xref: /freebsd/contrib/libucl/src/tree.h (revision 9ecd54f24fe9fa373e07c9fd7c052deb2188f545)
1 /* tree.h -- AVL trees (in the spirit of BSD's 'queue.h')	-*- C -*-	*/
2 
3 /* Copyright (c) 2005 Ian Piumarta
4  *
5  * All rights reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the 'Software'), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, and/or sell copies of the
11  * Software, and to permit persons to whom the Software is furnished to do so,
12  * provided that the above copyright notice(s) and this permission notice appear
13  * in all copies of the Software and that both the above copyright notice(s) and
14  * this permission notice appear in supporting documentation.
15  *
16  * THE SOFTWARE IS PROVIDED 'AS IS'.  USE ENTIRELY AT YOUR OWN RISK.
17  */
18 
19 /* This file defines an AVL balanced binary tree [Georgii M. Adelson-Velskii and
20  * Evgenii M. Landis, 'An algorithm for the organization of information',
21  * Doklady Akademii Nauk SSSR, 146:263-266, 1962 (Russian).  Also in Myron
22  * J. Ricci (trans.), Soviet Math, 3:1259-1263, 1962 (English)].
23  *
24  * An AVL tree is headed by pointers to the root node and to a function defining
25  * the ordering relation between nodes.  Each node contains an arbitrary payload
26  * plus three fields per tree entry: the depth of the subtree for which it forms
27  * the root and two pointers to child nodes (singly-linked for minimum space, at
28  * the expense of direct access to the parent node given a pointer to one of the
29  * children).  The tree is rebalanced after every insertion or removal.  The
30  * tree may be traversed in two directions: forward (in-order left-to-right) and
31  * reverse (in-order, right-to-left).
32  *
33  * Because of the recursive nature of many of the operations on trees it is
34  * necessary to define a number of helper functions for each type of tree node.
35  * The macro TREE_DEFINE(node_tag, entry_name) defines these functions with
36  * unique names according to the node_tag.  This macro should be invoked,
37  * thereby defining the necessary functions, once per node tag in the program.
38  *
39  * For details on the use of these macros, see the tree(3) manual page.
40  */
41 
42 #ifndef __tree_h
43 #define __tree_h
44 
45 
46 #define TREE_DELTA_MAX	1
47 
48 #define TREE_ENTRY(type)			\
49   struct {					\
50     struct type	*avl_left;			\
51     struct type	*avl_right;			\
52     int		 avl_height;			\
53   }
54 
55 #define TREE_HEAD(name, type)				\
56   struct name {						\
57     struct type *th_root;				\
58     int  (*th_cmp)(struct type *lhs, struct type *rhs);	\
59   }
60 
61 #define TREE_INITIALIZER(cmp) { 0, cmp }
62 
63 #define TREE_DELTA(self, field)								\
64   (( (((self)->field.avl_left)  ? (self)->field.avl_left->field.avl_height  : 0))	\
65    - (((self)->field.avl_right) ? (self)->field.avl_right->field.avl_height : 0))
66 
67 /* Recursion prevents the following from being defined as macros. */
68 
69 #define TREE_DEFINE(node, field)									\
70 													\
71   struct node *TREE_BALANCE_##node##_##field(struct node *);						\
72 													\
73   struct node *TREE_ROTL_##node##_##field(struct node *self)						\
74   {													\
75     struct node *r= self->field.avl_right;								\
76     self->field.avl_right= r->field.avl_left;								\
77     r->field.avl_left= TREE_BALANCE_##node##_##field(self);						\
78     return TREE_BALANCE_##node##_##field(r);								\
79   }													\
80 													\
81   struct node *TREE_ROTR_##node##_##field(struct node *self)						\
82   {													\
83     struct node *l= self->field.avl_left;								\
84     self->field.avl_left= l->field.avl_right;								\
85     l->field.avl_right= TREE_BALANCE_##node##_##field(self);						\
86     return TREE_BALANCE_##node##_##field(l);								\
87   }													\
88 													\
89   struct node *TREE_BALANCE_##node##_##field(struct node *self)						\
90   {													\
91     int delta= TREE_DELTA(self, field);									\
92 													\
93     if (delta < -TREE_DELTA_MAX)									\
94       {													\
95 	if (TREE_DELTA(self->field.avl_right, field) > 0)						\
96 	  self->field.avl_right= TREE_ROTR_##node##_##field(self->field.avl_right);			\
97 	return TREE_ROTL_##node##_##field(self);							\
98       }													\
99     else if (delta > TREE_DELTA_MAX)									\
100       {													\
101 	if (TREE_DELTA(self->field.avl_left, field) < 0)						\
102 	  self->field.avl_left= TREE_ROTL_##node##_##field(self->field.avl_left);			\
103 	return TREE_ROTR_##node##_##field(self);							\
104       }													\
105     self->field.avl_height= 0;										\
106     if (self->field.avl_left && (self->field.avl_left->field.avl_height > self->field.avl_height))	\
107       self->field.avl_height= self->field.avl_left->field.avl_height;					\
108     if (self->field.avl_right && (self->field.avl_right->field.avl_height > self->field.avl_height))	\
109       self->field.avl_height= self->field.avl_right->field.avl_height;					\
110     self->field.avl_height += 1;									\
111     return self;											\
112   }													\
113 													\
114   struct node *TREE_INSERT_##node##_##field								\
115     (struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs))		\
116   {													\
117     if (!self)												\
118       return elm;											\
119     if (compare(elm, self) < 0)										\
120       self->field.avl_left= TREE_INSERT_##node##_##field(self->field.avl_left, elm, compare);		\
121     else												\
122       self->field.avl_right= TREE_INSERT_##node##_##field(self->field.avl_right, elm, compare);		\
123     return TREE_BALANCE_##node##_##field(self);								\
124   }													\
125 													\
126   struct node *TREE_FIND_##node##_##field								\
127     (struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs))		\
128   {													\
129     if (!self)												\
130       return 0;												\
131     if (compare(elm, self) == 0)									\
132       return self;											\
133     if (compare(elm, self) < 0)										\
134       return TREE_FIND_##node##_##field(self->field.avl_left, elm, compare);				\
135     else												\
136       return TREE_FIND_##node##_##field(self->field.avl_right, elm, compare);				\
137   }													\
138 													\
139   struct node *TREE_MOVE_RIGHT(struct node *self, struct node *rhs)					\
140   {													\
141     if (!self)												\
142       return rhs;											\
143     self->field.avl_right= TREE_MOVE_RIGHT(self->field.avl_right, rhs);					\
144     return TREE_BALANCE_##node##_##field(self);								\
145   }													\
146 													\
147   struct node *TREE_REMOVE_##node##_##field								\
148     (struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs))		\
149   {													\
150     if (!self) return 0;										\
151 													\
152     if (compare(elm, self) == 0)									\
153       {													\
154 	struct node *tmp= TREE_MOVE_RIGHT(self->field.avl_left, self->field.avl_right);			\
155 	self->field.avl_left= 0;									\
156 	self->field.avl_right= 0;									\
157 	return tmp;											\
158       }													\
159     if (compare(elm, self) < 0)										\
160       self->field.avl_left= TREE_REMOVE_##node##_##field(self->field.avl_left, elm, compare);		\
161     else												\
162       self->field.avl_right= TREE_REMOVE_##node##_##field(self->field.avl_right, elm, compare);		\
163     return TREE_BALANCE_##node##_##field(self);								\
164   }													\
165 													\
166   void TREE_FORWARD_APPLY_ALL_##node##_##field								\
167     (struct node *self, void (*function)(struct node *node, void *data), void *data)			\
168   {													\
169     if (self)												\
170       {													\
171 	TREE_FORWARD_APPLY_ALL_##node##_##field(self->field.avl_left, function, data);			\
172 	function(self, data);										\
173 	TREE_FORWARD_APPLY_ALL_##node##_##field(self->field.avl_right, function, data);			\
174       }													\
175   }													\
176 													\
177   void TREE_REVERSE_APPLY_ALL_##node##_##field								\
178     (struct node *self, void (*function)(struct node *node, void *data), void *data)			\
179   {													\
180     if (self)												\
181       {													\
182 	TREE_REVERSE_APPLY_ALL_##node##_##field(self->field.avl_right, function, data);			\
183 	function(self, data);										\
184 	TREE_REVERSE_APPLY_ALL_##node##_##field(self->field.avl_left, function, data);			\
185       }													\
186   }
187 
188 #define TREE_INSERT(head, node, field, elm)						\
189   ((head)->th_root= TREE_INSERT_##node##_##field((head)->th_root, (elm), (head)->th_cmp))
190 
191 #define TREE_FIND(head, node, field, elm)				\
192   (TREE_FIND_##node##_##field((head)->th_root, (elm), (head)->th_cmp))
193 
194 #define TREE_REMOVE(head, node, field, elm)						\
195   ((head)->th_root= TREE_REMOVE_##node##_##field((head)->th_root, (elm), (head)->th_cmp))
196 
197 #define TREE_DEPTH(head, field)			\
198   ((head)->th_root->field.avl_height)
199 
200 #define TREE_FORWARD_APPLY(head, node, field, function, data)	\
201   TREE_FORWARD_APPLY_ALL_##node##_##field((head)->th_root, function, data)
202 
203 #define TREE_REVERSE_APPLY(head, node, field, function, data)	\
204   TREE_REVERSE_APPLY_ALL_##node##_##field((head)->th_root, function, data)
205 
206 #define TREE_INIT(head, cmp) do {		\
207     (head)->th_root= 0;				\
208     (head)->th_cmp= (cmp);			\
209   } while (0)
210 
211 
212 #endif /* __tree_h */
213