1 //===--- APValue.cpp - Union class for APFloat/APSInt/Complex -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the APValue class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/APValue.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/Type.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace clang; 24 25 /// The identity of a type_info object depends on the canonical unqualified 26 /// type only. 27 TypeInfoLValue::TypeInfoLValue(const Type *T) 28 : T(T->getCanonicalTypeUnqualified().getTypePtr()) {} 29 30 void TypeInfoLValue::print(llvm::raw_ostream &Out, 31 const PrintingPolicy &Policy) const { 32 Out << "typeid("; 33 QualType(getType(), 0).print(Out, Policy); 34 Out << ")"; 35 } 36 37 static_assert( 38 1 << llvm::PointerLikeTypeTraits<TypeInfoLValue>::NumLowBitsAvailable <= 39 alignof(Type), 40 "Type is insufficiently aligned"); 41 42 APValue::LValueBase::LValueBase(const ValueDecl *P, unsigned I, unsigned V) 43 : Ptr(P ? cast<ValueDecl>(P->getCanonicalDecl()) : nullptr), Local{I, V} {} 44 APValue::LValueBase::LValueBase(const Expr *P, unsigned I, unsigned V) 45 : Ptr(P), Local{I, V} {} 46 47 APValue::LValueBase APValue::LValueBase::getDynamicAlloc(DynamicAllocLValue LV, 48 QualType Type) { 49 LValueBase Base; 50 Base.Ptr = LV; 51 Base.DynamicAllocType = Type.getAsOpaquePtr(); 52 return Base; 53 } 54 55 APValue::LValueBase APValue::LValueBase::getTypeInfo(TypeInfoLValue LV, 56 QualType TypeInfo) { 57 LValueBase Base; 58 Base.Ptr = LV; 59 Base.TypeInfoType = TypeInfo.getAsOpaquePtr(); 60 return Base; 61 } 62 63 QualType APValue::LValueBase::getType() const { 64 if (!*this) return QualType(); 65 if (const ValueDecl *D = dyn_cast<const ValueDecl*>()) { 66 // FIXME: It's unclear where we're supposed to take the type from, and 67 // this actually matters for arrays of unknown bound. Eg: 68 // 69 // extern int arr[]; void f() { extern int arr[3]; }; 70 // constexpr int *p = &arr[1]; // valid? 71 // 72 // For now, we take the most complete type we can find. 73 for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl; 74 Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) { 75 QualType T = Redecl->getType(); 76 if (!T->isIncompleteArrayType()) 77 return T; 78 } 79 return D->getType(); 80 } 81 82 if (is<TypeInfoLValue>()) 83 return getTypeInfoType(); 84 85 if (is<DynamicAllocLValue>()) 86 return getDynamicAllocType(); 87 88 const Expr *Base = get<const Expr*>(); 89 90 // For a materialized temporary, the type of the temporary we materialized 91 // may not be the type of the expression. 92 if (const MaterializeTemporaryExpr *MTE = 93 clang::dyn_cast<MaterializeTemporaryExpr>(Base)) { 94 SmallVector<const Expr *, 2> CommaLHSs; 95 SmallVector<SubobjectAdjustment, 2> Adjustments; 96 const Expr *Temp = MTE->getSubExpr(); 97 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs, 98 Adjustments); 99 // Keep any cv-qualifiers from the reference if we generated a temporary 100 // for it directly. Otherwise use the type after adjustment. 101 if (!Adjustments.empty()) 102 return Inner->getType(); 103 } 104 105 return Base->getType(); 106 } 107 108 unsigned APValue::LValueBase::getCallIndex() const { 109 return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 110 : Local.CallIndex; 111 } 112 113 unsigned APValue::LValueBase::getVersion() const { 114 return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 : Local.Version; 115 } 116 117 QualType APValue::LValueBase::getTypeInfoType() const { 118 assert(is<TypeInfoLValue>() && "not a type_info lvalue"); 119 return QualType::getFromOpaquePtr(TypeInfoType); 120 } 121 122 QualType APValue::LValueBase::getDynamicAllocType() const { 123 assert(is<DynamicAllocLValue>() && "not a dynamic allocation lvalue"); 124 return QualType::getFromOpaquePtr(DynamicAllocType); 125 } 126 127 void APValue::LValueBase::Profile(llvm::FoldingSetNodeID &ID) const { 128 ID.AddPointer(Ptr.getOpaqueValue()); 129 if (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) 130 return; 131 ID.AddInteger(Local.CallIndex); 132 ID.AddInteger(Local.Version); 133 } 134 135 namespace clang { 136 bool operator==(const APValue::LValueBase &LHS, 137 const APValue::LValueBase &RHS) { 138 if (LHS.Ptr != RHS.Ptr) 139 return false; 140 if (LHS.is<TypeInfoLValue>() || LHS.is<DynamicAllocLValue>()) 141 return true; 142 return LHS.Local.CallIndex == RHS.Local.CallIndex && 143 LHS.Local.Version == RHS.Local.Version; 144 } 145 } 146 147 APValue::LValuePathEntry::LValuePathEntry(BaseOrMemberType BaseOrMember) { 148 if (const Decl *D = BaseOrMember.getPointer()) 149 BaseOrMember.setPointer(D->getCanonicalDecl()); 150 Value = reinterpret_cast<uintptr_t>(BaseOrMember.getOpaqueValue()); 151 } 152 153 void APValue::LValuePathEntry::Profile(llvm::FoldingSetNodeID &ID) const { 154 ID.AddInteger(Value); 155 } 156 157 APValue::LValuePathSerializationHelper::LValuePathSerializationHelper( 158 ArrayRef<LValuePathEntry> Path, QualType ElemTy) 159 : Ty((const void *)ElemTy.getTypePtrOrNull()), Path(Path) {} 160 161 QualType APValue::LValuePathSerializationHelper::getType() { 162 return QualType::getFromOpaquePtr(Ty); 163 } 164 165 namespace { 166 struct LVBase { 167 APValue::LValueBase Base; 168 CharUnits Offset; 169 unsigned PathLength; 170 bool IsNullPtr : 1; 171 bool IsOnePastTheEnd : 1; 172 }; 173 } 174 175 void *APValue::LValueBase::getOpaqueValue() const { 176 return Ptr.getOpaqueValue(); 177 } 178 179 bool APValue::LValueBase::isNull() const { 180 return Ptr.isNull(); 181 } 182 183 APValue::LValueBase::operator bool () const { 184 return static_cast<bool>(Ptr); 185 } 186 187 clang::APValue::LValueBase 188 llvm::DenseMapInfo<clang::APValue::LValueBase>::getEmptyKey() { 189 clang::APValue::LValueBase B; 190 B.Ptr = DenseMapInfo<const ValueDecl*>::getEmptyKey(); 191 return B; 192 } 193 194 clang::APValue::LValueBase 195 llvm::DenseMapInfo<clang::APValue::LValueBase>::getTombstoneKey() { 196 clang::APValue::LValueBase B; 197 B.Ptr = DenseMapInfo<const ValueDecl*>::getTombstoneKey(); 198 return B; 199 } 200 201 namespace clang { 202 llvm::hash_code hash_value(const APValue::LValueBase &Base) { 203 if (Base.is<TypeInfoLValue>() || Base.is<DynamicAllocLValue>()) 204 return llvm::hash_value(Base.getOpaqueValue()); 205 return llvm::hash_combine(Base.getOpaqueValue(), Base.getCallIndex(), 206 Base.getVersion()); 207 } 208 } 209 210 unsigned llvm::DenseMapInfo<clang::APValue::LValueBase>::getHashValue( 211 const clang::APValue::LValueBase &Base) { 212 return hash_value(Base); 213 } 214 215 bool llvm::DenseMapInfo<clang::APValue::LValueBase>::isEqual( 216 const clang::APValue::LValueBase &LHS, 217 const clang::APValue::LValueBase &RHS) { 218 return LHS == RHS; 219 } 220 221 struct APValue::LV : LVBase { 222 static const unsigned InlinePathSpace = 223 (DataSize - sizeof(LVBase)) / sizeof(LValuePathEntry); 224 225 /// Path - The sequence of base classes, fields and array indices to follow to 226 /// walk from Base to the subobject. When performing GCC-style folding, there 227 /// may not be such a path. 228 union { 229 LValuePathEntry Path[InlinePathSpace]; 230 LValuePathEntry *PathPtr; 231 }; 232 233 LV() { PathLength = (unsigned)-1; } 234 ~LV() { resizePath(0); } 235 236 void resizePath(unsigned Length) { 237 if (Length == PathLength) 238 return; 239 if (hasPathPtr()) 240 delete [] PathPtr; 241 PathLength = Length; 242 if (hasPathPtr()) 243 PathPtr = new LValuePathEntry[Length]; 244 } 245 246 bool hasPath() const { return PathLength != (unsigned)-1; } 247 bool hasPathPtr() const { return hasPath() && PathLength > InlinePathSpace; } 248 249 LValuePathEntry *getPath() { return hasPathPtr() ? PathPtr : Path; } 250 const LValuePathEntry *getPath() const { 251 return hasPathPtr() ? PathPtr : Path; 252 } 253 }; 254 255 namespace { 256 struct MemberPointerBase { 257 llvm::PointerIntPair<const ValueDecl*, 1, bool> MemberAndIsDerivedMember; 258 unsigned PathLength; 259 }; 260 } 261 262 struct APValue::MemberPointerData : MemberPointerBase { 263 static const unsigned InlinePathSpace = 264 (DataSize - sizeof(MemberPointerBase)) / sizeof(const CXXRecordDecl*); 265 typedef const CXXRecordDecl *PathElem; 266 union { 267 PathElem Path[InlinePathSpace]; 268 PathElem *PathPtr; 269 }; 270 271 MemberPointerData() { PathLength = 0; } 272 ~MemberPointerData() { resizePath(0); } 273 274 void resizePath(unsigned Length) { 275 if (Length == PathLength) 276 return; 277 if (hasPathPtr()) 278 delete [] PathPtr; 279 PathLength = Length; 280 if (hasPathPtr()) 281 PathPtr = new PathElem[Length]; 282 } 283 284 bool hasPathPtr() const { return PathLength > InlinePathSpace; } 285 286 PathElem *getPath() { return hasPathPtr() ? PathPtr : Path; } 287 const PathElem *getPath() const { 288 return hasPathPtr() ? PathPtr : Path; 289 } 290 }; 291 292 // FIXME: Reduce the malloc traffic here. 293 294 APValue::Arr::Arr(unsigned NumElts, unsigned Size) : 295 Elts(new APValue[NumElts + (NumElts != Size ? 1 : 0)]), 296 NumElts(NumElts), ArrSize(Size) {} 297 APValue::Arr::~Arr() { delete [] Elts; } 298 299 APValue::StructData::StructData(unsigned NumBases, unsigned NumFields) : 300 Elts(new APValue[NumBases+NumFields]), 301 NumBases(NumBases), NumFields(NumFields) {} 302 APValue::StructData::~StructData() { 303 delete [] Elts; 304 } 305 306 APValue::UnionData::UnionData() : Field(nullptr), Value(new APValue) {} 307 APValue::UnionData::~UnionData () { 308 delete Value; 309 } 310 311 APValue::APValue(const APValue &RHS) : Kind(None) { 312 switch (RHS.getKind()) { 313 case None: 314 case Indeterminate: 315 Kind = RHS.getKind(); 316 break; 317 case Int: 318 MakeInt(); 319 setInt(RHS.getInt()); 320 break; 321 case Float: 322 MakeFloat(); 323 setFloat(RHS.getFloat()); 324 break; 325 case FixedPoint: { 326 APFixedPoint FXCopy = RHS.getFixedPoint(); 327 MakeFixedPoint(std::move(FXCopy)); 328 break; 329 } 330 case Vector: 331 MakeVector(); 332 setVector(((const Vec *)(const char *)&RHS.Data)->Elts, 333 RHS.getVectorLength()); 334 break; 335 case ComplexInt: 336 MakeComplexInt(); 337 setComplexInt(RHS.getComplexIntReal(), RHS.getComplexIntImag()); 338 break; 339 case ComplexFloat: 340 MakeComplexFloat(); 341 setComplexFloat(RHS.getComplexFloatReal(), RHS.getComplexFloatImag()); 342 break; 343 case LValue: 344 MakeLValue(); 345 if (RHS.hasLValuePath()) 346 setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), RHS.getLValuePath(), 347 RHS.isLValueOnePastTheEnd(), RHS.isNullPointer()); 348 else 349 setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), NoLValuePath(), 350 RHS.isNullPointer()); 351 break; 352 case Array: 353 MakeArray(RHS.getArrayInitializedElts(), RHS.getArraySize()); 354 for (unsigned I = 0, N = RHS.getArrayInitializedElts(); I != N; ++I) 355 getArrayInitializedElt(I) = RHS.getArrayInitializedElt(I); 356 if (RHS.hasArrayFiller()) 357 getArrayFiller() = RHS.getArrayFiller(); 358 break; 359 case Struct: 360 MakeStruct(RHS.getStructNumBases(), RHS.getStructNumFields()); 361 for (unsigned I = 0, N = RHS.getStructNumBases(); I != N; ++I) 362 getStructBase(I) = RHS.getStructBase(I); 363 for (unsigned I = 0, N = RHS.getStructNumFields(); I != N; ++I) 364 getStructField(I) = RHS.getStructField(I); 365 break; 366 case Union: 367 MakeUnion(); 368 setUnion(RHS.getUnionField(), RHS.getUnionValue()); 369 break; 370 case MemberPointer: 371 MakeMemberPointer(RHS.getMemberPointerDecl(), 372 RHS.isMemberPointerToDerivedMember(), 373 RHS.getMemberPointerPath()); 374 break; 375 case AddrLabelDiff: 376 MakeAddrLabelDiff(); 377 setAddrLabelDiff(RHS.getAddrLabelDiffLHS(), RHS.getAddrLabelDiffRHS()); 378 break; 379 } 380 } 381 382 APValue::APValue(APValue &&RHS) : Kind(RHS.Kind), Data(RHS.Data) { 383 RHS.Kind = None; 384 } 385 386 APValue &APValue::operator=(const APValue &RHS) { 387 if (this != &RHS) 388 *this = APValue(RHS); 389 return *this; 390 } 391 392 APValue &APValue::operator=(APValue &&RHS) { 393 if (this != &RHS) { 394 if (Kind != None && Kind != Indeterminate) 395 DestroyDataAndMakeUninit(); 396 Kind = RHS.Kind; 397 Data = RHS.Data; 398 RHS.Kind = None; 399 } 400 return *this; 401 } 402 403 void APValue::DestroyDataAndMakeUninit() { 404 if (Kind == Int) 405 ((APSInt *)(char *)&Data)->~APSInt(); 406 else if (Kind == Float) 407 ((APFloat *)(char *)&Data)->~APFloat(); 408 else if (Kind == FixedPoint) 409 ((APFixedPoint *)(char *)&Data)->~APFixedPoint(); 410 else if (Kind == Vector) 411 ((Vec *)(char *)&Data)->~Vec(); 412 else if (Kind == ComplexInt) 413 ((ComplexAPSInt *)(char *)&Data)->~ComplexAPSInt(); 414 else if (Kind == ComplexFloat) 415 ((ComplexAPFloat *)(char *)&Data)->~ComplexAPFloat(); 416 else if (Kind == LValue) 417 ((LV *)(char *)&Data)->~LV(); 418 else if (Kind == Array) 419 ((Arr *)(char *)&Data)->~Arr(); 420 else if (Kind == Struct) 421 ((StructData *)(char *)&Data)->~StructData(); 422 else if (Kind == Union) 423 ((UnionData *)(char *)&Data)->~UnionData(); 424 else if (Kind == MemberPointer) 425 ((MemberPointerData *)(char *)&Data)->~MemberPointerData(); 426 else if (Kind == AddrLabelDiff) 427 ((AddrLabelDiffData *)(char *)&Data)->~AddrLabelDiffData(); 428 Kind = None; 429 } 430 431 bool APValue::needsCleanup() const { 432 switch (getKind()) { 433 case None: 434 case Indeterminate: 435 case AddrLabelDiff: 436 return false; 437 case Struct: 438 case Union: 439 case Array: 440 case Vector: 441 return true; 442 case Int: 443 return getInt().needsCleanup(); 444 case Float: 445 return getFloat().needsCleanup(); 446 case FixedPoint: 447 return getFixedPoint().getValue().needsCleanup(); 448 case ComplexFloat: 449 assert(getComplexFloatImag().needsCleanup() == 450 getComplexFloatReal().needsCleanup() && 451 "In _Complex float types, real and imaginary values always have the " 452 "same size."); 453 return getComplexFloatReal().needsCleanup(); 454 case ComplexInt: 455 assert(getComplexIntImag().needsCleanup() == 456 getComplexIntReal().needsCleanup() && 457 "In _Complex int types, real and imaginary values must have the " 458 "same size."); 459 return getComplexIntReal().needsCleanup(); 460 case LValue: 461 return reinterpret_cast<const LV *>(&Data)->hasPathPtr(); 462 case MemberPointer: 463 return reinterpret_cast<const MemberPointerData *>(&Data)->hasPathPtr(); 464 } 465 llvm_unreachable("Unknown APValue kind!"); 466 } 467 468 void APValue::swap(APValue &RHS) { 469 std::swap(Kind, RHS.Kind); 470 std::swap(Data, RHS.Data); 471 } 472 473 /// Profile the value of an APInt, excluding its bit-width. 474 static void profileIntValue(llvm::FoldingSetNodeID &ID, const llvm::APInt &V) { 475 for (unsigned I = 0, N = V.getBitWidth(); I < N; I += 32) 476 ID.AddInteger((uint32_t)V.extractBitsAsZExtValue(std::min(32u, N - I), I)); 477 } 478 479 void APValue::Profile(llvm::FoldingSetNodeID &ID) const { 480 // Note that our profiling assumes that only APValues of the same type are 481 // ever compared. As a result, we don't consider collisions that could only 482 // happen if the types are different. (For example, structs with different 483 // numbers of members could profile the same.) 484 485 ID.AddInteger(Kind); 486 487 switch (Kind) { 488 case None: 489 case Indeterminate: 490 return; 491 492 case AddrLabelDiff: 493 ID.AddPointer(getAddrLabelDiffLHS()->getLabel()->getCanonicalDecl()); 494 ID.AddPointer(getAddrLabelDiffRHS()->getLabel()->getCanonicalDecl()); 495 return; 496 497 case Struct: 498 for (unsigned I = 0, N = getStructNumBases(); I != N; ++I) 499 getStructBase(I).Profile(ID); 500 for (unsigned I = 0, N = getStructNumFields(); I != N; ++I) 501 getStructField(I).Profile(ID); 502 return; 503 504 case Union: 505 if (!getUnionField()) { 506 ID.AddInteger(0); 507 return; 508 } 509 ID.AddInteger(getUnionField()->getFieldIndex() + 1); 510 getUnionValue().Profile(ID); 511 return; 512 513 case Array: { 514 if (getArraySize() == 0) 515 return; 516 517 // The profile should not depend on whether the array is expanded or 518 // not, but we don't want to profile the array filler many times for 519 // a large array. So treat all equal trailing elements as the filler. 520 // Elements are profiled in reverse order to support this, and the 521 // first profiled element is followed by a count. For example: 522 // 523 // ['a', 'c', 'x', 'x', 'x'] is profiled as 524 // [5, 'x', 3, 'c', 'a'] 525 llvm::FoldingSetNodeID FillerID; 526 (hasArrayFiller() ? getArrayFiller() 527 : getArrayInitializedElt(getArrayInitializedElts() - 1)) 528 .Profile(FillerID); 529 ID.AddNodeID(FillerID); 530 unsigned NumFillers = getArraySize() - getArrayInitializedElts(); 531 unsigned N = getArrayInitializedElts(); 532 533 // Count the number of elements equal to the last one. This loop ends 534 // by adding an integer indicating the number of such elements, with 535 // N set to the number of elements left to profile. 536 while (true) { 537 if (N == 0) { 538 // All elements are fillers. 539 assert(NumFillers == getArraySize()); 540 ID.AddInteger(NumFillers); 541 break; 542 } 543 544 // No need to check if the last element is equal to the last 545 // element. 546 if (N != getArraySize()) { 547 llvm::FoldingSetNodeID ElemID; 548 getArrayInitializedElt(N - 1).Profile(ElemID); 549 if (ElemID != FillerID) { 550 ID.AddInteger(NumFillers); 551 ID.AddNodeID(ElemID); 552 --N; 553 break; 554 } 555 } 556 557 // This is a filler. 558 ++NumFillers; 559 --N; 560 } 561 562 // Emit the remaining elements. 563 for (; N != 0; --N) 564 getArrayInitializedElt(N - 1).Profile(ID); 565 return; 566 } 567 568 case Vector: 569 for (unsigned I = 0, N = getVectorLength(); I != N; ++I) 570 getVectorElt(I).Profile(ID); 571 return; 572 573 case Int: 574 profileIntValue(ID, getInt()); 575 return; 576 577 case Float: 578 profileIntValue(ID, getFloat().bitcastToAPInt()); 579 return; 580 581 case FixedPoint: 582 profileIntValue(ID, getFixedPoint().getValue()); 583 return; 584 585 case ComplexFloat: 586 profileIntValue(ID, getComplexFloatReal().bitcastToAPInt()); 587 profileIntValue(ID, getComplexFloatImag().bitcastToAPInt()); 588 return; 589 590 case ComplexInt: 591 profileIntValue(ID, getComplexIntReal()); 592 profileIntValue(ID, getComplexIntImag()); 593 return; 594 595 case LValue: 596 getLValueBase().Profile(ID); 597 ID.AddInteger(getLValueOffset().getQuantity()); 598 ID.AddInteger((isNullPointer() ? 1 : 0) | 599 (isLValueOnePastTheEnd() ? 2 : 0) | 600 (hasLValuePath() ? 4 : 0)); 601 if (hasLValuePath()) { 602 ID.AddInteger(getLValuePath().size()); 603 // For uniqueness, we only need to profile the entries corresponding 604 // to union members, but we don't have the type here so we don't know 605 // how to interpret the entries. 606 for (LValuePathEntry E : getLValuePath()) 607 E.Profile(ID); 608 } 609 return; 610 611 case MemberPointer: 612 ID.AddPointer(getMemberPointerDecl()); 613 ID.AddInteger(isMemberPointerToDerivedMember()); 614 for (const CXXRecordDecl *D : getMemberPointerPath()) 615 ID.AddPointer(D); 616 return; 617 } 618 619 llvm_unreachable("Unknown APValue kind!"); 620 } 621 622 static double GetApproxValue(const llvm::APFloat &F) { 623 llvm::APFloat V = F; 624 bool ignored; 625 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 626 &ignored); 627 return V.convertToDouble(); 628 } 629 630 static bool TryPrintAsStringLiteral(raw_ostream &Out, 631 const PrintingPolicy &Policy, 632 const ArrayType *ATy, 633 ArrayRef<APValue> Inits) { 634 if (Inits.empty()) 635 return false; 636 637 QualType Ty = ATy->getElementType(); 638 if (!Ty->isAnyCharacterType()) 639 return false; 640 641 // Nothing we can do about a sequence that is not null-terminated 642 if (!Inits.back().isInt() || !Inits.back().getInt().isZero()) 643 return false; 644 645 Inits = Inits.drop_back(); 646 647 llvm::SmallString<40> Buf; 648 Buf.push_back('"'); 649 650 // Better than printing a two-digit sequence of 10 integers. 651 constexpr size_t MaxN = 36; 652 StringRef Ellipsis; 653 if (Inits.size() > MaxN && !Policy.EntireContentsOfLargeArray) { 654 Ellipsis = "[...]"; 655 Inits = 656 Inits.take_front(std::min(MaxN - Ellipsis.size() / 2, Inits.size())); 657 } 658 659 for (auto &Val : Inits) { 660 if (!Val.isInt()) 661 return false; 662 int64_t Char64 = Val.getInt().getExtValue(); 663 if (!isASCII(Char64)) 664 return false; // Bye bye, see you in integers. 665 auto Ch = static_cast<unsigned char>(Char64); 666 // The diagnostic message is 'quoted' 667 StringRef Escaped = escapeCStyle<EscapeChar::SingleAndDouble>(Ch); 668 if (Escaped.empty()) { 669 if (!isPrintable(Ch)) 670 return false; 671 Buf.emplace_back(Ch); 672 } else { 673 Buf.append(Escaped); 674 } 675 } 676 677 Buf.append(Ellipsis); 678 Buf.push_back('"'); 679 680 if (Ty->isWideCharType()) 681 Out << 'L'; 682 else if (Ty->isChar8Type()) 683 Out << "u8"; 684 else if (Ty->isChar16Type()) 685 Out << 'u'; 686 else if (Ty->isChar32Type()) 687 Out << 'U'; 688 689 Out << Buf; 690 return true; 691 } 692 693 void APValue::printPretty(raw_ostream &Out, const ASTContext &Ctx, 694 QualType Ty) const { 695 printPretty(Out, Ctx.getPrintingPolicy(), Ty, &Ctx); 696 } 697 698 void APValue::printPretty(raw_ostream &Out, const PrintingPolicy &Policy, 699 QualType Ty, const ASTContext *Ctx) const { 700 // There are no objects of type 'void', but values of this type can be 701 // returned from functions. 702 if (Ty->isVoidType()) { 703 Out << "void()"; 704 return; 705 } 706 707 switch (getKind()) { 708 case APValue::None: 709 Out << "<out of lifetime>"; 710 return; 711 case APValue::Indeterminate: 712 Out << "<uninitialized>"; 713 return; 714 case APValue::Int: 715 if (Ty->isBooleanType()) 716 Out << (getInt().getBoolValue() ? "true" : "false"); 717 else 718 Out << getInt(); 719 return; 720 case APValue::Float: 721 Out << GetApproxValue(getFloat()); 722 return; 723 case APValue::FixedPoint: 724 Out << getFixedPoint(); 725 return; 726 case APValue::Vector: { 727 Out << '{'; 728 QualType ElemTy = Ty->castAs<VectorType>()->getElementType(); 729 getVectorElt(0).printPretty(Out, Policy, ElemTy, Ctx); 730 for (unsigned i = 1; i != getVectorLength(); ++i) { 731 Out << ", "; 732 getVectorElt(i).printPretty(Out, Policy, ElemTy, Ctx); 733 } 734 Out << '}'; 735 return; 736 } 737 case APValue::ComplexInt: 738 Out << getComplexIntReal() << "+" << getComplexIntImag() << "i"; 739 return; 740 case APValue::ComplexFloat: 741 Out << GetApproxValue(getComplexFloatReal()) << "+" 742 << GetApproxValue(getComplexFloatImag()) << "i"; 743 return; 744 case APValue::LValue: { 745 bool IsReference = Ty->isReferenceType(); 746 QualType InnerTy 747 = IsReference ? Ty.getNonReferenceType() : Ty->getPointeeType(); 748 if (InnerTy.isNull()) 749 InnerTy = Ty; 750 751 LValueBase Base = getLValueBase(); 752 if (!Base) { 753 if (isNullPointer()) { 754 Out << (Policy.Nullptr ? "nullptr" : "0"); 755 } else if (IsReference) { 756 Out << "*(" << InnerTy.stream(Policy) << "*)" 757 << getLValueOffset().getQuantity(); 758 } else { 759 Out << "(" << Ty.stream(Policy) << ")" 760 << getLValueOffset().getQuantity(); 761 } 762 return; 763 } 764 765 if (!hasLValuePath()) { 766 // No lvalue path: just print the offset. 767 CharUnits O = getLValueOffset(); 768 CharUnits S = Ctx ? Ctx->getTypeSizeInCharsIfKnown(InnerTy).value_or( 769 CharUnits::Zero()) 770 : CharUnits::Zero(); 771 if (!O.isZero()) { 772 if (IsReference) 773 Out << "*("; 774 if (S.isZero() || O % S) { 775 Out << "(char*)"; 776 S = CharUnits::One(); 777 } 778 Out << '&'; 779 } else if (!IsReference) { 780 Out << '&'; 781 } 782 783 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) 784 Out << *VD; 785 else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { 786 TI.print(Out, Policy); 787 } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 788 Out << "{*new " 789 << Base.getDynamicAllocType().stream(Policy) << "#" 790 << DA.getIndex() << "}"; 791 } else { 792 assert(Base.get<const Expr *>() != nullptr && 793 "Expecting non-null Expr"); 794 Base.get<const Expr*>()->printPretty(Out, nullptr, Policy); 795 } 796 797 if (!O.isZero()) { 798 Out << " + " << (O / S); 799 if (IsReference) 800 Out << ')'; 801 } 802 return; 803 } 804 805 // We have an lvalue path. Print it out nicely. 806 if (!IsReference) 807 Out << '&'; 808 else if (isLValueOnePastTheEnd()) 809 Out << "*(&"; 810 811 QualType ElemTy = Base.getType(); 812 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { 813 Out << *VD; 814 } else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { 815 TI.print(Out, Policy); 816 } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 817 Out << "{*new " << Base.getDynamicAllocType().stream(Policy) << "#" 818 << DA.getIndex() << "}"; 819 } else { 820 const Expr *E = Base.get<const Expr*>(); 821 assert(E != nullptr && "Expecting non-null Expr"); 822 E->printPretty(Out, nullptr, Policy); 823 } 824 825 ArrayRef<LValuePathEntry> Path = getLValuePath(); 826 const CXXRecordDecl *CastToBase = nullptr; 827 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 828 if (ElemTy->isRecordType()) { 829 // The lvalue refers to a class type, so the next path entry is a base 830 // or member. 831 const Decl *BaseOrMember = Path[I].getAsBaseOrMember().getPointer(); 832 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(BaseOrMember)) { 833 CastToBase = RD; 834 // Leave ElemTy referring to the most-derived class. The actual type 835 // doesn't matter except for array types. 836 } else { 837 const ValueDecl *VD = cast<ValueDecl>(BaseOrMember); 838 Out << "."; 839 if (CastToBase) 840 Out << *CastToBase << "::"; 841 Out << *VD; 842 ElemTy = VD->getType(); 843 } 844 } else if (ElemTy->isAnyComplexType()) { 845 // The lvalue refers to a complex type 846 Out << (Path[I].getAsArrayIndex() == 0 ? ".real" : ".imag"); 847 ElemTy = ElemTy->castAs<ComplexType>()->getElementType(); 848 } else { 849 // The lvalue must refer to an array. 850 Out << '[' << Path[I].getAsArrayIndex() << ']'; 851 ElemTy = ElemTy->castAsArrayTypeUnsafe()->getElementType(); 852 } 853 } 854 855 // Handle formatting of one-past-the-end lvalues. 856 if (isLValueOnePastTheEnd()) { 857 // FIXME: If CastToBase is non-0, we should prefix the output with 858 // "(CastToBase*)". 859 Out << " + 1"; 860 if (IsReference) 861 Out << ')'; 862 } 863 return; 864 } 865 case APValue::Array: { 866 const ArrayType *AT = Ty->castAsArrayTypeUnsafe(); 867 unsigned N = getArrayInitializedElts(); 868 if (N != 0 && TryPrintAsStringLiteral(Out, Policy, AT, 869 {&getArrayInitializedElt(0), N})) 870 return; 871 QualType ElemTy = AT->getElementType(); 872 Out << '{'; 873 unsigned I = 0; 874 switch (N) { 875 case 0: 876 for (; I != N; ++I) { 877 Out << ", "; 878 if (I == 10 && !Policy.EntireContentsOfLargeArray) { 879 Out << "...}"; 880 return; 881 } 882 [[fallthrough]]; 883 default: 884 getArrayInitializedElt(I).printPretty(Out, Policy, ElemTy, Ctx); 885 } 886 } 887 Out << '}'; 888 return; 889 } 890 case APValue::Struct: { 891 Out << '{'; 892 const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl(); 893 bool First = true; 894 if (unsigned N = getStructNumBases()) { 895 const CXXRecordDecl *CD = cast<CXXRecordDecl>(RD); 896 CXXRecordDecl::base_class_const_iterator BI = CD->bases_begin(); 897 for (unsigned I = 0; I != N; ++I, ++BI) { 898 assert(BI != CD->bases_end()); 899 if (!First) 900 Out << ", "; 901 getStructBase(I).printPretty(Out, Policy, BI->getType(), Ctx); 902 First = false; 903 } 904 } 905 for (const auto *FI : RD->fields()) { 906 if (!First) 907 Out << ", "; 908 if (FI->isUnnamedBitfield()) continue; 909 getStructField(FI->getFieldIndex()). 910 printPretty(Out, Policy, FI->getType(), Ctx); 911 First = false; 912 } 913 Out << '}'; 914 return; 915 } 916 case APValue::Union: 917 Out << '{'; 918 if (const FieldDecl *FD = getUnionField()) { 919 Out << "." << *FD << " = "; 920 getUnionValue().printPretty(Out, Policy, FD->getType(), Ctx); 921 } 922 Out << '}'; 923 return; 924 case APValue::MemberPointer: 925 // FIXME: This is not enough to unambiguously identify the member in a 926 // multiple-inheritance scenario. 927 if (const ValueDecl *VD = getMemberPointerDecl()) { 928 Out << '&' << *cast<CXXRecordDecl>(VD->getDeclContext()) << "::" << *VD; 929 return; 930 } 931 Out << "0"; 932 return; 933 case APValue::AddrLabelDiff: 934 Out << "&&" << getAddrLabelDiffLHS()->getLabel()->getName(); 935 Out << " - "; 936 Out << "&&" << getAddrLabelDiffRHS()->getLabel()->getName(); 937 return; 938 } 939 llvm_unreachable("Unknown APValue kind!"); 940 } 941 942 std::string APValue::getAsString(const ASTContext &Ctx, QualType Ty) const { 943 std::string Result; 944 llvm::raw_string_ostream Out(Result); 945 printPretty(Out, Ctx, Ty); 946 Out.flush(); 947 return Result; 948 } 949 950 bool APValue::toIntegralConstant(APSInt &Result, QualType SrcTy, 951 const ASTContext &Ctx) const { 952 if (isInt()) { 953 Result = getInt(); 954 return true; 955 } 956 957 if (isLValue() && isNullPointer()) { 958 Result = Ctx.MakeIntValue(Ctx.getTargetNullPointerValue(SrcTy), SrcTy); 959 return true; 960 } 961 962 if (isLValue() && !getLValueBase()) { 963 Result = Ctx.MakeIntValue(getLValueOffset().getQuantity(), SrcTy); 964 return true; 965 } 966 967 return false; 968 } 969 970 const APValue::LValueBase APValue::getLValueBase() const { 971 assert(isLValue() && "Invalid accessor"); 972 return ((const LV *)(const void *)&Data)->Base; 973 } 974 975 bool APValue::isLValueOnePastTheEnd() const { 976 assert(isLValue() && "Invalid accessor"); 977 return ((const LV *)(const void *)&Data)->IsOnePastTheEnd; 978 } 979 980 CharUnits &APValue::getLValueOffset() { 981 assert(isLValue() && "Invalid accessor"); 982 return ((LV *)(void *)&Data)->Offset; 983 } 984 985 bool APValue::hasLValuePath() const { 986 assert(isLValue() && "Invalid accessor"); 987 return ((const LV *)(const char *)&Data)->hasPath(); 988 } 989 990 ArrayRef<APValue::LValuePathEntry> APValue::getLValuePath() const { 991 assert(isLValue() && hasLValuePath() && "Invalid accessor"); 992 const LV &LVal = *((const LV *)(const char *)&Data); 993 return llvm::ArrayRef(LVal.getPath(), LVal.PathLength); 994 } 995 996 unsigned APValue::getLValueCallIndex() const { 997 assert(isLValue() && "Invalid accessor"); 998 return ((const LV *)(const char *)&Data)->Base.getCallIndex(); 999 } 1000 1001 unsigned APValue::getLValueVersion() const { 1002 assert(isLValue() && "Invalid accessor"); 1003 return ((const LV *)(const char *)&Data)->Base.getVersion(); 1004 } 1005 1006 bool APValue::isNullPointer() const { 1007 assert(isLValue() && "Invalid usage"); 1008 return ((const LV *)(const char *)&Data)->IsNullPtr; 1009 } 1010 1011 void APValue::setLValue(LValueBase B, const CharUnits &O, NoLValuePath, 1012 bool IsNullPtr) { 1013 assert(isLValue() && "Invalid accessor"); 1014 LV &LVal = *((LV *)(char *)&Data); 1015 LVal.Base = B; 1016 LVal.IsOnePastTheEnd = false; 1017 LVal.Offset = O; 1018 LVal.resizePath((unsigned)-1); 1019 LVal.IsNullPtr = IsNullPtr; 1020 } 1021 1022 MutableArrayRef<APValue::LValuePathEntry> 1023 APValue::setLValueUninit(LValueBase B, const CharUnits &O, unsigned Size, 1024 bool IsOnePastTheEnd, bool IsNullPtr) { 1025 assert(isLValue() && "Invalid accessor"); 1026 LV &LVal = *((LV *)(char *)&Data); 1027 LVal.Base = B; 1028 LVal.IsOnePastTheEnd = IsOnePastTheEnd; 1029 LVal.Offset = O; 1030 LVal.IsNullPtr = IsNullPtr; 1031 LVal.resizePath(Size); 1032 return {LVal.getPath(), Size}; 1033 } 1034 1035 void APValue::setLValue(LValueBase B, const CharUnits &O, 1036 ArrayRef<LValuePathEntry> Path, bool IsOnePastTheEnd, 1037 bool IsNullPtr) { 1038 MutableArrayRef<APValue::LValuePathEntry> InternalPath = 1039 setLValueUninit(B, O, Path.size(), IsOnePastTheEnd, IsNullPtr); 1040 if (Path.size()) { 1041 memcpy(InternalPath.data(), Path.data(), 1042 Path.size() * sizeof(LValuePathEntry)); 1043 } 1044 } 1045 1046 void APValue::setUnion(const FieldDecl *Field, const APValue &Value) { 1047 assert(isUnion() && "Invalid accessor"); 1048 ((UnionData *)(char *)&Data)->Field = 1049 Field ? Field->getCanonicalDecl() : nullptr; 1050 *((UnionData *)(char *)&Data)->Value = Value; 1051 } 1052 1053 const ValueDecl *APValue::getMemberPointerDecl() const { 1054 assert(isMemberPointer() && "Invalid accessor"); 1055 const MemberPointerData &MPD = 1056 *((const MemberPointerData *)(const char *)&Data); 1057 return MPD.MemberAndIsDerivedMember.getPointer(); 1058 } 1059 1060 bool APValue::isMemberPointerToDerivedMember() const { 1061 assert(isMemberPointer() && "Invalid accessor"); 1062 const MemberPointerData &MPD = 1063 *((const MemberPointerData *)(const char *)&Data); 1064 return MPD.MemberAndIsDerivedMember.getInt(); 1065 } 1066 1067 ArrayRef<const CXXRecordDecl*> APValue::getMemberPointerPath() const { 1068 assert(isMemberPointer() && "Invalid accessor"); 1069 const MemberPointerData &MPD = 1070 *((const MemberPointerData *)(const char *)&Data); 1071 return llvm::ArrayRef(MPD.getPath(), MPD.PathLength); 1072 } 1073 1074 void APValue::MakeLValue() { 1075 assert(isAbsent() && "Bad state change"); 1076 static_assert(sizeof(LV) <= DataSize, "LV too big"); 1077 new ((void *)(char *)&Data) LV(); 1078 Kind = LValue; 1079 } 1080 1081 void APValue::MakeArray(unsigned InitElts, unsigned Size) { 1082 assert(isAbsent() && "Bad state change"); 1083 new ((void *)(char *)&Data) Arr(InitElts, Size); 1084 Kind = Array; 1085 } 1086 1087 MutableArrayRef<APValue::LValuePathEntry> 1088 setLValueUninit(APValue::LValueBase B, const CharUnits &O, unsigned Size, 1089 bool OnePastTheEnd, bool IsNullPtr); 1090 1091 MutableArrayRef<const CXXRecordDecl *> 1092 APValue::setMemberPointerUninit(const ValueDecl *Member, bool IsDerivedMember, 1093 unsigned Size) { 1094 assert(isAbsent() && "Bad state change"); 1095 MemberPointerData *MPD = new ((void *)(char *)&Data) MemberPointerData; 1096 Kind = MemberPointer; 1097 MPD->MemberAndIsDerivedMember.setPointer( 1098 Member ? cast<ValueDecl>(Member->getCanonicalDecl()) : nullptr); 1099 MPD->MemberAndIsDerivedMember.setInt(IsDerivedMember); 1100 MPD->resizePath(Size); 1101 return {MPD->getPath(), MPD->PathLength}; 1102 } 1103 1104 void APValue::MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember, 1105 ArrayRef<const CXXRecordDecl *> Path) { 1106 MutableArrayRef<const CXXRecordDecl *> InternalPath = 1107 setMemberPointerUninit(Member, IsDerivedMember, Path.size()); 1108 for (unsigned I = 0; I != Path.size(); ++I) 1109 InternalPath[I] = Path[I]->getCanonicalDecl(); 1110 } 1111 1112 LinkageInfo LinkageComputer::getLVForValue(const APValue &V, 1113 LVComputationKind computation) { 1114 LinkageInfo LV = LinkageInfo::external(); 1115 1116 auto MergeLV = [&](LinkageInfo MergeLV) { 1117 LV.merge(MergeLV); 1118 return LV.getLinkage() == Linkage::Internal; 1119 }; 1120 auto Merge = [&](const APValue &V) { 1121 return MergeLV(getLVForValue(V, computation)); 1122 }; 1123 1124 switch (V.getKind()) { 1125 case APValue::None: 1126 case APValue::Indeterminate: 1127 case APValue::Int: 1128 case APValue::Float: 1129 case APValue::FixedPoint: 1130 case APValue::ComplexInt: 1131 case APValue::ComplexFloat: 1132 case APValue::Vector: 1133 break; 1134 1135 case APValue::AddrLabelDiff: 1136 // Even for an inline function, it's not reasonable to treat a difference 1137 // between the addresses of labels as an external value. 1138 return LinkageInfo::internal(); 1139 1140 case APValue::Struct: { 1141 for (unsigned I = 0, N = V.getStructNumBases(); I != N; ++I) 1142 if (Merge(V.getStructBase(I))) 1143 break; 1144 for (unsigned I = 0, N = V.getStructNumFields(); I != N; ++I) 1145 if (Merge(V.getStructField(I))) 1146 break; 1147 break; 1148 } 1149 1150 case APValue::Union: 1151 if (V.getUnionField()) 1152 Merge(V.getUnionValue()); 1153 break; 1154 1155 case APValue::Array: { 1156 for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) 1157 if (Merge(V.getArrayInitializedElt(I))) 1158 break; 1159 if (V.hasArrayFiller()) 1160 Merge(V.getArrayFiller()); 1161 break; 1162 } 1163 1164 case APValue::LValue: { 1165 if (!V.getLValueBase()) { 1166 // Null or absolute address: this is external. 1167 } else if (const auto *VD = 1168 V.getLValueBase().dyn_cast<const ValueDecl *>()) { 1169 if (VD && MergeLV(getLVForDecl(VD, computation))) 1170 break; 1171 } else if (const auto TI = V.getLValueBase().dyn_cast<TypeInfoLValue>()) { 1172 if (MergeLV(getLVForType(*TI.getType(), computation))) 1173 break; 1174 } else if (const Expr *E = V.getLValueBase().dyn_cast<const Expr *>()) { 1175 // Almost all expression bases are internal. The exception is 1176 // lifetime-extended temporaries. 1177 // FIXME: These should be modeled as having the 1178 // LifetimeExtendedTemporaryDecl itself as the base. 1179 // FIXME: If we permit Objective-C object literals in template arguments, 1180 // they should not imply internal linkage. 1181 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 1182 if (!MTE || MTE->getStorageDuration() == SD_FullExpression) 1183 return LinkageInfo::internal(); 1184 if (MergeLV(getLVForDecl(MTE->getExtendingDecl(), computation))) 1185 break; 1186 } else { 1187 assert(V.getLValueBase().is<DynamicAllocLValue>() && 1188 "unexpected LValueBase kind"); 1189 return LinkageInfo::internal(); 1190 } 1191 // The lvalue path doesn't matter: pointers to all subobjects always have 1192 // the same visibility as pointers to the complete object. 1193 break; 1194 } 1195 1196 case APValue::MemberPointer: 1197 if (const NamedDecl *D = V.getMemberPointerDecl()) 1198 MergeLV(getLVForDecl(D, computation)); 1199 // Note that we could have a base-to-derived conversion here to a member of 1200 // a derived class with less linkage/visibility. That's covered by the 1201 // linkage and visibility of the value's type. 1202 break; 1203 } 1204 1205 return LV; 1206 } 1207