xref: /freebsd/contrib/llvm-project/clang/include/clang/Basic/TargetCXXABI.h (revision a134ebd6e63f658f2d3d04ac0c60d23bcaa86dd7)
1 //===--- TargetCXXABI.h - C++ ABI Target Configuration ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Defines the TargetCXXABI class, which abstracts details of the
11 /// C++ ABI that we're targeting.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_BASIC_TARGETCXXABI_H
16 #define LLVM_CLANG_BASIC_TARGETCXXABI_H
17 
18 #include "llvm/Support/ErrorHandling.h"
19 
20 namespace clang {
21 
22 /// The basic abstraction for the target C++ ABI.
23 class TargetCXXABI {
24 public:
25   /// The basic C++ ABI kind.
26   enum Kind {
27     /// The generic Itanium ABI is the standard ABI of most open-source
28     /// and Unix-like platforms.  It is the primary ABI targeted by
29     /// many compilers, including Clang and GCC.
30     ///
31     /// It is documented here:
32     ///   http://www.codesourcery.com/public/cxx-abi/
33     GenericItanium,
34 
35     /// The generic ARM ABI is a modified version of the Itanium ABI
36     /// proposed by ARM for use on ARM-based platforms.
37     ///
38     /// These changes include:
39     ///   - the representation of member function pointers is adjusted
40     ///     to not conflict with the 'thumb' bit of ARM function pointers;
41     ///   - constructors and destructors return 'this';
42     ///   - guard variables are smaller;
43     ///   - inline functions are never key functions;
44     ///   - array cookies have a slightly different layout;
45     ///   - additional convenience functions are specified;
46     ///   - and more!
47     ///
48     /// It is documented here:
49     ///    http://infocenter.arm.com
50     ///                    /help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
51     GenericARM,
52 
53     /// The iOS ABI is a partial implementation of the ARM ABI.
54     /// Several of the features of the ARM ABI were not fully implemented
55     /// in the compilers that iOS was launched with.
56     ///
57     /// Essentially, the iOS ABI includes the ARM changes to:
58     ///   - member function pointers,
59     ///   - guard variables,
60     ///   - array cookies, and
61     ///   - constructor/destructor signatures.
62     iOS,
63 
64     /// The iOS 64-bit ABI is follows ARM's published 64-bit ABI more
65     /// closely, but we don't guarantee to follow it perfectly.
66     ///
67     /// It is documented here:
68     ///    http://infocenter.arm.com
69     ///                  /help/topic/com.arm.doc.ihi0059a/IHI0059A_cppabi64.pdf
70     iOS64,
71 
72     /// WatchOS is a modernisation of the iOS ABI, which roughly means it's
73     /// the iOS64 ABI ported to 32-bits. The primary difference from iOS64 is
74     /// that RTTI objects must still be unique at the moment.
75     WatchOS,
76 
77     /// The generic AArch64 ABI is also a modified version of the Itanium ABI,
78     /// but it has fewer divergences than the 32-bit ARM ABI.
79     ///
80     /// The relevant changes from the generic ABI in this case are:
81     ///   - representation of member function pointers adjusted as in ARM.
82     ///   - guard variables  are smaller.
83     GenericAArch64,
84 
85     /// The generic Mips ABI is a modified version of the Itanium ABI.
86     ///
87     /// At the moment, only change from the generic ABI in this case is:
88     ///   - representation of member function pointers adjusted as in ARM.
89     GenericMIPS,
90 
91     /// The WebAssembly ABI is a modified version of the Itanium ABI.
92     ///
93     /// The changes from the Itanium ABI are:
94     ///   - representation of member function pointers is adjusted, as in ARM;
95     ///   - member functions are not specially aligned;
96     ///   - constructors and destructors return 'this', as in ARM;
97     ///   - guard variables are 32-bit on wasm32, as in ARM;
98     ///   - unused bits of guard variables are reserved, as in ARM;
99     ///   - inline functions are never key functions, as in ARM;
100     ///   - C++11 POD rules are used for tail padding, as in iOS64.
101     ///
102     /// TODO: At present the WebAssembly ABI is not considered stable, so none
103     /// of these details is necessarily final yet.
104     WebAssembly,
105 
106     /// The Fuchsia ABI is a modified version of the Itanium ABI.
107     ///
108     /// The relevant changes from the Itanium ABI are:
109     ///   - constructors and destructors return 'this', as in ARM.
110     Fuchsia,
111 
112     /// The Microsoft ABI is the ABI used by Microsoft Visual Studio (and
113     /// compatible compilers).
114     ///
115     /// FIXME: should this be split into Win32 and Win64 variants?
116     ///
117     /// Only scattered and incomplete official documentation exists.
118     Microsoft
119   };
120 
121 private:
122   // Right now, this class is passed around as a cheap value type.
123   // If you add more members, especially non-POD members, please
124   // audit the users to pass it by reference instead.
125   Kind TheKind;
126 
127 public:
128   /// A bogus initialization of the platform ABI.
129   TargetCXXABI() : TheKind(GenericItanium) {}
130 
131   TargetCXXABI(Kind kind) : TheKind(kind) {}
132 
133   void set(Kind kind) {
134     TheKind = kind;
135   }
136 
137   Kind getKind() const { return TheKind; }
138 
139   /// Does this ABI generally fall into the Itanium family of ABIs?
140   bool isItaniumFamily() const {
141     switch (getKind()) {
142     case Fuchsia:
143     case GenericAArch64:
144     case GenericItanium:
145     case GenericARM:
146     case iOS:
147     case iOS64:
148     case WatchOS:
149     case GenericMIPS:
150     case WebAssembly:
151       return true;
152 
153     case Microsoft:
154       return false;
155     }
156     llvm_unreachable("bad ABI kind");
157   }
158 
159   /// Is this ABI an MSVC-compatible ABI?
160   bool isMicrosoft() const {
161     switch (getKind()) {
162     case Fuchsia:
163     case GenericAArch64:
164     case GenericItanium:
165     case GenericARM:
166     case iOS:
167     case iOS64:
168     case WatchOS:
169     case GenericMIPS:
170     case WebAssembly:
171       return false;
172 
173     case Microsoft:
174       return true;
175     }
176     llvm_unreachable("bad ABI kind");
177   }
178 
179   /// Are member functions differently aligned?
180   ///
181   /// Many Itanium-style C++ ABIs require member functions to be aligned, so
182   /// that a pointer to such a function is guaranteed to have a zero in the
183   /// least significant bit, so that pointers to member functions can use that
184   /// bit to distinguish between virtual and non-virtual functions. However,
185   /// some Itanium-style C++ ABIs differentiate between virtual and non-virtual
186   /// functions via other means, and consequently don't require that member
187   /// functions be aligned.
188   bool areMemberFunctionsAligned() const {
189     switch (getKind()) {
190     case WebAssembly:
191       // WebAssembly doesn't require any special alignment for member functions.
192       return false;
193     case Fuchsia:
194     case GenericARM:
195     case GenericAArch64:
196     case GenericMIPS:
197       // TODO: ARM-style pointers to member functions put the discriminator in
198       //       the this adjustment, so they don't require functions to have any
199       //       special alignment and could therefore also return false.
200     case GenericItanium:
201     case iOS:
202     case iOS64:
203     case WatchOS:
204     case Microsoft:
205       return true;
206     }
207     llvm_unreachable("bad ABI kind");
208   }
209 
210   /// Are arguments to a call destroyed left to right in the callee?
211   /// This is a fundamental language change, since it implies that objects
212   /// passed by value do *not* live to the end of the full expression.
213   /// Temporaries passed to a function taking a const reference live to the end
214   /// of the full expression as usual.  Both the caller and the callee must
215   /// have access to the destructor, while only the caller needs the
216   /// destructor if this is false.
217   bool areArgsDestroyedLeftToRightInCallee() const {
218     return isMicrosoft();
219   }
220 
221   /// Does this ABI have different entrypoints for complete-object
222   /// and base-subobject constructors?
223   bool hasConstructorVariants() const {
224     return isItaniumFamily();
225   }
226 
227   /// Does this ABI allow virtual bases to be primary base classes?
228   bool hasPrimaryVBases() const {
229     return isItaniumFamily();
230   }
231 
232   /// Does this ABI use key functions?  If so, class data such as the
233   /// vtable is emitted with strong linkage by the TU containing the key
234   /// function.
235   bool hasKeyFunctions() const {
236     return isItaniumFamily();
237   }
238 
239   /// Can an out-of-line inline function serve as a key function?
240   ///
241   /// This flag is only useful in ABIs where type data (for example,
242   /// vtables and type_info objects) are emitted only after processing
243   /// the definition of a special "key" virtual function.  (This is safe
244   /// because the ODR requires that every virtual function be defined
245   /// somewhere in a program.)  This usually permits such data to be
246   /// emitted in only a single object file, as opposed to redundantly
247   /// in every object file that requires it.
248   ///
249   /// One simple and common definition of "key function" is the first
250   /// virtual function in the class definition which is not defined there.
251   /// This rule works very well when that function has a non-inline
252   /// definition in some non-header file.  Unfortunately, when that
253   /// function is defined inline, this rule requires the type data
254   /// to be emitted weakly, as if there were no key function.
255   ///
256   /// The ARM ABI observes that the ODR provides an additional guarantee:
257   /// a virtual function is always ODR-used, so if it is defined inline,
258   /// that definition must appear in every translation unit that defines
259   /// the class.  Therefore, there is no reason to allow such functions
260   /// to serve as key functions.
261   ///
262   /// Because this changes the rules for emitting type data,
263   /// it can cause type data to be emitted with both weak and strong
264   /// linkage, which is not allowed on all platforms.  Therefore,
265   /// exploiting this observation requires an ABI break and cannot be
266   /// done on a generic Itanium platform.
267   bool canKeyFunctionBeInline() const {
268     switch (getKind()) {
269     case Fuchsia:
270     case GenericARM:
271     case iOS64:
272     case WebAssembly:
273     case WatchOS:
274       return false;
275 
276     case GenericAArch64:
277     case GenericItanium:
278     case iOS:   // old iOS compilers did not follow this rule
279     case Microsoft:
280     case GenericMIPS:
281       return true;
282     }
283     llvm_unreachable("bad ABI kind");
284   }
285 
286   /// When is record layout allowed to allocate objects in the tail
287   /// padding of a base class?
288   ///
289   /// This decision cannot be changed without breaking platform ABI
290   /// compatibility. In ISO C++98, tail padding reuse was only permitted for
291   /// non-POD base classes, but that restriction was removed retroactively by
292   /// DR 43, and tail padding reuse is always permitted in all de facto C++
293   /// language modes. However, many platforms use a variant of the old C++98
294   /// rule for compatibility.
295   enum TailPaddingUseRules {
296     /// The tail-padding of a base class is always theoretically
297     /// available, even if it's POD.
298     AlwaysUseTailPadding,
299 
300     /// Only allocate objects in the tail padding of a base class if
301     /// the base class is not POD according to the rules of C++ TR1.
302     UseTailPaddingUnlessPOD03,
303 
304     /// Only allocate objects in the tail padding of a base class if
305     /// the base class is not POD according to the rules of C++11.
306     UseTailPaddingUnlessPOD11
307   };
308   TailPaddingUseRules getTailPaddingUseRules() const {
309     switch (getKind()) {
310     // To preserve binary compatibility, the generic Itanium ABI has
311     // permanently locked the definition of POD to the rules of C++ TR1,
312     // and that trickles down to derived ABIs.
313     case GenericItanium:
314     case GenericAArch64:
315     case GenericARM:
316     case iOS:
317     case GenericMIPS:
318       return UseTailPaddingUnlessPOD03;
319 
320     // iOS on ARM64 and WebAssembly use the C++11 POD rules.  They do not honor
321     // the Itanium exception about classes with over-large bitfields.
322     case Fuchsia:
323     case iOS64:
324     case WebAssembly:
325     case WatchOS:
326       return UseTailPaddingUnlessPOD11;
327 
328     // MSVC always allocates fields in the tail-padding of a base class
329     // subobject, even if they're POD.
330     case Microsoft:
331       return AlwaysUseTailPadding;
332     }
333     llvm_unreachable("bad ABI kind");
334   }
335 
336   friend bool operator==(const TargetCXXABI &left, const TargetCXXABI &right) {
337     return left.getKind() == right.getKind();
338   }
339 
340   friend bool operator!=(const TargetCXXABI &left, const TargetCXXABI &right) {
341     return !(left == right);
342   }
343 };
344 
345 }  // end namespace clang
346 
347 #endif
348