1 /* 2 * pcap-linux.c: Packet capture interface to the Linux kernel 3 * 4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org> 5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de> 6 * 7 * License: BSD 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. The names of the authors may not be used to endorse or promote 20 * products derived from this software without specific prior 21 * written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 26 * 27 * Modifications: Added PACKET_MMAP support 28 * Paolo Abeni <paolo.abeni@email.it> 29 * Added TPACKET_V3 support 30 * Gabor Tatarka <gabor.tatarka@ericsson.com> 31 * 32 * based on previous works of: 33 * Simon Patarin <patarin@cs.unibo.it> 34 * Phil Wood <cpw@lanl.gov> 35 * 36 * Monitor-mode support for mac80211 includes code taken from the iw 37 * command; the copyright notice for that code is 38 * 39 * Copyright (c) 2007, 2008 Johannes Berg 40 * Copyright (c) 2007 Andy Lutomirski 41 * Copyright (c) 2007 Mike Kershaw 42 * Copyright (c) 2008 Gábor Stefanik 43 * 44 * All rights reserved. 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. The name of the author may not be used to endorse or promote products 55 * derived from this software without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 60 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 61 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 62 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 63 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 64 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 65 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 67 * SUCH DAMAGE. 68 */ 69 70 /* 71 * Known problems with 2.0[.x] kernels: 72 * 73 * - The loopback device gives every packet twice; on 2.2[.x] kernels, 74 * if we use PF_PACKET, we can filter out the transmitted version 75 * of the packet by using data in the "sockaddr_ll" returned by 76 * "recvfrom()", but, on 2.0[.x] kernels, we have to use 77 * PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a 78 * "sockaddr_pkt" which doesn't give us enough information to let 79 * us do that. 80 * 81 * - We have to set the interface's IFF_PROMISC flag ourselves, if 82 * we're to run in promiscuous mode, which means we have to turn 83 * it off ourselves when we're done; the kernel doesn't keep track 84 * of how many sockets are listening promiscuously, which means 85 * it won't get turned off automatically when no sockets are 86 * listening promiscuously. We catch "pcap_close()" and, for 87 * interfaces we put into promiscuous mode, take them out of 88 * promiscuous mode - which isn't necessarily the right thing to 89 * do, if another socket also requested promiscuous mode between 90 * the time when we opened the socket and the time when we close 91 * the socket. 92 * 93 * - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()" 94 * return the amount of data that you could have read, rather than 95 * the amount that was returned, so we can't just allocate a buffer 96 * whose size is the snapshot length and pass the snapshot length 97 * as the byte count, and also pass MSG_TRUNC, so that the return 98 * value tells us how long the packet was on the wire. 99 * 100 * This means that, if we want to get the actual size of the packet, 101 * so we can return it in the "len" field of the packet header, 102 * we have to read the entire packet, not just the part that fits 103 * within the snapshot length, and thus waste CPU time copying data 104 * from the kernel that our caller won't see. 105 * 106 * We have to get the actual size, and supply it in "len", because 107 * otherwise, the IP dissector in tcpdump, for example, will complain 108 * about "truncated-ip", as the packet will appear to have been 109 * shorter, on the wire, than the IP header said it should have been. 110 */ 111 112 113 #define _GNU_SOURCE 114 115 #ifdef HAVE_CONFIG_H 116 #include "config.h" 117 #endif 118 119 #include <errno.h> 120 #include <stdio.h> 121 #include <stdlib.h> 122 #include <ctype.h> 123 #include <unistd.h> 124 #include <fcntl.h> 125 #include <string.h> 126 #include <limits.h> 127 #include <sys/stat.h> 128 #include <sys/socket.h> 129 #include <sys/ioctl.h> 130 #include <sys/utsname.h> 131 #include <sys/mman.h> 132 #include <linux/if.h> 133 #include <linux/if_packet.h> 134 #include <linux/sockios.h> 135 #include <netinet/in.h> 136 #include <linux/if_ether.h> 137 #include <net/if_arp.h> 138 #include <poll.h> 139 #include <dirent.h> 140 141 #include "pcap-int.h" 142 #include "pcap/sll.h" 143 #include "pcap/vlan.h" 144 145 /* 146 * If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET 147 * sockets rather than SOCK_PACKET sockets. 148 * 149 * To use them, we include <linux/if_packet.h> rather than 150 * <netpacket/packet.h>; we do so because 151 * 152 * some Linux distributions (e.g., Slackware 4.0) have 2.2 or 153 * later kernels and libc5, and don't provide a <netpacket/packet.h> 154 * file; 155 * 156 * not all versions of glibc2 have a <netpacket/packet.h> file 157 * that defines stuff needed for some of the 2.4-or-later-kernel 158 * features, so if the system has a 2.4 or later kernel, we 159 * still can't use those features. 160 * 161 * We're already including a number of other <linux/XXX.h> headers, and 162 * this code is Linux-specific (no other OS has PF_PACKET sockets as 163 * a raw packet capture mechanism), so it's not as if you gain any 164 * useful portability by using <netpacket/packet.h> 165 * 166 * XXX - should we just include <linux/if_packet.h> even if PF_PACKET 167 * isn't defined? It only defines one data structure in 2.0.x, so 168 * it shouldn't cause any problems. 169 */ 170 #ifdef PF_PACKET 171 # include <linux/if_packet.h> 172 173 /* 174 * On at least some Linux distributions (for example, Red Hat 5.2), 175 * there's no <netpacket/packet.h> file, but PF_PACKET is defined if 176 * you include <sys/socket.h>, but <linux/if_packet.h> doesn't define 177 * any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of 178 * the PACKET_xxx stuff. 179 * 180 * So we check whether PACKET_HOST is defined, and assume that we have 181 * PF_PACKET sockets only if it is defined. 182 */ 183 # ifdef PACKET_HOST 184 # define HAVE_PF_PACKET_SOCKETS 185 # ifdef PACKET_AUXDATA 186 # define HAVE_PACKET_AUXDATA 187 # endif /* PACKET_AUXDATA */ 188 # endif /* PACKET_HOST */ 189 190 191 /* check for memory mapped access avaibility. We assume every needed 192 * struct is defined if the macro TPACKET_HDRLEN is defined, because it 193 * uses many ring related structs and macros */ 194 # ifdef PCAP_SUPPORT_PACKET_RING 195 # ifdef TPACKET_HDRLEN 196 # define HAVE_PACKET_RING 197 # ifdef TPACKET3_HDRLEN 198 # define HAVE_TPACKET3 199 # endif /* TPACKET3_HDRLEN */ 200 # ifdef TPACKET2_HDRLEN 201 # define HAVE_TPACKET2 202 # else /* TPACKET2_HDRLEN */ 203 # define TPACKET_V1 0 /* Old kernel with only V1, so no TPACKET_Vn defined */ 204 # endif /* TPACKET2_HDRLEN */ 205 # endif /* TPACKET_HDRLEN */ 206 # endif /* PCAP_SUPPORT_PACKET_RING */ 207 #endif /* PF_PACKET */ 208 209 #ifdef SO_ATTACH_FILTER 210 #include <linux/types.h> 211 #include <linux/filter.h> 212 #endif 213 214 #ifdef HAVE_LINUX_NET_TSTAMP_H 215 #include <linux/net_tstamp.h> 216 #endif 217 218 #ifdef HAVE_LINUX_SOCKIOS_H 219 #include <linux/sockios.h> 220 #endif 221 222 #ifdef HAVE_LINUX_IF_BONDING_H 223 #include <linux/if_bonding.h> 224 225 /* 226 * The ioctl code to use to check whether a device is a bonding device. 227 */ 228 #if defined(SIOCBONDINFOQUERY) 229 #define BOND_INFO_QUERY_IOCTL SIOCBONDINFOQUERY 230 #elif defined(BOND_INFO_QUERY_OLD) 231 #define BOND_INFO_QUERY_IOCTL BOND_INFO_QUERY_OLD 232 #endif 233 #endif /* HAVE_LINUX_IF_BONDING_H */ 234 235 /* 236 * Got Wireless Extensions? 237 */ 238 #ifdef HAVE_LINUX_WIRELESS_H 239 #include <linux/wireless.h> 240 #endif /* HAVE_LINUX_WIRELESS_H */ 241 242 /* 243 * Got libnl? 244 */ 245 #ifdef HAVE_LIBNL 246 #include <linux/nl80211.h> 247 248 #include <netlink/genl/genl.h> 249 #include <netlink/genl/family.h> 250 #include <netlink/genl/ctrl.h> 251 #include <netlink/msg.h> 252 #include <netlink/attr.h> 253 #endif /* HAVE_LIBNL */ 254 255 /* 256 * Got ethtool support? 257 */ 258 #ifdef HAVE_LINUX_ETHTOOL_H 259 #include <linux/ethtool.h> 260 #endif 261 262 #ifndef HAVE_SOCKLEN_T 263 typedef int socklen_t; 264 #endif 265 266 #ifndef MSG_TRUNC 267 /* 268 * This is being compiled on a system that lacks MSG_TRUNC; define it 269 * with the value it has in the 2.2 and later kernels, so that, on 270 * those kernels, when we pass it in the flags argument to "recvfrom()" 271 * we're passing the right value and thus get the MSG_TRUNC behavior 272 * we want. (We don't get that behavior on 2.0[.x] kernels, because 273 * they didn't support MSG_TRUNC.) 274 */ 275 #define MSG_TRUNC 0x20 276 #endif 277 278 #ifndef SOL_PACKET 279 /* 280 * This is being compiled on a system that lacks SOL_PACKET; define it 281 * with the value it has in the 2.2 and later kernels, so that we can 282 * set promiscuous mode in the good modern way rather than the old 283 * 2.0-kernel crappy way. 284 */ 285 #define SOL_PACKET 263 286 #endif 287 288 #define MAX_LINKHEADER_SIZE 256 289 290 /* 291 * When capturing on all interfaces we use this as the buffer size. 292 * Should be bigger then all MTUs that occur in real life. 293 * 64kB should be enough for now. 294 */ 295 #define BIGGER_THAN_ALL_MTUS (64*1024) 296 297 /* 298 * Private data for capturing on Linux SOCK_PACKET or PF_PACKET sockets. 299 */ 300 struct pcap_linux { 301 u_int packets_read; /* count of packets read with recvfrom() */ 302 long proc_dropped; /* packets reported dropped by /proc/net/dev */ 303 struct pcap_stat stat; 304 305 char *device; /* device name */ 306 int filter_in_userland; /* must filter in userland */ 307 int blocks_to_filter_in_userland; 308 int must_do_on_close; /* stuff we must do when we close */ 309 int timeout; /* timeout for buffering */ 310 int sock_packet; /* using Linux 2.0 compatible interface */ 311 int cooked; /* using SOCK_DGRAM rather than SOCK_RAW */ 312 int ifindex; /* interface index of device we're bound to */ 313 int lo_ifindex; /* interface index of the loopback device */ 314 bpf_u_int32 oldmode; /* mode to restore when turning monitor mode off */ 315 char *mondevice; /* mac80211 monitor device we created */ 316 u_char *mmapbuf; /* memory-mapped region pointer */ 317 size_t mmapbuflen; /* size of region */ 318 int vlan_offset; /* offset at which to insert vlan tags; if -1, don't insert */ 319 u_int tp_version; /* version of tpacket_hdr for mmaped ring */ 320 u_int tp_hdrlen; /* hdrlen of tpacket_hdr for mmaped ring */ 321 u_char *oneshot_buffer; /* buffer for copy of packet */ 322 int poll_timeout; /* timeout to use in poll() */ 323 #ifdef HAVE_TPACKET3 324 unsigned char *current_packet; /* Current packet within the TPACKET_V3 block. Move to next block if NULL. */ 325 int packets_left; /* Unhandled packets left within the block from previous call to pcap_read_linux_mmap_v3 in case of TPACKET_V3. */ 326 #endif 327 }; 328 329 /* 330 * Stuff to do when we close. 331 */ 332 #define MUST_CLEAR_PROMISC 0x00000001 /* clear promiscuous mode */ 333 #define MUST_CLEAR_RFMON 0x00000002 /* clear rfmon (monitor) mode */ 334 #define MUST_DELETE_MONIF 0x00000004 /* delete monitor-mode interface */ 335 336 /* 337 * Prototypes for internal functions and methods. 338 */ 339 static void map_arphrd_to_dlt(pcap_t *, int, int, const char *, int); 340 #ifdef HAVE_PF_PACKET_SOCKETS 341 static short int map_packet_type_to_sll_type(short int); 342 #endif 343 static int pcap_activate_linux(pcap_t *); 344 static int activate_old(pcap_t *); 345 static int activate_new(pcap_t *); 346 static int activate_mmap(pcap_t *, int *); 347 static int pcap_can_set_rfmon_linux(pcap_t *); 348 static int pcap_read_linux(pcap_t *, int, pcap_handler, u_char *); 349 static int pcap_read_packet(pcap_t *, pcap_handler, u_char *); 350 static int pcap_inject_linux(pcap_t *, const void *, size_t); 351 static int pcap_stats_linux(pcap_t *, struct pcap_stat *); 352 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *); 353 static int pcap_setdirection_linux(pcap_t *, pcap_direction_t); 354 static int pcap_set_datalink_linux(pcap_t *, int); 355 static void pcap_cleanup_linux(pcap_t *); 356 357 /* 358 * This is what the header structure looks like in a 64-bit kernel; 359 * we use this, rather than struct tpacket_hdr, if we're using 360 * TPACKET_V1 in 32-bit code running on a 64-bit kernel. 361 */ 362 struct tpacket_hdr_64 { 363 uint64_t tp_status; 364 unsigned int tp_len; 365 unsigned int tp_snaplen; 366 unsigned short tp_mac; 367 unsigned short tp_net; 368 unsigned int tp_sec; 369 unsigned int tp_usec; 370 }; 371 372 /* 373 * We use this internally as the tpacket version for TPACKET_V1 in 374 * 32-bit code on a 64-bit kernel. 375 */ 376 #define TPACKET_V1_64 99 377 378 union thdr { 379 struct tpacket_hdr *h1; 380 struct tpacket_hdr_64 *h1_64; 381 #ifdef HAVE_TPACKET2 382 struct tpacket2_hdr *h2; 383 #endif 384 #ifdef HAVE_TPACKET3 385 struct tpacket_block_desc *h3; 386 #endif 387 void *raw; 388 }; 389 390 #ifdef HAVE_PACKET_RING 391 #define RING_GET_FRAME_AT(h, offset) (((union thdr **)h->buffer)[(offset)]) 392 #define RING_GET_CURRENT_FRAME(h) RING_GET_FRAME_AT(h, h->offset) 393 394 static void destroy_ring(pcap_t *handle); 395 static int create_ring(pcap_t *handle, int *status); 396 static int prepare_tpacket_socket(pcap_t *handle); 397 static void pcap_cleanup_linux_mmap(pcap_t *); 398 static int pcap_read_linux_mmap_v1(pcap_t *, int, pcap_handler , u_char *); 399 static int pcap_read_linux_mmap_v1_64(pcap_t *, int, pcap_handler , u_char *); 400 #ifdef HAVE_TPACKET2 401 static int pcap_read_linux_mmap_v2(pcap_t *, int, pcap_handler , u_char *); 402 #endif 403 #ifdef HAVE_TPACKET3 404 static int pcap_read_linux_mmap_v3(pcap_t *, int, pcap_handler , u_char *); 405 #endif 406 static int pcap_setfilter_linux_mmap(pcap_t *, struct bpf_program *); 407 static int pcap_setnonblock_mmap(pcap_t *p, int nonblock, char *errbuf); 408 static int pcap_getnonblock_mmap(pcap_t *p, char *errbuf); 409 static void pcap_oneshot_mmap(u_char *user, const struct pcap_pkthdr *h, 410 const u_char *bytes); 411 #endif 412 413 #ifdef TP_STATUS_VLAN_TPID_VALID 414 # define VLAN_TPID(hdr, hv) (((hv)->tp_vlan_tpid || ((hdr)->tp_status & TP_STATUS_VLAN_TPID_VALID)) ? (hv)->tp_vlan_tpid : ETH_P_8021Q) 415 #else 416 # define VLAN_TPID(hdr, hv) ETH_P_8021Q 417 #endif 418 419 /* 420 * Wrap some ioctl calls 421 */ 422 #ifdef HAVE_PF_PACKET_SOCKETS 423 static int iface_get_id(int fd, const char *device, char *ebuf); 424 #endif /* HAVE_PF_PACKET_SOCKETS */ 425 static int iface_get_mtu(int fd, const char *device, char *ebuf); 426 static int iface_get_arptype(int fd, const char *device, char *ebuf); 427 #ifdef HAVE_PF_PACKET_SOCKETS 428 static int iface_bind(int fd, int ifindex, char *ebuf); 429 #ifdef IW_MODE_MONITOR 430 static int has_wext(int sock_fd, const char *device, char *ebuf); 431 #endif /* IW_MODE_MONITOR */ 432 static int enter_rfmon_mode(pcap_t *handle, int sock_fd, 433 const char *device); 434 #endif /* HAVE_PF_PACKET_SOCKETS */ 435 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) 436 static int iface_ethtool_get_ts_info(const char *device, pcap_t *handle, 437 char *ebuf); 438 #endif 439 #ifdef HAVE_PACKET_RING 440 static int iface_get_offload(pcap_t *handle); 441 #endif 442 static int iface_bind_old(int fd, const char *device, char *ebuf); 443 444 #ifdef SO_ATTACH_FILTER 445 static int fix_program(pcap_t *handle, struct sock_fprog *fcode, 446 int is_mapped); 447 static int fix_offset(struct bpf_insn *p); 448 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode); 449 static int reset_kernel_filter(pcap_t *handle); 450 451 static struct sock_filter total_insn 452 = BPF_STMT(BPF_RET | BPF_K, 0); 453 static struct sock_fprog total_fcode 454 = { 1, &total_insn }; 455 #endif /* SO_ATTACH_FILTER */ 456 457 pcap_t * 458 pcap_create_interface(const char *device, char *ebuf) 459 { 460 pcap_t *handle; 461 462 handle = pcap_create_common(ebuf, sizeof (struct pcap_linux)); 463 if (handle == NULL) 464 return NULL; 465 466 handle->activate_op = pcap_activate_linux; 467 handle->can_set_rfmon_op = pcap_can_set_rfmon_linux; 468 469 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) 470 /* 471 * See what time stamp types we support. 472 */ 473 if (iface_ethtool_get_ts_info(device, handle, ebuf) == -1) { 474 pcap_close(handle); 475 return NULL; 476 } 477 #endif 478 479 #if defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) 480 /* 481 * We claim that we support microsecond and nanosecond time 482 * stamps. 483 * 484 * XXX - with adapter-supplied time stamps, can we choose 485 * microsecond or nanosecond time stamps on arbitrary 486 * adapters? 487 */ 488 handle->tstamp_precision_count = 2; 489 handle->tstamp_precision_list = malloc(2 * sizeof(u_int)); 490 if (handle->tstamp_precision_list == NULL) { 491 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s", 492 pcap_strerror(errno)); 493 pcap_close(handle); 494 return NULL; 495 } 496 handle->tstamp_precision_list[0] = PCAP_TSTAMP_PRECISION_MICRO; 497 handle->tstamp_precision_list[1] = PCAP_TSTAMP_PRECISION_NANO; 498 #endif /* defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) */ 499 500 return handle; 501 } 502 503 #ifdef HAVE_LIBNL 504 /* 505 * If interface {if} is a mac80211 driver, the file 506 * /sys/class/net/{if}/phy80211 is a symlink to 507 * /sys/class/ieee80211/{phydev}, for some {phydev}. 508 * 509 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at 510 * least, has a "wmaster0" device and a "wlan0" device; the 511 * latter is the one with the IP address. Both show up in 512 * "tcpdump -D" output. Capturing on the wmaster0 device 513 * captures with 802.11 headers. 514 * 515 * airmon-ng searches through /sys/class/net for devices named 516 * monN, starting with mon0; as soon as one *doesn't* exist, 517 * it chooses that as the monitor device name. If the "iw" 518 * command exists, it does "iw dev {if} interface add {monif} 519 * type monitor", where {monif} is the monitor device. It 520 * then (sigh) sleeps .1 second, and then configures the 521 * device up. Otherwise, if /sys/class/ieee80211/{phydev}/add_iface 522 * is a file, it writes {mondev}, without a newline, to that file, 523 * and again (sigh) sleeps .1 second, and then iwconfig's that 524 * device into monitor mode and configures it up. Otherwise, 525 * you can't do monitor mode. 526 * 527 * All these devices are "glued" together by having the 528 * /sys/class/net/{device}/phy80211 links pointing to the same 529 * place, so, given a wmaster, wlan, or mon device, you can 530 * find the other devices by looking for devices with 531 * the same phy80211 link. 532 * 533 * To turn monitor mode off, delete the monitor interface, 534 * either with "iw dev {monif} interface del" or by sending 535 * {monif}, with no NL, down /sys/class/ieee80211/{phydev}/remove_iface 536 * 537 * Note: if you try to create a monitor device named "monN", and 538 * there's already a "monN" device, it fails, as least with 539 * the netlink interface (which is what iw uses), with a return 540 * value of -ENFILE. (Return values are negative errnos.) We 541 * could probably use that to find an unused device. 542 * 543 * Yes, you can have multiple monitor devices for a given 544 * physical device. 545 */ 546 547 /* 548 * Is this a mac80211 device? If so, fill in the physical device path and 549 * return 1; if not, return 0. On an error, fill in handle->errbuf and 550 * return PCAP_ERROR. 551 */ 552 static int 553 get_mac80211_phydev(pcap_t *handle, const char *device, char *phydev_path, 554 size_t phydev_max_pathlen) 555 { 556 char *pathstr; 557 ssize_t bytes_read; 558 559 /* 560 * Generate the path string for the symlink to the physical device. 561 */ 562 if (asprintf(&pathstr, "/sys/class/net/%s/phy80211", device) == -1) { 563 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 564 "%s: Can't generate path name string for /sys/class/net device", 565 device); 566 return PCAP_ERROR; 567 } 568 bytes_read = readlink(pathstr, phydev_path, phydev_max_pathlen); 569 if (bytes_read == -1) { 570 if (errno == ENOENT || errno == EINVAL) { 571 /* 572 * Doesn't exist, or not a symlink; assume that 573 * means it's not a mac80211 device. 574 */ 575 free(pathstr); 576 return 0; 577 } 578 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 579 "%s: Can't readlink %s: %s", device, pathstr, 580 strerror(errno)); 581 free(pathstr); 582 return PCAP_ERROR; 583 } 584 free(pathstr); 585 phydev_path[bytes_read] = '\0'; 586 return 1; 587 } 588 589 #ifdef HAVE_LIBNL_SOCKETS 590 #define get_nl_errmsg nl_geterror 591 #else 592 /* libnl 2.x compatibility code */ 593 594 #define nl_sock nl_handle 595 596 static inline struct nl_handle * 597 nl_socket_alloc(void) 598 { 599 return nl_handle_alloc(); 600 } 601 602 static inline void 603 nl_socket_free(struct nl_handle *h) 604 { 605 nl_handle_destroy(h); 606 } 607 608 #define get_nl_errmsg strerror 609 610 static inline int 611 __genl_ctrl_alloc_cache(struct nl_handle *h, struct nl_cache **cache) 612 { 613 struct nl_cache *tmp = genl_ctrl_alloc_cache(h); 614 if (!tmp) 615 return -ENOMEM; 616 *cache = tmp; 617 return 0; 618 } 619 #define genl_ctrl_alloc_cache __genl_ctrl_alloc_cache 620 #endif /* !HAVE_LIBNL_SOCKETS */ 621 622 struct nl80211_state { 623 struct nl_sock *nl_sock; 624 struct nl_cache *nl_cache; 625 struct genl_family *nl80211; 626 }; 627 628 static int 629 nl80211_init(pcap_t *handle, struct nl80211_state *state, const char *device) 630 { 631 int err; 632 633 state->nl_sock = nl_socket_alloc(); 634 if (!state->nl_sock) { 635 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 636 "%s: failed to allocate netlink handle", device); 637 return PCAP_ERROR; 638 } 639 640 if (genl_connect(state->nl_sock)) { 641 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 642 "%s: failed to connect to generic netlink", device); 643 goto out_handle_destroy; 644 } 645 646 err = genl_ctrl_alloc_cache(state->nl_sock, &state->nl_cache); 647 if (err < 0) { 648 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 649 "%s: failed to allocate generic netlink cache: %s", 650 device, get_nl_errmsg(-err)); 651 goto out_handle_destroy; 652 } 653 654 state->nl80211 = genl_ctrl_search_by_name(state->nl_cache, "nl80211"); 655 if (!state->nl80211) { 656 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 657 "%s: nl80211 not found", device); 658 goto out_cache_free; 659 } 660 661 return 0; 662 663 out_cache_free: 664 nl_cache_free(state->nl_cache); 665 out_handle_destroy: 666 nl_socket_free(state->nl_sock); 667 return PCAP_ERROR; 668 } 669 670 static void 671 nl80211_cleanup(struct nl80211_state *state) 672 { 673 genl_family_put(state->nl80211); 674 nl_cache_free(state->nl_cache); 675 nl_socket_free(state->nl_sock); 676 } 677 678 static int 679 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state, 680 const char *device, const char *mondevice); 681 682 static int 683 add_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state, 684 const char *device, const char *mondevice) 685 { 686 struct pcap_linux *handlep = handle->priv; 687 int ifindex; 688 struct nl_msg *msg; 689 int err; 690 691 ifindex = iface_get_id(sock_fd, device, handle->errbuf); 692 if (ifindex == -1) 693 return PCAP_ERROR; 694 695 msg = nlmsg_alloc(); 696 if (!msg) { 697 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 698 "%s: failed to allocate netlink msg", device); 699 return PCAP_ERROR; 700 } 701 702 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0, 703 0, NL80211_CMD_NEW_INTERFACE, 0); 704 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex); 705 NLA_PUT_STRING(msg, NL80211_ATTR_IFNAME, mondevice); 706 NLA_PUT_U32(msg, NL80211_ATTR_IFTYPE, NL80211_IFTYPE_MONITOR); 707 708 err = nl_send_auto_complete(state->nl_sock, msg); 709 if (err < 0) { 710 #if defined HAVE_LIBNL_NLE 711 if (err == -NLE_FAILURE) { 712 #else 713 if (err == -ENFILE) { 714 #endif 715 /* 716 * Device not available; our caller should just 717 * keep trying. (libnl 2.x maps ENFILE to 718 * NLE_FAILURE; it can also map other errors 719 * to that, but there's not much we can do 720 * about that.) 721 */ 722 nlmsg_free(msg); 723 return 0; 724 } else { 725 /* 726 * Real failure, not just "that device is not 727 * available. 728 */ 729 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 730 "%s: nl_send_auto_complete failed adding %s interface: %s", 731 device, mondevice, get_nl_errmsg(-err)); 732 nlmsg_free(msg); 733 return PCAP_ERROR; 734 } 735 } 736 err = nl_wait_for_ack(state->nl_sock); 737 if (err < 0) { 738 #if defined HAVE_LIBNL_NLE 739 if (err == -NLE_FAILURE) { 740 #else 741 if (err == -ENFILE) { 742 #endif 743 /* 744 * Device not available; our caller should just 745 * keep trying. (libnl 2.x maps ENFILE to 746 * NLE_FAILURE; it can also map other errors 747 * to that, but there's not much we can do 748 * about that.) 749 */ 750 nlmsg_free(msg); 751 return 0; 752 } else { 753 /* 754 * Real failure, not just "that device is not 755 * available. 756 */ 757 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 758 "%s: nl_wait_for_ack failed adding %s interface: %s", 759 device, mondevice, get_nl_errmsg(-err)); 760 nlmsg_free(msg); 761 return PCAP_ERROR; 762 } 763 } 764 765 /* 766 * Success. 767 */ 768 nlmsg_free(msg); 769 770 /* 771 * Try to remember the monitor device. 772 */ 773 handlep->mondevice = strdup(mondevice); 774 if (handlep->mondevice == NULL) { 775 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s", 776 pcap_strerror(errno)); 777 /* 778 * Get rid of the monitor device. 779 */ 780 del_mon_if(handle, sock_fd, state, device, mondevice); 781 return PCAP_ERROR; 782 } 783 return 1; 784 785 nla_put_failure: 786 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 787 "%s: nl_put failed adding %s interface", 788 device, mondevice); 789 nlmsg_free(msg); 790 return PCAP_ERROR; 791 } 792 793 static int 794 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state, 795 const char *device, const char *mondevice) 796 { 797 int ifindex; 798 struct nl_msg *msg; 799 int err; 800 801 ifindex = iface_get_id(sock_fd, mondevice, handle->errbuf); 802 if (ifindex == -1) 803 return PCAP_ERROR; 804 805 msg = nlmsg_alloc(); 806 if (!msg) { 807 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 808 "%s: failed to allocate netlink msg", device); 809 return PCAP_ERROR; 810 } 811 812 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0, 813 0, NL80211_CMD_DEL_INTERFACE, 0); 814 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex); 815 816 err = nl_send_auto_complete(state->nl_sock, msg); 817 if (err < 0) { 818 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 819 "%s: nl_send_auto_complete failed deleting %s interface: %s", 820 device, mondevice, get_nl_errmsg(-err)); 821 nlmsg_free(msg); 822 return PCAP_ERROR; 823 } 824 err = nl_wait_for_ack(state->nl_sock); 825 if (err < 0) { 826 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 827 "%s: nl_wait_for_ack failed adding %s interface: %s", 828 device, mondevice, get_nl_errmsg(-err)); 829 nlmsg_free(msg); 830 return PCAP_ERROR; 831 } 832 833 /* 834 * Success. 835 */ 836 nlmsg_free(msg); 837 return 1; 838 839 nla_put_failure: 840 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 841 "%s: nl_put failed deleting %s interface", 842 device, mondevice); 843 nlmsg_free(msg); 844 return PCAP_ERROR; 845 } 846 847 static int 848 enter_rfmon_mode_mac80211(pcap_t *handle, int sock_fd, const char *device) 849 { 850 struct pcap_linux *handlep = handle->priv; 851 int ret; 852 char phydev_path[PATH_MAX+1]; 853 struct nl80211_state nlstate; 854 struct ifreq ifr; 855 u_int n; 856 857 /* 858 * Is this a mac80211 device? 859 */ 860 ret = get_mac80211_phydev(handle, device, phydev_path, PATH_MAX); 861 if (ret < 0) 862 return ret; /* error */ 863 if (ret == 0) 864 return 0; /* no error, but not mac80211 device */ 865 866 /* 867 * XXX - is this already a monN device? 868 * If so, we're done. 869 * Is that determined by old Wireless Extensions ioctls? 870 */ 871 872 /* 873 * OK, it's apparently a mac80211 device. 874 * Try to find an unused monN device for it. 875 */ 876 ret = nl80211_init(handle, &nlstate, device); 877 if (ret != 0) 878 return ret; 879 for (n = 0; n < UINT_MAX; n++) { 880 /* 881 * Try mon{n}. 882 */ 883 char mondevice[3+10+1]; /* mon{UINT_MAX}\0 */ 884 885 pcap_snprintf(mondevice, sizeof mondevice, "mon%u", n); 886 ret = add_mon_if(handle, sock_fd, &nlstate, device, mondevice); 887 if (ret == 1) { 888 /* 889 * Success. We don't clean up the libnl state 890 * yet, as we'll be using it later. 891 */ 892 goto added; 893 } 894 if (ret < 0) { 895 /* 896 * Hard failure. Just return ret; handle->errbuf 897 * has already been set. 898 */ 899 nl80211_cleanup(&nlstate); 900 return ret; 901 } 902 } 903 904 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 905 "%s: No free monN interfaces", device); 906 nl80211_cleanup(&nlstate); 907 return PCAP_ERROR; 908 909 added: 910 911 #if 0 912 /* 913 * Sleep for .1 seconds. 914 */ 915 delay.tv_sec = 0; 916 delay.tv_nsec = 500000000; 917 nanosleep(&delay, NULL); 918 #endif 919 920 /* 921 * If we haven't already done so, arrange to have 922 * "pcap_close_all()" called when we exit. 923 */ 924 if (!pcap_do_addexit(handle)) { 925 /* 926 * "atexit()" failed; don't put the interface 927 * in rfmon mode, just give up. 928 */ 929 del_mon_if(handle, sock_fd, &nlstate, device, 930 handlep->mondevice); 931 nl80211_cleanup(&nlstate); 932 return PCAP_ERROR; 933 } 934 935 /* 936 * Now configure the monitor interface up. 937 */ 938 memset(&ifr, 0, sizeof(ifr)); 939 strlcpy(ifr.ifr_name, handlep->mondevice, sizeof(ifr.ifr_name)); 940 if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) { 941 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 942 "%s: Can't get flags for %s: %s", device, 943 handlep->mondevice, strerror(errno)); 944 del_mon_if(handle, sock_fd, &nlstate, device, 945 handlep->mondevice); 946 nl80211_cleanup(&nlstate); 947 return PCAP_ERROR; 948 } 949 ifr.ifr_flags |= IFF_UP|IFF_RUNNING; 950 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) { 951 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 952 "%s: Can't set flags for %s: %s", device, 953 handlep->mondevice, strerror(errno)); 954 del_mon_if(handle, sock_fd, &nlstate, device, 955 handlep->mondevice); 956 nl80211_cleanup(&nlstate); 957 return PCAP_ERROR; 958 } 959 960 /* 961 * Success. Clean up the libnl state. 962 */ 963 nl80211_cleanup(&nlstate); 964 965 /* 966 * Note that we have to delete the monitor device when we close 967 * the handle. 968 */ 969 handlep->must_do_on_close |= MUST_DELETE_MONIF; 970 971 /* 972 * Add this to the list of pcaps to close when we exit. 973 */ 974 pcap_add_to_pcaps_to_close(handle); 975 976 return 1; 977 } 978 #endif /* HAVE_LIBNL */ 979 980 #ifdef IW_MODE_MONITOR 981 /* 982 * Bonding devices mishandle unknown ioctls; they fail with ENODEV 983 * rather than ENOTSUP, EOPNOTSUPP, or ENOTTY, so Wireless Extensions 984 * will fail with ENODEV if we try to do them on a bonding device, 985 * making us return a "no such device" indication rather than just 986 * saying "no Wireless Extensions". 987 * 988 * So we check for bonding devices, if we can, before trying those 989 * ioctls, by trying a bonding device information query ioctl to see 990 * whether it succeeds. 991 */ 992 static int 993 is_bonding_device(int fd, const char *device) 994 { 995 #ifdef BOND_INFO_QUERY_IOCTL 996 struct ifreq ifr; 997 ifbond ifb; 998 999 memset(&ifr, 0, sizeof ifr); 1000 strlcpy(ifr.ifr_name, device, sizeof ifr.ifr_name); 1001 memset(&ifb, 0, sizeof ifb); 1002 ifr.ifr_data = (caddr_t)&ifb; 1003 if (ioctl(fd, BOND_INFO_QUERY_IOCTL, &ifr) == 0) 1004 return 1; /* success, so it's a bonding device */ 1005 #endif /* BOND_INFO_QUERY_IOCTL */ 1006 1007 return 0; /* no, it's not a bonding device */ 1008 } 1009 #endif /* IW_MODE_MONITOR */ 1010 1011 static int 1012 pcap_can_set_rfmon_linux(pcap_t *handle) 1013 { 1014 #ifdef HAVE_LIBNL 1015 char phydev_path[PATH_MAX+1]; 1016 int ret; 1017 #endif 1018 #ifdef IW_MODE_MONITOR 1019 int sock_fd; 1020 struct iwreq ireq; 1021 #endif 1022 1023 if (strcmp(handle->opt.device, "any") == 0) { 1024 /* 1025 * Monitor mode makes no sense on the "any" device. 1026 */ 1027 return 0; 1028 } 1029 1030 #ifdef HAVE_LIBNL 1031 /* 1032 * Bleah. There doesn't seem to be a way to ask a mac80211 1033 * device, through libnl, whether it supports monitor mode; 1034 * we'll just check whether the device appears to be a 1035 * mac80211 device and, if so, assume the device supports 1036 * monitor mode. 1037 * 1038 * wmaster devices don't appear to support the Wireless 1039 * Extensions, but we can create a mon device for a 1040 * wmaster device, so we don't bother checking whether 1041 * a mac80211 device supports the Wireless Extensions. 1042 */ 1043 ret = get_mac80211_phydev(handle, handle->opt.device, phydev_path, 1044 PATH_MAX); 1045 if (ret < 0) 1046 return ret; /* error */ 1047 if (ret == 1) 1048 return 1; /* mac80211 device */ 1049 #endif 1050 1051 #ifdef IW_MODE_MONITOR 1052 /* 1053 * Bleah. There doesn't appear to be an ioctl to use to ask 1054 * whether a device supports monitor mode; we'll just do 1055 * SIOCGIWMODE and, if it succeeds, assume the device supports 1056 * monitor mode. 1057 * 1058 * Open a socket on which to attempt to get the mode. 1059 * (We assume that if we have Wireless Extensions support 1060 * we also have PF_PACKET support.) 1061 */ 1062 sock_fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); 1063 if (sock_fd == -1) { 1064 (void)pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1065 "socket: %s", pcap_strerror(errno)); 1066 return PCAP_ERROR; 1067 } 1068 1069 if (is_bonding_device(sock_fd, handle->opt.device)) { 1070 /* It's a bonding device, so don't even try. */ 1071 close(sock_fd); 1072 return 0; 1073 } 1074 1075 /* 1076 * Attempt to get the current mode. 1077 */ 1078 strlcpy(ireq.ifr_ifrn.ifrn_name, handle->opt.device, 1079 sizeof ireq.ifr_ifrn.ifrn_name); 1080 if (ioctl(sock_fd, SIOCGIWMODE, &ireq) != -1) { 1081 /* 1082 * Well, we got the mode; assume we can set it. 1083 */ 1084 close(sock_fd); 1085 return 1; 1086 } 1087 if (errno == ENODEV) { 1088 /* The device doesn't even exist. */ 1089 (void)pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1090 "SIOCGIWMODE failed: %s", pcap_strerror(errno)); 1091 close(sock_fd); 1092 return PCAP_ERROR_NO_SUCH_DEVICE; 1093 } 1094 close(sock_fd); 1095 #endif 1096 return 0; 1097 } 1098 1099 /* 1100 * Grabs the number of dropped packets by the interface from /proc/net/dev. 1101 * 1102 * XXX - what about /sys/class/net/{interface name}/rx_*? There are 1103 * individual devices giving, in ASCII, various rx_ and tx_ statistics. 1104 * 1105 * Or can we get them in binary form from netlink? 1106 */ 1107 static long int 1108 linux_if_drops(const char * if_name) 1109 { 1110 char buffer[512]; 1111 char * bufptr; 1112 FILE * file; 1113 int field_to_convert = 3, if_name_sz = strlen(if_name); 1114 long int dropped_pkts = 0; 1115 1116 file = fopen("/proc/net/dev", "r"); 1117 if (!file) 1118 return 0; 1119 1120 while (!dropped_pkts && fgets( buffer, sizeof(buffer), file )) 1121 { 1122 /* search for 'bytes' -- if its in there, then 1123 that means we need to grab the fourth field. otherwise 1124 grab the third field. */ 1125 if (field_to_convert != 4 && strstr(buffer, "bytes")) 1126 { 1127 field_to_convert = 4; 1128 continue; 1129 } 1130 1131 /* find iface and make sure it actually matches -- space before the name and : after it */ 1132 if ((bufptr = strstr(buffer, if_name)) && 1133 (bufptr == buffer || *(bufptr-1) == ' ') && 1134 *(bufptr + if_name_sz) == ':') 1135 { 1136 bufptr = bufptr + if_name_sz + 1; 1137 1138 /* grab the nth field from it */ 1139 while( --field_to_convert && *bufptr != '\0') 1140 { 1141 while (*bufptr != '\0' && *(bufptr++) == ' '); 1142 while (*bufptr != '\0' && *(bufptr++) != ' '); 1143 } 1144 1145 /* get rid of any final spaces */ 1146 while (*bufptr != '\0' && *bufptr == ' ') bufptr++; 1147 1148 if (*bufptr != '\0') 1149 dropped_pkts = strtol(bufptr, NULL, 10); 1150 1151 break; 1152 } 1153 } 1154 1155 fclose(file); 1156 return dropped_pkts; 1157 } 1158 1159 1160 /* 1161 * With older kernels promiscuous mode is kind of interesting because we 1162 * have to reset the interface before exiting. The problem can't really 1163 * be solved without some daemon taking care of managing usage counts. 1164 * If we put the interface into promiscuous mode, we set a flag indicating 1165 * that we must take it out of that mode when the interface is closed, 1166 * and, when closing the interface, if that flag is set we take it out 1167 * of promiscuous mode. 1168 * 1169 * Even with newer kernels, we have the same issue with rfmon mode. 1170 */ 1171 1172 static void pcap_cleanup_linux( pcap_t *handle ) 1173 { 1174 struct pcap_linux *handlep = handle->priv; 1175 struct ifreq ifr; 1176 #ifdef HAVE_LIBNL 1177 struct nl80211_state nlstate; 1178 int ret; 1179 #endif /* HAVE_LIBNL */ 1180 #ifdef IW_MODE_MONITOR 1181 int oldflags; 1182 struct iwreq ireq; 1183 #endif /* IW_MODE_MONITOR */ 1184 1185 if (handlep->must_do_on_close != 0) { 1186 /* 1187 * There's something we have to do when closing this 1188 * pcap_t. 1189 */ 1190 if (handlep->must_do_on_close & MUST_CLEAR_PROMISC) { 1191 /* 1192 * We put the interface into promiscuous mode; 1193 * take it out of promiscuous mode. 1194 * 1195 * XXX - if somebody else wants it in promiscuous 1196 * mode, this code cannot know that, so it'll take 1197 * it out of promiscuous mode. That's not fixable 1198 * in 2.0[.x] kernels. 1199 */ 1200 memset(&ifr, 0, sizeof(ifr)); 1201 strlcpy(ifr.ifr_name, handlep->device, 1202 sizeof(ifr.ifr_name)); 1203 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) { 1204 fprintf(stderr, 1205 "Can't restore interface %s flags (SIOCGIFFLAGS failed: %s).\n" 1206 "Please adjust manually.\n" 1207 "Hint: This can't happen with Linux >= 2.2.0.\n", 1208 handlep->device, strerror(errno)); 1209 } else { 1210 if (ifr.ifr_flags & IFF_PROMISC) { 1211 /* 1212 * Promiscuous mode is currently on; 1213 * turn it off. 1214 */ 1215 ifr.ifr_flags &= ~IFF_PROMISC; 1216 if (ioctl(handle->fd, SIOCSIFFLAGS, 1217 &ifr) == -1) { 1218 fprintf(stderr, 1219 "Can't restore interface %s flags (SIOCSIFFLAGS failed: %s).\n" 1220 "Please adjust manually.\n" 1221 "Hint: This can't happen with Linux >= 2.2.0.\n", 1222 handlep->device, 1223 strerror(errno)); 1224 } 1225 } 1226 } 1227 } 1228 1229 #ifdef HAVE_LIBNL 1230 if (handlep->must_do_on_close & MUST_DELETE_MONIF) { 1231 ret = nl80211_init(handle, &nlstate, handlep->device); 1232 if (ret >= 0) { 1233 ret = del_mon_if(handle, handle->fd, &nlstate, 1234 handlep->device, handlep->mondevice); 1235 nl80211_cleanup(&nlstate); 1236 } 1237 if (ret < 0) { 1238 fprintf(stderr, 1239 "Can't delete monitor interface %s (%s).\n" 1240 "Please delete manually.\n", 1241 handlep->mondevice, handle->errbuf); 1242 } 1243 } 1244 #endif /* HAVE_LIBNL */ 1245 1246 #ifdef IW_MODE_MONITOR 1247 if (handlep->must_do_on_close & MUST_CLEAR_RFMON) { 1248 /* 1249 * We put the interface into rfmon mode; 1250 * take it out of rfmon mode. 1251 * 1252 * XXX - if somebody else wants it in rfmon 1253 * mode, this code cannot know that, so it'll take 1254 * it out of rfmon mode. 1255 */ 1256 1257 /* 1258 * First, take the interface down if it's up; 1259 * otherwise, we might get EBUSY. 1260 * If we get errors, just drive on and print 1261 * a warning if we can't restore the mode. 1262 */ 1263 oldflags = 0; 1264 memset(&ifr, 0, sizeof(ifr)); 1265 strlcpy(ifr.ifr_name, handlep->device, 1266 sizeof(ifr.ifr_name)); 1267 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) != -1) { 1268 if (ifr.ifr_flags & IFF_UP) { 1269 oldflags = ifr.ifr_flags; 1270 ifr.ifr_flags &= ~IFF_UP; 1271 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) 1272 oldflags = 0; /* didn't set, don't restore */ 1273 } 1274 } 1275 1276 /* 1277 * Now restore the mode. 1278 */ 1279 strlcpy(ireq.ifr_ifrn.ifrn_name, handlep->device, 1280 sizeof ireq.ifr_ifrn.ifrn_name); 1281 ireq.u.mode = handlep->oldmode; 1282 if (ioctl(handle->fd, SIOCSIWMODE, &ireq) == -1) { 1283 /* 1284 * Scientist, you've failed. 1285 */ 1286 fprintf(stderr, 1287 "Can't restore interface %s wireless mode (SIOCSIWMODE failed: %s).\n" 1288 "Please adjust manually.\n", 1289 handlep->device, strerror(errno)); 1290 } 1291 1292 /* 1293 * Now bring the interface back up if we brought 1294 * it down. 1295 */ 1296 if (oldflags != 0) { 1297 ifr.ifr_flags = oldflags; 1298 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) { 1299 fprintf(stderr, 1300 "Can't bring interface %s back up (SIOCSIFFLAGS failed: %s).\n" 1301 "Please adjust manually.\n", 1302 handlep->device, strerror(errno)); 1303 } 1304 } 1305 } 1306 #endif /* IW_MODE_MONITOR */ 1307 1308 /* 1309 * Take this pcap out of the list of pcaps for which we 1310 * have to take the interface out of some mode. 1311 */ 1312 pcap_remove_from_pcaps_to_close(handle); 1313 } 1314 1315 if (handlep->mondevice != NULL) { 1316 free(handlep->mondevice); 1317 handlep->mondevice = NULL; 1318 } 1319 if (handlep->device != NULL) { 1320 free(handlep->device); 1321 handlep->device = NULL; 1322 } 1323 pcap_cleanup_live_common(handle); 1324 } 1325 1326 /* 1327 * Set the timeout to be used in poll() with memory-mapped packet capture. 1328 */ 1329 static void 1330 set_poll_timeout(struct pcap_linux *handlep) 1331 { 1332 #ifdef HAVE_TPACKET3 1333 struct utsname utsname; 1334 char *version_component, *endp; 1335 int major, minor; 1336 int broken_tpacket_v3 = 1; 1337 1338 /* 1339 * Some versions of TPACKET_V3 have annoying bugs/misfeatures 1340 * around which we have to work. Determine if we have those 1341 * problems or not. 1342 */ 1343 if (uname(&utsname) == 0) { 1344 /* 1345 * 3.19 is the first release with a fixed version of 1346 * TPACKET_V3. We treat anything before that as 1347 * not haveing a fixed version; that may really mean 1348 * it has *no* version. 1349 */ 1350 version_component = utsname.release; 1351 major = strtol(version_component, &endp, 10); 1352 if (endp != version_component && *endp == '.') { 1353 /* 1354 * OK, that was a valid major version. 1355 * Get the minor version. 1356 */ 1357 version_component = endp + 1; 1358 minor = strtol(version_component, &endp, 10); 1359 if (endp != version_component && 1360 (*endp == '.' || *endp == '\0')) { 1361 /* 1362 * OK, that was a valid minor version. 1363 * Is this 3.19 or newer? 1364 */ 1365 if (major >= 4 || (major == 3 && minor >= 19)) { 1366 /* Yes. TPACKET_V3 works correctly. */ 1367 broken_tpacket_v3 = 0; 1368 } 1369 } 1370 } 1371 } 1372 #endif 1373 if (handlep->timeout == 0) { 1374 #ifdef HAVE_TPACKET3 1375 /* 1376 * XXX - due to a set of (mis)features in the TPACKET_V3 1377 * kernel code prior to the 3.19 kernel, blocking forever 1378 * with a TPACKET_V3 socket can, if few packets are 1379 * arriving and passing the socket filter, cause most 1380 * packets to be dropped. See libpcap issue #335 for the 1381 * full painful story. 1382 * 1383 * The workaround is to have poll() time out very quickly, 1384 * so we grab the frames handed to us, and return them to 1385 * the kernel, ASAP. 1386 */ 1387 if (handlep->tp_version == TPACKET_V3 && broken_tpacket_v3) 1388 handlep->poll_timeout = 1; /* don't block for very long */ 1389 else 1390 #endif 1391 handlep->poll_timeout = -1; /* block forever */ 1392 } else if (handlep->timeout > 0) { 1393 #ifdef HAVE_TPACKET3 1394 /* 1395 * For TPACKET_V3, the timeout is handled by the kernel, 1396 * so block forever; that way, we don't get extra timeouts. 1397 * Don't do that if we have a broken TPACKET_V3, though. 1398 */ 1399 if (handlep->tp_version == TPACKET_V3 && !broken_tpacket_v3) 1400 handlep->poll_timeout = -1; /* block forever, let TPACKET_V3 wake us up */ 1401 else 1402 #endif 1403 handlep->poll_timeout = handlep->timeout; /* block for that amount of time */ 1404 } else { 1405 /* 1406 * Non-blocking mode; we call poll() to pick up error 1407 * indications, but we don't want it to wait for 1408 * anything. 1409 */ 1410 handlep->poll_timeout = 0; 1411 } 1412 } 1413 1414 /* 1415 * Get a handle for a live capture from the given device. You can 1416 * pass NULL as device to get all packages (without link level 1417 * information of course). If you pass 1 as promisc the interface 1418 * will be set to promiscous mode (XXX: I think this usage should 1419 * be deprecated and functions be added to select that later allow 1420 * modification of that values -- Torsten). 1421 */ 1422 static int 1423 pcap_activate_linux(pcap_t *handle) 1424 { 1425 struct pcap_linux *handlep = handle->priv; 1426 const char *device; 1427 struct ifreq ifr; 1428 int status = 0; 1429 int ret; 1430 1431 device = handle->opt.device; 1432 1433 /* 1434 * Make sure the name we were handed will fit into the ioctls we 1435 * might perform on the device; if not, return a "No such device" 1436 * indication, as the Linux kernel shouldn't support creating 1437 * a device whose name won't fit into those ioctls. 1438 * 1439 * "Will fit" means "will fit, complete with a null terminator", 1440 * so if the length, which does *not* include the null terminator, 1441 * is greater than *or equal to* the size of the field into which 1442 * we'll be copying it, that won't fit. 1443 */ 1444 if (strlen(device) >= sizeof(ifr.ifr_name)) { 1445 status = PCAP_ERROR_NO_SUCH_DEVICE; 1446 goto fail; 1447 } 1448 1449 handle->inject_op = pcap_inject_linux; 1450 handle->setfilter_op = pcap_setfilter_linux; 1451 handle->setdirection_op = pcap_setdirection_linux; 1452 handle->set_datalink_op = pcap_set_datalink_linux; 1453 handle->getnonblock_op = pcap_getnonblock_fd; 1454 handle->setnonblock_op = pcap_setnonblock_fd; 1455 handle->cleanup_op = pcap_cleanup_linux; 1456 handle->read_op = pcap_read_linux; 1457 handle->stats_op = pcap_stats_linux; 1458 1459 /* 1460 * The "any" device is a special device which causes us not 1461 * to bind to a particular device and thus to look at all 1462 * devices. 1463 */ 1464 if (strcmp(device, "any") == 0) { 1465 if (handle->opt.promisc) { 1466 handle->opt.promisc = 0; 1467 /* Just a warning. */ 1468 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1469 "Promiscuous mode not supported on the \"any\" device"); 1470 status = PCAP_WARNING_PROMISC_NOTSUP; 1471 } 1472 } 1473 1474 handlep->device = strdup(device); 1475 if (handlep->device == NULL) { 1476 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s", 1477 pcap_strerror(errno) ); 1478 return PCAP_ERROR; 1479 } 1480 1481 /* copy timeout value */ 1482 handlep->timeout = handle->opt.timeout; 1483 1484 /* 1485 * If we're in promiscuous mode, then we probably want 1486 * to see when the interface drops packets too, so get an 1487 * initial count from /proc/net/dev 1488 */ 1489 if (handle->opt.promisc) 1490 handlep->proc_dropped = linux_if_drops(handlep->device); 1491 1492 /* 1493 * Current Linux kernels use the protocol family PF_PACKET to 1494 * allow direct access to all packets on the network while 1495 * older kernels had a special socket type SOCK_PACKET to 1496 * implement this feature. 1497 * While this old implementation is kind of obsolete we need 1498 * to be compatible with older kernels for a while so we are 1499 * trying both methods with the newer method preferred. 1500 */ 1501 ret = activate_new(handle); 1502 if (ret < 0) { 1503 /* 1504 * Fatal error with the new way; just fail. 1505 * ret has the error return; if it's PCAP_ERROR, 1506 * handle->errbuf has been set appropriately. 1507 */ 1508 status = ret; 1509 goto fail; 1510 } 1511 if (ret == 1) { 1512 /* 1513 * Success. 1514 * Try to use memory-mapped access. 1515 */ 1516 switch (activate_mmap(handle, &status)) { 1517 1518 case 1: 1519 /* 1520 * We succeeded. status has been 1521 * set to the status to return, 1522 * which might be 0, or might be 1523 * a PCAP_WARNING_ value. 1524 * 1525 * Set the timeout to use in poll() before 1526 * returning. 1527 */ 1528 set_poll_timeout(handlep); 1529 return status; 1530 1531 case 0: 1532 /* 1533 * Kernel doesn't support it - just continue 1534 * with non-memory-mapped access. 1535 */ 1536 break; 1537 1538 case -1: 1539 /* 1540 * We failed to set up to use it, or the kernel 1541 * supports it, but we failed to enable it. 1542 * ret has been set to the error status to 1543 * return and, if it's PCAP_ERROR, handle->errbuf 1544 * contains the error message. 1545 */ 1546 status = ret; 1547 goto fail; 1548 } 1549 } 1550 else if (ret == 0) { 1551 /* Non-fatal error; try old way */ 1552 if ((ret = activate_old(handle)) != 1) { 1553 /* 1554 * Both methods to open the packet socket failed. 1555 * Tidy up and report our failure (handle->errbuf 1556 * is expected to be set by the functions above). 1557 */ 1558 status = ret; 1559 goto fail; 1560 } 1561 } 1562 1563 /* 1564 * We set up the socket, but not with memory-mapped access. 1565 */ 1566 if (handle->opt.buffer_size != 0) { 1567 /* 1568 * Set the socket buffer size to the specified value. 1569 */ 1570 if (setsockopt(handle->fd, SOL_SOCKET, SO_RCVBUF, 1571 &handle->opt.buffer_size, 1572 sizeof(handle->opt.buffer_size)) == -1) { 1573 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1574 "SO_RCVBUF: %s", pcap_strerror(errno)); 1575 status = PCAP_ERROR; 1576 goto fail; 1577 } 1578 } 1579 1580 /* Allocate the buffer */ 1581 1582 handle->buffer = malloc(handle->bufsize + handle->offset); 1583 if (!handle->buffer) { 1584 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1585 "malloc: %s", pcap_strerror(errno)); 1586 status = PCAP_ERROR; 1587 goto fail; 1588 } 1589 1590 /* 1591 * "handle->fd" is a socket, so "select()" and "poll()" 1592 * should work on it. 1593 */ 1594 handle->selectable_fd = handle->fd; 1595 1596 return status; 1597 1598 fail: 1599 pcap_cleanup_linux(handle); 1600 return status; 1601 } 1602 1603 /* 1604 * Read at most max_packets from the capture stream and call the callback 1605 * for each of them. Returns the number of packets handled or -1 if an 1606 * error occured. 1607 */ 1608 static int 1609 pcap_read_linux(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user) 1610 { 1611 /* 1612 * Currently, on Linux only one packet is delivered per read, 1613 * so we don't loop. 1614 */ 1615 return pcap_read_packet(handle, callback, user); 1616 } 1617 1618 static int 1619 pcap_set_datalink_linux(pcap_t *handle, int dlt) 1620 { 1621 handle->linktype = dlt; 1622 return 0; 1623 } 1624 1625 /* 1626 * linux_check_direction() 1627 * 1628 * Do checks based on packet direction. 1629 */ 1630 static inline int 1631 linux_check_direction(const pcap_t *handle, const struct sockaddr_ll *sll) 1632 { 1633 struct pcap_linux *handlep = handle->priv; 1634 1635 if (sll->sll_pkttype == PACKET_OUTGOING) { 1636 /* 1637 * Outgoing packet. 1638 * If this is from the loopback device, reject it; 1639 * we'll see the packet as an incoming packet as well, 1640 * and we don't want to see it twice. 1641 */ 1642 if (sll->sll_ifindex == handlep->lo_ifindex) 1643 return 0; 1644 1645 /* 1646 * If this is an outgoing CAN or CAN FD frame, and 1647 * the user doesn't only want outgoing packets, 1648 * reject it; CAN devices and drivers, and the CAN 1649 * stack, always arrange to loop back transmitted 1650 * packets, so they also appear as incoming packets. 1651 * We don't want duplicate packets, and we can't 1652 * easily distinguish packets looped back by the CAN 1653 * layer than those received by the CAN layer, so we 1654 * eliminate this packet instead. 1655 */ 1656 if ((sll->sll_protocol == LINUX_SLL_P_CAN || 1657 sll->sll_protocol == LINUX_SLL_P_CANFD) && 1658 handle->direction != PCAP_D_OUT) 1659 return 0; 1660 1661 /* 1662 * If the user only wants incoming packets, reject it. 1663 */ 1664 if (handle->direction == PCAP_D_IN) 1665 return 0; 1666 } else { 1667 /* 1668 * Incoming packet. 1669 * If the user only wants outgoing packets, reject it. 1670 */ 1671 if (handle->direction == PCAP_D_OUT) 1672 return 0; 1673 } 1674 return 1; 1675 } 1676 1677 /* 1678 * Read a packet from the socket calling the handler provided by 1679 * the user. Returns the number of packets received or -1 if an 1680 * error occured. 1681 */ 1682 static int 1683 pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata) 1684 { 1685 struct pcap_linux *handlep = handle->priv; 1686 u_char *bp; 1687 int offset; 1688 #ifdef HAVE_PF_PACKET_SOCKETS 1689 struct sockaddr_ll from; 1690 struct sll_header *hdrp; 1691 #else 1692 struct sockaddr from; 1693 #endif 1694 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) 1695 struct iovec iov; 1696 struct msghdr msg; 1697 struct cmsghdr *cmsg; 1698 union { 1699 struct cmsghdr cmsg; 1700 char buf[CMSG_SPACE(sizeof(struct tpacket_auxdata))]; 1701 } cmsg_buf; 1702 #else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1703 socklen_t fromlen; 1704 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1705 int packet_len, caplen; 1706 struct pcap_pkthdr pcap_header; 1707 1708 struct bpf_aux_data aux_data; 1709 #ifdef HAVE_PF_PACKET_SOCKETS 1710 /* 1711 * If this is a cooked device, leave extra room for a 1712 * fake packet header. 1713 */ 1714 if (handlep->cooked) 1715 offset = SLL_HDR_LEN; 1716 else 1717 offset = 0; 1718 #else 1719 /* 1720 * This system doesn't have PF_PACKET sockets, so it doesn't 1721 * support cooked devices. 1722 */ 1723 offset = 0; 1724 #endif 1725 1726 /* 1727 * Receive a single packet from the kernel. 1728 * We ignore EINTR, as that might just be due to a signal 1729 * being delivered - if the signal should interrupt the 1730 * loop, the signal handler should call pcap_breakloop() 1731 * to set handle->break_loop (we ignore it on other 1732 * platforms as well). 1733 * We also ignore ENETDOWN, so that we can continue to 1734 * capture traffic if the interface goes down and comes 1735 * back up again; comments in the kernel indicate that 1736 * we'll just block waiting for packets if we try to 1737 * receive from a socket that delivered ENETDOWN, and, 1738 * if we're using a memory-mapped buffer, we won't even 1739 * get notified of "network down" events. 1740 */ 1741 bp = (u_char *)handle->buffer + handle->offset; 1742 1743 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) 1744 msg.msg_name = &from; 1745 msg.msg_namelen = sizeof(from); 1746 msg.msg_iov = &iov; 1747 msg.msg_iovlen = 1; 1748 msg.msg_control = &cmsg_buf; 1749 msg.msg_controllen = sizeof(cmsg_buf); 1750 msg.msg_flags = 0; 1751 1752 iov.iov_len = handle->bufsize - offset; 1753 iov.iov_base = bp + offset; 1754 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1755 1756 do { 1757 /* 1758 * Has "pcap_breakloop()" been called? 1759 */ 1760 if (handle->break_loop) { 1761 /* 1762 * Yes - clear the flag that indicates that it has, 1763 * and return PCAP_ERROR_BREAK as an indication that 1764 * we were told to break out of the loop. 1765 */ 1766 handle->break_loop = 0; 1767 return PCAP_ERROR_BREAK; 1768 } 1769 1770 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) 1771 packet_len = recvmsg(handle->fd, &msg, MSG_TRUNC); 1772 #else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1773 fromlen = sizeof(from); 1774 packet_len = recvfrom( 1775 handle->fd, bp + offset, 1776 handle->bufsize - offset, MSG_TRUNC, 1777 (struct sockaddr *) &from, &fromlen); 1778 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1779 } while (packet_len == -1 && errno == EINTR); 1780 1781 /* Check if an error occured */ 1782 1783 if (packet_len == -1) { 1784 switch (errno) { 1785 1786 case EAGAIN: 1787 return 0; /* no packet there */ 1788 1789 case ENETDOWN: 1790 /* 1791 * The device on which we're capturing went away. 1792 * 1793 * XXX - we should really return 1794 * PCAP_ERROR_IFACE_NOT_UP, but pcap_dispatch() 1795 * etc. aren't defined to return that. 1796 */ 1797 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1798 "The interface went down"); 1799 return PCAP_ERROR; 1800 1801 default: 1802 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1803 "recvfrom: %s", pcap_strerror(errno)); 1804 return PCAP_ERROR; 1805 } 1806 } 1807 1808 #ifdef HAVE_PF_PACKET_SOCKETS 1809 if (!handlep->sock_packet) { 1810 /* 1811 * Unfortunately, there is a window between socket() and 1812 * bind() where the kernel may queue packets from any 1813 * interface. If we're bound to a particular interface, 1814 * discard packets not from that interface. 1815 * 1816 * (If socket filters are supported, we could do the 1817 * same thing we do when changing the filter; however, 1818 * that won't handle packet sockets without socket 1819 * filter support, and it's a bit more complicated. 1820 * It would save some instructions per packet, however.) 1821 */ 1822 if (handlep->ifindex != -1 && 1823 from.sll_ifindex != handlep->ifindex) 1824 return 0; 1825 1826 /* 1827 * Do checks based on packet direction. 1828 * We can only do this if we're using PF_PACKET; the 1829 * address returned for SOCK_PACKET is a "sockaddr_pkt" 1830 * which lacks the relevant packet type information. 1831 */ 1832 if (!linux_check_direction(handle, &from)) 1833 return 0; 1834 } 1835 #endif 1836 1837 #ifdef HAVE_PF_PACKET_SOCKETS 1838 /* 1839 * If this is a cooked device, fill in the fake packet header. 1840 */ 1841 if (handlep->cooked) { 1842 /* 1843 * Add the length of the fake header to the length 1844 * of packet data we read. 1845 */ 1846 packet_len += SLL_HDR_LEN; 1847 1848 hdrp = (struct sll_header *)bp; 1849 hdrp->sll_pkttype = map_packet_type_to_sll_type(from.sll_pkttype); 1850 hdrp->sll_hatype = htons(from.sll_hatype); 1851 hdrp->sll_halen = htons(from.sll_halen); 1852 memcpy(hdrp->sll_addr, from.sll_addr, 1853 (from.sll_halen > SLL_ADDRLEN) ? 1854 SLL_ADDRLEN : 1855 from.sll_halen); 1856 hdrp->sll_protocol = from.sll_protocol; 1857 } 1858 1859 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) 1860 if (handlep->vlan_offset != -1) { 1861 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { 1862 struct tpacket_auxdata *aux; 1863 unsigned int len; 1864 struct vlan_tag *tag; 1865 1866 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct tpacket_auxdata)) || 1867 cmsg->cmsg_level != SOL_PACKET || 1868 cmsg->cmsg_type != PACKET_AUXDATA) 1869 continue; 1870 1871 aux = (struct tpacket_auxdata *)CMSG_DATA(cmsg); 1872 #if defined(TP_STATUS_VLAN_VALID) 1873 if ((aux->tp_vlan_tci == 0) && !(aux->tp_status & TP_STATUS_VLAN_VALID)) 1874 #else 1875 if (aux->tp_vlan_tci == 0) /* this is ambigious but without the 1876 TP_STATUS_VLAN_VALID flag, there is 1877 nothing that we can do */ 1878 #endif 1879 continue; 1880 1881 len = (u_int)packet_len > iov.iov_len ? iov.iov_len : (u_int)packet_len; 1882 if (len < (u_int)handlep->vlan_offset) 1883 break; 1884 1885 /* 1886 * Move everything in the header, except the 1887 * type field, down VLAN_TAG_LEN bytes, to 1888 * allow us to insert the VLAN tag between 1889 * that stuff and the type field. 1890 */ 1891 bp -= VLAN_TAG_LEN; 1892 memmove(bp, bp + VLAN_TAG_LEN, handlep->vlan_offset); 1893 1894 /* 1895 * Now insert the tag. 1896 */ 1897 tag = (struct vlan_tag *)(bp + handlep->vlan_offset); 1898 tag->vlan_tpid = htons(VLAN_TPID(aux, aux)); 1899 tag->vlan_tci = htons(aux->tp_vlan_tci); 1900 1901 /* store vlan tci to bpf_aux_data struct for userland bpf filter */ 1902 #if defined(TP_STATUS_VLAN_VALID) 1903 aux_data.vlan_tag = htons(aux->tp_vlan_tci) & 0x0fff; 1904 aux_data.vlan_tag_present = (aux->tp_status & TP_STATUS_VLAN_VALID); 1905 #endif 1906 1907 /* 1908 * Add the tag to the packet lengths. 1909 */ 1910 packet_len += VLAN_TAG_LEN; 1911 } 1912 } 1913 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1914 #endif /* HAVE_PF_PACKET_SOCKETS */ 1915 1916 /* 1917 * XXX: According to the kernel source we should get the real 1918 * packet len if calling recvfrom with MSG_TRUNC set. It does 1919 * not seem to work here :(, but it is supported by this code 1920 * anyway. 1921 * To be honest the code RELIES on that feature so this is really 1922 * broken with 2.2.x kernels. 1923 * I spend a day to figure out what's going on and I found out 1924 * that the following is happening: 1925 * 1926 * The packet comes from a random interface and the packet_rcv 1927 * hook is called with a clone of the packet. That code inserts 1928 * the packet into the receive queue of the packet socket. 1929 * If a filter is attached to that socket that filter is run 1930 * first - and there lies the problem. The default filter always 1931 * cuts the packet at the snaplen: 1932 * 1933 * # tcpdump -d 1934 * (000) ret #68 1935 * 1936 * So the packet filter cuts down the packet. The recvfrom call 1937 * says "hey, it's only 68 bytes, it fits into the buffer" with 1938 * the result that we don't get the real packet length. This 1939 * is valid at least until kernel 2.2.17pre6. 1940 * 1941 * We currently handle this by making a copy of the filter 1942 * program, fixing all "ret" instructions with non-zero 1943 * operands to have an operand of MAXIMUM_SNAPLEN so that the 1944 * filter doesn't truncate the packet, and supplying that modified 1945 * filter to the kernel. 1946 */ 1947 1948 caplen = packet_len; 1949 if (caplen > handle->snapshot) 1950 caplen = handle->snapshot; 1951 1952 /* Run the packet filter if not using kernel filter */ 1953 if (handlep->filter_in_userland && handle->fcode.bf_insns) { 1954 if (bpf_filter_with_aux_data(handle->fcode.bf_insns, bp, 1955 packet_len, caplen, &aux_data) == 0) { 1956 /* rejected by filter */ 1957 return 0; 1958 } 1959 } 1960 1961 /* Fill in our own header data */ 1962 1963 /* get timestamp for this packet */ 1964 #if defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) 1965 if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) { 1966 if (ioctl(handle->fd, SIOCGSTAMPNS, &pcap_header.ts) == -1) { 1967 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1968 "SIOCGSTAMPNS: %s", pcap_strerror(errno)); 1969 return PCAP_ERROR; 1970 } 1971 } else 1972 #endif 1973 { 1974 if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) { 1975 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1976 "SIOCGSTAMP: %s", pcap_strerror(errno)); 1977 return PCAP_ERROR; 1978 } 1979 } 1980 1981 pcap_header.caplen = caplen; 1982 pcap_header.len = packet_len; 1983 1984 /* 1985 * Count the packet. 1986 * 1987 * Arguably, we should count them before we check the filter, 1988 * as on many other platforms "ps_recv" counts packets 1989 * handed to the filter rather than packets that passed 1990 * the filter, but if filtering is done in the kernel, we 1991 * can't get a count of packets that passed the filter, 1992 * and that would mean the meaning of "ps_recv" wouldn't 1993 * be the same on all Linux systems. 1994 * 1995 * XXX - it's not the same on all systems in any case; 1996 * ideally, we should have a "get the statistics" call 1997 * that supplies more counts and indicates which of them 1998 * it supplies, so that we supply a count of packets 1999 * handed to the filter only on platforms where that 2000 * information is available. 2001 * 2002 * We count them here even if we can get the packet count 2003 * from the kernel, as we can only determine at run time 2004 * whether we'll be able to get it from the kernel (if 2005 * HAVE_TPACKET_STATS isn't defined, we can't get it from 2006 * the kernel, but if it is defined, the library might 2007 * have been built with a 2.4 or later kernel, but we 2008 * might be running on a 2.2[.x] kernel without Alexey 2009 * Kuznetzov's turbopacket patches, and thus the kernel 2010 * might not be able to supply those statistics). We 2011 * could, I guess, try, when opening the socket, to get 2012 * the statistics, and if we can not increment the count 2013 * here, but it's not clear that always incrementing 2014 * the count is more expensive than always testing a flag 2015 * in memory. 2016 * 2017 * We keep the count in "handlep->packets_read", and use that 2018 * for "ps_recv" if we can't get the statistics from the kernel. 2019 * We do that because, if we *can* get the statistics from 2020 * the kernel, we use "handlep->stat.ps_recv" and 2021 * "handlep->stat.ps_drop" as running counts, as reading the 2022 * statistics from the kernel resets the kernel statistics, 2023 * and if we directly increment "handlep->stat.ps_recv" here, 2024 * that means it will count packets *twice* on systems where 2025 * we can get kernel statistics - once here, and once in 2026 * pcap_stats_linux(). 2027 */ 2028 handlep->packets_read++; 2029 2030 /* Call the user supplied callback function */ 2031 callback(userdata, &pcap_header, bp); 2032 2033 return 1; 2034 } 2035 2036 static int 2037 pcap_inject_linux(pcap_t *handle, const void *buf, size_t size) 2038 { 2039 struct pcap_linux *handlep = handle->priv; 2040 int ret; 2041 2042 #ifdef HAVE_PF_PACKET_SOCKETS 2043 if (!handlep->sock_packet) { 2044 /* PF_PACKET socket */ 2045 if (handlep->ifindex == -1) { 2046 /* 2047 * We don't support sending on the "any" device. 2048 */ 2049 strlcpy(handle->errbuf, 2050 "Sending packets isn't supported on the \"any\" device", 2051 PCAP_ERRBUF_SIZE); 2052 return (-1); 2053 } 2054 2055 if (handlep->cooked) { 2056 /* 2057 * We don't support sending on the "any" device. 2058 * 2059 * XXX - how do you send on a bound cooked-mode 2060 * socket? 2061 * Is a "sendto()" required there? 2062 */ 2063 strlcpy(handle->errbuf, 2064 "Sending packets isn't supported in cooked mode", 2065 PCAP_ERRBUF_SIZE); 2066 return (-1); 2067 } 2068 } 2069 #endif 2070 2071 ret = send(handle->fd, buf, size, 0); 2072 if (ret == -1) { 2073 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "send: %s", 2074 pcap_strerror(errno)); 2075 return (-1); 2076 } 2077 return (ret); 2078 } 2079 2080 /* 2081 * Get the statistics for the given packet capture handle. 2082 * Reports the number of dropped packets iff the kernel supports 2083 * the PACKET_STATISTICS "getsockopt()" argument (2.4 and later 2084 * kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket 2085 * patches); otherwise, that information isn't available, and we lie 2086 * and report 0 as the count of dropped packets. 2087 */ 2088 static int 2089 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats) 2090 { 2091 struct pcap_linux *handlep = handle->priv; 2092 #ifdef HAVE_TPACKET_STATS 2093 #ifdef HAVE_TPACKET3 2094 /* 2095 * For sockets using TPACKET_V1 or TPACKET_V2, the extra 2096 * stuff at the end of a struct tpacket_stats_v3 will not 2097 * be filled in, and we don't look at it so this is OK even 2098 * for those sockets. In addition, the PF_PACKET socket 2099 * code in the kernel only uses the length parameter to 2100 * compute how much data to copy out and to indicate how 2101 * much data was copied out, so it's OK to base it on the 2102 * size of a struct tpacket_stats. 2103 * 2104 * XXX - it's probably OK, in fact, to just use a 2105 * struct tpacket_stats for V3 sockets, as we don't 2106 * care about the tp_freeze_q_cnt stat. 2107 */ 2108 struct tpacket_stats_v3 kstats; 2109 #else /* HAVE_TPACKET3 */ 2110 struct tpacket_stats kstats; 2111 #endif /* HAVE_TPACKET3 */ 2112 socklen_t len = sizeof (struct tpacket_stats); 2113 #endif /* HAVE_TPACKET_STATS */ 2114 2115 long if_dropped = 0; 2116 2117 /* 2118 * To fill in ps_ifdrop, we parse /proc/net/dev for the number 2119 */ 2120 if (handle->opt.promisc) 2121 { 2122 if_dropped = handlep->proc_dropped; 2123 handlep->proc_dropped = linux_if_drops(handlep->device); 2124 handlep->stat.ps_ifdrop += (handlep->proc_dropped - if_dropped); 2125 } 2126 2127 #ifdef HAVE_TPACKET_STATS 2128 /* 2129 * Try to get the packet counts from the kernel. 2130 */ 2131 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, 2132 &kstats, &len) > -1) { 2133 /* 2134 * On systems where the PACKET_STATISTICS "getsockopt()" 2135 * argument is supported on PF_PACKET sockets: 2136 * 2137 * "ps_recv" counts only packets that *passed* the 2138 * filter, not packets that didn't pass the filter. 2139 * This includes packets later dropped because we 2140 * ran out of buffer space. 2141 * 2142 * "ps_drop" counts packets dropped because we ran 2143 * out of buffer space. It doesn't count packets 2144 * dropped by the interface driver. It counts only 2145 * packets that passed the filter. 2146 * 2147 * See above for ps_ifdrop. 2148 * 2149 * Both statistics include packets not yet read from 2150 * the kernel by libpcap, and thus not yet seen by 2151 * the application. 2152 * 2153 * In "linux/net/packet/af_packet.c", at least in the 2154 * 2.4.9 kernel, "tp_packets" is incremented for every 2155 * packet that passes the packet filter *and* is 2156 * successfully queued on the socket; "tp_drops" is 2157 * incremented for every packet dropped because there's 2158 * not enough free space in the socket buffer. 2159 * 2160 * When the statistics are returned for a PACKET_STATISTICS 2161 * "getsockopt()" call, "tp_drops" is added to "tp_packets", 2162 * so that "tp_packets" counts all packets handed to 2163 * the PF_PACKET socket, including packets dropped because 2164 * there wasn't room on the socket buffer - but not 2165 * including packets that didn't pass the filter. 2166 * 2167 * In the BSD BPF, the count of received packets is 2168 * incremented for every packet handed to BPF, regardless 2169 * of whether it passed the filter. 2170 * 2171 * We can't make "pcap_stats()" work the same on both 2172 * platforms, but the best approximation is to return 2173 * "tp_packets" as the count of packets and "tp_drops" 2174 * as the count of drops. 2175 * 2176 * Keep a running total because each call to 2177 * getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, .... 2178 * resets the counters to zero. 2179 */ 2180 handlep->stat.ps_recv += kstats.tp_packets; 2181 handlep->stat.ps_drop += kstats.tp_drops; 2182 *stats = handlep->stat; 2183 return 0; 2184 } 2185 else 2186 { 2187 /* 2188 * If the error was EOPNOTSUPP, fall through, so that 2189 * if you build the library on a system with 2190 * "struct tpacket_stats" and run it on a system 2191 * that doesn't, it works as it does if the library 2192 * is built on a system without "struct tpacket_stats". 2193 */ 2194 if (errno != EOPNOTSUPP) { 2195 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 2196 "pcap_stats: %s", pcap_strerror(errno)); 2197 return -1; 2198 } 2199 } 2200 #endif 2201 /* 2202 * On systems where the PACKET_STATISTICS "getsockopt()" argument 2203 * is not supported on PF_PACKET sockets: 2204 * 2205 * "ps_recv" counts only packets that *passed* the filter, 2206 * not packets that didn't pass the filter. It does not 2207 * count packets dropped because we ran out of buffer 2208 * space. 2209 * 2210 * "ps_drop" is not supported. 2211 * 2212 * "ps_ifdrop" is supported. It will return the number 2213 * of drops the interface reports in /proc/net/dev, 2214 * if that is available. 2215 * 2216 * "ps_recv" doesn't include packets not yet read from 2217 * the kernel by libpcap. 2218 * 2219 * We maintain the count of packets processed by libpcap in 2220 * "handlep->packets_read", for reasons described in the comment 2221 * at the end of pcap_read_packet(). We have no idea how many 2222 * packets were dropped by the kernel buffers -- but we know 2223 * how many the interface dropped, so we can return that. 2224 */ 2225 2226 stats->ps_recv = handlep->packets_read; 2227 stats->ps_drop = 0; 2228 stats->ps_ifdrop = handlep->stat.ps_ifdrop; 2229 return 0; 2230 } 2231 2232 static int 2233 add_linux_if(pcap_if_t **devlistp, const char *ifname, int fd, char *errbuf) 2234 { 2235 const char *p; 2236 char name[512]; /* XXX - pick a size */ 2237 char *q, *saveq; 2238 struct ifreq ifrflags; 2239 2240 /* 2241 * Get the interface name. 2242 */ 2243 p = ifname; 2244 q = &name[0]; 2245 while (*p != '\0' && isascii(*p) && !isspace(*p)) { 2246 if (*p == ':') { 2247 /* 2248 * This could be the separator between a 2249 * name and an alias number, or it could be 2250 * the separator between a name with no 2251 * alias number and the next field. 2252 * 2253 * If there's a colon after digits, it 2254 * separates the name and the alias number, 2255 * otherwise it separates the name and the 2256 * next field. 2257 */ 2258 saveq = q; 2259 while (isascii(*p) && isdigit(*p)) 2260 *q++ = *p++; 2261 if (*p != ':') { 2262 /* 2263 * That was the next field, 2264 * not the alias number. 2265 */ 2266 q = saveq; 2267 } 2268 break; 2269 } else 2270 *q++ = *p++; 2271 } 2272 *q = '\0'; 2273 2274 /* 2275 * Get the flags for this interface. 2276 */ 2277 strlcpy(ifrflags.ifr_name, name, sizeof(ifrflags.ifr_name)); 2278 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifrflags) < 0) { 2279 if (errno == ENXIO || errno == ENODEV) 2280 return (0); /* device doesn't actually exist - ignore it */ 2281 (void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, 2282 "SIOCGIFFLAGS: %.*s: %s", 2283 (int)sizeof(ifrflags.ifr_name), 2284 ifrflags.ifr_name, 2285 pcap_strerror(errno)); 2286 return (-1); 2287 } 2288 2289 /* 2290 * Add an entry for this interface, with no addresses. 2291 */ 2292 if (pcap_add_if(devlistp, name, 2293 if_flags_to_pcap_flags(name, ifrflags.ifr_flags), NULL, 2294 errbuf) == -1) { 2295 /* 2296 * Failure. 2297 */ 2298 return (-1); 2299 } 2300 2301 return (0); 2302 } 2303 2304 /* 2305 * Get from "/sys/class/net" all interfaces listed there; if they're 2306 * already in the list of interfaces we have, that won't add another 2307 * instance, but if they're not, that'll add them. 2308 * 2309 * We don't bother getting any addresses for them; it appears you can't 2310 * use SIOCGIFADDR on Linux to get IPv6 addresses for interfaces, and, 2311 * although some other types of addresses can be fetched with SIOCGIFADDR, 2312 * we don't bother with them for now. 2313 * 2314 * We also don't fail if we couldn't open "/sys/class/net"; we just leave 2315 * the list of interfaces as is, and return 0, so that we can try 2316 * scanning /proc/net/dev. 2317 * 2318 * Otherwise, we return 1 if we don't get an error and -1 if we do. 2319 */ 2320 static int 2321 scan_sys_class_net(pcap_if_t **devlistp, char *errbuf) 2322 { 2323 DIR *sys_class_net_d; 2324 int fd; 2325 struct dirent *ent; 2326 char subsystem_path[PATH_MAX+1]; 2327 struct stat statb; 2328 int ret = 1; 2329 2330 sys_class_net_d = opendir("/sys/class/net"); 2331 if (sys_class_net_d == NULL) { 2332 /* 2333 * Don't fail if it doesn't exist at all. 2334 */ 2335 if (errno == ENOENT) 2336 return (0); 2337 2338 /* 2339 * Fail if we got some other error. 2340 */ 2341 (void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, 2342 "Can't open /sys/class/net: %s", pcap_strerror(errno)); 2343 return (-1); 2344 } 2345 2346 /* 2347 * Create a socket from which to fetch interface information. 2348 */ 2349 fd = socket(PF_UNIX, SOCK_RAW, 0); 2350 if (fd < 0) { 2351 (void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, 2352 "socket: %s", pcap_strerror(errno)); 2353 (void)closedir(sys_class_net_d); 2354 return (-1); 2355 } 2356 2357 for (;;) { 2358 errno = 0; 2359 ent = readdir(sys_class_net_d); 2360 if (ent == NULL) { 2361 /* 2362 * Error or EOF; if errno != 0, it's an error. 2363 */ 2364 break; 2365 } 2366 2367 /* 2368 * Ignore "." and "..". 2369 */ 2370 if (strcmp(ent->d_name, ".") == 0 || 2371 strcmp(ent->d_name, "..") == 0) 2372 continue; 2373 2374 /* 2375 * Ignore plain files; they do not have subdirectories 2376 * and thus have no attributes. 2377 */ 2378 if (ent->d_type == DT_REG) 2379 continue; 2380 2381 /* 2382 * Is there an "ifindex" file under that name? 2383 * (We don't care whether it's a directory or 2384 * a symlink; older kernels have directories 2385 * for devices, newer kernels have symlinks to 2386 * directories.) 2387 */ 2388 pcap_snprintf(subsystem_path, sizeof subsystem_path, 2389 "/sys/class/net/%s/ifindex", ent->d_name); 2390 if (lstat(subsystem_path, &statb) != 0) { 2391 /* 2392 * Stat failed. Either there was an error 2393 * other than ENOENT, and we don't know if 2394 * this is an interface, or it's ENOENT, 2395 * and either some part of "/sys/class/net/{if}" 2396 * disappeared, in which case it probably means 2397 * the interface disappeared, or there's no 2398 * "ifindex" file, which means it's not a 2399 * network interface. 2400 */ 2401 continue; 2402 } 2403 2404 /* 2405 * Attempt to add the interface. 2406 */ 2407 if (add_linux_if(devlistp, &ent->d_name[0], fd, errbuf) == -1) { 2408 /* Fail. */ 2409 ret = -1; 2410 break; 2411 } 2412 } 2413 if (ret != -1) { 2414 /* 2415 * Well, we didn't fail for any other reason; did we 2416 * fail due to an error reading the directory? 2417 */ 2418 if (errno != 0) { 2419 (void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, 2420 "Error reading /sys/class/net: %s", 2421 pcap_strerror(errno)); 2422 ret = -1; 2423 } 2424 } 2425 2426 (void)close(fd); 2427 (void)closedir(sys_class_net_d); 2428 return (ret); 2429 } 2430 2431 /* 2432 * Get from "/proc/net/dev" all interfaces listed there; if they're 2433 * already in the list of interfaces we have, that won't add another 2434 * instance, but if they're not, that'll add them. 2435 * 2436 * See comments from scan_sys_class_net(). 2437 */ 2438 static int 2439 scan_proc_net_dev(pcap_if_t **devlistp, char *errbuf) 2440 { 2441 FILE *proc_net_f; 2442 int fd; 2443 char linebuf[512]; 2444 int linenum; 2445 char *p; 2446 int ret = 0; 2447 2448 proc_net_f = fopen("/proc/net/dev", "r"); 2449 if (proc_net_f == NULL) { 2450 /* 2451 * Don't fail if it doesn't exist at all. 2452 */ 2453 if (errno == ENOENT) 2454 return (0); 2455 2456 /* 2457 * Fail if we got some other error. 2458 */ 2459 (void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, 2460 "Can't open /proc/net/dev: %s", pcap_strerror(errno)); 2461 return (-1); 2462 } 2463 2464 /* 2465 * Create a socket from which to fetch interface information. 2466 */ 2467 fd = socket(PF_UNIX, SOCK_RAW, 0); 2468 if (fd < 0) { 2469 (void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, 2470 "socket: %s", pcap_strerror(errno)); 2471 (void)fclose(proc_net_f); 2472 return (-1); 2473 } 2474 2475 for (linenum = 1; 2476 fgets(linebuf, sizeof linebuf, proc_net_f) != NULL; linenum++) { 2477 /* 2478 * Skip the first two lines - they're headers. 2479 */ 2480 if (linenum <= 2) 2481 continue; 2482 2483 p = &linebuf[0]; 2484 2485 /* 2486 * Skip leading white space. 2487 */ 2488 while (*p != '\0' && isascii(*p) && isspace(*p)) 2489 p++; 2490 if (*p == '\0' || *p == '\n') 2491 continue; /* blank line */ 2492 2493 /* 2494 * Attempt to add the interface. 2495 */ 2496 if (add_linux_if(devlistp, p, fd, errbuf) == -1) { 2497 /* Fail. */ 2498 ret = -1; 2499 break; 2500 } 2501 } 2502 if (ret != -1) { 2503 /* 2504 * Well, we didn't fail for any other reason; did we 2505 * fail due to an error reading the file? 2506 */ 2507 if (ferror(proc_net_f)) { 2508 (void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, 2509 "Error reading /proc/net/dev: %s", 2510 pcap_strerror(errno)); 2511 ret = -1; 2512 } 2513 } 2514 2515 (void)close(fd); 2516 (void)fclose(proc_net_f); 2517 return (ret); 2518 } 2519 2520 /* 2521 * Description string for the "any" device. 2522 */ 2523 static const char any_descr[] = "Pseudo-device that captures on all interfaces"; 2524 2525 /* 2526 * A SOCK_PACKET or PF_PACKET socket can be bound to any network interface. 2527 */ 2528 static int 2529 can_be_bound(const char *name _U_) 2530 { 2531 return (1); 2532 } 2533 2534 int 2535 pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf) 2536 { 2537 int ret; 2538 2539 /* 2540 * Get the list of regular interfaces first. 2541 */ 2542 if (pcap_findalldevs_interfaces(alldevsp, errbuf, can_be_bound) == -1) 2543 return (-1); /* failure */ 2544 2545 /* 2546 * Read "/sys/class/net", and add to the list of interfaces all 2547 * interfaces listed there that we don't already have, because, 2548 * on Linux, SIOCGIFCONF reports only interfaces with IPv4 addresses, 2549 * and even getifaddrs() won't return information about 2550 * interfaces with no addresses, so you need to read "/sys/class/net" 2551 * to get the names of the rest of the interfaces. 2552 */ 2553 ret = scan_sys_class_net(alldevsp, errbuf); 2554 if (ret == -1) 2555 return (-1); /* failed */ 2556 if (ret == 0) { 2557 /* 2558 * No /sys/class/net; try reading /proc/net/dev instead. 2559 */ 2560 if (scan_proc_net_dev(alldevsp, errbuf) == -1) 2561 return (-1); 2562 } 2563 2564 /* 2565 * Add the "any" device. 2566 */ 2567 if (pcap_add_if(alldevsp, "any", PCAP_IF_UP|PCAP_IF_RUNNING, 2568 any_descr, errbuf) < 0) 2569 return (-1); 2570 2571 return (0); 2572 } 2573 2574 /* 2575 * Attach the given BPF code to the packet capture device. 2576 */ 2577 static int 2578 pcap_setfilter_linux_common(pcap_t *handle, struct bpf_program *filter, 2579 int is_mmapped) 2580 { 2581 struct pcap_linux *handlep; 2582 #ifdef SO_ATTACH_FILTER 2583 struct sock_fprog fcode; 2584 int can_filter_in_kernel; 2585 int err = 0; 2586 #endif 2587 2588 if (!handle) 2589 return -1; 2590 if (!filter) { 2591 strlcpy(handle->errbuf, "setfilter: No filter specified", 2592 PCAP_ERRBUF_SIZE); 2593 return -1; 2594 } 2595 2596 handlep = handle->priv; 2597 2598 /* Make our private copy of the filter */ 2599 2600 if (install_bpf_program(handle, filter) < 0) 2601 /* install_bpf_program() filled in errbuf */ 2602 return -1; 2603 2604 /* 2605 * Run user level packet filter by default. Will be overriden if 2606 * installing a kernel filter succeeds. 2607 */ 2608 handlep->filter_in_userland = 1; 2609 2610 /* Install kernel level filter if possible */ 2611 2612 #ifdef SO_ATTACH_FILTER 2613 #ifdef USHRT_MAX 2614 if (handle->fcode.bf_len > USHRT_MAX) { 2615 /* 2616 * fcode.len is an unsigned short for current kernel. 2617 * I have yet to see BPF-Code with that much 2618 * instructions but still it is possible. So for the 2619 * sake of correctness I added this check. 2620 */ 2621 fprintf(stderr, "Warning: Filter too complex for kernel\n"); 2622 fcode.len = 0; 2623 fcode.filter = NULL; 2624 can_filter_in_kernel = 0; 2625 } else 2626 #endif /* USHRT_MAX */ 2627 { 2628 /* 2629 * Oh joy, the Linux kernel uses struct sock_fprog instead 2630 * of struct bpf_program and of course the length field is 2631 * of different size. Pointed out by Sebastian 2632 * 2633 * Oh, and we also need to fix it up so that all "ret" 2634 * instructions with non-zero operands have MAXIMUM_SNAPLEN 2635 * as the operand if we're not capturing in memory-mapped 2636 * mode, and so that, if we're in cooked mode, all memory- 2637 * reference instructions use special magic offsets in 2638 * references to the link-layer header and assume that the 2639 * link-layer payload begins at 0; "fix_program()" will do 2640 * that. 2641 */ 2642 switch (fix_program(handle, &fcode, is_mmapped)) { 2643 2644 case -1: 2645 default: 2646 /* 2647 * Fatal error; just quit. 2648 * (The "default" case shouldn't happen; we 2649 * return -1 for that reason.) 2650 */ 2651 return -1; 2652 2653 case 0: 2654 /* 2655 * The program performed checks that we can't make 2656 * work in the kernel. 2657 */ 2658 can_filter_in_kernel = 0; 2659 break; 2660 2661 case 1: 2662 /* 2663 * We have a filter that'll work in the kernel. 2664 */ 2665 can_filter_in_kernel = 1; 2666 break; 2667 } 2668 } 2669 2670 /* 2671 * NOTE: at this point, we've set both the "len" and "filter" 2672 * fields of "fcode". As of the 2.6.32.4 kernel, at least, 2673 * those are the only members of the "sock_fprog" structure, 2674 * so we initialize every member of that structure. 2675 * 2676 * If there is anything in "fcode" that is not initialized, 2677 * it is either a field added in a later kernel, or it's 2678 * padding. 2679 * 2680 * If a new field is added, this code needs to be updated 2681 * to set it correctly. 2682 * 2683 * If there are no other fields, then: 2684 * 2685 * if the Linux kernel looks at the padding, it's 2686 * buggy; 2687 * 2688 * if the Linux kernel doesn't look at the padding, 2689 * then if some tool complains that we're passing 2690 * uninitialized data to the kernel, then the tool 2691 * is buggy and needs to understand that it's just 2692 * padding. 2693 */ 2694 if (can_filter_in_kernel) { 2695 if ((err = set_kernel_filter(handle, &fcode)) == 0) 2696 { 2697 /* 2698 * Installation succeded - using kernel filter, 2699 * so userland filtering not needed. 2700 */ 2701 handlep->filter_in_userland = 0; 2702 } 2703 else if (err == -1) /* Non-fatal error */ 2704 { 2705 /* 2706 * Print a warning if we weren't able to install 2707 * the filter for a reason other than "this kernel 2708 * isn't configured to support socket filters. 2709 */ 2710 if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) { 2711 fprintf(stderr, 2712 "Warning: Kernel filter failed: %s\n", 2713 pcap_strerror(errno)); 2714 } 2715 } 2716 } 2717 2718 /* 2719 * If we're not using the kernel filter, get rid of any kernel 2720 * filter that might've been there before, e.g. because the 2721 * previous filter could work in the kernel, or because some other 2722 * code attached a filter to the socket by some means other than 2723 * calling "pcap_setfilter()". Otherwise, the kernel filter may 2724 * filter out packets that would pass the new userland filter. 2725 */ 2726 if (handlep->filter_in_userland) { 2727 if (reset_kernel_filter(handle) == -1) { 2728 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 2729 "can't remove kernel filter: %s", 2730 pcap_strerror(errno)); 2731 err = -2; /* fatal error */ 2732 } 2733 } 2734 2735 /* 2736 * Free up the copy of the filter that was made by "fix_program()". 2737 */ 2738 if (fcode.filter != NULL) 2739 free(fcode.filter); 2740 2741 if (err == -2) 2742 /* Fatal error */ 2743 return -1; 2744 #endif /* SO_ATTACH_FILTER */ 2745 2746 return 0; 2747 } 2748 2749 static int 2750 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter) 2751 { 2752 return pcap_setfilter_linux_common(handle, filter, 0); 2753 } 2754 2755 2756 /* 2757 * Set direction flag: Which packets do we accept on a forwarding 2758 * single device? IN, OUT or both? 2759 */ 2760 static int 2761 pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d) 2762 { 2763 #ifdef HAVE_PF_PACKET_SOCKETS 2764 struct pcap_linux *handlep = handle->priv; 2765 2766 if (!handlep->sock_packet) { 2767 handle->direction = d; 2768 return 0; 2769 } 2770 #endif 2771 /* 2772 * We're not using PF_PACKET sockets, so we can't determine 2773 * the direction of the packet. 2774 */ 2775 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 2776 "Setting direction is not supported on SOCK_PACKET sockets"); 2777 return -1; 2778 } 2779 2780 #ifdef HAVE_PF_PACKET_SOCKETS 2781 /* 2782 * Map the PACKET_ value to a LINUX_SLL_ value; we 2783 * want the same numerical value to be used in 2784 * the link-layer header even if the numerical values 2785 * for the PACKET_ #defines change, so that programs 2786 * that look at the packet type field will always be 2787 * able to handle DLT_LINUX_SLL captures. 2788 */ 2789 static short int 2790 map_packet_type_to_sll_type(short int sll_pkttype) 2791 { 2792 switch (sll_pkttype) { 2793 2794 case PACKET_HOST: 2795 return htons(LINUX_SLL_HOST); 2796 2797 case PACKET_BROADCAST: 2798 return htons(LINUX_SLL_BROADCAST); 2799 2800 case PACKET_MULTICAST: 2801 return htons(LINUX_SLL_MULTICAST); 2802 2803 case PACKET_OTHERHOST: 2804 return htons(LINUX_SLL_OTHERHOST); 2805 2806 case PACKET_OUTGOING: 2807 return htons(LINUX_SLL_OUTGOING); 2808 2809 default: 2810 return -1; 2811 } 2812 } 2813 #endif 2814 2815 static int 2816 is_wifi(int sock_fd 2817 #ifndef IW_MODE_MONITOR 2818 _U_ 2819 #endif 2820 , const char *device) 2821 { 2822 char *pathstr; 2823 struct stat statb; 2824 #ifdef IW_MODE_MONITOR 2825 char errbuf[PCAP_ERRBUF_SIZE]; 2826 #endif 2827 2828 /* 2829 * See if there's a sysfs wireless directory for it. 2830 * If so, it's a wireless interface. 2831 */ 2832 if (asprintf(&pathstr, "/sys/class/net/%s/wireless", device) == -1) { 2833 /* 2834 * Just give up here. 2835 */ 2836 return 0; 2837 } 2838 if (stat(pathstr, &statb) == 0) { 2839 free(pathstr); 2840 return 1; 2841 } 2842 free(pathstr); 2843 2844 #ifdef IW_MODE_MONITOR 2845 /* 2846 * OK, maybe it's not wireless, or maybe this kernel doesn't 2847 * support sysfs. Try the wireless extensions. 2848 */ 2849 if (has_wext(sock_fd, device, errbuf) == 1) { 2850 /* 2851 * It supports the wireless extensions, so it's a Wi-Fi 2852 * device. 2853 */ 2854 return 1; 2855 } 2856 #endif 2857 return 0; 2858 } 2859 2860 /* 2861 * Linux uses the ARP hardware type to identify the type of an 2862 * interface. pcap uses the DLT_xxx constants for this. This 2863 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx 2864 * constant, as arguments, and sets "handle->linktype" to the 2865 * appropriate DLT_XXX constant and sets "handle->offset" to 2866 * the appropriate value (to make "handle->offset" plus link-layer 2867 * header length be a multiple of 4, so that the link-layer payload 2868 * will be aligned on a 4-byte boundary when capturing packets). 2869 * (If the offset isn't set here, it'll be 0; add code as appropriate 2870 * for cases where it shouldn't be 0.) 2871 * 2872 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture 2873 * in cooked mode; otherwise, we can't use cooked mode, so we have 2874 * to pick some type that works in raw mode, or fail. 2875 * 2876 * Sets the link type to -1 if unable to map the type. 2877 */ 2878 static void map_arphrd_to_dlt(pcap_t *handle, int sock_fd, int arptype, 2879 const char *device, int cooked_ok) 2880 { 2881 static const char cdma_rmnet[] = "cdma_rmnet"; 2882 2883 switch (arptype) { 2884 2885 case ARPHRD_ETHER: 2886 /* 2887 * For various annoying reasons having to do with DHCP 2888 * software, some versions of Android give the mobile- 2889 * phone-network interface an ARPHRD_ value of 2890 * ARPHRD_ETHER, even though the packets supplied by 2891 * that interface have no link-layer header, and begin 2892 * with an IP header, so that the ARPHRD_ value should 2893 * be ARPHRD_NONE. 2894 * 2895 * Detect those devices by checking the device name, and 2896 * use DLT_RAW for them. 2897 */ 2898 if (strncmp(device, cdma_rmnet, sizeof cdma_rmnet - 1) == 0) { 2899 handle->linktype = DLT_RAW; 2900 return; 2901 } 2902 2903 /* 2904 * Is this a real Ethernet device? If so, give it a 2905 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so 2906 * that an application can let you choose it, in case you're 2907 * capturing DOCSIS traffic that a Cisco Cable Modem 2908 * Termination System is putting out onto an Ethernet (it 2909 * doesn't put an Ethernet header onto the wire, it puts raw 2910 * DOCSIS frames out on the wire inside the low-level 2911 * Ethernet framing). 2912 * 2913 * XXX - are there any other sorts of "fake Ethernet" that 2914 * have ARPHRD_ETHER but that shouldn't offer DLT_DOCSIS as 2915 * a Cisco CMTS won't put traffic onto it or get traffic 2916 * bridged onto it? ISDN is handled in "activate_new()", 2917 * as we fall back on cooked mode there, and we use 2918 * is_wifi() to check for 802.11 devices; are there any 2919 * others? 2920 */ 2921 if (!is_wifi(sock_fd, device)) { 2922 /* 2923 * It's not a Wi-Fi device; offer DOCSIS. 2924 */ 2925 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2); 2926 /* 2927 * If that fails, just leave the list empty. 2928 */ 2929 if (handle->dlt_list != NULL) { 2930 handle->dlt_list[0] = DLT_EN10MB; 2931 handle->dlt_list[1] = DLT_DOCSIS; 2932 handle->dlt_count = 2; 2933 } 2934 } 2935 /* FALLTHROUGH */ 2936 2937 case ARPHRD_METRICOM: 2938 case ARPHRD_LOOPBACK: 2939 handle->linktype = DLT_EN10MB; 2940 handle->offset = 2; 2941 break; 2942 2943 case ARPHRD_EETHER: 2944 handle->linktype = DLT_EN3MB; 2945 break; 2946 2947 case ARPHRD_AX25: 2948 handle->linktype = DLT_AX25_KISS; 2949 break; 2950 2951 case ARPHRD_PRONET: 2952 handle->linktype = DLT_PRONET; 2953 break; 2954 2955 case ARPHRD_CHAOS: 2956 handle->linktype = DLT_CHAOS; 2957 break; 2958 #ifndef ARPHRD_CAN 2959 #define ARPHRD_CAN 280 2960 #endif 2961 case ARPHRD_CAN: 2962 /* 2963 * Map this to DLT_LINUX_SLL; that way, CAN frames will 2964 * have ETH_P_CAN/LINUX_SLL_P_CAN as the protocol and 2965 * CAN FD frames will have ETH_P_CANFD/LINUX_SLL_P_CANFD 2966 * as the protocol, so they can be distinguished by the 2967 * protocol in the SLL header. 2968 */ 2969 handle->linktype = DLT_LINUX_SLL; 2970 break; 2971 2972 #ifndef ARPHRD_IEEE802_TR 2973 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */ 2974 #endif 2975 case ARPHRD_IEEE802_TR: 2976 case ARPHRD_IEEE802: 2977 handle->linktype = DLT_IEEE802; 2978 handle->offset = 2; 2979 break; 2980 2981 case ARPHRD_ARCNET: 2982 handle->linktype = DLT_ARCNET_LINUX; 2983 break; 2984 2985 #ifndef ARPHRD_FDDI /* From Linux 2.2.13 */ 2986 #define ARPHRD_FDDI 774 2987 #endif 2988 case ARPHRD_FDDI: 2989 handle->linktype = DLT_FDDI; 2990 handle->offset = 3; 2991 break; 2992 2993 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */ 2994 #define ARPHRD_ATM 19 2995 #endif 2996 case ARPHRD_ATM: 2997 /* 2998 * The Classical IP implementation in ATM for Linux 2999 * supports both what RFC 1483 calls "LLC Encapsulation", 3000 * in which each packet has an LLC header, possibly 3001 * with a SNAP header as well, prepended to it, and 3002 * what RFC 1483 calls "VC Based Multiplexing", in which 3003 * different virtual circuits carry different network 3004 * layer protocols, and no header is prepended to packets. 3005 * 3006 * They both have an ARPHRD_ type of ARPHRD_ATM, so 3007 * you can't use the ARPHRD_ type to find out whether 3008 * captured packets will have an LLC header, and, 3009 * while there's a socket ioctl to *set* the encapsulation 3010 * type, there's no ioctl to *get* the encapsulation type. 3011 * 3012 * This means that 3013 * 3014 * programs that dissect Linux Classical IP frames 3015 * would have to check for an LLC header and, 3016 * depending on whether they see one or not, dissect 3017 * the frame as LLC-encapsulated or as raw IP (I 3018 * don't know whether there's any traffic other than 3019 * IP that would show up on the socket, or whether 3020 * there's any support for IPv6 in the Linux 3021 * Classical IP code); 3022 * 3023 * filter expressions would have to compile into 3024 * code that checks for an LLC header and does 3025 * the right thing. 3026 * 3027 * Both of those are a nuisance - and, at least on systems 3028 * that support PF_PACKET sockets, we don't have to put 3029 * up with those nuisances; instead, we can just capture 3030 * in cooked mode. That's what we'll do, if we can. 3031 * Otherwise, we'll just fail. 3032 */ 3033 if (cooked_ok) 3034 handle->linktype = DLT_LINUX_SLL; 3035 else 3036 handle->linktype = -1; 3037 break; 3038 3039 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */ 3040 #define ARPHRD_IEEE80211 801 3041 #endif 3042 case ARPHRD_IEEE80211: 3043 handle->linktype = DLT_IEEE802_11; 3044 break; 3045 3046 #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */ 3047 #define ARPHRD_IEEE80211_PRISM 802 3048 #endif 3049 case ARPHRD_IEEE80211_PRISM: 3050 handle->linktype = DLT_PRISM_HEADER; 3051 break; 3052 3053 #ifndef ARPHRD_IEEE80211_RADIOTAP /* new */ 3054 #define ARPHRD_IEEE80211_RADIOTAP 803 3055 #endif 3056 case ARPHRD_IEEE80211_RADIOTAP: 3057 handle->linktype = DLT_IEEE802_11_RADIO; 3058 break; 3059 3060 case ARPHRD_PPP: 3061 /* 3062 * Some PPP code in the kernel supplies no link-layer 3063 * header whatsoever to PF_PACKET sockets; other PPP 3064 * code supplies PPP link-layer headers ("syncppp.c"); 3065 * some PPP code might supply random link-layer 3066 * headers (PPP over ISDN - there's code in Ethereal, 3067 * for example, to cope with PPP-over-ISDN captures 3068 * with which the Ethereal developers have had to cope, 3069 * heuristically trying to determine which of the 3070 * oddball link-layer headers particular packets have). 3071 * 3072 * As such, we just punt, and run all PPP interfaces 3073 * in cooked mode, if we can; otherwise, we just treat 3074 * it as DLT_RAW, for now - if somebody needs to capture, 3075 * on a 2.0[.x] kernel, on PPP devices that supply a 3076 * link-layer header, they'll have to add code here to 3077 * map to the appropriate DLT_ type (possibly adding a 3078 * new DLT_ type, if necessary). 3079 */ 3080 if (cooked_ok) 3081 handle->linktype = DLT_LINUX_SLL; 3082 else { 3083 /* 3084 * XXX - handle ISDN types here? We can't fall 3085 * back on cooked sockets, so we'd have to 3086 * figure out from the device name what type of 3087 * link-layer encapsulation it's using, and map 3088 * that to an appropriate DLT_ value, meaning 3089 * we'd map "isdnN" devices to DLT_RAW (they 3090 * supply raw IP packets with no link-layer 3091 * header) and "isdY" devices to a new DLT_I4L_IP 3092 * type that has only an Ethernet packet type as 3093 * a link-layer header. 3094 * 3095 * But sometimes we seem to get random crap 3096 * in the link-layer header when capturing on 3097 * ISDN devices.... 3098 */ 3099 handle->linktype = DLT_RAW; 3100 } 3101 break; 3102 3103 #ifndef ARPHRD_CISCO 3104 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */ 3105 #endif 3106 case ARPHRD_CISCO: 3107 handle->linktype = DLT_C_HDLC; 3108 break; 3109 3110 /* Not sure if this is correct for all tunnels, but it 3111 * works for CIPE */ 3112 case ARPHRD_TUNNEL: 3113 #ifndef ARPHRD_SIT 3114 #define ARPHRD_SIT 776 /* From Linux 2.2.13 */ 3115 #endif 3116 case ARPHRD_SIT: 3117 case ARPHRD_CSLIP: 3118 case ARPHRD_SLIP6: 3119 case ARPHRD_CSLIP6: 3120 case ARPHRD_ADAPT: 3121 case ARPHRD_SLIP: 3122 #ifndef ARPHRD_RAWHDLC 3123 #define ARPHRD_RAWHDLC 518 3124 #endif 3125 case ARPHRD_RAWHDLC: 3126 #ifndef ARPHRD_DLCI 3127 #define ARPHRD_DLCI 15 3128 #endif 3129 case ARPHRD_DLCI: 3130 /* 3131 * XXX - should some of those be mapped to DLT_LINUX_SLL 3132 * instead? Should we just map all of them to DLT_LINUX_SLL? 3133 */ 3134 handle->linktype = DLT_RAW; 3135 break; 3136 3137 #ifndef ARPHRD_FRAD 3138 #define ARPHRD_FRAD 770 3139 #endif 3140 case ARPHRD_FRAD: 3141 handle->linktype = DLT_FRELAY; 3142 break; 3143 3144 case ARPHRD_LOCALTLK: 3145 handle->linktype = DLT_LTALK; 3146 break; 3147 3148 case 18: 3149 /* 3150 * RFC 4338 defines an encapsulation for IP and ARP 3151 * packets that's compatible with the RFC 2625 3152 * encapsulation, but that uses a different ARP 3153 * hardware type and hardware addresses. That 3154 * ARP hardware type is 18; Linux doesn't define 3155 * any ARPHRD_ value as 18, but if it ever officially 3156 * supports RFC 4338-style IP-over-FC, it should define 3157 * one. 3158 * 3159 * For now, we map it to DLT_IP_OVER_FC, in the hopes 3160 * that this will encourage its use in the future, 3161 * should Linux ever officially support RFC 4338-style 3162 * IP-over-FC. 3163 */ 3164 handle->linktype = DLT_IP_OVER_FC; 3165 break; 3166 3167 #ifndef ARPHRD_FCPP 3168 #define ARPHRD_FCPP 784 3169 #endif 3170 case ARPHRD_FCPP: 3171 #ifndef ARPHRD_FCAL 3172 #define ARPHRD_FCAL 785 3173 #endif 3174 case ARPHRD_FCAL: 3175 #ifndef ARPHRD_FCPL 3176 #define ARPHRD_FCPL 786 3177 #endif 3178 case ARPHRD_FCPL: 3179 #ifndef ARPHRD_FCFABRIC 3180 #define ARPHRD_FCFABRIC 787 3181 #endif 3182 case ARPHRD_FCFABRIC: 3183 /* 3184 * Back in 2002, Donald Lee at Cray wanted a DLT_ for 3185 * IP-over-FC: 3186 * 3187 * http://www.mail-archive.com/tcpdump-workers@sandelman.ottawa.on.ca/msg01043.html 3188 * 3189 * and one was assigned. 3190 * 3191 * In a later private discussion (spun off from a message 3192 * on the ethereal-users list) on how to get that DLT_ 3193 * value in libpcap on Linux, I ended up deciding that 3194 * the best thing to do would be to have him tweak the 3195 * driver to set the ARPHRD_ value to some ARPHRD_FCxx 3196 * type, and map all those types to DLT_IP_OVER_FC: 3197 * 3198 * I've checked into the libpcap and tcpdump CVS tree 3199 * support for DLT_IP_OVER_FC. In order to use that, 3200 * you'd have to modify your modified driver to return 3201 * one of the ARPHRD_FCxxx types, in "fcLINUXfcp.c" - 3202 * change it to set "dev->type" to ARPHRD_FCFABRIC, for 3203 * example (the exact value doesn't matter, it can be 3204 * any of ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, or 3205 * ARPHRD_FCFABRIC). 3206 * 3207 * 11 years later, Christian Svensson wanted to map 3208 * various ARPHRD_ values to DLT_FC_2 and 3209 * DLT_FC_2_WITH_FRAME_DELIMS for raw Fibre Channel 3210 * frames: 3211 * 3212 * https://github.com/mcr/libpcap/pull/29 3213 * 3214 * There doesn't seem to be any network drivers that uses 3215 * any of the ARPHRD_FC* values for IP-over-FC, and 3216 * it's not exactly clear what the "Dummy types for non 3217 * ARP hardware" are supposed to mean (link-layer 3218 * header type? Physical network type?), so it's 3219 * not exactly clear why the ARPHRD_FC* types exist 3220 * in the first place. 3221 * 3222 * For now, we map them to DLT_FC_2, and provide an 3223 * option of DLT_FC_2_WITH_FRAME_DELIMS, as well as 3224 * DLT_IP_OVER_FC just in case there's some old 3225 * driver out there that uses one of those types for 3226 * IP-over-FC on which somebody wants to capture 3227 * packets. 3228 */ 3229 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2); 3230 /* 3231 * If that fails, just leave the list empty. 3232 */ 3233 if (handle->dlt_list != NULL) { 3234 handle->dlt_list[0] = DLT_FC_2; 3235 handle->dlt_list[1] = DLT_FC_2_WITH_FRAME_DELIMS; 3236 handle->dlt_list[2] = DLT_IP_OVER_FC; 3237 handle->dlt_count = 3; 3238 } 3239 handle->linktype = DLT_FC_2; 3240 break; 3241 3242 #ifndef ARPHRD_IRDA 3243 #define ARPHRD_IRDA 783 3244 #endif 3245 case ARPHRD_IRDA: 3246 /* Don't expect IP packet out of this interfaces... */ 3247 handle->linktype = DLT_LINUX_IRDA; 3248 /* We need to save packet direction for IrDA decoding, 3249 * so let's use "Linux-cooked" mode. Jean II 3250 * 3251 * XXX - this is handled in activate_new(). */ 3252 /* handlep->cooked = 1; */ 3253 break; 3254 3255 /* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation 3256 * is needed, please report it to <daniele@orlandi.com> */ 3257 #ifndef ARPHRD_LAPD 3258 #define ARPHRD_LAPD 8445 3259 #endif 3260 case ARPHRD_LAPD: 3261 /* Don't expect IP packet out of this interfaces... */ 3262 handle->linktype = DLT_LINUX_LAPD; 3263 break; 3264 3265 #ifndef ARPHRD_NONE 3266 #define ARPHRD_NONE 0xFFFE 3267 #endif 3268 case ARPHRD_NONE: 3269 /* 3270 * No link-layer header; packets are just IP 3271 * packets, so use DLT_RAW. 3272 */ 3273 handle->linktype = DLT_RAW; 3274 break; 3275 3276 #ifndef ARPHRD_IEEE802154 3277 #define ARPHRD_IEEE802154 804 3278 #endif 3279 case ARPHRD_IEEE802154: 3280 handle->linktype = DLT_IEEE802_15_4_NOFCS; 3281 break; 3282 3283 #ifndef ARPHRD_NETLINK 3284 #define ARPHRD_NETLINK 824 3285 #endif 3286 case ARPHRD_NETLINK: 3287 handle->linktype = DLT_NETLINK; 3288 /* 3289 * We need to use cooked mode, so that in sll_protocol we 3290 * pick up the netlink protocol type such as NETLINK_ROUTE, 3291 * NETLINK_GENERIC, NETLINK_FIB_LOOKUP, etc. 3292 * 3293 * XXX - this is handled in activate_new(). 3294 */ 3295 /* handlep->cooked = 1; */ 3296 break; 3297 3298 default: 3299 handle->linktype = -1; 3300 break; 3301 } 3302 } 3303 3304 /* ===== Functions to interface to the newer kernels ================== */ 3305 3306 /* 3307 * Try to open a packet socket using the new kernel PF_PACKET interface. 3308 * Returns 1 on success, 0 on an error that means the new interface isn't 3309 * present (so the old SOCK_PACKET interface should be tried), and a 3310 * PCAP_ERROR_ value on an error that means that the old mechanism won't 3311 * work either (so it shouldn't be tried). 3312 */ 3313 static int 3314 activate_new(pcap_t *handle) 3315 { 3316 #ifdef HAVE_PF_PACKET_SOCKETS 3317 struct pcap_linux *handlep = handle->priv; 3318 const char *device = handle->opt.device; 3319 int is_any_device = (strcmp(device, "any") == 0); 3320 int sock_fd = -1, arptype; 3321 #ifdef HAVE_PACKET_AUXDATA 3322 int val; 3323 #endif 3324 int err = 0; 3325 struct packet_mreq mr; 3326 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) 3327 int bpf_extensions; 3328 socklen_t len = sizeof(bpf_extensions); 3329 #endif 3330 3331 /* 3332 * Open a socket with protocol family packet. If the 3333 * "any" device was specified, we open a SOCK_DGRAM 3334 * socket for the cooked interface, otherwise we first 3335 * try a SOCK_RAW socket for the raw interface. 3336 */ 3337 sock_fd = is_any_device ? 3338 socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL)) : 3339 socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); 3340 3341 if (sock_fd == -1) { 3342 if (errno == EINVAL || errno == EAFNOSUPPORT) { 3343 /* 3344 * We don't support PF_PACKET/SOCK_whatever 3345 * sockets; try the old mechanism. 3346 */ 3347 return 0; 3348 } 3349 3350 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "socket: %s", 3351 pcap_strerror(errno) ); 3352 if (errno == EPERM || errno == EACCES) { 3353 /* 3354 * You don't have permission to open the 3355 * socket. 3356 */ 3357 return PCAP_ERROR_PERM_DENIED; 3358 } else { 3359 /* 3360 * Other error. 3361 */ 3362 return PCAP_ERROR; 3363 } 3364 } 3365 3366 /* It seems the kernel supports the new interface. */ 3367 handlep->sock_packet = 0; 3368 3369 /* 3370 * Get the interface index of the loopback device. 3371 * If the attempt fails, don't fail, just set the 3372 * "handlep->lo_ifindex" to -1. 3373 * 3374 * XXX - can there be more than one device that loops 3375 * packets back, i.e. devices other than "lo"? If so, 3376 * we'd need to find them all, and have an array of 3377 * indices for them, and check all of them in 3378 * "pcap_read_packet()". 3379 */ 3380 handlep->lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf); 3381 3382 /* 3383 * Default value for offset to align link-layer payload 3384 * on a 4-byte boundary. 3385 */ 3386 handle->offset = 0; 3387 3388 /* 3389 * What kind of frames do we have to deal with? Fall back 3390 * to cooked mode if we have an unknown interface type 3391 * or a type we know doesn't work well in raw mode. 3392 */ 3393 if (!is_any_device) { 3394 /* Assume for now we don't need cooked mode. */ 3395 handlep->cooked = 0; 3396 3397 if (handle->opt.rfmon) { 3398 /* 3399 * We were asked to turn on monitor mode. 3400 * Do so before we get the link-layer type, 3401 * because entering monitor mode could change 3402 * the link-layer type. 3403 */ 3404 err = enter_rfmon_mode(handle, sock_fd, device); 3405 if (err < 0) { 3406 /* Hard failure */ 3407 close(sock_fd); 3408 return err; 3409 } 3410 if (err == 0) { 3411 /* 3412 * Nothing worked for turning monitor mode 3413 * on. 3414 */ 3415 close(sock_fd); 3416 return PCAP_ERROR_RFMON_NOTSUP; 3417 } 3418 3419 /* 3420 * Either monitor mode has been turned on for 3421 * the device, or we've been given a different 3422 * device to open for monitor mode. If we've 3423 * been given a different device, use it. 3424 */ 3425 if (handlep->mondevice != NULL) 3426 device = handlep->mondevice; 3427 } 3428 arptype = iface_get_arptype(sock_fd, device, handle->errbuf); 3429 if (arptype < 0) { 3430 close(sock_fd); 3431 return arptype; 3432 } 3433 map_arphrd_to_dlt(handle, sock_fd, arptype, device, 1); 3434 if (handle->linktype == -1 || 3435 handle->linktype == DLT_LINUX_SLL || 3436 handle->linktype == DLT_LINUX_IRDA || 3437 handle->linktype == DLT_LINUX_LAPD || 3438 handle->linktype == DLT_NETLINK || 3439 (handle->linktype == DLT_EN10MB && 3440 (strncmp("isdn", device, 4) == 0 || 3441 strncmp("isdY", device, 4) == 0))) { 3442 /* 3443 * Unknown interface type (-1), or a 3444 * device we explicitly chose to run 3445 * in cooked mode (e.g., PPP devices), 3446 * or an ISDN device (whose link-layer 3447 * type we can only determine by using 3448 * APIs that may be different on different 3449 * kernels) - reopen in cooked mode. 3450 */ 3451 if (close(sock_fd) == -1) { 3452 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3453 "close: %s", pcap_strerror(errno)); 3454 return PCAP_ERROR; 3455 } 3456 sock_fd = socket(PF_PACKET, SOCK_DGRAM, 3457 htons(ETH_P_ALL)); 3458 if (sock_fd == -1) { 3459 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3460 "socket: %s", pcap_strerror(errno)); 3461 if (errno == EPERM || errno == EACCES) { 3462 /* 3463 * You don't have permission to 3464 * open the socket. 3465 */ 3466 return PCAP_ERROR_PERM_DENIED; 3467 } else { 3468 /* 3469 * Other error. 3470 */ 3471 return PCAP_ERROR; 3472 } 3473 } 3474 handlep->cooked = 1; 3475 3476 /* 3477 * Get rid of any link-layer type list 3478 * we allocated - this only supports cooked 3479 * capture. 3480 */ 3481 if (handle->dlt_list != NULL) { 3482 free(handle->dlt_list); 3483 handle->dlt_list = NULL; 3484 handle->dlt_count = 0; 3485 } 3486 3487 if (handle->linktype == -1) { 3488 /* 3489 * Warn that we're falling back on 3490 * cooked mode; we may want to 3491 * update "map_arphrd_to_dlt()" 3492 * to handle the new type. 3493 */ 3494 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3495 "arptype %d not " 3496 "supported by libpcap - " 3497 "falling back to cooked " 3498 "socket", 3499 arptype); 3500 } 3501 3502 /* 3503 * IrDA capture is not a real "cooked" capture, 3504 * it's IrLAP frames, not IP packets. The 3505 * same applies to LAPD capture. 3506 */ 3507 if (handle->linktype != DLT_LINUX_IRDA && 3508 handle->linktype != DLT_LINUX_LAPD && 3509 handle->linktype != DLT_NETLINK) 3510 handle->linktype = DLT_LINUX_SLL; 3511 } 3512 3513 handlep->ifindex = iface_get_id(sock_fd, device, 3514 handle->errbuf); 3515 if (handlep->ifindex == -1) { 3516 close(sock_fd); 3517 return PCAP_ERROR; 3518 } 3519 3520 if ((err = iface_bind(sock_fd, handlep->ifindex, 3521 handle->errbuf)) != 1) { 3522 close(sock_fd); 3523 if (err < 0) 3524 return err; 3525 else 3526 return 0; /* try old mechanism */ 3527 } 3528 } else { 3529 /* 3530 * The "any" device. 3531 */ 3532 if (handle->opt.rfmon) { 3533 /* 3534 * It doesn't support monitor mode. 3535 */ 3536 close(sock_fd); 3537 return PCAP_ERROR_RFMON_NOTSUP; 3538 } 3539 3540 /* 3541 * It uses cooked mode. 3542 */ 3543 handlep->cooked = 1; 3544 handle->linktype = DLT_LINUX_SLL; 3545 3546 /* 3547 * We're not bound to a device. 3548 * For now, we're using this as an indication 3549 * that we can't transmit; stop doing that only 3550 * if we figure out how to transmit in cooked 3551 * mode. 3552 */ 3553 handlep->ifindex = -1; 3554 } 3555 3556 /* 3557 * Select promiscuous mode on if "promisc" is set. 3558 * 3559 * Do not turn allmulti mode on if we don't select 3560 * promiscuous mode - on some devices (e.g., Orinoco 3561 * wireless interfaces), allmulti mode isn't supported 3562 * and the driver implements it by turning promiscuous 3563 * mode on, and that screws up the operation of the 3564 * card as a normal networking interface, and on no 3565 * other platform I know of does starting a non- 3566 * promiscuous capture affect which multicast packets 3567 * are received by the interface. 3568 */ 3569 3570 /* 3571 * Hmm, how can we set promiscuous mode on all interfaces? 3572 * I am not sure if that is possible at all. For now, we 3573 * silently ignore attempts to turn promiscuous mode on 3574 * for the "any" device (so you don't have to explicitly 3575 * disable it in programs such as tcpdump). 3576 */ 3577 3578 if (!is_any_device && handle->opt.promisc) { 3579 memset(&mr, 0, sizeof(mr)); 3580 mr.mr_ifindex = handlep->ifindex; 3581 mr.mr_type = PACKET_MR_PROMISC; 3582 if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP, 3583 &mr, sizeof(mr)) == -1) { 3584 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3585 "setsockopt: %s", pcap_strerror(errno)); 3586 close(sock_fd); 3587 return PCAP_ERROR; 3588 } 3589 } 3590 3591 /* Enable auxillary data if supported and reserve room for 3592 * reconstructing VLAN headers. */ 3593 #ifdef HAVE_PACKET_AUXDATA 3594 val = 1; 3595 if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val, 3596 sizeof(val)) == -1 && errno != ENOPROTOOPT) { 3597 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3598 "setsockopt: %s", pcap_strerror(errno)); 3599 close(sock_fd); 3600 return PCAP_ERROR; 3601 } 3602 handle->offset += VLAN_TAG_LEN; 3603 #endif /* HAVE_PACKET_AUXDATA */ 3604 3605 /* 3606 * This is a 2.2[.x] or later kernel (we know that 3607 * because we're not using a SOCK_PACKET socket - 3608 * PF_PACKET is supported only in 2.2 and later 3609 * kernels). 3610 * 3611 * We can safely pass "recvfrom()" a byte count 3612 * based on the snapshot length. 3613 * 3614 * If we're in cooked mode, make the snapshot length 3615 * large enough to hold a "cooked mode" header plus 3616 * 1 byte of packet data (so we don't pass a byte 3617 * count of 0 to "recvfrom()"). 3618 */ 3619 if (handlep->cooked) { 3620 if (handle->snapshot < SLL_HDR_LEN + 1) 3621 handle->snapshot = SLL_HDR_LEN + 1; 3622 } 3623 handle->bufsize = handle->snapshot; 3624 3625 /* 3626 * Set the offset at which to insert VLAN tags. 3627 * That should be the offset of the type field. 3628 */ 3629 switch (handle->linktype) { 3630 3631 case DLT_EN10MB: 3632 /* 3633 * The type field is after the destination and source 3634 * MAC address. 3635 */ 3636 handlep->vlan_offset = 2 * ETH_ALEN; 3637 break; 3638 3639 case DLT_LINUX_SLL: 3640 /* 3641 * The type field is in the last 2 bytes of the 3642 * DLT_LINUX_SLL header. 3643 */ 3644 handlep->vlan_offset = SLL_HDR_LEN - 2; 3645 break; 3646 3647 default: 3648 handlep->vlan_offset = -1; /* unknown */ 3649 break; 3650 } 3651 3652 #if defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) 3653 if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) { 3654 int nsec_tstamps = 1; 3655 3656 if (setsockopt(sock_fd, SOL_SOCKET, SO_TIMESTAMPNS, &nsec_tstamps, sizeof(nsec_tstamps)) < 0) { 3657 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "setsockopt: unable to set SO_TIMESTAMPNS"); 3658 close(sock_fd); 3659 return PCAP_ERROR; 3660 } 3661 } 3662 #endif /* defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) */ 3663 3664 /* 3665 * We've succeeded. Save the socket FD in the pcap structure. 3666 */ 3667 handle->fd = sock_fd; 3668 3669 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) 3670 /* 3671 * Can we generate special code for VLAN checks? 3672 * (XXX - what if we need the special code but it's not supported 3673 * by the OS? Is that possible?) 3674 */ 3675 if (getsockopt(sock_fd, SOL_SOCKET, SO_BPF_EXTENSIONS, 3676 &bpf_extensions, &len) == 0) { 3677 if (bpf_extensions >= SKF_AD_VLAN_TAG_PRESENT) { 3678 /* 3679 * Yes, we can. Request that we do so. 3680 */ 3681 handle->bpf_codegen_flags |= BPF_SPECIAL_VLAN_HANDLING; 3682 } 3683 } 3684 #endif /* defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) */ 3685 3686 return 1; 3687 #else /* HAVE_PF_PACKET_SOCKETS */ 3688 strlcpy(ebuf, 3689 "New packet capturing interface not supported by build " 3690 "environment", PCAP_ERRBUF_SIZE); 3691 return 0; 3692 #endif /* HAVE_PF_PACKET_SOCKETS */ 3693 } 3694 3695 #ifdef HAVE_PACKET_RING 3696 /* 3697 * Attempt to activate with memory-mapped access. 3698 * 3699 * On success, returns 1, and sets *status to 0 if there are no warnings 3700 * or to a PCAP_WARNING_ code if there is a warning. 3701 * 3702 * On failure due to lack of support for memory-mapped capture, returns 3703 * 0. 3704 * 3705 * On error, returns -1, and sets *status to the appropriate error code; 3706 * if that is PCAP_ERROR, sets handle->errbuf to the appropriate message. 3707 */ 3708 static int 3709 activate_mmap(pcap_t *handle, int *status) 3710 { 3711 struct pcap_linux *handlep = handle->priv; 3712 int ret; 3713 3714 /* 3715 * Attempt to allocate a buffer to hold the contents of one 3716 * packet, for use by the oneshot callback. 3717 */ 3718 handlep->oneshot_buffer = malloc(handle->snapshot); 3719 if (handlep->oneshot_buffer == NULL) { 3720 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3721 "can't allocate oneshot buffer: %s", 3722 pcap_strerror(errno)); 3723 *status = PCAP_ERROR; 3724 return -1; 3725 } 3726 3727 if (handle->opt.buffer_size == 0) { 3728 /* by default request 2M for the ring buffer */ 3729 handle->opt.buffer_size = 2*1024*1024; 3730 } 3731 ret = prepare_tpacket_socket(handle); 3732 if (ret == -1) { 3733 free(handlep->oneshot_buffer); 3734 *status = PCAP_ERROR; 3735 return ret; 3736 } 3737 ret = create_ring(handle, status); 3738 if (ret == 0) { 3739 /* 3740 * We don't support memory-mapped capture; our caller 3741 * will fall back on reading from the socket. 3742 */ 3743 free(handlep->oneshot_buffer); 3744 return 0; 3745 } 3746 if (ret == -1) { 3747 /* 3748 * Error attempting to enable memory-mapped capture; 3749 * fail. create_ring() has set *status. 3750 */ 3751 free(handlep->oneshot_buffer); 3752 return -1; 3753 } 3754 3755 /* 3756 * Success. *status has been set either to 0 if there are no 3757 * warnings or to a PCAP_WARNING_ value if there is a warning. 3758 * 3759 * Override some defaults and inherit the other fields from 3760 * activate_new. 3761 * handle->offset is used to get the current position into the rx ring. 3762 * handle->cc is used to store the ring size. 3763 */ 3764 3765 switch (handlep->tp_version) { 3766 case TPACKET_V1: 3767 handle->read_op = pcap_read_linux_mmap_v1; 3768 break; 3769 case TPACKET_V1_64: 3770 handle->read_op = pcap_read_linux_mmap_v1_64; 3771 break; 3772 #ifdef HAVE_TPACKET2 3773 case TPACKET_V2: 3774 handle->read_op = pcap_read_linux_mmap_v2; 3775 break; 3776 #endif 3777 #ifdef HAVE_TPACKET3 3778 case TPACKET_V3: 3779 handle->read_op = pcap_read_linux_mmap_v3; 3780 break; 3781 #endif 3782 } 3783 handle->cleanup_op = pcap_cleanup_linux_mmap; 3784 handle->setfilter_op = pcap_setfilter_linux_mmap; 3785 handle->setnonblock_op = pcap_setnonblock_mmap; 3786 handle->getnonblock_op = pcap_getnonblock_mmap; 3787 handle->oneshot_callback = pcap_oneshot_mmap; 3788 handle->selectable_fd = handle->fd; 3789 return 1; 3790 } 3791 #else /* HAVE_PACKET_RING */ 3792 static int 3793 activate_mmap(pcap_t *handle _U_, int *status _U_) 3794 { 3795 return 0; 3796 } 3797 #endif /* HAVE_PACKET_RING */ 3798 3799 #ifdef HAVE_PACKET_RING 3800 3801 #if defined(HAVE_TPACKET2) || defined(HAVE_TPACKET3) 3802 /* 3803 * Attempt to set the socket to the specified version of the memory-mapped 3804 * header. 3805 * 3806 * Return 0 if we succeed; return 1 if we fail because that version isn't 3807 * supported; return -1 on any other error, and set handle->errbuf. 3808 */ 3809 static int 3810 init_tpacket(pcap_t *handle, int version, const char *version_str) 3811 { 3812 struct pcap_linux *handlep = handle->priv; 3813 int val = version; 3814 socklen_t len = sizeof(val); 3815 3816 /* 3817 * Probe whether kernel supports the specified TPACKET version; 3818 * this also gets the length of the header for that version. 3819 */ 3820 if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) { 3821 if (errno == ENOPROTOOPT || errno == EINVAL) 3822 return 1; /* no */ 3823 3824 /* Failed to even find out; this is a fatal error. */ 3825 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3826 "can't get %s header len on packet socket: %s", 3827 version_str, 3828 pcap_strerror(errno)); 3829 return -1; 3830 } 3831 handlep->tp_hdrlen = val; 3832 3833 val = version; 3834 if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val, 3835 sizeof(val)) < 0) { 3836 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3837 "can't activate %s on packet socket: %s", 3838 version_str, 3839 pcap_strerror(errno)); 3840 return -1; 3841 } 3842 handlep->tp_version = version; 3843 3844 /* Reserve space for VLAN tag reconstruction */ 3845 val = VLAN_TAG_LEN; 3846 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, &val, 3847 sizeof(val)) < 0) { 3848 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3849 "can't set up reserve on packet socket: %s", 3850 pcap_strerror(errno)); 3851 return -1; 3852 } 3853 3854 return 0; 3855 } 3856 #endif /* defined HAVE_TPACKET2 || defined HAVE_TPACKET3 */ 3857 3858 /* 3859 * If the instruction set for which we're compiling has both 32-bit 3860 * and 64-bit versions, and Linux support for the 64-bit version 3861 * predates TPACKET_V2, define ISA_64_BIT as the .machine value 3862 * you get from uname() for the 64-bit version. Otherwise, leave 3863 * it undefined. (This includes ARM, which has a 64-bit version, 3864 * but Linux support for it appeared well after TPACKET_V2 support 3865 * did, so there should never be a case where 32-bit ARM code is 3866 * running o a 64-bit kernel that only supports TPACKET_V1.) 3867 * 3868 * If we've omitted your favorite such architecture, please contribute 3869 * a patch. (No patch is needed for architectures that are 32-bit-only 3870 * or for which Linux has no support for 32-bit userland - or for which, 3871 * as noted, 64-bit support appeared in Linux after TPACKET_V2 support 3872 * did.) 3873 */ 3874 #if defined(__i386__) 3875 #define ISA_64_BIT "x86_64" 3876 #elif defined(__ppc__) 3877 #define ISA_64_BIT "ppc64" 3878 #elif defined(__sparc__) 3879 #define ISA_64_BIT "sparc64" 3880 #elif defined(__s390__) 3881 #define ISA_64_BIT "s390x" 3882 #elif defined(__mips__) 3883 #define ISA_64_BIT "mips64" 3884 #elif defined(__hppa__) 3885 #define ISA_64_BIT "parisc64" 3886 #endif 3887 3888 /* 3889 * Attempt to set the socket to version 3 of the memory-mapped header and, 3890 * if that fails because version 3 isn't supported, attempt to fall 3891 * back to version 2. If version 2 isn't supported, just leave it at 3892 * version 1. 3893 * 3894 * Return 1 if we succeed or if we fail because neither version 2 nor 3 is 3895 * supported; return -1 on any other error, and set handle->errbuf. 3896 */ 3897 static int 3898 prepare_tpacket_socket(pcap_t *handle) 3899 { 3900 struct pcap_linux *handlep = handle->priv; 3901 #if defined(HAVE_TPACKET2) || defined(HAVE_TPACKET3) 3902 int ret; 3903 #endif 3904 3905 #ifdef HAVE_TPACKET3 3906 /* 3907 * Try setting the version to TPACKET_V3. 3908 * 3909 * The only mode in which buffering is done on PF_PACKET 3910 * sockets, so that packets might not be delivered 3911 * immediately, is TPACKET_V3 mode. 3912 * 3913 * The buffering cannot be disabled in that mode, so 3914 * if the user has requested immediate mode, we don't 3915 * use TPACKET_V3. 3916 */ 3917 if (!handle->opt.immediate) { 3918 ret = init_tpacket(handle, TPACKET_V3, "TPACKET_V3"); 3919 if (ret == 0) { 3920 /* 3921 * Success. 3922 */ 3923 return 1; 3924 } 3925 if (ret == -1) { 3926 /* 3927 * We failed for some reason other than "the 3928 * kernel doesn't support TPACKET_V3". 3929 */ 3930 return -1; 3931 } 3932 } 3933 #endif /* HAVE_TPACKET3 */ 3934 3935 #ifdef HAVE_TPACKET2 3936 /* 3937 * Try setting the version to TPACKET_V2. 3938 */ 3939 ret = init_tpacket(handle, TPACKET_V2, "TPACKET_V2"); 3940 if (ret == 0) { 3941 /* 3942 * Success. 3943 */ 3944 return 1; 3945 } 3946 if (ret == -1) { 3947 /* 3948 * We failed for some reason other than "the 3949 * kernel doesn't support TPACKET_V2". 3950 */ 3951 return -1; 3952 } 3953 #endif /* HAVE_TPACKET2 */ 3954 3955 /* 3956 * OK, we're using TPACKET_V1, as that's all the kernel supports. 3957 */ 3958 handlep->tp_version = TPACKET_V1; 3959 handlep->tp_hdrlen = sizeof(struct tpacket_hdr); 3960 3961 #ifdef ISA_64_BIT 3962 /* 3963 * 32-bit userspace + 64-bit kernel + TPACKET_V1 are not compatible with 3964 * each other due to platform-dependent data type size differences. 3965 * 3966 * If we have a 32-bit userland and a 64-bit kernel, use an 3967 * internally-defined TPACKET_V1_64, with which we use a 64-bit 3968 * version of the data structures. 3969 */ 3970 if (sizeof(long) == 4) { 3971 /* 3972 * This is 32-bit code. 3973 */ 3974 struct utsname utsname; 3975 3976 if (uname(&utsname) == -1) { 3977 /* 3978 * Failed. 3979 */ 3980 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3981 "uname failed: %s", pcap_strerror(errno)); 3982 return -1; 3983 } 3984 if (strcmp(utsname.machine, ISA_64_BIT) == 0) { 3985 /* 3986 * uname() tells us the machine is 64-bit, 3987 * so we presumably have a 64-bit kernel. 3988 * 3989 * XXX - this presumes that uname() won't lie 3990 * in 32-bit code and claim that the machine 3991 * has the 32-bit version of the ISA. 3992 */ 3993 handlep->tp_version = TPACKET_V1_64; 3994 handlep->tp_hdrlen = sizeof(struct tpacket_hdr_64); 3995 } 3996 } 3997 #endif 3998 3999 return 1; 4000 } 4001 4002 /* 4003 * Attempt to set up memory-mapped access. 4004 * 4005 * On success, returns 1, and sets *status to 0 if there are no warnings 4006 * or to a PCAP_WARNING_ code if there is a warning. 4007 * 4008 * On failure due to lack of support for memory-mapped capture, returns 4009 * 0. 4010 * 4011 * On error, returns -1, and sets *status to the appropriate error code; 4012 * if that is PCAP_ERROR, sets handle->errbuf to the appropriate message. 4013 */ 4014 static int 4015 create_ring(pcap_t *handle, int *status) 4016 { 4017 struct pcap_linux *handlep = handle->priv; 4018 unsigned i, j, frames_per_block; 4019 #ifdef HAVE_TPACKET3 4020 /* 4021 * For sockets using TPACKET_V1 or TPACKET_V2, the extra 4022 * stuff at the end of a struct tpacket_req3 will be 4023 * ignored, so this is OK even for those sockets. 4024 */ 4025 struct tpacket_req3 req; 4026 #else 4027 struct tpacket_req req; 4028 #endif 4029 socklen_t len; 4030 unsigned int sk_type, tp_reserve, maclen, tp_hdrlen, netoff, macoff; 4031 unsigned int frame_size; 4032 4033 /* 4034 * Start out assuming no warnings or errors. 4035 */ 4036 *status = 0; 4037 4038 switch (handlep->tp_version) { 4039 4040 case TPACKET_V1: 4041 case TPACKET_V1_64: 4042 #ifdef HAVE_TPACKET2 4043 case TPACKET_V2: 4044 #endif 4045 /* Note that with large snapshot length (say 64K, which is 4046 * the default for recent versions of tcpdump, the value that 4047 * "-s 0" has given for a long time with tcpdump, and the 4048 * default in Wireshark/TShark/dumpcap), if we use the snapshot 4049 * length to calculate the frame length, only a few frames 4050 * will be available in the ring even with pretty 4051 * large ring size (and a lot of memory will be unused). 4052 * 4053 * Ideally, we should choose a frame length based on the 4054 * minimum of the specified snapshot length and the maximum 4055 * packet size. That's not as easy as it sounds; consider, 4056 * for example, an 802.11 interface in monitor mode, where 4057 * the frame would include a radiotap header, where the 4058 * maximum radiotap header length is device-dependent. 4059 * 4060 * So, for now, we just do this for Ethernet devices, where 4061 * there's no metadata header, and the link-layer header is 4062 * fixed length. We can get the maximum packet size by 4063 * adding 18, the Ethernet header length plus the CRC length 4064 * (just in case we happen to get the CRC in the packet), to 4065 * the MTU of the interface; we fetch the MTU in the hopes 4066 * that it reflects support for jumbo frames. (Even if the 4067 * interface is just being used for passive snooping, the 4068 * driver might set the size of buffers in the receive ring 4069 * based on the MTU, so that the MTU limits the maximum size 4070 * of packets that we can receive.) 4071 * 4072 * We don't do that if segmentation/fragmentation or receive 4073 * offload are enabled, so we don't get rudely surprised by 4074 * "packets" bigger than the MTU. */ 4075 frame_size = handle->snapshot; 4076 if (handle->linktype == DLT_EN10MB) { 4077 int mtu; 4078 int offload; 4079 4080 offload = iface_get_offload(handle); 4081 if (offload == -1) { 4082 *status = PCAP_ERROR; 4083 return -1; 4084 } 4085 if (!offload) { 4086 mtu = iface_get_mtu(handle->fd, handle->opt.device, 4087 handle->errbuf); 4088 if (mtu == -1) { 4089 *status = PCAP_ERROR; 4090 return -1; 4091 } 4092 if (frame_size > (unsigned int)mtu + 18) 4093 frame_size = (unsigned int)mtu + 18; 4094 } 4095 } 4096 4097 /* NOTE: calculus matching those in tpacket_rcv() 4098 * in linux-2.6/net/packet/af_packet.c 4099 */ 4100 len = sizeof(sk_type); 4101 if (getsockopt(handle->fd, SOL_SOCKET, SO_TYPE, &sk_type, 4102 &len) < 0) { 4103 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4104 "getsockopt: %s", pcap_strerror(errno)); 4105 *status = PCAP_ERROR; 4106 return -1; 4107 } 4108 #ifdef PACKET_RESERVE 4109 len = sizeof(tp_reserve); 4110 if (getsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, 4111 &tp_reserve, &len) < 0) { 4112 if (errno != ENOPROTOOPT) { 4113 /* 4114 * ENOPROTOOPT means "kernel doesn't support 4115 * PACKET_RESERVE", in which case we fall back 4116 * as best we can. 4117 */ 4118 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4119 "getsockopt: %s", pcap_strerror(errno)); 4120 *status = PCAP_ERROR; 4121 return -1; 4122 } 4123 tp_reserve = 0; /* older kernel, reserve not supported */ 4124 } 4125 #else 4126 tp_reserve = 0; /* older kernel, reserve not supported */ 4127 #endif 4128 maclen = (sk_type == SOCK_DGRAM) ? 0 : MAX_LINKHEADER_SIZE; 4129 /* XXX: in the kernel maclen is calculated from 4130 * LL_ALLOCATED_SPACE(dev) and vnet_hdr.hdr_len 4131 * in: packet_snd() in linux-2.6/net/packet/af_packet.c 4132 * then packet_alloc_skb() in linux-2.6/net/packet/af_packet.c 4133 * then sock_alloc_send_pskb() in linux-2.6/net/core/sock.c 4134 * but I see no way to get those sizes in userspace, 4135 * like for instance with an ifreq ioctl(); 4136 * the best thing I've found so far is MAX_HEADER in 4137 * the kernel part of linux-2.6/include/linux/netdevice.h 4138 * which goes up to 128+48=176; since pcap-linux.c 4139 * defines a MAX_LINKHEADER_SIZE of 256 which is 4140 * greater than that, let's use it.. maybe is it even 4141 * large enough to directly replace macoff.. 4142 */ 4143 tp_hdrlen = TPACKET_ALIGN(handlep->tp_hdrlen) + sizeof(struct sockaddr_ll) ; 4144 netoff = TPACKET_ALIGN(tp_hdrlen + (maclen < 16 ? 16 : maclen)) + tp_reserve; 4145 /* NOTE: AFAICS tp_reserve may break the TPACKET_ALIGN 4146 * of netoff, which contradicts 4147 * linux-2.6/Documentation/networking/packet_mmap.txt 4148 * documenting that: 4149 * "- Gap, chosen so that packet data (Start+tp_net) 4150 * aligns to TPACKET_ALIGNMENT=16" 4151 */ 4152 /* NOTE: in linux-2.6/include/linux/skbuff.h: 4153 * "CPUs often take a performance hit 4154 * when accessing unaligned memory locations" 4155 */ 4156 macoff = netoff - maclen; 4157 req.tp_frame_size = TPACKET_ALIGN(macoff + frame_size); 4158 req.tp_frame_nr = handle->opt.buffer_size/req.tp_frame_size; 4159 break; 4160 4161 #ifdef HAVE_TPACKET3 4162 case TPACKET_V3: 4163 /* The "frames" for this are actually buffers that 4164 * contain multiple variable-sized frames. 4165 * 4166 * We pick a "frame" size of 128K to leave enough 4167 * room for at least one reasonably-sized packet 4168 * in the "frame". */ 4169 req.tp_frame_size = MAXIMUM_SNAPLEN; 4170 req.tp_frame_nr = handle->opt.buffer_size/req.tp_frame_size; 4171 break; 4172 #endif 4173 default: 4174 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4175 "Internal error: unknown TPACKET_ value %u", 4176 handlep->tp_version); 4177 *status = PCAP_ERROR; 4178 return -1; 4179 } 4180 4181 /* compute the minumum block size that will handle this frame. 4182 * The block has to be page size aligned. 4183 * The max block size allowed by the kernel is arch-dependent and 4184 * it's not explicitly checked here. */ 4185 req.tp_block_size = getpagesize(); 4186 while (req.tp_block_size < req.tp_frame_size) 4187 req.tp_block_size <<= 1; 4188 4189 frames_per_block = req.tp_block_size/req.tp_frame_size; 4190 4191 /* 4192 * PACKET_TIMESTAMP was added after linux/net_tstamp.h was, 4193 * so we check for PACKET_TIMESTAMP. We check for 4194 * linux/net_tstamp.h just in case a system somehow has 4195 * PACKET_TIMESTAMP but not linux/net_tstamp.h; that might 4196 * be unnecessary. 4197 * 4198 * SIOCSHWTSTAMP was introduced in the patch that introduced 4199 * linux/net_tstamp.h, so we don't bother checking whether 4200 * SIOCSHWTSTAMP is defined (if your Linux system has 4201 * linux/net_tstamp.h but doesn't define SIOCSHWTSTAMP, your 4202 * Linux system is badly broken). 4203 */ 4204 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) 4205 /* 4206 * If we were told to do so, ask the kernel and the driver 4207 * to use hardware timestamps. 4208 * 4209 * Hardware timestamps are only supported with mmapped 4210 * captures. 4211 */ 4212 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER || 4213 handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER_UNSYNCED) { 4214 struct hwtstamp_config hwconfig; 4215 struct ifreq ifr; 4216 int timesource; 4217 4218 /* 4219 * Ask for hardware time stamps on all packets, 4220 * including transmitted packets. 4221 */ 4222 memset(&hwconfig, 0, sizeof(hwconfig)); 4223 hwconfig.tx_type = HWTSTAMP_TX_ON; 4224 hwconfig.rx_filter = HWTSTAMP_FILTER_ALL; 4225 4226 memset(&ifr, 0, sizeof(ifr)); 4227 strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name)); 4228 ifr.ifr_data = (void *)&hwconfig; 4229 4230 if (ioctl(handle->fd, SIOCSHWTSTAMP, &ifr) < 0) { 4231 switch (errno) { 4232 4233 case EPERM: 4234 /* 4235 * Treat this as an error, as the 4236 * user should try to run this 4237 * with the appropriate privileges - 4238 * and, if they can't, shouldn't 4239 * try requesting hardware time stamps. 4240 */ 4241 *status = PCAP_ERROR_PERM_DENIED; 4242 return -1; 4243 4244 case EOPNOTSUPP: 4245 case ERANGE: 4246 /* 4247 * Treat this as a warning, as the 4248 * only way to fix the warning is to 4249 * get an adapter that supports hardware 4250 * time stamps for *all* packets. 4251 * (ERANGE means "we support hardware 4252 * time stamps, but for packets matching 4253 * that particular filter", so it means 4254 * "we don't support hardware time stamps 4255 * for all incoming packets" here.) 4256 * 4257 * We'll just fall back on the standard 4258 * host time stamps. 4259 */ 4260 *status = PCAP_WARNING_TSTAMP_TYPE_NOTSUP; 4261 break; 4262 4263 default: 4264 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4265 "SIOCSHWTSTAMP failed: %s", 4266 pcap_strerror(errno)); 4267 *status = PCAP_ERROR; 4268 return -1; 4269 } 4270 } else { 4271 /* 4272 * Well, that worked. Now specify the type of 4273 * hardware time stamp we want for this 4274 * socket. 4275 */ 4276 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER) { 4277 /* 4278 * Hardware timestamp, synchronized 4279 * with the system clock. 4280 */ 4281 timesource = SOF_TIMESTAMPING_SYS_HARDWARE; 4282 } else { 4283 /* 4284 * PCAP_TSTAMP_ADAPTER_UNSYNCED - hardware 4285 * timestamp, not synchronized with the 4286 * system clock. 4287 */ 4288 timesource = SOF_TIMESTAMPING_RAW_HARDWARE; 4289 } 4290 if (setsockopt(handle->fd, SOL_PACKET, PACKET_TIMESTAMP, 4291 (void *)×ource, sizeof(timesource))) { 4292 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4293 "can't set PACKET_TIMESTAMP: %s", 4294 pcap_strerror(errno)); 4295 *status = PCAP_ERROR; 4296 return -1; 4297 } 4298 } 4299 } 4300 #endif /* HAVE_LINUX_NET_TSTAMP_H && PACKET_TIMESTAMP */ 4301 4302 /* ask the kernel to create the ring */ 4303 retry: 4304 req.tp_block_nr = req.tp_frame_nr / frames_per_block; 4305 4306 /* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */ 4307 req.tp_frame_nr = req.tp_block_nr * frames_per_block; 4308 4309 #ifdef HAVE_TPACKET3 4310 /* timeout value to retire block - use the configured buffering timeout, or default if <0. */ 4311 req.tp_retire_blk_tov = (handlep->timeout>=0)?handlep->timeout:0; 4312 /* private data not used */ 4313 req.tp_sizeof_priv = 0; 4314 /* Rx ring - feature request bits - none (rxhash will not be filled) */ 4315 req.tp_feature_req_word = 0; 4316 #endif 4317 4318 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING, 4319 (void *) &req, sizeof(req))) { 4320 if ((errno == ENOMEM) && (req.tp_block_nr > 1)) { 4321 /* 4322 * Memory failure; try to reduce the requested ring 4323 * size. 4324 * 4325 * We used to reduce this by half -- do 5% instead. 4326 * That may result in more iterations and a longer 4327 * startup, but the user will be much happier with 4328 * the resulting buffer size. 4329 */ 4330 if (req.tp_frame_nr < 20) 4331 req.tp_frame_nr -= 1; 4332 else 4333 req.tp_frame_nr -= req.tp_frame_nr/20; 4334 goto retry; 4335 } 4336 if (errno == ENOPROTOOPT) { 4337 /* 4338 * We don't have ring buffer support in this kernel. 4339 */ 4340 return 0; 4341 } 4342 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4343 "can't create rx ring on packet socket: %s", 4344 pcap_strerror(errno)); 4345 *status = PCAP_ERROR; 4346 return -1; 4347 } 4348 4349 /* memory map the rx ring */ 4350 handlep->mmapbuflen = req.tp_block_nr * req.tp_block_size; 4351 handlep->mmapbuf = mmap(0, handlep->mmapbuflen, 4352 PROT_READ|PROT_WRITE, MAP_SHARED, handle->fd, 0); 4353 if (handlep->mmapbuf == MAP_FAILED) { 4354 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4355 "can't mmap rx ring: %s", pcap_strerror(errno)); 4356 4357 /* clear the allocated ring on error*/ 4358 destroy_ring(handle); 4359 *status = PCAP_ERROR; 4360 return -1; 4361 } 4362 4363 /* allocate a ring for each frame header pointer*/ 4364 handle->cc = req.tp_frame_nr; 4365 handle->buffer = malloc(handle->cc * sizeof(union thdr *)); 4366 if (!handle->buffer) { 4367 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4368 "can't allocate ring of frame headers: %s", 4369 pcap_strerror(errno)); 4370 4371 destroy_ring(handle); 4372 *status = PCAP_ERROR; 4373 return -1; 4374 } 4375 4376 /* fill the header ring with proper frame ptr*/ 4377 handle->offset = 0; 4378 for (i=0; i<req.tp_block_nr; ++i) { 4379 void *base = &handlep->mmapbuf[i*req.tp_block_size]; 4380 for (j=0; j<frames_per_block; ++j, ++handle->offset) { 4381 RING_GET_CURRENT_FRAME(handle) = base; 4382 base += req.tp_frame_size; 4383 } 4384 } 4385 4386 handle->bufsize = req.tp_frame_size; 4387 handle->offset = 0; 4388 return 1; 4389 } 4390 4391 /* free all ring related resources*/ 4392 static void 4393 destroy_ring(pcap_t *handle) 4394 { 4395 struct pcap_linux *handlep = handle->priv; 4396 4397 /* tell the kernel to destroy the ring*/ 4398 struct tpacket_req req; 4399 memset(&req, 0, sizeof(req)); 4400 /* do not test for setsockopt failure, as we can't recover from any error */ 4401 (void)setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING, 4402 (void *) &req, sizeof(req)); 4403 4404 /* if ring is mapped, unmap it*/ 4405 if (handlep->mmapbuf) { 4406 /* do not test for mmap failure, as we can't recover from any error */ 4407 (void)munmap(handlep->mmapbuf, handlep->mmapbuflen); 4408 handlep->mmapbuf = NULL; 4409 } 4410 } 4411 4412 /* 4413 * Special one-shot callback, used for pcap_next() and pcap_next_ex(), 4414 * for Linux mmapped capture. 4415 * 4416 * The problem is that pcap_next() and pcap_next_ex() expect the packet 4417 * data handed to the callback to be valid after the callback returns, 4418 * but pcap_read_linux_mmap() has to release that packet as soon as 4419 * the callback returns (otherwise, the kernel thinks there's still 4420 * at least one unprocessed packet available in the ring, so a select() 4421 * will immediately return indicating that there's data to process), so, 4422 * in the callback, we have to make a copy of the packet. 4423 * 4424 * Yes, this means that, if the capture is using the ring buffer, using 4425 * pcap_next() or pcap_next_ex() requires more copies than using 4426 * pcap_loop() or pcap_dispatch(). If that bothers you, don't use 4427 * pcap_next() or pcap_next_ex(). 4428 */ 4429 static void 4430 pcap_oneshot_mmap(u_char *user, const struct pcap_pkthdr *h, 4431 const u_char *bytes) 4432 { 4433 struct oneshot_userdata *sp = (struct oneshot_userdata *)user; 4434 pcap_t *handle = sp->pd; 4435 struct pcap_linux *handlep = handle->priv; 4436 4437 *sp->hdr = *h; 4438 memcpy(handlep->oneshot_buffer, bytes, h->caplen); 4439 *sp->pkt = handlep->oneshot_buffer; 4440 } 4441 4442 static void 4443 pcap_cleanup_linux_mmap( pcap_t *handle ) 4444 { 4445 struct pcap_linux *handlep = handle->priv; 4446 4447 destroy_ring(handle); 4448 if (handlep->oneshot_buffer != NULL) { 4449 free(handlep->oneshot_buffer); 4450 handlep->oneshot_buffer = NULL; 4451 } 4452 pcap_cleanup_linux(handle); 4453 } 4454 4455 4456 static int 4457 pcap_getnonblock_mmap(pcap_t *p, char *errbuf) 4458 { 4459 struct pcap_linux *handlep = p->priv; 4460 4461 /* use negative value of timeout to indicate non blocking ops */ 4462 return (handlep->timeout<0); 4463 } 4464 4465 static int 4466 pcap_setnonblock_mmap(pcap_t *p, int nonblock, char *errbuf) 4467 { 4468 struct pcap_linux *handlep = p->priv; 4469 4470 /* 4471 * Set the file descriptor to non-blocking mode, as we use 4472 * it for sending packets. 4473 */ 4474 if (pcap_setnonblock_fd(p, nonblock, errbuf) == -1) 4475 return -1; 4476 4477 /* 4478 * Map each value to their corresponding negation to 4479 * preserve the timeout value provided with pcap_set_timeout. 4480 */ 4481 if (nonblock) { 4482 if (handlep->timeout >= 0) { 4483 /* 4484 * Indicate that we're switching to 4485 * non-blocking mode. 4486 */ 4487 handlep->timeout = ~handlep->timeout; 4488 } 4489 } else { 4490 if (handlep->timeout < 0) { 4491 handlep->timeout = ~handlep->timeout; 4492 } 4493 } 4494 /* Update the timeout to use in poll(). */ 4495 set_poll_timeout(handlep); 4496 return 0; 4497 } 4498 4499 /* 4500 * Get the status field of the ring buffer frame at a specified offset. 4501 */ 4502 static inline int 4503 pcap_get_ring_frame_status(pcap_t *handle, int offset) 4504 { 4505 struct pcap_linux *handlep = handle->priv; 4506 union thdr h; 4507 4508 h.raw = RING_GET_FRAME_AT(handle, offset); 4509 switch (handlep->tp_version) { 4510 case TPACKET_V1: 4511 return (h.h1->tp_status); 4512 break; 4513 case TPACKET_V1_64: 4514 return (h.h1_64->tp_status); 4515 break; 4516 #ifdef HAVE_TPACKET2 4517 case TPACKET_V2: 4518 return (h.h2->tp_status); 4519 break; 4520 #endif 4521 #ifdef HAVE_TPACKET3 4522 case TPACKET_V3: 4523 return (h.h3->hdr.bh1.block_status); 4524 break; 4525 #endif 4526 } 4527 /* This should not happen. */ 4528 return 0; 4529 } 4530 4531 #ifndef POLLRDHUP 4532 #define POLLRDHUP 0 4533 #endif 4534 4535 /* 4536 * Block waiting for frames to be available. 4537 */ 4538 static int pcap_wait_for_frames_mmap(pcap_t *handle) 4539 { 4540 struct pcap_linux *handlep = handle->priv; 4541 char c; 4542 struct pollfd pollinfo; 4543 int ret; 4544 4545 pollinfo.fd = handle->fd; 4546 pollinfo.events = POLLIN; 4547 4548 do { 4549 /* 4550 * Yes, we do this even in non-blocking mode, as it's 4551 * the only way to get error indications from a 4552 * tpacket socket. 4553 * 4554 * The timeout is 0 in non-blocking mode, so poll() 4555 * returns immediately. 4556 */ 4557 ret = poll(&pollinfo, 1, handlep->poll_timeout); 4558 if (ret < 0 && errno != EINTR) { 4559 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4560 "can't poll on packet socket: %s", 4561 pcap_strerror(errno)); 4562 return PCAP_ERROR; 4563 } else if (ret > 0 && 4564 (pollinfo.revents & (POLLHUP|POLLRDHUP|POLLERR|POLLNVAL))) { 4565 /* 4566 * There's some indication other than 4567 * "you can read on this descriptor" on 4568 * the descriptor. 4569 */ 4570 if (pollinfo.revents & (POLLHUP | POLLRDHUP)) { 4571 pcap_snprintf(handle->errbuf, 4572 PCAP_ERRBUF_SIZE, 4573 "Hangup on packet socket"); 4574 return PCAP_ERROR; 4575 } 4576 if (pollinfo.revents & POLLERR) { 4577 /* 4578 * A recv() will give us the actual error code. 4579 * 4580 * XXX - make the socket non-blocking? 4581 */ 4582 if (recv(handle->fd, &c, sizeof c, 4583 MSG_PEEK) != -1) 4584 continue; /* what, no error? */ 4585 if (errno == ENETDOWN) { 4586 /* 4587 * The device on which we're 4588 * capturing went away. 4589 * 4590 * XXX - we should really return 4591 * PCAP_ERROR_IFACE_NOT_UP, but 4592 * pcap_dispatch() etc. aren't 4593 * defined to return that. 4594 */ 4595 pcap_snprintf(handle->errbuf, 4596 PCAP_ERRBUF_SIZE, 4597 "The interface went down"); 4598 } else { 4599 pcap_snprintf(handle->errbuf, 4600 PCAP_ERRBUF_SIZE, 4601 "Error condition on packet socket: %s", 4602 strerror(errno)); 4603 } 4604 return PCAP_ERROR; 4605 } 4606 if (pollinfo.revents & POLLNVAL) { 4607 pcap_snprintf(handle->errbuf, 4608 PCAP_ERRBUF_SIZE, 4609 "Invalid polling request on packet socket"); 4610 return PCAP_ERROR; 4611 } 4612 } 4613 /* check for break loop condition on interrupted syscall*/ 4614 if (handle->break_loop) { 4615 handle->break_loop = 0; 4616 return PCAP_ERROR_BREAK; 4617 } 4618 } while (ret < 0); 4619 return 0; 4620 } 4621 4622 /* handle a single memory mapped packet */ 4623 static int pcap_handle_packet_mmap( 4624 pcap_t *handle, 4625 pcap_handler callback, 4626 u_char *user, 4627 unsigned char *frame, 4628 unsigned int tp_len, 4629 unsigned int tp_mac, 4630 unsigned int tp_snaplen, 4631 unsigned int tp_sec, 4632 unsigned int tp_usec, 4633 int tp_vlan_tci_valid, 4634 __u16 tp_vlan_tci, 4635 __u16 tp_vlan_tpid) 4636 { 4637 struct pcap_linux *handlep = handle->priv; 4638 unsigned char *bp; 4639 struct sockaddr_ll *sll; 4640 struct pcap_pkthdr pcaphdr; 4641 4642 /* perform sanity check on internal offset. */ 4643 if (tp_mac + tp_snaplen > handle->bufsize) { 4644 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4645 "corrupted frame on kernel ring mac " 4646 "offset %u + caplen %u > frame len %d", 4647 tp_mac, tp_snaplen, handle->bufsize); 4648 return -1; 4649 } 4650 4651 /* run filter on received packet 4652 * If the kernel filtering is enabled we need to run the 4653 * filter until all the frames present into the ring 4654 * at filter creation time are processed. 4655 * In this case, blocks_to_filter_in_userland is used 4656 * as a counter for the packet we need to filter. 4657 * Note: alternatively it could be possible to stop applying 4658 * the filter when the ring became empty, but it can possibly 4659 * happen a lot later... */ 4660 bp = frame + tp_mac; 4661 4662 /* if required build in place the sll header*/ 4663 sll = (void *)frame + TPACKET_ALIGN(handlep->tp_hdrlen); 4664 if (handlep->cooked) { 4665 struct sll_header *hdrp; 4666 4667 /* 4668 * The kernel should have left us with enough 4669 * space for an sll header; back up the packet 4670 * data pointer into that space, as that'll be 4671 * the beginning of the packet we pass to the 4672 * callback. 4673 */ 4674 bp -= SLL_HDR_LEN; 4675 4676 /* 4677 * Let's make sure that's past the end of 4678 * the tpacket header, i.e. >= 4679 * ((u_char *)thdr + TPACKET_HDRLEN), so we 4680 * don't step on the header when we construct 4681 * the sll header. 4682 */ 4683 if (bp < (u_char *)frame + 4684 TPACKET_ALIGN(handlep->tp_hdrlen) + 4685 sizeof(struct sockaddr_ll)) { 4686 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4687 "cooked-mode frame doesn't have room for sll header"); 4688 return -1; 4689 } 4690 4691 /* 4692 * OK, that worked; construct the sll header. 4693 */ 4694 hdrp = (struct sll_header *)bp; 4695 hdrp->sll_pkttype = map_packet_type_to_sll_type( 4696 sll->sll_pkttype); 4697 hdrp->sll_hatype = htons(sll->sll_hatype); 4698 hdrp->sll_halen = htons(sll->sll_halen); 4699 memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN); 4700 hdrp->sll_protocol = sll->sll_protocol; 4701 } 4702 4703 if (handlep->filter_in_userland && handle->fcode.bf_insns) { 4704 struct bpf_aux_data aux_data; 4705 4706 aux_data.vlan_tag = tp_vlan_tci & 0x0fff; 4707 aux_data.vlan_tag_present = tp_vlan_tci_valid; 4708 4709 if (bpf_filter_with_aux_data(handle->fcode.bf_insns, bp, 4710 tp_len, tp_snaplen, &aux_data) == 0) 4711 return 0; 4712 } 4713 4714 if (!linux_check_direction(handle, sll)) 4715 return 0; 4716 4717 /* get required packet info from ring header */ 4718 pcaphdr.ts.tv_sec = tp_sec; 4719 pcaphdr.ts.tv_usec = tp_usec; 4720 pcaphdr.caplen = tp_snaplen; 4721 pcaphdr.len = tp_len; 4722 4723 /* if required build in place the sll header*/ 4724 if (handlep->cooked) { 4725 /* update packet len */ 4726 pcaphdr.caplen += SLL_HDR_LEN; 4727 pcaphdr.len += SLL_HDR_LEN; 4728 } 4729 4730 #if defined(HAVE_TPACKET2) || defined(HAVE_TPACKET3) 4731 if (tp_vlan_tci_valid && 4732 handlep->vlan_offset != -1 && 4733 tp_snaplen >= (unsigned int) handlep->vlan_offset) 4734 { 4735 struct vlan_tag *tag; 4736 4737 /* 4738 * Move everything in the header, except the type field, 4739 * down VLAN_TAG_LEN bytes, to allow us to insert the 4740 * VLAN tag between that stuff and the type field. 4741 */ 4742 bp -= VLAN_TAG_LEN; 4743 memmove(bp, bp + VLAN_TAG_LEN, handlep->vlan_offset); 4744 4745 /* 4746 * Now insert the tag. 4747 */ 4748 tag = (struct vlan_tag *)(bp + handlep->vlan_offset); 4749 tag->vlan_tpid = htons(tp_vlan_tpid); 4750 tag->vlan_tci = htons(tp_vlan_tci); 4751 4752 /* 4753 * Add the tag to the packet lengths. 4754 */ 4755 pcaphdr.caplen += VLAN_TAG_LEN; 4756 pcaphdr.len += VLAN_TAG_LEN; 4757 } 4758 #endif 4759 4760 /* 4761 * The only way to tell the kernel to cut off the 4762 * packet at a snapshot length is with a filter program; 4763 * if there's no filter program, the kernel won't cut 4764 * the packet off. 4765 * 4766 * Trim the snapshot length to be no longer than the 4767 * specified snapshot length. 4768 */ 4769 if (pcaphdr.caplen > (bpf_u_int32)handle->snapshot) 4770 pcaphdr.caplen = handle->snapshot; 4771 4772 /* pass the packet to the user */ 4773 callback(user, &pcaphdr, bp); 4774 4775 return 1; 4776 } 4777 4778 static int 4779 pcap_read_linux_mmap_v1(pcap_t *handle, int max_packets, pcap_handler callback, 4780 u_char *user) 4781 { 4782 struct pcap_linux *handlep = handle->priv; 4783 union thdr h; 4784 int pkts = 0; 4785 int ret; 4786 4787 /* wait for frames availability.*/ 4788 h.raw = RING_GET_CURRENT_FRAME(handle); 4789 if (h.h1->tp_status == TP_STATUS_KERNEL) { 4790 /* 4791 * The current frame is owned by the kernel; wait for 4792 * a frame to be handed to us. 4793 */ 4794 ret = pcap_wait_for_frames_mmap(handle); 4795 if (ret) { 4796 return ret; 4797 } 4798 } 4799 4800 /* non-positive values of max_packets are used to require all 4801 * packets currently available in the ring */ 4802 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) { 4803 /* 4804 * Get the current ring buffer frame, and break if 4805 * it's still owned by the kernel. 4806 */ 4807 h.raw = RING_GET_CURRENT_FRAME(handle); 4808 if (h.h1->tp_status == TP_STATUS_KERNEL) 4809 break; 4810 4811 ret = pcap_handle_packet_mmap( 4812 handle, 4813 callback, 4814 user, 4815 h.raw, 4816 h.h1->tp_len, 4817 h.h1->tp_mac, 4818 h.h1->tp_snaplen, 4819 h.h1->tp_sec, 4820 h.h1->tp_usec, 4821 0, 4822 0, 4823 0); 4824 if (ret == 1) { 4825 pkts++; 4826 handlep->packets_read++; 4827 } else if (ret < 0) { 4828 return ret; 4829 } 4830 4831 /* 4832 * Hand this block back to the kernel, and, if we're 4833 * counting blocks that need to be filtered in userland 4834 * after having been filtered by the kernel, count 4835 * the one we've just processed. 4836 */ 4837 h.h1->tp_status = TP_STATUS_KERNEL; 4838 if (handlep->blocks_to_filter_in_userland > 0) { 4839 handlep->blocks_to_filter_in_userland--; 4840 if (handlep->blocks_to_filter_in_userland == 0) { 4841 /* 4842 * No more blocks need to be filtered 4843 * in userland. 4844 */ 4845 handlep->filter_in_userland = 0; 4846 } 4847 } 4848 4849 /* next block */ 4850 if (++handle->offset >= handle->cc) 4851 handle->offset = 0; 4852 4853 /* check for break loop condition*/ 4854 if (handle->break_loop) { 4855 handle->break_loop = 0; 4856 return PCAP_ERROR_BREAK; 4857 } 4858 } 4859 return pkts; 4860 } 4861 4862 static int 4863 pcap_read_linux_mmap_v1_64(pcap_t *handle, int max_packets, pcap_handler callback, 4864 u_char *user) 4865 { 4866 struct pcap_linux *handlep = handle->priv; 4867 union thdr h; 4868 int pkts = 0; 4869 int ret; 4870 4871 /* wait for frames availability.*/ 4872 h.raw = RING_GET_CURRENT_FRAME(handle); 4873 if (h.h1_64->tp_status == TP_STATUS_KERNEL) { 4874 /* 4875 * The current frame is owned by the kernel; wait for 4876 * a frame to be handed to us. 4877 */ 4878 ret = pcap_wait_for_frames_mmap(handle); 4879 if (ret) { 4880 return ret; 4881 } 4882 } 4883 4884 /* non-positive values of max_packets are used to require all 4885 * packets currently available in the ring */ 4886 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) { 4887 /* 4888 * Get the current ring buffer frame, and break if 4889 * it's still owned by the kernel. 4890 */ 4891 h.raw = RING_GET_CURRENT_FRAME(handle); 4892 if (h.h1_64->tp_status == TP_STATUS_KERNEL) 4893 break; 4894 4895 ret = pcap_handle_packet_mmap( 4896 handle, 4897 callback, 4898 user, 4899 h.raw, 4900 h.h1_64->tp_len, 4901 h.h1_64->tp_mac, 4902 h.h1_64->tp_snaplen, 4903 h.h1_64->tp_sec, 4904 h.h1_64->tp_usec, 4905 0, 4906 0, 4907 0); 4908 if (ret == 1) { 4909 pkts++; 4910 handlep->packets_read++; 4911 } else if (ret < 0) { 4912 return ret; 4913 } 4914 4915 /* 4916 * Hand this block back to the kernel, and, if we're 4917 * counting blocks that need to be filtered in userland 4918 * after having been filtered by the kernel, count 4919 * the one we've just processed. 4920 */ 4921 h.h1_64->tp_status = TP_STATUS_KERNEL; 4922 if (handlep->blocks_to_filter_in_userland > 0) { 4923 handlep->blocks_to_filter_in_userland--; 4924 if (handlep->blocks_to_filter_in_userland == 0) { 4925 /* 4926 * No more blocks need to be filtered 4927 * in userland. 4928 */ 4929 handlep->filter_in_userland = 0; 4930 } 4931 } 4932 4933 /* next block */ 4934 if (++handle->offset >= handle->cc) 4935 handle->offset = 0; 4936 4937 /* check for break loop condition*/ 4938 if (handle->break_loop) { 4939 handle->break_loop = 0; 4940 return PCAP_ERROR_BREAK; 4941 } 4942 } 4943 return pkts; 4944 } 4945 4946 #ifdef HAVE_TPACKET2 4947 static int 4948 pcap_read_linux_mmap_v2(pcap_t *handle, int max_packets, pcap_handler callback, 4949 u_char *user) 4950 { 4951 struct pcap_linux *handlep = handle->priv; 4952 union thdr h; 4953 int pkts = 0; 4954 int ret; 4955 4956 /* wait for frames availability.*/ 4957 h.raw = RING_GET_CURRENT_FRAME(handle); 4958 if (h.h2->tp_status == TP_STATUS_KERNEL) { 4959 /* 4960 * The current frame is owned by the kernel; wait for 4961 * a frame to be handed to us. 4962 */ 4963 ret = pcap_wait_for_frames_mmap(handle); 4964 if (ret) { 4965 return ret; 4966 } 4967 } 4968 4969 /* non-positive values of max_packets are used to require all 4970 * packets currently available in the ring */ 4971 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) { 4972 /* 4973 * Get the current ring buffer frame, and break if 4974 * it's still owned by the kernel. 4975 */ 4976 h.raw = RING_GET_CURRENT_FRAME(handle); 4977 if (h.h2->tp_status == TP_STATUS_KERNEL) 4978 break; 4979 4980 ret = pcap_handle_packet_mmap( 4981 handle, 4982 callback, 4983 user, 4984 h.raw, 4985 h.h2->tp_len, 4986 h.h2->tp_mac, 4987 h.h2->tp_snaplen, 4988 h.h2->tp_sec, 4989 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? h.h2->tp_nsec : h.h2->tp_nsec / 1000, 4990 #if defined(TP_STATUS_VLAN_VALID) 4991 (h.h2->tp_vlan_tci || (h.h2->tp_status & TP_STATUS_VLAN_VALID)), 4992 #else 4993 h.h2->tp_vlan_tci != 0, 4994 #endif 4995 h.h2->tp_vlan_tci, 4996 VLAN_TPID(h.h2, h.h2)); 4997 if (ret == 1) { 4998 pkts++; 4999 handlep->packets_read++; 5000 } else if (ret < 0) { 5001 return ret; 5002 } 5003 5004 /* 5005 * Hand this block back to the kernel, and, if we're 5006 * counting blocks that need to be filtered in userland 5007 * after having been filtered by the kernel, count 5008 * the one we've just processed. 5009 */ 5010 h.h2->tp_status = TP_STATUS_KERNEL; 5011 if (handlep->blocks_to_filter_in_userland > 0) { 5012 handlep->blocks_to_filter_in_userland--; 5013 if (handlep->blocks_to_filter_in_userland == 0) { 5014 /* 5015 * No more blocks need to be filtered 5016 * in userland. 5017 */ 5018 handlep->filter_in_userland = 0; 5019 } 5020 } 5021 5022 /* next block */ 5023 if (++handle->offset >= handle->cc) 5024 handle->offset = 0; 5025 5026 /* check for break loop condition*/ 5027 if (handle->break_loop) { 5028 handle->break_loop = 0; 5029 return PCAP_ERROR_BREAK; 5030 } 5031 } 5032 return pkts; 5033 } 5034 #endif /* HAVE_TPACKET2 */ 5035 5036 #ifdef HAVE_TPACKET3 5037 static int 5038 pcap_read_linux_mmap_v3(pcap_t *handle, int max_packets, pcap_handler callback, 5039 u_char *user) 5040 { 5041 struct pcap_linux *handlep = handle->priv; 5042 union thdr h; 5043 int pkts = 0; 5044 int ret; 5045 5046 again: 5047 if (handlep->current_packet == NULL) { 5048 /* wait for frames availability.*/ 5049 h.raw = RING_GET_CURRENT_FRAME(handle); 5050 if (h.h3->hdr.bh1.block_status == TP_STATUS_KERNEL) { 5051 /* 5052 * The current frame is owned by the kernel; wait 5053 * for a frame to be handed to us. 5054 */ 5055 ret = pcap_wait_for_frames_mmap(handle); 5056 if (ret) { 5057 return ret; 5058 } 5059 } 5060 } 5061 h.raw = RING_GET_CURRENT_FRAME(handle); 5062 if (h.h3->hdr.bh1.block_status == TP_STATUS_KERNEL) { 5063 if (pkts == 0 && handlep->timeout == 0) { 5064 /* Block until we see a packet. */ 5065 goto again; 5066 } 5067 return pkts; 5068 } 5069 5070 /* non-positive values of max_packets are used to require all 5071 * packets currently available in the ring */ 5072 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) { 5073 int packets_to_read; 5074 5075 if (handlep->current_packet == NULL) { 5076 h.raw = RING_GET_CURRENT_FRAME(handle); 5077 if (h.h3->hdr.bh1.block_status == TP_STATUS_KERNEL) 5078 break; 5079 5080 handlep->current_packet = h.raw + h.h3->hdr.bh1.offset_to_first_pkt; 5081 handlep->packets_left = h.h3->hdr.bh1.num_pkts; 5082 } 5083 packets_to_read = handlep->packets_left; 5084 5085 if (!PACKET_COUNT_IS_UNLIMITED(max_packets) && 5086 packets_to_read > (max_packets - pkts)) { 5087 /* 5088 * We've been given a maximum number of packets 5089 * to process, and there are more packets in 5090 * this buffer than that. Only process enough 5091 * of them to get us up to that maximum. 5092 */ 5093 packets_to_read = max_packets - pkts; 5094 } 5095 5096 while (packets_to_read-- && !handle->break_loop) { 5097 struct tpacket3_hdr* tp3_hdr = (struct tpacket3_hdr*) handlep->current_packet; 5098 ret = pcap_handle_packet_mmap( 5099 handle, 5100 callback, 5101 user, 5102 handlep->current_packet, 5103 tp3_hdr->tp_len, 5104 tp3_hdr->tp_mac, 5105 tp3_hdr->tp_snaplen, 5106 tp3_hdr->tp_sec, 5107 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? tp3_hdr->tp_nsec : tp3_hdr->tp_nsec / 1000, 5108 #if defined(TP_STATUS_VLAN_VALID) 5109 (tp3_hdr->hv1.tp_vlan_tci || (tp3_hdr->tp_status & TP_STATUS_VLAN_VALID)), 5110 #else 5111 tp3_hdr->hv1.tp_vlan_tci != 0, 5112 #endif 5113 tp3_hdr->hv1.tp_vlan_tci, 5114 VLAN_TPID(tp3_hdr, &tp3_hdr->hv1)); 5115 if (ret == 1) { 5116 pkts++; 5117 handlep->packets_read++; 5118 } else if (ret < 0) { 5119 handlep->current_packet = NULL; 5120 return ret; 5121 } 5122 handlep->current_packet += tp3_hdr->tp_next_offset; 5123 handlep->packets_left--; 5124 } 5125 5126 if (handlep->packets_left <= 0) { 5127 /* 5128 * Hand this block back to the kernel, and, if 5129 * we're counting blocks that need to be 5130 * filtered in userland after having been 5131 * filtered by the kernel, count the one we've 5132 * just processed. 5133 */ 5134 h.h3->hdr.bh1.block_status = TP_STATUS_KERNEL; 5135 if (handlep->blocks_to_filter_in_userland > 0) { 5136 handlep->blocks_to_filter_in_userland--; 5137 if (handlep->blocks_to_filter_in_userland == 0) { 5138 /* 5139 * No more blocks need to be filtered 5140 * in userland. 5141 */ 5142 handlep->filter_in_userland = 0; 5143 } 5144 } 5145 5146 /* next block */ 5147 if (++handle->offset >= handle->cc) 5148 handle->offset = 0; 5149 5150 handlep->current_packet = NULL; 5151 } 5152 5153 /* check for break loop condition*/ 5154 if (handle->break_loop) { 5155 handle->break_loop = 0; 5156 return PCAP_ERROR_BREAK; 5157 } 5158 } 5159 if (pkts == 0 && handlep->timeout == 0) { 5160 /* Block until we see a packet. */ 5161 goto again; 5162 } 5163 return pkts; 5164 } 5165 #endif /* HAVE_TPACKET3 */ 5166 5167 static int 5168 pcap_setfilter_linux_mmap(pcap_t *handle, struct bpf_program *filter) 5169 { 5170 struct pcap_linux *handlep = handle->priv; 5171 int n, offset; 5172 int ret; 5173 5174 /* 5175 * Don't rewrite "ret" instructions; we don't need to, as 5176 * we're not reading packets with recvmsg(), and we don't 5177 * want to, as, by not rewriting them, the kernel can avoid 5178 * copying extra data. 5179 */ 5180 ret = pcap_setfilter_linux_common(handle, filter, 1); 5181 if (ret < 0) 5182 return ret; 5183 5184 /* 5185 * If we're filtering in userland, there's nothing to do; 5186 * the new filter will be used for the next packet. 5187 */ 5188 if (handlep->filter_in_userland) 5189 return ret; 5190 5191 /* 5192 * We're filtering in the kernel; the packets present in 5193 * all blocks currently in the ring were already filtered 5194 * by the old filter, and so will need to be filtered in 5195 * userland by the new filter. 5196 * 5197 * Get an upper bound for the number of such blocks; first, 5198 * walk the ring backward and count the free blocks. 5199 */ 5200 offset = handle->offset; 5201 if (--offset < 0) 5202 offset = handle->cc - 1; 5203 for (n=0; n < handle->cc; ++n) { 5204 if (--offset < 0) 5205 offset = handle->cc - 1; 5206 if (pcap_get_ring_frame_status(handle, offset) != TP_STATUS_KERNEL) 5207 break; 5208 } 5209 5210 /* 5211 * If we found free blocks, decrement the count of free 5212 * blocks by 1, just in case we lost a race with another 5213 * thread of control that was adding a packet while 5214 * we were counting and that had run the filter before 5215 * we changed it. 5216 * 5217 * XXX - could there be more than one block added in 5218 * this fashion? 5219 * 5220 * XXX - is there a way to avoid that race, e.g. somehow 5221 * wait for all packets that passed the old filter to 5222 * be added to the ring? 5223 */ 5224 if (n != 0) 5225 n--; 5226 5227 /* 5228 * Set the count of blocks worth of packets to filter 5229 * in userland to the total number of blocks in the 5230 * ring minus the number of free blocks we found, and 5231 * turn on userland filtering. (The count of blocks 5232 * worth of packets to filter in userland is guaranteed 5233 * not to be zero - n, above, couldn't be set to a 5234 * value > handle->cc, and if it were equal to 5235 * handle->cc, it wouldn't be zero, and thus would 5236 * be decremented to handle->cc - 1.) 5237 */ 5238 handlep->blocks_to_filter_in_userland = handle->cc - n; 5239 handlep->filter_in_userland = 1; 5240 return ret; 5241 } 5242 5243 #endif /* HAVE_PACKET_RING */ 5244 5245 5246 #ifdef HAVE_PF_PACKET_SOCKETS 5247 /* 5248 * Return the index of the given device name. Fill ebuf and return 5249 * -1 on failure. 5250 */ 5251 static int 5252 iface_get_id(int fd, const char *device, char *ebuf) 5253 { 5254 struct ifreq ifr; 5255 5256 memset(&ifr, 0, sizeof(ifr)); 5257 strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 5258 5259 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) { 5260 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 5261 "SIOCGIFINDEX: %s", pcap_strerror(errno)); 5262 return -1; 5263 } 5264 5265 return ifr.ifr_ifindex; 5266 } 5267 5268 /* 5269 * Bind the socket associated with FD to the given device. 5270 * Return 1 on success, 0 if we should try a SOCK_PACKET socket, 5271 * or a PCAP_ERROR_ value on a hard error. 5272 */ 5273 static int 5274 iface_bind(int fd, int ifindex, char *ebuf) 5275 { 5276 struct sockaddr_ll sll; 5277 int err; 5278 socklen_t errlen = sizeof(err); 5279 5280 memset(&sll, 0, sizeof(sll)); 5281 sll.sll_family = AF_PACKET; 5282 sll.sll_ifindex = ifindex; 5283 sll.sll_protocol = htons(ETH_P_ALL); 5284 5285 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) { 5286 if (errno == ENETDOWN) { 5287 /* 5288 * Return a "network down" indication, so that 5289 * the application can report that rather than 5290 * saying we had a mysterious failure and 5291 * suggest that they report a problem to the 5292 * libpcap developers. 5293 */ 5294 return PCAP_ERROR_IFACE_NOT_UP; 5295 } else { 5296 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 5297 "bind: %s", pcap_strerror(errno)); 5298 return PCAP_ERROR; 5299 } 5300 } 5301 5302 /* Any pending errors, e.g., network is down? */ 5303 5304 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) { 5305 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 5306 "getsockopt: %s", pcap_strerror(errno)); 5307 return 0; 5308 } 5309 5310 if (err == ENETDOWN) { 5311 /* 5312 * Return a "network down" indication, so that 5313 * the application can report that rather than 5314 * saying we had a mysterious failure and 5315 * suggest that they report a problem to the 5316 * libpcap developers. 5317 */ 5318 return PCAP_ERROR_IFACE_NOT_UP; 5319 } else if (err > 0) { 5320 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 5321 "bind: %s", pcap_strerror(err)); 5322 return 0; 5323 } 5324 5325 return 1; 5326 } 5327 5328 #ifdef IW_MODE_MONITOR 5329 /* 5330 * Check whether the device supports the Wireless Extensions. 5331 * Returns 1 if it does, 0 if it doesn't, PCAP_ERROR_NO_SUCH_DEVICE 5332 * if the device doesn't even exist. 5333 */ 5334 static int 5335 has_wext(int sock_fd, const char *device, char *ebuf) 5336 { 5337 struct iwreq ireq; 5338 5339 if (is_bonding_device(sock_fd, device)) 5340 return 0; /* bonding device, so don't even try */ 5341 5342 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5343 sizeof ireq.ifr_ifrn.ifrn_name); 5344 if (ioctl(sock_fd, SIOCGIWNAME, &ireq) >= 0) 5345 return 1; /* yes */ 5346 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 5347 "%s: SIOCGIWNAME: %s", device, pcap_strerror(errno)); 5348 if (errno == ENODEV) 5349 return PCAP_ERROR_NO_SUCH_DEVICE; 5350 return 0; 5351 } 5352 5353 /* 5354 * Per me si va ne la citta dolente, 5355 * Per me si va ne l'etterno dolore, 5356 * ... 5357 * Lasciate ogne speranza, voi ch'intrate. 5358 * 5359 * XXX - airmon-ng does special stuff with the Orinoco driver and the 5360 * wlan-ng driver. 5361 */ 5362 typedef enum { 5363 MONITOR_WEXT, 5364 MONITOR_HOSTAP, 5365 MONITOR_PRISM, 5366 MONITOR_PRISM54, 5367 MONITOR_ACX100, 5368 MONITOR_RT2500, 5369 MONITOR_RT2570, 5370 MONITOR_RT73, 5371 MONITOR_RTL8XXX 5372 } monitor_type; 5373 5374 /* 5375 * Use the Wireless Extensions, if we have them, to try to turn monitor mode 5376 * on if it's not already on. 5377 * 5378 * Returns 1 on success, 0 if we don't support the Wireless Extensions 5379 * on this device, or a PCAP_ERROR_ value if we do support them but 5380 * we weren't able to turn monitor mode on. 5381 */ 5382 static int 5383 enter_rfmon_mode_wext(pcap_t *handle, int sock_fd, const char *device) 5384 { 5385 /* 5386 * XXX - at least some adapters require non-Wireless Extensions 5387 * mechanisms to turn monitor mode on. 5388 * 5389 * Atheros cards might require that a separate "monitor virtual access 5390 * point" be created, with later versions of the madwifi driver. 5391 * airmon-ng does "wlanconfig ath create wlandev {if} wlanmode 5392 * monitor -bssid", which apparently spits out a line "athN" 5393 * where "athN" is the monitor mode device. To leave monitor 5394 * mode, it destroys the monitor mode device. 5395 * 5396 * Some Intel Centrino adapters might require private ioctls to get 5397 * radio headers; the ipw2200 and ipw3945 drivers allow you to 5398 * configure a separate "rtapN" interface to capture in monitor 5399 * mode without preventing the adapter from operating normally. 5400 * (airmon-ng doesn't appear to use that, though.) 5401 * 5402 * It would be Truly Wonderful if mac80211 and nl80211 cleaned this 5403 * up, and if all drivers were converted to mac80211 drivers. 5404 * 5405 * If interface {if} is a mac80211 driver, the file 5406 * /sys/class/net/{if}/phy80211 is a symlink to 5407 * /sys/class/ieee80211/{phydev}, for some {phydev}. 5408 * 5409 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at 5410 * least, has a "wmaster0" device and a "wlan0" device; the 5411 * latter is the one with the IP address. Both show up in 5412 * "tcpdump -D" output. Capturing on the wmaster0 device 5413 * captures with 802.11 headers. 5414 * 5415 * airmon-ng searches through /sys/class/net for devices named 5416 * monN, starting with mon0; as soon as one *doesn't* exist, 5417 * it chooses that as the monitor device name. If the "iw" 5418 * command exists, it does "iw dev {if} interface add {monif} 5419 * type monitor", where {monif} is the monitor device. It 5420 * then (sigh) sleeps .1 second, and then configures the 5421 * device up. Otherwise, if /sys/class/ieee80211/{phydev}/add_iface 5422 * is a file, it writes {mondev}, without a newline, to that file, 5423 * and again (sigh) sleeps .1 second, and then iwconfig's that 5424 * device into monitor mode and configures it up. Otherwise, 5425 * you can't do monitor mode. 5426 * 5427 * All these devices are "glued" together by having the 5428 * /sys/class/net/{device}/phy80211 links pointing to the same 5429 * place, so, given a wmaster, wlan, or mon device, you can 5430 * find the other devices by looking for devices with 5431 * the same phy80211 link. 5432 * 5433 * To turn monitor mode off, delete the monitor interface, 5434 * either with "iw dev {monif} interface del" or by sending 5435 * {monif}, with no NL, down /sys/class/ieee80211/{phydev}/remove_iface 5436 * 5437 * Note: if you try to create a monitor device named "monN", and 5438 * there's already a "monN" device, it fails, as least with 5439 * the netlink interface (which is what iw uses), with a return 5440 * value of -ENFILE. (Return values are negative errnos.) We 5441 * could probably use that to find an unused device. 5442 */ 5443 struct pcap_linux *handlep = handle->priv; 5444 int err; 5445 struct iwreq ireq; 5446 struct iw_priv_args *priv; 5447 monitor_type montype; 5448 int i; 5449 __u32 cmd; 5450 struct ifreq ifr; 5451 int oldflags; 5452 int args[2]; 5453 int channel; 5454 5455 /* 5456 * Does this device *support* the Wireless Extensions? 5457 */ 5458 err = has_wext(sock_fd, device, handle->errbuf); 5459 if (err <= 0) 5460 return err; /* either it doesn't or the device doesn't even exist */ 5461 /* 5462 * Start out assuming we have no private extensions to control 5463 * radio metadata. 5464 */ 5465 montype = MONITOR_WEXT; 5466 cmd = 0; 5467 5468 /* 5469 * Try to get all the Wireless Extensions private ioctls 5470 * supported by this device. 5471 * 5472 * First, get the size of the buffer we need, by supplying no 5473 * buffer and a length of 0. If the device supports private 5474 * ioctls, it should return E2BIG, with ireq.u.data.length set 5475 * to the length we need. If it doesn't support them, it should 5476 * return EOPNOTSUPP. 5477 */ 5478 memset(&ireq, 0, sizeof ireq); 5479 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5480 sizeof ireq.ifr_ifrn.ifrn_name); 5481 ireq.u.data.pointer = (void *)args; 5482 ireq.u.data.length = 0; 5483 ireq.u.data.flags = 0; 5484 if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) != -1) { 5485 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5486 "%s: SIOCGIWPRIV with a zero-length buffer didn't fail!", 5487 device); 5488 return PCAP_ERROR; 5489 } 5490 if (errno != EOPNOTSUPP) { 5491 /* 5492 * OK, it's not as if there are no private ioctls. 5493 */ 5494 if (errno != E2BIG) { 5495 /* 5496 * Failed. 5497 */ 5498 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5499 "%s: SIOCGIWPRIV: %s", device, 5500 pcap_strerror(errno)); 5501 return PCAP_ERROR; 5502 } 5503 5504 /* 5505 * OK, try to get the list of private ioctls. 5506 */ 5507 priv = malloc(ireq.u.data.length * sizeof (struct iw_priv_args)); 5508 if (priv == NULL) { 5509 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5510 "malloc: %s", pcap_strerror(errno)); 5511 return PCAP_ERROR; 5512 } 5513 ireq.u.data.pointer = (void *)priv; 5514 if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) == -1) { 5515 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5516 "%s: SIOCGIWPRIV: %s", device, 5517 pcap_strerror(errno)); 5518 free(priv); 5519 return PCAP_ERROR; 5520 } 5521 5522 /* 5523 * Look for private ioctls to turn monitor mode on or, if 5524 * monitor mode is on, to set the header type. 5525 */ 5526 for (i = 0; i < ireq.u.data.length; i++) { 5527 if (strcmp(priv[i].name, "monitor_type") == 0) { 5528 /* 5529 * Hostap driver, use this one. 5530 * Set monitor mode first. 5531 * You can set it to 0 to get DLT_IEEE80211, 5532 * 1 to get DLT_PRISM, 2 to get 5533 * DLT_IEEE80211_RADIO_AVS, and, with more 5534 * recent versions of the driver, 3 to get 5535 * DLT_IEEE80211_RADIO. 5536 */ 5537 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 5538 break; 5539 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 5540 break; 5541 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1) 5542 break; 5543 montype = MONITOR_HOSTAP; 5544 cmd = priv[i].cmd; 5545 break; 5546 } 5547 if (strcmp(priv[i].name, "set_prismhdr") == 0) { 5548 /* 5549 * Prism54 driver, use this one. 5550 * Set monitor mode first. 5551 * You can set it to 2 to get DLT_IEEE80211 5552 * or 3 or get DLT_PRISM. 5553 */ 5554 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 5555 break; 5556 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 5557 break; 5558 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1) 5559 break; 5560 montype = MONITOR_PRISM54; 5561 cmd = priv[i].cmd; 5562 break; 5563 } 5564 if (strcmp(priv[i].name, "forceprismheader") == 0) { 5565 /* 5566 * RT2570 driver, use this one. 5567 * Do this after turning monitor mode on. 5568 * You can set it to 1 to get DLT_PRISM or 2 5569 * to get DLT_IEEE80211. 5570 */ 5571 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 5572 break; 5573 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 5574 break; 5575 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1) 5576 break; 5577 montype = MONITOR_RT2570; 5578 cmd = priv[i].cmd; 5579 break; 5580 } 5581 if (strcmp(priv[i].name, "forceprism") == 0) { 5582 /* 5583 * RT73 driver, use this one. 5584 * Do this after turning monitor mode on. 5585 * Its argument is a *string*; you can 5586 * set it to "1" to get DLT_PRISM or "2" 5587 * to get DLT_IEEE80211. 5588 */ 5589 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_CHAR) 5590 break; 5591 if (priv[i].set_args & IW_PRIV_SIZE_FIXED) 5592 break; 5593 montype = MONITOR_RT73; 5594 cmd = priv[i].cmd; 5595 break; 5596 } 5597 if (strcmp(priv[i].name, "prismhdr") == 0) { 5598 /* 5599 * One of the RTL8xxx drivers, use this one. 5600 * It can only be done after monitor mode 5601 * has been turned on. You can set it to 1 5602 * to get DLT_PRISM or 0 to get DLT_IEEE80211. 5603 */ 5604 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 5605 break; 5606 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 5607 break; 5608 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1) 5609 break; 5610 montype = MONITOR_RTL8XXX; 5611 cmd = priv[i].cmd; 5612 break; 5613 } 5614 if (strcmp(priv[i].name, "rfmontx") == 0) { 5615 /* 5616 * RT2500 or RT61 driver, use this one. 5617 * It has one one-byte parameter; set 5618 * u.data.length to 1 and u.data.pointer to 5619 * point to the parameter. 5620 * It doesn't itself turn monitor mode on. 5621 * You can set it to 1 to allow transmitting 5622 * in monitor mode(?) and get DLT_IEEE80211, 5623 * or set it to 0 to disallow transmitting in 5624 * monitor mode(?) and get DLT_PRISM. 5625 */ 5626 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 5627 break; 5628 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 2) 5629 break; 5630 montype = MONITOR_RT2500; 5631 cmd = priv[i].cmd; 5632 break; 5633 } 5634 if (strcmp(priv[i].name, "monitor") == 0) { 5635 /* 5636 * Either ACX100 or hostap, use this one. 5637 * It turns monitor mode on. 5638 * If it takes two arguments, it's ACX100; 5639 * the first argument is 1 for DLT_PRISM 5640 * or 2 for DLT_IEEE80211, and the second 5641 * argument is the channel on which to 5642 * run. If it takes one argument, it's 5643 * HostAP, and the argument is 2 for 5644 * DLT_IEEE80211 and 3 for DLT_PRISM. 5645 * 5646 * If we see this, we don't quit, as this 5647 * might be a version of the hostap driver 5648 * that also supports "monitor_type". 5649 */ 5650 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 5651 break; 5652 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 5653 break; 5654 switch (priv[i].set_args & IW_PRIV_SIZE_MASK) { 5655 5656 case 1: 5657 montype = MONITOR_PRISM; 5658 cmd = priv[i].cmd; 5659 break; 5660 5661 case 2: 5662 montype = MONITOR_ACX100; 5663 cmd = priv[i].cmd; 5664 break; 5665 5666 default: 5667 break; 5668 } 5669 } 5670 } 5671 free(priv); 5672 } 5673 5674 /* 5675 * XXX - ipw3945? islism? 5676 */ 5677 5678 /* 5679 * Get the old mode. 5680 */ 5681 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5682 sizeof ireq.ifr_ifrn.ifrn_name); 5683 if (ioctl(sock_fd, SIOCGIWMODE, &ireq) == -1) { 5684 /* 5685 * We probably won't be able to set the mode, either. 5686 */ 5687 return PCAP_ERROR_RFMON_NOTSUP; 5688 } 5689 5690 /* 5691 * Is it currently in monitor mode? 5692 */ 5693 if (ireq.u.mode == IW_MODE_MONITOR) { 5694 /* 5695 * Yes. Just leave things as they are. 5696 * We don't offer multiple link-layer types, as 5697 * changing the link-layer type out from under 5698 * somebody else capturing in monitor mode would 5699 * be considered rude. 5700 */ 5701 return 1; 5702 } 5703 /* 5704 * No. We have to put the adapter into rfmon mode. 5705 */ 5706 5707 /* 5708 * If we haven't already done so, arrange to have 5709 * "pcap_close_all()" called when we exit. 5710 */ 5711 if (!pcap_do_addexit(handle)) { 5712 /* 5713 * "atexit()" failed; don't put the interface 5714 * in rfmon mode, just give up. 5715 */ 5716 return PCAP_ERROR_RFMON_NOTSUP; 5717 } 5718 5719 /* 5720 * Save the old mode. 5721 */ 5722 handlep->oldmode = ireq.u.mode; 5723 5724 /* 5725 * Put the adapter in rfmon mode. How we do this depends 5726 * on whether we have a special private ioctl or not. 5727 */ 5728 if (montype == MONITOR_PRISM) { 5729 /* 5730 * We have the "monitor" private ioctl, but none of 5731 * the other private ioctls. Use this, and select 5732 * the Prism header. 5733 * 5734 * If it fails, just fall back on SIOCSIWMODE. 5735 */ 5736 memset(&ireq, 0, sizeof ireq); 5737 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5738 sizeof ireq.ifr_ifrn.ifrn_name); 5739 ireq.u.data.length = 1; /* 1 argument */ 5740 args[0] = 3; /* request Prism header */ 5741 memcpy(ireq.u.name, args, sizeof (int)); 5742 if (ioctl(sock_fd, cmd, &ireq) != -1) { 5743 /* 5744 * Success. 5745 * Note that we have to put the old mode back 5746 * when we close the device. 5747 */ 5748 handlep->must_do_on_close |= MUST_CLEAR_RFMON; 5749 5750 /* 5751 * Add this to the list of pcaps to close 5752 * when we exit. 5753 */ 5754 pcap_add_to_pcaps_to_close(handle); 5755 5756 return 1; 5757 } 5758 5759 /* 5760 * Failure. Fall back on SIOCSIWMODE. 5761 */ 5762 } 5763 5764 /* 5765 * First, take the interface down if it's up; otherwise, we 5766 * might get EBUSY. 5767 */ 5768 memset(&ifr, 0, sizeof(ifr)); 5769 strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 5770 if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) { 5771 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5772 "%s: Can't get flags: %s", device, strerror(errno)); 5773 return PCAP_ERROR; 5774 } 5775 oldflags = 0; 5776 if (ifr.ifr_flags & IFF_UP) { 5777 oldflags = ifr.ifr_flags; 5778 ifr.ifr_flags &= ~IFF_UP; 5779 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) { 5780 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5781 "%s: Can't set flags: %s", device, strerror(errno)); 5782 return PCAP_ERROR; 5783 } 5784 } 5785 5786 /* 5787 * Then turn monitor mode on. 5788 */ 5789 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5790 sizeof ireq.ifr_ifrn.ifrn_name); 5791 ireq.u.mode = IW_MODE_MONITOR; 5792 if (ioctl(sock_fd, SIOCSIWMODE, &ireq) == -1) { 5793 /* 5794 * Scientist, you've failed. 5795 * Bring the interface back up if we shut it down. 5796 */ 5797 ifr.ifr_flags = oldflags; 5798 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) { 5799 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5800 "%s: Can't set flags: %s", device, strerror(errno)); 5801 return PCAP_ERROR; 5802 } 5803 return PCAP_ERROR_RFMON_NOTSUP; 5804 } 5805 5806 /* 5807 * XXX - airmon-ng does "iwconfig {if} key off" after setting 5808 * monitor mode and setting the channel, and then does 5809 * "iwconfig up". 5810 */ 5811 5812 /* 5813 * Now select the appropriate radio header. 5814 */ 5815 switch (montype) { 5816 5817 case MONITOR_WEXT: 5818 /* 5819 * We don't have any private ioctl to set the header. 5820 */ 5821 break; 5822 5823 case MONITOR_HOSTAP: 5824 /* 5825 * Try to select the radiotap header. 5826 */ 5827 memset(&ireq, 0, sizeof ireq); 5828 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5829 sizeof ireq.ifr_ifrn.ifrn_name); 5830 args[0] = 3; /* request radiotap header */ 5831 memcpy(ireq.u.name, args, sizeof (int)); 5832 if (ioctl(sock_fd, cmd, &ireq) != -1) 5833 break; /* success */ 5834 5835 /* 5836 * That failed. Try to select the AVS header. 5837 */ 5838 memset(&ireq, 0, sizeof ireq); 5839 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5840 sizeof ireq.ifr_ifrn.ifrn_name); 5841 args[0] = 2; /* request AVS header */ 5842 memcpy(ireq.u.name, args, sizeof (int)); 5843 if (ioctl(sock_fd, cmd, &ireq) != -1) 5844 break; /* success */ 5845 5846 /* 5847 * That failed. Try to select the Prism header. 5848 */ 5849 memset(&ireq, 0, sizeof ireq); 5850 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5851 sizeof ireq.ifr_ifrn.ifrn_name); 5852 args[0] = 1; /* request Prism header */ 5853 memcpy(ireq.u.name, args, sizeof (int)); 5854 ioctl(sock_fd, cmd, &ireq); 5855 break; 5856 5857 case MONITOR_PRISM: 5858 /* 5859 * The private ioctl failed. 5860 */ 5861 break; 5862 5863 case MONITOR_PRISM54: 5864 /* 5865 * Select the Prism header. 5866 */ 5867 memset(&ireq, 0, sizeof ireq); 5868 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5869 sizeof ireq.ifr_ifrn.ifrn_name); 5870 args[0] = 3; /* request Prism header */ 5871 memcpy(ireq.u.name, args, sizeof (int)); 5872 ioctl(sock_fd, cmd, &ireq); 5873 break; 5874 5875 case MONITOR_ACX100: 5876 /* 5877 * Get the current channel. 5878 */ 5879 memset(&ireq, 0, sizeof ireq); 5880 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5881 sizeof ireq.ifr_ifrn.ifrn_name); 5882 if (ioctl(sock_fd, SIOCGIWFREQ, &ireq) == -1) { 5883 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5884 "%s: SIOCGIWFREQ: %s", device, 5885 pcap_strerror(errno)); 5886 return PCAP_ERROR; 5887 } 5888 channel = ireq.u.freq.m; 5889 5890 /* 5891 * Select the Prism header, and set the channel to the 5892 * current value. 5893 */ 5894 memset(&ireq, 0, sizeof ireq); 5895 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5896 sizeof ireq.ifr_ifrn.ifrn_name); 5897 args[0] = 1; /* request Prism header */ 5898 args[1] = channel; /* set channel */ 5899 memcpy(ireq.u.name, args, 2*sizeof (int)); 5900 ioctl(sock_fd, cmd, &ireq); 5901 break; 5902 5903 case MONITOR_RT2500: 5904 /* 5905 * Disallow transmission - that turns on the 5906 * Prism header. 5907 */ 5908 memset(&ireq, 0, sizeof ireq); 5909 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5910 sizeof ireq.ifr_ifrn.ifrn_name); 5911 args[0] = 0; /* disallow transmitting */ 5912 memcpy(ireq.u.name, args, sizeof (int)); 5913 ioctl(sock_fd, cmd, &ireq); 5914 break; 5915 5916 case MONITOR_RT2570: 5917 /* 5918 * Force the Prism header. 5919 */ 5920 memset(&ireq, 0, sizeof ireq); 5921 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5922 sizeof ireq.ifr_ifrn.ifrn_name); 5923 args[0] = 1; /* request Prism header */ 5924 memcpy(ireq.u.name, args, sizeof (int)); 5925 ioctl(sock_fd, cmd, &ireq); 5926 break; 5927 5928 case MONITOR_RT73: 5929 /* 5930 * Force the Prism header. 5931 */ 5932 memset(&ireq, 0, sizeof ireq); 5933 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5934 sizeof ireq.ifr_ifrn.ifrn_name); 5935 ireq.u.data.length = 1; /* 1 argument */ 5936 ireq.u.data.pointer = "1"; 5937 ireq.u.data.flags = 0; 5938 ioctl(sock_fd, cmd, &ireq); 5939 break; 5940 5941 case MONITOR_RTL8XXX: 5942 /* 5943 * Force the Prism header. 5944 */ 5945 memset(&ireq, 0, sizeof ireq); 5946 strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5947 sizeof ireq.ifr_ifrn.ifrn_name); 5948 args[0] = 1; /* request Prism header */ 5949 memcpy(ireq.u.name, args, sizeof (int)); 5950 ioctl(sock_fd, cmd, &ireq); 5951 break; 5952 } 5953 5954 /* 5955 * Now bring the interface back up if we brought it down. 5956 */ 5957 if (oldflags != 0) { 5958 ifr.ifr_flags = oldflags; 5959 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) { 5960 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5961 "%s: Can't set flags: %s", device, strerror(errno)); 5962 5963 /* 5964 * At least try to restore the old mode on the 5965 * interface. 5966 */ 5967 if (ioctl(handle->fd, SIOCSIWMODE, &ireq) == -1) { 5968 /* 5969 * Scientist, you've failed. 5970 */ 5971 fprintf(stderr, 5972 "Can't restore interface wireless mode (SIOCSIWMODE failed: %s).\n" 5973 "Please adjust manually.\n", 5974 strerror(errno)); 5975 } 5976 return PCAP_ERROR; 5977 } 5978 } 5979 5980 /* 5981 * Note that we have to put the old mode back when we 5982 * close the device. 5983 */ 5984 handlep->must_do_on_close |= MUST_CLEAR_RFMON; 5985 5986 /* 5987 * Add this to the list of pcaps to close when we exit. 5988 */ 5989 pcap_add_to_pcaps_to_close(handle); 5990 5991 return 1; 5992 } 5993 #endif /* IW_MODE_MONITOR */ 5994 5995 /* 5996 * Try various mechanisms to enter monitor mode. 5997 */ 5998 static int 5999 enter_rfmon_mode(pcap_t *handle, int sock_fd, const char *device) 6000 { 6001 #if defined(HAVE_LIBNL) || defined(IW_MODE_MONITOR) 6002 int ret; 6003 #endif 6004 6005 #ifdef HAVE_LIBNL 6006 ret = enter_rfmon_mode_mac80211(handle, sock_fd, device); 6007 if (ret < 0) 6008 return ret; /* error attempting to do so */ 6009 if (ret == 1) 6010 return 1; /* success */ 6011 #endif /* HAVE_LIBNL */ 6012 6013 #ifdef IW_MODE_MONITOR 6014 ret = enter_rfmon_mode_wext(handle, sock_fd, device); 6015 if (ret < 0) 6016 return ret; /* error attempting to do so */ 6017 if (ret == 1) 6018 return 1; /* success */ 6019 #endif /* IW_MODE_MONITOR */ 6020 6021 /* 6022 * Either none of the mechanisms we know about work or none 6023 * of those mechanisms are available, so we can't do monitor 6024 * mode. 6025 */ 6026 return 0; 6027 } 6028 6029 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) 6030 /* 6031 * Map SOF_TIMESTAMPING_ values to PCAP_TSTAMP_ values. 6032 */ 6033 static const struct { 6034 int soft_timestamping_val; 6035 int pcap_tstamp_val; 6036 } sof_ts_type_map[3] = { 6037 { SOF_TIMESTAMPING_SOFTWARE, PCAP_TSTAMP_HOST }, 6038 { SOF_TIMESTAMPING_SYS_HARDWARE, PCAP_TSTAMP_ADAPTER }, 6039 { SOF_TIMESTAMPING_RAW_HARDWARE, PCAP_TSTAMP_ADAPTER_UNSYNCED } 6040 }; 6041 #define NUM_SOF_TIMESTAMPING_TYPES (sizeof sof_ts_type_map / sizeof sof_ts_type_map[0]) 6042 6043 /* 6044 * Set the list of time stamping types to include all types. 6045 */ 6046 static void 6047 iface_set_all_ts_types(pcap_t *handle) 6048 { 6049 u_int i; 6050 6051 handle->tstamp_type_count = NUM_SOF_TIMESTAMPING_TYPES; 6052 handle->tstamp_type_list = malloc(NUM_SOF_TIMESTAMPING_TYPES * sizeof(u_int)); 6053 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) 6054 handle->tstamp_type_list[i] = sof_ts_type_map[i].pcap_tstamp_val; 6055 } 6056 6057 #ifdef ETHTOOL_GET_TS_INFO 6058 /* 6059 * Get a list of time stamping capabilities. 6060 */ 6061 static int 6062 iface_ethtool_get_ts_info(const char *device, pcap_t *handle, char *ebuf) 6063 { 6064 int fd; 6065 struct ifreq ifr; 6066 struct ethtool_ts_info info; 6067 int num_ts_types; 6068 u_int i, j; 6069 6070 /* 6071 * This doesn't apply to the "any" device; you can't say "turn on 6072 * hardware time stamping for all devices that exist now and arrange 6073 * that it be turned on for any device that appears in the future", 6074 * and not all devices even necessarily *support* hardware time 6075 * stamping, so don't report any time stamp types. 6076 */ 6077 if (strcmp(device, "any") == 0) { 6078 handle->tstamp_type_list = NULL; 6079 return 0; 6080 } 6081 6082 /* 6083 * Create a socket from which to fetch time stamping capabilities. 6084 */ 6085 fd = socket(PF_UNIX, SOCK_RAW, 0); 6086 if (fd < 0) { 6087 (void)pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 6088 "socket for SIOCETHTOOL(ETHTOOL_GET_TS_INFO): %s", pcap_strerror(errno)); 6089 return -1; 6090 } 6091 6092 memset(&ifr, 0, sizeof(ifr)); 6093 strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 6094 memset(&info, 0, sizeof(info)); 6095 info.cmd = ETHTOOL_GET_TS_INFO; 6096 ifr.ifr_data = (caddr_t)&info; 6097 if (ioctl(fd, SIOCETHTOOL, &ifr) == -1) { 6098 int save_errno = errno; 6099 6100 close(fd); 6101 switch (save_errno) { 6102 6103 case EOPNOTSUPP: 6104 case EINVAL: 6105 /* 6106 * OK, this OS version or driver doesn't support 6107 * asking for the time stamping types, so let's 6108 * just return all the possible types. 6109 */ 6110 iface_set_all_ts_types(handle); 6111 return 0; 6112 6113 case ENODEV: 6114 /* 6115 * OK, no such device. 6116 * The user will find that out when they try to 6117 * activate the device; just return an empty 6118 * list of time stamp types. 6119 */ 6120 handle->tstamp_type_list = NULL; 6121 return 0; 6122 6123 default: 6124 /* 6125 * Other error. 6126 */ 6127 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 6128 "%s: SIOCETHTOOL(ETHTOOL_GET_TS_INFO) ioctl failed: %s", device, 6129 strerror(save_errno)); 6130 return -1; 6131 } 6132 } 6133 close(fd); 6134 6135 /* 6136 * Do we support hardware time stamping of *all* packets? 6137 */ 6138 if (!(info.rx_filters & (1 << HWTSTAMP_FILTER_ALL))) { 6139 /* 6140 * No, so don't report any time stamp types. 6141 * 6142 * XXX - some devices either don't report 6143 * HWTSTAMP_FILTER_ALL when they do support it, or 6144 * report HWTSTAMP_FILTER_ALL but map it to only 6145 * time stamping a few PTP packets. See 6146 * http://marc.info/?l=linux-netdev&m=146318183529571&w=2 6147 */ 6148 handle->tstamp_type_list = NULL; 6149 return 0; 6150 } 6151 6152 num_ts_types = 0; 6153 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) { 6154 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val) 6155 num_ts_types++; 6156 } 6157 handle->tstamp_type_count = num_ts_types; 6158 if (num_ts_types != 0) { 6159 handle->tstamp_type_list = malloc(num_ts_types * sizeof(u_int)); 6160 for (i = 0, j = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) { 6161 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val) { 6162 handle->tstamp_type_list[j] = sof_ts_type_map[i].pcap_tstamp_val; 6163 j++; 6164 } 6165 } 6166 } else 6167 handle->tstamp_type_list = NULL; 6168 6169 return 0; 6170 } 6171 #else /* ETHTOOL_GET_TS_INFO */ 6172 static int 6173 iface_ethtool_get_ts_info(const char *device, pcap_t *handle, char *ebuf _U_) 6174 { 6175 /* 6176 * This doesn't apply to the "any" device; you can't say "turn on 6177 * hardware time stamping for all devices that exist now and arrange 6178 * that it be turned on for any device that appears in the future", 6179 * and not all devices even necessarily *support* hardware time 6180 * stamping, so don't report any time stamp types. 6181 */ 6182 if (strcmp(device, "any") == 0) { 6183 handle->tstamp_type_list = NULL; 6184 return 0; 6185 } 6186 6187 /* 6188 * We don't have an ioctl to use to ask what's supported, 6189 * so say we support everything. 6190 */ 6191 iface_set_all_ts_types(handle); 6192 return 0; 6193 } 6194 #endif /* ETHTOOL_GET_TS_INFO */ 6195 6196 #endif /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */ 6197 6198 #ifdef HAVE_PACKET_RING 6199 /* 6200 * Find out if we have any form of fragmentation/reassembly offloading. 6201 * 6202 * We do so using SIOCETHTOOL checking for various types of offloading; 6203 * if SIOCETHTOOL isn't defined, or we don't have any #defines for any 6204 * of the types of offloading, there's nothing we can do to check, so 6205 * we just say "no, we don't". 6206 */ 6207 #if defined(SIOCETHTOOL) && (defined(ETHTOOL_GTSO) || defined(ETHTOOL_GUFO) || defined(ETHTOOL_GGSO) || defined(ETHTOOL_GFLAGS) || defined(ETHTOOL_GGRO)) 6208 static int 6209 iface_ethtool_flag_ioctl(pcap_t *handle, int cmd, const char *cmdname) 6210 { 6211 struct ifreq ifr; 6212 struct ethtool_value eval; 6213 6214 memset(&ifr, 0, sizeof(ifr)); 6215 strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name)); 6216 eval.cmd = cmd; 6217 eval.data = 0; 6218 ifr.ifr_data = (caddr_t)&eval; 6219 if (ioctl(handle->fd, SIOCETHTOOL, &ifr) == -1) { 6220 if (errno == EOPNOTSUPP || errno == EINVAL) { 6221 /* 6222 * OK, let's just return 0, which, in our 6223 * case, either means "no, what we're asking 6224 * about is not enabled" or "all the flags 6225 * are clear (i.e., nothing is enabled)". 6226 */ 6227 return 0; 6228 } 6229 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6230 "%s: SIOCETHTOOL(%s) ioctl failed: %s", handle->opt.device, 6231 cmdname, strerror(errno)); 6232 return -1; 6233 } 6234 return eval.data; 6235 } 6236 6237 static int 6238 iface_get_offload(pcap_t *handle) 6239 { 6240 int ret; 6241 6242 #ifdef ETHTOOL_GTSO 6243 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GTSO, "ETHTOOL_GTSO"); 6244 if (ret == -1) 6245 return -1; 6246 if (ret) 6247 return 1; /* TCP segmentation offloading on */ 6248 #endif 6249 6250 #ifdef ETHTOOL_GUFO 6251 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GUFO, "ETHTOOL_GUFO"); 6252 if (ret == -1) 6253 return -1; 6254 if (ret) 6255 return 1; /* UDP fragmentation offloading on */ 6256 #endif 6257 6258 #ifdef ETHTOOL_GGSO 6259 /* 6260 * XXX - will this cause large unsegmented packets to be 6261 * handed to PF_PACKET sockets on transmission? If not, 6262 * this need not be checked. 6263 */ 6264 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGSO, "ETHTOOL_GGSO"); 6265 if (ret == -1) 6266 return -1; 6267 if (ret) 6268 return 1; /* generic segmentation offloading on */ 6269 #endif 6270 6271 #ifdef ETHTOOL_GFLAGS 6272 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GFLAGS, "ETHTOOL_GFLAGS"); 6273 if (ret == -1) 6274 return -1; 6275 if (ret & ETH_FLAG_LRO) 6276 return 1; /* large receive offloading on */ 6277 #endif 6278 6279 #ifdef ETHTOOL_GGRO 6280 /* 6281 * XXX - will this cause large reassembled packets to be 6282 * handed to PF_PACKET sockets on receipt? If not, 6283 * this need not be checked. 6284 */ 6285 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGRO, "ETHTOOL_GGRO"); 6286 if (ret == -1) 6287 return -1; 6288 if (ret) 6289 return 1; /* generic (large) receive offloading on */ 6290 #endif 6291 6292 return 0; 6293 } 6294 #else /* SIOCETHTOOL */ 6295 static int 6296 iface_get_offload(pcap_t *handle _U_) 6297 { 6298 /* 6299 * XXX - do we need to get this information if we don't 6300 * have the ethtool ioctls? If so, how do we do that? 6301 */ 6302 return 0; 6303 } 6304 #endif /* SIOCETHTOOL */ 6305 6306 #endif /* HAVE_PACKET_RING */ 6307 6308 #endif /* HAVE_PF_PACKET_SOCKETS */ 6309 6310 /* ===== Functions to interface to the older kernels ================== */ 6311 6312 /* 6313 * Try to open a packet socket using the old kernel interface. 6314 * Returns 1 on success and a PCAP_ERROR_ value on an error. 6315 */ 6316 static int 6317 activate_old(pcap_t *handle) 6318 { 6319 struct pcap_linux *handlep = handle->priv; 6320 int arptype; 6321 struct ifreq ifr; 6322 const char *device = handle->opt.device; 6323 struct utsname utsname; 6324 int mtu; 6325 6326 /* Open the socket */ 6327 6328 handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL)); 6329 if (handle->fd == -1) { 6330 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6331 "socket: %s", pcap_strerror(errno)); 6332 if (errno == EPERM || errno == EACCES) { 6333 /* 6334 * You don't have permission to open the 6335 * socket. 6336 */ 6337 return PCAP_ERROR_PERM_DENIED; 6338 } else { 6339 /* 6340 * Other error. 6341 */ 6342 return PCAP_ERROR; 6343 } 6344 } 6345 6346 /* It worked - we are using the old interface */ 6347 handlep->sock_packet = 1; 6348 6349 /* ...which means we get the link-layer header. */ 6350 handlep->cooked = 0; 6351 6352 /* Bind to the given device */ 6353 6354 if (strcmp(device, "any") == 0) { 6355 strlcpy(handle->errbuf, "pcap_activate: The \"any\" device isn't supported on 2.0[.x]-kernel systems", 6356 PCAP_ERRBUF_SIZE); 6357 return PCAP_ERROR; 6358 } 6359 if (iface_bind_old(handle->fd, device, handle->errbuf) == -1) 6360 return PCAP_ERROR; 6361 6362 /* 6363 * Try to get the link-layer type. 6364 */ 6365 arptype = iface_get_arptype(handle->fd, device, handle->errbuf); 6366 if (arptype < 0) 6367 return PCAP_ERROR; 6368 6369 /* 6370 * Try to find the DLT_ type corresponding to that 6371 * link-layer type. 6372 */ 6373 map_arphrd_to_dlt(handle, handle->fd, arptype, device, 0); 6374 if (handle->linktype == -1) { 6375 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6376 "unknown arptype %d", arptype); 6377 return PCAP_ERROR; 6378 } 6379 6380 /* Go to promisc mode if requested */ 6381 6382 if (handle->opt.promisc) { 6383 memset(&ifr, 0, sizeof(ifr)); 6384 strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 6385 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) { 6386 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6387 "SIOCGIFFLAGS: %s", pcap_strerror(errno)); 6388 return PCAP_ERROR; 6389 } 6390 if ((ifr.ifr_flags & IFF_PROMISC) == 0) { 6391 /* 6392 * Promiscuous mode isn't currently on, 6393 * so turn it on, and remember that 6394 * we should turn it off when the 6395 * pcap_t is closed. 6396 */ 6397 6398 /* 6399 * If we haven't already done so, arrange 6400 * to have "pcap_close_all()" called when 6401 * we exit. 6402 */ 6403 if (!pcap_do_addexit(handle)) { 6404 /* 6405 * "atexit()" failed; don't put 6406 * the interface in promiscuous 6407 * mode, just give up. 6408 */ 6409 return PCAP_ERROR; 6410 } 6411 6412 ifr.ifr_flags |= IFF_PROMISC; 6413 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) { 6414 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6415 "SIOCSIFFLAGS: %s", 6416 pcap_strerror(errno)); 6417 return PCAP_ERROR; 6418 } 6419 handlep->must_do_on_close |= MUST_CLEAR_PROMISC; 6420 6421 /* 6422 * Add this to the list of pcaps 6423 * to close when we exit. 6424 */ 6425 pcap_add_to_pcaps_to_close(handle); 6426 } 6427 } 6428 6429 /* 6430 * Compute the buffer size. 6431 * 6432 * We're using SOCK_PACKET, so this might be a 2.0[.x] 6433 * kernel, and might require special handling - check. 6434 */ 6435 if (uname(&utsname) < 0 || 6436 strncmp(utsname.release, "2.0", 3) == 0) { 6437 /* 6438 * Either we couldn't find out what kernel release 6439 * this is, or it's a 2.0[.x] kernel. 6440 * 6441 * In the 2.0[.x] kernel, a "recvfrom()" on 6442 * a SOCK_PACKET socket, with MSG_TRUNC set, will 6443 * return the number of bytes read, so if we pass 6444 * a length based on the snapshot length, it'll 6445 * return the number of bytes from the packet 6446 * copied to userland, not the actual length 6447 * of the packet. 6448 * 6449 * This means that, for example, the IP dissector 6450 * in tcpdump will get handed a packet length less 6451 * than the length in the IP header, and will 6452 * complain about "truncated-ip". 6453 * 6454 * So we don't bother trying to copy from the 6455 * kernel only the bytes in which we're interested, 6456 * but instead copy them all, just as the older 6457 * versions of libpcap for Linux did. 6458 * 6459 * The buffer therefore needs to be big enough to 6460 * hold the largest packet we can get from this 6461 * device. Unfortunately, we can't get the MRU 6462 * of the network; we can only get the MTU. The 6463 * MTU may be too small, in which case a packet larger 6464 * than the buffer size will be truncated *and* we 6465 * won't get the actual packet size. 6466 * 6467 * However, if the snapshot length is larger than 6468 * the buffer size based on the MTU, we use the 6469 * snapshot length as the buffer size, instead; 6470 * this means that with a sufficiently large snapshot 6471 * length we won't artificially truncate packets 6472 * to the MTU-based size. 6473 * 6474 * This mess just one of many problems with packet 6475 * capture on 2.0[.x] kernels; you really want a 6476 * 2.2[.x] or later kernel if you want packet capture 6477 * to work well. 6478 */ 6479 mtu = iface_get_mtu(handle->fd, device, handle->errbuf); 6480 if (mtu == -1) 6481 return PCAP_ERROR; 6482 handle->bufsize = MAX_LINKHEADER_SIZE + mtu; 6483 if (handle->bufsize < (u_int)handle->snapshot) 6484 handle->bufsize = (u_int)handle->snapshot; 6485 } else { 6486 /* 6487 * This is a 2.2[.x] or later kernel. 6488 * 6489 * We can safely pass "recvfrom()" a byte count 6490 * based on the snapshot length. 6491 */ 6492 handle->bufsize = (u_int)handle->snapshot; 6493 } 6494 6495 /* 6496 * Default value for offset to align link-layer payload 6497 * on a 4-byte boundary. 6498 */ 6499 handle->offset = 0; 6500 6501 /* 6502 * SOCK_PACKET sockets don't supply information from 6503 * stripped VLAN tags. 6504 */ 6505 handlep->vlan_offset = -1; /* unknown */ 6506 6507 return 1; 6508 } 6509 6510 /* 6511 * Bind the socket associated with FD to the given device using the 6512 * interface of the old kernels. 6513 */ 6514 static int 6515 iface_bind_old(int fd, const char *device, char *ebuf) 6516 { 6517 struct sockaddr saddr; 6518 int err; 6519 socklen_t errlen = sizeof(err); 6520 6521 memset(&saddr, 0, sizeof(saddr)); 6522 strlcpy(saddr.sa_data, device, sizeof(saddr.sa_data)); 6523 if (bind(fd, &saddr, sizeof(saddr)) == -1) { 6524 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 6525 "bind: %s", pcap_strerror(errno)); 6526 return -1; 6527 } 6528 6529 /* Any pending errors, e.g., network is down? */ 6530 6531 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) { 6532 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 6533 "getsockopt: %s", pcap_strerror(errno)); 6534 return -1; 6535 } 6536 6537 if (err > 0) { 6538 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 6539 "bind: %s", pcap_strerror(err)); 6540 return -1; 6541 } 6542 6543 return 0; 6544 } 6545 6546 6547 /* ===== System calls available on all supported kernels ============== */ 6548 6549 /* 6550 * Query the kernel for the MTU of the given interface. 6551 */ 6552 static int 6553 iface_get_mtu(int fd, const char *device, char *ebuf) 6554 { 6555 struct ifreq ifr; 6556 6557 if (!device) 6558 return BIGGER_THAN_ALL_MTUS; 6559 6560 memset(&ifr, 0, sizeof(ifr)); 6561 strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 6562 6563 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) { 6564 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 6565 "SIOCGIFMTU: %s", pcap_strerror(errno)); 6566 return -1; 6567 } 6568 6569 return ifr.ifr_mtu; 6570 } 6571 6572 /* 6573 * Get the hardware type of the given interface as ARPHRD_xxx constant. 6574 */ 6575 static int 6576 iface_get_arptype(int fd, const char *device, char *ebuf) 6577 { 6578 struct ifreq ifr; 6579 6580 memset(&ifr, 0, sizeof(ifr)); 6581 strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 6582 6583 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) { 6584 pcap_snprintf(ebuf, PCAP_ERRBUF_SIZE, 6585 "SIOCGIFHWADDR: %s", pcap_strerror(errno)); 6586 if (errno == ENODEV) { 6587 /* 6588 * No such device. 6589 */ 6590 return PCAP_ERROR_NO_SUCH_DEVICE; 6591 } 6592 return PCAP_ERROR; 6593 } 6594 6595 return ifr.ifr_hwaddr.sa_family; 6596 } 6597 6598 #ifdef SO_ATTACH_FILTER 6599 static int 6600 fix_program(pcap_t *handle, struct sock_fprog *fcode, int is_mmapped) 6601 { 6602 struct pcap_linux *handlep = handle->priv; 6603 size_t prog_size; 6604 register int i; 6605 register struct bpf_insn *p; 6606 struct bpf_insn *f; 6607 int len; 6608 6609 /* 6610 * Make a copy of the filter, and modify that copy if 6611 * necessary. 6612 */ 6613 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len; 6614 len = handle->fcode.bf_len; 6615 f = (struct bpf_insn *)malloc(prog_size); 6616 if (f == NULL) { 6617 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6618 "malloc: %s", pcap_strerror(errno)); 6619 return -1; 6620 } 6621 memcpy(f, handle->fcode.bf_insns, prog_size); 6622 fcode->len = len; 6623 fcode->filter = (struct sock_filter *) f; 6624 6625 for (i = 0; i < len; ++i) { 6626 p = &f[i]; 6627 /* 6628 * What type of instruction is this? 6629 */ 6630 switch (BPF_CLASS(p->code)) { 6631 6632 case BPF_RET: 6633 /* 6634 * It's a return instruction; are we capturing 6635 * in memory-mapped mode? 6636 */ 6637 if (!is_mmapped) { 6638 /* 6639 * No; is the snapshot length a constant, 6640 * rather than the contents of the 6641 * accumulator? 6642 */ 6643 if (BPF_MODE(p->code) == BPF_K) { 6644 /* 6645 * Yes - if the value to be returned, 6646 * i.e. the snapshot length, is 6647 * anything other than 0, make it 6648 * MAXIMUM_SNAPLEN, so that the packet 6649 * is truncated by "recvfrom()", 6650 * not by the filter. 6651 * 6652 * XXX - there's nothing we can 6653 * easily do if it's getting the 6654 * value from the accumulator; we'd 6655 * have to insert code to force 6656 * non-zero values to be 6657 * MAXIMUM_SNAPLEN. 6658 */ 6659 if (p->k != 0) 6660 p->k = MAXIMUM_SNAPLEN; 6661 } 6662 } 6663 break; 6664 6665 case BPF_LD: 6666 case BPF_LDX: 6667 /* 6668 * It's a load instruction; is it loading 6669 * from the packet? 6670 */ 6671 switch (BPF_MODE(p->code)) { 6672 6673 case BPF_ABS: 6674 case BPF_IND: 6675 case BPF_MSH: 6676 /* 6677 * Yes; are we in cooked mode? 6678 */ 6679 if (handlep->cooked) { 6680 /* 6681 * Yes, so we need to fix this 6682 * instruction. 6683 */ 6684 if (fix_offset(p) < 0) { 6685 /* 6686 * We failed to do so. 6687 * Return 0, so our caller 6688 * knows to punt to userland. 6689 */ 6690 return 0; 6691 } 6692 } 6693 break; 6694 } 6695 break; 6696 } 6697 } 6698 return 1; /* we succeeded */ 6699 } 6700 6701 static int 6702 fix_offset(struct bpf_insn *p) 6703 { 6704 /* 6705 * What's the offset? 6706 */ 6707 if (p->k >= SLL_HDR_LEN) { 6708 /* 6709 * It's within the link-layer payload; that starts at an 6710 * offset of 0, as far as the kernel packet filter is 6711 * concerned, so subtract the length of the link-layer 6712 * header. 6713 */ 6714 p->k -= SLL_HDR_LEN; 6715 } else if (p->k == 0) { 6716 /* 6717 * It's the packet type field; map it to the special magic 6718 * kernel offset for that field. 6719 */ 6720 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE; 6721 } else if (p->k == 14) { 6722 /* 6723 * It's the protocol field; map it to the special magic 6724 * kernel offset for that field. 6725 */ 6726 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL; 6727 } else if ((bpf_int32)(p->k) > 0) { 6728 /* 6729 * It's within the header, but it's not one of those 6730 * fields; we can't do that in the kernel, so punt 6731 * to userland. 6732 */ 6733 return -1; 6734 } 6735 return 0; 6736 } 6737 6738 static int 6739 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode) 6740 { 6741 int total_filter_on = 0; 6742 int save_mode; 6743 int ret; 6744 int save_errno; 6745 6746 /* 6747 * The socket filter code doesn't discard all packets queued 6748 * up on the socket when the filter is changed; this means 6749 * that packets that don't match the new filter may show up 6750 * after the new filter is put onto the socket, if those 6751 * packets haven't yet been read. 6752 * 6753 * This means, for example, that if you do a tcpdump capture 6754 * with a filter, the first few packets in the capture might 6755 * be packets that wouldn't have passed the filter. 6756 * 6757 * We therefore discard all packets queued up on the socket 6758 * when setting a kernel filter. (This isn't an issue for 6759 * userland filters, as the userland filtering is done after 6760 * packets are queued up.) 6761 * 6762 * To flush those packets, we put the socket in read-only mode, 6763 * and read packets from the socket until there are no more to 6764 * read. 6765 * 6766 * In order to keep that from being an infinite loop - i.e., 6767 * to keep more packets from arriving while we're draining 6768 * the queue - we put the "total filter", which is a filter 6769 * that rejects all packets, onto the socket before draining 6770 * the queue. 6771 * 6772 * This code deliberately ignores any errors, so that you may 6773 * get bogus packets if an error occurs, rather than having 6774 * the filtering done in userland even if it could have been 6775 * done in the kernel. 6776 */ 6777 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER, 6778 &total_fcode, sizeof(total_fcode)) == 0) { 6779 char drain[1]; 6780 6781 /* 6782 * Note that we've put the total filter onto the socket. 6783 */ 6784 total_filter_on = 1; 6785 6786 /* 6787 * Save the socket's current mode, and put it in 6788 * non-blocking mode; we drain it by reading packets 6789 * until we get an error (which is normally a 6790 * "nothing more to be read" error). 6791 */ 6792 save_mode = fcntl(handle->fd, F_GETFL, 0); 6793 if (save_mode == -1) { 6794 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6795 "can't get FD flags when changing filter: %s", 6796 pcap_strerror(errno)); 6797 return -2; 6798 } 6799 if (fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) < 0) { 6800 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6801 "can't set nonblocking mode when changing filter: %s", 6802 pcap_strerror(errno)); 6803 return -2; 6804 } 6805 while (recv(handle->fd, &drain, sizeof drain, MSG_TRUNC) >= 0) 6806 ; 6807 save_errno = errno; 6808 if (save_errno != EAGAIN) { 6809 /* 6810 * Fatal error. 6811 * 6812 * If we can't restore the mode or reset the 6813 * kernel filter, there's nothing we can do. 6814 */ 6815 (void)fcntl(handle->fd, F_SETFL, save_mode); 6816 (void)reset_kernel_filter(handle); 6817 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6818 "recv failed when changing filter: %s", 6819 pcap_strerror(save_errno)); 6820 return -2; 6821 } 6822 if (fcntl(handle->fd, F_SETFL, save_mode) == -1) { 6823 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6824 "can't restore FD flags when changing filter: %s", 6825 pcap_strerror(save_errno)); 6826 return -2; 6827 } 6828 } 6829 6830 /* 6831 * Now attach the new filter. 6832 */ 6833 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER, 6834 fcode, sizeof(*fcode)); 6835 if (ret == -1 && total_filter_on) { 6836 /* 6837 * Well, we couldn't set that filter on the socket, 6838 * but we could set the total filter on the socket. 6839 * 6840 * This could, for example, mean that the filter was 6841 * too big to put into the kernel, so we'll have to 6842 * filter in userland; in any case, we'll be doing 6843 * filtering in userland, so we need to remove the 6844 * total filter so we see packets. 6845 */ 6846 save_errno = errno; 6847 6848 /* 6849 * If this fails, we're really screwed; we have the 6850 * total filter on the socket, and it won't come off. 6851 * Report it as a fatal error. 6852 */ 6853 if (reset_kernel_filter(handle) == -1) { 6854 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6855 "can't remove kernel total filter: %s", 6856 pcap_strerror(errno)); 6857 return -2; /* fatal error */ 6858 } 6859 6860 errno = save_errno; 6861 } 6862 return ret; 6863 } 6864 6865 static int 6866 reset_kernel_filter(pcap_t *handle) 6867 { 6868 /* 6869 * setsockopt() barfs unless it get a dummy parameter. 6870 * valgrind whines unless the value is initialized, 6871 * as it has no idea that setsockopt() ignores its 6872 * parameter. 6873 */ 6874 int dummy = 0; 6875 6876 return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER, 6877 &dummy, sizeof(dummy)); 6878 } 6879 #endif 6880