xref: /freebsd/contrib/libpcap/pcap-linux.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  *  pcap-linux.c: Packet capture interface to the Linux kernel
3  *
4  *  Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5  *		       Sebastian Krahmer  <krahmer@cs.uni-potsdam.de>
6  *
7  *  License: BSD
8  *
9  *  Redistribution and use in source and binary forms, with or without
10  *  modification, are permitted provided that the following conditions
11  *  are met:
12  *
13  *  1. Redistributions of source code must retain the above copyright
14  *     notice, this list of conditions and the following disclaimer.
15  *  2. Redistributions in binary form must reproduce the above copyright
16  *     notice, this list of conditions and the following disclaimer in
17  *     the documentation and/or other materials provided with the
18  *     distribution.
19  *  3. The names of the authors may not be used to endorse or promote
20  *     products derived from this software without specific prior
21  *     written permission.
22  *
23  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24  *  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25  *  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26  *
27  *  Modifications:     Added PACKET_MMAP support
28  *                     Paolo Abeni <paolo.abeni@email.it>
29  *                     Added TPACKET_V3 support
30  *                     Gabor Tatarka <gabor.tatarka@ericsson.com>
31  *
32  *                     based on previous works of:
33  *                     Simon Patarin <patarin@cs.unibo.it>
34  *                     Phil Wood <cpw@lanl.gov>
35  *
36  * Monitor-mode support for mac80211 includes code taken from the iw
37  * command; the copyright notice for that code is
38  *
39  * Copyright (c) 2007, 2008	Johannes Berg
40  * Copyright (c) 2007		Andy Lutomirski
41  * Copyright (c) 2007		Mike Kershaw
42  * Copyright (c) 2008		Gábor Stefanik
43  *
44  * All rights reserved.
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The name of the author may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
61  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
62  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
63  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
64  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
65  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  */
69 
70 
71 #define _GNU_SOURCE
72 
73 #include <config.h>
74 
75 #include <errno.h>
76 #include <stdio.h>
77 #include <stdlib.h>
78 #include <unistd.h>
79 #include <fcntl.h>
80 #include <string.h>
81 #include <limits.h>
82 #include <endian.h>
83 #include <sys/stat.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/utsname.h>
87 #include <sys/mman.h>
88 #include <linux/if.h>
89 #include <linux/if_packet.h>
90 #include <linux/sockios.h>
91 #include <linux/ethtool.h>
92 #include <netinet/in.h>
93 #include <linux/if_ether.h>
94 #include <linux/if_arp.h>
95 #include <poll.h>
96 #include <dirent.h>
97 #include <sys/eventfd.h>
98 
99 #include "pcap-int.h"
100 #include "pcap-util.h"
101 #include "pcap/sll.h"
102 #include "pcap/vlan.h"
103 #include "pcap/can_socketcan.h"
104 
105 #include "diag-control.h"
106 
107 /*
108  * We require TPACKET_V2 support.
109  */
110 #ifndef TPACKET2_HDRLEN
111 #error "Libpcap will only work if TPACKET_V2 is supported; you must build for a 2.6.27 or later kernel"
112 #endif
113 
114 /* check for memory mapped access availability. We assume every needed
115  * struct is defined if the macro TPACKET_HDRLEN is defined, because it
116  * uses many ring related structs and macros */
117 #ifdef TPACKET3_HDRLEN
118 # define HAVE_TPACKET3
119 #endif /* TPACKET3_HDRLEN */
120 
121 /*
122  * Not all compilers that are used to compile code to run on Linux have
123  * these builtins.  For example, older versions of GCC don't, and at
124  * least some people are doing cross-builds for MIPS with older versions
125  * of GCC.
126  */
127 #ifndef HAVE___ATOMIC_LOAD_N
128 #define __atomic_load_n(ptr, memory_model)		(*(ptr))
129 #endif
130 #ifndef HAVE___ATOMIC_STORE_N
131 #define __atomic_store_n(ptr, val, memory_model)	*(ptr) = (val)
132 #endif
133 
134 #define packet_mmap_acquire(pkt) \
135 	(__atomic_load_n(&pkt->tp_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
136 #define packet_mmap_release(pkt) \
137 	(__atomic_store_n(&pkt->tp_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
138 #define packet_mmap_v3_acquire(pkt) \
139 	(__atomic_load_n(&pkt->hdr.bh1.block_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
140 #define packet_mmap_v3_release(pkt) \
141 	(__atomic_store_n(&pkt->hdr.bh1.block_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
142 
143 #include <linux/types.h>
144 #include <linux/filter.h>
145 
146 #ifdef HAVE_LINUX_NET_TSTAMP_H
147 #include <linux/net_tstamp.h>
148 #endif
149 
150 /*
151  * For checking whether a device is a bonding device.
152  */
153 #include <linux/if_bonding.h>
154 
155 /*
156  * Got libnl?
157  */
158 #ifdef HAVE_LIBNL
159 #include <linux/nl80211.h>
160 
161 #include <netlink/genl/genl.h>
162 #include <netlink/genl/family.h>
163 #include <netlink/genl/ctrl.h>
164 #include <netlink/msg.h>
165 #include <netlink/attr.h>
166 #endif /* HAVE_LIBNL */
167 
168 #ifndef HAVE_SOCKLEN_T
169 typedef int		socklen_t;
170 #endif
171 
172 #define MAX_LINKHEADER_SIZE	256
173 
174 /*
175  * When capturing on all interfaces we use this as the buffer size.
176  * Should be bigger then all MTUs that occur in real life.
177  * 64kB should be enough for now.
178  */
179 #define BIGGER_THAN_ALL_MTUS	(64*1024)
180 
181 /*
182  * Private data for capturing on Linux PF_PACKET sockets.
183  */
184 struct pcap_linux {
185 	long long sysfs_dropped; /* packets reported dropped by /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors */
186 	struct pcap_stat stat;
187 
188 	char	*device;	/* device name */
189 	int	filter_in_userland; /* must filter in userland */
190 	int	blocks_to_filter_in_userland;
191 	int	must_do_on_close; /* stuff we must do when we close */
192 	int	timeout;	/* timeout for buffering */
193 	int	cooked;		/* using SOCK_DGRAM rather than SOCK_RAW */
194 	int	ifindex;	/* interface index of device we're bound to */
195 	int	lo_ifindex;	/* interface index of the loopback device */
196 	int	netdown;	/* we got an ENETDOWN and haven't resolved it */
197 	bpf_u_int32 oldmode;	/* mode to restore when turning monitor mode off */
198 	char	*mondevice;	/* mac80211 monitor device we created */
199 	u_char	*mmapbuf;	/* memory-mapped region pointer */
200 	size_t	mmapbuflen;	/* size of region */
201 	int	vlan_offset;	/* offset at which to insert vlan tags; if -1, don't insert */
202 	u_int	tp_version;	/* version of tpacket_hdr for mmaped ring */
203 	u_int	tp_hdrlen;	/* hdrlen of tpacket_hdr for mmaped ring */
204 	u_char	*oneshot_buffer; /* buffer for copy of packet */
205 	int	poll_timeout;	/* timeout to use in poll() */
206 #ifdef HAVE_TPACKET3
207 	unsigned char *current_packet; /* Current packet within the TPACKET_V3 block. Move to next block if NULL. */
208 	int packets_left; /* Unhandled packets left within the block from previous call to pcap_read_linux_mmap_v3 in case of TPACKET_V3. */
209 #endif
210 	int poll_breakloop_fd; /* fd to an eventfd to break from blocking operations */
211 };
212 
213 /*
214  * Stuff to do when we close.
215  */
216 #define MUST_CLEAR_RFMON	0x00000001	/* clear rfmon (monitor) mode */
217 #define MUST_DELETE_MONIF	0x00000002	/* delete monitor-mode interface */
218 
219 /*
220  * Prototypes for internal functions and methods.
221  */
222 static int get_if_flags(const char *, bpf_u_int32 *, char *);
223 static int is_wifi(const char *);
224 static int map_arphrd_to_dlt(pcap_t *, int, const char *, int);
225 static int pcap_activate_linux(pcap_t *);
226 static int setup_socket(pcap_t *, int);
227 static int setup_mmapped(pcap_t *);
228 static int pcap_can_set_rfmon_linux(pcap_t *);
229 static int pcap_inject_linux(pcap_t *, const void *, int);
230 static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
231 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
232 static int pcap_setdirection_linux(pcap_t *, pcap_direction_t);
233 static int pcap_set_datalink_linux(pcap_t *, int);
234 static void pcap_cleanup_linux(pcap_t *);
235 
236 union thdr {
237 	struct tpacket2_hdr		*h2;
238 #ifdef HAVE_TPACKET3
239 	struct tpacket_block_desc	*h3;
240 #endif
241 	u_char				*raw;
242 };
243 
244 #define RING_GET_FRAME_AT(h, offset) (((u_char **)h->buffer)[(offset)])
245 #define RING_GET_CURRENT_FRAME(h) RING_GET_FRAME_AT(h, h->offset)
246 
247 static void destroy_ring(pcap_t *handle);
248 static int create_ring(pcap_t *handle);
249 static int prepare_tpacket_socket(pcap_t *handle);
250 static int pcap_read_linux_mmap_v2(pcap_t *, int, pcap_handler , u_char *);
251 #ifdef HAVE_TPACKET3
252 static int pcap_read_linux_mmap_v3(pcap_t *, int, pcap_handler , u_char *);
253 #endif
254 static int pcap_setnonblock_linux(pcap_t *p, int nonblock);
255 static int pcap_getnonblock_linux(pcap_t *p);
256 static void pcapint_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
257     const u_char *bytes);
258 
259 /*
260  * In pre-3.0 kernels, the tp_vlan_tci field is set to whatever the
261  * vlan_tci field in the skbuff is.  0 can either mean "not on a VLAN"
262  * or "on VLAN 0".  There is no flag set in the tp_status field to
263  * distinguish between them.
264  *
265  * In 3.0 and later kernels, if there's a VLAN tag present, the tp_vlan_tci
266  * field is set to the VLAN tag, and the TP_STATUS_VLAN_VALID flag is set
267  * in the tp_status field, otherwise the tp_vlan_tci field is set to 0 and
268  * the TP_STATUS_VLAN_VALID flag isn't set in the tp_status field.
269  *
270  * With a pre-3.0 kernel, we cannot distinguish between packets with no
271  * VLAN tag and packets on VLAN 0, so we will mishandle some packets, and
272  * there's nothing we can do about that.
273  *
274  * So, on those systems, which never set the TP_STATUS_VLAN_VALID flag, we
275  * continue the behavior of earlier libpcaps, wherein we treated packets
276  * with a VLAN tag of 0 as being packets without a VLAN tag rather than packets
277  * on VLAN 0.  We do this by treating packets with a tp_vlan_tci of 0 and
278  * with the TP_STATUS_VLAN_VALID flag not set in tp_status as not having
279  * VLAN tags.  This does the right thing on 3.0 and later kernels, and
280  * continues the old unfixably-imperfect behavior on pre-3.0 kernels.
281  *
282  * If TP_STATUS_VLAN_VALID isn't defined, we test it as the 0x10 bit; it
283  * has that value in 3.0 and later kernels.
284  */
285 #ifdef TP_STATUS_VLAN_VALID
286   #define VLAN_VALID(hdr, hv)	((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & TP_STATUS_VLAN_VALID))
287 #else
288   /*
289    * This is being compiled on a system that lacks TP_STATUS_VLAN_VALID,
290    * so we test with the value it has in the 3.0 and later kernels, so
291    * we can test it if we're running on a system that has it.  (If we're
292    * running on a system that doesn't have it, it won't be set in the
293    * tp_status field, so the tests of it will always fail; that means
294    * we behave the way we did before we introduced this macro.)
295    */
296   #define VLAN_VALID(hdr, hv)	((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & 0x10))
297 #endif
298 
299 #ifdef TP_STATUS_VLAN_TPID_VALID
300 # define VLAN_TPID(hdr, hv)	(((hv)->tp_vlan_tpid || ((hdr)->tp_status & TP_STATUS_VLAN_TPID_VALID)) ? (hv)->tp_vlan_tpid : ETH_P_8021Q)
301 #else
302 # define VLAN_TPID(hdr, hv)	ETH_P_8021Q
303 #endif
304 
305 /*
306  * Required select timeout if we're polling for an "interface disappeared"
307  * indication - 1 millisecond.
308  */
309 static const struct timeval netdown_timeout = {
310 	0, 1000		/* 1000 microseconds = 1 millisecond */
311 };
312 
313 /*
314  * Wrap some ioctl calls
315  */
316 static int	iface_get_id(int fd, const char *device, char *ebuf);
317 static int	iface_get_mtu(int fd, const char *device, char *ebuf);
318 static int	iface_get_arptype(int fd, const char *device, char *ebuf);
319 static int	iface_bind(int fd, int ifindex, char *ebuf, int protocol);
320 static int	enter_rfmon_mode(pcap_t *handle, int sock_fd,
321     const char *device);
322 static int	iface_get_ts_types(const char *device, pcap_t *handle,
323     char *ebuf);
324 static int	iface_get_offload(pcap_t *handle);
325 
326 static int	fix_program(pcap_t *handle, struct sock_fprog *fcode);
327 static int	fix_offset(pcap_t *handle, struct bpf_insn *p);
328 static int	set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
329 static int	reset_kernel_filter(pcap_t *handle);
330 
331 static struct sock_filter	total_insn
332 	= BPF_STMT(BPF_RET | BPF_K, 0);
333 static struct sock_fprog	total_fcode
334 	= { 1, &total_insn };
335 
336 static int	iface_dsa_get_proto_info(const char *device, pcap_t *handle);
337 
338 pcap_t *
339 pcapint_create_interface(const char *device, char *ebuf)
340 {
341 	pcap_t *handle;
342 
343 	handle = PCAP_CREATE_COMMON(ebuf, struct pcap_linux);
344 	if (handle == NULL)
345 		return NULL;
346 
347 	handle->activate_op = pcap_activate_linux;
348 	handle->can_set_rfmon_op = pcap_can_set_rfmon_linux;
349 
350 	/*
351 	 * See what time stamp types we support.
352 	 */
353 	if (iface_get_ts_types(device, handle, ebuf) == -1) {
354 		pcap_close(handle);
355 		return NULL;
356 	}
357 
358 	/*
359 	 * We claim that we support microsecond and nanosecond time
360 	 * stamps.
361 	 *
362 	 * XXX - with adapter-supplied time stamps, can we choose
363 	 * microsecond or nanosecond time stamps on arbitrary
364 	 * adapters?
365 	 */
366 	handle->tstamp_precision_list = malloc(2 * sizeof(u_int));
367 	if (handle->tstamp_precision_list == NULL) {
368 		pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
369 		    errno, "malloc");
370 		pcap_close(handle);
371 		return NULL;
372 	}
373 	handle->tstamp_precision_list[0] = PCAP_TSTAMP_PRECISION_MICRO;
374 	handle->tstamp_precision_list[1] = PCAP_TSTAMP_PRECISION_NANO;
375 	handle->tstamp_precision_count = 2;
376 
377 	/*
378 	 * Start out with the breakloop handle not open; we don't
379 	 * need it until we're activated and ready to capture.
380 	 */
381 	struct pcap_linux *handlep = handle->priv;
382 	handlep->poll_breakloop_fd = -1;
383 
384 	return handle;
385 }
386 
387 #ifdef HAVE_LIBNL
388 /*
389  * If interface {if_name} is a mac80211 driver, the file
390  * /sys/class/net/{if_name}/phy80211 is a symlink to
391  * /sys/class/ieee80211/{phydev_name}, for some {phydev_name}.
392  *
393  * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at
394  * least, has a "wmaster0" device and a "wlan0" device; the
395  * latter is the one with the IP address.  Both show up in
396  * "tcpdump -D" output.  Capturing on the wmaster0 device
397  * captures with 802.11 headers.
398  *
399  * airmon-ng searches through /sys/class/net for devices named
400  * monN, starting with mon0; as soon as one *doesn't* exist,
401  * it chooses that as the monitor device name.  If the "iw"
402  * command exists, it does
403  *
404  *    iw dev {if_name} interface add {monif_name} type monitor
405  *
406  * where {monif_name} is the monitor device.  It then (sigh) sleeps
407  * .1 second, and then configures the device up.  Otherwise, if
408  * /sys/class/ieee80211/{phydev_name}/add_iface is a file, it writes
409  * {mondev_name}, without a newline, to that file, and again (sigh)
410  * sleeps .1 second, and then iwconfig's that device into monitor
411  * mode and configures it up.  Otherwise, you can't do monitor mode.
412  *
413  * All these devices are "glued" together by having the
414  * /sys/class/net/{if_name}/phy80211 links pointing to the same
415  * place, so, given a wmaster, wlan, or mon device, you can
416  * find the other devices by looking for devices with
417  * the same phy80211 link.
418  *
419  * To turn monitor mode off, delete the monitor interface,
420  * either with
421  *
422  *    iw dev {monif_name} interface del
423  *
424  * or by sending {monif_name}, with no NL, down
425  * /sys/class/ieee80211/{phydev_name}/remove_iface
426  *
427  * Note: if you try to create a monitor device named "monN", and
428  * there's already a "monN" device, it fails, as least with
429  * the netlink interface (which is what iw uses), with a return
430  * value of -ENFILE.  (Return values are negative errnos.)  We
431  * could probably use that to find an unused device.
432  *
433  * Yes, you can have multiple monitor devices for a given
434  * physical device.
435  */
436 
437 /*
438  * Is this a mac80211 device?  If so, fill in the physical device path and
439  * return 1; if not, return 0.  On an error, fill in handle->errbuf and
440  * return PCAP_ERROR.
441  */
442 static int
443 get_mac80211_phydev(pcap_t *handle, const char *device, char *phydev_path,
444     size_t phydev_max_pathlen)
445 {
446 	char *pathstr;
447 	ssize_t bytes_read;
448 
449 	/*
450 	 * Generate the path string for the symlink to the physical device.
451 	 */
452 	if (asprintf(&pathstr, "/sys/class/net/%s/phy80211", device) == -1) {
453 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
454 		    "%s: Can't generate path name string for /sys/class/net device",
455 		    device);
456 		return PCAP_ERROR;
457 	}
458 	bytes_read = readlink(pathstr, phydev_path, phydev_max_pathlen);
459 	if (bytes_read == -1) {
460 		if (errno == ENOENT || errno == EINVAL) {
461 			/*
462 			 * Doesn't exist, or not a symlink; assume that
463 			 * means it's not a mac80211 device.
464 			 */
465 			free(pathstr);
466 			return 0;
467 		}
468 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
469 		    errno, "%s: Can't readlink %s", device, pathstr);
470 		free(pathstr);
471 		return PCAP_ERROR;
472 	}
473 	free(pathstr);
474 	phydev_path[bytes_read] = '\0';
475 	return 1;
476 }
477 
478 struct nl80211_state {
479 	struct nl_sock *nl_sock;
480 	struct nl_cache *nl_cache;
481 	struct genl_family *nl80211;
482 };
483 
484 static int
485 nl80211_init(pcap_t *handle, struct nl80211_state *state, const char *device)
486 {
487 	int err;
488 
489 	state->nl_sock = nl_socket_alloc();
490 	if (!state->nl_sock) {
491 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
492 		    "%s: failed to allocate netlink handle", device);
493 		return PCAP_ERROR;
494 	}
495 
496 	if (genl_connect(state->nl_sock)) {
497 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
498 		    "%s: failed to connect to generic netlink", device);
499 		goto out_handle_destroy;
500 	}
501 
502 	err = genl_ctrl_alloc_cache(state->nl_sock, &state->nl_cache);
503 	if (err < 0) {
504 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
505 		    "%s: failed to allocate generic netlink cache: %s",
506 		    device, nl_geterror(-err));
507 		goto out_handle_destroy;
508 	}
509 
510 	state->nl80211 = genl_ctrl_search_by_name(state->nl_cache, "nl80211");
511 	if (!state->nl80211) {
512 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
513 		    "%s: nl80211 not found", device);
514 		goto out_cache_free;
515 	}
516 
517 	return 0;
518 
519 out_cache_free:
520 	nl_cache_free(state->nl_cache);
521 out_handle_destroy:
522 	nl_socket_free(state->nl_sock);
523 	return PCAP_ERROR;
524 }
525 
526 static void
527 nl80211_cleanup(struct nl80211_state *state)
528 {
529 	genl_family_put(state->nl80211);
530 	nl_cache_free(state->nl_cache);
531 	nl_socket_free(state->nl_sock);
532 }
533 
534 static int
535 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
536     const char *device, const char *mondevice);
537 
538 static int
539 add_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
540     const char *device, const char *mondevice)
541 {
542 	struct pcap_linux *handlep = handle->priv;
543 	int ifindex;
544 	struct nl_msg *msg;
545 	int err;
546 
547 	ifindex = iface_get_id(sock_fd, device, handle->errbuf);
548 	if (ifindex == -1)
549 		return PCAP_ERROR;
550 
551 	msg = nlmsg_alloc();
552 	if (!msg) {
553 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
554 		    "%s: failed to allocate netlink msg", device);
555 		return PCAP_ERROR;
556 	}
557 
558 	genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
559 		    0, NL80211_CMD_NEW_INTERFACE, 0);
560 	NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
561 DIAG_OFF_NARROWING
562 	NLA_PUT_STRING(msg, NL80211_ATTR_IFNAME, mondevice);
563 DIAG_ON_NARROWING
564 	NLA_PUT_U32(msg, NL80211_ATTR_IFTYPE, NL80211_IFTYPE_MONITOR);
565 
566 	err = nl_send_auto_complete(state->nl_sock, msg);
567 	if (err < 0) {
568 		if (err == -NLE_FAILURE) {
569 			/*
570 			 * Device not available; our caller should just
571 			 * keep trying.  (libnl 2.x maps ENFILE to
572 			 * NLE_FAILURE; it can also map other errors
573 			 * to that, but there's not much we can do
574 			 * about that.)
575 			 */
576 			nlmsg_free(msg);
577 			return 0;
578 		} else {
579 			/*
580 			 * Real failure, not just "that device is not
581 			 * available.
582 			 */
583 			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
584 			    "%s: nl_send_auto_complete failed adding %s interface: %s",
585 			    device, mondevice, nl_geterror(-err));
586 			nlmsg_free(msg);
587 			return PCAP_ERROR;
588 		}
589 	}
590 	err = nl_wait_for_ack(state->nl_sock);
591 	if (err < 0) {
592 		if (err == -NLE_FAILURE) {
593 			/*
594 			 * Device not available; our caller should just
595 			 * keep trying.  (libnl 2.x maps ENFILE to
596 			 * NLE_FAILURE; it can also map other errors
597 			 * to that, but there's not much we can do
598 			 * about that.)
599 			 */
600 			nlmsg_free(msg);
601 			return 0;
602 		} else {
603 			/*
604 			 * Real failure, not just "that device is not
605 			 * available.
606 			 */
607 			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
608 			    "%s: nl_wait_for_ack failed adding %s interface: %s",
609 			    device, mondevice, nl_geterror(-err));
610 			nlmsg_free(msg);
611 			return PCAP_ERROR;
612 		}
613 	}
614 
615 	/*
616 	 * Success.
617 	 */
618 	nlmsg_free(msg);
619 
620 	/*
621 	 * Try to remember the monitor device.
622 	 */
623 	handlep->mondevice = strdup(mondevice);
624 	if (handlep->mondevice == NULL) {
625 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
626 		    errno, "strdup");
627 		/*
628 		 * Get rid of the monitor device.
629 		 */
630 		del_mon_if(handle, sock_fd, state, device, mondevice);
631 		return PCAP_ERROR;
632 	}
633 	return 1;
634 
635 nla_put_failure:
636 	snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
637 	    "%s: nl_put failed adding %s interface",
638 	    device, mondevice);
639 	nlmsg_free(msg);
640 	return PCAP_ERROR;
641 }
642 
643 static int
644 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
645     const char *device, const char *mondevice)
646 {
647 	int ifindex;
648 	struct nl_msg *msg;
649 	int err;
650 
651 	ifindex = iface_get_id(sock_fd, mondevice, handle->errbuf);
652 	if (ifindex == -1)
653 		return PCAP_ERROR;
654 
655 	msg = nlmsg_alloc();
656 	if (!msg) {
657 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
658 		    "%s: failed to allocate netlink msg", device);
659 		return PCAP_ERROR;
660 	}
661 
662 	genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
663 		    0, NL80211_CMD_DEL_INTERFACE, 0);
664 	NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
665 
666 	err = nl_send_auto_complete(state->nl_sock, msg);
667 	if (err < 0) {
668 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
669 		    "%s: nl_send_auto_complete failed deleting %s interface: %s",
670 		    device, mondevice, nl_geterror(-err));
671 		nlmsg_free(msg);
672 		return PCAP_ERROR;
673 	}
674 	err = nl_wait_for_ack(state->nl_sock);
675 	if (err < 0) {
676 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
677 		    "%s: nl_wait_for_ack failed adding %s interface: %s",
678 		    device, mondevice, nl_geterror(-err));
679 		nlmsg_free(msg);
680 		return PCAP_ERROR;
681 	}
682 
683 	/*
684 	 * Success.
685 	 */
686 	nlmsg_free(msg);
687 	return 1;
688 
689 nla_put_failure:
690 	snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
691 	    "%s: nl_put failed deleting %s interface",
692 	    device, mondevice);
693 	nlmsg_free(msg);
694 	return PCAP_ERROR;
695 }
696 #endif /* HAVE_LIBNL */
697 
698 static int pcap_protocol(pcap_t *handle)
699 {
700 	int protocol;
701 
702 	protocol = handle->opt.protocol;
703 	if (protocol == 0)
704 		protocol = ETH_P_ALL;
705 
706 	return htons(protocol);
707 }
708 
709 static int
710 pcap_can_set_rfmon_linux(pcap_t *handle)
711 {
712 #ifdef HAVE_LIBNL
713 	char phydev_path[PATH_MAX+1];
714 	int ret;
715 #endif
716 
717 	if (strcmp(handle->opt.device, "any") == 0) {
718 		/*
719 		 * Monitor mode makes no sense on the "any" device.
720 		 */
721 		return 0;
722 	}
723 
724 #ifdef HAVE_LIBNL
725 	/*
726 	 * Bleah.  There doesn't seem to be a way to ask a mac80211
727 	 * device, through libnl, whether it supports monitor mode;
728 	 * we'll just check whether the device appears to be a
729 	 * mac80211 device and, if so, assume the device supports
730 	 * monitor mode.
731 	 */
732 	ret = get_mac80211_phydev(handle, handle->opt.device, phydev_path,
733 	    PATH_MAX);
734 	if (ret < 0)
735 		return ret;	/* error */
736 	if (ret == 1)
737 		return 1;	/* mac80211 device */
738 #endif
739 
740 	return 0;
741 }
742 
743 /*
744  * Grabs the number of missed packets by the interface from
745  * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors.
746  *
747  * Compared to /proc/net/dev this avoids counting software drops,
748  * but may be unimplemented and just return 0.
749  * The author has found no straightforward way to check for support.
750  */
751 static long long int
752 linux_get_stat(const char * if_name, const char * stat) {
753 	ssize_t bytes_read;
754 	int fd;
755 	char buffer[PATH_MAX];
756 
757 	snprintf(buffer, sizeof(buffer), "/sys/class/net/%s/statistics/%s", if_name, stat);
758 	fd = open(buffer, O_RDONLY);
759 	if (fd == -1)
760 		return 0;
761 
762 	bytes_read = read(fd, buffer, sizeof(buffer) - 1);
763 	close(fd);
764 	if (bytes_read == -1)
765 		return 0;
766 	buffer[bytes_read] = '\0';
767 
768 	return strtoll(buffer, NULL, 10);
769 }
770 
771 static long long int
772 linux_if_drops(const char * if_name)
773 {
774 	long long int missed = linux_get_stat(if_name, "rx_missed_errors");
775 	long long int fifo = linux_get_stat(if_name, "rx_fifo_errors");
776 	return missed + fifo;
777 }
778 
779 
780 /*
781  * Monitor mode is kind of interesting because we have to reset the
782  * interface before exiting. The problem can't really be solved without
783  * some daemon taking care of managing usage counts.  If we put the
784  * interface into monitor mode, we set a flag indicating that we must
785  * take it out of that mode when the interface is closed, and, when
786  * closing the interface, if that flag is set we take it out of monitor
787  * mode.
788  */
789 
790 static void	pcap_cleanup_linux( pcap_t *handle )
791 {
792 	struct pcap_linux *handlep = handle->priv;
793 #ifdef HAVE_LIBNL
794 	struct nl80211_state nlstate;
795 	int ret;
796 #endif /* HAVE_LIBNL */
797 
798 	if (handlep->must_do_on_close != 0) {
799 		/*
800 		 * There's something we have to do when closing this
801 		 * pcap_t.
802 		 */
803 #ifdef HAVE_LIBNL
804 		if (handlep->must_do_on_close & MUST_DELETE_MONIF) {
805 			ret = nl80211_init(handle, &nlstate, handlep->device);
806 			if (ret >= 0) {
807 				ret = del_mon_if(handle, handle->fd, &nlstate,
808 				    handlep->device, handlep->mondevice);
809 				nl80211_cleanup(&nlstate);
810 			}
811 			if (ret < 0) {
812 				fprintf(stderr,
813 				    "Can't delete monitor interface %s (%s).\n"
814 				    "Please delete manually.\n",
815 				    handlep->mondevice, handle->errbuf);
816 			}
817 		}
818 #endif /* HAVE_LIBNL */
819 
820 		/*
821 		 * Take this pcap out of the list of pcaps for which we
822 		 * have to take the interface out of some mode.
823 		 */
824 		pcapint_remove_from_pcaps_to_close(handle);
825 	}
826 
827 	if (handle->fd != -1) {
828 		/*
829 		 * Destroy the ring buffer (assuming we've set it up),
830 		 * and unmap it if it's mapped.
831 		 */
832 		destroy_ring(handle);
833 	}
834 
835 	if (handlep->oneshot_buffer != NULL) {
836 		free(handlep->oneshot_buffer);
837 		handlep->oneshot_buffer = NULL;
838 	}
839 
840 	if (handlep->mondevice != NULL) {
841 		free(handlep->mondevice);
842 		handlep->mondevice = NULL;
843 	}
844 	if (handlep->device != NULL) {
845 		free(handlep->device);
846 		handlep->device = NULL;
847 	}
848 
849 	if (handlep->poll_breakloop_fd != -1) {
850 		close(handlep->poll_breakloop_fd);
851 		handlep->poll_breakloop_fd = -1;
852 	}
853 	pcapint_cleanup_live_common(handle);
854 }
855 
856 #ifdef HAVE_TPACKET3
857 /*
858  * Some versions of TPACKET_V3 have annoying bugs/misfeatures
859  * around which we have to work.  Determine if we have those
860  * problems or not.
861  * 3.19 is the first release with a fixed version of
862  * TPACKET_V3.  We treat anything before that as
863  * not having a fixed version; that may really mean
864  * it has *no* version.
865  */
866 static int has_broken_tpacket_v3(void)
867 {
868 	struct utsname utsname;
869 	const char *release;
870 	long major, minor;
871 	int matches, verlen;
872 
873 	/* No version information, assume broken. */
874 	if (uname(&utsname) == -1)
875 		return 1;
876 	release = utsname.release;
877 
878 	/* A malformed version, ditto. */
879 	matches = sscanf(release, "%ld.%ld%n", &major, &minor, &verlen);
880 	if (matches != 2)
881 		return 1;
882 	if (release[verlen] != '.' && release[verlen] != '\0')
883 		return 1;
884 
885 	/* OK, a fixed version. */
886 	if (major > 3 || (major == 3 && minor >= 19))
887 		return 0;
888 
889 	/* Too old :( */
890 	return 1;
891 }
892 #endif
893 
894 /*
895  * Set the timeout to be used in poll() with memory-mapped packet capture.
896  */
897 static void
898 set_poll_timeout(struct pcap_linux *handlep)
899 {
900 #ifdef HAVE_TPACKET3
901 	int broken_tpacket_v3 = has_broken_tpacket_v3();
902 #endif
903 	if (handlep->timeout == 0) {
904 #ifdef HAVE_TPACKET3
905 		/*
906 		 * XXX - due to a set of (mis)features in the TPACKET_V3
907 		 * kernel code prior to the 3.19 kernel, blocking forever
908 		 * with a TPACKET_V3 socket can, if few packets are
909 		 * arriving and passing the socket filter, cause most
910 		 * packets to be dropped.  See libpcap issue #335 for the
911 		 * full painful story.
912 		 *
913 		 * The workaround is to have poll() time out very quickly,
914 		 * so we grab the frames handed to us, and return them to
915 		 * the kernel, ASAP.
916 		 */
917 		if (handlep->tp_version == TPACKET_V3 && broken_tpacket_v3)
918 			handlep->poll_timeout = 1;	/* don't block for very long */
919 		else
920 #endif
921 			handlep->poll_timeout = -1;	/* block forever */
922 	} else if (handlep->timeout > 0) {
923 #ifdef HAVE_TPACKET3
924 		/*
925 		 * For TPACKET_V3, the timeout is handled by the kernel,
926 		 * so block forever; that way, we don't get extra timeouts.
927 		 * Don't do that if we have a broken TPACKET_V3, though.
928 		 */
929 		if (handlep->tp_version == TPACKET_V3 && !broken_tpacket_v3)
930 			handlep->poll_timeout = -1;	/* block forever, let TPACKET_V3 wake us up */
931 		else
932 #endif
933 			handlep->poll_timeout = handlep->timeout;	/* block for that amount of time */
934 	} else {
935 		/*
936 		 * Non-blocking mode; we call poll() to pick up error
937 		 * indications, but we don't want it to wait for
938 		 * anything.
939 		 */
940 		handlep->poll_timeout = 0;
941 	}
942 }
943 
944 static void pcap_breakloop_linux(pcap_t *handle)
945 {
946 	pcapint_breakloop_common(handle);
947 	struct pcap_linux *handlep = handle->priv;
948 
949 	uint64_t value = 1;
950 
951 	if (handlep->poll_breakloop_fd != -1) {
952 		/*
953 		 * XXX - pcap_breakloop() doesn't have a return value,
954 		 * so we can't indicate an error.
955 		 */
956 DIAG_OFF_WARN_UNUSED_RESULT
957 		(void)write(handlep->poll_breakloop_fd, &value, sizeof(value));
958 DIAG_ON_WARN_UNUSED_RESULT
959 	}
960 }
961 
962 /*
963  * Set the offset at which to insert VLAN tags.
964  * That should be the offset of the type field.
965  */
966 static void
967 set_vlan_offset(pcap_t *handle)
968 {
969 	struct pcap_linux *handlep = handle->priv;
970 
971 	switch (handle->linktype) {
972 
973 	case DLT_EN10MB:
974 		/*
975 		 * The type field is after the destination and source
976 		 * MAC address.
977 		 */
978 		handlep->vlan_offset = 2 * ETH_ALEN;
979 		break;
980 
981 	case DLT_LINUX_SLL:
982 		/*
983 		 * The type field is in the last 2 bytes of the
984 		 * DLT_LINUX_SLL header.
985 		 */
986 		handlep->vlan_offset = SLL_HDR_LEN - 2;
987 		break;
988 
989 	default:
990 		handlep->vlan_offset = -1; /* unknown */
991 		break;
992 	}
993 }
994 
995 /*
996  *  Get a handle for a live capture from the given device. You can
997  *  pass NULL as device to get all packages (without link level
998  *  information of course). If you pass 1 as promisc the interface
999  *  will be set to promiscuous mode (XXX: I think this usage should
1000  *  be deprecated and functions be added to select that later allow
1001  *  modification of that values -- Torsten).
1002  */
1003 static int
1004 pcap_activate_linux(pcap_t *handle)
1005 {
1006 	struct pcap_linux *handlep = handle->priv;
1007 	const char	*device;
1008 	int		is_any_device;
1009 	struct ifreq	ifr;
1010 	int		status;
1011 	int		ret;
1012 
1013 	device = handle->opt.device;
1014 
1015 	/*
1016 	 * Start out assuming no warnings.
1017 	 */
1018 	status = 0;
1019 
1020 	/*
1021 	 * Make sure the name we were handed will fit into the ioctls we
1022 	 * might perform on the device; if not, return a "No such device"
1023 	 * indication, as the Linux kernel shouldn't support creating
1024 	 * a device whose name won't fit into those ioctls.
1025 	 *
1026 	 * "Will fit" means "will fit, complete with a null terminator",
1027 	 * so if the length, which does *not* include the null terminator,
1028 	 * is greater than *or equal to* the size of the field into which
1029 	 * we'll be copying it, that won't fit.
1030 	 */
1031 	if (strlen(device) >= sizeof(ifr.ifr_name)) {
1032 		/*
1033 		 * There's nothing more to say, so clear the error
1034 		 * message.
1035 		 */
1036 		handle->errbuf[0] = '\0';
1037 		status = PCAP_ERROR_NO_SUCH_DEVICE;
1038 		goto fail;
1039 	}
1040 
1041 	/*
1042 	 * Turn a negative snapshot value (invalid), a snapshot value of
1043 	 * 0 (unspecified), or a value bigger than the normal maximum
1044 	 * value, into the maximum allowed value.
1045 	 *
1046 	 * If some application really *needs* a bigger snapshot
1047 	 * length, we should just increase MAXIMUM_SNAPLEN.
1048 	 */
1049 	if (handle->snapshot <= 0 || handle->snapshot > MAXIMUM_SNAPLEN)
1050 		handle->snapshot = MAXIMUM_SNAPLEN;
1051 
1052 	handlep->device	= strdup(device);
1053 	if (handlep->device == NULL) {
1054 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1055 		    errno, "strdup");
1056 		status = PCAP_ERROR;
1057 		goto fail;
1058 	}
1059 
1060 	/*
1061 	 * The "any" device is a special device which causes us not
1062 	 * to bind to a particular device and thus to look at all
1063 	 * devices.
1064 	 */
1065 	is_any_device = (strcmp(device, "any") == 0);
1066 	if (is_any_device) {
1067 		if (handle->opt.promisc) {
1068 			handle->opt.promisc = 0;
1069 			/* Just a warning. */
1070 			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1071 			    "Promiscuous mode not supported on the \"any\" device");
1072 			status = PCAP_WARNING_PROMISC_NOTSUP;
1073 		}
1074 	}
1075 
1076 	/* copy timeout value */
1077 	handlep->timeout = handle->opt.timeout;
1078 
1079 	/*
1080 	 * If we're in promiscuous mode, then we probably want
1081 	 * to see when the interface drops packets too, so get an
1082 	 * initial count from
1083 	 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1084 	 */
1085 	if (handle->opt.promisc)
1086 		handlep->sysfs_dropped = linux_if_drops(handlep->device);
1087 
1088 	/*
1089 	 * If the "any" device is specified, try to open a SOCK_DGRAM.
1090 	 * Otherwise, open a SOCK_RAW.
1091 	 */
1092 	ret = setup_socket(handle, is_any_device);
1093 	if (ret < 0) {
1094 		/*
1095 		 * Fatal error; the return value is the error code,
1096 		 * and handle->errbuf has been set to an appropriate
1097 		 * error message.
1098 		 */
1099 		status = ret;
1100 		goto fail;
1101 	}
1102 	if (ret > 0) {
1103 		/*
1104 		 * We got a warning; return that, as handle->errbuf
1105 		 * might have been overwritten by this warning.
1106 		 */
1107 		status = ret;
1108 	}
1109 
1110 	/*
1111 	 * Success (possibly with a warning).
1112 	 *
1113 	 * First, try to allocate an event FD for breakloop, if
1114 	 * we're not going to start in non-blocking mode.
1115 	 */
1116 	if (!handle->opt.nonblock) {
1117 		handlep->poll_breakloop_fd = eventfd(0, EFD_NONBLOCK);
1118 		if (handlep->poll_breakloop_fd == -1) {
1119 			/*
1120 			 * Failed.
1121 			 */
1122 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
1123 			    PCAP_ERRBUF_SIZE, errno, "could not open eventfd");
1124 			status = PCAP_ERROR;
1125 			goto fail;
1126 		}
1127 	}
1128 
1129 	/*
1130 	 * Succeeded.
1131 	 * Try to set up memory-mapped access.
1132 	 */
1133 	ret = setup_mmapped(handle);
1134 	if (ret < 0) {
1135 		/*
1136 		 * We failed to set up to use it, or the
1137 		 * kernel supports it, but we failed to
1138 		 * enable it.  The return value is the
1139 		 * error status to return and, if it's
1140 		 * PCAP_ERROR, handle->errbuf contains
1141 		 * the error message.
1142 		 */
1143 		status = ret;
1144 		goto fail;
1145 	}
1146 	if (ret > 0) {
1147 		/*
1148 		 * We got a warning; return that, as handle->errbuf
1149 		 * might have been overwritten by this warning.
1150 		 */
1151 		status = ret;
1152 	}
1153 
1154 	/*
1155 	 * We succeeded.  status has been set to the status to return,
1156 	 * which might be 0, or might be a PCAP_WARNING_ value.
1157 	 */
1158 	/*
1159 	 * Now that we have activated the mmap ring, we can
1160 	 * set the correct protocol.
1161 	 */
1162 	if ((ret = iface_bind(handle->fd, handlep->ifindex,
1163 	    handle->errbuf, pcap_protocol(handle))) != 0) {
1164 		status = ret;
1165 		goto fail;
1166 	}
1167 
1168 	handle->inject_op = pcap_inject_linux;
1169 	handle->setfilter_op = pcap_setfilter_linux;
1170 	handle->setdirection_op = pcap_setdirection_linux;
1171 	handle->set_datalink_op = pcap_set_datalink_linux;
1172 	handle->setnonblock_op = pcap_setnonblock_linux;
1173 	handle->getnonblock_op = pcap_getnonblock_linux;
1174 	handle->cleanup_op = pcap_cleanup_linux;
1175 	handle->stats_op = pcap_stats_linux;
1176 	handle->breakloop_op = pcap_breakloop_linux;
1177 
1178 	switch (handlep->tp_version) {
1179 
1180 	case TPACKET_V2:
1181 		handle->read_op = pcap_read_linux_mmap_v2;
1182 		break;
1183 #ifdef HAVE_TPACKET3
1184 	case TPACKET_V3:
1185 		handle->read_op = pcap_read_linux_mmap_v3;
1186 		break;
1187 #endif
1188 	}
1189 	handle->oneshot_callback = pcapint_oneshot_linux;
1190 	handle->selectable_fd = handle->fd;
1191 
1192 	return status;
1193 
1194 fail:
1195 	pcap_cleanup_linux(handle);
1196 	return status;
1197 }
1198 
1199 static int
1200 pcap_set_datalink_linux(pcap_t *handle, int dlt)
1201 {
1202 	handle->linktype = dlt;
1203 
1204 	/*
1205 	 * Update the offset at which to insert VLAN tags for the
1206 	 * new link-layer type.
1207 	 */
1208 	set_vlan_offset(handle);
1209 
1210 	return 0;
1211 }
1212 
1213 /*
1214  * linux_check_direction()
1215  *
1216  * Do checks based on packet direction.
1217  */
1218 static inline int
1219 linux_check_direction(const pcap_t *handle, const struct sockaddr_ll *sll)
1220 {
1221 	struct pcap_linux	*handlep = handle->priv;
1222 
1223 	if (sll->sll_pkttype == PACKET_OUTGOING) {
1224 		/*
1225 		 * Outgoing packet.
1226 		 * If this is from the loopback device, reject it;
1227 		 * we'll see the packet as an incoming packet as well,
1228 		 * and we don't want to see it twice.
1229 		 */
1230 		if (sll->sll_ifindex == handlep->lo_ifindex)
1231 			return 0;
1232 
1233 		/*
1234 		 * If this is an outgoing CAN or CAN FD frame, and
1235 		 * the user doesn't only want outgoing packets,
1236 		 * reject it; CAN devices and drivers, and the CAN
1237 		 * stack, always arrange to loop back transmitted
1238 		 * packets, so they also appear as incoming packets.
1239 		 * We don't want duplicate packets, and we can't
1240 		 * easily distinguish packets looped back by the CAN
1241 		 * layer than those received by the CAN layer, so we
1242 		 * eliminate this packet instead.
1243 		 *
1244 		 * We check whether this is a CAN or CAN FD frame
1245 		 * by checking whether the device's hardware type
1246 		 * is ARPHRD_CAN.
1247 		 */
1248 		if (sll->sll_hatype == ARPHRD_CAN &&
1249 		     handle->direction != PCAP_D_OUT)
1250 			return 0;
1251 
1252 		/*
1253 		 * If the user only wants incoming packets, reject it.
1254 		 */
1255 		if (handle->direction == PCAP_D_IN)
1256 			return 0;
1257 	} else {
1258 		/*
1259 		 * Incoming packet.
1260 		 * If the user only wants outgoing packets, reject it.
1261 		 */
1262 		if (handle->direction == PCAP_D_OUT)
1263 			return 0;
1264 	}
1265 	return 1;
1266 }
1267 
1268 /*
1269  * Check whether the device to which the pcap_t is bound still exists.
1270  * We do so by asking what address the socket is bound to, and checking
1271  * whether the ifindex in the address is -1, meaning "that device is gone",
1272  * or some other value, meaning "that device still exists".
1273  */
1274 static int
1275 device_still_exists(pcap_t *handle)
1276 {
1277 	struct pcap_linux *handlep = handle->priv;
1278 	struct sockaddr_ll addr;
1279 	socklen_t addr_len;
1280 
1281 	/*
1282 	 * If handlep->ifindex is -1, the socket isn't bound, meaning
1283 	 * we're capturing on the "any" device; that device never
1284 	 * disappears.  (It should also never be configured down, so
1285 	 * we shouldn't even get here, but let's make sure.)
1286 	 */
1287 	if (handlep->ifindex == -1)
1288 		return (1);	/* it's still here */
1289 
1290 	/*
1291 	 * OK, now try to get the address for the socket.
1292 	 */
1293 	addr_len = sizeof (addr);
1294 	if (getsockname(handle->fd, (struct sockaddr *) &addr, &addr_len) == -1) {
1295 		/*
1296 		 * Error - report an error and return -1.
1297 		 */
1298 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1299 		    errno, "getsockname failed");
1300 		return (-1);
1301 	}
1302 	if (addr.sll_ifindex == -1) {
1303 		/*
1304 		 * This means the device went away.
1305 		 */
1306 		return (0);
1307 	}
1308 
1309 	/*
1310 	 * The device presumably just went down.
1311 	 */
1312 	return (1);
1313 }
1314 
1315 static int
1316 pcap_inject_linux(pcap_t *handle, const void *buf, int size)
1317 {
1318 	struct pcap_linux *handlep = handle->priv;
1319 	int ret;
1320 
1321 	if (handlep->ifindex == -1) {
1322 		/*
1323 		 * We don't support sending on the "any" device.
1324 		 */
1325 		pcapint_strlcpy(handle->errbuf,
1326 		    "Sending packets isn't supported on the \"any\" device",
1327 		    PCAP_ERRBUF_SIZE);
1328 		return (-1);
1329 	}
1330 
1331 	if (handlep->cooked) {
1332 		/*
1333 		 * We don't support sending on cooked-mode sockets.
1334 		 *
1335 		 * XXX - how do you send on a bound cooked-mode
1336 		 * socket?
1337 		 * Is a "sendto()" required there?
1338 		 */
1339 		pcapint_strlcpy(handle->errbuf,
1340 		    "Sending packets isn't supported in cooked mode",
1341 		    PCAP_ERRBUF_SIZE);
1342 		return (-1);
1343 	}
1344 
1345 	ret = (int)send(handle->fd, buf, size, 0);
1346 	if (ret == -1) {
1347 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1348 		    errno, "send");
1349 		return (-1);
1350 	}
1351 	return (ret);
1352 }
1353 
1354 /*
1355  *  Get the statistics for the given packet capture handle.
1356  */
1357 static int
1358 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
1359 {
1360 	struct pcap_linux *handlep = handle->priv;
1361 #ifdef HAVE_TPACKET3
1362 	/*
1363 	 * For sockets using TPACKET_V2, the extra stuff at the end
1364 	 * of a struct tpacket_stats_v3 will not be filled in, and
1365 	 * we don't look at it so this is OK even for those sockets.
1366 	 * In addition, the PF_PACKET socket code in the kernel only
1367 	 * uses the length parameter to compute how much data to
1368 	 * copy out and to indicate how much data was copied out, so
1369 	 * it's OK to base it on the size of a struct tpacket_stats.
1370 	 *
1371 	 * XXX - it's probably OK, in fact, to just use a
1372 	 * struct tpacket_stats for V3 sockets, as we don't
1373 	 * care about the tp_freeze_q_cnt stat.
1374 	 */
1375 	struct tpacket_stats_v3 kstats;
1376 #else /* HAVE_TPACKET3 */
1377 	struct tpacket_stats kstats;
1378 #endif /* HAVE_TPACKET3 */
1379 	socklen_t len = sizeof (struct tpacket_stats);
1380 
1381 	long long if_dropped = 0;
1382 
1383 	/*
1384 	 * To fill in ps_ifdrop, we parse
1385 	 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1386 	 * for the numbers
1387 	 */
1388 	if (handle->opt.promisc)
1389 	{
1390 		/*
1391 		 * XXX - is there any reason to do this by remembering
1392 		 * the last counts value, subtracting it from the
1393 		 * current counts value, and adding that to stat.ps_ifdrop,
1394 		 * maintaining stat.ps_ifdrop as a count, rather than just
1395 		 * saving the *initial* counts value and setting
1396 		 * stat.ps_ifdrop to the difference between the current
1397 		 * value and the initial value?
1398 		 *
1399 		 * One reason might be to handle the count wrapping
1400 		 * around, on platforms where the count is 32 bits
1401 		 * and where you might get more than 2^32 dropped
1402 		 * packets; is there any other reason?
1403 		 *
1404 		 * (We maintain the count as a long long int so that,
1405 		 * if the kernel maintains the counts as 64-bit even
1406 		 * on 32-bit platforms, we can handle the real count.
1407 		 *
1408 		 * Unfortunately, we can't report 64-bit counts; we
1409 		 * need a better API for reporting statistics, such as
1410 		 * one that reports them in a style similar to the
1411 		 * pcapng Interface Statistics Block, so that 1) the
1412 		 * counts are 64-bit, 2) it's easier to add new statistics
1413 		 * without breaking the ABI, and 3) it's easier to
1414 		 * indicate to a caller that wants one particular
1415 		 * statistic that it's not available by just not supplying
1416 		 * it.)
1417 		 */
1418 		if_dropped = handlep->sysfs_dropped;
1419 		handlep->sysfs_dropped = linux_if_drops(handlep->device);
1420 		handlep->stat.ps_ifdrop += (u_int)(handlep->sysfs_dropped - if_dropped);
1421 	}
1422 
1423 	/*
1424 	 * Try to get the packet counts from the kernel.
1425 	 */
1426 	if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
1427 			&kstats, &len) > -1) {
1428 		/*
1429 		 * "ps_recv" counts only packets that *passed* the
1430 		 * filter, not packets that didn't pass the filter.
1431 		 * This includes packets later dropped because we
1432 		 * ran out of buffer space.
1433 		 *
1434 		 * "ps_drop" counts packets dropped because we ran
1435 		 * out of buffer space.  It doesn't count packets
1436 		 * dropped by the interface driver.  It counts only
1437 		 * packets that passed the filter.
1438 		 *
1439 		 * See above for ps_ifdrop.
1440 		 *
1441 		 * Both statistics include packets not yet read from
1442 		 * the kernel by libpcap, and thus not yet seen by
1443 		 * the application.
1444 		 *
1445 		 * In "linux/net/packet/af_packet.c", at least in 2.6.27
1446 		 * through 5.6 kernels, "tp_packets" is incremented for
1447 		 * every packet that passes the packet filter *and* is
1448 		 * successfully copied to the ring buffer; "tp_drops" is
1449 		 * incremented for every packet dropped because there's
1450 		 * not enough free space in the ring buffer.
1451 		 *
1452 		 * When the statistics are returned for a PACKET_STATISTICS
1453 		 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
1454 		 * so that "tp_packets" counts all packets handed to
1455 		 * the PF_PACKET socket, including packets dropped because
1456 		 * there wasn't room on the socket buffer - but not
1457 		 * including packets that didn't pass the filter.
1458 		 *
1459 		 * In the BSD BPF, the count of received packets is
1460 		 * incremented for every packet handed to BPF, regardless
1461 		 * of whether it passed the filter.
1462 		 *
1463 		 * We can't make "pcap_stats()" work the same on both
1464 		 * platforms, but the best approximation is to return
1465 		 * "tp_packets" as the count of packets and "tp_drops"
1466 		 * as the count of drops.
1467 		 *
1468 		 * Keep a running total because each call to
1469 		 *    getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
1470 		 * resets the counters to zero.
1471 		 */
1472 		handlep->stat.ps_recv += kstats.tp_packets;
1473 		handlep->stat.ps_drop += kstats.tp_drops;
1474 		*stats = handlep->stat;
1475 		return 0;
1476 	}
1477 
1478 	pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, errno,
1479 	    "failed to get statistics from socket");
1480 	return -1;
1481 }
1482 
1483 /*
1484  * A PF_PACKET socket can be bound to any network interface.
1485  */
1486 static int
1487 can_be_bound(const char *name _U_)
1488 {
1489 	return (1);
1490 }
1491 
1492 /*
1493  * Get a socket to use with various interface ioctls.
1494  */
1495 static int
1496 get_if_ioctl_socket(void)
1497 {
1498 	int fd;
1499 
1500 	/*
1501 	 * This is a bit ugly.
1502 	 *
1503 	 * There isn't a socket type that's guaranteed to work.
1504 	 *
1505 	 * AF_NETLINK will work *if* you have Netlink configured into the
1506 	 * kernel (can it be configured out if you have any networking
1507 	 * support at all?) *and* if you're running a sufficiently recent
1508 	 * kernel, but not all the kernels we support are sufficiently
1509 	 * recent - that feature was introduced in Linux 4.6.
1510 	 *
1511 	 * AF_UNIX will work *if* you have UNIX-domain sockets configured
1512 	 * into the kernel and *if* you're not on a system that doesn't
1513 	 * allow them - some SELinux systems don't allow you create them.
1514 	 * Most systems probably have them configured in, but not all systems
1515 	 * have them configured in and allow them to be created.
1516 	 *
1517 	 * AF_INET will work *if* you have IPv4 configured into the kernel,
1518 	 * but, apparently, some systems have network adapters but have
1519 	 * kernels without IPv4 support.
1520 	 *
1521 	 * AF_INET6 will work *if* you have IPv6 configured into the
1522 	 * kernel, but if you don't have AF_INET, you might not have
1523 	 * AF_INET6, either (that is, independently on its own grounds).
1524 	 *
1525 	 * AF_PACKET would work, except that some of these calls should
1526 	 * work even if you *don't* have capture permission (you should be
1527 	 * able to enumerate interfaces and get information about them
1528 	 * without capture permission; you shouldn't get a failure until
1529 	 * you try pcap_activate()).  (If you don't allow programs to
1530 	 * get as much information as possible about interfaces if you
1531 	 * don't have permission to capture, you run the risk of users
1532 	 * asking "why isn't it showing XXX" - or, worse, if you don't
1533 	 * show interfaces *at all* if you don't have permission to
1534 	 * capture on them, "why do no interfaces show up?" - when the
1535 	 * real problem is a permissions problem.  Error reports of that
1536 	 * type require a lot more back-and-forth to debug, as evidenced
1537 	 * by many Wireshark bugs/mailing list questions/Q&A questions.)
1538 	 *
1539 	 * So:
1540 	 *
1541 	 * we first try an AF_NETLINK socket, where "try" includes
1542 	 * "try to do a device ioctl on it", as, in the future, once
1543 	 * pre-4.6 kernels are sufficiently rare, that will probably
1544 	 * be the mechanism most likely to work;
1545 	 *
1546 	 * if that fails, we try an AF_UNIX socket, as that's less
1547 	 * likely to be configured out on a networking-capable system
1548 	 * than is IP;
1549 	 *
1550 	 * if that fails, we try an AF_INET6 socket;
1551 	 *
1552 	 * if that fails, we try an AF_INET socket.
1553 	 */
1554 	fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
1555 	if (fd != -1) {
1556 		/*
1557 		 * OK, let's make sure we can do an SIOCGIFNAME
1558 		 * ioctl.
1559 		 */
1560 		struct ifreq ifr;
1561 
1562 		memset(&ifr, 0, sizeof(ifr));
1563 		if (ioctl(fd, SIOCGIFNAME, &ifr) == 0 ||
1564 		    errno != EOPNOTSUPP) {
1565 			/*
1566 			 * It succeeded, or failed for some reason
1567 			 * other than "netlink sockets don't support
1568 			 * device ioctls".  Go with the AF_NETLINK
1569 			 * socket.
1570 			 */
1571 			return (fd);
1572 		}
1573 
1574 		/*
1575 		 * OK, that didn't work, so it's as bad as "netlink
1576 		 * sockets aren't available".  Close the socket and
1577 		 * drive on.
1578 		 */
1579 		close(fd);
1580 	}
1581 
1582 	/*
1583 	 * Now try an AF_UNIX socket.
1584 	 */
1585 	fd = socket(AF_UNIX, SOCK_RAW, 0);
1586 	if (fd != -1) {
1587 		/*
1588 		 * OK, we got it!
1589 		 */
1590 		return (fd);
1591 	}
1592 
1593 	/*
1594 	 * Now try an AF_INET6 socket.
1595 	 */
1596 	fd = socket(AF_INET6, SOCK_DGRAM, 0);
1597 	if (fd != -1) {
1598 		return (fd);
1599 	}
1600 
1601 	/*
1602 	 * Now try an AF_INET socket.
1603 	 *
1604 	 * XXX - if that fails, is there anything else we should try?
1605 	 * AF_CAN, for embedded systems in vehicles, in case they're
1606 	 * built without Internet protocol support?  Any other socket
1607 	 * types popular in non-Internet embedded systems?
1608 	 */
1609 	return (socket(AF_INET, SOCK_DGRAM, 0));
1610 }
1611 
1612 /*
1613  * Get additional flags for a device, using SIOCGIFMEDIA.
1614  */
1615 static int
1616 get_if_flags(const char *name, bpf_u_int32 *flags, char *errbuf)
1617 {
1618 	int sock;
1619 	FILE *fh;
1620 	unsigned int arptype;
1621 	struct ifreq ifr;
1622 	struct ethtool_value info;
1623 
1624 	if (*flags & PCAP_IF_LOOPBACK) {
1625 		/*
1626 		 * Loopback devices aren't wireless, and "connected"/
1627 		 * "disconnected" doesn't apply to them.
1628 		 */
1629 		*flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1630 		return 0;
1631 	}
1632 
1633 	sock = get_if_ioctl_socket();
1634 	if (sock == -1) {
1635 		pcapint_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, errno,
1636 		    "Can't create socket to get ethtool information for %s",
1637 		    name);
1638 		return -1;
1639 	}
1640 
1641 	/*
1642 	 * OK, what type of network is this?
1643 	 * In particular, is it wired or wireless?
1644 	 */
1645 	if (is_wifi(name)) {
1646 		/*
1647 		 * Wi-Fi, hence wireless.
1648 		 */
1649 		*flags |= PCAP_IF_WIRELESS;
1650 	} else {
1651 		/*
1652 		 * OK, what does /sys/class/net/{if_name}/type contain?
1653 		 * (We don't use that for Wi-Fi, as it'll report
1654 		 * "Ethernet", i.e. ARPHRD_ETHER, for non-monitor-
1655 		 * mode devices.)
1656 		 */
1657 		char *pathstr;
1658 
1659 		if (asprintf(&pathstr, "/sys/class/net/%s/type", name) == -1) {
1660 			snprintf(errbuf, PCAP_ERRBUF_SIZE,
1661 			    "%s: Can't generate path name string for /sys/class/net device",
1662 			    name);
1663 			close(sock);
1664 			return -1;
1665 		}
1666 		fh = fopen(pathstr, "r");
1667 		if (fh != NULL) {
1668 			if (fscanf(fh, "%u", &arptype) == 1) {
1669 				/*
1670 				 * OK, we got an ARPHRD_ type; what is it?
1671 				 */
1672 				switch (arptype) {
1673 
1674 				case ARPHRD_LOOPBACK:
1675 					/*
1676 					 * These are types to which
1677 					 * "connected" and "disconnected"
1678 					 * don't apply, so don't bother
1679 					 * asking about it.
1680 					 *
1681 					 * XXX - add other types?
1682 					 */
1683 					close(sock);
1684 					fclose(fh);
1685 					free(pathstr);
1686 					return 0;
1687 
1688 				case ARPHRD_IRDA:
1689 				case ARPHRD_IEEE80211:
1690 				case ARPHRD_IEEE80211_PRISM:
1691 				case ARPHRD_IEEE80211_RADIOTAP:
1692 #ifdef ARPHRD_IEEE802154
1693 				case ARPHRD_IEEE802154:
1694 #endif
1695 #ifdef ARPHRD_IEEE802154_MONITOR
1696 				case ARPHRD_IEEE802154_MONITOR:
1697 #endif
1698 #ifdef ARPHRD_6LOWPAN
1699 				case ARPHRD_6LOWPAN:
1700 #endif
1701 					/*
1702 					 * Various wireless types.
1703 					 */
1704 					*flags |= PCAP_IF_WIRELESS;
1705 					break;
1706 				}
1707 			}
1708 			fclose(fh);
1709 		}
1710 		free(pathstr);
1711 	}
1712 
1713 #ifdef ETHTOOL_GLINK
1714 	memset(&ifr, 0, sizeof(ifr));
1715 	pcapint_strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
1716 	info.cmd = ETHTOOL_GLINK;
1717 	/*
1718 	 * XXX - while Valgrind handles SIOCETHTOOL and knows that
1719 	 * the ETHTOOL_GLINK command sets the .data member of the
1720 	 * structure, Memory Sanitizer doesn't yet do so:
1721 	 *
1722 	 *    https://bugs.llvm.org/show_bug.cgi?id=45814
1723 	 *
1724 	 * For now, we zero it out to squelch warnings; if the bug
1725 	 * in question is fixed, we can remove this.
1726 	 */
1727 	info.data = 0;
1728 	ifr.ifr_data = (caddr_t)&info;
1729 	if (ioctl(sock, SIOCETHTOOL, &ifr) == -1) {
1730 		int save_errno = errno;
1731 
1732 		switch (save_errno) {
1733 
1734 		case EOPNOTSUPP:
1735 		case EINVAL:
1736 			/*
1737 			 * OK, this OS version or driver doesn't support
1738 			 * asking for this information.
1739 			 * XXX - distinguish between "this doesn't
1740 			 * support ethtool at all because it's not
1741 			 * that type of device" vs. "this doesn't
1742 			 * support ethtool even though it's that
1743 			 * type of device", and return "unknown".
1744 			 */
1745 			*flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1746 			close(sock);
1747 			return 0;
1748 
1749 		case ENODEV:
1750 			/*
1751 			 * OK, no such device.
1752 			 * The user will find that out when they try to
1753 			 * activate the device; just say "OK" and
1754 			 * don't set anything.
1755 			 */
1756 			close(sock);
1757 			return 0;
1758 
1759 		default:
1760 			/*
1761 			 * Other error.
1762 			 */
1763 			pcapint_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE,
1764 			    save_errno,
1765 			    "%s: SIOCETHTOOL(ETHTOOL_GLINK) ioctl failed",
1766 			    name);
1767 			close(sock);
1768 			return -1;
1769 		}
1770 	}
1771 
1772 	/*
1773 	 * Is it connected?
1774 	 */
1775 	if (info.data) {
1776 		/*
1777 		 * It's connected.
1778 		 */
1779 		*flags |= PCAP_IF_CONNECTION_STATUS_CONNECTED;
1780 	} else {
1781 		/*
1782 		 * It's disconnected.
1783 		 */
1784 		*flags |= PCAP_IF_CONNECTION_STATUS_DISCONNECTED;
1785 	}
1786 #endif
1787 
1788 	close(sock);
1789 	return 0;
1790 }
1791 
1792 int
1793 pcapint_platform_finddevs(pcap_if_list_t *devlistp, char *errbuf)
1794 {
1795 	/*
1796 	 * Get the list of regular interfaces first.
1797 	 */
1798 	if (pcapint_findalldevs_interfaces(devlistp, errbuf, can_be_bound,
1799 	    get_if_flags) == -1)
1800 		return (-1);	/* failure */
1801 
1802 	/*
1803 	 * Add the "any" device.
1804 	 */
1805 	if (pcap_add_any_dev(devlistp, errbuf) == NULL)
1806 		return (-1);
1807 
1808 	return (0);
1809 }
1810 
1811 /*
1812  * Set direction flag: Which packets do we accept on a forwarding
1813  * single device? IN, OUT or both?
1814  */
1815 static int
1816 pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d)
1817 {
1818 	/*
1819 	 * It's guaranteed, at this point, that d is a valid
1820 	 * direction value.
1821 	 */
1822 	handle->direction = d;
1823 	return 0;
1824 }
1825 
1826 static int
1827 is_wifi(const char *device)
1828 {
1829 	char *pathstr;
1830 	struct stat statb;
1831 
1832 	/*
1833 	 * See if there's a sysfs wireless directory for it.
1834 	 * If so, it's a wireless interface.
1835 	 */
1836 	if (asprintf(&pathstr, "/sys/class/net/%s/wireless", device) == -1) {
1837 		/*
1838 		 * Just give up here.
1839 		 */
1840 		return 0;
1841 	}
1842 	if (stat(pathstr, &statb) == 0) {
1843 		free(pathstr);
1844 		return 1;
1845 	}
1846 	free(pathstr);
1847 
1848 	return 0;
1849 }
1850 
1851 /*
1852  *  Linux uses the ARP hardware type to identify the type of an
1853  *  interface. pcap uses the DLT_xxx constants for this. This
1854  *  function takes a pointer to a "pcap_t", and an ARPHRD_xxx
1855  *  constant, as arguments, and sets "handle->linktype" to the
1856  *  appropriate DLT_XXX constant and sets "handle->offset" to
1857  *  the appropriate value (to make "handle->offset" plus link-layer
1858  *  header length be a multiple of 4, so that the link-layer payload
1859  *  will be aligned on a 4-byte boundary when capturing packets).
1860  *  (If the offset isn't set here, it'll be 0; add code as appropriate
1861  *  for cases where it shouldn't be 0.)
1862  *
1863  *  If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
1864  *  in cooked mode; otherwise, we can't use cooked mode, so we have
1865  *  to pick some type that works in raw mode, or fail.
1866  *
1867  *  Sets the link type to -1 if unable to map the type.
1868  *
1869  *  Returns 0 on success or a PCAP_ERROR_ value on error.
1870  */
1871 static int map_arphrd_to_dlt(pcap_t *handle, int arptype,
1872 			     const char *device, int cooked_ok)
1873 {
1874 	static const char cdma_rmnet[] = "cdma_rmnet";
1875 
1876 	switch (arptype) {
1877 
1878 	case ARPHRD_ETHER:
1879 		/*
1880 		 * For various annoying reasons having to do with DHCP
1881 		 * software, some versions of Android give the mobile-
1882 		 * phone-network interface an ARPHRD_ value of
1883 		 * ARPHRD_ETHER, even though the packets supplied by
1884 		 * that interface have no link-layer header, and begin
1885 		 * with an IP header, so that the ARPHRD_ value should
1886 		 * be ARPHRD_NONE.
1887 		 *
1888 		 * Detect those devices by checking the device name, and
1889 		 * use DLT_RAW for them.
1890 		 */
1891 		if (strncmp(device, cdma_rmnet, sizeof cdma_rmnet - 1) == 0) {
1892 			handle->linktype = DLT_RAW;
1893 			return 0;
1894 		}
1895 
1896 		/*
1897 		 * Is this a real Ethernet device?  If so, give it a
1898 		 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
1899 		 * that an application can let you choose it, in case you're
1900 		 * capturing DOCSIS traffic that a Cisco Cable Modem
1901 		 * Termination System is putting out onto an Ethernet (it
1902 		 * doesn't put an Ethernet header onto the wire, it puts raw
1903 		 * DOCSIS frames out on the wire inside the low-level
1904 		 * Ethernet framing).
1905 		 *
1906 		 * XXX - are there any other sorts of "fake Ethernet" that
1907 		 * have ARPHRD_ETHER but that shouldn't offer DLT_DOCSIS as
1908 		 * a Cisco CMTS won't put traffic onto it or get traffic
1909 		 * bridged onto it?  ISDN is handled in "setup_socket()",
1910 		 * as we fall back on cooked mode there, and we use
1911 		 * is_wifi() to check for 802.11 devices; are there any
1912 		 * others?
1913 		 */
1914 		if (!is_wifi(device)) {
1915 			int ret;
1916 
1917 			/*
1918 			 * This is not a Wi-Fi device but it could be
1919 			 * a DSA master/management network device.
1920 			 */
1921 			ret = iface_dsa_get_proto_info(device, handle);
1922 			if (ret < 0)
1923 				return ret;
1924 
1925 			if (ret == 1) {
1926 				/*
1927 				 * This is a DSA master/management network
1928 				 * device linktype is already set by
1929 				 * iface_dsa_get_proto_info() set an
1930 				 * appropriate offset here.
1931 				 */
1932 				handle->offset = 2;
1933 				break;
1934 			}
1935 
1936 			/*
1937 			 * It's not a Wi-Fi device; offer DOCSIS.
1938 			 */
1939 			handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
1940 			if (handle->dlt_list == NULL) {
1941 				pcapint_fmt_errmsg_for_errno(handle->errbuf,
1942 				    PCAP_ERRBUF_SIZE, errno, "malloc");
1943 				return (PCAP_ERROR);
1944 			}
1945 			handle->dlt_list[0] = DLT_EN10MB;
1946 			handle->dlt_list[1] = DLT_DOCSIS;
1947 			handle->dlt_count = 2;
1948 		}
1949 		/* FALLTHROUGH */
1950 
1951 	case ARPHRD_METRICOM:
1952 	case ARPHRD_LOOPBACK:
1953 		handle->linktype = DLT_EN10MB;
1954 		handle->offset = 2;
1955 		break;
1956 
1957 	case ARPHRD_EETHER:
1958 		handle->linktype = DLT_EN3MB;
1959 		break;
1960 
1961 	case ARPHRD_AX25:
1962 		handle->linktype = DLT_AX25_KISS;
1963 		break;
1964 
1965 	case ARPHRD_PRONET:
1966 		handle->linktype = DLT_PRONET;
1967 		break;
1968 
1969 	case ARPHRD_CHAOS:
1970 		handle->linktype = DLT_CHAOS;
1971 		break;
1972 #ifndef ARPHRD_CAN
1973 #define ARPHRD_CAN 280
1974 #endif
1975 	case ARPHRD_CAN:
1976 		handle->linktype = DLT_CAN_SOCKETCAN;
1977 		break;
1978 
1979 #ifndef ARPHRD_IEEE802_TR
1980 #define ARPHRD_IEEE802_TR 800	/* From Linux 2.4 */
1981 #endif
1982 	case ARPHRD_IEEE802_TR:
1983 	case ARPHRD_IEEE802:
1984 		handle->linktype = DLT_IEEE802;
1985 		handle->offset = 2;
1986 		break;
1987 
1988 	case ARPHRD_ARCNET:
1989 		handle->linktype = DLT_ARCNET_LINUX;
1990 		break;
1991 
1992 #ifndef ARPHRD_FDDI	/* From Linux 2.2.13 */
1993 #define ARPHRD_FDDI	774
1994 #endif
1995 	case ARPHRD_FDDI:
1996 		handle->linktype = DLT_FDDI;
1997 		handle->offset = 3;
1998 		break;
1999 
2000 #ifndef ARPHRD_ATM  /* FIXME: How to #include this? */
2001 #define ARPHRD_ATM 19
2002 #endif
2003 	case ARPHRD_ATM:
2004 		/*
2005 		 * The Classical IP implementation in ATM for Linux
2006 		 * supports both what RFC 1483 calls "LLC Encapsulation",
2007 		 * in which each packet has an LLC header, possibly
2008 		 * with a SNAP header as well, prepended to it, and
2009 		 * what RFC 1483 calls "VC Based Multiplexing", in which
2010 		 * different virtual circuits carry different network
2011 		 * layer protocols, and no header is prepended to packets.
2012 		 *
2013 		 * They both have an ARPHRD_ type of ARPHRD_ATM, so
2014 		 * you can't use the ARPHRD_ type to find out whether
2015 		 * captured packets will have an LLC header, and,
2016 		 * while there's a socket ioctl to *set* the encapsulation
2017 		 * type, there's no ioctl to *get* the encapsulation type.
2018 		 *
2019 		 * This means that
2020 		 *
2021 		 *	programs that dissect Linux Classical IP frames
2022 		 *	would have to check for an LLC header and,
2023 		 *	depending on whether they see one or not, dissect
2024 		 *	the frame as LLC-encapsulated or as raw IP (I
2025 		 *	don't know whether there's any traffic other than
2026 		 *	IP that would show up on the socket, or whether
2027 		 *	there's any support for IPv6 in the Linux
2028 		 *	Classical IP code);
2029 		 *
2030 		 *	filter expressions would have to compile into
2031 		 *	code that checks for an LLC header and does
2032 		 *	the right thing.
2033 		 *
2034 		 * Both of those are a nuisance - and, at least on systems
2035 		 * that support PF_PACKET sockets, we don't have to put
2036 		 * up with those nuisances; instead, we can just capture
2037 		 * in cooked mode.  That's what we'll do, if we can.
2038 		 * Otherwise, we'll just fail.
2039 		 */
2040 		if (cooked_ok)
2041 			handle->linktype = DLT_LINUX_SLL;
2042 		else
2043 			handle->linktype = -1;
2044 		break;
2045 
2046 #ifndef ARPHRD_IEEE80211  /* From Linux 2.4.6 */
2047 #define ARPHRD_IEEE80211 801
2048 #endif
2049 	case ARPHRD_IEEE80211:
2050 		handle->linktype = DLT_IEEE802_11;
2051 		break;
2052 
2053 #ifndef ARPHRD_IEEE80211_PRISM  /* From Linux 2.4.18 */
2054 #define ARPHRD_IEEE80211_PRISM 802
2055 #endif
2056 	case ARPHRD_IEEE80211_PRISM:
2057 		handle->linktype = DLT_PRISM_HEADER;
2058 		break;
2059 
2060 #ifndef ARPHRD_IEEE80211_RADIOTAP /* new */
2061 #define ARPHRD_IEEE80211_RADIOTAP 803
2062 #endif
2063 	case ARPHRD_IEEE80211_RADIOTAP:
2064 		handle->linktype = DLT_IEEE802_11_RADIO;
2065 		break;
2066 
2067 	case ARPHRD_PPP:
2068 		/*
2069 		 * Some PPP code in the kernel supplies no link-layer
2070 		 * header whatsoever to PF_PACKET sockets; other PPP
2071 		 * code supplies PPP link-layer headers ("syncppp.c");
2072 		 * some PPP code might supply random link-layer
2073 		 * headers (PPP over ISDN - there's code in Ethereal,
2074 		 * for example, to cope with PPP-over-ISDN captures
2075 		 * with which the Ethereal developers have had to cope,
2076 		 * heuristically trying to determine which of the
2077 		 * oddball link-layer headers particular packets have).
2078 		 *
2079 		 * As such, we just punt, and run all PPP interfaces
2080 		 * in cooked mode, if we can; otherwise, we just treat
2081 		 * it as DLT_RAW, for now - if somebody needs to capture,
2082 		 * on a 2.0[.x] kernel, on PPP devices that supply a
2083 		 * link-layer header, they'll have to add code here to
2084 		 * map to the appropriate DLT_ type (possibly adding a
2085 		 * new DLT_ type, if necessary).
2086 		 */
2087 		if (cooked_ok)
2088 			handle->linktype = DLT_LINUX_SLL;
2089 		else {
2090 			/*
2091 			 * XXX - handle ISDN types here?  We can't fall
2092 			 * back on cooked sockets, so we'd have to
2093 			 * figure out from the device name what type of
2094 			 * link-layer encapsulation it's using, and map
2095 			 * that to an appropriate DLT_ value, meaning
2096 			 * we'd map "isdnN" devices to DLT_RAW (they
2097 			 * supply raw IP packets with no link-layer
2098 			 * header) and "isdY" devices to a new DLT_I4L_IP
2099 			 * type that has only an Ethernet packet type as
2100 			 * a link-layer header.
2101 			 *
2102 			 * But sometimes we seem to get random crap
2103 			 * in the link-layer header when capturing on
2104 			 * ISDN devices....
2105 			 */
2106 			handle->linktype = DLT_RAW;
2107 		}
2108 		break;
2109 
2110 #ifndef ARPHRD_CISCO
2111 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
2112 #endif
2113 	case ARPHRD_CISCO:
2114 		handle->linktype = DLT_C_HDLC;
2115 		break;
2116 
2117 	/* Not sure if this is correct for all tunnels, but it
2118 	 * works for CIPE */
2119 	case ARPHRD_TUNNEL:
2120 #ifndef ARPHRD_SIT
2121 #define ARPHRD_SIT 776	/* From Linux 2.2.13 */
2122 #endif
2123 	case ARPHRD_SIT:
2124 	case ARPHRD_CSLIP:
2125 	case ARPHRD_SLIP6:
2126 	case ARPHRD_CSLIP6:
2127 	case ARPHRD_ADAPT:
2128 	case ARPHRD_SLIP:
2129 #ifndef ARPHRD_RAWHDLC
2130 #define ARPHRD_RAWHDLC 518
2131 #endif
2132 	case ARPHRD_RAWHDLC:
2133 #ifndef ARPHRD_DLCI
2134 #define ARPHRD_DLCI 15
2135 #endif
2136 	case ARPHRD_DLCI:
2137 		/*
2138 		 * XXX - should some of those be mapped to DLT_LINUX_SLL
2139 		 * instead?  Should we just map all of them to DLT_LINUX_SLL?
2140 		 */
2141 		handle->linktype = DLT_RAW;
2142 		break;
2143 
2144 #ifndef ARPHRD_FRAD
2145 #define ARPHRD_FRAD 770
2146 #endif
2147 	case ARPHRD_FRAD:
2148 		handle->linktype = DLT_FRELAY;
2149 		break;
2150 
2151 	case ARPHRD_LOCALTLK:
2152 		handle->linktype = DLT_LTALK;
2153 		break;
2154 
2155 	case 18:
2156 		/*
2157 		 * RFC 4338 defines an encapsulation for IP and ARP
2158 		 * packets that's compatible with the RFC 2625
2159 		 * encapsulation, but that uses a different ARP
2160 		 * hardware type and hardware addresses.  That
2161 		 * ARP hardware type is 18; Linux doesn't define
2162 		 * any ARPHRD_ value as 18, but if it ever officially
2163 		 * supports RFC 4338-style IP-over-FC, it should define
2164 		 * one.
2165 		 *
2166 		 * For now, we map it to DLT_IP_OVER_FC, in the hopes
2167 		 * that this will encourage its use in the future,
2168 		 * should Linux ever officially support RFC 4338-style
2169 		 * IP-over-FC.
2170 		 */
2171 		handle->linktype = DLT_IP_OVER_FC;
2172 		break;
2173 
2174 #ifndef ARPHRD_FCPP
2175 #define ARPHRD_FCPP	784
2176 #endif
2177 	case ARPHRD_FCPP:
2178 #ifndef ARPHRD_FCAL
2179 #define ARPHRD_FCAL	785
2180 #endif
2181 	case ARPHRD_FCAL:
2182 #ifndef ARPHRD_FCPL
2183 #define ARPHRD_FCPL	786
2184 #endif
2185 	case ARPHRD_FCPL:
2186 #ifndef ARPHRD_FCFABRIC
2187 #define ARPHRD_FCFABRIC	787
2188 #endif
2189 	case ARPHRD_FCFABRIC:
2190 		/*
2191 		 * Back in 2002, Donald Lee at Cray wanted a DLT_ for
2192 		 * IP-over-FC:
2193 		 *
2194 		 *	https://www.mail-archive.com/tcpdump-workers@sandelman.ottawa.on.ca/msg01043.html
2195 		 *
2196 		 * and one was assigned.
2197 		 *
2198 		 * In a later private discussion (spun off from a message
2199 		 * on the ethereal-users list) on how to get that DLT_
2200 		 * value in libpcap on Linux, I ended up deciding that
2201 		 * the best thing to do would be to have him tweak the
2202 		 * driver to set the ARPHRD_ value to some ARPHRD_FCxx
2203 		 * type, and map all those types to DLT_IP_OVER_FC:
2204 		 *
2205 		 *	I've checked into the libpcap and tcpdump CVS tree
2206 		 *	support for DLT_IP_OVER_FC.  In order to use that,
2207 		 *	you'd have to modify your modified driver to return
2208 		 *	one of the ARPHRD_FCxxx types, in "fcLINUXfcp.c" -
2209 		 *	change it to set "dev->type" to ARPHRD_FCFABRIC, for
2210 		 *	example (the exact value doesn't matter, it can be
2211 		 *	any of ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, or
2212 		 *	ARPHRD_FCFABRIC).
2213 		 *
2214 		 * 11 years later, Christian Svensson wanted to map
2215 		 * various ARPHRD_ values to DLT_FC_2 and
2216 		 * DLT_FC_2_WITH_FRAME_DELIMS for raw Fibre Channel
2217 		 * frames:
2218 		 *
2219 		 *	https://github.com/mcr/libpcap/pull/29
2220 		 *
2221 		 * There doesn't seem to be any network drivers that uses
2222 		 * any of the ARPHRD_FC* values for IP-over-FC, and
2223 		 * it's not exactly clear what the "Dummy types for non
2224 		 * ARP hardware" are supposed to mean (link-layer
2225 		 * header type?  Physical network type?), so it's
2226 		 * not exactly clear why the ARPHRD_FC* types exist
2227 		 * in the first place.
2228 		 *
2229 		 * For now, we map them to DLT_FC_2, and provide an
2230 		 * option of DLT_FC_2_WITH_FRAME_DELIMS, as well as
2231 		 * DLT_IP_OVER_FC just in case there's some old
2232 		 * driver out there that uses one of those types for
2233 		 * IP-over-FC on which somebody wants to capture
2234 		 * packets.
2235 		 */
2236 		handle->linktype = DLT_FC_2;
2237 		handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 3);
2238 		if (handle->dlt_list == NULL) {
2239 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
2240 			    PCAP_ERRBUF_SIZE, errno, "malloc");
2241 			return (PCAP_ERROR);
2242 		}
2243 		handle->dlt_list[0] = DLT_FC_2;
2244 		handle->dlt_list[1] = DLT_FC_2_WITH_FRAME_DELIMS;
2245 		handle->dlt_list[2] = DLT_IP_OVER_FC;
2246 		handle->dlt_count = 3;
2247 		break;
2248 
2249 #ifndef ARPHRD_IRDA
2250 #define ARPHRD_IRDA	783
2251 #endif
2252 	case ARPHRD_IRDA:
2253 		/* Don't expect IP packet out of this interfaces... */
2254 		handle->linktype = DLT_LINUX_IRDA;
2255 		/* We need to save packet direction for IrDA decoding,
2256 		 * so let's use "Linux-cooked" mode. Jean II
2257 		 *
2258 		 * XXX - this is handled in setup_socket(). */
2259 		/* handlep->cooked = 1; */
2260 		break;
2261 
2262 	/* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation
2263 	 * is needed, please report it to <daniele@orlandi.com> */
2264 #ifndef ARPHRD_LAPD
2265 #define ARPHRD_LAPD	8445
2266 #endif
2267 	case ARPHRD_LAPD:
2268 		/* Don't expect IP packet out of this interfaces... */
2269 		handle->linktype = DLT_LINUX_LAPD;
2270 		break;
2271 
2272 #ifndef ARPHRD_NONE
2273 #define ARPHRD_NONE	0xFFFE
2274 #endif
2275 	case ARPHRD_NONE:
2276 		/*
2277 		 * No link-layer header; packets are just IP
2278 		 * packets, so use DLT_RAW.
2279 		 */
2280 		handle->linktype = DLT_RAW;
2281 		break;
2282 
2283 #ifndef ARPHRD_IEEE802154
2284 #define ARPHRD_IEEE802154      804
2285 #endif
2286        case ARPHRD_IEEE802154:
2287                handle->linktype =  DLT_IEEE802_15_4_NOFCS;
2288                break;
2289 
2290 #ifndef ARPHRD_NETLINK
2291 #define ARPHRD_NETLINK	824
2292 #endif
2293 	case ARPHRD_NETLINK:
2294 		handle->linktype = DLT_NETLINK;
2295 		/*
2296 		 * We need to use cooked mode, so that in sll_protocol we
2297 		 * pick up the netlink protocol type such as NETLINK_ROUTE,
2298 		 * NETLINK_GENERIC, NETLINK_FIB_LOOKUP, etc.
2299 		 *
2300 		 * XXX - this is handled in setup_socket().
2301 		 */
2302 		/* handlep->cooked = 1; */
2303 		break;
2304 
2305 #ifndef ARPHRD_VSOCKMON
2306 #define ARPHRD_VSOCKMON	826
2307 #endif
2308 	case ARPHRD_VSOCKMON:
2309 		handle->linktype = DLT_VSOCK;
2310 		break;
2311 
2312 	default:
2313 		handle->linktype = -1;
2314 		break;
2315 	}
2316 	return (0);
2317 }
2318 
2319 /*
2320  * Try to set up a PF_PACKET socket.
2321  * Returns 0 or a PCAP_WARNING_ value on success and a PCAP_ERROR_ value
2322  * on failure.
2323  */
2324 static int
2325 setup_socket(pcap_t *handle, int is_any_device)
2326 {
2327 	struct pcap_linux *handlep = handle->priv;
2328 	const char		*device = handle->opt.device;
2329 	int			status = 0;
2330 	int			sock_fd, arptype;
2331 	int			val;
2332 	int			err = 0;
2333 	struct packet_mreq	mr;
2334 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2335 	int			bpf_extensions;
2336 	socklen_t		len = sizeof(bpf_extensions);
2337 #endif
2338 
2339 	/*
2340 	 * Open a socket with protocol family packet. If cooked is true,
2341 	 * we open a SOCK_DGRAM socket for the cooked interface, otherwise
2342 	 * we open a SOCK_RAW socket for the raw interface.
2343 	 *
2344 	 * The protocol is set to 0.  This means we will receive no
2345 	 * packets until we "bind" the socket with a non-zero
2346 	 * protocol.  This allows us to setup the ring buffers without
2347 	 * dropping any packets.
2348 	 */
2349 	sock_fd = is_any_device ?
2350 		socket(PF_PACKET, SOCK_DGRAM, 0) :
2351 		socket(PF_PACKET, SOCK_RAW, 0);
2352 
2353 	if (sock_fd == -1) {
2354 		if (errno == EPERM || errno == EACCES) {
2355 			/*
2356 			 * You don't have permission to open the
2357 			 * socket.
2358 			 */
2359 			status = PCAP_ERROR_PERM_DENIED;
2360 			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2361 			    "Attempt to create packet socket failed - CAP_NET_RAW may be required");
2362 		} else if (errno == EAFNOSUPPORT) {
2363 			/*
2364 			 * PF_PACKET sockets not supported.
2365 			 * Perhaps we're running on the WSL1 module
2366 			 * in the Windows NT kernel rather than on
2367 			 * a real Linux kernel.
2368 			 */
2369 			status = PCAP_ERROR_CAPTURE_NOTSUP;
2370 			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2371 			    "PF_PACKET sockets not supported - is this WSL1?");
2372 		} else {
2373 			/*
2374 			 * Other error.
2375 			 */
2376 			status = PCAP_ERROR;
2377 		}
2378 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2379 		    errno, "socket");
2380 		return status;
2381 	}
2382 
2383 	/*
2384 	 * Get the interface index of the loopback device.
2385 	 * If the attempt fails, don't fail, just set the
2386 	 * "handlep->lo_ifindex" to -1.
2387 	 *
2388 	 * XXX - can there be more than one device that loops
2389 	 * packets back, i.e. devices other than "lo"?  If so,
2390 	 * we'd need to find them all, and have an array of
2391 	 * indices for them, and check all of them in
2392 	 * "pcap_read_packet()".
2393 	 */
2394 	handlep->lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf);
2395 
2396 	/*
2397 	 * Default value for offset to align link-layer payload
2398 	 * on a 4-byte boundary.
2399 	 */
2400 	handle->offset	 = 0;
2401 
2402 	/*
2403 	 * What kind of frames do we have to deal with? Fall back
2404 	 * to cooked mode if we have an unknown interface type
2405 	 * or a type we know doesn't work well in raw mode.
2406 	 */
2407 	if (!is_any_device) {
2408 		/* Assume for now we don't need cooked mode. */
2409 		handlep->cooked = 0;
2410 
2411 		if (handle->opt.rfmon) {
2412 			/*
2413 			 * We were asked to turn on monitor mode.
2414 			 * Do so before we get the link-layer type,
2415 			 * because entering monitor mode could change
2416 			 * the link-layer type.
2417 			 */
2418 			err = enter_rfmon_mode(handle, sock_fd, device);
2419 			if (err < 0) {
2420 				/* Hard failure */
2421 				close(sock_fd);
2422 				return err;
2423 			}
2424 			if (err == 0) {
2425 				/*
2426 				 * Nothing worked for turning monitor mode
2427 				 * on.
2428 				 */
2429 				close(sock_fd);
2430 
2431 				return PCAP_ERROR_RFMON_NOTSUP;
2432 			}
2433 
2434 			/*
2435 			 * Either monitor mode has been turned on for
2436 			 * the device, or we've been given a different
2437 			 * device to open for monitor mode.  If we've
2438 			 * been given a different device, use it.
2439 			 */
2440 			if (handlep->mondevice != NULL)
2441 				device = handlep->mondevice;
2442 		}
2443 		arptype	= iface_get_arptype(sock_fd, device, handle->errbuf);
2444 		if (arptype < 0) {
2445 			close(sock_fd);
2446 			return arptype;
2447 		}
2448 		status = map_arphrd_to_dlt(handle, arptype, device, 1);
2449 		if (status < 0) {
2450 			close(sock_fd);
2451 			return status;
2452 		}
2453 		if (handle->linktype == -1 ||
2454 		    handle->linktype == DLT_LINUX_SLL ||
2455 		    handle->linktype == DLT_LINUX_IRDA ||
2456 		    handle->linktype == DLT_LINUX_LAPD ||
2457 		    handle->linktype == DLT_NETLINK ||
2458 		    (handle->linktype == DLT_EN10MB &&
2459 		     (strncmp("isdn", device, 4) == 0 ||
2460 		      strncmp("isdY", device, 4) == 0))) {
2461 			/*
2462 			 * Unknown interface type (-1), or a
2463 			 * device we explicitly chose to run
2464 			 * in cooked mode (e.g., PPP devices),
2465 			 * or an ISDN device (whose link-layer
2466 			 * type we can only determine by using
2467 			 * APIs that may be different on different
2468 			 * kernels) - reopen in cooked mode.
2469 			 *
2470 			 * If the type is unknown, return a warning;
2471 			 * map_arphrd_to_dlt() has already set the
2472 			 * warning message.
2473 			 */
2474 			if (close(sock_fd) == -1) {
2475 				pcapint_fmt_errmsg_for_errno(handle->errbuf,
2476 				    PCAP_ERRBUF_SIZE, errno, "close");
2477 				return PCAP_ERROR;
2478 			}
2479 			sock_fd = socket(PF_PACKET, SOCK_DGRAM, 0);
2480 			if (sock_fd < 0) {
2481 				/*
2482 				 * Fatal error.  We treat this as
2483 				 * a generic error; we already know
2484 				 * that we were able to open a
2485 				 * PF_PACKET/SOCK_RAW socket, so
2486 				 * any failure is a "this shouldn't
2487 				 * happen" case.
2488 				 */
2489 				pcapint_fmt_errmsg_for_errno(handle->errbuf,
2490 				    PCAP_ERRBUF_SIZE, errno, "socket");
2491 				return PCAP_ERROR;
2492 			}
2493 			handlep->cooked = 1;
2494 
2495 			/*
2496 			 * Get rid of any link-layer type list
2497 			 * we allocated - this only supports cooked
2498 			 * capture.
2499 			 */
2500 			if (handle->dlt_list != NULL) {
2501 				free(handle->dlt_list);
2502 				handle->dlt_list = NULL;
2503 				handle->dlt_count = 0;
2504 			}
2505 
2506 			if (handle->linktype == -1) {
2507 				/*
2508 				 * Warn that we're falling back on
2509 				 * cooked mode; we may want to
2510 				 * update "map_arphrd_to_dlt()"
2511 				 * to handle the new type.
2512 				 */
2513 				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2514 					"arptype %d not "
2515 					"supported by libpcap - "
2516 					"falling back to cooked "
2517 					"socket",
2518 					arptype);
2519 				status = PCAP_WARNING;
2520 			}
2521 
2522 			/*
2523 			 * IrDA capture is not a real "cooked" capture,
2524 			 * it's IrLAP frames, not IP packets.  The
2525 			 * same applies to LAPD capture.
2526 			 */
2527 			if (handle->linktype != DLT_LINUX_IRDA &&
2528 			    handle->linktype != DLT_LINUX_LAPD &&
2529 			    handle->linktype != DLT_NETLINK)
2530 				handle->linktype = DLT_LINUX_SLL;
2531 		}
2532 
2533 		handlep->ifindex = iface_get_id(sock_fd, device,
2534 		    handle->errbuf);
2535 		if (handlep->ifindex == -1) {
2536 			close(sock_fd);
2537 			return PCAP_ERROR;
2538 		}
2539 
2540 		if ((err = iface_bind(sock_fd, handlep->ifindex,
2541 		    handle->errbuf, 0)) != 0) {
2542 			close(sock_fd);
2543 			return err;
2544 		}
2545 	} else {
2546 		/*
2547 		 * The "any" device.
2548 		 */
2549 		if (handle->opt.rfmon) {
2550 			/*
2551 			 * It doesn't support monitor mode.
2552 			 */
2553 			close(sock_fd);
2554 			return PCAP_ERROR_RFMON_NOTSUP;
2555 		}
2556 
2557 		/*
2558 		 * It uses cooked mode.
2559 		 * Support both DLT_LINUX_SLL and DLT_LINUX_SLL2.
2560 		 */
2561 		handlep->cooked = 1;
2562 		handle->linktype = DLT_LINUX_SLL;
2563 		handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
2564 		if (handle->dlt_list == NULL) {
2565 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
2566 			    PCAP_ERRBUF_SIZE, errno, "malloc");
2567 			return (PCAP_ERROR);
2568 		}
2569 		handle->dlt_list[0] = DLT_LINUX_SLL;
2570 		handle->dlt_list[1] = DLT_LINUX_SLL2;
2571 		handle->dlt_count = 2;
2572 
2573 		/*
2574 		 * We're not bound to a device.
2575 		 * For now, we're using this as an indication
2576 		 * that we can't transmit; stop doing that only
2577 		 * if we figure out how to transmit in cooked
2578 		 * mode.
2579 		 */
2580 		handlep->ifindex = -1;
2581 	}
2582 
2583 	/*
2584 	 * Select promiscuous mode on if "promisc" is set.
2585 	 *
2586 	 * Do not turn allmulti mode on if we don't select
2587 	 * promiscuous mode - on some devices (e.g., Orinoco
2588 	 * wireless interfaces), allmulti mode isn't supported
2589 	 * and the driver implements it by turning promiscuous
2590 	 * mode on, and that screws up the operation of the
2591 	 * card as a normal networking interface, and on no
2592 	 * other platform I know of does starting a non-
2593 	 * promiscuous capture affect which multicast packets
2594 	 * are received by the interface.
2595 	 */
2596 
2597 	/*
2598 	 * Hmm, how can we set promiscuous mode on all interfaces?
2599 	 * I am not sure if that is possible at all.  For now, we
2600 	 * silently ignore attempts to turn promiscuous mode on
2601 	 * for the "any" device (so you don't have to explicitly
2602 	 * disable it in programs such as tcpdump).
2603 	 */
2604 
2605 	if (!is_any_device && handle->opt.promisc) {
2606 		memset(&mr, 0, sizeof(mr));
2607 		mr.mr_ifindex = handlep->ifindex;
2608 		mr.mr_type    = PACKET_MR_PROMISC;
2609 		if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
2610 		    &mr, sizeof(mr)) == -1) {
2611 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
2612 			    PCAP_ERRBUF_SIZE, errno, "setsockopt (PACKET_ADD_MEMBERSHIP)");
2613 			close(sock_fd);
2614 			return PCAP_ERROR;
2615 		}
2616 	}
2617 
2618 	/*
2619 	 * Enable auxiliary data and reserve room for reconstructing
2620 	 * VLAN headers.
2621 	 *
2622 	 * XXX - is enabling auxiliary data necessary, now that we
2623 	 * only support memory-mapped capture?  The kernel's memory-mapped
2624 	 * capture code doesn't seem to check whether auxiliary data
2625 	 * is enabled, it seems to provide it whether it is or not.
2626 	 */
2627 	val = 1;
2628 	if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val,
2629 		       sizeof(val)) == -1 && errno != ENOPROTOOPT) {
2630 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2631 		    errno, "setsockopt (PACKET_AUXDATA)");
2632 		close(sock_fd);
2633 		return PCAP_ERROR;
2634 	}
2635 	handle->offset += VLAN_TAG_LEN;
2636 
2637 	/*
2638 	 * If we're in cooked mode, make the snapshot length
2639 	 * large enough to hold a "cooked mode" header plus
2640 	 * 1 byte of packet data (so we don't pass a byte
2641 	 * count of 0 to "recvfrom()").
2642 	 * XXX - we don't know whether this will be DLT_LINUX_SLL
2643 	 * or DLT_LINUX_SLL2, so make sure it's big enough for
2644 	 * a DLT_LINUX_SLL2 "cooked mode" header; a snapshot length
2645 	 * that small is silly anyway.
2646 	 */
2647 	if (handlep->cooked) {
2648 		if (handle->snapshot < SLL2_HDR_LEN + 1)
2649 			handle->snapshot = SLL2_HDR_LEN + 1;
2650 	}
2651 	handle->bufsize = handle->snapshot;
2652 
2653 	/*
2654 	 * Set the offset at which to insert VLAN tags.
2655 	 */
2656 	set_vlan_offset(handle);
2657 
2658 	if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) {
2659 		int nsec_tstamps = 1;
2660 
2661 		if (setsockopt(sock_fd, SOL_SOCKET, SO_TIMESTAMPNS, &nsec_tstamps, sizeof(nsec_tstamps)) < 0) {
2662 			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "setsockopt: unable to set SO_TIMESTAMPNS");
2663 			close(sock_fd);
2664 			return PCAP_ERROR;
2665 		}
2666 	}
2667 
2668 	/*
2669 	 * We've succeeded. Save the socket FD in the pcap structure.
2670 	 */
2671 	handle->fd = sock_fd;
2672 
2673 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2674 	/*
2675 	 * Can we generate special code for VLAN checks?
2676 	 * (XXX - what if we need the special code but it's not supported
2677 	 * by the OS?  Is that possible?)
2678 	 */
2679 	if (getsockopt(sock_fd, SOL_SOCKET, SO_BPF_EXTENSIONS,
2680 	    &bpf_extensions, &len) == 0) {
2681 		if (bpf_extensions >= SKF_AD_VLAN_TAG_PRESENT) {
2682 			/*
2683 			 * Yes, we can.  Request that we do so.
2684 			 */
2685 			handle->bpf_codegen_flags |= BPF_SPECIAL_VLAN_HANDLING;
2686 		}
2687 	}
2688 #endif /* defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) */
2689 
2690 	return status;
2691 }
2692 
2693 /*
2694  * Attempt to setup memory-mapped access.
2695  *
2696  * On success, returns 0 if there are no warnings or a PCAP_WARNING_ code
2697  * if there is a warning.
2698  *
2699  * On error, returns the appropriate error code; if that is PCAP_ERROR,
2700  * sets handle->errbuf to the appropriate message.
2701  */
2702 static int
2703 setup_mmapped(pcap_t *handle)
2704 {
2705 	struct pcap_linux *handlep = handle->priv;
2706 	int status;
2707 
2708 	/*
2709 	 * Attempt to allocate a buffer to hold the contents of one
2710 	 * packet, for use by the oneshot callback.
2711 	 */
2712 	handlep->oneshot_buffer = malloc(handle->snapshot);
2713 	if (handlep->oneshot_buffer == NULL) {
2714 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2715 		    errno, "can't allocate oneshot buffer");
2716 		return PCAP_ERROR;
2717 	}
2718 
2719 	if (handle->opt.buffer_size == 0) {
2720 		/* by default request 2M for the ring buffer */
2721 		handle->opt.buffer_size = 2*1024*1024;
2722 	}
2723 	status = prepare_tpacket_socket(handle);
2724 	if (status == -1) {
2725 		free(handlep->oneshot_buffer);
2726 		handlep->oneshot_buffer = NULL;
2727 		return PCAP_ERROR;
2728 	}
2729 	status = create_ring(handle);
2730 	if (status < 0) {
2731 		/*
2732 		 * Error attempting to enable memory-mapped capture;
2733 		 * fail.  The return value is the status to return.
2734 		 */
2735 		free(handlep->oneshot_buffer);
2736 		handlep->oneshot_buffer = NULL;
2737 		return status;
2738 	}
2739 
2740 	/*
2741 	 * Success.  status has been set either to 0 if there are no
2742 	 * warnings or to a PCAP_WARNING_ value if there is a warning.
2743 	 *
2744 	 * handle->offset is used to get the current position into the rx ring.
2745 	 * handle->cc is used to store the ring size.
2746 	 */
2747 
2748 	/*
2749 	 * Set the timeout to use in poll() before returning.
2750 	 */
2751 	set_poll_timeout(handlep);
2752 
2753 	return status;
2754 }
2755 
2756 /*
2757  * Attempt to set the socket to the specified version of the memory-mapped
2758  * header.
2759  *
2760  * Return 0 if we succeed; return 1 if we fail because that version isn't
2761  * supported; return -1 on any other error, and set handle->errbuf.
2762  */
2763 static int
2764 init_tpacket(pcap_t *handle, int version, const char *version_str)
2765 {
2766 	struct pcap_linux *handlep = handle->priv;
2767 	int val = version;
2768 	socklen_t len = sizeof(val);
2769 
2770 	/*
2771 	 * Probe whether kernel supports the specified TPACKET version;
2772 	 * this also gets the length of the header for that version.
2773 	 *
2774 	 * This socket option was introduced in 2.6.27, which was
2775 	 * also the first release with TPACKET_V2 support.
2776 	 */
2777 	if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) {
2778 		if (errno == EINVAL) {
2779 			/*
2780 			 * EINVAL means this specific version of TPACKET
2781 			 * is not supported. Tell the caller they can try
2782 			 * with a different one; if they've run out of
2783 			 * others to try, let them set the error message
2784 			 * appropriately.
2785 			 */
2786 			return 1;
2787 		}
2788 
2789 		/*
2790 		 * All other errors are fatal.
2791 		 */
2792 		if (errno == ENOPROTOOPT) {
2793 			/*
2794 			 * PACKET_HDRLEN isn't supported, which means
2795 			 * that memory-mapped capture isn't supported.
2796 			 * Indicate that in the message.
2797 			 */
2798 			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2799 			    "Kernel doesn't support memory-mapped capture; a 2.6.27 or later 2.x kernel is required, with CONFIG_PACKET_MMAP specified for 2.x kernels");
2800 		} else {
2801 			/*
2802 			 * Some unexpected error.
2803 			 */
2804 			pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2805 			    errno, "can't get %s header len on packet socket",
2806 			    version_str);
2807 		}
2808 		return -1;
2809 	}
2810 	handlep->tp_hdrlen = val;
2811 
2812 	val = version;
2813 	if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val,
2814 			   sizeof(val)) < 0) {
2815 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2816 		    errno, "can't activate %s on packet socket", version_str);
2817 		return -1;
2818 	}
2819 	handlep->tp_version = version;
2820 
2821 	return 0;
2822 }
2823 
2824 /*
2825  * Attempt to set the socket to version 3 of the memory-mapped header and,
2826  * if that fails because version 3 isn't supported, attempt to fall
2827  * back to version 2.  If version 2 isn't supported, just fail.
2828  *
2829  * Return 0 if we succeed and -1 on any other error, and set handle->errbuf.
2830  */
2831 static int
2832 prepare_tpacket_socket(pcap_t *handle)
2833 {
2834 	int ret;
2835 
2836 #ifdef HAVE_TPACKET3
2837 	/*
2838 	 * Try setting the version to TPACKET_V3.
2839 	 *
2840 	 * The only mode in which buffering is done on PF_PACKET
2841 	 * sockets, so that packets might not be delivered
2842 	 * immediately, is TPACKET_V3 mode.
2843 	 *
2844 	 * The buffering cannot be disabled in that mode, so
2845 	 * if the user has requested immediate mode, we don't
2846 	 * use TPACKET_V3.
2847 	 */
2848 	if (!handle->opt.immediate) {
2849 		ret = init_tpacket(handle, TPACKET_V3, "TPACKET_V3");
2850 		if (ret == 0) {
2851 			/*
2852 			 * Success.
2853 			 */
2854 			return 0;
2855 		}
2856 		if (ret == -1) {
2857 			/*
2858 			 * We failed for some reason other than "the
2859 			 * kernel doesn't support TPACKET_V3".
2860 			 */
2861 			return -1;
2862 		}
2863 
2864 		/*
2865 		 * This means it returned 1, which means "the kernel
2866 		 * doesn't support TPACKET_V3"; try TPACKET_V2.
2867 		 */
2868 	}
2869 #endif /* HAVE_TPACKET3 */
2870 
2871 	/*
2872 	 * Try setting the version to TPACKET_V2.
2873 	 */
2874 	ret = init_tpacket(handle, TPACKET_V2, "TPACKET_V2");
2875 	if (ret == 0) {
2876 		/*
2877 		 * Success.
2878 		 */
2879 		return 0;
2880 	}
2881 
2882 	if (ret == 1) {
2883 		/*
2884 		 * OK, the kernel supports memory-mapped capture, but
2885 		 * not TPACKET_V2.  Set the error message appropriately.
2886 		 */
2887 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2888 		    "Kernel doesn't support TPACKET_V2; a 2.6.27 or later kernel is required");
2889 	}
2890 
2891 	/*
2892 	 * We failed.
2893 	 */
2894 	return -1;
2895 }
2896 
2897 #define MAX(a,b) ((a)>(b)?(a):(b))
2898 
2899 /*
2900  * Attempt to set up memory-mapped access.
2901  *
2902  * On success, returns 0 if there are no warnings or to a PCAP_WARNING_ code
2903  * if there is a warning.
2904  *
2905  * On error, returns the appropriate error code; if that is PCAP_ERROR,
2906  * sets handle->errbuf to the appropriate message.
2907  */
2908 static int
2909 create_ring(pcap_t *handle)
2910 {
2911 	struct pcap_linux *handlep = handle->priv;
2912 	unsigned i, j, frames_per_block;
2913 #ifdef HAVE_TPACKET3
2914 	/*
2915 	 * For sockets using TPACKET_V2, the extra stuff at the end of a
2916 	 * struct tpacket_req3 will be ignored, so this is OK even for
2917 	 * those sockets.
2918 	 */
2919 	struct tpacket_req3 req;
2920 #else
2921 	struct tpacket_req req;
2922 #endif
2923 	socklen_t len;
2924 	unsigned int sk_type, tp_reserve, maclen, tp_hdrlen, netoff, macoff;
2925 	unsigned int frame_size;
2926 	int status;
2927 
2928 	/*
2929 	 * Start out assuming no warnings.
2930 	 */
2931 	status = 0;
2932 
2933 	/*
2934 	 * Reserve space for VLAN tag reconstruction.
2935 	 */
2936 	tp_reserve = VLAN_TAG_LEN;
2937 
2938 	/*
2939 	 * If we're capturing in cooked mode, reserve space for
2940 	 * a DLT_LINUX_SLL2 header; we don't know yet whether
2941 	 * we'll be using DLT_LINUX_SLL or DLT_LINUX_SLL2, as
2942 	 * that can be changed on an open device, so we reserve
2943 	 * space for the larger of the two.
2944 	 *
2945 	 * XXX - we assume that the kernel is still adding
2946 	 * 16 bytes of extra space, so we subtract 16 from
2947 	 * SLL2_HDR_LEN to get the additional space needed.
2948 	 * (Are they doing that for DLT_LINUX_SLL, the link-
2949 	 * layer header for which is 16 bytes?)
2950 	 *
2951 	 * XXX - should we use TPACKET_ALIGN(SLL2_HDR_LEN - 16)?
2952 	 */
2953 	if (handlep->cooked)
2954 		tp_reserve += SLL2_HDR_LEN - 16;
2955 
2956 	/*
2957 	 * Try to request that amount of reserve space.
2958 	 * This must be done before creating the ring buffer.
2959 	 */
2960 	len = sizeof(tp_reserve);
2961 	if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE,
2962 	    &tp_reserve, len) < 0) {
2963 		pcapint_fmt_errmsg_for_errno(handle->errbuf,
2964 		    PCAP_ERRBUF_SIZE, errno,
2965 		    "setsockopt (PACKET_RESERVE)");
2966 		return PCAP_ERROR;
2967 	}
2968 
2969 	switch (handlep->tp_version) {
2970 
2971 	case TPACKET_V2:
2972 		/* Note that with large snapshot length (say 256K, which is
2973 		 * the default for recent versions of tcpdump, Wireshark,
2974 		 * TShark, dumpcap or 64K, the value that "-s 0" has given for
2975 		 * a long time with tcpdump), if we use the snapshot
2976 		 * length to calculate the frame length, only a few frames
2977 		 * will be available in the ring even with pretty
2978 		 * large ring size (and a lot of memory will be unused).
2979 		 *
2980 		 * Ideally, we should choose a frame length based on the
2981 		 * minimum of the specified snapshot length and the maximum
2982 		 * packet size.  That's not as easy as it sounds; consider,
2983 		 * for example, an 802.11 interface in monitor mode, where
2984 		 * the frame would include a radiotap header, where the
2985 		 * maximum radiotap header length is device-dependent.
2986 		 *
2987 		 * So, for now, we just do this for Ethernet devices, where
2988 		 * there's no metadata header, and the link-layer header is
2989 		 * fixed length.  We can get the maximum packet size by
2990 		 * adding 18, the Ethernet header length plus the CRC length
2991 		 * (just in case we happen to get the CRC in the packet), to
2992 		 * the MTU of the interface; we fetch the MTU in the hopes
2993 		 * that it reflects support for jumbo frames.  (Even if the
2994 		 * interface is just being used for passive snooping, the
2995 		 * driver might set the size of buffers in the receive ring
2996 		 * based on the MTU, so that the MTU limits the maximum size
2997 		 * of packets that we can receive.)
2998 		 *
2999 		 * If segmentation/fragmentation or receive offload are
3000 		 * enabled, we can get reassembled/aggregated packets larger
3001 		 * than MTU, but bounded to 65535 plus the Ethernet overhead,
3002 		 * due to kernel and protocol constraints */
3003 		frame_size = handle->snapshot;
3004 		if (handle->linktype == DLT_EN10MB) {
3005 			unsigned int max_frame_len;
3006 			int mtu;
3007 			int offload;
3008 
3009 			mtu = iface_get_mtu(handle->fd, handle->opt.device,
3010 			    handle->errbuf);
3011 			if (mtu == -1)
3012 				return PCAP_ERROR;
3013 			offload = iface_get_offload(handle);
3014 			if (offload == -1)
3015 				return PCAP_ERROR;
3016 			if (offload)
3017 				max_frame_len = MAX(mtu, 65535);
3018 			else
3019 				max_frame_len = mtu;
3020 			max_frame_len += 18;
3021 
3022 			if (frame_size > max_frame_len)
3023 				frame_size = max_frame_len;
3024 		}
3025 
3026 		/* NOTE: calculus matching those in tpacket_rcv()
3027 		 * in linux-2.6/net/packet/af_packet.c
3028 		 */
3029 		len = sizeof(sk_type);
3030 		if (getsockopt(handle->fd, SOL_SOCKET, SO_TYPE, &sk_type,
3031 		    &len) < 0) {
3032 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
3033 			    PCAP_ERRBUF_SIZE, errno, "getsockopt (SO_TYPE)");
3034 			return PCAP_ERROR;
3035 		}
3036 		maclen = (sk_type == SOCK_DGRAM) ? 0 : MAX_LINKHEADER_SIZE;
3037 			/* XXX: in the kernel maclen is calculated from
3038 			 * LL_ALLOCATED_SPACE(dev) and vnet_hdr.hdr_len
3039 			 * in:  packet_snd()           in linux-2.6/net/packet/af_packet.c
3040 			 * then packet_alloc_skb()     in linux-2.6/net/packet/af_packet.c
3041 			 * then sock_alloc_send_pskb() in linux-2.6/net/core/sock.c
3042 			 * but I see no way to get those sizes in userspace,
3043 			 * like for instance with an ifreq ioctl();
3044 			 * the best thing I've found so far is MAX_HEADER in
3045 			 * the kernel part of linux-2.6/include/linux/netdevice.h
3046 			 * which goes up to 128+48=176; since pcap-linux.c
3047 			 * defines a MAX_LINKHEADER_SIZE of 256 which is
3048 			 * greater than that, let's use it.. maybe is it even
3049 			 * large enough to directly replace macoff..
3050 			 */
3051 		tp_hdrlen = TPACKET_ALIGN(handlep->tp_hdrlen) + sizeof(struct sockaddr_ll) ;
3052 		netoff = TPACKET_ALIGN(tp_hdrlen + (maclen < 16 ? 16 : maclen)) + tp_reserve;
3053 			/* NOTE: AFAICS tp_reserve may break the TPACKET_ALIGN
3054 			 * of netoff, which contradicts
3055 			 * linux-2.6/Documentation/networking/packet_mmap.txt
3056 			 * documenting that:
3057 			 * "- Gap, chosen so that packet data (Start+tp_net)
3058 			 * aligns to TPACKET_ALIGNMENT=16"
3059 			 */
3060 			/* NOTE: in linux-2.6/include/linux/skbuff.h:
3061 			 * "CPUs often take a performance hit
3062 			 *  when accessing unaligned memory locations"
3063 			 */
3064 		macoff = netoff - maclen;
3065 		req.tp_frame_size = TPACKET_ALIGN(macoff + frame_size);
3066 		/*
3067 		 * Round the buffer size up to a multiple of the
3068 		 * frame size (rather than rounding down, which
3069 		 * would give a buffer smaller than our caller asked
3070 		 * for, and possibly give zero frames if the requested
3071 		 * buffer size is too small for one frame).
3072 		 */
3073 		req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3074 		break;
3075 
3076 #ifdef HAVE_TPACKET3
3077 	case TPACKET_V3:
3078 		/* The "frames" for this are actually buffers that
3079 		 * contain multiple variable-sized frames.
3080 		 *
3081 		 * We pick a "frame" size of MAXIMUM_SNAPLEN to leave
3082 		 * enough room for at least one reasonably-sized packet
3083 		 * in the "frame". */
3084 		req.tp_frame_size = MAXIMUM_SNAPLEN;
3085 		/*
3086 		 * Round the buffer size up to a multiple of the
3087 		 * "frame" size (rather than rounding down, which
3088 		 * would give a buffer smaller than our caller asked
3089 		 * for, and possibly give zero "frames" if the requested
3090 		 * buffer size is too small for one "frame").
3091 		 */
3092 		req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3093 		break;
3094 #endif
3095 	default:
3096 		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3097 		    "Internal error: unknown TPACKET_ value %u",
3098 		    handlep->tp_version);
3099 		return PCAP_ERROR;
3100 	}
3101 
3102 	/* compute the minimum block size that will handle this frame.
3103 	 * The block has to be page size aligned.
3104 	 * The max block size allowed by the kernel is arch-dependent and
3105 	 * it's not explicitly checked here. */
3106 	req.tp_block_size = getpagesize();
3107 	while (req.tp_block_size < req.tp_frame_size)
3108 		req.tp_block_size <<= 1;
3109 
3110 	frames_per_block = req.tp_block_size/req.tp_frame_size;
3111 
3112 	/*
3113 	 * PACKET_TIMESTAMP was added after linux/net_tstamp.h was,
3114 	 * so we check for PACKET_TIMESTAMP.  We check for
3115 	 * linux/net_tstamp.h just in case a system somehow has
3116 	 * PACKET_TIMESTAMP but not linux/net_tstamp.h; that might
3117 	 * be unnecessary.
3118 	 *
3119 	 * SIOCSHWTSTAMP was introduced in the patch that introduced
3120 	 * linux/net_tstamp.h, so we don't bother checking whether
3121 	 * SIOCSHWTSTAMP is defined (if your Linux system has
3122 	 * linux/net_tstamp.h but doesn't define SIOCSHWTSTAMP, your
3123 	 * Linux system is badly broken).
3124 	 */
3125 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
3126 	/*
3127 	 * If we were told to do so, ask the kernel and the driver
3128 	 * to use hardware timestamps.
3129 	 *
3130 	 * Hardware timestamps are only supported with mmapped
3131 	 * captures.
3132 	 */
3133 	if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER ||
3134 	    handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER_UNSYNCED) {
3135 		struct hwtstamp_config hwconfig;
3136 		struct ifreq ifr;
3137 		int timesource;
3138 
3139 		/*
3140 		 * Ask for hardware time stamps on all packets,
3141 		 * including transmitted packets.
3142 		 */
3143 		memset(&hwconfig, 0, sizeof(hwconfig));
3144 		hwconfig.tx_type = HWTSTAMP_TX_ON;
3145 		hwconfig.rx_filter = HWTSTAMP_FILTER_ALL;
3146 
3147 		memset(&ifr, 0, sizeof(ifr));
3148 		pcapint_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
3149 		ifr.ifr_data = (void *)&hwconfig;
3150 
3151 		/*
3152 		 * This may require CAP_NET_ADMIN.
3153 		 */
3154 		if (ioctl(handle->fd, SIOCSHWTSTAMP, &ifr) < 0) {
3155 			switch (errno) {
3156 
3157 			case EPERM:
3158 				/*
3159 				 * Treat this as an error, as the
3160 				 * user should try to run this
3161 				 * with the appropriate privileges -
3162 				 * and, if they can't, shouldn't
3163 				 * try requesting hardware time stamps.
3164 				 */
3165 				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3166 				    "Attempt to set hardware timestamp failed - CAP_NET_ADMIN may be required");
3167 				return PCAP_ERROR_PERM_DENIED;
3168 
3169 			case EOPNOTSUPP:
3170 			case ERANGE:
3171 				/*
3172 				 * Treat this as a warning, as the
3173 				 * only way to fix the warning is to
3174 				 * get an adapter that supports hardware
3175 				 * time stamps for *all* packets.
3176 				 * (ERANGE means "we support hardware
3177 				 * time stamps, but for packets matching
3178 				 * that particular filter", so it means
3179 				 * "we don't support hardware time stamps
3180 				 * for all incoming packets" here.)
3181 				 *
3182 				 * We'll just fall back on the standard
3183 				 * host time stamps.
3184 				 */
3185 				status = PCAP_WARNING_TSTAMP_TYPE_NOTSUP;
3186 				break;
3187 
3188 			default:
3189 				pcapint_fmt_errmsg_for_errno(handle->errbuf,
3190 				    PCAP_ERRBUF_SIZE, errno,
3191 				    "SIOCSHWTSTAMP failed");
3192 				return PCAP_ERROR;
3193 			}
3194 		} else {
3195 			/*
3196 			 * Well, that worked.  Now specify the type of
3197 			 * hardware time stamp we want for this
3198 			 * socket.
3199 			 */
3200 			if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER) {
3201 				/*
3202 				 * Hardware timestamp, synchronized
3203 				 * with the system clock.
3204 				 */
3205 				timesource = SOF_TIMESTAMPING_SYS_HARDWARE;
3206 			} else {
3207 				/*
3208 				 * PCAP_TSTAMP_ADAPTER_UNSYNCED - hardware
3209 				 * timestamp, not synchronized with the
3210 				 * system clock.
3211 				 */
3212 				timesource = SOF_TIMESTAMPING_RAW_HARDWARE;
3213 			}
3214 			if (setsockopt(handle->fd, SOL_PACKET, PACKET_TIMESTAMP,
3215 				(void *)&timesource, sizeof(timesource))) {
3216 				pcapint_fmt_errmsg_for_errno(handle->errbuf,
3217 				    PCAP_ERRBUF_SIZE, errno,
3218 				    "can't set PACKET_TIMESTAMP");
3219 				return PCAP_ERROR;
3220 			}
3221 		}
3222 	}
3223 #endif /* HAVE_LINUX_NET_TSTAMP_H && PACKET_TIMESTAMP */
3224 
3225 	/* ask the kernel to create the ring */
3226 retry:
3227 	req.tp_block_nr = req.tp_frame_nr / frames_per_block;
3228 
3229 	/* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */
3230 	req.tp_frame_nr = req.tp_block_nr * frames_per_block;
3231 
3232 #ifdef HAVE_TPACKET3
3233 	/* timeout value to retire block - use the configured buffering timeout, or default if <0. */
3234 	if (handlep->timeout > 0) {
3235 		/* Use the user specified timeout as the block timeout */
3236 		req.tp_retire_blk_tov = handlep->timeout;
3237 	} else if (handlep->timeout == 0) {
3238 		/*
3239 		 * In pcap, this means "infinite timeout"; TPACKET_V3
3240 		 * doesn't support that, so just set it to UINT_MAX
3241 		 * milliseconds.  In the TPACKET_V3 loop, if the
3242 		 * timeout is 0, and we haven't yet seen any packets,
3243 		 * and we block and still don't have any packets, we
3244 		 * keep blocking until we do.
3245 		 */
3246 		req.tp_retire_blk_tov = UINT_MAX;
3247 	} else {
3248 		/*
3249 		 * XXX - this is not valid; use 0, meaning "have the
3250 		 * kernel pick a default", for now.
3251 		 */
3252 		req.tp_retire_blk_tov = 0;
3253 	}
3254 	/* private data not used */
3255 	req.tp_sizeof_priv = 0;
3256 	/* Rx ring - feature request bits - none (rxhash will not be filled) */
3257 	req.tp_feature_req_word = 0;
3258 #endif
3259 
3260 	if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3261 					(void *) &req, sizeof(req))) {
3262 		if ((errno == ENOMEM) && (req.tp_block_nr > 1)) {
3263 			/*
3264 			 * Memory failure; try to reduce the requested ring
3265 			 * size.
3266 			 *
3267 			 * We used to reduce this by half -- do 5% instead.
3268 			 * That may result in more iterations and a longer
3269 			 * startup, but the user will be much happier with
3270 			 * the resulting buffer size.
3271 			 */
3272 			if (req.tp_frame_nr < 20)
3273 				req.tp_frame_nr -= 1;
3274 			else
3275 				req.tp_frame_nr -= req.tp_frame_nr/20;
3276 			goto retry;
3277 		}
3278 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3279 		    errno, "can't create rx ring on packet socket");
3280 		return PCAP_ERROR;
3281 	}
3282 
3283 	/* memory map the rx ring */
3284 	handlep->mmapbuflen = req.tp_block_nr * req.tp_block_size;
3285 	handlep->mmapbuf = mmap(0, handlep->mmapbuflen,
3286 	    PROT_READ|PROT_WRITE, MAP_SHARED, handle->fd, 0);
3287 	if (handlep->mmapbuf == MAP_FAILED) {
3288 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3289 		    errno, "can't mmap rx ring");
3290 
3291 		/* clear the allocated ring on error*/
3292 		destroy_ring(handle);
3293 		return PCAP_ERROR;
3294 	}
3295 
3296 	/* allocate a ring for each frame header pointer*/
3297 	handle->cc = req.tp_frame_nr;
3298 	handle->buffer = malloc(handle->cc * sizeof(union thdr *));
3299 	if (!handle->buffer) {
3300 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3301 		    errno, "can't allocate ring of frame headers");
3302 
3303 		destroy_ring(handle);
3304 		return PCAP_ERROR;
3305 	}
3306 
3307 	/* fill the header ring with proper frame ptr*/
3308 	handle->offset = 0;
3309 	for (i=0; i<req.tp_block_nr; ++i) {
3310 		u_char *base = &handlep->mmapbuf[i*req.tp_block_size];
3311 		for (j=0; j<frames_per_block; ++j, ++handle->offset) {
3312 			RING_GET_CURRENT_FRAME(handle) = base;
3313 			base += req.tp_frame_size;
3314 		}
3315 	}
3316 
3317 	handle->bufsize = req.tp_frame_size;
3318 	handle->offset = 0;
3319 	return status;
3320 }
3321 
3322 /* free all ring related resources*/
3323 static void
3324 destroy_ring(pcap_t *handle)
3325 {
3326 	struct pcap_linux *handlep = handle->priv;
3327 
3328 	/*
3329 	 * Tell the kernel to destroy the ring.
3330 	 * We don't check for setsockopt failure, as 1) we can't recover
3331 	 * from an error and 2) we might not yet have set it up in the
3332 	 * first place.
3333 	 */
3334 	struct tpacket_req req;
3335 	memset(&req, 0, sizeof(req));
3336 	(void)setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3337 				(void *) &req, sizeof(req));
3338 
3339 	/* if ring is mapped, unmap it*/
3340 	if (handlep->mmapbuf) {
3341 		/* do not test for mmap failure, as we can't recover from any error */
3342 		(void)munmap(handlep->mmapbuf, handlep->mmapbuflen);
3343 		handlep->mmapbuf = NULL;
3344 	}
3345 }
3346 
3347 /*
3348  * Special one-shot callback, used for pcap_next() and pcap_next_ex(),
3349  * for Linux mmapped capture.
3350  *
3351  * The problem is that pcap_next() and pcap_next_ex() expect the packet
3352  * data handed to the callback to be valid after the callback returns,
3353  * but pcap_read_linux_mmap() has to release that packet as soon as
3354  * the callback returns (otherwise, the kernel thinks there's still
3355  * at least one unprocessed packet available in the ring, so a select()
3356  * will immediately return indicating that there's data to process), so,
3357  * in the callback, we have to make a copy of the packet.
3358  *
3359  * Yes, this means that, if the capture is using the ring buffer, using
3360  * pcap_next() or pcap_next_ex() requires more copies than using
3361  * pcap_loop() or pcap_dispatch().  If that bothers you, don't use
3362  * pcap_next() or pcap_next_ex().
3363  */
3364 static void
3365 pcapint_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
3366     const u_char *bytes)
3367 {
3368 	struct oneshot_userdata *sp = (struct oneshot_userdata *)user;
3369 	pcap_t *handle = sp->pd;
3370 	struct pcap_linux *handlep = handle->priv;
3371 
3372 	*sp->hdr = *h;
3373 	memcpy(handlep->oneshot_buffer, bytes, h->caplen);
3374 	*sp->pkt = handlep->oneshot_buffer;
3375 }
3376 
3377 static int
3378 pcap_getnonblock_linux(pcap_t *handle)
3379 {
3380 	struct pcap_linux *handlep = handle->priv;
3381 
3382 	/* use negative value of timeout to indicate non blocking ops */
3383 	return (handlep->timeout<0);
3384 }
3385 
3386 static int
3387 pcap_setnonblock_linux(pcap_t *handle, int nonblock)
3388 {
3389 	struct pcap_linux *handlep = handle->priv;
3390 
3391 	/*
3392 	 * Set the file descriptor to the requested mode, as we use
3393 	 * it for sending packets.
3394 	 */
3395 	if (pcapint_setnonblock_fd(handle, nonblock) == -1)
3396 		return -1;
3397 
3398 	/*
3399 	 * Map each value to their corresponding negation to
3400 	 * preserve the timeout value provided with pcap_set_timeout.
3401 	 */
3402 	if (nonblock) {
3403 		/*
3404 		 * We're setting the mode to non-blocking mode.
3405 		 */
3406 		if (handlep->timeout >= 0) {
3407 			/*
3408 			 * Indicate that we're switching to
3409 			 * non-blocking mode.
3410 			 */
3411 			handlep->timeout = ~handlep->timeout;
3412 		}
3413 		if (handlep->poll_breakloop_fd != -1) {
3414 			/* Close the eventfd; we do not need it in nonblock mode. */
3415 			close(handlep->poll_breakloop_fd);
3416 			handlep->poll_breakloop_fd = -1;
3417 		}
3418 	} else {
3419 		/*
3420 		 * We're setting the mode to blocking mode.
3421 		 */
3422 		if (handlep->poll_breakloop_fd == -1) {
3423 			/* If we did not have an eventfd, open one now that we are blocking. */
3424 			if ( ( handlep->poll_breakloop_fd = eventfd(0, EFD_NONBLOCK) ) == -1 ) {
3425 				pcapint_fmt_errmsg_for_errno(handle->errbuf,
3426 				    PCAP_ERRBUF_SIZE, errno,
3427 				    "could not open eventfd");
3428 				return -1;
3429 			}
3430 		}
3431 		if (handlep->timeout < 0) {
3432 			handlep->timeout = ~handlep->timeout;
3433 		}
3434 	}
3435 	/* Update the timeout to use in poll(). */
3436 	set_poll_timeout(handlep);
3437 	return 0;
3438 }
3439 
3440 /*
3441  * Get the status field of the ring buffer frame at a specified offset.
3442  */
3443 static inline u_int
3444 pcap_get_ring_frame_status(pcap_t *handle, int offset)
3445 {
3446 	struct pcap_linux *handlep = handle->priv;
3447 	union thdr h;
3448 
3449 	h.raw = RING_GET_FRAME_AT(handle, offset);
3450 	switch (handlep->tp_version) {
3451 	case TPACKET_V2:
3452 		return __atomic_load_n(&h.h2->tp_status, __ATOMIC_ACQUIRE);
3453 		break;
3454 #ifdef HAVE_TPACKET3
3455 	case TPACKET_V3:
3456 		return __atomic_load_n(&h.h3->hdr.bh1.block_status, __ATOMIC_ACQUIRE);
3457 		break;
3458 #endif
3459 	}
3460 	/* This should not happen. */
3461 	return 0;
3462 }
3463 
3464 /*
3465  * Block waiting for frames to be available.
3466  */
3467 static int pcap_wait_for_frames_mmap(pcap_t *handle)
3468 {
3469 	struct pcap_linux *handlep = handle->priv;
3470 	int timeout;
3471 	struct ifreq ifr;
3472 	int ret;
3473 	struct pollfd pollinfo[2];
3474 	int numpollinfo;
3475 	pollinfo[0].fd = handle->fd;
3476 	pollinfo[0].events = POLLIN;
3477 	if ( handlep->poll_breakloop_fd == -1 ) {
3478 		numpollinfo = 1;
3479 		pollinfo[1].revents = 0;
3480 		/*
3481 		 * We set pollinfo[1].revents to zero, even though
3482 		 * numpollinfo = 1 meaning that poll() doesn't see
3483 		 * pollinfo[1], so that we do not have to add a
3484 		 * conditional of numpollinfo > 1 below when we
3485 		 * test pollinfo[1].revents.
3486 		 */
3487 	} else {
3488 		pollinfo[1].fd = handlep->poll_breakloop_fd;
3489 		pollinfo[1].events = POLLIN;
3490 		numpollinfo = 2;
3491 	}
3492 
3493 	/*
3494 	 * Keep polling until we either get some packets to read, see
3495 	 * that we got told to break out of the loop, get a fatal error,
3496 	 * or discover that the device went away.
3497 	 *
3498 	 * In non-blocking mode, we must still do one poll() to catch
3499 	 * any pending error indications, but the poll() has a timeout
3500 	 * of 0, so that it doesn't block, and we quit after that one
3501 	 * poll().
3502 	 *
3503 	 * If we've seen an ENETDOWN, it might be the first indication
3504 	 * that the device went away, or it might just be that it was
3505 	 * configured down.  Unfortunately, there's no guarantee that
3506 	 * the device has actually been removed as an interface, because:
3507 	 *
3508 	 * 1) if, as appears to be the case at least some of the time,
3509 	 * the PF_PACKET socket code first gets a NETDEV_DOWN indication
3510 	 * for the device and then gets a NETDEV_UNREGISTER indication
3511 	 * for it, the first indication will cause a wakeup with ENETDOWN
3512 	 * but won't set the packet socket's field for the interface index
3513 	 * to -1, and the second indication won't cause a wakeup (because
3514 	 * the first indication also caused the protocol hook to be
3515 	 * unregistered) but will set the packet socket's field for the
3516 	 * interface index to -1;
3517 	 *
3518 	 * 2) even if just a NETDEV_UNREGISTER indication is registered,
3519 	 * the packet socket's field for the interface index only gets
3520 	 * set to -1 after the wakeup, so there's a small but non-zero
3521 	 * risk that a thread blocked waiting for the wakeup will get
3522 	 * to the "fetch the socket name" code before the interface index
3523 	 * gets set to -1, so it'll get the old interface index.
3524 	 *
3525 	 * Therefore, if we got an ENETDOWN and haven't seen a packet
3526 	 * since then, we assume that we might be waiting for the interface
3527 	 * to disappear, and poll with a timeout to try again in a short
3528 	 * period of time.  If we *do* see a packet, the interface has
3529 	 * come back up again, and is *definitely* still there, so we
3530 	 * don't need to poll.
3531 	 */
3532 	for (;;) {
3533 		/*
3534 		 * Yes, we do this even in non-blocking mode, as it's
3535 		 * the only way to get error indications from a
3536 		 * tpacket socket.
3537 		 *
3538 		 * The timeout is 0 in non-blocking mode, so poll()
3539 		 * returns immediately.
3540 		 */
3541 		timeout = handlep->poll_timeout;
3542 
3543 		/*
3544 		 * If we got an ENETDOWN and haven't gotten an indication
3545 		 * that the device has gone away or that the device is up,
3546 		 * we don't yet know for certain whether the device has
3547 		 * gone away or not, do a poll() with a 1-millisecond timeout,
3548 		 * as we have to poll indefinitely for "device went away"
3549 		 * indications until we either get one or see that the
3550 		 * device is up.
3551 		 */
3552 		if (handlep->netdown) {
3553 			if (timeout != 0)
3554 				timeout = 1;
3555 		}
3556 		ret = poll(pollinfo, numpollinfo, timeout);
3557 		if (ret < 0) {
3558 			/*
3559 			 * Error.  If it's not EINTR, report it.
3560 			 */
3561 			if (errno != EINTR) {
3562 				pcapint_fmt_errmsg_for_errno(handle->errbuf,
3563 				    PCAP_ERRBUF_SIZE, errno,
3564 				    "can't poll on packet socket");
3565 				return PCAP_ERROR;
3566 			}
3567 
3568 			/*
3569 			 * It's EINTR; if we were told to break out of
3570 			 * the loop, do so.
3571 			 */
3572 			if (handle->break_loop) {
3573 				handle->break_loop = 0;
3574 				return PCAP_ERROR_BREAK;
3575 			}
3576 		} else if (ret > 0) {
3577 			/*
3578 			 * OK, some descriptor is ready.
3579 			 * Check the socket descriptor first.
3580 			 *
3581 			 * As I read the Linux man page, pollinfo[0].revents
3582 			 * will either be POLLIN, POLLERR, POLLHUP, or POLLNVAL.
3583 			 */
3584 			if (pollinfo[0].revents == POLLIN) {
3585 				/*
3586 				 * OK, we may have packets to
3587 				 * read.
3588 				 */
3589 				break;
3590 			}
3591 			if (pollinfo[0].revents != 0) {
3592 				/*
3593 				 * There's some indication other than
3594 				 * "you can read on this descriptor" on
3595 				 * the descriptor.
3596 				 */
3597 				if (pollinfo[0].revents & POLLNVAL) {
3598 					snprintf(handle->errbuf,
3599 					    PCAP_ERRBUF_SIZE,
3600 					    "Invalid polling request on packet socket");
3601 					return PCAP_ERROR;
3602 				}
3603 				if (pollinfo[0].revents & (POLLHUP | POLLRDHUP)) {
3604 					snprintf(handle->errbuf,
3605 					    PCAP_ERRBUF_SIZE,
3606 					    "Hangup on packet socket");
3607 					return PCAP_ERROR;
3608 				}
3609 				if (pollinfo[0].revents & POLLERR) {
3610 					/*
3611 					 * Get the error.
3612 					 */
3613 					int err;
3614 					socklen_t errlen;
3615 
3616 					errlen = sizeof(err);
3617 					if (getsockopt(handle->fd, SOL_SOCKET,
3618 					    SO_ERROR, &err, &errlen) == -1) {
3619 						/*
3620 						 * The call *itself* returned
3621 						 * an error; make *that*
3622 						 * the error.
3623 						 */
3624 						err = errno;
3625 					}
3626 
3627 					/*
3628 					 * OK, we have the error.
3629 					 */
3630 					if (err == ENETDOWN) {
3631 						/*
3632 						 * The device on which we're
3633 						 * capturing went away or the
3634 						 * interface was taken down.
3635 						 *
3636 						 * We don't know for certain
3637 						 * which happened, and the
3638 						 * next poll() may indicate
3639 						 * that there are packets
3640 						 * to be read, so just set
3641 						 * a flag to get us to do
3642 						 * checks later, and set
3643 						 * the required select
3644 						 * timeout to 1 millisecond
3645 						 * so that event loops that
3646 						 * check our socket descriptor
3647 						 * also time out so that
3648 						 * they can call us and we
3649 						 * can do the checks.
3650 						 */
3651 						handlep->netdown = 1;
3652 						handle->required_select_timeout = &netdown_timeout;
3653 					} else if (err == 0) {
3654 						/*
3655 						 * This shouldn't happen, so
3656 						 * report a special indication
3657 						 * that it did.
3658 						 */
3659 						snprintf(handle->errbuf,
3660 						    PCAP_ERRBUF_SIZE,
3661 						    "Error condition on packet socket: Reported error was 0");
3662 						return PCAP_ERROR;
3663 					} else {
3664 						pcapint_fmt_errmsg_for_errno(handle->errbuf,
3665 						    PCAP_ERRBUF_SIZE,
3666 						    err,
3667 						    "Error condition on packet socket");
3668 						return PCAP_ERROR;
3669 					}
3670 				}
3671 			}
3672 			/*
3673 			 * Now check the event device.
3674 			 */
3675 			if (pollinfo[1].revents & POLLIN) {
3676 				ssize_t nread;
3677 				uint64_t value;
3678 
3679 				/*
3680 				 * This should never fail, but, just
3681 				 * in case....
3682 				 */
3683 				nread = read(handlep->poll_breakloop_fd, &value,
3684 				    sizeof(value));
3685 				if (nread == -1) {
3686 					pcapint_fmt_errmsg_for_errno(handle->errbuf,
3687 					    PCAP_ERRBUF_SIZE,
3688 					    errno,
3689 					    "Error reading from event FD");
3690 					return PCAP_ERROR;
3691 				}
3692 
3693 				/*
3694 				 * According to the Linux read(2) man
3695 				 * page, read() will transfer at most
3696 				 * 2^31-1 bytes, so the return value is
3697 				 * either -1 or a value between 0
3698 				 * and 2^31-1, so it's non-negative.
3699 				 *
3700 				 * Cast it to size_t to squelch
3701 				 * warnings from the compiler; add this
3702 				 * comment to squelch warnings from
3703 				 * humans reading the code. :-)
3704 				 *
3705 				 * Don't treat an EOF as an error, but
3706 				 * *do* treat a short read as an error;
3707 				 * that "shouldn't happen", but....
3708 				 */
3709 				if (nread != 0 &&
3710 				    (size_t)nread < sizeof(value)) {
3711 					snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3712 					    "Short read from event FD: expected %zu, got %zd",
3713 					    sizeof(value), nread);
3714 					return PCAP_ERROR;
3715 				}
3716 
3717 				/*
3718 				 * This event gets signaled by a
3719 				 * pcap_breakloop() call; if we were told
3720 				 * to break out of the loop, do so.
3721 				 */
3722 				if (handle->break_loop) {
3723 					handle->break_loop = 0;
3724 					return PCAP_ERROR_BREAK;
3725 				}
3726 			}
3727 		}
3728 
3729 		/*
3730 		 * Either:
3731 		 *
3732 		 *   1) we got neither an error from poll() nor any
3733 		 *      readable descriptors, in which case there
3734 		 *      are no packets waiting to read
3735 		 *
3736 		 * or
3737 		 *
3738 		 *   2) We got readable descriptors but the PF_PACKET
3739 		 *      socket wasn't one of them, in which case there
3740 		 *      are no packets waiting to read
3741 		 *
3742 		 * so, if we got an ENETDOWN, we've drained whatever
3743 		 * packets were available to read at the point of the
3744 		 * ENETDOWN.
3745 		 *
3746 		 * So, if we got an ENETDOWN and haven't gotten an indication
3747 		 * that the device has gone away or that the device is up,
3748 		 * we don't yet know for certain whether the device has
3749 		 * gone away or not, check whether the device exists and is
3750 		 * up.
3751 		 */
3752 		if (handlep->netdown) {
3753 			if (!device_still_exists(handle)) {
3754 				/*
3755 				 * The device doesn't exist any more;
3756 				 * report that.
3757 				 *
3758 				 * XXX - we should really return an
3759 				 * appropriate error for that, but
3760 				 * pcap_dispatch() etc. aren't documented
3761 				 * as having error returns other than
3762 				 * PCAP_ERROR or PCAP_ERROR_BREAK.
3763 				 */
3764 				snprintf(handle->errbuf,  PCAP_ERRBUF_SIZE,
3765 				    "The interface disappeared");
3766 				return PCAP_ERROR;
3767 			}
3768 
3769 			/*
3770 			 * The device still exists; try to see if it's up.
3771 			 */
3772 			memset(&ifr, 0, sizeof(ifr));
3773 			pcapint_strlcpy(ifr.ifr_name, handlep->device,
3774 			    sizeof(ifr.ifr_name));
3775 			if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
3776 				if (errno == ENXIO || errno == ENODEV) {
3777 					/*
3778 					 * OK, *now* it's gone.
3779 					 *
3780 					 * XXX - see above comment.
3781 					 */
3782 					snprintf(handle->errbuf,
3783 					    PCAP_ERRBUF_SIZE,
3784 					    "The interface disappeared");
3785 					return PCAP_ERROR;
3786 				} else {
3787 					pcapint_fmt_errmsg_for_errno(handle->errbuf,
3788 					    PCAP_ERRBUF_SIZE, errno,
3789 					    "%s: Can't get flags",
3790 					    handlep->device);
3791 					return PCAP_ERROR;
3792 				}
3793 			}
3794 			if (ifr.ifr_flags & IFF_UP) {
3795 				/*
3796 				 * It's up, so it definitely still exists.
3797 				 * Cancel the ENETDOWN indication - we
3798 				 * presumably got it due to the interface
3799 				 * going down rather than the device going
3800 				 * away - and revert to "no required select
3801 				 * timeout.
3802 				 */
3803 				handlep->netdown = 0;
3804 				handle->required_select_timeout = NULL;
3805 			}
3806 		}
3807 
3808 		/*
3809 		 * If we're in non-blocking mode, just quit now, rather
3810 		 * than spinning in a loop doing poll()s that immediately
3811 		 * time out if there's no indication on any descriptor.
3812 		 */
3813 		if (handlep->poll_timeout == 0)
3814 			break;
3815 	}
3816 	return 0;
3817 }
3818 
3819 /* handle a single memory mapped packet */
3820 static int pcap_handle_packet_mmap(
3821 		pcap_t *handle,
3822 		pcap_handler callback,
3823 		u_char *user,
3824 		unsigned char *frame,
3825 		unsigned int tp_len,
3826 		unsigned int tp_mac,
3827 		unsigned int tp_snaplen,
3828 		unsigned int tp_sec,
3829 		unsigned int tp_usec,
3830 		int tp_vlan_tci_valid,
3831 		__u16 tp_vlan_tci,
3832 		__u16 tp_vlan_tpid)
3833 {
3834 	struct pcap_linux *handlep = handle->priv;
3835 	unsigned char *bp;
3836 	struct sockaddr_ll *sll;
3837 	struct pcap_pkthdr pcaphdr;
3838 	unsigned int snaplen = tp_snaplen;
3839 	struct utsname utsname;
3840 
3841 	/* perform sanity check on internal offset. */
3842 	if (tp_mac + tp_snaplen > handle->bufsize) {
3843 		/*
3844 		 * Report some system information as a debugging aid.
3845 		 */
3846 		if (uname(&utsname) != -1) {
3847 			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3848 				"corrupted frame on kernel ring mac "
3849 				"offset %u + caplen %u > frame len %d "
3850 				"(kernel %.32s version %s, machine %.16s)",
3851 				tp_mac, tp_snaplen, handle->bufsize,
3852 				utsname.release, utsname.version,
3853 				utsname.machine);
3854 		} else {
3855 			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3856 				"corrupted frame on kernel ring mac "
3857 				"offset %u + caplen %u > frame len %d",
3858 				tp_mac, tp_snaplen, handle->bufsize);
3859 		}
3860 		return -1;
3861 	}
3862 
3863 	/* run filter on received packet
3864 	 * If the kernel filtering is enabled we need to run the
3865 	 * filter until all the frames present into the ring
3866 	 * at filter creation time are processed.
3867 	 * In this case, blocks_to_filter_in_userland is used
3868 	 * as a counter for the packet we need to filter.
3869 	 * Note: alternatively it could be possible to stop applying
3870 	 * the filter when the ring became empty, but it can possibly
3871 	 * happen a lot later... */
3872 	bp = frame + tp_mac;
3873 
3874 	/* if required build in place the sll header*/
3875 	sll = (void *)(frame + TPACKET_ALIGN(handlep->tp_hdrlen));
3876 	if (handlep->cooked) {
3877 		if (handle->linktype == DLT_LINUX_SLL2) {
3878 			struct sll2_header *hdrp;
3879 
3880 			/*
3881 			 * The kernel should have left us with enough
3882 			 * space for an sll header; back up the packet
3883 			 * data pointer into that space, as that'll be
3884 			 * the beginning of the packet we pass to the
3885 			 * callback.
3886 			 */
3887 			bp -= SLL2_HDR_LEN;
3888 
3889 			/*
3890 			 * Let's make sure that's past the end of
3891 			 * the tpacket header, i.e. >=
3892 			 * ((u_char *)thdr + TPACKET_HDRLEN), so we
3893 			 * don't step on the header when we construct
3894 			 * the sll header.
3895 			 */
3896 			if (bp < (u_char *)frame +
3897 					   TPACKET_ALIGN(handlep->tp_hdrlen) +
3898 					   sizeof(struct sockaddr_ll)) {
3899 				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3900 					"cooked-mode frame doesn't have room for sll header");
3901 				return -1;
3902 			}
3903 
3904 			/*
3905 			 * OK, that worked; construct the sll header.
3906 			 */
3907 			hdrp = (struct sll2_header *)bp;
3908 			hdrp->sll2_protocol = sll->sll_protocol;
3909 			hdrp->sll2_reserved_mbz = 0;
3910 			hdrp->sll2_if_index = htonl(sll->sll_ifindex);
3911 			hdrp->sll2_hatype = htons(sll->sll_hatype);
3912 			hdrp->sll2_pkttype = sll->sll_pkttype;
3913 			hdrp->sll2_halen = sll->sll_halen;
3914 			memcpy(hdrp->sll2_addr, sll->sll_addr, SLL_ADDRLEN);
3915 
3916 			snaplen += sizeof(struct sll2_header);
3917 		} else {
3918 			struct sll_header *hdrp;
3919 
3920 			/*
3921 			 * The kernel should have left us with enough
3922 			 * space for an sll header; back up the packet
3923 			 * data pointer into that space, as that'll be
3924 			 * the beginning of the packet we pass to the
3925 			 * callback.
3926 			 */
3927 			bp -= SLL_HDR_LEN;
3928 
3929 			/*
3930 			 * Let's make sure that's past the end of
3931 			 * the tpacket header, i.e. >=
3932 			 * ((u_char *)thdr + TPACKET_HDRLEN), so we
3933 			 * don't step on the header when we construct
3934 			 * the sll header.
3935 			 */
3936 			if (bp < (u_char *)frame +
3937 					   TPACKET_ALIGN(handlep->tp_hdrlen) +
3938 					   sizeof(struct sockaddr_ll)) {
3939 				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3940 					"cooked-mode frame doesn't have room for sll header");
3941 				return -1;
3942 			}
3943 
3944 			/*
3945 			 * OK, that worked; construct the sll header.
3946 			 */
3947 			hdrp = (struct sll_header *)bp;
3948 			hdrp->sll_pkttype = htons(sll->sll_pkttype);
3949 			hdrp->sll_hatype = htons(sll->sll_hatype);
3950 			hdrp->sll_halen = htons(sll->sll_halen);
3951 			memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN);
3952 			hdrp->sll_protocol = sll->sll_protocol;
3953 
3954 			snaplen += sizeof(struct sll_header);
3955 		}
3956 	} else {
3957 		/*
3958 		 * If this is a packet from a CAN device, so that
3959 		 * sll->sll_hatype is ARPHRD_CAN, then, as we're
3960 		 * not capturing in cooked mode, its link-layer
3961 		 * type is DLT_CAN_SOCKETCAN.  Fix up the header
3962 		 * provided by the code below us to match what
3963 		 * DLT_CAN_SOCKETCAN is expected to provide.
3964 		 */
3965 		if (sll->sll_hatype == ARPHRD_CAN) {
3966 			pcap_can_socketcan_hdr *canhdr = (pcap_can_socketcan_hdr *)bp;
3967 			uint16_t protocol = ntohs(sll->sll_protocol);
3968 
3969 			/*
3970 			 * Check the protocol field from the sll header.
3971 			 * If it's one of the known CAN protocol types,
3972 			 * make sure the appropriate flags are set, so
3973 			 * that a program can tell what type of frame
3974 			 * it is.
3975 			 *
3976 			 * The two flags are:
3977 			 *
3978 			 *   CANFD_FDF, which is in the fd_flags field
3979 			 *   of the CAN classic/CAN FD header;
3980 			 *
3981 			 *   CANXL_XLF, which is in the flags field
3982 			 *   of the CAN XL header, which overlaps
3983 			 *   the payload_length field of the CAN
3984 			 *   classic/CAN FD header.
3985 			 */
3986 			switch (protocol) {
3987 
3988 			case LINUX_SLL_P_CAN:
3989 				/*
3990 				 * CAN classic.
3991 				 *
3992 				 * Zero out the fd_flags and reserved
3993 				 * fields, in case they're uninitialized
3994 				 * crap, and clear the CANXL_XLF bit in
3995 				 * the payload_length field.
3996 				 *
3997 				 * This means that the CANFD_FDF flag isn't
3998 				 * set in the fd_flags field, and that
3999 				 * the CANXL_XLF bit isn't set in the
4000 				 * payload_length field, so this frame
4001 				 * will appear to be a CAN classic frame.
4002 				 */
4003 				canhdr->payload_length &= ~CANXL_XLF;
4004 				canhdr->fd_flags = 0;
4005 				canhdr->reserved1 = 0;
4006 				canhdr->reserved2 = 0;
4007 				break;
4008 
4009 			case LINUX_SLL_P_CANFD:
4010 				/*
4011 				 * Set CANFD_FDF in the fd_flags field,
4012 				 * and clear the CANXL_XLF bit in the
4013 				 * payload_length field, so this frame
4014 				 * will appear to be a CAN FD frame.
4015 				 */
4016 				canhdr->payload_length &= ~CANXL_XLF;
4017 				canhdr->fd_flags |= CANFD_FDF;
4018 
4019 				/*
4020 				 * Zero out all the unknown bits in fd_flags
4021 				 * and clear the reserved fields, so that
4022 				 * a program reading this can assume that
4023 				 * CANFD_FDF is set because we set it, not
4024 				 * because some uninitialized crap was
4025 				 * provided in the fd_flags field.
4026 				 *
4027 				 * (At least some LINKTYPE_CAN_SOCKETCAN
4028 				 * files attached to Wireshark bugs had
4029 				 * uninitialized junk there, so it does
4030 				 * happen.)
4031 				 *
4032 				 * Update this if Linux adds more flag bits
4033 				 * to the fd_flags field or uses either of
4034 				 * the reserved fields for FD frames.
4035 				 */
4036 				canhdr->fd_flags &= (CANFD_FDF|CANFD_ESI|CANFD_BRS);
4037 				canhdr->reserved1 = 0;
4038 				canhdr->reserved2 = 0;
4039 				break;
4040 
4041 			case LINUX_SLL_P_CANXL:
4042 				/*
4043 				 * CAN XL frame.
4044 				 *
4045 				 * Make sure the CANXL_XLF bit is set in
4046 				 * the payload_length field, so that
4047 				 * this frame will appear to be a
4048 				 * CAN XL frame.
4049 				 */
4050 				canhdr->payload_length |= CANXL_XLF;
4051 				break;
4052 			}
4053 
4054 			/*
4055 			 * Put multi-byte header fields in a byte-order
4056 			 *-independent format.
4057 			 */
4058 			if (canhdr->payload_length & CANXL_XLF) {
4059 				/*
4060 				 * This is a CAN XL frame.
4061 				 *
4062 				 * DLT_CAN_SOCKETCAN is specified as having
4063 				 * the Priority ID/VCID field in big--
4064 				 * endian byte order, and the payload length
4065 				 * and Acceptance Field in little-endian byte
4066 				 * order. but capturing on a CAN device
4067 				 * provides them in host byte order.
4068 				 * Convert them to the appropriate byte
4069 				 * orders.
4070 				 *
4071 				 * The reason we put the first field
4072 				 * into big-endian byte order is that
4073 				 * older libpcap code, ignorant of
4074 				 * CAN XL, treated it as the CAN ID
4075 				 * field and put it into big-endian
4076 				 * byte order, and we don't want to
4077 				 * break code that understands CAN XL
4078 				 * headers, and treats that field as
4079 				 * being big-endian.
4080 				 *
4081 				 * The other fields are put in little-
4082 				 * endian byte order is that older
4083 				 * libpcap code, ignorant of CAN XL,
4084 				 * left those fields alone, and the
4085 				 * processors on which the CAN XL
4086 				 * frames were captured are likely
4087 				 * to be little-endian processors.
4088 				 */
4089 				pcap_can_socketcan_xl_hdr *canxl_hdr = (pcap_can_socketcan_xl_hdr *)bp;
4090 
4091 #if __BYTE_ORDER == __LITTLE_ENDIAN
4092 				/*
4093 				 * We're capturing on a little-endian
4094 				 * machine, so we put the priority/VCID
4095 				 * field into big-endian byte order, and
4096 				 * leave the payload length and acceptance
4097 				 * field in little-endian byte order.
4098 				 */
4099 				/* Byte-swap priority/VCID. */
4100 				canxl_hdr->priority_vcid = SWAPLONG(canxl_hdr->priority_vcid);
4101 #elif __BYTE_ORDER == __BIG_ENDIAN
4102 				/*
4103 				 * We're capturing on a big-endian
4104 				 * machine, so we want to leave the
4105 				 * priority/VCID field alone, and byte-swap
4106 				 * the payload length and acceptance
4107 				 * fields to little-endian.
4108 				 */
4109 				/* Byte-swap the payload length */
4110 				canxl_hdr->payload_length = SWAPSHORT(canxl_hdr->payload_length);
4111 
4112 				/*
4113 				 * Byte-swap the acceptance field.
4114 				 *
4115 				 * XXX - is it just a 4-octet string,
4116 				 * not in any byte order?
4117 				 */
4118 				canxl_hdr->acceptance_field = SWAPLONG(canxl_hdr->acceptance_field);
4119 #else
4120 #error "Unknown byte order"
4121 #endif
4122 			} else {
4123 				/*
4124 				 * CAN or CAN FD frame.
4125 				 *
4126 				 * DLT_CAN_SOCKETCAN is specified as having
4127 				 * the CAN ID and flags in network byte
4128 				 * order, but capturing on a CAN device
4129 				 * provides it in host byte order.  Convert
4130 				 * it to network byte order.
4131 				 */
4132 				canhdr->can_id = htonl(canhdr->can_id);
4133 			}
4134 		}
4135 	}
4136 
4137 	if (handlep->filter_in_userland && handle->fcode.bf_insns) {
4138 		struct pcap_bpf_aux_data aux_data;
4139 
4140 		aux_data.vlan_tag_present = tp_vlan_tci_valid;
4141 		aux_data.vlan_tag = tp_vlan_tci & 0x0fff;
4142 
4143 		if (pcapint_filter_with_aux_data(handle->fcode.bf_insns,
4144 					      bp,
4145 					      tp_len,
4146 					      snaplen,
4147 					      &aux_data) == 0)
4148 			return 0;
4149 	}
4150 
4151 	if (!linux_check_direction(handle, sll))
4152 		return 0;
4153 
4154 	/* get required packet info from ring header */
4155 	pcaphdr.ts.tv_sec = tp_sec;
4156 	pcaphdr.ts.tv_usec = tp_usec;
4157 	pcaphdr.caplen = tp_snaplen;
4158 	pcaphdr.len = tp_len;
4159 
4160 	/* if required build in place the sll header*/
4161 	if (handlep->cooked) {
4162 		/* update packet len */
4163 		if (handle->linktype == DLT_LINUX_SLL2) {
4164 			pcaphdr.caplen += SLL2_HDR_LEN;
4165 			pcaphdr.len += SLL2_HDR_LEN;
4166 		} else {
4167 			pcaphdr.caplen += SLL_HDR_LEN;
4168 			pcaphdr.len += SLL_HDR_LEN;
4169 		}
4170 	}
4171 
4172 	if (tp_vlan_tci_valid &&
4173 		handlep->vlan_offset != -1 &&
4174 		tp_snaplen >= (unsigned int) handlep->vlan_offset)
4175 	{
4176 		struct vlan_tag *tag;
4177 
4178 		/*
4179 		 * Move everything in the header, except the type field,
4180 		 * down VLAN_TAG_LEN bytes, to allow us to insert the
4181 		 * VLAN tag between that stuff and the type field.
4182 		 */
4183 		bp -= VLAN_TAG_LEN;
4184 		memmove(bp, bp + VLAN_TAG_LEN, handlep->vlan_offset);
4185 
4186 		/*
4187 		 * Now insert the tag.
4188 		 */
4189 		tag = (struct vlan_tag *)(bp + handlep->vlan_offset);
4190 		tag->vlan_tpid = htons(tp_vlan_tpid);
4191 		tag->vlan_tci = htons(tp_vlan_tci);
4192 
4193 		/*
4194 		 * Add the tag to the packet lengths.
4195 		 */
4196 		pcaphdr.caplen += VLAN_TAG_LEN;
4197 		pcaphdr.len += VLAN_TAG_LEN;
4198 	}
4199 
4200 	/*
4201 	 * The only way to tell the kernel to cut off the
4202 	 * packet at a snapshot length is with a filter program;
4203 	 * if there's no filter program, the kernel won't cut
4204 	 * the packet off.
4205 	 *
4206 	 * Trim the snapshot length to be no longer than the
4207 	 * specified snapshot length.
4208 	 *
4209 	 * XXX - an alternative is to put a filter, consisting
4210 	 * of a "ret <snaplen>" instruction, on the socket
4211 	 * in the activate routine, so that the truncation is
4212 	 * done in the kernel even if nobody specified a filter;
4213 	 * that means that less buffer space is consumed in
4214 	 * the memory-mapped buffer.
4215 	 */
4216 	if (pcaphdr.caplen > (bpf_u_int32)handle->snapshot)
4217 		pcaphdr.caplen = handle->snapshot;
4218 
4219 	/* pass the packet to the user */
4220 	callback(user, &pcaphdr, bp);
4221 
4222 	return 1;
4223 }
4224 
4225 static int
4226 pcap_read_linux_mmap_v2(pcap_t *handle, int max_packets, pcap_handler callback,
4227 		u_char *user)
4228 {
4229 	struct pcap_linux *handlep = handle->priv;
4230 	union thdr h;
4231 	int pkts = 0;
4232 	int ret;
4233 
4234 	/* wait for frames availability.*/
4235 	h.raw = RING_GET_CURRENT_FRAME(handle);
4236 	if (!packet_mmap_acquire(h.h2)) {
4237 		/*
4238 		 * The current frame is owned by the kernel; wait for
4239 		 * a frame to be handed to us.
4240 		 */
4241 		ret = pcap_wait_for_frames_mmap(handle);
4242 		if (ret) {
4243 			return ret;
4244 		}
4245 	}
4246 
4247 	/*
4248 	 * This can conceivably process more than INT_MAX packets,
4249 	 * which would overflow the packet count, causing it either
4250 	 * to look like a negative number, and thus cause us to
4251 	 * return a value that looks like an error, or overflow
4252 	 * back into positive territory, and thus cause us to
4253 	 * return a too-low count.
4254 	 *
4255 	 * Therefore, if the packet count is unlimited, we clip
4256 	 * it at INT_MAX; this routine is not expected to
4257 	 * process packets indefinitely, so that's not an issue.
4258 	 */
4259 	if (PACKET_COUNT_IS_UNLIMITED(max_packets))
4260 		max_packets = INT_MAX;
4261 
4262 	while (pkts < max_packets) {
4263 		/*
4264 		 * Get the current ring buffer frame, and break if
4265 		 * it's still owned by the kernel.
4266 		 */
4267 		h.raw = RING_GET_CURRENT_FRAME(handle);
4268 		if (!packet_mmap_acquire(h.h2))
4269 			break;
4270 
4271 		ret = pcap_handle_packet_mmap(
4272 				handle,
4273 				callback,
4274 				user,
4275 				h.raw,
4276 				h.h2->tp_len,
4277 				h.h2->tp_mac,
4278 				h.h2->tp_snaplen,
4279 				h.h2->tp_sec,
4280 				handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? h.h2->tp_nsec : h.h2->tp_nsec / 1000,
4281 				VLAN_VALID(h.h2, h.h2),
4282 				h.h2->tp_vlan_tci,
4283 				VLAN_TPID(h.h2, h.h2));
4284 		if (ret == 1) {
4285 			pkts++;
4286 		} else if (ret < 0) {
4287 			return ret;
4288 		}
4289 
4290 		/*
4291 		 * Hand this block back to the kernel, and, if we're
4292 		 * counting blocks that need to be filtered in userland
4293 		 * after having been filtered by the kernel, count
4294 		 * the one we've just processed.
4295 		 */
4296 		packet_mmap_release(h.h2);
4297 		if (handlep->blocks_to_filter_in_userland > 0) {
4298 			handlep->blocks_to_filter_in_userland--;
4299 			if (handlep->blocks_to_filter_in_userland == 0) {
4300 				/*
4301 				 * No more blocks need to be filtered
4302 				 * in userland.
4303 				 */
4304 				handlep->filter_in_userland = 0;
4305 			}
4306 		}
4307 
4308 		/* next block */
4309 		if (++handle->offset >= handle->cc)
4310 			handle->offset = 0;
4311 
4312 		/* check for break loop condition*/
4313 		if (handle->break_loop) {
4314 			handle->break_loop = 0;
4315 			return PCAP_ERROR_BREAK;
4316 		}
4317 	}
4318 	return pkts;
4319 }
4320 
4321 #ifdef HAVE_TPACKET3
4322 static int
4323 pcap_read_linux_mmap_v3(pcap_t *handle, int max_packets, pcap_handler callback,
4324 		u_char *user)
4325 {
4326 	struct pcap_linux *handlep = handle->priv;
4327 	union thdr h;
4328 	int pkts = 0;
4329 	int ret;
4330 
4331 again:
4332 	if (handlep->current_packet == NULL) {
4333 		/* wait for frames availability.*/
4334 		h.raw = RING_GET_CURRENT_FRAME(handle);
4335 		if (!packet_mmap_v3_acquire(h.h3)) {
4336 			/*
4337 			 * The current frame is owned by the kernel; wait
4338 			 * for a frame to be handed to us.
4339 			 */
4340 			ret = pcap_wait_for_frames_mmap(handle);
4341 			if (ret) {
4342 				return ret;
4343 			}
4344 		}
4345 	}
4346 	h.raw = RING_GET_CURRENT_FRAME(handle);
4347 	if (!packet_mmap_v3_acquire(h.h3)) {
4348 		if (pkts == 0 && handlep->timeout == 0) {
4349 			/* Block until we see a packet. */
4350 			goto again;
4351 		}
4352 		return pkts;
4353 	}
4354 
4355 	/*
4356 	 * This can conceivably process more than INT_MAX packets,
4357 	 * which would overflow the packet count, causing it either
4358 	 * to look like a negative number, and thus cause us to
4359 	 * return a value that looks like an error, or overflow
4360 	 * back into positive territory, and thus cause us to
4361 	 * return a too-low count.
4362 	 *
4363 	 * Therefore, if the packet count is unlimited, we clip
4364 	 * it at INT_MAX; this routine is not expected to
4365 	 * process packets indefinitely, so that's not an issue.
4366 	 */
4367 	if (PACKET_COUNT_IS_UNLIMITED(max_packets))
4368 		max_packets = INT_MAX;
4369 
4370 	while (pkts < max_packets) {
4371 		int packets_to_read;
4372 
4373 		if (handlep->current_packet == NULL) {
4374 			h.raw = RING_GET_CURRENT_FRAME(handle);
4375 			if (!packet_mmap_v3_acquire(h.h3))
4376 				break;
4377 
4378 			handlep->current_packet = h.raw + h.h3->hdr.bh1.offset_to_first_pkt;
4379 			handlep->packets_left = h.h3->hdr.bh1.num_pkts;
4380 		}
4381 		packets_to_read = handlep->packets_left;
4382 
4383 		if (packets_to_read > (max_packets - pkts)) {
4384 			/*
4385 			 * There are more packets in the buffer than
4386 			 * the number of packets we have left to
4387 			 * process to get up to the maximum number
4388 			 * of packets to process.  Only process enough
4389 			 * of them to get us up to that maximum.
4390 			 */
4391 			packets_to_read = max_packets - pkts;
4392 		}
4393 
4394 		while (packets_to_read-- && !handle->break_loop) {
4395 			struct tpacket3_hdr* tp3_hdr = (struct tpacket3_hdr*) handlep->current_packet;
4396 			ret = pcap_handle_packet_mmap(
4397 					handle,
4398 					callback,
4399 					user,
4400 					handlep->current_packet,
4401 					tp3_hdr->tp_len,
4402 					tp3_hdr->tp_mac,
4403 					tp3_hdr->tp_snaplen,
4404 					tp3_hdr->tp_sec,
4405 					handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? tp3_hdr->tp_nsec : tp3_hdr->tp_nsec / 1000,
4406 					VLAN_VALID(tp3_hdr, &tp3_hdr->hv1),
4407 					tp3_hdr->hv1.tp_vlan_tci,
4408 					VLAN_TPID(tp3_hdr, &tp3_hdr->hv1));
4409 			if (ret == 1) {
4410 				pkts++;
4411 			} else if (ret < 0) {
4412 				handlep->current_packet = NULL;
4413 				return ret;
4414 			}
4415 			handlep->current_packet += tp3_hdr->tp_next_offset;
4416 			handlep->packets_left--;
4417 		}
4418 
4419 		if (handlep->packets_left <= 0) {
4420 			/*
4421 			 * Hand this block back to the kernel, and, if
4422 			 * we're counting blocks that need to be
4423 			 * filtered in userland after having been
4424 			 * filtered by the kernel, count the one we've
4425 			 * just processed.
4426 			 */
4427 			packet_mmap_v3_release(h.h3);
4428 			if (handlep->blocks_to_filter_in_userland > 0) {
4429 				handlep->blocks_to_filter_in_userland--;
4430 				if (handlep->blocks_to_filter_in_userland == 0) {
4431 					/*
4432 					 * No more blocks need to be filtered
4433 					 * in userland.
4434 					 */
4435 					handlep->filter_in_userland = 0;
4436 				}
4437 			}
4438 
4439 			/* next block */
4440 			if (++handle->offset >= handle->cc)
4441 				handle->offset = 0;
4442 
4443 			handlep->current_packet = NULL;
4444 		}
4445 
4446 		/* check for break loop condition*/
4447 		if (handle->break_loop) {
4448 			handle->break_loop = 0;
4449 			return PCAP_ERROR_BREAK;
4450 		}
4451 	}
4452 	if (pkts == 0 && handlep->timeout == 0) {
4453 		/* Block until we see a packet. */
4454 		goto again;
4455 	}
4456 	return pkts;
4457 }
4458 #endif /* HAVE_TPACKET3 */
4459 
4460 /*
4461  *  Attach the given BPF code to the packet capture device.
4462  */
4463 static int
4464 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
4465 {
4466 	struct pcap_linux *handlep;
4467 	struct sock_fprog	fcode;
4468 	int			can_filter_in_kernel;
4469 	int			err = 0;
4470 	int			n, offset;
4471 
4472 	if (!handle)
4473 		return -1;
4474 	if (!filter) {
4475 	        pcapint_strlcpy(handle->errbuf, "setfilter: No filter specified",
4476 			PCAP_ERRBUF_SIZE);
4477 		return -1;
4478 	}
4479 
4480 	handlep = handle->priv;
4481 
4482 	/* Make our private copy of the filter */
4483 
4484 	if (pcapint_install_bpf_program(handle, filter) < 0)
4485 		/* pcapint_install_bpf_program() filled in errbuf */
4486 		return -1;
4487 
4488 	/*
4489 	 * Run user level packet filter by default. Will be overridden if
4490 	 * installing a kernel filter succeeds.
4491 	 */
4492 	handlep->filter_in_userland = 1;
4493 
4494 	/* Install kernel level filter if possible */
4495 
4496 #ifdef USHRT_MAX
4497 	if (handle->fcode.bf_len > USHRT_MAX) {
4498 		/*
4499 		 * fcode.len is an unsigned short for current kernel.
4500 		 * I have yet to see BPF-Code with that much
4501 		 * instructions but still it is possible. So for the
4502 		 * sake of correctness I added this check.
4503 		 */
4504 		fprintf(stderr, "Warning: Filter too complex for kernel\n");
4505 		fcode.len = 0;
4506 		fcode.filter = NULL;
4507 		can_filter_in_kernel = 0;
4508 	} else
4509 #endif /* USHRT_MAX */
4510 	{
4511 		/*
4512 		 * Oh joy, the Linux kernel uses struct sock_fprog instead
4513 		 * of struct bpf_program and of course the length field is
4514 		 * of different size. Pointed out by Sebastian
4515 		 *
4516 		 * Oh, and we also need to fix it up so that all "ret"
4517 		 * instructions with non-zero operands have MAXIMUM_SNAPLEN
4518 		 * as the operand if we're not capturing in memory-mapped
4519 		 * mode, and so that, if we're in cooked mode, all memory-
4520 		 * reference instructions use special magic offsets in
4521 		 * references to the link-layer header and assume that the
4522 		 * link-layer payload begins at 0; "fix_program()" will do
4523 		 * that.
4524 		 */
4525 		switch (fix_program(handle, &fcode)) {
4526 
4527 		case -1:
4528 		default:
4529 			/*
4530 			 * Fatal error; just quit.
4531 			 * (The "default" case shouldn't happen; we
4532 			 * return -1 for that reason.)
4533 			 */
4534 			return -1;
4535 
4536 		case 0:
4537 			/*
4538 			 * The program performed checks that we can't make
4539 			 * work in the kernel.
4540 			 */
4541 			can_filter_in_kernel = 0;
4542 			break;
4543 
4544 		case 1:
4545 			/*
4546 			 * We have a filter that'll work in the kernel.
4547 			 */
4548 			can_filter_in_kernel = 1;
4549 			break;
4550 		}
4551 	}
4552 
4553 	/*
4554 	 * NOTE: at this point, we've set both the "len" and "filter"
4555 	 * fields of "fcode".  As of the 2.6.32.4 kernel, at least,
4556 	 * those are the only members of the "sock_fprog" structure,
4557 	 * so we initialize every member of that structure.
4558 	 *
4559 	 * If there is anything in "fcode" that is not initialized,
4560 	 * it is either a field added in a later kernel, or it's
4561 	 * padding.
4562 	 *
4563 	 * If a new field is added, this code needs to be updated
4564 	 * to set it correctly.
4565 	 *
4566 	 * If there are no other fields, then:
4567 	 *
4568 	 *	if the Linux kernel looks at the padding, it's
4569 	 *	buggy;
4570 	 *
4571 	 *	if the Linux kernel doesn't look at the padding,
4572 	 *	then if some tool complains that we're passing
4573 	 *	uninitialized data to the kernel, then the tool
4574 	 *	is buggy and needs to understand that it's just
4575 	 *	padding.
4576 	 */
4577 	if (can_filter_in_kernel) {
4578 		if ((err = set_kernel_filter(handle, &fcode)) == 0)
4579 		{
4580 			/*
4581 			 * Installation succeeded - using kernel filter,
4582 			 * so userland filtering not needed.
4583 			 */
4584 			handlep->filter_in_userland = 0;
4585 		}
4586 		else if (err == -1)	/* Non-fatal error */
4587 		{
4588 			/*
4589 			 * Print a warning if we weren't able to install
4590 			 * the filter for a reason other than "this kernel
4591 			 * isn't configured to support socket filters.
4592 			 */
4593 			if (errno == ENOMEM) {
4594 				/*
4595 				 * Either a kernel memory allocation
4596 				 * failure occurred, or there's too
4597 				 * much "other/option memory" allocated
4598 				 * for this socket.  Suggest that they
4599 				 * increase the "other/option memory"
4600 				 * limit.
4601 				 */
4602 				fprintf(stderr,
4603 				    "Warning: Couldn't allocate kernel memory for filter: try increasing net.core.optmem_max with sysctl\n");
4604 			} else if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
4605 				fprintf(stderr,
4606 				    "Warning: Kernel filter failed: %s\n",
4607 					pcap_strerror(errno));
4608 			}
4609 		}
4610 	}
4611 
4612 	/*
4613 	 * If we're not using the kernel filter, get rid of any kernel
4614 	 * filter that might've been there before, e.g. because the
4615 	 * previous filter could work in the kernel, or because some other
4616 	 * code attached a filter to the socket by some means other than
4617 	 * calling "pcap_setfilter()".  Otherwise, the kernel filter may
4618 	 * filter out packets that would pass the new userland filter.
4619 	 */
4620 	if (handlep->filter_in_userland) {
4621 		if (reset_kernel_filter(handle) == -1) {
4622 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
4623 			    PCAP_ERRBUF_SIZE, errno,
4624 			    "can't remove kernel filter");
4625 			err = -2;	/* fatal error */
4626 		}
4627 	}
4628 
4629 	/*
4630 	 * Free up the copy of the filter that was made by "fix_program()".
4631 	 */
4632 	if (fcode.filter != NULL)
4633 		free(fcode.filter);
4634 
4635 	if (err == -2)
4636 		/* Fatal error */
4637 		return -1;
4638 
4639 	/*
4640 	 * If we're filtering in userland, there's nothing to do;
4641 	 * the new filter will be used for the next packet.
4642 	 */
4643 	if (handlep->filter_in_userland)
4644 		return 0;
4645 
4646 	/*
4647 	 * We're filtering in the kernel; the packets present in
4648 	 * all blocks currently in the ring were already filtered
4649 	 * by the old filter, and so will need to be filtered in
4650 	 * userland by the new filter.
4651 	 *
4652 	 * Get an upper bound for the number of such blocks; first,
4653 	 * walk the ring backward and count the free blocks.
4654 	 */
4655 	offset = handle->offset;
4656 	if (--offset < 0)
4657 		offset = handle->cc - 1;
4658 	for (n=0; n < handle->cc; ++n) {
4659 		if (--offset < 0)
4660 			offset = handle->cc - 1;
4661 		if (pcap_get_ring_frame_status(handle, offset) != TP_STATUS_KERNEL)
4662 			break;
4663 	}
4664 
4665 	/*
4666 	 * If we found free blocks, decrement the count of free
4667 	 * blocks by 1, just in case we lost a race with another
4668 	 * thread of control that was adding a packet while
4669 	 * we were counting and that had run the filter before
4670 	 * we changed it.
4671 	 *
4672 	 * XXX - could there be more than one block added in
4673 	 * this fashion?
4674 	 *
4675 	 * XXX - is there a way to avoid that race, e.g. somehow
4676 	 * wait for all packets that passed the old filter to
4677 	 * be added to the ring?
4678 	 */
4679 	if (n != 0)
4680 		n--;
4681 
4682 	/*
4683 	 * Set the count of blocks worth of packets to filter
4684 	 * in userland to the total number of blocks in the
4685 	 * ring minus the number of free blocks we found, and
4686 	 * turn on userland filtering.  (The count of blocks
4687 	 * worth of packets to filter in userland is guaranteed
4688 	 * not to be zero - n, above, couldn't be set to a
4689 	 * value > handle->cc, and if it were equal to
4690 	 * handle->cc, it wouldn't be zero, and thus would
4691 	 * be decremented to handle->cc - 1.)
4692 	 */
4693 	handlep->blocks_to_filter_in_userland = handle->cc - n;
4694 	handlep->filter_in_userland = 1;
4695 
4696 	return 0;
4697 }
4698 
4699 /*
4700  *  Return the index of the given device name. Fill ebuf and return
4701  *  -1 on failure.
4702  */
4703 static int
4704 iface_get_id(int fd, const char *device, char *ebuf)
4705 {
4706 	struct ifreq	ifr;
4707 
4708 	memset(&ifr, 0, sizeof(ifr));
4709 	pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
4710 
4711 	if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
4712 		pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4713 		    errno, "SIOCGIFINDEX");
4714 		return -1;
4715 	}
4716 
4717 	return ifr.ifr_ifindex;
4718 }
4719 
4720 /*
4721  *  Bind the socket associated with FD to the given device.
4722  *  Return 0 on success or a PCAP_ERROR_ value on a hard error.
4723  */
4724 static int
4725 iface_bind(int fd, int ifindex, char *ebuf, int protocol)
4726 {
4727 	struct sockaddr_ll	sll;
4728 	int			ret, err;
4729 	socklen_t		errlen = sizeof(err);
4730 
4731 	memset(&sll, 0, sizeof(sll));
4732 	sll.sll_family		= AF_PACKET;
4733 	sll.sll_ifindex		= ifindex < 0 ? 0 : ifindex;
4734 	sll.sll_protocol	= protocol;
4735 
4736 	if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
4737 		if (errno == ENETDOWN) {
4738 			/*
4739 			 * Return a "network down" indication, so that
4740 			 * the application can report that rather than
4741 			 * saying we had a mysterious failure and
4742 			 * suggest that they report a problem to the
4743 			 * libpcap developers.
4744 			 */
4745 			return PCAP_ERROR_IFACE_NOT_UP;
4746 		}
4747 		if (errno == ENODEV) {
4748 			/*
4749 			 * There's nothing more to say, so clear the
4750 			 * error message.
4751 			 */
4752 			ebuf[0] = '\0';
4753 			ret = PCAP_ERROR_NO_SUCH_DEVICE;
4754 		} else {
4755 			ret = PCAP_ERROR;
4756 			pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4757 			    errno, "bind");
4758 		}
4759 		return ret;
4760 	}
4761 
4762 	/* Any pending errors, e.g., network is down? */
4763 
4764 	if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
4765 		pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4766 		    errno, "getsockopt (SO_ERROR)");
4767 		return PCAP_ERROR;
4768 	}
4769 
4770 	if (err == ENETDOWN) {
4771 		/*
4772 		 * Return a "network down" indication, so that
4773 		 * the application can report that rather than
4774 		 * saying we had a mysterious failure and
4775 		 * suggest that they report a problem to the
4776 		 * libpcap developers.
4777 		 */
4778 		return PCAP_ERROR_IFACE_NOT_UP;
4779 	} else if (err > 0) {
4780 		pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4781 		    err, "bind");
4782 		return PCAP_ERROR;
4783 	}
4784 
4785 	return 0;
4786 }
4787 
4788 /*
4789  * Try to enter monitor mode.
4790  * If we have libnl, try to create a new monitor-mode device and
4791  * capture on that; otherwise, just say "not supported".
4792  */
4793 #ifdef HAVE_LIBNL
4794 static int
4795 enter_rfmon_mode(pcap_t *handle, int sock_fd, const char *device)
4796 {
4797 	struct pcap_linux *handlep = handle->priv;
4798 	int ret;
4799 	char phydev_path[PATH_MAX+1];
4800 	struct nl80211_state nlstate;
4801 	struct ifreq ifr;
4802 	u_int n;
4803 
4804 	/*
4805 	 * Is this a mac80211 device?
4806 	 */
4807 	ret = get_mac80211_phydev(handle, device, phydev_path, PATH_MAX);
4808 	if (ret < 0)
4809 		return ret;	/* error */
4810 	if (ret == 0)
4811 		return 0;	/* no error, but not mac80211 device */
4812 
4813 	/*
4814 	 * XXX - is this already a monN device?
4815 	 * If so, we're done.
4816 	 */
4817 
4818 	/*
4819 	 * OK, it's apparently a mac80211 device.
4820 	 * Try to find an unused monN device for it.
4821 	 */
4822 	ret = nl80211_init(handle, &nlstate, device);
4823 	if (ret != 0)
4824 		return ret;
4825 	for (n = 0; n < UINT_MAX; n++) {
4826 		/*
4827 		 * Try mon{n}.
4828 		 */
4829 		char mondevice[3+10+1];	/* mon{UINT_MAX}\0 */
4830 
4831 		snprintf(mondevice, sizeof mondevice, "mon%u", n);
4832 		ret = add_mon_if(handle, sock_fd, &nlstate, device, mondevice);
4833 		if (ret == 1) {
4834 			/*
4835 			 * Success.  We don't clean up the libnl state
4836 			 * yet, as we'll be using it later.
4837 			 */
4838 			goto added;
4839 		}
4840 		if (ret < 0) {
4841 			/*
4842 			 * Hard failure.  Just return ret; handle->errbuf
4843 			 * has already been set.
4844 			 */
4845 			nl80211_cleanup(&nlstate);
4846 			return ret;
4847 		}
4848 	}
4849 
4850 	snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
4851 	    "%s: No free monN interfaces", device);
4852 	nl80211_cleanup(&nlstate);
4853 	return PCAP_ERROR;
4854 
4855 added:
4856 
4857 #if 0
4858 	/*
4859 	 * Sleep for .1 seconds.
4860 	 */
4861 	delay.tv_sec = 0;
4862 	delay.tv_nsec = 500000000;
4863 	nanosleep(&delay, NULL);
4864 #endif
4865 
4866 	/*
4867 	 * If we haven't already done so, arrange to have
4868 	 * "pcap_close_all()" called when we exit.
4869 	 */
4870 	if (!pcapint_do_addexit(handle)) {
4871 		/*
4872 		 * "atexit()" failed; don't put the interface
4873 		 * in rfmon mode, just give up.
4874 		 */
4875 		del_mon_if(handle, sock_fd, &nlstate, device,
4876 		    handlep->mondevice);
4877 		nl80211_cleanup(&nlstate);
4878 		return PCAP_ERROR;
4879 	}
4880 
4881 	/*
4882 	 * Now configure the monitor interface up.
4883 	 */
4884 	memset(&ifr, 0, sizeof(ifr));
4885 	pcapint_strlcpy(ifr.ifr_name, handlep->mondevice, sizeof(ifr.ifr_name));
4886 	if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) {
4887 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4888 		    errno, "%s: Can't get flags for %s", device,
4889 		    handlep->mondevice);
4890 		del_mon_if(handle, sock_fd, &nlstate, device,
4891 		    handlep->mondevice);
4892 		nl80211_cleanup(&nlstate);
4893 		return PCAP_ERROR;
4894 	}
4895 	ifr.ifr_flags |= IFF_UP|IFF_RUNNING;
4896 	if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) {
4897 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4898 		    errno, "%s: Can't set flags for %s", device,
4899 		    handlep->mondevice);
4900 		del_mon_if(handle, sock_fd, &nlstate, device,
4901 		    handlep->mondevice);
4902 		nl80211_cleanup(&nlstate);
4903 		return PCAP_ERROR;
4904 	}
4905 
4906 	/*
4907 	 * Success.  Clean up the libnl state.
4908 	 */
4909 	nl80211_cleanup(&nlstate);
4910 
4911 	/*
4912 	 * Note that we have to delete the monitor device when we close
4913 	 * the handle.
4914 	 */
4915 	handlep->must_do_on_close |= MUST_DELETE_MONIF;
4916 
4917 	/*
4918 	 * Add this to the list of pcaps to close when we exit.
4919 	 */
4920 	pcapint_add_to_pcaps_to_close(handle);
4921 
4922 	return 1;
4923 }
4924 #else /* HAVE_LIBNL */
4925 static int
4926 enter_rfmon_mode(pcap_t *handle _U_, int sock_fd _U_, const char *device _U_)
4927 {
4928 	/*
4929 	 * We don't have libnl, so we can't do monitor mode.
4930 	 */
4931 	return 0;
4932 }
4933 #endif /* HAVE_LIBNL */
4934 
4935 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
4936 /*
4937  * Map SOF_TIMESTAMPING_ values to PCAP_TSTAMP_ values.
4938  */
4939 static const struct {
4940 	int soft_timestamping_val;
4941 	int pcap_tstamp_val;
4942 } sof_ts_type_map[3] = {
4943 	{ SOF_TIMESTAMPING_SOFTWARE, PCAP_TSTAMP_HOST },
4944 	{ SOF_TIMESTAMPING_SYS_HARDWARE, PCAP_TSTAMP_ADAPTER },
4945 	{ SOF_TIMESTAMPING_RAW_HARDWARE, PCAP_TSTAMP_ADAPTER_UNSYNCED }
4946 };
4947 #define NUM_SOF_TIMESTAMPING_TYPES	(sizeof sof_ts_type_map / sizeof sof_ts_type_map[0])
4948 
4949 /*
4950  * Set the list of time stamping types to include all types.
4951  */
4952 static int
4953 iface_set_all_ts_types(pcap_t *handle, char *ebuf)
4954 {
4955 	u_int i;
4956 
4957 	handle->tstamp_type_list = malloc(NUM_SOF_TIMESTAMPING_TYPES * sizeof(u_int));
4958 	if (handle->tstamp_type_list == NULL) {
4959 		pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4960 		    errno, "malloc");
4961 		return -1;
4962 	}
4963 	for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++)
4964 		handle->tstamp_type_list[i] = sof_ts_type_map[i].pcap_tstamp_val;
4965 	handle->tstamp_type_count = NUM_SOF_TIMESTAMPING_TYPES;
4966 	return 0;
4967 }
4968 
4969 /*
4970  * Get a list of time stamp types.
4971  */
4972 #ifdef ETHTOOL_GET_TS_INFO
4973 static int
4974 iface_get_ts_types(const char *device, pcap_t *handle, char *ebuf)
4975 {
4976 	int fd;
4977 	struct ifreq ifr;
4978 	struct ethtool_ts_info info;
4979 	int num_ts_types;
4980 	u_int i, j;
4981 
4982 	/*
4983 	 * This doesn't apply to the "any" device; you can't say "turn on
4984 	 * hardware time stamping for all devices that exist now and arrange
4985 	 * that it be turned on for any device that appears in the future",
4986 	 * and not all devices even necessarily *support* hardware time
4987 	 * stamping, so don't report any time stamp types.
4988 	 */
4989 	if (strcmp(device, "any") == 0) {
4990 		handle->tstamp_type_list = NULL;
4991 		return 0;
4992 	}
4993 
4994 	/*
4995 	 * Create a socket from which to fetch time stamping capabilities.
4996 	 */
4997 	fd = get_if_ioctl_socket();
4998 	if (fd < 0) {
4999 		pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5000 		    errno, "socket for SIOCETHTOOL(ETHTOOL_GET_TS_INFO)");
5001 		return -1;
5002 	}
5003 
5004 	memset(&ifr, 0, sizeof(ifr));
5005 	pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5006 	memset(&info, 0, sizeof(info));
5007 	info.cmd = ETHTOOL_GET_TS_INFO;
5008 	ifr.ifr_data = (caddr_t)&info;
5009 	if (ioctl(fd, SIOCETHTOOL, &ifr) == -1) {
5010 		int save_errno = errno;
5011 
5012 		close(fd);
5013 		switch (save_errno) {
5014 
5015 		case EOPNOTSUPP:
5016 		case EINVAL:
5017 			/*
5018 			 * OK, this OS version or driver doesn't support
5019 			 * asking for the time stamping types, so let's
5020 			 * just return all the possible types.
5021 			 */
5022 			if (iface_set_all_ts_types(handle, ebuf) == -1)
5023 				return -1;
5024 			return 0;
5025 
5026 		case ENODEV:
5027 			/*
5028 			 * OK, no such device.
5029 			 * The user will find that out when they try to
5030 			 * activate the device; just return an empty
5031 			 * list of time stamp types.
5032 			 */
5033 			handle->tstamp_type_list = NULL;
5034 			return 0;
5035 
5036 		default:
5037 			/*
5038 			 * Other error.
5039 			 */
5040 			pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5041 			    save_errno,
5042 			    "%s: SIOCETHTOOL(ETHTOOL_GET_TS_INFO) ioctl failed",
5043 			    device);
5044 			return -1;
5045 		}
5046 	}
5047 	close(fd);
5048 
5049 	/*
5050 	 * Do we support hardware time stamping of *all* packets?
5051 	 */
5052 	if (!(info.rx_filters & (1 << HWTSTAMP_FILTER_ALL))) {
5053 		/*
5054 		 * No, so don't report any time stamp types.
5055 		 *
5056 		 * XXX - some devices either don't report
5057 		 * HWTSTAMP_FILTER_ALL when they do support it, or
5058 		 * report HWTSTAMP_FILTER_ALL but map it to only
5059 		 * time stamping a few PTP packets.  See
5060 		 * http://marc.info/?l=linux-netdev&m=146318183529571&w=2
5061 		 *
5062 		 * Maybe that got fixed later.
5063 		 */
5064 		handle->tstamp_type_list = NULL;
5065 		return 0;
5066 	}
5067 
5068 	num_ts_types = 0;
5069 	for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
5070 		if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val)
5071 			num_ts_types++;
5072 	}
5073 	if (num_ts_types != 0) {
5074 		handle->tstamp_type_list = malloc(num_ts_types * sizeof(u_int));
5075 		if (handle->tstamp_type_list == NULL) {
5076 			pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5077 			    errno, "malloc");
5078 			return -1;
5079 		}
5080 		for (i = 0, j = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
5081 			if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val) {
5082 				handle->tstamp_type_list[j] = sof_ts_type_map[i].pcap_tstamp_val;
5083 				j++;
5084 			}
5085 		}
5086 		handle->tstamp_type_count = num_ts_types;
5087 	} else
5088 		handle->tstamp_type_list = NULL;
5089 
5090 	return 0;
5091 }
5092 #else /* ETHTOOL_GET_TS_INFO */
5093 static int
5094 iface_get_ts_types(const char *device, pcap_t *handle, char *ebuf)
5095 {
5096 	/*
5097 	 * This doesn't apply to the "any" device; you can't say "turn on
5098 	 * hardware time stamping for all devices that exist now and arrange
5099 	 * that it be turned on for any device that appears in the future",
5100 	 * and not all devices even necessarily *support* hardware time
5101 	 * stamping, so don't report any time stamp types.
5102 	 */
5103 	if (strcmp(device, "any") == 0) {
5104 		handle->tstamp_type_list = NULL;
5105 		return 0;
5106 	}
5107 
5108 	/*
5109 	 * We don't have an ioctl to use to ask what's supported,
5110 	 * so say we support everything.
5111 	 */
5112 	if (iface_set_all_ts_types(handle, ebuf) == -1)
5113 		return -1;
5114 	return 0;
5115 }
5116 #endif /* ETHTOOL_GET_TS_INFO */
5117 #else  /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */
5118 static int
5119 iface_get_ts_types(const char *device _U_, pcap_t *p _U_, char *ebuf _U_)
5120 {
5121 	/*
5122 	 * Nothing to fetch, so it always "succeeds".
5123 	 */
5124 	return 0;
5125 }
5126 #endif /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */
5127 
5128 /*
5129  * Find out if we have any form of fragmentation/reassembly offloading.
5130  *
5131  * We do so using SIOCETHTOOL checking for various types of offloading;
5132  * if SIOCETHTOOL isn't defined, or we don't have any #defines for any
5133  * of the types of offloading, there's nothing we can do to check, so
5134  * we just say "no, we don't".
5135  *
5136  * We treat EOPNOTSUPP, EINVAL and, if eperm_ok is true, EPERM as
5137  * indications that the operation isn't supported.  We do EPERM
5138  * weirdly because the SIOCETHTOOL code in later kernels 1) doesn't
5139  * support ETHTOOL_GUFO, 2) also doesn't include it in the list
5140  * of ethtool operations that don't require CAP_NET_ADMIN privileges,
5141  * and 3) does the "is this permitted" check before doing the "is
5142  * this even supported" check, so it fails with "this is not permitted"
5143  * rather than "this is not even supported".  To work around this
5144  * annoyance, we only treat EPERM as an error for the first feature,
5145  * and assume that they all do the same permission checks, so if the
5146  * first one is allowed all the others are allowed if supported.
5147  */
5148 #if defined(SIOCETHTOOL) && (defined(ETHTOOL_GTSO) || defined(ETHTOOL_GUFO) || defined(ETHTOOL_GGSO) || defined(ETHTOOL_GFLAGS) || defined(ETHTOOL_GGRO))
5149 static int
5150 iface_ethtool_flag_ioctl(pcap_t *handle, int cmd, const char *cmdname,
5151     int eperm_ok)
5152 {
5153 	struct ifreq	ifr;
5154 	struct ethtool_value eval;
5155 
5156 	memset(&ifr, 0, sizeof(ifr));
5157 	pcapint_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
5158 	eval.cmd = cmd;
5159 	eval.data = 0;
5160 	ifr.ifr_data = (caddr_t)&eval;
5161 	if (ioctl(handle->fd, SIOCETHTOOL, &ifr) == -1) {
5162 		if (errno == EOPNOTSUPP || errno == EINVAL ||
5163 		    (errno == EPERM && eperm_ok)) {
5164 			/*
5165 			 * OK, let's just return 0, which, in our
5166 			 * case, either means "no, what we're asking
5167 			 * about is not enabled" or "all the flags
5168 			 * are clear (i.e., nothing is enabled)".
5169 			 */
5170 			return 0;
5171 		}
5172 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5173 		    errno, "%s: SIOCETHTOOL(%s) ioctl failed",
5174 		    handle->opt.device, cmdname);
5175 		return -1;
5176 	}
5177 	return eval.data;
5178 }
5179 
5180 /*
5181  * XXX - it's annoying that we have to check for offloading at all, but,
5182  * given that we have to, it's still annoying that we have to check for
5183  * particular types of offloading, especially that shiny new types of
5184  * offloading may be added - and, worse, may not be checkable with
5185  * a particular ETHTOOL_ operation; ETHTOOL_GFEATURES would, in
5186  * theory, give those to you, but the actual flags being used are
5187  * opaque (defined in a non-uapi header), and there doesn't seem to
5188  * be any obvious way to ask the kernel what all the offloading flags
5189  * are - at best, you can ask for a set of strings(!) to get *names*
5190  * for various flags.  (That whole mechanism appears to have been
5191  * designed for the sole purpose of letting ethtool report flags
5192  * by name and set flags by name, with the names having no semantics
5193  * ethtool understands.)
5194  */
5195 static int
5196 iface_get_offload(pcap_t *handle)
5197 {
5198 	int ret;
5199 
5200 #ifdef ETHTOOL_GTSO
5201 	ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GTSO, "ETHTOOL_GTSO", 0);
5202 	if (ret == -1)
5203 		return -1;
5204 	if (ret)
5205 		return 1;	/* TCP segmentation offloading on */
5206 #endif
5207 
5208 #ifdef ETHTOOL_GGSO
5209 	/*
5210 	 * XXX - will this cause large unsegmented packets to be
5211 	 * handed to PF_PACKET sockets on transmission?  If not,
5212 	 * this need not be checked.
5213 	 */
5214 	ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGSO, "ETHTOOL_GGSO", 0);
5215 	if (ret == -1)
5216 		return -1;
5217 	if (ret)
5218 		return 1;	/* generic segmentation offloading on */
5219 #endif
5220 
5221 #ifdef ETHTOOL_GFLAGS
5222 	ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GFLAGS, "ETHTOOL_GFLAGS", 0);
5223 	if (ret == -1)
5224 		return -1;
5225 	if (ret & ETH_FLAG_LRO)
5226 		return 1;	/* large receive offloading on */
5227 #endif
5228 
5229 #ifdef ETHTOOL_GGRO
5230 	/*
5231 	 * XXX - will this cause large reassembled packets to be
5232 	 * handed to PF_PACKET sockets on receipt?  If not,
5233 	 * this need not be checked.
5234 	 */
5235 	ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGRO, "ETHTOOL_GGRO", 0);
5236 	if (ret == -1)
5237 		return -1;
5238 	if (ret)
5239 		return 1;	/* generic (large) receive offloading on */
5240 #endif
5241 
5242 #ifdef ETHTOOL_GUFO
5243 	/*
5244 	 * Do this one last, as support for it was removed in later
5245 	 * kernels, and it fails with EPERM on those kernels rather
5246 	 * than with EOPNOTSUPP (see explanation in comment for
5247 	 * iface_ethtool_flag_ioctl()).
5248 	 */
5249 	ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GUFO, "ETHTOOL_GUFO", 1);
5250 	if (ret == -1)
5251 		return -1;
5252 	if (ret)
5253 		return 1;	/* UDP fragmentation offloading on */
5254 #endif
5255 
5256 	return 0;
5257 }
5258 #else /* SIOCETHTOOL */
5259 static int
5260 iface_get_offload(pcap_t *handle _U_)
5261 {
5262 	/*
5263 	 * XXX - do we need to get this information if we don't
5264 	 * have the ethtool ioctls?  If so, how do we do that?
5265 	 */
5266 	return 0;
5267 }
5268 #endif /* SIOCETHTOOL */
5269 
5270 static struct dsa_proto {
5271 	const char *name;
5272 	bpf_u_int32 linktype;
5273 } dsa_protos[] = {
5274 	/*
5275 	 * None is special and indicates that the interface does not have
5276 	 * any tagging protocol configured, and is therefore a standard
5277 	 * Ethernet interface.
5278 	 */
5279 	{ "none", DLT_EN10MB },
5280 	{ "brcm", DLT_DSA_TAG_BRCM },
5281 	{ "brcm-prepend", DLT_DSA_TAG_BRCM_PREPEND },
5282 	{ "dsa", DLT_DSA_TAG_DSA },
5283 	{ "edsa", DLT_DSA_TAG_EDSA },
5284 };
5285 
5286 static int
5287 iface_dsa_get_proto_info(const char *device, pcap_t *handle)
5288 {
5289 	char *pathstr;
5290 	unsigned int i;
5291 	/*
5292 	 * Make this significantly smaller than PCAP_ERRBUF_SIZE;
5293 	 * the tag *shouldn't* have some huge long name, and making
5294 	 * it smaller keeps newer versions of GCC from whining that
5295 	 * the error message if we don't support the tag could
5296 	 * overflow the error message buffer.
5297 	 */
5298 	char buf[128];
5299 	ssize_t r;
5300 	int fd;
5301 
5302 	fd = asprintf(&pathstr, "/sys/class/net/%s/dsa/tagging", device);
5303 	if (fd < 0) {
5304 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5305 					  fd, "asprintf");
5306 		return PCAP_ERROR;
5307 	}
5308 
5309 	fd = open(pathstr, O_RDONLY);
5310 	free(pathstr);
5311 	/*
5312 	 * This is not fatal, kernel >= 4.20 *might* expose this attribute
5313 	 */
5314 	if (fd < 0)
5315 		return 0;
5316 
5317 	r = read(fd, buf, sizeof(buf) - 1);
5318 	if (r <= 0) {
5319 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5320 					  errno, "read");
5321 		close(fd);
5322 		return PCAP_ERROR;
5323 	}
5324 	close(fd);
5325 
5326 	/*
5327 	 * Buffer should be LF terminated.
5328 	 */
5329 	if (buf[r - 1] == '\n')
5330 		r--;
5331 	buf[r] = '\0';
5332 
5333 	for (i = 0; i < sizeof(dsa_protos) / sizeof(dsa_protos[0]); i++) {
5334 		if (strlen(dsa_protos[i].name) == (size_t)r &&
5335 		    strcmp(buf, dsa_protos[i].name) == 0) {
5336 			handle->linktype = dsa_protos[i].linktype;
5337 			switch (dsa_protos[i].linktype) {
5338 			case DLT_EN10MB:
5339 				return 0;
5340 			default:
5341 				return 1;
5342 			}
5343 		}
5344 	}
5345 
5346 	snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
5347 		      "unsupported DSA tag: %s", buf);
5348 
5349 	return PCAP_ERROR;
5350 }
5351 
5352 /*
5353  *  Query the kernel for the MTU of the given interface.
5354  */
5355 static int
5356 iface_get_mtu(int fd, const char *device, char *ebuf)
5357 {
5358 	struct ifreq	ifr;
5359 
5360 	if (!device)
5361 		return BIGGER_THAN_ALL_MTUS;
5362 
5363 	memset(&ifr, 0, sizeof(ifr));
5364 	pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5365 
5366 	if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
5367 		pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5368 		    errno, "SIOCGIFMTU");
5369 		return -1;
5370 	}
5371 
5372 	return ifr.ifr_mtu;
5373 }
5374 
5375 /*
5376  *  Get the hardware type of the given interface as ARPHRD_xxx constant.
5377  */
5378 static int
5379 iface_get_arptype(int fd, const char *device, char *ebuf)
5380 {
5381 	struct ifreq	ifr;
5382 	int		ret;
5383 
5384 	memset(&ifr, 0, sizeof(ifr));
5385 	pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5386 
5387 	if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
5388 		if (errno == ENODEV) {
5389 			/*
5390 			 * No such device.
5391 			 *
5392 			 * There's nothing more to say, so clear
5393 			 * the error message.
5394 			 */
5395 			ret = PCAP_ERROR_NO_SUCH_DEVICE;
5396 			ebuf[0] = '\0';
5397 		} else {
5398 			ret = PCAP_ERROR;
5399 			pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5400 			    errno, "SIOCGIFHWADDR");
5401 		}
5402 		return ret;
5403 	}
5404 
5405 	return ifr.ifr_hwaddr.sa_family;
5406 }
5407 
5408 static int
5409 fix_program(pcap_t *handle, struct sock_fprog *fcode)
5410 {
5411 	struct pcap_linux *handlep = handle->priv;
5412 	size_t prog_size;
5413 	register int i;
5414 	register struct bpf_insn *p;
5415 	struct bpf_insn *f;
5416 	int len;
5417 
5418 	/*
5419 	 * Make a copy of the filter, and modify that copy if
5420 	 * necessary.
5421 	 */
5422 	prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
5423 	len = handle->fcode.bf_len;
5424 	f = (struct bpf_insn *)malloc(prog_size);
5425 	if (f == NULL) {
5426 		pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5427 		    errno, "malloc");
5428 		return -1;
5429 	}
5430 	memcpy(f, handle->fcode.bf_insns, prog_size);
5431 	fcode->len = len;
5432 	fcode->filter = (struct sock_filter *) f;
5433 
5434 	for (i = 0; i < len; ++i) {
5435 		p = &f[i];
5436 		/*
5437 		 * What type of instruction is this?
5438 		 */
5439 		switch (BPF_CLASS(p->code)) {
5440 
5441 		case BPF_LD:
5442 		case BPF_LDX:
5443 			/*
5444 			 * It's a load instruction; is it loading
5445 			 * from the packet?
5446 			 */
5447 			switch (BPF_MODE(p->code)) {
5448 
5449 			case BPF_ABS:
5450 			case BPF_IND:
5451 			case BPF_MSH:
5452 				/*
5453 				 * Yes; are we in cooked mode?
5454 				 */
5455 				if (handlep->cooked) {
5456 					/*
5457 					 * Yes, so we need to fix this
5458 					 * instruction.
5459 					 */
5460 					if (fix_offset(handle, p) < 0) {
5461 						/*
5462 						 * We failed to do so.
5463 						 * Return 0, so our caller
5464 						 * knows to punt to userland.
5465 						 */
5466 						return 0;
5467 					}
5468 				}
5469 				break;
5470 			}
5471 			break;
5472 		}
5473 	}
5474 	return 1;	/* we succeeded */
5475 }
5476 
5477 static int
5478 fix_offset(pcap_t *handle, struct bpf_insn *p)
5479 {
5480 	/*
5481 	 * Existing references to auxiliary data shouldn't be adjusted.
5482 	 *
5483 	 * Note that SKF_AD_OFF is negative, but p->k is unsigned, so
5484 	 * we use >= and cast SKF_AD_OFF to unsigned.
5485 	 */
5486 	if (p->k >= (bpf_u_int32)SKF_AD_OFF)
5487 		return 0;
5488 	if (handle->linktype == DLT_LINUX_SLL2) {
5489 		/*
5490 		 * What's the offset?
5491 		 */
5492 		if (p->k >= SLL2_HDR_LEN) {
5493 			/*
5494 			 * It's within the link-layer payload; that starts
5495 			 * at an offset of 0, as far as the kernel packet
5496 			 * filter is concerned, so subtract the length of
5497 			 * the link-layer header.
5498 			 */
5499 			p->k -= SLL2_HDR_LEN;
5500 		} else if (p->k == 0) {
5501 			/*
5502 			 * It's the protocol field; map it to the
5503 			 * special magic kernel offset for that field.
5504 			 */
5505 			p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
5506 		} else if (p->k == 4) {
5507 			/*
5508 			 * It's the ifindex field; map it to the
5509 			 * special magic kernel offset for that field.
5510 			 */
5511 			p->k = SKF_AD_OFF + SKF_AD_IFINDEX;
5512 		} else if (p->k == 10) {
5513 			/*
5514 			 * It's the packet type field; map it to the
5515 			 * special magic kernel offset for that field.
5516 			 */
5517 			p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
5518 		} else if ((bpf_int32)(p->k) > 0) {
5519 			/*
5520 			 * It's within the header, but it's not one of
5521 			 * those fields; we can't do that in the kernel,
5522 			 * so punt to userland.
5523 			 */
5524 			return -1;
5525 		}
5526 	} else {
5527 		/*
5528 		 * What's the offset?
5529 		 */
5530 		if (p->k >= SLL_HDR_LEN) {
5531 			/*
5532 			 * It's within the link-layer payload; that starts
5533 			 * at an offset of 0, as far as the kernel packet
5534 			 * filter is concerned, so subtract the length of
5535 			 * the link-layer header.
5536 			 */
5537 			p->k -= SLL_HDR_LEN;
5538 		} else if (p->k == 0) {
5539 			/*
5540 			 * It's the packet type field; map it to the
5541 			 * special magic kernel offset for that field.
5542 			 */
5543 			p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
5544 		} else if (p->k == 14) {
5545 			/*
5546 			 * It's the protocol field; map it to the
5547 			 * special magic kernel offset for that field.
5548 			 */
5549 			p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
5550 		} else if ((bpf_int32)(p->k) > 0) {
5551 			/*
5552 			 * It's within the header, but it's not one of
5553 			 * those fields; we can't do that in the kernel,
5554 			 * so punt to userland.
5555 			 */
5556 			return -1;
5557 		}
5558 	}
5559 	return 0;
5560 }
5561 
5562 static int
5563 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
5564 {
5565 	int total_filter_on = 0;
5566 	int save_mode;
5567 	int ret;
5568 	int save_errno;
5569 
5570 	/*
5571 	 * The socket filter code doesn't discard all packets queued
5572 	 * up on the socket when the filter is changed; this means
5573 	 * that packets that don't match the new filter may show up
5574 	 * after the new filter is put onto the socket, if those
5575 	 * packets haven't yet been read.
5576 	 *
5577 	 * This means, for example, that if you do a tcpdump capture
5578 	 * with a filter, the first few packets in the capture might
5579 	 * be packets that wouldn't have passed the filter.
5580 	 *
5581 	 * We therefore discard all packets queued up on the socket
5582 	 * when setting a kernel filter.  (This isn't an issue for
5583 	 * userland filters, as the userland filtering is done after
5584 	 * packets are queued up.)
5585 	 *
5586 	 * To flush those packets, we put the socket in read-only mode,
5587 	 * and read packets from the socket until there are no more to
5588 	 * read.
5589 	 *
5590 	 * In order to keep that from being an infinite loop - i.e.,
5591 	 * to keep more packets from arriving while we're draining
5592 	 * the queue - we put the "total filter", which is a filter
5593 	 * that rejects all packets, onto the socket before draining
5594 	 * the queue.
5595 	 *
5596 	 * This code deliberately ignores any errors, so that you may
5597 	 * get bogus packets if an error occurs, rather than having
5598 	 * the filtering done in userland even if it could have been
5599 	 * done in the kernel.
5600 	 */
5601 	if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
5602 		       &total_fcode, sizeof(total_fcode)) == 0) {
5603 		char drain[1];
5604 
5605 		/*
5606 		 * Note that we've put the total filter onto the socket.
5607 		 */
5608 		total_filter_on = 1;
5609 
5610 		/*
5611 		 * Save the socket's current mode, and put it in
5612 		 * non-blocking mode; we drain it by reading packets
5613 		 * until we get an error (which is normally a
5614 		 * "nothing more to be read" error).
5615 		 */
5616 		save_mode = fcntl(handle->fd, F_GETFL, 0);
5617 		if (save_mode == -1) {
5618 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
5619 			    PCAP_ERRBUF_SIZE, errno,
5620 			    "can't get FD flags when changing filter");
5621 			return -2;
5622 		}
5623 		if (fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) < 0) {
5624 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
5625 			    PCAP_ERRBUF_SIZE, errno,
5626 			    "can't set nonblocking mode when changing filter");
5627 			return -2;
5628 		}
5629 		while (recv(handle->fd, &drain, sizeof drain, MSG_TRUNC) >= 0)
5630 			;
5631 		save_errno = errno;
5632 		if (save_errno != EAGAIN) {
5633 			/*
5634 			 * Fatal error.
5635 			 *
5636 			 * If we can't restore the mode or reset the
5637 			 * kernel filter, there's nothing we can do.
5638 			 */
5639 			(void)fcntl(handle->fd, F_SETFL, save_mode);
5640 			(void)reset_kernel_filter(handle);
5641 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
5642 			    PCAP_ERRBUF_SIZE, save_errno,
5643 			    "recv failed when changing filter");
5644 			return -2;
5645 		}
5646 		if (fcntl(handle->fd, F_SETFL, save_mode) == -1) {
5647 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
5648 			    PCAP_ERRBUF_SIZE, errno,
5649 			    "can't restore FD flags when changing filter");
5650 			return -2;
5651 		}
5652 	}
5653 
5654 	/*
5655 	 * Now attach the new filter.
5656 	 */
5657 	ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
5658 			 fcode, sizeof(*fcode));
5659 	if (ret == -1 && total_filter_on) {
5660 		/*
5661 		 * Well, we couldn't set that filter on the socket,
5662 		 * but we could set the total filter on the socket.
5663 		 *
5664 		 * This could, for example, mean that the filter was
5665 		 * too big to put into the kernel, so we'll have to
5666 		 * filter in userland; in any case, we'll be doing
5667 		 * filtering in userland, so we need to remove the
5668 		 * total filter so we see packets.
5669 		 */
5670 		save_errno = errno;
5671 
5672 		/*
5673 		 * If this fails, we're really screwed; we have the
5674 		 * total filter on the socket, and it won't come off.
5675 		 * Report it as a fatal error.
5676 		 */
5677 		if (reset_kernel_filter(handle) == -1) {
5678 			pcapint_fmt_errmsg_for_errno(handle->errbuf,
5679 			    PCAP_ERRBUF_SIZE, errno,
5680 			    "can't remove kernel total filter");
5681 			return -2;	/* fatal error */
5682 		}
5683 
5684 		errno = save_errno;
5685 	}
5686 	return ret;
5687 }
5688 
5689 static int
5690 reset_kernel_filter(pcap_t *handle)
5691 {
5692 	int ret;
5693 	/*
5694 	 * setsockopt() barfs unless it get a dummy parameter.
5695 	 * valgrind whines unless the value is initialized,
5696 	 * as it has no idea that setsockopt() ignores its
5697 	 * parameter.
5698 	 */
5699 	int dummy = 0;
5700 
5701 	ret = setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
5702 				   &dummy, sizeof(dummy));
5703 	/*
5704 	 * Ignore ENOENT - it means "we don't have a filter", so there
5705 	 * was no filter to remove, and there's still no filter.
5706 	 *
5707 	 * Also ignore ENONET, as a lot of kernel versions had a
5708 	 * typo where ENONET, rather than ENOENT, was returned.
5709 	 */
5710 	if (ret == -1 && errno != ENOENT && errno != ENONET)
5711 		return -1;
5712 	return 0;
5713 }
5714 
5715 int
5716 pcap_set_protocol_linux(pcap_t *p, int protocol)
5717 {
5718 	if (pcapint_check_activated(p))
5719 		return (PCAP_ERROR_ACTIVATED);
5720 	p->opt.protocol = protocol;
5721 	return (0);
5722 }
5723 
5724 /*
5725  * Libpcap version string.
5726  */
5727 const char *
5728 pcap_lib_version(void)
5729 {
5730 #if defined(HAVE_TPACKET3)
5731 	return (PCAP_VERSION_STRING " (with TPACKET_V3)");
5732 #else
5733 	return (PCAP_VERSION_STRING " (with TPACKET_V2)");
5734 #endif
5735 }
5736