xref: /freebsd/contrib/libucl/src/mum.h (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 /* Copyright (c) 2016 Vladimir Makarov <vmakarov@gcc.gnu.org>
2 
3    Permission is hereby granted, free of charge, to any person
4    obtaining a copy of this software and associated documentation
5    files (the "Software"), to deal in the Software without
6    restriction, including without limitation the rights to use, copy,
7    modify, merge, publish, distribute, sublicense, and/or sell copies
8    of the Software, and to permit persons to whom the Software is
9    furnished to do so, subject to the following conditions:
10 
11    The above copyright notice and this permission notice shall be
12    included in all copies or substantial portions of the Software.
13 
14    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
15    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
17    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
18    BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
19    ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20    CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21    SOFTWARE.
22 */
23 
24 /* This file implements MUM (MUltiply and Mix) hashing.  We randomize
25    input data by 64x64-bit multiplication and mixing hi- and low-parts
26    of the multiplication result by using an addition and then mix it
27    into the current state.  We use prime numbers randomly generated
28    with the equal probability of their bit values for the
29    multiplication.  When all primes are used once, the state is
30    randomized and the same prime numbers are used again for data
31    randomization.
32 
33    The MUM hashing passes all SMHasher tests.  Pseudo Random Number
34    Generator based on MUM also passes NIST Statistical Test Suite for
35    Random and Pseudorandom Number Generators for Cryptographic
36    Applications (version 2.2.1) with 1000 bitstreams each containing
37    1M bits.  MUM hashing is also faster Spooky64 and City64 on small
38    strings (at least up to 512-bit) on Haswell and Power7.  The MUM bulk
39    speed (speed on very long data) is bigger than Spooky and City on
40    Power7.  On Haswell the bulk speed is bigger than Spooky one and
41    close to City speed.  */
42 
43 #ifndef __MUM_HASH__
44 #define __MUM_HASH__
45 
46 #include <stddef.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <limits.h>
50 
51 #ifdef _MSC_VER
52 typedef unsigned __int16 uint16_t;
53 typedef unsigned __int32 uint32_t;
54 typedef unsigned __int64 uint64_t;
55 #else
56 #include <stdint.h>
57 #endif
58 
59 /* Macro saying to use 128-bit integers implemented by GCC for some
60    targets.  */
61 #ifndef _MUM_USE_INT128
62 /* In GCC uint128_t is defined if HOST_BITS_PER_WIDE_INT >= 64.
63    HOST_WIDE_INT is long if HOST_BITS_PER_LONG > HOST_BITS_PER_INT,
64    otherwise int. */
65 #if defined(__GNUC__) && UINT_MAX != ULONG_MAX
66 #define _MUM_USE_INT128 1
67 #else
68 #define _MUM_USE_INT128 0
69 #endif
70 #endif
71 
72 #if 0
73 #if defined(__GNUC__) && ((__GNUC__ == 4) &&  (__GNUC_MINOR__ >= 9) || (__GNUC__ > 4))
74 #define _MUM_FRESH_GCC
75 #endif
76 #endif
77 
78 #if defined(__GNUC__) && !defined(__llvm__) && defined(_MUM_FRESH_GCC)
79 #define _MUM_ATTRIBUTE_UNUSED  __attribute__((unused))
80 #define _MUM_OPTIMIZE(opts) __attribute__((__optimize__ (opts)))
81 #define _MUM_TARGET(opts) __attribute__((__target__ (opts)))
82 #else
83 #define _MUM_ATTRIBUTE_UNUSED
84 #define _MUM_OPTIMIZE(opts)
85 #define _MUM_TARGET(opts)
86 #endif
87 
88 
89 /* Here are different primes randomly generated with the equal
90    probability of their bit values.  They are used to randomize input
91    values.  */
92 static uint64_t _mum_hash_step_prime = 0x2e0bb864e9ea7df5ULL;
93 static uint64_t _mum_key_step_prime = 0xcdb32970830fcaa1ULL;
94 static uint64_t _mum_block_start_prime = 0xc42b5e2e6480b23bULL;
95 static uint64_t _mum_unroll_prime = 0x7b51ec3d22f7096fULL;
96 static uint64_t _mum_tail_prime = 0xaf47d47c99b1461bULL;
97 static uint64_t _mum_finish_prime1 = 0xa9a7ae7ceff79f3fULL;
98 static uint64_t _mum_finish_prime2 = 0xaf47d47c99b1461bULL;
99 
100 static uint64_t _mum_primes [] = {
101   0X9ebdcae10d981691, 0X32b9b9b97a27ac7d, 0X29b5584d83d35bbd, 0X4b04e0e61401255f,
102   0X25e8f7b1f1c9d027, 0X80d4c8c000f3e881, 0Xbd1255431904b9dd, 0X8a3bd4485eee6d81,
103   0X3bc721b2aad05197, 0X71b1a19b907d6e33, 0X525e6c1084a8534b, 0X9e4c2cd340c1299f,
104   0Xde3add92e94caa37, 0X7e14eadb1f65311d, 0X3f5aa40f89812853, 0X33b15a3b587d15c9,
105 };
106 
107 /* Multiply 64-bit V and P and return sum of high and low parts of the
108    result.  */
109 static inline uint64_t
110 _mum (uint64_t v, uint64_t p) {
111   uint64_t hi, lo;
112 #if _MUM_USE_INT128
113 #if defined(__aarch64__)
114   /* AARCH64 needs 2 insns to calculate 128-bit result of the
115      multiplication.  If we use a generic code we actually call a
116      function doing 128x128->128 bit multiplication.  The function is
117      very slow.  */
118   lo = v * p, hi;
119   asm ("umulh %0, %1, %2" : "=r" (hi) : "r" (v), "r" (p));
120 #else
121   __uint128_t r = (__uint128_t) v * (__uint128_t) p;
122   hi = (uint64_t) (r >> 64);
123   lo = (uint64_t) r;
124 #endif
125 #else
126   /* Implementation of 64x64->128-bit multiplication by four 32x32->64
127      bit multiplication.  */
128   uint64_t hv = v >> 32, hp = p >> 32;
129   uint64_t lv = (uint32_t) v, lp = (uint32_t) p;
130   uint64_t rh =  hv * hp;
131   uint64_t rm_0 = hv * lp;
132   uint64_t rm_1 = hp * lv;
133   uint64_t rl =  lv * lp;
134   uint64_t t, carry = 0;
135 
136   /* We could ignore a carry bit here if we did not care about the
137      same hash for 32-bit and 64-bit targets.  */
138   t = rl + (rm_0 << 32);
139 #ifdef MUM_TARGET_INDEPENDENT_HASH
140   carry = t < rl;
141 #endif
142   lo = t + (rm_1 << 32);
143 #ifdef MUM_TARGET_INDEPENDENT_HASH
144   carry += lo < t;
145 #endif
146   hi = rh + (rm_0 >> 32) + (rm_1 >> 32) + carry;
147 #endif
148   /* We could use XOR here too but, for some reasons, on Haswell and
149      Power7 using an addition improves hashing performance by 10% for
150      small strings.  */
151   return hi + lo;
152 }
153 
154 #if defined(_MSC_VER)
155 #define _mum_bswap_32(x) _byteswap_uint32_t (x)
156 #define _mum_bswap_64(x) _byteswap_uint64_t (x)
157 #elif defined(__APPLE__)
158 #include <libkern/OSByteOrder.h>
159 #define _mum_bswap_32(x) OSSwapInt32 (x)
160 #define _mum_bswap_64(x) OSSwapInt64 (x)
161 #elif defined(__GNUC__)
162 #define _mum_bswap32(x) __builtin_bswap32 (x)
163 #define _mum_bswap64(x) __builtin_bswap64 (x)
164 #else
165 #include <byteswap.h>
166 #define _mum_bswap32(x) bswap32 (x)
167 #define _mum_bswap64(x) bswap64 (x)
168 #endif
169 
170 static inline uint64_t
171 _mum_le (uint64_t v) {
172 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || !defined(MUM_TARGET_INDEPENDENT_HASH)
173   return v;
174 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
175   return _mum_bswap64 (v);
176 #else
177 #error "Unknown endianness"
178 #endif
179 }
180 
181 static inline uint32_t
182 _mum_le32 (uint32_t v) {
183 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || !defined(MUM_TARGET_INDEPENDENT_HASH)
184   return v;
185 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
186   return _mum_bswap32 (v);
187 #else
188 #error "Unknown endianness"
189 #endif
190 }
191 
192 /* Macro defining how many times the most nested loop in
193    _mum_hash_aligned will be unrolled by the compiler (although it can
194    make an own decision:).  Use only a constant here to help a
195    compiler to unroll a major loop.
196 
197    The macro value affects the result hash for strings > 128 bit.  The
198    unroll factor greatly affects the hashing speed.  We prefer the
199    speed.  */
200 #ifndef _MUM_UNROLL_FACTOR_POWER
201 #if defined(__PPC64__) && !defined(MUM_TARGET_INDEPENDENT_HASH)
202 #define _MUM_UNROLL_FACTOR_POWER 3
203 #elif defined(__aarch64__) && !defined(MUM_TARGET_INDEPENDENT_HASH)
204 #define _MUM_UNROLL_FACTOR_POWER 4
205 #else
206 #define _MUM_UNROLL_FACTOR_POWER 2
207 #endif
208 #endif
209 
210 #if _MUM_UNROLL_FACTOR_POWER < 1
211 #error "too small unroll factor"
212 #elif _MUM_UNROLL_FACTOR_POWER > 4
213 #error "We have not enough primes for such unroll factor"
214 #endif
215 
216 #define _MUM_UNROLL_FACTOR (1 << _MUM_UNROLL_FACTOR_POWER)
217 
218 static inline uint64_t _MUM_OPTIMIZE("unroll-loops")
219 _mum_hash_aligned (uint64_t start, const void *key, size_t len) {
220   uint64_t result = start;
221   const unsigned char *str = (const unsigned char *) key;
222   uint64_t u64;
223   int i;
224   size_t n;
225 
226   result = _mum (result, _mum_block_start_prime);
227   while  (len > _MUM_UNROLL_FACTOR * sizeof (uint64_t)) {
228     /* This loop could be vectorized when we have vector insns for
229        64x64->128-bit multiplication.  AVX2 currently only have a
230        vector insn for 4 32x32->64-bit multiplication.  */
231     for (i = 0; i < _MUM_UNROLL_FACTOR; i++)
232       result ^= _mum (_mum_le (((uint64_t *) str)[i]), _mum_primes[i]);
233     len -= _MUM_UNROLL_FACTOR * sizeof (uint64_t);
234     str += _MUM_UNROLL_FACTOR * sizeof (uint64_t);
235     /* We will use the same prime numbers on the next iterations --
236        randomize the state.  */
237     result = _mum (result, _mum_unroll_prime);
238   }
239   n = len / sizeof (uint64_t);
240   for (i = 0; i < (int)n; i++)
241     result ^= _mum (_mum_le (((uint64_t *) str)[i]), _mum_primes[i]);
242   len -= n * sizeof (uint64_t); str += n * sizeof (uint64_t);
243   switch (len) {
244   case 7:
245     u64 = _mum_le32 (*(uint32_t *) str);
246     u64 |= (uint64_t) str[4] << 32;
247     u64 |= (uint64_t) str[5] << 40;
248     u64 |= (uint64_t) str[6] << 48;
249     return result ^ _mum (u64, _mum_tail_prime);
250   case 6:
251     u64 = _mum_le32 (*(uint32_t *) str);
252     u64 |= (uint64_t) str[4] << 32;
253     u64 |= (uint64_t) str[5] << 40;
254     return result ^ _mum (u64, _mum_tail_prime);
255   case 5:
256     u64 = _mum_le32 (*(uint32_t *) str);
257     u64 |= (uint64_t) str[4] << 32;
258     return result ^ _mum (u64, _mum_tail_prime);
259   case 4:
260     u64 = _mum_le32 (*(uint32_t *) str);
261     return result ^ _mum (u64, _mum_tail_prime);
262   case 3:
263     u64 = str[0];
264     u64 |= (uint64_t) str[1] << 8;
265     u64 |= (uint64_t) str[2] << 16;
266     return result ^ _mum (u64, _mum_tail_prime);
267   case 2:
268     u64 = str[0];
269     u64 |= (uint64_t) str[1] << 8;
270     return result ^ _mum (u64, _mum_tail_prime);
271   case 1:
272     u64 = str[0];
273     return result ^ _mum (u64, _mum_tail_prime);
274   }
275   return result;
276 }
277 
278 /* Final randomization of H.  */
279 static inline uint64_t
280 _mum_final (uint64_t h) {
281   h ^= _mum (h, _mum_finish_prime1);
282   h ^= _mum (h, _mum_finish_prime2);
283   return h;
284 }
285 
286 #if defined(__x86_64__) && defined(_MUM_FRESH_GCC)
287 
288 /* We want to use AVX2 insn MULX instead of generic x86-64 MULQ where
289    it is possible.  Although on modern Intel processors MULQ takes
290    3-cycles vs. 4 for MULX, MULX permits more freedom in insn
291    scheduling as it uses less fixed registers.  */
292 static inline uint64_t _MUM_TARGET("arch=haswell")
293 _mum_hash_avx2 (const void * key, size_t len, uint64_t seed) {
294   return _mum_final (_mum_hash_aligned (seed + len, key, len));
295 }
296 #endif
297 
298 #ifndef _MUM_UNALIGNED_ACCESS
299 #if defined(__x86_64__) || defined(__i386__) || defined(__PPC64__) \
300     || defined(__s390__) || defined(__m32c__) || defined(cris)     \
301     || defined(__CR16__) || defined(__vax__) || defined(__m68k__) \
302     || defined(__aarch64__)
303 #define _MUM_UNALIGNED_ACCESS 1
304 #else
305 #define _MUM_UNALIGNED_ACCESS 0
306 #endif
307 #endif
308 
309 /* When we need an aligned access to data being hashed we move part of
310    the unaligned data to an aligned block of given size and then
311    process it, repeating processing the data by the block.  */
312 #ifndef _MUM_BLOCK_LEN
313 #define _MUM_BLOCK_LEN 1024
314 #endif
315 
316 #if _MUM_BLOCK_LEN < 8
317 #error "too small block length"
318 #endif
319 
320 static inline uint64_t
321 #if defined(__x86_64__)
322 _MUM_TARGET("inline-all-stringops")
323 #endif
324 _mum_hash_default (const void *key, size_t len, uint64_t seed) {
325   uint64_t result;
326   const unsigned char *str = (const unsigned char *) key;
327   size_t block_len;
328   uint64_t buf[_MUM_BLOCK_LEN / sizeof (uint64_t)];
329 
330   result = seed + len;
331   if (_MUM_UNALIGNED_ACCESS || ((size_t) str & 0x7) == 0)
332     result = _mum_hash_aligned (result, key, len);
333   else {
334     while (len != 0) {
335       block_len = len < _MUM_BLOCK_LEN ? len : _MUM_BLOCK_LEN;
336       memmove (buf, str, block_len);
337       result = _mum_hash_aligned (result, buf, block_len);
338       len -= block_len;
339       str += block_len;
340     }
341   }
342   return _mum_final (result);
343 }
344 
345 static inline uint64_t
346 _mum_next_factor (void) {
347   uint64_t start = 0;
348   int i;
349 
350   for (i = 0; i < 8; i++)
351     start = (start << 8) | rand() % 256;
352   return start;
353 }
354 
355 /* ++++++++++++++++++++++++++ Interface functions: +++++++++++++++++++  */
356 
357 /* Set random multiplicators depending on SEED.  */
358 static inline void
359 mum_hash_randomize (uint64_t seed) {
360   int i;
361 
362   srand (seed);
363   _mum_hash_step_prime = _mum_next_factor ();
364   _mum_key_step_prime = _mum_next_factor ();
365   _mum_finish_prime1 = _mum_next_factor ();
366   _mum_finish_prime2 = _mum_next_factor ();
367   _mum_block_start_prime = _mum_next_factor ();
368   _mum_unroll_prime = _mum_next_factor ();
369   _mum_tail_prime = _mum_next_factor ();
370   for (i = 0; i < (int)(sizeof (_mum_primes) / sizeof (uint64_t)); i++)
371     _mum_primes[i] = _mum_next_factor ();
372 }
373 
374 /* Start hashing data with SEED.  Return the state.  */
375 static inline uint64_t
376 mum_hash_init (uint64_t seed) {
377   return seed;
378 }
379 
380 /* Process data KEY with the state H and return the updated state.  */
381 static inline uint64_t
382 mum_hash_step (uint64_t h, uint64_t key)
383 {
384   return _mum (h, _mum_hash_step_prime) ^ _mum (key, _mum_key_step_prime);
385 }
386 
387 /* Return the result of hashing using the current state H.  */
388 static inline uint64_t
389 mum_hash_finish (uint64_t h) {
390   return _mum_final (h);
391 }
392 
393 /* Fast hashing of KEY with SEED.  The hash is always the same for the
394    same key on any target. */
395 static inline size_t
396 mum_hash64 (uint64_t key, uint64_t seed) {
397   return mum_hash_finish (mum_hash_step (mum_hash_init (seed), key));
398 }
399 
400 /* Hash data KEY of length LEN and SEED.  The hash depends on the
401    target endianness and the unroll factor.  */
402 static inline uint64_t
403 mum_hash (const void *key, size_t len, uint64_t seed) {
404 #if defined(__x86_64__) && defined(_MUM_FRESH_GCC)
405   static int avx2_support = 0;
406 
407   if (avx2_support > 0)
408     return _mum_hash_avx2 (key, len, seed);
409   else if (! avx2_support) {
410     __builtin_cpu_init ();
411     avx2_support =  __builtin_cpu_supports ("avx2") ? 1 : -1;
412     if (avx2_support > 0)
413       return _mum_hash_avx2 (key, len, seed);
414   }
415 #endif
416   return _mum_hash_default (key, len, seed);
417 }
418 
419 #endif
420