138   // closely resembles encoding of ivars.
7139   getObjCEncodingForPropertyType(PD->getType(), S);
7140 
7141   if (PD->isReadOnly()) {
7142     S += ",R";
7143     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7144       S += ",C";
7145     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7146       S += ",&";
7147     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7148       S += ",W";
7149   } else {
7150     switch (PD->getSetterKind()) {
7151     case ObjCPropertyDecl::Assign: break;
7152     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7153     case ObjCPropertyDecl::Retain: S += ",&"; break;
7154     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7155     }
7156   }
7157 
7158   // It really isn't clear at all what this means, since properties
7159   // are "dynamic by default".
7160   if (Dynamic)
7161     S += ",D";
7162 
7163   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7164     S += ",N";
7165 
7166   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7167     S += ",G";
7168     S += PD->getGetterName().getAsString();
7169   }
7170 
7171   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7172     S += ",S";
7173     S += PD->getSetterName().getAsString();
7174   }
7175 
7176   if (SynthesizePID) {
7177     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7178     S += ",V";
7179     S += OID->getNameAsString();
7180   }
7181 
7182   // FIXME: OBJCGC: weak & strong
7183   return S;
7184 }
7185 
7186 /// getLegacyIntegralTypeEncoding -
7187 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7188 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7189 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
7190 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7191   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
7192     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7193       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7194         PointeeTy = UnsignedIntTy;
7195       else
7196         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7197           PointeeTy = IntTy;
7198     }
7199   }
7200 }
7201 
7202 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7203                                         const FieldDecl *Field,
7204                                         QualType *NotEncodedT) const {
7205   // We follow the behavior of gcc, expanding structures which are
7206   // directly pointed to, and expanding embedded structures. Note that
7207   // these rules are sufficient to prevent recursive encoding of the
7208   // same type.
7209   getObjCEncodingForTypeImpl(T, S,
7210                              ObjCEncOptions()
7211                                  .setExpandPointedToStructures()
7212                                  .setExpandStructures()
7213                                  .setIsOutermostType(),
7214                              Field, NotEncodedT);
7215 }
7216 
7217 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7218                                                 std::string& S) const {
7219   // Encode result type.
7220   // GCC has some special rules regarding encoding of properties which
7221   // closely resembles encoding of ivars.
7222   getObjCEncodingForTypeImpl(T, S,
7223                              ObjCEncOptions()
7224                                  .setExpandPointedToStructures()
7225                                  .setExpandStructures()
7226                                  .setIsOutermostType()
7227                                  .setEncodingProperty(),
7228                              /*Field=*/nullptr);
7229 }
7230 
7231 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7232                                             const BuiltinType *BT) {
7233     BuiltinType::Kind kind = BT->getKind();
7234     switch (kind) {
7235     case BuiltinType::Void:       return 'v';
7236     case BuiltinType::Bool:       return 'B';
7237     case BuiltinType::Char8:
7238     case BuiltinType::Char_U:
7239     case BuiltinType::UChar:      return 'C';
7240     case BuiltinType::Char16:
7241     case BuiltinType::UShort:     return 'S';
7242     case BuiltinType::Char32:
7243     case BuiltinType::UInt:       return 'I';
7244     case BuiltinType::ULong:
7245         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7246     case BuiltinType::UInt128:    return 'T';
7247     case BuiltinType::ULongLong:  return 'Q';
7248     case BuiltinType::Char_S:
7249     case BuiltinType::SChar:      return 'c';
7250     case BuiltinType::Short:      return 's';
7251     case BuiltinType::WChar_S:
7252     case BuiltinType::WChar_U:
7253     case BuiltinType::Int:        return 'i';
7254     case BuiltinType::Long:
7255       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7256     case BuiltinType::LongLong:   return 'q';
7257     case BuiltinType::Int128:     return 't';
7258     case BuiltinType::Float:      return 'f';
7259     case BuiltinType::Double:     return 'd';
7260     case BuiltinType::LongDouble: return 'D';
7261     case BuiltinType::NullPtr:    return '*'; // like char*
7262 
7263     case BuiltinType::BFloat16:
7264     case BuiltinType::Float16:
7265     case BuiltinType::Float128:
7266     case BuiltinType::Half:
7267     case BuiltinType::ShortAccum:
7268     case BuiltinType::Accum:
7269     case BuiltinType::LongAccum:
7270     case BuiltinType::UShortAccum:
7271     case BuiltinType::UAccum:
7272     case BuiltinType::ULongAccum:
7273     case BuiltinType::ShortFract:
7274     case BuiltinType::Fract:
7275     case BuiltinType::LongFract:
7276     case BuiltinType::UShortFract:
7277     case BuiltinType::UFract:
7278     case BuiltinType::ULongFract:
7279     case BuiltinType::SatShortAccum:
7280     case BuiltinType::SatAccum:
7281     case BuiltinType::SatLongAccum:
7282     case BuiltinType::SatUShortAccum:
7283     case BuiltinType::SatUAccum:
7284     case BuiltinType::SatULongAccum:
7285     case BuiltinType::SatShortFract:
7286     case BuiltinType::SatFract:
7287     case BuiltinType::SatLongFract:
7288     case BuiltinType::SatUShortFract:
7289     case BuiltinType::SatUFract:
7290     case BuiltinType::SatULongFract:
7291       // FIXME: potentially need @encodes for these!
7292       return ' ';
7293 
7294 #define SVE_TYPE(Name, Id, SingletonId) \
7295     case BuiltinType::Id:
7296 #include "clang/Basic/AArch64SVEACLETypes.def"
7297 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
7298 #include "clang/Basic/RISCVVTypes.def"
7299       {
7300         DiagnosticsEngine &Diags = C->getDiagnostics();
7301         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
7302                                                 "cannot yet @encode type %0");
7303         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
7304         return ' ';
7305       }
7306 
7307     case BuiltinType::ObjCId:
7308     case BuiltinType::ObjCClass:
7309     case BuiltinType::ObjCSel:
7310       llvm_unreachable("@encoding ObjC primitive type");
7311 
7312     // OpenCL and placeholder types don't need @encodings.
7313 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7314     case BuiltinType::Id:
7315 #include "clang/Basic/OpenCLImageTypes.def"
7316 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7317     case BuiltinType::Id:
7318 #include "clang/Basic/OpenCLExtensionTypes.def"
7319     case BuiltinType::OCLEvent:
7320     case BuiltinType::OCLClkEvent:
7321     case BuiltinType::OCLQueue:
7322     case BuiltinType::OCLReserveID:
7323     case BuiltinType::OCLSampler:
7324     case BuiltinType::Dependent:
7325 #define PPC_VECTOR_TYPE(Name, Id, Size) \
7326     case BuiltinType::Id:
7327 #include "clang/Basic/PPCTypes.def"
7328 #define BUILTIN_TYPE(KIND, ID)
7329 #define PLACEHOLDER_TYPE(KIND, ID) \
7330     case BuiltinType::KIND:
7331 #include "clang/AST/BuiltinTypes.def"
7332       llvm_unreachable("invalid builtin type for @encode");
7333     }
7334     llvm_unreachable("invalid BuiltinType::Kind value");
7335 }
7336 
7337 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
7338   EnumDecl *Enum = ET->getDecl();
7339 
7340   // The encoding of an non-fixed enum type is always 'i', regardless of size.
7341   if (!Enum->isFixed())
7342     return 'i';
7343 
7344   // The encoding of a fixed enum type matches its fixed underlying type.
7345   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
7346   return getObjCEncodingForPrimitiveType(C, BT);
7347 }
7348 
7349 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
7350                            QualType T, const FieldDecl *FD) {
7351   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
7352   S += 'b';
7353   // The NeXT runtime encodes bit fields as b followed by the number of bits.
7354   // The GNU runtime requires more information; bitfields are encoded as b,
7355   // then the offset (in bits) of the first element, then the type of the
7356   // bitfield, then the size in bits.  For example, in this structure:
7357   //
7358   // struct
7359   // {
7360   //    int integer;
7361   //    int flags:2;
7362   // };
7363   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
7364   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
7365   // information is not especially sensible, but we're stuck with it for
7366   // compatibility with GCC, although providing it breaks anything that
7367   // actually uses runtime introspection and wants to work on both runtimes...
7368   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
7369     uint64_t Offset;
7370 
7371     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
7372       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
7373                                          IVD);
7374     } else {
7375       const RecordDecl *RD = FD->getParent();
7376       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
7377       Offset = RL.getFieldOffset(FD->getFieldIndex());
7378     }
7379 
7380     S += llvm::utostr(Offset);
7381 
7382     if (const auto *ET = T->getAs<EnumType>())
7383       S += ObjCEncodingForEnumType(Ctx, ET);
7384     else {
7385       const auto *BT = T->castAs<BuiltinType>();
7386       S += getObjCEncodingForPrimitiveType(Ctx, BT);
7387     }
7388   }
7389   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
7390 }
7391 
7392 // Helper function for determining whether the encoded type string would include
7393 // a template specialization type.
7394 static bool hasTemplateSpecializationInEncodedString(const Type *T,
7395                                                      bool VisitBasesAndFields) {
7396   T = T->getBaseElementTypeUnsafe();
7397 
7398   if (auto *PT = T->getAs<PointerType>())
7399     return hasTemplateSpecializationInEncodedString(
7400         PT->getPointeeType().getTypePtr(), false);
7401 
7402   auto *CXXRD = T->getAsCXXRecordDecl();
7403 
7404   if (!CXXRD)
7405     return false;
7406 
7407   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
7408     return true;
7409 
7410   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
7411     return false;
7412 
7413   for (auto B : CXXRD->bases())
7414     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
7415                                                  true))
7416       return true;
7417 
7418   for (auto *FD : CXXRD->fields())
7419     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
7420                                                  true))
7421       return true;
7422 
7423   return false;
7424 }
7425 
7426 // FIXME: Use SmallString for accumulating string.
7427 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
7428                                             const ObjCEncOptions Options,
7429                                             const FieldDecl *FD,
7430                                             QualType *NotEncodedT) const {
7431   CanQualType CT = getCanonicalType(T);
7432   switch (CT->getTypeClass()) {
7433   case Type::Builtin:
7434   case Type::Enum:
7435     if (FD && FD->isBitField())
7436       return EncodeBitField(this, S, T, FD);
7437     if (const auto *BT = dyn_cast<BuiltinType>(CT))
7438       S += getObjCEncodingForPrimitiveType(this, BT);
7439     else
7440       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
7441     return;
7442 
7443   case Type::Complex:
7444     S += 'j';
7445     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
7446                                ObjCEncOptions(),
7447                                /*Field=*/nullptr);
7448     return;
7449 
7450   case Type::Atomic:
7451     S += 'A';
7452     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
7453                                ObjCEncOptions(),
7454                                /*Field=*/nullptr);
7455     return;
7456 
7457   // encoding for pointer or reference types.
7458   case Type::Pointer:
7459   case Type::LValueReference:
7460   case Type::RValueReference: {
7461     QualType PointeeTy;
7462     if (isa<PointerType>(CT)) {
7463       const auto *PT = T->castAs<PointerType>();
7464       if (PT->isObjCSelType()) {
7465         S += ':';
7466         return;
7467       }
7468       PointeeTy = PT->getPointeeType();
7469     } else {
7470       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
7471     }
7472 
7473     bool isReadOnly = false;
7474     // For historical/compatibility reasons, the read-only qualifier of the
7475     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
7476     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
7477     // Also, do not emit the 'r' for anything but the outermost type!
7478     if (isa<TypedefType>(T.getTypePtr())) {
7479       if (Options.IsOutermostType() && T.isConstQualified()) {
7480         isReadOnly = true;
7481         S += 'r';
7482       }
7483     } else if (Options.IsOutermostType()) {
7484       QualType P = PointeeTy;
7485       while (auto PT = P->getAs<PointerType>())
7486         P = PT->getPointeeType();
7487       if (P.isConstQualified()) {
7488         isReadOnly = true;
7489         S += 'r';
7490       }
7491     }
7492     if (isReadOnly) {
7493       // Another legacy compatibility encoding. Some ObjC qualifier and type
7494       // combinations need to be rearranged.
7495       // Rewrite "in const" from "nr" to "rn"
7496       if (StringRef(S).endswith("nr"))
7497         S.replace(S.end()-2, S.end(), "rn");
7498     }
7499 
7500     if (PointeeTy->isCharType()) {
7501       // char pointer types should be encoded as '*' unless it is a
7502       // type that has been typedef'd to 'BOOL'.
7503       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
7504         S += '*';
7505         return;
7506       }
7507     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
7508       // GCC binary compat: Need to convert "struct objc_class *" to "#".
7509       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
7510         S += '#';
7511         return;
7512       }
7513       // GCC binary compat: Need to convert "struct objc_object *" to "@".
7514       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
7515         S += '@';
7516         return;
7517       }
7518       // If the encoded string for the class includes template names, just emit
7519       // "^v" for pointers to the class.
7520       if (getLangOpts().CPlusPlus &&
7521           (!getLangOpts().EncodeCXXClassTemplateSpec &&
7522            hasTemplateSpecializationInEncodedString(
7523                RTy, Options.ExpandPointedToStructures()))) {
7524         S += "^v";
7525         return;
7526       }
7527       // fall through...
7528     }
7529     S += '^';
7530     getLegacyIntegralTypeEncoding(PointeeTy);
7531 
7532     ObjCEncOptions NewOptions;
7533     if (Options.ExpandPointedToStructures())
7534       NewOptions.setExpandStructures();
7535     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
7536                                /*Field=*/nullptr, NotEncodedT);
7537     return;
7538   }
7539 
7540   case Type::ConstantArray:
7541   case Type::IncompleteArray:
7542   case Type::VariableArray: {
7543     const auto *AT = cast<ArrayType>(CT);
7544 
7545     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
7546       // Incomplete arrays are encoded as a pointer to the array element.
7547       S += '^';
7548 
7549       getObjCEncodingForTypeImpl(
7550           AT->getElementType(), S,
7551           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
7552     } else {
7553       S += '[';
7554 
7555       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
7556         S += llvm::utostr(CAT->getSize().getZExtValue());
7557       else {
7558         //Variable length arrays are encoded as a regular array with 0 elements.
7559         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
7560                "Unknown array type!");
7561         S += '0';
7562       }
7563 
7564       getObjCEncodingForTypeImpl(
7565           AT->getElementType(), S,
7566           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
7567           NotEncodedT);
7568       S += ']';
7569     }
7570     return;
7571   }
7572 
7573   case Type::FunctionNoProto:
7574   case Type::FunctionProto:
7575     S += '?';
7576     return;
7577 
7578   case Type::Record: {
7579     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
7580     S += RDecl->isUnion() ? '(' : '{';
7581     // Anonymous structures print as '?'
7582     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
7583       S += II->getName();
7584       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
7585         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
7586         llvm::raw_string_ostream OS(S);
7587         printTemplateArgumentList(OS, TemplateArgs.asArray(),
7588                                   getPrintingPolicy());
7589       }
7590     } else {
7591       S += '?';
7592     }
7593     if (Options.ExpandStructures()) {
7594       S += '=';
7595       if (!RDecl->isUnion()) {
7596         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
7597       } else {
7598         for (const auto *Field : RDecl->fields()) {
7599           if (FD) {
7600             S += '"';
7601             S += Field->getNameAsString();
7602             S += '"';
7603           }
7604 
7605           // Special case bit-fields.
7606           if (Field->isBitField()) {
7607             getObjCEncodingForTypeImpl(Field->getType(), S,
7608                                        ObjCEncOptions().setExpandStructures(),
7609                                        Field);
7610           } else {
7611             QualType qt = Field->getType();
7612             getLegacyIntegralTypeEncoding(qt);
7613             getObjCEncodingForTypeImpl(
7614                 qt, S,
7615                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
7616                 NotEncodedT);
7617           }
7618         }
7619       }
7620     }
7621     S += RDecl->isUnion() ? ')' : '}';
7622     return;
7623   }
7624 
7625   case Type::BlockPointer: {
7626     const auto *BT = T->castAs<BlockPointerType>();
7627     S += "@?"; // Unlike a pointer-to-function, which is "^?".
7628     if (Options.EncodeBlockParameters()) {
7629       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
7630 
7631       S += '<';
7632       // Block return type
7633       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
7634                                  Options.forComponentType(), FD, NotEncodedT);
7635       // Block self
7636       S += "@?";
7637       // Block parameters
7638       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
7639         for (const auto &I : FPT->param_types())
7640           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
7641                                      NotEncodedT);
7642       }
7643       S += '>';
7644     }
7645     return;
7646   }
7647 
7648   case Type::ObjCObject: {
7649     // hack to match legacy encoding of *id and *Class
7650     QualType Ty = getObjCObjectPointerType(CT);
7651     if (Ty->isObjCIdType()) {
7652       S += "{objc_object=}";
7653       return;
7654     }
7655     else if (Ty->isObjCClassType()) {
7656       S += "{objc_class=}";
7657       return;
7658     }
7659     // TODO: Double check to make sure this intentionally falls through.
7660     LLVM_FALLTHROUGH;
7661   }
7662 
7663   case Type::ObjCInterface: {
7664     // Ignore protocol qualifiers when mangling at this level.
7665     // @encode(class_name)
7666     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
7667     S += '{';
7668     S += OI->getObjCRuntimeNameAsString();
7669     if (Options.ExpandStructures()) {
7670       S += '=';
7671       SmallVector<const ObjCIvarDecl*, 32> Ivars;
7672       DeepCollectObjCIvars(OI, true, Ivars);
7673       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
7674         const FieldDecl *Field = Ivars[i];
7675         if (Field->isBitField())
7676           getObjCEncodingForTypeImpl(Field->getType(), S,
7677                                      ObjCEncOptions().setExpandStructures(),
7678                                      Field);
7679         else
7680           getObjCEncodingForTypeImpl(Field->getType(), S,
7681                                      ObjCEncOptions().setExpandStructures(), FD,
7682                                      NotEncodedT);
7683       }
7684     }
7685     S += '}';
7686     return;
7687   }
7688 
7689   case Type::ObjCObjectPointer: {
7690     const auto *OPT = T->castAs<ObjCObjectPointerType>();
7691     if (OPT->isObjCIdType()) {
7692       S += '@';
7693       return;
7694     }
7695 
7696     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
7697       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
7698       // Since this is a binary compatibility issue, need to consult with
7699       // runtime folks. Fortunately, this is a *very* obscure construct.
7700       S += '#';
7701       return;
7702     }
7703 
7704     if (OPT->isObjCQualifiedIdType()) {
7705       getObjCEncodingForTypeImpl(
7706           getObjCIdType(), S,
7707           Options.keepingOnly(ObjCEncOptions()
7708                                   .setExpandPointedToStructures()
7709                                   .setExpandStructures()),
7710           FD);
7711       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
7712         // Note that we do extended encoding of protocol qualifer list
7713         // Only when doing ivar or property encoding.
7714         S += '"';
7715         for (const auto *I : OPT->quals()) {
7716           S += '<';
7717           S += I->getObjCRuntimeNameAsString();
7718           S += '>';
7719         }
7720         S += '"';
7721       }
7722       return;
7723     }
7724 
7725     S += '@';
7726     if (OPT->getInterfaceDecl() &&
7727         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
7728       S += '"';
7729       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
7730       for (const auto *I : OPT->quals()) {
7731         S += '<';
7732         S += I->getObjCRuntimeNameAsString();
7733         S += '>';
7734       }
7735       S += '"';
7736     }
7737     return;
7738   }
7739 
7740   // gcc just blithely ignores member pointers.
7741   // FIXME: we should do better than that.  'M' is available.
7742   case Type::MemberPointer:
7743   // This matches gcc's encoding, even though technically it is insufficient.
7744   //FIXME. We should do a better job than gcc.
7745   case Type::Vector:
7746   case Type::ExtVector:
7747   // Until we have a coherent encoding of these three types, issue warning.
7748     if (NotEncodedT)
7749       *NotEncodedT = T;
7750     return;
7751 
7752   case Type::ConstantMatrix:
7753     if (NotEncodedT)
7754       *NotEncodedT = T;
7755     return;
7756 
7757   // We could see an undeduced auto type here during error recovery.
7758   // Just ignore it.
7759   case Type::Auto:
7760   case Type::DeducedTemplateSpecialization:
7761     return;
7762 
7763   case Type::Pipe:
7764   case Type::ExtInt:
7765 #define ABSTRACT_TYPE(KIND, BASE)
7766 #define TYPE(KIND, BASE)
7767 #define DEPENDENT_TYPE(KIND, BASE) \
7768   case Type::KIND:
7769 #define NON_CANONICAL_TYPE(KIND, BASE) \
7770   case Type::KIND:
7771 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7772   case Type::KIND:
7773 #include "clang/AST/TypeNodes.inc"
7774     llvm_unreachable("@encode for dependent type!");
7775   }
7776   llvm_unreachable("bad type kind!");
7777 }
7778 
7779 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7780                                                  std::string &S,
7781                                                  const FieldDecl *FD,
7782                                                  bool includeVBases,
7783                                                  QualType *NotEncodedT) const {
7784   assert(RDecl && "Expected non-null RecordDecl");
7785   assert(!RDecl->isUnion() && "Should not be called for unions");
7786   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7787     return;
7788 
7789   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7790   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7791   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7792 
7793   if (CXXRec) {
7794     for (const auto &BI : CXXRec->bases()) {
7795       if (!BI.isVirtual()) {
7796         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7797         if (base->isEmpty())
7798           continue;
7799         uint64_t offs = toBits(layout.getBaseClassOffset(base));
7800         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7801                                   std::make_pair(offs, base));
7802       }
7803     }
7804   }
7805 
7806   unsigned i = 0;
7807   for (FieldDecl *Field : RDecl->fields()) {
7808     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
7809       continue;
7810     uint64_t offs = layout.getFieldOffset(i);
7811     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7812                               std::make_pair(offs, Field));
7813     ++i;
7814   }
7815 
7816   if (CXXRec && includeVBases) {
7817     for (const auto &BI : CXXRec->vbases()) {
7818       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7819       if (base->isEmpty())
7820         continue;
7821       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7822       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7823           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7824         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7825                                   std::make_pair(offs, base));
7826     }
7827   }
7828 
7829   CharUnits size;
7830   if (CXXRec) {
7831     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7832   } else {
7833     size = layout.getSize();
7834   }
7835 
7836 #ifndef NDEBUG
7837   uint64_t CurOffs = 0;
7838 #endif
7839   std::multimap<uint64_t, NamedDecl *>::iterator
7840     CurLayObj = FieldOrBaseOffsets.begin();
7841 
7842   if (CXXRec && CXXRec->isDynamicClass() &&
7843       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7844     if (FD) {
7845       S += "\"_vptr$";
7846       std::string recname = CXXRec->getNameAsString();
7847       if (recname.empty()) recname = "?";
7848       S += recname;
7849       S += '"';
7850     }
7851     S += "^^?";
7852 #ifndef NDEBUG
7853     CurOffs += getTypeSize(VoidPtrTy);
7854 #endif
7855   }
7856 
7857   if (!RDecl->hasFlexibleArrayMember()) {
7858     // Mark the end of the structure.
7859     uint64_t offs = toBits(size);
7860     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7861                               std::make_pair(offs, nullptr));
7862   }
7863 
7864   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7865 #ifndef NDEBUG
7866     assert(CurOffs <= CurLayObj->first);
7867     if (CurOffs < CurLayObj->first) {
7868       uint64_t padding = CurLayObj->first - CurOffs;
7869       // FIXME: There doesn't seem to be a way to indicate in the encoding that
7870       // packing/alignment of members is different that normal, in which case
7871       // the encoding will be out-of-sync with the real layout.
7872       // If the runtime switches to just consider the size of types without
7873       // taking into account alignment, we could make padding explicit in the
7874       // encoding (e.g. using arrays of chars). The encoding strings would be
7875       // longer then though.
7876       CurOffs += padding;
7877     }
7878 #endif
7879 
7880     NamedDecl *dcl = CurLayObj->second;
7881     if (!dcl)
7882       break; // reached end of structure.
7883 
7884     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7885       // We expand the bases without their virtual bases since those are going
7886       // in the initial structure. Note that this differs from gcc which
7887       // expands virtual bases each time one is encountered in the hierarchy,
7888       // making the encoding type bigger than it really is.
7889       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7890                                       NotEncodedT);
7891       assert(!base->isEmpty());
7892 #ifndef NDEBUG
7893       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7894 #endif
7895     } else {
7896       const auto *field = cast<FieldDecl>(dcl);
7897       if (FD) {
7898         S += '"';
7899         S += field->getNameAsString();
7900         S += '"';
7901       }
7902 
7903       if (field->isBitField()) {
7904         EncodeBitField(this, S, field->getType(), field);
7905 #ifndef NDEBUG
7906         CurOffs += field->getBitWidthValue(*this);
7907 #endif
7908       } else {
7909         QualType qt = field->getType();
7910         getLegacyIntegralTypeEncoding(qt);
7911         getObjCEncodingForTypeImpl(
7912             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
7913             FD, NotEncodedT);
7914 #ifndef NDEBUG
7915         CurOffs += getTypeSize(field->getType());
7916 #endif
7917       }
7918     }
7919   }
7920 }
7921 
7922 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
7923                                                  std::string& S) const {
7924   if (QT & Decl::OBJC_TQ_In)
7925     S += 'n';
7926   if (QT & Decl::OBJC_TQ_Inout)
7927     S += 'N';
7928   if (QT & Decl::OBJC_TQ_Out)
7929     S += 'o';
7930   if (QT & Decl::OBJC_TQ_Bycopy)
7931     S += 'O';
7932   if (QT & Decl::OBJC_TQ_Byref)
7933     S += 'R';
7934   if (QT & Decl::OBJC_TQ_Oneway)
7935     S += 'V';
7936 }
7937 
7938 TypedefDecl *ASTContext::getObjCIdDecl() const {
7939   if (!ObjCIdDecl) {
7940     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
7941     T = getObjCObjectPointerType(T);
7942     ObjCIdDecl = buildImplicitTypedef(T, "id");
7943   }
7944   return ObjCIdDecl;
7945 }
7946 
7947 TypedefDecl *ASTContext::getObjCSelDecl() const {
7948   if (!ObjCSelDecl) {
7949     QualType T = getPointerType(ObjCBuiltinSelTy);
7950     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
7951   }
7952   return ObjCSelDecl;
7953 }
7954 
7955 TypedefDecl *ASTContext::getObjCClassDecl() const {
7956   if (!ObjCClassDecl) {
7957     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
7958     T = getObjCObjectPointerType(T);
7959     ObjCClassDecl = buildImplicitTypedef(T, "Class");
7960   }
7961   return ObjCClassDecl;
7962 }
7963 
7964 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
7965   if (!ObjCProtocolClassDecl) {
7966     ObjCProtocolClassDecl
7967       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
7968                                   SourceLocation(),
7969                                   &Idents.get("Protocol"),
7970                                   /*typeParamList=*/nullptr,
7971                                   /*PrevDecl=*/nullptr,
7972                                   SourceLocation(), true);
7973   }
7974 
7975   return ObjCProtocolClassDecl;
7976 }
7977 
7978 //===----------------------------------------------------------------------===//
7979 // __builtin_va_list Construction Functions
7980 //===----------------------------------------------------------------------===//
7981 
7982 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
7983                                                  StringRef Name) {
7984   // typedef char* __builtin[_ms]_va_list;
7985   QualType T = Context->getPointerType(Context->CharTy);
7986   return Context->buildImplicitTypedef(T, Name);
7987 }
7988 
7989 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
7990   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
7991 }
7992 
7993 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
7994   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
7995 }
7996 
7997 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
7998   // typedef void* __builtin_va_list;
7999   QualType T = Context->getPointerType(Context->VoidTy);
8000   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8001 }
8002 
8003 static TypedefDecl *
8004 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8005   // struct __va_list
8006   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8007   if (Context->getLangOpts().CPlusPlus) {
8008     // namespace std { struct __va_list {
8009     NamespaceDecl *NS;
8010     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8011                                Context->getTranslationUnitDecl(),
8012                                /*Inline*/ false, SourceLocation(),
8013                                SourceLocation(), &Context->Idents.get("std"),
8014                                /*PrevDecl*/ nullptr);
8015     NS->setImplicit();
8016     VaListTagDecl->setDeclContext(NS);
8017   }
8018 
8019   VaListTagDecl->startDefinition();
8020 
8021   const size_t NumFields = 5;
8022   QualType FieldTypes[NumFields];
8023   const char *FieldNames[NumFields];
8024 
8025   // void *__stack;
8026   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8027   FieldNames[0] = "__stack";
8028 
8029   // void *__gr_top;
8030   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8031   FieldNames[1] = "__gr_top";
8032 
8033   // void *__vr_top;
8034   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8035   FieldNames[2] = "__vr_top";
8036 
8037   // int __gr_offs;
8038   FieldTypes[3] = Context->IntTy;
8039   FieldNames[3] = "__gr_offs";
8040 
8041   // int __vr_offs;
8042   FieldTypes[4] = Context->IntTy;
8043   FieldNames[4] = "__vr_offs";
8044 
8045   // Create fields
8046   for (unsigned i = 0; i < NumFields; ++i) {
8047     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8048                                          VaListTagDecl,
8049                                          SourceLocation(),
8050                                          SourceLocation(),
8051                                          &Context->Idents.get(FieldNames[i]),
8052                                          FieldTypes[i], /*TInfo=*/nullptr,
8053                                          /*BitWidth=*/nullptr,
8054                                          /*Mutable=*/false,
8055                                          ICIS_NoInit);
8056     Field->setAccess(AS_public);
8057     VaListTagDecl->addDecl(Field);
8058   }
8059   VaListTagDecl->completeDefinition();
8060   Context->VaListTagDecl = VaListTagDecl;
8061   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8062 
8063   // } __builtin_va_list;
8064   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8065 }
8066 
8067 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8068   // typedef struct __va_list_tag {
8069   RecordDecl *VaListTagDecl;
8070 
8071   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8072   VaListTagDecl->startDefinition();
8073 
8074   const size_t NumFields = 5;
8075   QualType FieldTypes[NumFields];
8076   const char *FieldNames[NumFields];
8077 
8078   //   unsigned char gpr;
8079   FieldTypes[0] = Context->UnsignedCharTy;
8080   FieldNames[0] = "gpr";
8081 
8082   //   unsigned char fpr;
8083   FieldTypes[1] = Context->UnsignedCharTy;
8084   FieldNames[1] = "fpr";
8085 
8086   //   unsigned short reserved;
8087   FieldTypes[2] = Context->UnsignedShortTy;
8088   FieldNames[2] = "reserved";
8089 
8090   //   void* overflow_arg_area;
8091   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8092   FieldNames[3] = "overflow_arg_area";
8093 
8094   //   void* reg_save_area;
8095   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8096   FieldNames[4] = "reg_save_area";
8097 
8098   // Create fields
8099   for (unsigned i = 0; i < NumFields; ++i) {
8100     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8101                                          SourceLocation(),
8102                                          SourceLocation(),
8103                                          &Context->Idents.get(FieldNames[i]),
8104                                          FieldTypes[i], /*TInfo=*/nullptr,
8105                                          /*BitWidth=*/nullptr,
8106                                          /*Mutable=*/false,
8107                                          ICIS_NoInit);
8108     Field->setAccess(AS_public);
8109     VaListTagDecl->addDecl(Field);
8110   }
8111   VaListTagDecl->completeDefinition();
8112   Context->VaListTagDecl = VaListTagDecl;
8113   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8114 
8115   // } __va_list_tag;
8116   TypedefDecl *VaListTagTypedefDecl =
8117       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8118 
8119   QualType VaListTagTypedefType =
8120     Context->getTypedefType(VaListTagTypedefDecl);
8121 
8122   // typedef __va_list_tag __builtin_va_list[1];
8123   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8124   QualType VaListTagArrayType
8125     = Context->getConstantArrayType(VaListTagTypedefType,
8126                                     Size, nullptr, ArrayType::Normal, 0);
8127   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8128 }
8129 
8130 static TypedefDecl *
8131 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8132   // struct __va_list_tag {
8133   RecordDecl *VaListTagDecl;
8134   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8135   VaListTagDecl->startDefinition();
8136 
8137   const size_t NumFields = 4;
8138   QualType FieldTypes[NumFields];
8139   const char *FieldNames[NumFields];
8140 
8141   //   unsigned gp_offset;
8142   FieldTypes[0] = Context->UnsignedIntTy;
8143   FieldNames[0] = "gp_offset";
8144 
8145   //   unsigned fp_offset;
8146   FieldTypes[1] = Context->UnsignedIntTy;
8147   FieldNames[1] = "fp_offset";
8148 
8149   //   void* overflow_arg_area;
8150   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8151   FieldNames[2] = "overflow_arg_area";
8152 
8153   //   void* reg_save_area;
8154   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8155   FieldNames[3] = "reg_save_area";
8156 
8157   // Create fields
8158   for (unsigned i = 0; i < NumFields; ++i) {
8159     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8160                                          VaListTagDecl,
8161                                          SourceLocation(),
8162                                          SourceLocation(),
8163                                          &Context->Idents.get(FieldNames[i]),
8164                                          FieldTypes[i], /*TInfo=*/nullptr,
8165                                          /*BitWidth=*/nullptr,
8166                                          /*Mutable=*/false,
8167                                          ICIS_NoInit);
8168     Field->setAccess(AS_public);
8169     VaListTagDecl->addDecl(Field);
8170   }
8171   VaListTagDecl->completeDefinition();
8172   Context->VaListTagDecl = VaListTagDecl;
8173   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8174 
8175   // };
8176 
8177   // typedef struct __va_list_tag __builtin_va_list[1];
8178   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8179   QualType VaListTagArrayType = Context->getConstantArrayType(
8180       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8181   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8182 }
8183 
8184 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8185   // typedef int __builtin_va_list[4];
8186   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8187   QualType IntArrayType = Context->getConstantArrayType(
8188       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8189   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8190 }
8191 
8192 static TypedefDecl *
8193 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8194   // struct __va_list
8195   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8196   if (Context->getLangOpts().CPlusPlus) {
8197     // namespace std { struct __va_list {
8198     NamespaceDecl *NS;
8199     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8200                                Context->getTranslationUnitDecl(),
8201                                /*Inline*/false, SourceLocation(),
8202                                SourceLocation(), &Context->Idents.get("std"),
8203                                /*PrevDecl*/ nullptr);
8204     NS->setImplicit();
8205     VaListDecl->setDeclContext(NS);
8206   }
8207 
8208   VaListDecl->startDefinition();
8209 
8210   // void * __ap;
8211   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8212                                        VaListDecl,
8213                                        SourceLocation(),
8214                                        SourceLocation(),
8215                                        &Context->Idents.get("__ap"),
8216                                        Context->getPointerType(Context->VoidTy),
8217                                        /*TInfo=*/nullptr,
8218                                        /*BitWidth=*/nullptr,
8219                                        /*Mutable=*/false,
8220                                        ICIS_NoInit);
8221   Field->setAccess(AS_public);
8222   VaListDecl->addDecl(Field);
8223 
8224   // };
8225   VaListDecl->completeDefinition();
8226   Context->VaListTagDecl = VaListDecl;
8227 
8228   // typedef struct __va_list __builtin_va_list;
8229   QualType T = Context->getRecordType(VaListDecl);
8230   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8231 }
8232 
8233 static TypedefDecl *
8234 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8235   // struct __va_list_tag {
8236   RecordDecl *VaListTagDecl;
8237   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8238   VaListTagDecl->startDefinition();
8239 
8240   const size_t NumFields = 4;
8241   QualType FieldTypes[NumFields];
8242   const char *FieldNames[NumFields];
8243 
8244   //   long __gpr;
8245   FieldTypes[0] = Context->LongTy;
8246   FieldNames[0] = "__gpr";
8247 
8248   //   long __fpr;
8249   FieldTypes[1] = Context->LongTy;
8250   FieldNames[1] = "__fpr";
8251 
8252   //   void *__overflow_arg_area;
8253   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8254   FieldNames[2] = "__overflow_arg_area";
8255 
8256   //   void *__reg_save_area;
8257   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8258   FieldNames[3] = "__reg_save_area";
8259 
8260   // Create fields
8261   for (unsigned i = 0; i < NumFields; ++i) {
8262     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8263                                          VaListTagDecl,
8264                                          SourceLocation(),
8265                                          SourceLocation(),
8266                                          &Context->Idents.get(FieldNames[i]),
8267                                          FieldTypes[i], /*TInfo=*/nullptr,
8268                                          /*BitWidth=*/nullptr,
8269                                          /*Mutable=*/false,
8270                                          ICIS_NoInit);
8271     Field->setAccess(AS_public);
8272     VaListTagDecl->addDecl(Field);
8273   }
8274   VaListTagDecl->completeDefinition();
8275   Context->VaListTagDecl = VaListTagDecl;
8276   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8277 
8278   // };
8279 
8280   // typedef __va_list_tag __builtin_va_list[1];
8281   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8282   QualType VaListTagArrayType = Context->getConstantArrayType(
8283       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8284 
8285   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8286 }
8287 
8288 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
8289   // typedef struct __va_list_tag {
8290   RecordDecl *VaListTagDecl;
8291   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8292   VaListTagDecl->startDefinition();
8293 
8294   const size_t NumFields = 3;
8295   QualType FieldTypes[NumFields];
8296   const char *FieldNames[NumFields];
8297 
8298   //   void *CurrentSavedRegisterArea;
8299   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8300   FieldNames[0] = "__current_saved_reg_area_pointer";
8301 
8302   //   void *SavedRegAreaEnd;
8303   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8304   FieldNames[1] = "__saved_reg_area_end_pointer";
8305 
8306   //   void *OverflowArea;
8307   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8308   FieldNames[2] = "__overflow_area_pointer";
8309 
8310   // Create fields
8311   for (unsigned i = 0; i < NumFields; ++i) {
8312     FieldDecl *Field = FieldDecl::Create(
8313         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
8314         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
8315         /*TInfo=*/0,
8316         /*BitWidth=*/0,
8317         /*Mutable=*/false, ICIS_NoInit);
8318     Field->setAccess(AS_public);
8319     VaListTagDecl->addDecl(Field);
8320   }
8321   VaListTagDecl->completeDefinition();
8322   Context->VaListTagDecl = VaListTagDecl;
8323   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8324 
8325   // } __va_list_tag;
8326   TypedefDecl *VaListTagTypedefDecl =
8327       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8328 
8329   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
8330 
8331   // typedef __va_list_tag __builtin_va_list[1];
8332   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8333   QualType VaListTagArrayType = Context->getConstantArrayType(
8334       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
8335 
8336   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8337 }
8338 
8339 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
8340                                      TargetInfo::BuiltinVaListKind Kind) {
8341   switch (Kind) {
8342   case TargetInfo::CharPtrBuiltinVaList:
8343     return CreateCharPtrBuiltinVaListDecl(Context);
8344   case TargetInfo::VoidPtrBuiltinVaList:
8345     return CreateVoidPtrBuiltinVaListDecl(Context);
8346   case TargetInfo::AArch64ABIBuiltinVaList:
8347     return CreateAArch64ABIBuiltinVaListDecl(Context);
8348   case TargetInfo::PowerABIBuiltinVaList:
8349     return CreatePowerABIBuiltinVaListDecl(Context);
8350   case TargetInfo::X86_64ABIBuiltinVaList:
8351     return CreateX86_64ABIBuiltinVaListDecl(Context);
8352   case TargetInfo::PNaClABIBuiltinVaList:
8353     return CreatePNaClABIBuiltinVaListDecl(Context);
8354   case TargetInfo::AAPCSABIBuiltinVaList:
8355     return CreateAAPCSABIBuiltinVaListDecl(Context);
8356   case TargetInfo::SystemZBuiltinVaList:
8357     return CreateSystemZBuiltinVaListDecl(Context);
8358   case TargetInfo::HexagonBuiltinVaList:
8359     return CreateHexagonBuiltinVaListDecl(Context);
8360   }
8361 
8362   llvm_unreachable("Unhandled __builtin_va_list type kind");
8363 }
8364 
8365 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
8366   if (!BuiltinVaListDecl) {
8367     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
8368     assert(BuiltinVaListDecl->isImplicit());
8369   }
8370 
8371   return BuiltinVaListDecl;
8372 }
8373 
8374 Decl *ASTContext::getVaListTagDecl() const {
8375   // Force the creation of VaListTagDecl by building the __builtin_va_list
8376   // declaration.
8377   if (!VaListTagDecl)
8378     (void)getBuiltinVaListDecl();
8379 
8380   return VaListTagDecl;
8381 }
8382 
8383 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
8384   if (!BuiltinMSVaListDecl)
8385     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
8386 
8387   return BuiltinMSVaListDecl;
8388 }
8389 
8390 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
8391   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
8392 }
8393 
8394 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
8395   assert(ObjCConstantStringType.isNull() &&
8396          "'NSConstantString' type already set!");
8397 
8398   ObjCConstantStringType = getObjCInterfaceType(Decl);
8399 }
8400 
8401 /// Retrieve the template name that corresponds to a non-empty
8402 /// lookup.
8403 TemplateName
8404 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
8405                                       UnresolvedSetIterator End) const {
8406   unsigned size = End - Begin;
8407   assert(size > 1 && "set is not overloaded!");
8408 
8409   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
8410                           size * sizeof(FunctionTemplateDecl*));
8411   auto *OT = new (memory) OverloadedTemplateStorage(size);
8412 
8413   NamedDecl **Storage = OT->getStorage();
8414   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
8415     NamedDecl *D = *I;
8416     assert(isa<FunctionTemplateDecl>(D) ||
8417            isa<UnresolvedUsingValueDecl>(D) ||
8418            (isa<UsingShadowDecl>(D) &&
8419             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
8420     *Storage++ = D;
8421   }
8422 
8423   return TemplateName(OT);
8424 }
8425 
8426 /// Retrieve a template name representing an unqualified-id that has been
8427 /// assumed to name a template for ADL purposes.
8428 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
8429   auto *OT = new (*this) AssumedTemplateStorage(Name);
8430   return TemplateName(OT);
8431 }
8432 
8433 /// Retrieve the template name that represents a qualified
8434 /// template name such as \c std::vector.
8435 TemplateName
8436 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
8437                                      bool TemplateKeyword,
8438                                      TemplateDecl *Template) const {
8439   assert(NNS && "Missing nested-name-specifier in qualified template name");
8440 
8441   // FIXME: Canonicalization?
8442   llvm::FoldingSetNodeID ID;
8443   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
8444 
8445   void *InsertPos = nullptr;
8446   QualifiedTemplateName *QTN =
8447     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8448   if (!QTN) {
8449     QTN = new (*this, alignof(QualifiedTemplateName))
8450         QualifiedTemplateName(NNS, TemplateKeyword, Template);
8451     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
8452   }
8453 
8454   return TemplateName(QTN);
8455 }
8456 
8457 /// Retrieve the template name that represents a dependent
8458 /// template name such as \c MetaFun::template apply.
8459 TemplateName
8460 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8461                                      const IdentifierInfo *Name) const {
8462   assert((!NNS || NNS->isDependent()) &&
8463          "Nested name specifier must be dependent");
8464 
8465   llvm::FoldingSetNodeID ID;
8466   DependentTemplateName::Profile(ID, NNS, Name);
8467 
8468   void *InsertPos = nullptr;
8469   DependentTemplateName *QTN =
8470     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8471 
8472   if (QTN)
8473     return TemplateName(QTN);
8474 
8475   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8476   if (CanonNNS == NNS) {
8477     QTN = new (*this, alignof(DependentTemplateName))
8478         DependentTemplateName(NNS, Name);
8479   } else {
8480     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
8481     QTN = new (*this, alignof(DependentTemplateName))
8482         DependentTemplateName(NNS, Name, Canon);
8483     DependentTemplateName *CheckQTN =
8484       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8485     assert(!CheckQTN && "Dependent type name canonicalization broken");
8486     (void)CheckQTN;
8487   }
8488 
8489   DependentTemplateNames.InsertNode(QTN, InsertPos);
8490   return TemplateName(QTN);
8491 }
8492 
8493 /// Retrieve the template name that represents a dependent
8494 /// template name such as \c MetaFun::template operator+.
8495 TemplateName
8496 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8497                                      OverloadedOperatorKind Operator) const {
8498   assert((!NNS || NNS->isDependent()) &&
8499          "Nested name specifier must be dependent");
8500 
8501   llvm::FoldingSetNodeID ID;
8502   DependentTemplateName::Profile(ID, NNS, Operator);
8503 
8504   void *InsertPos = nullptr;
8505   DependentTemplateName *QTN
8506     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8507 
8508   if (QTN)
8509     return TemplateName(QTN);
8510 
8511   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8512   if (CanonNNS == NNS) {
8513     QTN = new (*this, alignof(DependentTemplateName))
8514         DependentTemplateName(NNS, Operator);
8515   } else {
8516     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
8517     QTN = new (*this, alignof(DependentTemplateName))
8518         DependentTemplateName(NNS, Operator, Canon);
8519 
8520     DependentTemplateName *CheckQTN
8521       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8522     assert(!CheckQTN && "Dependent template name canonicalization broken");
8523     (void)CheckQTN;
8524   }
8525 
8526   DependentTemplateNames.InsertNode(QTN, InsertPos);
8527   return TemplateName(QTN);
8528 }
8529 
8530 TemplateName
8531 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
8532                                          TemplateName replacement) const {
8533   llvm::FoldingSetNodeID ID;
8534   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
8535 
8536   void *insertPos = nullptr;
8537   SubstTemplateTemplateParmStorage *subst
8538     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
8539 
8540   if (!subst) {
8541     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
8542     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
8543   }
8544 
8545   return TemplateName(subst);
8546 }
8547 
8548 TemplateName
8549 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
8550                                        const TemplateArgument &ArgPack) const {
8551   auto &Self = const_cast<ASTContext &>(*this);
8552   llvm::FoldingSetNodeID ID;
8553   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
8554 
8555   void *InsertPos = nullptr;
8556   SubstTemplateTemplateParmPackStorage *Subst
8557     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
8558 
8559   if (!Subst) {
8560     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
8561                                                            ArgPack.pack_size(),
8562                                                          ArgPack.pack_begin());
8563     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
8564   }
8565 
8566   return TemplateName(Subst);
8567 }
8568 
8569 /// getFromTargetType - Given one of the integer types provided by
8570 /// TargetInfo, produce the corresponding type. The unsigned @p Type
8571 /// is actually a value of type @c TargetInfo::IntType.
8572 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
8573   switch (Type) {
8574   case TargetInfo::NoInt: return {};
8575   case TargetInfo::SignedChar: return SignedCharTy;
8576   case TargetInfo::UnsignedChar: return UnsignedCharTy;
8577   case TargetInfo::SignedShort: return ShortTy;
8578   case TargetInfo::UnsignedShort: return UnsignedShortTy;
8579   case TargetInfo::SignedInt: return IntTy;
8580   case TargetInfo::UnsignedInt: return UnsignedIntTy;
8581   case TargetInfo::SignedLong: return LongTy;
8582   case TargetInfo::UnsignedLong: return UnsignedLongTy;
8583   case TargetInfo::SignedLongLong: return LongLongTy;
8584   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
8585   }
8586 
8587   llvm_unreachable("Unhandled TargetInfo::IntType value");
8588 }
8589 
8590 //===----------------------------------------------------------------------===//
8591 //                        Type Predicates.
8592 //===----------------------------------------------------------------------===//
8593 
8594 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
8595 /// garbage collection attribute.
8596 ///
8597 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
8598   if (getLangOpts().getGC() == LangOptions::NonGC)
8599     return Qualifiers::GCNone;
8600 
8601   assert(getLangOpts().ObjC);
8602   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
8603 
8604   // Default behaviour under objective-C's gc is for ObjC pointers
8605   // (or pointers to them) be treated as though they were declared
8606   // as __strong.
8607   if (GCAttrs == Qualifiers::GCNone) {
8608     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
8609       return Qualifiers::Strong;
8610     else if (Ty->isPointerType())
8611       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
8612   } else {
8613     // It's not valid to set GC attributes on anything that isn't a
8614     // pointer.
8615 #ifndef NDEBUG
8616     QualType CT = Ty->getCanonicalTypeInternal();
8617     while (const auto *AT = dyn_cast<ArrayType>(CT))
8618       CT = AT->getElementType();
8619     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
8620 #endif
8621   }
8622   return GCAttrs;
8623 }
8624 
8625 //===----------------------------------------------------------------------===//
8626 //                        Type Compatibility Testing
8627 //===----------------------------------------------------------------------===//
8628 
8629 /// areCompatVectorTypes - Return true if the two specified vector types are
8630 /// compatible.
8631 static bool areCompatVectorTypes(const VectorType *LHS,
8632                                  const VectorType *RHS) {
8633   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8634   return LHS->getElementType() == RHS->getElementType() &&
8635          LHS->getNumElements() == RHS->getNumElements();
8636 }
8637 
8638 /// areCompatMatrixTypes - Return true if the two specified matrix types are
8639 /// compatible.
8640 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
8641                                  const ConstantMatrixType *RHS) {
8642   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8643   return LHS->getElementType() == RHS->getElementType() &&
8644          LHS->getNumRows() == RHS->getNumRows() &&
8645          LHS->getNumColumns() == RHS->getNumColumns();
8646 }
8647 
8648 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
8649                                           QualType SecondVec) {
8650   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
8651   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
8652 
8653   if (hasSameUnqualifiedType(FirstVec, SecondVec))
8654     return true;
8655 
8656   // Treat Neon vector types and most AltiVec vector types as if they are the
8657   // equivalent GCC vector types.
8658   const auto *First = FirstVec->castAs<VectorType>();
8659   const auto *Second = SecondVec->castAs<VectorType>();
8660   if (First->getNumElements() == Second->getNumElements() &&
8661       hasSameType(First->getElementType(), Second->getElementType()) &&
8662       First->getVectorKind() != VectorType::AltiVecPixel &&
8663       First->getVectorKind() != VectorType::AltiVecBool &&
8664       Second->getVectorKind() != VectorType::AltiVecPixel &&
8665       Second->getVectorKind() != VectorType::AltiVecBool &&
8666       First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8667       First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
8668       Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8669       Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
8670     return true;
8671 
8672   return false;
8673 }
8674 
8675 /// getSVETypeSize - Return SVE vector or predicate register size.
8676 static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
8677   assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type");
8678   return Ty->getKind() == BuiltinType::SveBool
8679              ? Context.getLangOpts().ArmSveVectorBits / Context.getCharWidth()
8680              : Context.getLangOpts().ArmSveVectorBits;
8681 }
8682 
8683 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
8684                                        QualType SecondType) {
8685   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8686           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8687          "Expected SVE builtin type and vector type!");
8688 
8689   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
8690     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
8691       if (const auto *VT = SecondType->getAs<VectorType>()) {
8692         // Predicates have the same representation as uint8 so we also have to
8693         // check the kind to make these types incompatible.
8694         if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
8695           return BT->getKind() == BuiltinType::SveBool;
8696         else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
8697           return VT->getElementType().getCanonicalType() ==
8698                  FirstType->getSveEltType(*this);
8699         else if (VT->getVectorKind() == VectorType::GenericVector)
8700           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
8701                  hasSameType(VT->getElementType(),
8702                              getBuiltinVectorTypeInfo(BT).ElementType);
8703       }
8704     }
8705     return false;
8706   };
8707 
8708   return IsValidCast(FirstType, SecondType) ||
8709          IsValidCast(SecondType, FirstType);
8710 }
8711 
8712 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
8713                                           QualType SecondType) {
8714   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8715           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8716          "Expected SVE builtin type and vector type!");
8717 
8718   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
8719     const auto *BT = FirstType->getAs<BuiltinType>();
8720     if (!BT)
8721       return false;
8722 
8723     const auto *VecTy = SecondType->getAs<VectorType>();
8724     if (VecTy &&
8725         (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
8726          VecTy->getVectorKind() == VectorType::GenericVector)) {
8727       const LangOptions::LaxVectorConversionKind LVCKind =
8728           getLangOpts().getLaxVectorConversions();
8729 
8730       // Can not convert between sve predicates and sve vectors because of
8731       // different size.
8732       if (BT->getKind() == BuiltinType::SveBool &&
8733           VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector)
8734         return false;
8735 
8736       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
8737       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
8738       // converts to VLAT and VLAT implicitly converts to GNUT."
8739       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
8740       // predicates.
8741       if (VecTy->getVectorKind() == VectorType::GenericVector &&
8742           getTypeSize(SecondType) != getSVETypeSize(*this, BT))
8743         return false;
8744 
8745       // If -flax-vector-conversions=all is specified, the types are
8746       // certainly compatible.
8747       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
8748         return true;
8749 
8750       // If -flax-vector-conversions=integer is specified, the types are
8751       // compatible if the elements are integer types.
8752       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
8753         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
8754                FirstType->getSveEltType(*this)->isIntegerType();
8755     }
8756 
8757     return false;
8758   };
8759 
8760   return IsLaxCompatible(FirstType, SecondType) ||
8761          IsLaxCompatible(SecondType, FirstType);
8762 }
8763 
8764 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
8765   while (true) {
8766     // __strong id
8767     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
8768       if (Attr->getAttrKind() == attr::ObjCOwnership)
8769         return true;
8770 
8771       Ty = Attr->getModifiedType();
8772 
8773     // X *__strong (...)
8774     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
8775       Ty = Paren->getInnerType();
8776 
8777     // We do not want to look through typedefs, typeof(expr),
8778     // typeof(type), or any other way that the type is somehow
8779     // abstracted.
8780     } else {
8781       return false;
8782     }
8783   }
8784 }
8785 
8786 //===----------------------------------------------------------------------===//
8787 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
8788 //===----------------------------------------------------------------------===//
8789 
8790 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
8791 /// inheritance hierarchy of 'rProto'.
8792 bool
8793 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
8794                                            ObjCProtocolDecl *rProto) const {
8795   if (declaresSameEntity(lProto, rProto))
8796     return true;
8797   for (auto *PI : rProto->protocols())
8798     if (ProtocolCompatibleWithProtocol(lProto, PI))
8799       return true;
8800   return false;
8801 }
8802 
8803 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
8804 /// Class<pr1, ...>.
8805 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
8806     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
8807   for (auto *lhsProto : lhs->quals()) {
8808     bool match = false;
8809     for (auto *rhsProto : rhs->quals()) {
8810       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
8811         match = true;
8812         break;
8813       }
8814     }
8815     if (!match)
8816       return false;
8817   }
8818   return true;
8819 }
8820 
8821 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
8822 /// ObjCQualifiedIDType.
8823 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
8824     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
8825     bool compare) {
8826   // Allow id<P..> and an 'id' in all cases.
8827   if (lhs->isObjCIdType() || rhs->isObjCIdType())
8828     return true;
8829 
8830   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
8831   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
8832       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
8833     return false;
8834 
8835   if (lhs->isObjCQualifiedIdType()) {
8836     if (rhs->qual_empty()) {
8837       // If the RHS is a unqualified interface pointer "NSString*",
8838       // make sure we check the class hierarchy.
8839       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8840         for (auto *I : lhs->quals()) {
8841           // when comparing an id<P> on lhs with a static type on rhs,
8842           // see if static class implements all of id's protocols, directly or
8843           // through its super class and categories.
8844           if (!rhsID->ClassImplementsProtocol(I, true))
8845             return false;
8846         }
8847       }
8848       // If there are no qualifiers and no interface, we have an 'id'.
8849       return true;
8850     }
8851     // Both the right and left sides have qualifiers.
8852     for (auto *lhsProto : lhs->quals()) {
8853       bool match = false;
8854 
8855       // when comparing an id<P> on lhs with a static type on rhs,
8856       // see if static class implements all of id's protocols, directly or
8857       // through its super class and categories.
8858       for (auto *rhsProto : rhs->quals()) {
8859         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8860             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8861           match = true;
8862           break;
8863         }
8864       }
8865       // If the RHS is a qualified interface pointer "NSString<P>*",
8866       // make sure we check the class hierarchy.
8867       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8868         for (auto *I : lhs->quals()) {
8869           // when comparing an id<P> on lhs with a static type on rhs,
8870           // see if static class implements all of id's protocols, directly or
8871           // through its super class and categories.
8872           if (rhsID->ClassImplementsProtocol(I, true)) {
8873             match = true;
8874             break;
8875           }
8876         }
8877       }
8878       if (!match)
8879         return false;
8880     }
8881 
8882     return true;
8883   }
8884 
8885   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
8886 
8887   if (lhs->getInterfaceType()) {
8888     // If both the right and left sides have qualifiers.
8889     for (auto *lhsProto : lhs->quals()) {
8890       bool match = false;
8891 
8892       // when comparing an id<P> on rhs with a static type on lhs,
8893       // see if static class implements all of id's protocols, directly or
8894       // through its super class and categories.
8895       // First, lhs protocols in the qualifier list must be found, direct
8896       // or indirect in rhs's qualifier list or it is a mismatch.
8897       for (auto *rhsProto : rhs->quals()) {
8898         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8899             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8900           match = true;
8901           break;
8902         }
8903       }
8904       if (!match)
8905         return false;
8906     }
8907 
8908     // Static class's protocols, or its super class or category protocols
8909     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
8910     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
8911       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
8912       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
8913       // This is rather dubious but matches gcc's behavior. If lhs has
8914       // no type qualifier and its class has no static protocol(s)
8915       // assume that it is mismatch.
8916       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
8917         return false;
8918       for (auto *lhsProto : LHSInheritedProtocols) {
8919         bool match = false;
8920         for (auto *rhsProto : rhs->quals()) {
8921           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8922               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8923             match = true;
8924             break;
8925           }
8926         }
8927         if (!match)
8928           return false;
8929       }
8930     }
8931     return true;
8932   }
8933   return false;
8934 }
8935 
8936 /// canAssignObjCInterfaces - Return true if the two interface types are
8937 /// compatible for assignment from RHS to LHS.  This handles validation of any
8938 /// protocol qualifiers on the LHS or RHS.
8939 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
8940                                          const ObjCObjectPointerType *RHSOPT) {
8941   const ObjCObjectType* LHS = LHSOPT->getObjectType();
8942   const ObjCObjectType* RHS = RHSOPT->getObjectType();
8943 
8944   // If either type represents the built-in 'id' type, return true.
8945   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
8946     return true;
8947 
8948   // Function object that propagates a successful result or handles
8949   // __kindof types.
8950   auto finish = [&](bool succeeded) -> bool {
8951     if (succeeded)
8952       return true;
8953 
8954     if (!RHS->isKindOfType())
8955       return false;
8956 
8957     // Strip off __kindof and protocol qualifiers, then check whether
8958     // we can assign the other way.
8959     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8960                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
8961   };
8962 
8963   // Casts from or to id<P> are allowed when the other side has compatible
8964   // protocols.
8965   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
8966     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
8967   }
8968 
8969   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
8970   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
8971     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
8972   }
8973 
8974   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
8975   if (LHS->isObjCClass() && RHS->isObjCClass()) {
8976     return true;
8977   }
8978 
8979   // If we have 2 user-defined types, fall into that path.
8980   if (LHS->getInterface() && RHS->getInterface()) {
8981     return finish(canAssignObjCInterfaces(LHS, RHS));
8982   }
8983 
8984   return false;
8985 }
8986 
8987 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
8988 /// for providing type-safety for objective-c pointers used to pass/return
8989 /// arguments in block literals. When passed as arguments, passing 'A*' where
8990 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
8991 /// not OK. For the return type, the opposite is not OK.
8992 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
8993                                          const ObjCObjectPointerType *LHSOPT,
8994                                          const ObjCObjectPointerType *RHSOPT,
8995                                          bool BlockReturnType) {
8996 
8997   // Function object that propagates a successful result or handles
8998   // __kindof types.
8999   auto finish = [&](bool succeeded) -> bool {
9000     if (succeeded)
9001       return true;
9002 
9003     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9004     if (!Expected->isKindOfType())
9005       return false;
9006 
9007     // Strip off __kindof and protocol qualifiers, then check whether
9008     // we can assign the other way.
9009     return canAssignObjCInterfacesInBlockPointer(
9010              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9011              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9012              BlockReturnType);
9013   };
9014 
9015   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9016     return true;
9017 
9018   if (LHSOPT->isObjCBuiltinType()) {
9019     return finish(RHSOPT->isObjCBuiltinType() ||
9020                   RHSOPT->isObjCQualifiedIdType());
9021   }
9022 
9023   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9024     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9025       // Use for block parameters previous type checking for compatibility.
9026       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9027                     // Or corrected type checking as in non-compat mode.
9028                     (!BlockReturnType &&
9029                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9030     else
9031       return finish(ObjCQualifiedIdTypesAreCompatible(
9032           (BlockReturnType ? LHSOPT : RHSOPT),
9033           (BlockReturnType ? RHSOPT : LHSOPT), false));
9034   }
9035 
9036   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9037   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9038   if (LHS && RHS)  { // We have 2 user-defined types.
9039     if (LHS != RHS) {
9040       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9041         return finish(BlockReturnType);
9042       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9043         return finish(!BlockReturnType);
9044     }
9045     else
9046       return true;
9047   }
9048   return false;
9049 }
9050 
9051 /// Comparison routine for Objective-C protocols to be used with
9052 /// llvm::array_pod_sort.
9053 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9054                                       ObjCProtocolDecl * const *rhs) {
9055   return (*lhs)->getName().compare((*rhs)->getName());
9056 }
9057 
9058 /// getIntersectionOfProtocols - This routine finds the intersection of set
9059 /// of protocols inherited from two distinct objective-c pointer objects with
9060 /// the given common base.
9061 /// It is used to build composite qualifier list of the composite type of
9062 /// the conditional expression involving two objective-c pointer objects.
9063 static
9064 void getIntersectionOfProtocols(ASTContext &Context,
9065                                 const ObjCInterfaceDecl *CommonBase,
9066                                 const ObjCObjectPointerType *LHSOPT,
9067                                 const ObjCObjectPointerType *RHSOPT,
9068       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9069 
9070   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9071   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9072   assert(LHS->getInterface() && "LHS must have an interface base");
9073   assert(RHS->getInterface() && "RHS must have an interface base");
9074 
9075   // Add all of the protocols for the LHS.
9076   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9077 
9078   // Start with the protocol qualifiers.
9079   for (auto proto : LHS->quals()) {
9080     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9081   }
9082 
9083   // Also add the protocols associated with the LHS interface.
9084   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9085 
9086   // Add all of the protocols for the RHS.
9087   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9088 
9089   // Start with the protocol qualifiers.
9090   for (auto proto : RHS->quals()) {
9091     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9092   }
9093 
9094   // Also add the protocols associated with the RHS interface.
9095   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9096 
9097   // Compute the intersection of the collected protocol sets.
9098   for (auto proto : LHSProtocolSet) {
9099     if (RHSProtocolSet.count(proto))
9100       IntersectionSet.push_back(proto);
9101   }
9102 
9103   // Compute the set of protocols that is implied by either the common type or
9104   // the protocols within the intersection.
9105   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9106   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9107 
9108   // Remove any implied protocols from the list of inherited protocols.
9109   if (!ImpliedProtocols.empty()) {
9110     IntersectionSet.erase(
9111       std::remove_if(IntersectionSet.begin(),
9112                      IntersectionSet.end(),
9113                      [&](ObjCProtocolDecl *proto) -> bool {
9114                        return ImpliedProtocols.count(proto) > 0;
9115                      }),
9116       IntersectionSet.end());
9117   }
9118 
9119   // Sort the remaining protocols by name.
9120   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9121                        compareObjCProtocolsByName);
9122 }
9123 
9124 /// Determine whether the first type is a subtype of the second.
9125 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9126                                      QualType rhs) {
9127   // Common case: two object pointers.
9128   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9129   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9130   if (lhsOPT && rhsOPT)
9131     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9132 
9133   // Two block pointers.
9134   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9135   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9136   if (lhsBlock && rhsBlock)
9137     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9138 
9139   // If either is an unqualified 'id' and the other is a block, it's
9140   // acceptable.
9141   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9142       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9143     return true;
9144 
9145   return false;
9146 }
9147 
9148 // Check that the given Objective-C type argument lists are equivalent.
9149 static bool sameObjCTypeArgs(ASTContext &ctx,
9150                              const ObjCInterfaceDecl *iface,
9151                              ArrayRef<QualType> lhsArgs,
9152                              ArrayRef<QualType> rhsArgs,
9153                              bool stripKindOf) {
9154   if (lhsArgs.size() != rhsArgs.size())
9155     return false;
9156 
9157   ObjCTypeParamList *typeParams = iface->getTypeParamList();
9158   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9159     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9160       continue;
9161 
9162     switch (typeParams->begin()[i]->getVariance()) {
9163     case ObjCTypeParamVariance::Invariant:
9164       if (!stripKindOf ||
9165           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9166                            rhsArgs[i].stripObjCKindOfType(ctx))) {
9167         return false;
9168       }
9169       break;
9170 
9171     case ObjCTypeParamVariance::Covariant:
9172       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9173         return false;
9174       break;
9175 
9176     case ObjCTypeParamVariance::Contravariant:
9177       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9178         return false;
9179       break;
9180     }
9181   }
9182 
9183   return true;
9184 }
9185 
9186 QualType ASTContext::areCommonBaseCompatible(
9187            const ObjCObjectPointerType *Lptr,
9188            const ObjCObjectPointerType *Rptr) {
9189   const ObjCObjectType *LHS = Lptr->getObjectType();
9190   const ObjCObjectType *RHS = Rptr->getObjectType();
9191   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
9192   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
9193 
9194   if (!LDecl || !RDecl)
9195     return {};
9196 
9197   // When either LHS or RHS is a kindof type, we should return a kindof type.
9198   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
9199   // kindof(A).
9200   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
9201 
9202   // Follow the left-hand side up the class hierarchy until we either hit a
9203   // root or find the RHS. Record the ancestors in case we don't find it.
9204   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
9205     LHSAncestors;
9206   while (true) {
9207     // Record this ancestor. We'll need this if the common type isn't in the
9208     // path from the LHS to the root.
9209     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
9210 
9211     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
9212       // Get the type arguments.
9213       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
9214       bool anyChanges = false;
9215       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9216         // Both have type arguments, compare them.
9217         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9218                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9219                               /*stripKindOf=*/true))
9220           return {};
9221       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9222         // If only one has type arguments, the result will not have type
9223         // arguments.
9224         LHSTypeArgs = {};
9225         anyChanges = true;
9226       }
9227 
9228       // Compute the intersection of protocols.
9229       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9230       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
9231                                  Protocols);
9232       if (!Protocols.empty())
9233         anyChanges = true;
9234 
9235       // If anything in the LHS will have changed, build a new result type.
9236       // If we need to return a kindof type but LHS is not a kindof type, we
9237       // build a new result type.
9238       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
9239         QualType Result = getObjCInterfaceType(LHS->getInterface());
9240         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
9241                                    anyKindOf || LHS->isKindOfType());
9242         return getObjCObjectPointerType(Result);
9243       }
9244 
9245       return getObjCObjectPointerType(QualType(LHS, 0));
9246     }
9247 
9248     // Find the superclass.
9249     QualType LHSSuperType = LHS->getSuperClassType();
9250     if (LHSSuperType.isNull())
9251       break;
9252 
9253     LHS = LHSSuperType->castAs<ObjCObjectType>();
9254   }
9255 
9256   // We didn't find anything by following the LHS to its root; now check
9257   // the RHS against the cached set of ancestors.
9258   while (true) {
9259     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
9260     if (KnownLHS != LHSAncestors.end()) {
9261       LHS = KnownLHS->second;
9262 
9263       // Get the type arguments.
9264       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
9265       bool anyChanges = false;
9266       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9267         // Both have type arguments, compare them.
9268         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9269                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9270                               /*stripKindOf=*/true))
9271           return {};
9272       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9273         // If only one has type arguments, the result will not have type
9274         // arguments.
9275         RHSTypeArgs = {};
9276         anyChanges = true;
9277       }
9278 
9279       // Compute the intersection of protocols.
9280       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9281       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
9282                                  Protocols);
9283       if (!Protocols.empty())
9284         anyChanges = true;
9285 
9286       // If we need to return a kindof type but RHS is not a kindof type, we
9287       // build a new result type.
9288       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
9289         QualType Result = getObjCInterfaceType(RHS->getInterface());
9290         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
9291                                    anyKindOf || RHS->isKindOfType());
9292         return getObjCObjectPointerType(Result);
9293       }
9294 
9295       return getObjCObjectPointerType(QualType(RHS, 0));
9296     }
9297 
9298     // Find the superclass of the RHS.
9299     QualType RHSSuperType = RHS->getSuperClassType();
9300     if (RHSSuperType.isNull())
9301       break;
9302 
9303     RHS = RHSSuperType->castAs<ObjCObjectType>();
9304   }
9305 
9306   return {};
9307 }
9308 
9309 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
9310                                          const ObjCObjectType *RHS) {
9311   assert(LHS->getInterface() && "LHS is not an interface type");
9312   assert(RHS->getInterface() && "RHS is not an interface type");
9313 
9314   // Verify that the base decls are compatible: the RHS must be a subclass of
9315   // the LHS.
9316   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
9317   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
9318   if (!IsSuperClass)
9319     return false;
9320 
9321   // If the LHS has protocol qualifiers, determine whether all of them are
9322   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
9323   // LHS).
9324   if (LHS->getNumProtocols() > 0) {
9325     // OK if conversion of LHS to SuperClass results in narrowing of types
9326     // ; i.e., SuperClass may implement at least one of the protocols
9327     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
9328     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
9329     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
9330     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
9331     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
9332     // qualifiers.
9333     for (auto *RHSPI : RHS->quals())
9334       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
9335     // If there is no protocols associated with RHS, it is not a match.
9336     if (SuperClassInheritedProtocols.empty())
9337       return false;
9338 
9339     for (const auto *LHSProto : LHS->quals()) {
9340       bool SuperImplementsProtocol = false;
9341       for (auto *SuperClassProto : SuperClassInheritedProtocols)
9342         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
9343           SuperImplementsProtocol = true;
9344           break;
9345         }
9346       if (!SuperImplementsProtocol)
9347         return false;
9348     }
9349   }
9350 
9351   // If the LHS is specialized, we may need to check type arguments.
9352   if (LHS->isSpecialized()) {
9353     // Follow the superclass chain until we've matched the LHS class in the
9354     // hierarchy. This substitutes type arguments through.
9355     const ObjCObjectType *RHSSuper = RHS;
9356     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
9357       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
9358 
9359     // If the RHS is specializd, compare type arguments.
9360     if (RHSSuper->isSpecialized() &&
9361         !sameObjCTypeArgs(*this, LHS->getInterface(),
9362                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
9363                           /*stripKindOf=*/true)) {
9364       return false;
9365     }
9366   }
9367 
9368   return true;
9369 }
9370 
9371 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
9372   // get the "pointed to" types
9373   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
9374   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
9375 
9376   if (!LHSOPT || !RHSOPT)
9377     return false;
9378 
9379   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
9380          canAssignObjCInterfaces(RHSOPT, LHSOPT);
9381 }
9382 
9383 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
9384   return canAssignObjCInterfaces(
9385       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
9386       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
9387 }
9388 
9389 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
9390 /// both shall have the identically qualified version of a compatible type.
9391 /// C99 6.2.7p1: Two types have compatible types if their types are the
9392 /// same. See 6.7.[2,3,5] for additional rules.
9393 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
9394                                     bool CompareUnqualified) {
9395   if (getLangOpts().CPlusPlus)
9396     return hasSameType(LHS, RHS);
9397 
9398   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
9399 }
9400 
9401 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
9402   return typesAreCompatible(LHS, RHS);
9403 }
9404 
9405 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
9406   return !mergeTypes(LHS, RHS, true).isNull();
9407 }
9408 
9409 /// mergeTransparentUnionType - if T is a transparent union type and a member
9410 /// of T is compatible with SubType, return the merged type, else return
9411 /// QualType()
9412 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
9413                                                bool OfBlockPointer,
9414                                                bool Unqualified) {
9415   if (const RecordType *UT = T->getAsUnionType()) {
9416     RecordDecl *UD = UT->getDecl();
9417     if (UD->hasAttr<TransparentUnionAttr>()) {
9418       for (const auto *I : UD->fields()) {
9419         QualType ET = I->getType().getUnqualifiedType();
9420         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
9421         if (!MT.isNull())
9422           return MT;
9423       }
9424     }
9425   }
9426 
9427   return {};
9428 }
9429 
9430 /// mergeFunctionParameterTypes - merge two types which appear as function
9431 /// parameter types
9432 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
9433                                                  bool OfBlockPointer,
9434                                                  bool Unqualified) {
9435   // GNU extension: two types are compatible if they appear as a function
9436   // argument, one of the types is a transparent union type and the other
9437   // type is compatible with a union member
9438   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
9439                                               Unqualified);
9440   if (!lmerge.isNull())
9441     return lmerge;
9442 
9443   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
9444                                               Unqualified);
9445   if (!rmerge.isNull())
9446     return rmerge;
9447 
9448   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
9449 }
9450 
9451 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
9452                                         bool OfBlockPointer, bool Unqualified,
9453                                         bool AllowCXX) {
9454   const auto *lbase = lhs->castAs<FunctionType>();
9455   const auto *rbase = rhs->castAs<FunctionType>();
9456   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
9457   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
9458   bool allLTypes = true;
9459   bool allRTypes = true;
9460 
9461   // Check return type
9462   QualType retType;
9463   if (OfBlockPointer) {
9464     QualType RHS = rbase->getReturnType();
9465     QualType LHS = lbase->getReturnType();
9466     bool UnqualifiedResult = Unqualified;
9467     if (!UnqualifiedResult)
9468       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
9469     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
9470   }
9471   else
9472     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
9473                          Unqualified);
9474   if (retType.isNull())
9475     return {};
9476 
9477   if (Unqualified)
9478     retType = retType.getUnqualifiedType();
9479 
9480   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
9481   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
9482   if (Unqualified) {
9483     LRetType = LRetType.getUnqualifiedType();
9484     RRetType = RRetType.getUnqualifiedType();
9485   }
9486 
9487   if (getCanonicalType(retType) != LRetType)
9488     allLTypes = false;
9489   if (getCanonicalType(retType) != RRetType)
9490     allRTypes = false;
9491 
9492   // FIXME: double check this
9493   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
9494   //                           rbase->getRegParmAttr() != 0 &&
9495   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
9496   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
9497   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
9498 
9499   // Compatible functions must have compatible calling conventions
9500   if (lbaseInfo.getCC() != rbaseInfo.getCC())
9501     return {};
9502 
9503   // Regparm is part of the calling convention.
9504   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
9505     return {};
9506   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
9507     return {};
9508 
9509   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
9510     return {};
9511   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
9512     return {};
9513   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
9514     return {};
9515 
9516   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
9517   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
9518 
9519   if (lbaseInfo.getNoReturn() != NoReturn)
9520     allLTypes = false;
9521   if (rbaseInfo.getNoReturn() != NoReturn)
9522     allRTypes = false;
9523 
9524   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
9525 
9526   if (lproto && rproto) { // two C99 style function prototypes
9527     assert((AllowCXX ||
9528             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
9529            "C++ shouldn't be here");
9530     // Compatible functions must have the same number of parameters
9531     if (lproto->getNumParams() != rproto->getNumParams())
9532       return {};
9533 
9534     // Variadic and non-variadic functions aren't compatible
9535     if (lproto->isVariadic() != rproto->isVariadic())
9536       return {};
9537 
9538     if (lproto->getMethodQuals() != rproto->getMethodQuals())
9539       return {};
9540 
9541     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
9542     bool canUseLeft, canUseRight;
9543     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
9544                                newParamInfos))
9545       return {};
9546 
9547     if (!canUseLeft)
9548       allLTypes = false;
9549     if (!canUseRight)
9550       allRTypes = false;
9551 
9552     // Check parameter type compatibility
9553     SmallVector<QualType, 10> types;
9554     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
9555       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
9556       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
9557       QualType paramType = mergeFunctionParameterTypes(
9558           lParamType, rParamType, OfBlockPointer, Unqualified);
9559       if (paramType.isNull())
9560         return {};
9561 
9562       if (Unqualified)
9563         paramType = paramType.getUnqualifiedType();
9564 
9565       types.push_back(paramType);
9566       if (Unqualified) {
9567         lParamType = lParamType.getUnqualifiedType();
9568         rParamType = rParamType.getUnqualifiedType();
9569       }
9570 
9571       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
9572         allLTypes = false;
9573       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
9574         allRTypes = false;
9575     }
9576 
9577     if (allLTypes) return lhs;
9578     if (allRTypes) return rhs;
9579 
9580     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
9581     EPI.ExtInfo = einfo;
9582     EPI.ExtParameterInfos =
9583         newParamInfos.empty() ? nullptr : newParamInfos.data();
9584     return getFunctionType(retType, types, EPI);
9585   }
9586 
9587   if (lproto) allRTypes = false;
9588   if (rproto) allLTypes = false;
9589 
9590   const FunctionProtoType *proto = lproto ? lproto : rproto;
9591   if (proto) {
9592     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
9593     if (proto->isVariadic())
9594       return {};
9595     // Check that the types are compatible with the types that
9596     // would result from default argument promotions (C99 6.7.5.3p15).
9597     // The only types actually affected are promotable integer
9598     // types and floats, which would be passed as a different
9599     // type depending on whether the prototype is visible.
9600     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
9601       QualType paramTy = proto->getParamType(i);
9602 
9603       // Look at the converted type of enum types, since that is the type used
9604       // to pass enum values.
9605       if (const auto *Enum = paramTy->getAs<EnumType>()) {
9606         paramTy = Enum->getDecl()->getIntegerType();
9607         if (paramTy.isNull())
9608           return {};
9609       }
9610 
9611       if (paramTy->isPromotableIntegerType() ||
9612           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
9613         return {};
9614     }
9615 
9616     if (allLTypes) return lhs;
9617     if (allRTypes) return rhs;
9618 
9619     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
9620     EPI.ExtInfo = einfo;
9621     return getFunctionType(retType, proto->getParamTypes(), EPI);
9622   }
9623 
9624   if (allLTypes) return lhs;
9625   if (allRTypes) return rhs;
9626   return getFunctionNoProtoType(retType, einfo);
9627 }
9628 
9629 /// Given that we have an enum type and a non-enum type, try to merge them.
9630 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
9631                                      QualType other, bool isBlockReturnType) {
9632   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
9633   // a signed integer type, or an unsigned integer type.
9634   // Compatibility is based on the underlying type, not the promotion
9635   // type.
9636   QualType underlyingType = ET->getDecl()->getIntegerType();
9637   if (underlyingType.isNull())
9638     return {};
9639   if (Context.hasSameType(underlyingType, other))
9640     return other;
9641 
9642   // In block return types, we're more permissive and accept any
9643   // integral type of the same size.
9644   if (isBlockReturnType && other->isIntegerType() &&
9645       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
9646     return other;
9647 
9648   return {};
9649 }
9650 
9651 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
9652                                 bool OfBlockPointer,
9653                                 bool Unqualified, bool BlockReturnType) {
9654   // For C++ we will not reach this code with reference types (see below),
9655   // for OpenMP variant call overloading we might.
9656   //
9657   // C++ [expr]: If an expression initially has the type "reference to T", the
9658   // type is adjusted to "T" prior to any further analysis, the expression
9659   // designates the object or function denoted by the reference, and the
9660   // expression is an lvalue unless the reference is an rvalue reference and
9661   // the expression is a function call (possibly inside parentheses).
9662   if (LangOpts.OpenMP && LHS->getAs<ReferenceType>() &&
9663       RHS->getAs<ReferenceType>() && LHS->getTypeClass() == RHS->getTypeClass())
9664     return mergeTypes(LHS->getAs<ReferenceType>()->getPointeeType(),
9665                       RHS->getAs<ReferenceType>()->getPointeeType(),
9666                       OfBlockPointer, Unqualified, BlockReturnType);
9667   if (LHS->getAs<ReferenceType>() || RHS->getAs<ReferenceType>())
9668     return {};
9669 
9670   if (Unqualified) {
9671     LHS = LHS.getUnqualifiedType();
9672     RHS = RHS.getUnqualifiedType();
9673   }
9674 
9675   QualType LHSCan = getCanonicalType(LHS),
9676            RHSCan = getCanonicalType(RHS);
9677 
9678   // If two types are identical, they are compatible.
9679   if (LHSCan == RHSCan)
9680     return LHS;
9681 
9682   // If the qualifiers are different, the types aren't compatible... mostly.
9683   Qualifiers LQuals = LHSCan.getLocalQualifiers();
9684   Qualifiers RQuals = RHSCan.getLocalQualifiers();
9685   if (LQuals != RQuals) {
9686     // If any of these qualifiers are different, we have a type
9687     // mismatch.
9688     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9689         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
9690         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
9691         LQuals.hasUnaligned() != RQuals.hasUnaligned())
9692       return {};
9693 
9694     // Exactly one GC qualifier difference is allowed: __strong is
9695     // okay if the other type has no GC qualifier but is an Objective
9696     // C object pointer (i.e. implicitly strong by default).  We fix
9697     // this by pretending that the unqualified type was actually
9698     // qualified __strong.
9699     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9700     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9701     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9702 
9703     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9704       return {};
9705 
9706     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
9707       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
9708     }
9709     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
9710       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
9711     }
9712     return {};
9713   }
9714 
9715   // Okay, qualifiers are equal.
9716 
9717   Type::TypeClass LHSClass = LHSCan->getTypeClass();
9718   Type::TypeClass RHSClass = RHSCan->getTypeClass();
9719 
9720   // We want to consider the two function types to be the same for these
9721   // comparisons, just force one to the other.
9722   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
9723   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
9724 
9725   // Same as above for arrays
9726   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
9727     LHSClass = Type::ConstantArray;
9728   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
9729     RHSClass = Type::ConstantArray;
9730 
9731   // ObjCInterfaces are just specialized ObjCObjects.
9732   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
9733   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
9734 
9735   // Canonicalize ExtVector -> Vector.
9736   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
9737   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
9738 
9739   // If the canonical type classes don't match.
9740   if (LHSClass != RHSClass) {
9741     // Note that we only have special rules for turning block enum
9742     // returns into block int returns, not vice-versa.
9743     if (const auto *ETy = LHS->getAs<EnumType>()) {
9744       return mergeEnumWithInteger(*this, ETy, RHS, false);
9745     }
9746     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
9747       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
9748     }
9749     // allow block pointer type to match an 'id' type.
9750     if (OfBlockPointer && !BlockReturnType) {
9751        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
9752          return LHS;
9753       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
9754         return RHS;
9755     }
9756 
9757     return {};
9758   }
9759 
9760   // The canonical type classes match.
9761   switch (LHSClass) {
9762 #define TYPE(Class, Base)
9763 #define ABSTRACT_TYPE(Class, Base)
9764 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
9765 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
9766 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
9767 #include "clang/AST/TypeNodes.inc"
9768     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
9769 
9770   case Type::Auto:
9771   case Type::DeducedTemplateSpecialization:
9772   case Type::LValueReference:
9773   case Type::RValueReference:
9774   case Type::MemberPointer:
9775     llvm_unreachable("C++ should never be in mergeTypes");
9776 
9777   case Type::ObjCInterface:
9778   case Type::IncompleteArray:
9779   case Type::VariableArray:
9780   case Type::FunctionProto:
9781   case Type::ExtVector:
9782     llvm_unreachable("Types are eliminated above");
9783 
9784   case Type::Pointer:
9785   {
9786     // Merge two pointer types, while trying to preserve typedef info
9787     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
9788     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
9789     if (Unqualified) {
9790       LHSPointee = LHSPointee.getUnqualifiedType();
9791       RHSPointee = RHSPointee.getUnqualifiedType();
9792     }
9793     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
9794                                      Unqualified);
9795     if (ResultType.isNull())
9796       return {};
9797     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9798       return LHS;
9799     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9800       return RHS;
9801     return getPointerType(ResultType);
9802   }
9803   case Type::BlockPointer:
9804   {
9805     // Merge two block pointer types, while trying to preserve typedef info
9806     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
9807     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
9808     if (Unqualified) {
9809       LHSPointee = LHSPointee.getUnqualifiedType();
9810       RHSPointee = RHSPointee.getUnqualifiedType();
9811     }
9812     if (getLangOpts().OpenCL) {
9813       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
9814       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
9815       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
9816       // 6.12.5) thus the following check is asymmetric.
9817       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
9818         return {};
9819       LHSPteeQual.removeAddressSpace();
9820       RHSPteeQual.removeAddressSpace();
9821       LHSPointee =
9822           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
9823       RHSPointee =
9824           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
9825     }
9826     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
9827                                      Unqualified);
9828     if (ResultType.isNull())
9829       return {};
9830     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9831       return LHS;
9832     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9833       return RHS;
9834     return getBlockPointerType(ResultType);
9835   }
9836   case Type::Atomic:
9837   {
9838     // Merge two pointer types, while trying to preserve typedef info
9839     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
9840     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
9841     if (Unqualified) {
9842       LHSValue = LHSValue.getUnqualifiedType();
9843       RHSValue = RHSValue.getUnqualifiedType();
9844     }
9845     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
9846                                      Unqualified);
9847     if (ResultType.isNull())
9848       return {};
9849     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
9850       return LHS;
9851     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
9852       return RHS;
9853     return getAtomicType(ResultType);
9854   }
9855   case Type::ConstantArray:
9856   {
9857     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
9858     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
9859     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
9860       return {};
9861 
9862     QualType LHSElem = getAsArrayType(LHS)->getElementType();
9863     QualType RHSElem = getAsArrayType(RHS)->getElementType();
9864     if (Unqualified) {
9865       LHSElem = LHSElem.getUnqualifiedType();
9866       RHSElem = RHSElem.getUnqualifiedType();
9867     }
9868 
9869     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
9870     if (ResultType.isNull())
9871       return {};
9872 
9873     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
9874     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
9875 
9876     // If either side is a variable array, and both are complete, check whether
9877     // the current dimension is definite.
9878     if (LVAT || RVAT) {
9879       auto SizeFetch = [this](const VariableArrayType* VAT,
9880           const ConstantArrayType* CAT)
9881           -> std::pair<bool,llvm::APInt> {
9882         if (VAT) {
9883           Optional<llvm::APSInt> TheInt;
9884           Expr *E = VAT->getSizeExpr();
9885           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
9886             return std::make_pair(true, *TheInt);
9887           return std::make_pair(false, llvm::APSInt());
9888         }
9889         if (CAT)
9890           return std::make_pair(true, CAT->getSize());
9891         return std::make_pair(false, llvm::APInt());
9892       };
9893 
9894       bool HaveLSize, HaveRSize;
9895       llvm::APInt LSize, RSize;
9896       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
9897       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
9898       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
9899         return {}; // Definite, but unequal, array dimension
9900     }
9901 
9902     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9903       return LHS;
9904     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9905       return RHS;
9906     if (LCAT)
9907       return getConstantArrayType(ResultType, LCAT->getSize(),
9908                                   LCAT->getSizeExpr(),
9909                                   ArrayType::ArraySizeModifier(), 0);
9910     if (RCAT)
9911       return getConstantArrayType(ResultType, RCAT->getSize(),
9912                                   RCAT->getSizeExpr(),
9913                                   ArrayType::ArraySizeModifier(), 0);
9914     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9915       return LHS;
9916     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9917       return RHS;
9918     if (LVAT) {
9919       // FIXME: This isn't correct! But tricky to implement because
9920       // the array's size has to be the size of LHS, but the type
9921       // has to be different.
9922       return LHS;
9923     }
9924     if (RVAT) {
9925       // FIXME: This isn't correct! But tricky to implement because
9926       // the array's size has to be the size of RHS, but the type
9927       // has to be different.
9928       return RHS;
9929     }
9930     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
9931     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
9932     return getIncompleteArrayType(ResultType,
9933                                   ArrayType::ArraySizeModifier(), 0);
9934   }
9935   case Type::FunctionNoProto:
9936     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
9937   case Type::Record:
9938   case Type::Enum:
9939     return {};
9940   case Type::Builtin:
9941     // Only exactly equal builtin types are compatible, which is tested above.
9942     return {};
9943   case Type::Complex:
9944     // Distinct complex types are incompatible.
9945     return {};
9946   case Type::Vector:
9947     // FIXME: The merged type should be an ExtVector!
9948     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
9949                              RHSCan->castAs<VectorType>()))
9950       return LHS;
9951     return {};
9952   case Type::ConstantMatrix:
9953     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
9954                              RHSCan->castAs<ConstantMatrixType>()))
9955       return LHS;
9956     return {};
9957   case Type::ObjCObject: {
9958     // Check if the types are assignment compatible.
9959     // FIXME: This should be type compatibility, e.g. whether
9960     // "LHS x; RHS x;" at global scope is legal.
9961     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
9962                                 RHS->castAs<ObjCObjectType>()))
9963       return LHS;
9964     return {};
9965   }
9966   case Type::ObjCObjectPointer:
9967     if (OfBlockPointer) {
9968       if (canAssignObjCInterfacesInBlockPointer(
9969               LHS->castAs<ObjCObjectPointerType>(),
9970               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
9971         return LHS;
9972       return {};
9973     }
9974     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
9975                                 RHS->castAs<ObjCObjectPointerType>()))
9976       return LHS;
9977     return {};
9978   case Type::Pipe:
9979     assert(LHS != RHS &&
9980            "Equivalent pipe types should have already been handled!");
9981     return {};
9982   case Type::ExtInt: {
9983     // Merge two ext-int types, while trying to preserve typedef info.
9984     bool LHSUnsigned  = LHS->castAs<ExtIntType>()->isUnsigned();
9985     bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned();
9986     unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits();
9987     unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits();
9988 
9989     // Like unsigned/int, shouldn't have a type if they dont match.
9990     if (LHSUnsigned != RHSUnsigned)
9991       return {};
9992 
9993     if (LHSBits != RHSBits)
9994       return {};
9995     return LHS;
9996   }
9997   }
9998 
9999   llvm_unreachable("Invalid Type::Class!");
10000 }
10001 
10002 bool ASTContext::mergeExtParameterInfo(
10003     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10004     bool &CanUseFirst, bool &CanUseSecond,
10005     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10006   assert(NewParamInfos.empty() && "param info list not empty");
10007   CanUseFirst = CanUseSecond = true;
10008   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10009   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10010 
10011   // Fast path: if the first type doesn't have ext parameter infos,
10012   // we match if and only if the second type also doesn't have them.
10013   if (!FirstHasInfo && !SecondHasInfo)
10014     return true;
10015 
10016   bool NeedParamInfo = false;
10017   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10018                           : SecondFnType->getExtParameterInfos().size();
10019 
10020   for (size_t I = 0; I < E; ++I) {
10021     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10022     if (FirstHasInfo)
10023       FirstParam = FirstFnType->getExtParameterInfo(I);
10024     if (SecondHasInfo)
10025       SecondParam = SecondFnType->getExtParameterInfo(I);
10026 
10027     // Cannot merge unless everything except the noescape flag matches.
10028     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10029       return false;
10030 
10031     bool FirstNoEscape = FirstParam.isNoEscape();
10032     bool SecondNoEscape = SecondParam.isNoEscape();
10033     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10034     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10035     if (NewParamInfos.back().getOpaqueValue())
10036       NeedParamInfo = true;
10037     if (FirstNoEscape != IsNoEscape)
10038       CanUseFirst = false;
10039     if (SecondNoEscape != IsNoEscape)
10040       CanUseSecond = false;
10041   }
10042 
10043   if (!NeedParamInfo)
10044     NewParamInfos.clear();
10045 
10046   return true;
10047 }
10048 
10049 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10050   ObjCLayouts[CD] = nullptr;
10051 }
10052 
10053 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10054 /// 'RHS' attributes and returns the merged version; including for function
10055 /// return types.
10056 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10057   QualType LHSCan = getCanonicalType(LHS),
10058   RHSCan = getCanonicalType(RHS);
10059   // If two types are identical, they are compatible.
10060   if (LHSCan == RHSCan)
10061     return LHS;
10062   if (RHSCan->isFunctionType()) {
10063     if (!LHSCan->isFunctionType())
10064       return {};
10065     QualType OldReturnType =
10066         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10067     QualType NewReturnType =
10068         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10069     QualType ResReturnType =
10070       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10071     if (ResReturnType.isNull())
10072       return {};
10073     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10074       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10075       // In either case, use OldReturnType to build the new function type.
10076       const auto *F = LHS->castAs<FunctionType>();
10077       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10078         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10079         EPI.ExtInfo = getFunctionExtInfo(LHS);
10080         QualType ResultType =
10081             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10082         return ResultType;
10083       }
10084     }
10085     return {};
10086   }
10087 
10088   // If the qualifiers are different, the types can still be merged.
10089   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10090   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10091   if (LQuals != RQuals) {
10092     // If any of these qualifiers are different, we have a type mismatch.
10093     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10094         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10095       return {};
10096 
10097     // Exactly one GC qualifier difference is allowed: __strong is
10098     // okay if the other type has no GC qualifier but is an Objective
10099     // C object pointer (i.e. implicitly strong by default).  We fix
10100     // this by pretending that the unqualified type was actually
10101     // qualified __strong.
10102     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10103     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10104     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10105 
10106     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10107       return {};
10108 
10109     if (GC_L == Qualifiers::Strong)
10110       return LHS;
10111     if (GC_R == Qualifiers::Strong)
10112       return RHS;
10113     return {};
10114   }
10115 
10116   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10117     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10118     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10119     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10120     if (ResQT == LHSBaseQT)
10121       return LHS;
10122     if (ResQT == RHSBaseQT)
10123       return RHS;
10124   }
10125   return {};
10126 }
10127 
10128 //===----------------------------------------------------------------------===//
10129 //                         Integer Predicates
10130 //===----------------------------------------------------------------------===//
10131 
10132 unsigned ASTContext::getIntWidth(QualType T) const {
10133   if (const auto *ET = T->getAs<EnumType>())
10134     T = ET->getDecl()->getIntegerType();
10135   if (T->isBooleanType())
10136     return 1;
10137   if(const auto *EIT = T->getAs<ExtIntType>())
10138     return EIT->getNumBits();
10139   // For builtin types, just use the standard type sizing method
10140   return (unsigned)getTypeSize(T);
10141 }
10142 
10143 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10144   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
10145          "Unexpected type");
10146 
10147   // Turn <4 x signed int> -> <4 x unsigned int>
10148   if (const auto *VTy = T->getAs<VectorType>())
10149     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
10150                          VTy->getNumElements(), VTy->getVectorKind());
10151 
10152   // For _ExtInt, return an unsigned _ExtInt with same width.
10153   if (const auto *EITy = T->getAs<ExtIntType>())
10154     return getExtIntType(/*IsUnsigned=*/true, EITy->getNumBits());
10155 
10156   // For enums, get the underlying integer type of the enum, and let the general
10157   // integer type signchanging code handle it.
10158   if (const auto *ETy = T->getAs<EnumType>())
10159     T = ETy->getDecl()->getIntegerType();
10160 
10161   switch (T->castAs<BuiltinType>()->getKind()) {
10162   case BuiltinType::Char_S:
10163   case BuiltinType::SChar:
10164     return UnsignedCharTy;
10165   case BuiltinType::Short:
10166     return UnsignedShortTy;
10167   case BuiltinType::Int:
10168     return UnsignedIntTy;
10169   case BuiltinType::Long:
10170     return UnsignedLongTy;
10171   case BuiltinType::LongLong:
10172     return UnsignedLongLongTy;
10173   case BuiltinType::Int128:
10174     return UnsignedInt128Ty;
10175   // wchar_t is special. It is either signed or not, but when it's signed,
10176   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
10177   // version of it's underlying type instead.
10178   case BuiltinType::WChar_S:
10179     return getUnsignedWCharType();
10180 
10181   case BuiltinType::ShortAccum:
10182     return UnsignedShortAccumTy;
10183   case BuiltinType::Accum:
10184     return UnsignedAccumTy;
10185   case BuiltinType::LongAccum:
10186     return UnsignedLongAccumTy;
10187   case BuiltinType::SatShortAccum:
10188     return SatUnsignedShortAccumTy;
10189   case BuiltinType::SatAccum:
10190     return SatUnsignedAccumTy;
10191   case BuiltinType::SatLongAccum:
10192     return SatUnsignedLongAccumTy;
10193   case BuiltinType::ShortFract:
10194     return UnsignedShortFractTy;
10195   case BuiltinType::Fract:
10196     return UnsignedFractTy;
10197   case BuiltinType::LongFract:
10198     return UnsignedLongFractTy;
10199   case BuiltinType::SatShortFract:
10200     return SatUnsignedShortFractTy;
10201   case BuiltinType::SatFract:
10202     return SatUnsignedFractTy;
10203   case BuiltinType::SatLongFract:
10204     return SatUnsignedLongFractTy;
10205   default:
10206     llvm_unreachable("Unexpected signed integer or fixed point type");
10207   }
10208 }
10209 
10210 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
10211   assert((T->hasUnsignedIntegerRepresentation() ||
10212           T->isUnsignedFixedPointType()) &&
10213          "Unexpected type");
10214 
10215   // Turn <4 x unsigned int> -> <4 x signed int>
10216   if (const auto *VTy = T->getAs<VectorType>())
10217     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
10218                          VTy->getNumElements(), VTy->getVectorKind());
10219 
10220   // For _ExtInt, return a signed _ExtInt with same width.
10221   if (const auto *EITy = T->getAs<ExtIntType>())
10222     return getExtIntType(/*IsUnsigned=*/false, EITy->getNumBits());
10223 
10224   // For enums, get the underlying integer type of the enum, and let the general
10225   // integer type signchanging code handle it.
10226   if (const auto *ETy = T->getAs<EnumType>())
10227     T = ETy->getDecl()->getIntegerType();
10228 
10229   switch (T->castAs<BuiltinType>()->getKind()) {
10230   case BuiltinType::Char_U:
10231   case BuiltinType::UChar:
10232     return SignedCharTy;
10233   case BuiltinType::UShort:
10234     return ShortTy;
10235   case BuiltinType::UInt:
10236     return IntTy;
10237   case BuiltinType::ULong:
10238     return LongTy;
10239   case BuiltinType::ULongLong:
10240     return LongLongTy;
10241   case BuiltinType::UInt128:
10242     return Int128Ty;
10243   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
10244   // there's no matching "signed wchar_t". Therefore we return the signed
10245   // version of it's underlying type instead.
10246   case BuiltinType::WChar_U:
10247     return getSignedWCharType();
10248 
10249   case BuiltinType::UShortAccum:
10250     return ShortAccumTy;
10251   case BuiltinType::UAccum:
10252     return AccumTy;
10253   case BuiltinType::ULongAccum:
10254     return LongAccumTy;
10255   case BuiltinType::SatUShortAccum:
10256     return SatShortAccumTy;
10257   case BuiltinType::SatUAccum:
10258     return SatAccumTy;
10259   case BuiltinType::SatULongAccum:
10260     return SatLongAccumTy;
10261   case BuiltinType::UShortFract:
10262     return ShortFractTy;
10263   case BuiltinType::UFract:
10264     return FractTy;
10265   case BuiltinType::ULongFract:
10266     return LongFractTy;
10267   case BuiltinType::SatUShortFract:
10268     return SatShortFractTy;
10269   case BuiltinType::SatUFract:
10270     return SatFractTy;
10271   case BuiltinType::SatULongFract:
10272     return SatLongFractTy;
10273   default:
10274     llvm_unreachable("Unexpected unsigned integer or fixed point type");
10275   }
10276 }
10277 
10278 ASTMutationListener::~ASTMutationListener() = default;
10279 
10280 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
10281                                             QualType ReturnType) {}
10282 
10283 //===----------------------------------------------------------------------===//
10284 //                          Builtin Type Computation
10285 //===----------------------------------------------------------------------===//
10286 
10287 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
10288 /// pointer over the consumed characters.  This returns the resultant type.  If
10289 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
10290 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
10291 /// a vector of "i*".
10292 ///
10293 /// RequiresICE is filled in on return to indicate whether the value is required
10294 /// to be an Integer Constant Expression.
10295 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
10296                                   ASTContext::GetBuiltinTypeError &Error,
10297                                   bool &RequiresICE,
10298                                   bool AllowTypeModifiers) {
10299   // Modifiers.
10300   int HowLong = 0;
10301   bool Signed = false, Unsigned = false;
10302   RequiresICE = false;
10303 
10304   // Read the prefixed modifiers first.
10305   bool Done = false;
10306   #ifndef NDEBUG
10307   bool IsSpecial = false;
10308   #endif
10309   while (!Done) {
10310     switch (*Str++) {
10311     default: Done = true; --Str; break;
10312     case 'I':
10313       RequiresICE = true;
10314       break;
10315     case 'S':
10316       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
10317       assert(!Signed && "Can't use 'S' modifier multiple times!");
10318       Signed = true;
10319       break;
10320     case 'U':
10321       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
10322       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
10323       Unsigned = true;
10324       break;
10325     case 'L':
10326       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
10327       assert(HowLong <= 2 && "Can't have LLLL modifier");
10328       ++HowLong;
10329       break;
10330     case 'N':
10331       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
10332       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10333       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
10334       #ifndef NDEBUG
10335       IsSpecial = true;
10336       #endif
10337       if (Context.getTargetInfo().getLongWidth() == 32)
10338         ++HowLong;
10339       break;
10340     case 'W':
10341       // This modifier represents int64 type.
10342       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10343       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
10344       #ifndef NDEBUG
10345       IsSpecial = true;
10346       #endif
10347       switch (Context.getTargetInfo().getInt64Type()) {
10348       default:
10349         llvm_unreachable("Unexpected integer type");
10350       case TargetInfo::SignedLong:
10351         HowLong = 1;
10352         break;
10353       case TargetInfo::SignedLongLong:
10354         HowLong = 2;
10355         break;
10356       }
10357       break;
10358     case 'Z':
10359       // This modifier represents int32 type.
10360       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10361       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
10362       #ifndef NDEBUG
10363       IsSpecial = true;
10364       #endif
10365       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
10366       default:
10367         llvm_unreachable("Unexpected integer type");
10368       case TargetInfo::SignedInt:
10369         HowLong = 0;
10370         break;
10371       case TargetInfo::SignedLong:
10372         HowLong = 1;
10373         break;
10374       case TargetInfo::SignedLongLong:
10375         HowLong = 2;
10376         break;
10377       }
10378       break;
10379     case 'O':
10380       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10381       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
10382       #ifndef NDEBUG
10383       IsSpecial = true;
10384       #endif
10385       if (Context.getLangOpts().OpenCL)
10386         HowLong = 1;
10387       else
10388         HowLong = 2;
10389       break;
10390     }
10391   }
10392 
10393   QualType Type;
10394 
10395   // Read the base type.
10396   switch (*Str++) {
10397   default: llvm_unreachable("Unknown builtin type letter!");
10398   case 'x':
10399     assert(HowLong == 0 && !Signed && !Unsigned &&
10400            "Bad modifiers used with 'x'!");
10401     Type = Context.Float16Ty;
10402     break;
10403   case 'y':
10404     assert(HowLong == 0 && !Signed && !Unsigned &&
10405            "Bad modifiers used with 'y'!");
10406     Type = Context.BFloat16Ty;
10407     break;
10408   case 'v':
10409     assert(HowLong == 0 && !Signed && !Unsigned &&
10410            "Bad modifiers used with 'v'!");
10411     Type = Context.VoidTy;
10412     break;
10413   case 'h':
10414     assert(HowLong == 0 && !Signed && !Unsigned &&
10415            "Bad modifiers used with 'h'!");
10416     Type = Context.HalfTy;
10417     break;
10418   case 'f':
10419     assert(HowLong == 0 && !Signed && !Unsigned &&
10420            "Bad modifiers used with 'f'!");
10421     Type = Context.FloatTy;
10422     break;
10423   case 'd':
10424     assert(HowLong < 3 && !Signed && !Unsigned &&
10425            "Bad modifiers used with 'd'!");
10426     if (HowLong == 1)
10427       Type = Context.LongDoubleTy;
10428     else if (HowLong == 2)
10429       Type = Context.Float128Ty;
10430     else
10431       Type = Context.DoubleTy;
10432     break;
10433   case 's':
10434     assert(HowLong == 0 && "Bad modifiers used with 's'!");
10435     if (Unsigned)
10436       Type = Context.UnsignedShortTy;
10437     else
10438       Type = Context.ShortTy;
10439     break;
10440   case 'i':
10441     if (HowLong == 3)
10442       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
10443     else if (HowLong == 2)
10444       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
10445     else if (HowLong == 1)
10446       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
10447     else
10448       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
10449     break;
10450   case 'c':
10451     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
10452     if (Signed)
10453       Type = Context.SignedCharTy;
10454     else if (Unsigned)
10455       Type = Context.UnsignedCharTy;
10456     else
10457       Type = Context.CharTy;
10458     break;
10459   case 'b': // boolean
10460     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
10461     Type = Context.BoolTy;
10462     break;
10463   case 'z':  // size_t.
10464     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
10465     Type = Context.getSizeType();
10466     break;
10467   case 'w':  // wchar_t.
10468     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
10469     Type = Context.getWideCharType();
10470     break;
10471   case 'F':
10472     Type = Context.getCFConstantStringType();
10473     break;
10474   case 'G':
10475     Type = Context.getObjCIdType();
10476     break;
10477   case 'H':
10478     Type = Context.getObjCSelType();
10479     break;
10480   case 'M':
10481     Type = Context.getObjCSuperType();
10482     break;
10483   case 'a':
10484     Type = Context.getBuiltinVaListType();
10485     assert(!Type.isNull() && "builtin va list type not initialized!");
10486     break;
10487   case 'A':
10488     // This is a "reference" to a va_list; however, what exactly
10489     // this means depends on how va_list is defined. There are two
10490     // different kinds of va_list: ones passed by value, and ones
10491     // passed by reference.  An example of a by-value va_list is
10492     // x86, where va_list is a char*. An example of by-ref va_list
10493     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
10494     // we want this argument to be a char*&; for x86-64, we want
10495     // it to be a __va_list_tag*.
10496     Type = Context.getBuiltinVaListType();
10497     assert(!Type.isNull() && "builtin va list type not initialized!");
10498     if (Type->isArrayType())
10499       Type = Context.getArrayDecayedType(Type);
10500     else
10501       Type = Context.getLValueReferenceType(Type);
10502     break;
10503   case 'q': {
10504     char *End;
10505     unsigned NumElements = strtoul(Str, &End, 10);
10506     assert(End != Str && "Missing vector size");
10507     Str = End;
10508 
10509     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10510                                              RequiresICE, false);
10511     assert(!RequiresICE && "Can't require vector ICE");
10512 
10513     Type = Context.getScalableVectorType(ElementType, NumElements);
10514     break;
10515   }
10516   case 'V': {
10517     char *End;
10518     unsigned NumElements = strtoul(Str, &End, 10);
10519     assert(End != Str && "Missing vector size");
10520     Str = End;
10521 
10522     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10523                                              RequiresICE, false);
10524     assert(!RequiresICE && "Can't require vector ICE");
10525 
10526     // TODO: No way to make AltiVec vectors in builtins yet.
10527     Type = Context.getVectorType(ElementType, NumElements,
10528                                  VectorType::GenericVector);
10529     break;
10530   }
10531   case 'E': {
10532     char *End;
10533 
10534     unsigned NumElements = strtoul(Str, &End, 10);
10535     assert(End != Str && "Missing vector size");
10536 
10537     Str = End;
10538 
10539     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10540                                              false);
10541     Type = Context.getExtVectorType(ElementType, NumElements);
10542     break;
10543   }
10544   case 'X': {
10545     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10546                                              false);
10547     assert(!RequiresICE && "Can't require complex ICE");
10548     Type = Context.getComplexType(ElementType);
10549     break;
10550   }
10551   case 'Y':
10552     Type = Context.getPointerDiffType();
10553     break;
10554   case 'P':
10555     Type = Context.getFILEType();
10556     if (Type.isNull()) {
10557       Error = ASTContext::GE_Missing_stdio;
10558       return {};
10559     }
10560     break;
10561   case 'J':
10562     if (Signed)
10563       Type = Context.getsigjmp_bufType();
10564     else
10565       Type = Context.getjmp_bufType();
10566 
10567     if (Type.isNull()) {
10568       Error = ASTContext::GE_Missing_setjmp;
10569       return {};
10570     }
10571     break;
10572   case 'K':
10573     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
10574     Type = Context.getucontext_tType();
10575 
10576     if (Type.isNull()) {
10577       Error = ASTContext::GE_Missing_ucontext;
10578       return {};
10579     }
10580     break;
10581   case 'p':
10582     Type = Context.getProcessIDType();
10583     break;
10584   }
10585 
10586   // If there are modifiers and if we're allowed to parse them, go for it.
10587   Done = !AllowTypeModifiers;
10588   while (!Done) {
10589     switch (char c = *Str++) {
10590     default: Done = true; --Str; break;
10591     case '*':
10592     case '&': {
10593       // Both pointers and references can have their pointee types
10594       // qualified with an address space.
10595       char *End;
10596       unsigned AddrSpace = strtoul(Str, &End, 10);
10597       if (End != Str) {
10598         // Note AddrSpace == 0 is not the same as an unspecified address space.
10599         Type = Context.getAddrSpaceQualType(
10600           Type,
10601           Context.getLangASForBuiltinAddressSpace(AddrSpace));
10602         Str = End;
10603       }
10604       if (c == '*')
10605         Type = Context.getPointerType(Type);
10606       else
10607         Type = Context.getLValueReferenceType(Type);
10608       break;
10609     }
10610     // FIXME: There's no way to have a built-in with an rvalue ref arg.
10611     case 'C':
10612       Type = Type.withConst();
10613       break;
10614     case 'D':
10615       Type = Context.getVolatileType(Type);
10616       break;
10617     case 'R':
10618       Type = Type.withRestrict();
10619       break;
10620     }
10621   }
10622 
10623   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
10624          "Integer constant 'I' type must be an integer");
10625 
10626   return Type;
10627 }
10628 
10629 // On some targets such as PowerPC, some of the builtins are defined with custom
10630 // type decriptors for target-dependent types. These descriptors are decoded in
10631 // other functions, but it may be useful to be able to fall back to default
10632 // descriptor decoding to define builtins mixing target-dependent and target-
10633 // independent types. This function allows decoding one type descriptor with
10634 // default decoding.
10635 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
10636                                    GetBuiltinTypeError &Error, bool &RequireICE,
10637                                    bool AllowTypeModifiers) const {
10638   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
10639 }
10640 
10641 /// GetBuiltinType - Return the type for the specified builtin.
10642 QualType ASTContext::GetBuiltinType(unsigned Id,
10643                                     GetBuiltinTypeError &Error,
10644                                     unsigned *IntegerConstantArgs) const {
10645   const char *TypeStr = BuiltinInfo.getTypeString(Id);
10646   if (TypeStr[0] == '\0') {
10647     Error = GE_Missing_type;
10648     return {};
10649   }
10650 
10651   SmallVector<QualType, 8> ArgTypes;
10652 
10653   bool RequiresICE = false;
10654   Error = GE_None;
10655   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
10656                                        RequiresICE, true);
10657   if (Error != GE_None)
10658     return {};
10659 
10660   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
10661 
10662   while (TypeStr[0] && TypeStr[0] != '.') {
10663     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
10664     if (Error != GE_None)
10665       return {};
10666 
10667     // If this argument is required to be an IntegerConstantExpression and the
10668     // caller cares, fill in the bitmask we return.
10669     if (RequiresICE && IntegerConstantArgs)
10670       *IntegerConstantArgs |= 1 << ArgTypes.size();
10671 
10672     // Do array -> pointer decay.  The builtin should use the decayed type.
10673     if (Ty->isArrayType())
10674       Ty = getArrayDecayedType(Ty);
10675 
10676     ArgTypes.push_back(Ty);
10677   }
10678 
10679   if (Id == Builtin::BI__GetExceptionInfo)
10680     return {};
10681 
10682   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
10683          "'.' should only occur at end of builtin type list!");
10684 
10685   bool Variadic = (TypeStr[0] == '.');
10686 
10687   FunctionType::ExtInfo EI(getDefaultCallingConvention(
10688       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
10689   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
10690 
10691 
10692   // We really shouldn't be making a no-proto type here.
10693   if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
10694     return getFunctionNoProtoType(ResType, EI);
10695 
10696   FunctionProtoType::ExtProtoInfo EPI;
10697   EPI.ExtInfo = EI;
10698   EPI.Variadic = Variadic;
10699   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
10700     EPI.ExceptionSpec.Type =
10701         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
10702 
10703   return getFunctionType(ResType, ArgTypes, EPI);
10704 }
10705 
10706 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
10707                                              const FunctionDecl *FD) {
10708   if (!FD->isExternallyVisible())
10709     return GVA_Internal;
10710 
10711   // Non-user-provided functions get emitted as weak definitions with every
10712   // use, no matter whether they've been explicitly instantiated etc.
10713   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
10714     if (!MD->isUserProvided())
10715       return GVA_DiscardableODR;
10716 
10717   GVALinkage External;
10718   switch (FD->getTemplateSpecializationKind()) {
10719   case TSK_Undeclared:
10720   case TSK_ExplicitSpecialization:
10721     External = GVA_StrongExternal;
10722     break;
10723 
10724   case TSK_ExplicitInstantiationDefinition:
10725     return GVA_StrongODR;
10726 
10727   // C++11 [temp.explicit]p10:
10728   //   [ Note: The intent is that an inline function that is the subject of
10729   //   an explicit instantiation declaration will still be implicitly
10730   //   instantiated when used so that the body can be considered for
10731   //   inlining, but that no out-of-line copy of the inline function would be
10732   //   generated in the translation unit. -- end note ]
10733   case TSK_ExplicitInstantiationDeclaration:
10734     return GVA_AvailableExternally;
10735 
10736   case TSK_ImplicitInstantiation:
10737     External = GVA_DiscardableODR;
10738     break;
10739   }
10740 
10741   if (!FD->isInlined())
10742     return External;
10743 
10744   if ((!Context.getLangOpts().CPlusPlus &&
10745        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10746        !FD->hasAttr<DLLExportAttr>()) ||
10747       FD->hasAttr<GNUInlineAttr>()) {
10748     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
10749 
10750     // GNU or C99 inline semantics. Determine whether this symbol should be
10751     // externally visible.
10752     if (FD->isInlineDefinitionExternallyVisible())
10753       return External;
10754 
10755     // C99 inline semantics, where the symbol is not externally visible.
10756     return GVA_AvailableExternally;
10757   }
10758 
10759   // Functions specified with extern and inline in -fms-compatibility mode
10760   // forcibly get emitted.  While the body of the function cannot be later
10761   // replaced, the function definition cannot be discarded.
10762   if (FD->isMSExternInline())
10763     return GVA_StrongODR;
10764 
10765   return GVA_DiscardableODR;
10766 }
10767 
10768 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
10769                                                 const Decl *D, GVALinkage L) {
10770   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
10771   // dllexport/dllimport on inline functions.
10772   if (D->hasAttr<DLLImportAttr>()) {
10773     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
10774       return GVA_AvailableExternally;
10775   } else if (D->hasAttr<DLLExportAttr>()) {
10776     if (L == GVA_DiscardableODR)
10777       return GVA_StrongODR;
10778   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
10779     // Device-side functions with __global__ attribute must always be
10780     // visible externally so they can be launched from host.
10781     if (D->hasAttr<CUDAGlobalAttr>() &&
10782         (L == GVA_DiscardableODR || L == GVA_Internal))
10783       return GVA_StrongODR;
10784     // Single source offloading languages like CUDA/HIP need to be able to
10785     // access static device variables from host code of the same compilation
10786     // unit. This is done by externalizing the static variable with a shared
10787     // name between the host and device compilation which is the same for the
10788     // same compilation unit whereas different among different compilation
10789     // units.
10790     if (Context.shouldExternalizeStaticVar(D))
10791       return GVA_StrongExternal;
10792   }
10793   return L;
10794 }
10795 
10796 /// Adjust the GVALinkage for a declaration based on what an external AST source
10797 /// knows about whether there can be other definitions of this declaration.
10798 static GVALinkage
10799 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
10800                                           GVALinkage L) {
10801   ExternalASTSource *Source = Ctx.getExternalSource();
10802   if (!Source)
10803     return L;
10804 
10805   switch (Source->hasExternalDefinitions(D)) {
10806   case ExternalASTSource::EK_Never:
10807     // Other translation units rely on us to provide the definition.
10808     if (L == GVA_DiscardableODR)
10809       return GVA_StrongODR;
10810     break;
10811 
10812   case ExternalASTSource::EK_Always:
10813     return GVA_AvailableExternally;
10814 
10815   case ExternalASTSource::EK_ReplyHazy:
10816     break;
10817   }
10818   return L;
10819 }
10820 
10821 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
10822   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
10823            adjustGVALinkageForAttributes(*this, FD,
10824              basicGVALinkageForFunction(*this, FD)));
10825 }
10826 
10827 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
10828                                              const VarDecl *VD) {
10829   if (!VD->isExternallyVisible())
10830     return GVA_Internal;
10831 
10832   if (VD->isStaticLocal()) {
10833     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
10834     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
10835       LexicalContext = LexicalContext->getLexicalParent();
10836 
10837     // ObjC Blocks can create local variables that don't have a FunctionDecl
10838     // LexicalContext.
10839     if (!LexicalContext)
10840       return GVA_DiscardableODR;
10841 
10842     // Otherwise, let the static local variable inherit its linkage from the
10843     // nearest enclosing function.
10844     auto StaticLocalLinkage =
10845         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
10846 
10847     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
10848     // be emitted in any object with references to the symbol for the object it
10849     // contains, whether inline or out-of-line."
10850     // Similar behavior is observed with MSVC. An alternative ABI could use
10851     // StrongODR/AvailableExternally to match the function, but none are
10852     // known/supported currently.
10853     if (StaticLocalLinkage == GVA_StrongODR ||
10854         StaticLocalLinkage == GVA_AvailableExternally)
10855       return GVA_DiscardableODR;
10856     return StaticLocalLinkage;
10857   }
10858 
10859   // MSVC treats in-class initialized static data members as definitions.
10860   // By giving them non-strong linkage, out-of-line definitions won't
10861   // cause link errors.
10862   if (Context.isMSStaticDataMemberInlineDefinition(VD))
10863     return GVA_DiscardableODR;
10864 
10865   // Most non-template variables have strong linkage; inline variables are
10866   // linkonce_odr or (occasionally, for compatibility) weak_odr.
10867   GVALinkage StrongLinkage;
10868   switch (Context.getInlineVariableDefinitionKind(VD)) {
10869   case ASTContext::InlineVariableDefinitionKind::None:
10870     StrongLinkage = GVA_StrongExternal;
10871     break;
10872   case ASTContext::InlineVariableDefinitionKind::Weak:
10873   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
10874     StrongLinkage = GVA_DiscardableODR;
10875     break;
10876   case ASTContext::InlineVariableDefinitionKind::Strong:
10877     StrongLinkage = GVA_StrongODR;
10878     break;
10879   }
10880 
10881   switch (VD->getTemplateSpecializationKind()) {
10882   case TSK_Undeclared:
10883     return StrongLinkage;
10884 
10885   case TSK_ExplicitSpecialization:
10886     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10887                    VD->isStaticDataMember()
10888                ? GVA_StrongODR
10889                : StrongLinkage;
10890 
10891   case TSK_ExplicitInstantiationDefinition:
10892     return GVA_StrongODR;
10893 
10894   case TSK_ExplicitInstantiationDeclaration:
10895     return GVA_AvailableExternally;
10896 
10897   case TSK_ImplicitInstantiation:
10898     return GVA_DiscardableODR;
10899   }
10900 
10901   llvm_unreachable("Invalid Linkage!");
10902 }
10903 
10904 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
10905   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
10906            adjustGVALinkageForAttributes(*this, VD,
10907              basicGVALinkageForVariable(*this, VD)));
10908 }
10909 
10910 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
10911   if (const auto *VD = dyn_cast<VarDecl>(D)) {
10912     if (!VD->isFileVarDecl())
10913       return false;
10914     // Global named register variables (GNU extension) are never emitted.
10915     if (VD->getStorageClass() == SC_Register)
10916       return false;
10917     if (VD->getDescribedVarTemplate() ||
10918         isa<VarTemplatePartialSpecializationDecl>(VD))
10919       return false;
10920   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10921     // We never need to emit an uninstantiated function template.
10922     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10923       return false;
10924   } else if (isa<PragmaCommentDecl>(D))
10925     return true;
10926   else if (isa<PragmaDetectMismatchDecl>(D))
10927     return true;
10928   else if (isa<OMPRequiresDecl>(D))
10929     return true;
10930   else if (isa<OMPThreadPrivateDecl>(D))
10931     return !D->getDeclContext()->isDependentContext();
10932   else if (isa<OMPAllocateDecl>(D))
10933     return !D->getDeclContext()->isDependentContext();
10934   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
10935     return !D->getDeclContext()->isDependentContext();
10936   else if (isa<ImportDecl>(D))
10937     return true;
10938   else
10939     return false;
10940 
10941   // If this is a member of a class template, we do not need to emit it.
10942   if (D->getDeclContext()->isDependentContext())
10943     return false;
10944 
10945   // Weak references don't produce any output by themselves.
10946   if (D->hasAttr<WeakRefAttr>())
10947     return false;
10948 
10949   // Aliases and used decls are required.
10950   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
10951     return true;
10952 
10953   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10954     // Forward declarations aren't required.
10955     if (!FD->doesThisDeclarationHaveABody())
10956       return FD->doesDeclarationForceExternallyVisibleDefinition();
10957 
10958     // Constructors and destructors are required.
10959     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
10960       return true;
10961 
10962     // The key function for a class is required.  This rule only comes
10963     // into play when inline functions can be key functions, though.
10964     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10965       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10966         const CXXRecordDecl *RD = MD->getParent();
10967         if (MD->isOutOfLine() && RD->isDynamicClass()) {
10968           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
10969           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
10970             return true;
10971         }
10972       }
10973     }
10974 
10975     GVALinkage Linkage = GetGVALinkageForFunction(FD);
10976 
10977     // static, static inline, always_inline, and extern inline functions can
10978     // always be deferred.  Normal inline functions can be deferred in C99/C++.
10979     // Implicit template instantiations can also be deferred in C++.
10980     return !isDiscardableGVALinkage(Linkage);
10981   }
10982 
10983   const auto *VD = cast<VarDecl>(D);
10984   assert(VD->isFileVarDecl() && "Expected file scoped var");
10985 
10986   // If the decl is marked as `declare target to`, it should be emitted for the
10987   // host and for the device.
10988   if (LangOpts.OpenMP &&
10989       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
10990     return true;
10991 
10992   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
10993       !isMSStaticDataMemberInlineDefinition(VD))
10994     return false;
10995 
10996   // Variables that can be needed in other TUs are required.
10997   auto Linkage = GetGVALinkageForVariable(VD);
10998   if (!isDiscardableGVALinkage(Linkage))
10999     return true;
11000 
11001   // We never need to emit a variable that is available in another TU.
11002   if (Linkage == GVA_AvailableExternally)
11003     return false;
11004 
11005   // Variables that have destruction with side-effects are required.
11006   if (VD->needsDestruction(*this))
11007     return true;
11008 
11009   // Variables that have initialization with side-effects are required.
11010   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11011       // We can get a value-dependent initializer during error recovery.
11012       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11013     return true;
11014 
11015   // Likewise, variables with tuple-like bindings are required if their
11016   // bindings have side-effects.
11017   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11018     for (const auto *BD : DD->bindings())
11019       if (const auto *BindingVD = BD->getHoldingVar())
11020         if (DeclMustBeEmitted(BindingVD))
11021           return true;
11022 
11023   return false;
11024 }
11025 
11026 void ASTContext::forEachMultiversionedFunctionVersion(
11027     const FunctionDecl *FD,
11028     llvm::function_ref<void(FunctionDecl *)> Pred) const {
11029   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
11030   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11031   FD = FD->getMostRecentDecl();
11032   // FIXME: The order of traversal here matters and depends on the order of
11033   // lookup results, which happens to be (mostly) oldest-to-newest, but we
11034   // shouldn't rely on that.
11035   for (auto *CurDecl :
11036        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11037     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11038     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11039         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
11040       SeenDecls.insert(CurFD);
11041       Pred(CurFD);
11042     }
11043   }
11044 }
11045 
11046 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11047                                                     bool IsCXXMethod,
11048                                                     bool IsBuiltin) const {
11049   // Pass through to the C++ ABI object
11050   if (IsCXXMethod)
11051     return ABI->getDefaultMethodCallConv(IsVariadic);
11052 
11053   // Builtins ignore user-specified default calling convention and remain the
11054   // Target's default calling convention.
11055   if (!IsBuiltin) {
11056     switch (LangOpts.getDefaultCallingConv()) {
11057     case LangOptions::DCC_None:
11058       break;
11059     case LangOptions::DCC_CDecl:
11060       return CC_C;
11061     case LangOptions::DCC_FastCall:
11062       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11063         return CC_X86FastCall;
11064       break;
11065     case LangOptions::DCC_StdCall:
11066       if (!IsVariadic)
11067         return CC_X86StdCall;
11068       break;
11069     case LangOptions::DCC_VectorCall:
11070       // __vectorcall cannot be applied to variadic functions.
11071       if (!IsVariadic)
11072         return CC_X86VectorCall;
11073       break;
11074     case LangOptions::DCC_RegCall:
11075       // __regcall cannot be applied to variadic functions.
11076       if (!IsVariadic)
11077         return CC_X86RegCall;
11078       break;
11079     }
11080   }
11081   return Target->getDefaultCallingConv();
11082 }
11083 
11084 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11085   // Pass through to the C++ ABI object
11086   return ABI->isNearlyEmpty(RD);
11087 }
11088 
11089 VTableContextBase *ASTContext::getVTableContext() {
11090   if (!VTContext.get()) {
11091     auto ABI = Target->getCXXABI();
11092     if (ABI.isMicrosoft())
11093       VTContext.reset(new MicrosoftVTableContext(*this));
11094     else {
11095       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11096                                  ? ItaniumVTableContext::Relative
11097                                  : ItaniumVTableContext::Pointer;
11098       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
11099     }
11100   }
11101   return VTContext.get();
11102 }
11103 
11104 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
11105   if (!T)
11106     T = Target;
11107   switch (T->getCXXABI().getKind()) {
11108   case TargetCXXABI::AppleARM64:
11109   case TargetCXXABI::Fuchsia:
11110   case TargetCXXABI::GenericAArch64:
11111   case TargetCXXABI::GenericItanium:
11112   case TargetCXXABI::GenericARM:
11113   case TargetCXXABI::GenericMIPS:
11114   case TargetCXXABI::iOS:
11115   case TargetCXXABI::WebAssembly:
11116   case TargetCXXABI::WatchOS:
11117   case TargetCXXABI::XL:
11118     return ItaniumMangleContext::create(*this, getDiagnostics());
11119   case TargetCXXABI::Microsoft:
11120     return MicrosoftMangleContext::create(*this, getDiagnostics());
11121   }
11122   llvm_unreachable("Unsupported ABI");
11123 }
11124 
11125 MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
11126   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&
11127          "Device mangle context does not support Microsoft mangling.");
11128   switch (T.getCXXABI().getKind()) {
11129   case TargetCXXABI::AppleARM64:
11130   case TargetCXXABI::Fuchsia:
11131   case TargetCXXABI::GenericAArch64:
11132   case TargetCXXABI::GenericItanium:
11133   case TargetCXXABI::GenericARM:
11134   case TargetCXXABI::GenericMIPS:
11135   case TargetCXXABI::iOS:
11136   case TargetCXXABI::WebAssembly:
11137   case TargetCXXABI::WatchOS:
11138   case TargetCXXABI::XL:
11139     return ItaniumMangleContext::create(
11140         *this, getDiagnostics(),
11141         [](ASTContext &, const NamedDecl *ND) -> llvm::Optional<unsigned> {
11142           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
11143             return RD->getDeviceLambdaManglingNumber();
11144           return llvm::None;
11145         });
11146   case TargetCXXABI::Microsoft:
11147     return MicrosoftMangleContext::create(*this, getDiagnostics());
11148   }
11149   llvm_unreachable("Unsupported ABI");
11150 }
11151 
11152 CXXABI::~CXXABI() = default;
11153 
11154 size_t ASTContext::getSideTableAllocatedMemory() const {
11155   return ASTRecordLayouts.getMemorySize() +
11156          llvm::capacity_in_bytes(ObjCLayouts) +
11157          llvm::capacity_in_bytes(KeyFunctions) +
11158          llvm::capacity_in_bytes(ObjCImpls) +
11159          llvm::capacity_in_bytes(BlockVarCopyInits) +
11160          llvm::capacity_in_bytes(DeclAttrs) +
11161          llvm::capacity_in_bytes(TemplateOrInstantiation) +
11162          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
11163          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
11164          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
11165          llvm::capacity_in_bytes(OverriddenMethods) +
11166          llvm::capacity_in_bytes(Types) +
11167          llvm::capacity_in_bytes(VariableArrayTypes);
11168 }
11169 
11170 /// getIntTypeForBitwidth -
11171 /// sets integer QualTy according to specified details:
11172 /// bitwidth, signed/unsigned.
11173 /// Returns empty type if there is no appropriate target types.
11174 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
11175                                            unsigned Signed) const {
11176   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
11177   CanQualType QualTy = getFromTargetType(Ty);
11178   if (!QualTy && DestWidth == 128)
11179     return Signed ? Int128Ty : UnsignedInt128Ty;
11180   return QualTy;
11181 }
11182 
11183 /// getRealTypeForBitwidth -
11184 /// sets floating point QualTy according to specified bitwidth.
11185 /// Returns empty type if there is no appropriate target types.
11186 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
11187                                             bool ExplicitIEEE) const {
11188   TargetInfo::RealType Ty =
11189       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE);
11190   switch (Ty) {
11191   case TargetInfo::Float:
11192     return FloatTy;
11193   case TargetInfo::Double:
11194     return DoubleTy;
11195   case TargetInfo::LongDouble:
11196     return LongDoubleTy;
11197   case TargetInfo::Float128:
11198     return Float128Ty;
11199   case TargetInfo::NoFloat:
11200     return {};
11201   }
11202 
11203   llvm_unreachable("Unhandled TargetInfo::RealType value");
11204 }
11205 
11206 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
11207   if (Number > 1)
11208     MangleNumbers[ND] = Number;
11209 }
11210 
11211 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
11212   auto I = MangleNumbers.find(ND);
11213   return I != MangleNumbers.end() ? I->second : 1;
11214 }
11215 
11216 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
11217   if (Number > 1)
11218     StaticLocalNumbers[VD] = Number;
11219 }
11220 
11221 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
11222   auto I = StaticLocalNumbers.find(VD);
11223   return I != StaticLocalNumbers.end() ? I->second : 1;
11224 }
11225 
11226 MangleNumberingContext &
11227 ASTContext::getManglingNumberContext(const DeclContext *DC) {
11228   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
11229   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
11230   if (!MCtx)
11231     MCtx = createMangleNumberingContext();
11232   return *MCtx;
11233 }
11234 
11235 MangleNumberingContext &
11236 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
11237   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
11238   std::unique_ptr<MangleNumberingContext> &MCtx =
11239       ExtraMangleNumberingContexts[D];
11240   if (!MCtx)
11241     MCtx = createMangleNumberingContext();
11242   return *MCtx;
11243 }
11244 
11245 std::unique_ptr<MangleNumberingContext>
11246 ASTContext::createMangleNumberingContext() const {
11247   return ABI->createMangleNumberingContext();
11248 }
11249 
11250 const CXXConstructorDecl *
11251 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
11252   return ABI->getCopyConstructorForExceptionObject(
11253       cast<CXXRecordDecl>(RD->getFirstDecl()));
11254 }
11255 
11256 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
11257                                                       CXXConstructorDecl *CD) {
11258   return ABI->addCopyConstructorForExceptionObject(
11259       cast<CXXRecordDecl>(RD->getFirstDecl()),
11260       cast<CXXConstructorDecl>(CD->getFirstDecl()));
11261 }
11262 
11263 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
11264                                                  TypedefNameDecl *DD) {
11265   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
11266 }
11267 
11268 TypedefNameDecl *
11269 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
11270   return ABI->getTypedefNameForUnnamedTagDecl(TD);
11271 }
11272 
11273 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
11274                                                 DeclaratorDecl *DD) {
11275   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
11276 }
11277 
11278 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
11279   return ABI->getDeclaratorForUnnamedTagDecl(TD);
11280 }
11281 
11282 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
11283   ParamIndices[D] = index;
11284 }
11285 
11286 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
11287   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
11288   assert(I != ParamIndices.end() &&
11289          "ParmIndices lacks entry set by ParmVarDecl");
11290   return I->second;
11291 }
11292 
11293 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
11294                                                unsigned Length) const {
11295   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
11296   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
11297     EltTy = EltTy.withConst();
11298 
11299   EltTy = adjustStringLiteralBaseType(EltTy);
11300 
11301   // Get an array type for the string, according to C99 6.4.5. This includes
11302   // the null terminator character.
11303   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
11304                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
11305 }
11306 
11307 StringLiteral *
11308 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
11309   StringLiteral *&Result = StringLiteralCache[Key];
11310   if (!Result)
11311     Result = StringLiteral::Create(
11312         *this, Key, StringLiteral::Ascii,
11313         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
11314         SourceLocation());
11315   return Result;
11316 }
11317 
11318 MSGuidDecl *
11319 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
11320   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
11321 
11322   llvm::FoldingSetNodeID ID;
11323   MSGuidDecl::Profile(ID, Parts);
11324 
11325   void *InsertPos;
11326   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
11327     return Existing;
11328 
11329   QualType GUIDType = getMSGuidType().withConst();
11330   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
11331   MSGuidDecls.InsertNode(New, InsertPos);
11332   return New;
11333 }
11334 
11335 TemplateParamObjectDecl *
11336 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
11337   assert(T->isRecordType() && "template param object of unexpected type");
11338 
11339   // C++ [temp.param]p8:
11340   //   [...] a static storage duration object of type 'const T' [...]
11341   T.addConst();
11342 
11343   llvm::FoldingSetNodeID ID;
11344   TemplateParamObjectDecl::Profile(ID, T, V);
11345 
11346   void *InsertPos;
11347   if (TemplateParamObjectDecl *Existing =
11348           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
11349     return Existing;
11350 
11351   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
11352   TemplateParamObjectDecls.InsertNode(New, InsertPos);
11353   return New;
11354 }
11355 
11356 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
11357   const llvm::Triple &T = getTargetInfo().getTriple();
11358   if (!T.isOSDarwin())
11359     return false;
11360 
11361   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
11362       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
11363     return false;
11364 
11365   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
11366   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
11367   uint64_t Size = sizeChars.getQuantity();
11368   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
11369   unsigned Align = alignChars.getQuantity();
11370   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
11371   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
11372 }
11373 
11374 bool
11375 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
11376                                 const ObjCMethodDecl *MethodImpl) {
11377   // No point trying to match an unavailable/deprecated mothod.
11378   if (MethodDecl->hasAttr<UnavailableAttr>()
11379       || MethodDecl->hasAttr<DeprecatedAttr>())
11380     return false;
11381   if (MethodDecl->getObjCDeclQualifier() !=
11382       MethodImpl->getObjCDeclQualifier())
11383     return false;
11384   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
11385     return false;
11386 
11387   if (MethodDecl->param_size() != MethodImpl->param_size())
11388     return false;
11389 
11390   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
11391        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
11392        EF = MethodDecl->param_end();
11393        IM != EM && IF != EF; ++IM, ++IF) {
11394     const ParmVarDecl *DeclVar = (*IF);
11395     const ParmVarDecl *ImplVar = (*IM);
11396     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
11397       return false;
11398     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
11399       return false;
11400   }
11401 
11402   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
11403 }
11404 
11405 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
11406   LangAS AS;
11407   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
11408     AS = LangAS::Default;
11409   else
11410     AS = QT->getPointeeType().getAddressSpace();
11411 
11412   return getTargetInfo().getNullPointerValue(AS);
11413 }
11414 
11415 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
11416   if (isTargetAddressSpace(AS))
11417     return toTargetAddressSpace(AS);
11418   else
11419     return (*AddrSpaceMap)[(unsigned)AS];
11420 }
11421 
11422 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
11423   assert(Ty->isFixedPointType());
11424 
11425   if (Ty->isSaturatedFixedPointType()) return Ty;
11426 
11427   switch (Ty->castAs<BuiltinType>()->getKind()) {
11428     default:
11429       llvm_unreachable("Not a fixed point type!");
11430     case BuiltinType::ShortAccum:
11431       return SatShortAccumTy;
11432     case BuiltinType::Accum:
11433       return SatAccumTy;
11434     case BuiltinType::LongAccum:
11435       return SatLongAccumTy;
11436     case BuiltinType::UShortAccum:
11437       return SatUnsignedShortAccumTy;
11438     case BuiltinType::UAccum:
11439       return SatUnsignedAccumTy;
11440     case BuiltinType::ULongAccum:
11441       return SatUnsignedLongAccumTy;
11442     case BuiltinType::ShortFract:
11443       return SatShortFractTy;
11444     case BuiltinType::Fract:
11445       return SatFractTy;
11446     case BuiltinType::LongFract:
11447       return SatLongFractTy;
11448     case BuiltinType::UShortFract:
11449       return SatUnsignedShortFractTy;
11450     case BuiltinType::UFract:
11451       return SatUnsignedFractTy;
11452     case BuiltinType::ULongFract:
11453       return SatUnsignedLongFractTy;
11454   }
11455 }
11456 
11457 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
11458   if (LangOpts.OpenCL)
11459     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
11460 
11461   if (LangOpts.CUDA)
11462     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
11463 
11464   return getLangASFromTargetAS(AS);
11465 }
11466 
11467 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
11468 // doesn't include ASTContext.h
11469 template
11470 clang::LazyGenerationalUpdatePtr<
11471     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
11472 clang::LazyGenerationalUpdatePtr<
11473     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
11474         const clang::ASTContext &Ctx, Decl *Value);
11475 
11476 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
11477   assert(Ty->isFixedPointType());
11478 
11479   const TargetInfo &Target = getTargetInfo();
11480   switch (Ty->castAs<BuiltinType>()->getKind()) {
11481     default:
11482       llvm_unreachable("Not a fixed point type!");
11483     case BuiltinType::ShortAccum:
11484     case BuiltinType::SatShortAccum:
11485       return Target.getShortAccumScale();
11486     case BuiltinType::Accum:
11487     case BuiltinType::SatAccum:
11488       return Target.getAccumScale();
11489     case BuiltinType::LongAccum:
11490     case BuiltinType::SatLongAccum:
11491       return Target.getLongAccumScale();
11492     case BuiltinType::UShortAccum:
11493     case BuiltinType::SatUShortAccum:
11494       return Target.getUnsignedShortAccumScale();
11495     case BuiltinType::UAccum:
11496     case BuiltinType::SatUAccum:
11497       return Target.getUnsignedAccumScale();
11498     case BuiltinType::ULongAccum:
11499     case BuiltinType::SatULongAccum:
11500       return Target.getUnsignedLongAccumScale();
11501     case BuiltinType::ShortFract:
11502     case BuiltinType::SatShortFract:
11503       return Target.getShortFractScale();
11504     case BuiltinType::Fract:
11505     case BuiltinType::SatFract:
11506       return Target.getFractScale();
11507     case BuiltinType::LongFract:
11508     case BuiltinType::SatLongFract:
11509       return Target.getLongFractScale();
11510     case BuiltinType::UShortFract:
11511     case BuiltinType::SatUShortFract:
11512       return Target.getUnsignedShortFractScale();
11513     case BuiltinType::UFract:
11514     case BuiltinType::SatUFract:
11515       return Target.getUnsignedFractScale();
11516     case BuiltinType::ULongFract:
11517     case BuiltinType::SatULongFract:
11518       return Target.getUnsignedLongFractScale();
11519   }
11520 }
11521 
11522 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
11523   assert(Ty->isFixedPointType());
11524 
11525   const TargetInfo &Target = getTargetInfo();
11526   switch (Ty->castAs<BuiltinType>()->getKind()) {
11527     default:
11528       llvm_unreachable("Not a fixed point type!");
11529     case BuiltinType::ShortAccum:
11530     case BuiltinType::SatShortAccum:
11531       return Target.getShortAccumIBits();
11532     case BuiltinType::Accum:
11533     case BuiltinType::SatAccum:
11534       return Target.getAccumIBits();
11535     case BuiltinType::LongAccum:
11536     case BuiltinType::SatLongAccum:
11537       return Target.getLongAccumIBits();
11538     case BuiltinType::UShortAccum:
11539     case BuiltinType::SatUShortAccum:
11540       return Target.getUnsignedShortAccumIBits();
11541     case BuiltinType::UAccum:
11542     case BuiltinType::SatUAccum:
11543       return Target.getUnsignedAccumIBits();
11544     case BuiltinType::ULongAccum:
11545     case BuiltinType::SatULongAccum:
11546       return Target.getUnsignedLongAccumIBits();
11547     case BuiltinType::ShortFract:
11548     case BuiltinType::SatShortFract:
11549     case BuiltinType::Fract:
11550     case BuiltinType::SatFract:
11551     case BuiltinType::LongFract:
11552     case BuiltinType::SatLongFract:
11553     case BuiltinType::UShortFract:
11554     case BuiltinType::SatUShortFract:
11555     case BuiltinType::UFract:
11556     case BuiltinType::SatUFract:
11557     case BuiltinType::ULongFract:
11558     case BuiltinType::SatULongFract:
11559       return 0;
11560   }
11561 }
11562 
11563 llvm::FixedPointSemantics
11564 ASTContext::getFixedPointSemantics(QualType Ty) const {
11565   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
11566          "Can only get the fixed point semantics for a "
11567          "fixed point or integer type.");
11568   if (Ty->isIntegerType())
11569     return llvm::FixedPointSemantics::GetIntegerSemantics(
11570         getIntWidth(Ty), Ty->isSignedIntegerType());
11571 
11572   bool isSigned = Ty->isSignedFixedPointType();
11573   return llvm::FixedPointSemantics(
11574       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
11575       Ty->isSaturatedFixedPointType(),
11576       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
11577 }
11578 
11579 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
11580   assert(Ty->isFixedPointType());
11581   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
11582 }
11583 
11584 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
11585   assert(Ty->isFixedPointType());
11586   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
11587 }
11588 
11589 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
11590   assert(Ty->isUnsignedFixedPointType() &&
11591          "Expected unsigned fixed point type");
11592 
11593   switch (Ty->castAs<BuiltinType>()->getKind()) {
11594   case BuiltinType::UShortAccum:
11595     return ShortAccumTy;
11596   case BuiltinType::UAccum:
11597     return AccumTy;
11598   case BuiltinType::ULongAccum:
11599     return LongAccumTy;
11600   case BuiltinType::SatUShortAccum:
11601     return SatShortAccumTy;
11602   case BuiltinType::SatUAccum:
11603     return SatAccumTy;
11604   case BuiltinType::SatULongAccum:
11605     return SatLongAccumTy;
11606   case BuiltinType::UShortFract:
11607     return ShortFractTy;
11608   case BuiltinType::UFract:
11609     return FractTy;
11610   case BuiltinType::ULongFract:
11611     return LongFractTy;
11612   case BuiltinType::SatUShortFract:
11613     return SatShortFractTy;
11614   case BuiltinType::SatUFract:
11615     return SatFractTy;
11616   case BuiltinType::SatULongFract:
11617     return SatLongFractTy;
11618   default:
11619     llvm_unreachable("Unexpected unsigned fixed point type");
11620   }
11621 }
11622 
11623 ParsedTargetAttr
11624 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
11625   assert(TD != nullptr);
11626   ParsedTargetAttr ParsedAttr = TD->parse();
11627 
11628   ParsedAttr.Features.erase(
11629       llvm::remove_if(ParsedAttr.Features,
11630                       [&](const std::string &Feat) {
11631                         return !Target->isValidFeatureName(
11632                             StringRef{Feat}.substr(1));
11633                       }),
11634       ParsedAttr.Features.end());
11635   return ParsedAttr;
11636 }
11637 
11638 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11639                                        const FunctionDecl *FD) const {
11640   if (FD)
11641     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
11642   else
11643     Target->initFeatureMap(FeatureMap, getDiagnostics(),
11644                            Target->getTargetOpts().CPU,
11645                            Target->getTargetOpts().Features);
11646 }
11647 
11648 // Fills in the supplied string map with the set of target features for the
11649 // passed in function.
11650 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11651                                        GlobalDecl GD) const {
11652   StringRef TargetCPU = Target->getTargetOpts().CPU;
11653   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
11654   if (const auto *TD = FD->getAttr<TargetAttr>()) {
11655     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
11656 
11657     // Make a copy of the features as passed on the command line into the
11658     // beginning of the additional features from the function to override.
11659     ParsedAttr.Features.insert(
11660         ParsedAttr.Features.begin(),
11661         Target->getTargetOpts().FeaturesAsWritten.begin(),
11662         Target->getTargetOpts().FeaturesAsWritten.end());
11663 
11664     if (ParsedAttr.Architecture != "" &&
11665         Target->isValidCPUName(ParsedAttr.Architecture))
11666       TargetCPU = ParsedAttr.Architecture;
11667 
11668     // Now populate the feature map, first with the TargetCPU which is either
11669     // the default or a new one from the target attribute string. Then we'll use
11670     // the passed in features (FeaturesAsWritten) along with the new ones from
11671     // the attribute.
11672     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
11673                            ParsedAttr.Features);
11674   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
11675     llvm::SmallVector<StringRef, 32> FeaturesTmp;
11676     Target->getCPUSpecificCPUDispatchFeatures(
11677         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
11678     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
11679     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
11680   } else {
11681     FeatureMap = Target->getTargetOpts().FeatureMap;
11682   }
11683 }
11684 
11685 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
11686   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
11687   return *OMPTraitInfoVector.back();
11688 }
11689 
11690 const StreamingDiagnostic &clang::
11691 operator<<(const StreamingDiagnostic &DB,
11692            const ASTContext::SectionInfo &Section) {
11693   if (Section.Decl)
11694     return DB << Section.Decl;
11695   return DB << "a prior #pragma section";
11696 }
11697 
11698 bool ASTContext::mayExternalizeStaticVar(const Decl *D) const {
11699   bool IsStaticVar =
11700       isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static;
11701   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
11702                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
11703                              (D->hasAttr<CUDAConstantAttr>() &&
11704                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
11705   // CUDA/HIP: static managed variables need to be externalized since it is
11706   // a declaration in IR, therefore cannot have internal linkage.
11707   return IsStaticVar &&
11708          (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar);
11709 }
11710 
11711 bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const {
11712   return mayExternalizeStaticVar(D) &&
11713          (D->hasAttr<HIPManagedAttr>() ||
11714           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
11715 }
11716 
11717 StringRef ASTContext::getCUIDHash() const {
11718   if (!CUIDHash.empty())
11719     return CUIDHash;
11720   if (LangOpts.CUID.empty())
11721     return StringRef();
11722   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
11723   return CUIDHash;
11724 }
11725 
11726 // Get the closest named parent, so we can order the sycl naming decls somewhere
11727 // that mangling is meaningful.
11728 static const DeclContext *GetNamedParent(const CXXRecordDecl *RD) {
11729   const DeclContext *DC = RD->getDeclContext();
11730 
11731   while (!isa<NamedDecl, TranslationUnitDecl>(DC))
11732     DC = DC->getParent();
11733   return DC;
11734 }
11735 
11736 void ASTContext::AddSYCLKernelNamingDecl(const CXXRecordDecl *RD) {
11737   assert(getLangOpts().isSYCL() && "Only valid for SYCL programs");
11738   RD = RD->getCanonicalDecl();
11739   const DeclContext *DC = GetNamedParent(RD);
11740 
11741   assert(RD->getLocation().isValid() &&
11742          "Invalid location on kernel naming decl");
11743 
11744   (void)SYCLKernelNamingTypes[DC].insert(RD);
11745 }
11746 
11747 bool ASTContext::IsSYCLKernelNamingDecl(const NamedDecl *ND) const {
11748   assert(getLangOpts().isSYCL() && "Only valid for SYCL programs");
11749   const auto *RD = dyn_cast<CXXRecordDecl>(ND);
11750   if (!RD)
11751     return false;
11752   RD = RD->getCanonicalDecl();
11753   const DeclContext *DC = GetNamedParent(RD);
11754 
11755   auto Itr = SYCLKernelNamingTypes.find(DC);
11756 
11757   if (Itr == SYCLKernelNamingTypes.end())
11758     return false;
11759 
11760   return Itr->getSecond().count(RD);
11761 }
11762 
11763 // Filters the Decls list to those that share the lambda mangling with the
11764 // passed RD.
11765 void ASTContext::FilterSYCLKernelNamingDecls(
11766     const CXXRecordDecl *RD,
11767     llvm::SmallVectorImpl<const CXXRecordDecl *> &Decls) {
11768 
11769   if (!SYCLKernelFilterContext)
11770     SYCLKernelFilterContext.reset(
11771         ItaniumMangleContext::create(*this, getDiagnostics()));
11772 
11773   llvm::SmallString<128> LambdaSig;
11774   llvm::raw_svector_ostream Out(LambdaSig);
11775   SYCLKernelFilterContext->mangleLambdaSig(RD, Out);
11776 
11777   llvm::erase_if(Decls, [this, &LambdaSig](const CXXRecordDecl *LocalRD) {
11778     llvm::SmallString<128> LocalLambdaSig;
11779     llvm::raw_svector_ostream LocalOut(LocalLambdaSig);
11780     SYCLKernelFilterContext->mangleLambdaSig(LocalRD, LocalOut);
11781     return LambdaSig != LocalLambdaSig;
11782   });
11783 }
11784 
11785 unsigned ASTContext::GetSYCLKernelNamingIndex(const NamedDecl *ND) {
11786   assert(getLangOpts().isSYCL() && "Only valid for SYCL programs");
11787   assert(IsSYCLKernelNamingDecl(ND) &&
11788          "Lambda not involved in mangling asked for a naming index?");
11789 
11790   const CXXRecordDecl *RD = cast<CXXRecordDecl>(ND)->getCanonicalDecl();
11791   const DeclContext *DC = GetNamedParent(RD);
11792 
11793   auto Itr = SYCLKernelNamingTypes.find(DC);
11794   assert(Itr != SYCLKernelNamingTypes.end() && "Not a valid DeclContext?");
11795 
11796   const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &Set = Itr->getSecond();
11797 
11798   llvm::SmallVector<const CXXRecordDecl *> Decls{Set.begin(), Set.end()};
11799 
11800   FilterSYCLKernelNamingDecls(RD, Decls);
11801 
11802   llvm::sort(Decls, [](const CXXRecordDecl *LHS, const CXXRecordDecl *RHS) {
11803     return LHS->getLambdaManglingNumber() < RHS->getLambdaManglingNumber();
11804   });
11805 
11806   return llvm::find(Decls, RD) - Decls.begin();
11807 }
11808