1 /* 2 * pcap-linux.c: Packet capture interface to the Linux kernel 3 * 4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org> 5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de> 6 * 7 * License: BSD 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. The names of the authors may not be used to endorse or promote 20 * products derived from this software without specific prior 21 * written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 26 */ 27 28 #ifndef lint 29 static const char rcsid[] _U_ = 30 "@(#) $Header: /tcpdump/master/libpcap/pcap-linux.c,v 1.98.2.4 2003/11/21 10:20:46 guy Exp $ (LBL)"; 31 #endif 32 33 /* 34 * Known problems with 2.0[.x] kernels: 35 * 36 * - The loopback device gives every packet twice; on 2.2[.x] kernels, 37 * if we use PF_PACKET, we can filter out the transmitted version 38 * of the packet by using data in the "sockaddr_ll" returned by 39 * "recvfrom()", but, on 2.0[.x] kernels, we have to use 40 * PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a 41 * "sockaddr_pkt" which doesn't give us enough information to let 42 * us do that. 43 * 44 * - We have to set the interface's IFF_PROMISC flag ourselves, if 45 * we're to run in promiscuous mode, which means we have to turn 46 * it off ourselves when we're done; the kernel doesn't keep track 47 * of how many sockets are listening promiscuously, which means 48 * it won't get turned off automatically when no sockets are 49 * listening promiscuously. We catch "pcap_close()" and, for 50 * interfaces we put into promiscuous mode, take them out of 51 * promiscuous mode - which isn't necessarily the right thing to 52 * do, if another socket also requested promiscuous mode between 53 * the time when we opened the socket and the time when we close 54 * the socket. 55 * 56 * - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()" 57 * return the amount of data that you could have read, rather than 58 * the amount that was returned, so we can't just allocate a buffer 59 * whose size is the snapshot length and pass the snapshot length 60 * as the byte count, and also pass MSG_TRUNC, so that the return 61 * value tells us how long the packet was on the wire. 62 * 63 * This means that, if we want to get the actual size of the packet, 64 * so we can return it in the "len" field of the packet header, 65 * we have to read the entire packet, not just the part that fits 66 * within the snapshot length, and thus waste CPU time copying data 67 * from the kernel that our caller won't see. 68 * 69 * We have to get the actual size, and supply it in "len", because 70 * otherwise, the IP dissector in tcpdump, for example, will complain 71 * about "truncated-ip", as the packet will appear to have been 72 * shorter, on the wire, than the IP header said it should have been. 73 */ 74 75 76 #ifdef HAVE_CONFIG_H 77 #include "config.h" 78 #endif 79 80 #include "pcap-int.h" 81 #include "sll.h" 82 83 #ifdef HAVE_DAG_API 84 #include "pcap-dag.h" 85 #endif /* HAVE_DAG_API */ 86 87 #include <errno.h> 88 #include <stdlib.h> 89 #include <unistd.h> 90 #include <fcntl.h> 91 #include <string.h> 92 #include <sys/socket.h> 93 #include <sys/ioctl.h> 94 #include <sys/utsname.h> 95 #include <net/if.h> 96 #include <netinet/in.h> 97 #include <linux/if_ether.h> 98 #include <net/if_arp.h> 99 100 /* 101 * If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET 102 * sockets rather than SOCK_PACKET sockets. 103 * 104 * To use them, we include <linux/if_packet.h> rather than 105 * <netpacket/packet.h>; we do so because 106 * 107 * some Linux distributions (e.g., Slackware 4.0) have 2.2 or 108 * later kernels and libc5, and don't provide a <netpacket/packet.h> 109 * file; 110 * 111 * not all versions of glibc2 have a <netpacket/packet.h> file 112 * that defines stuff needed for some of the 2.4-or-later-kernel 113 * features, so if the system has a 2.4 or later kernel, we 114 * still can't use those features. 115 * 116 * We're already including a number of other <linux/XXX.h> headers, and 117 * this code is Linux-specific (no other OS has PF_PACKET sockets as 118 * a raw packet capture mechanism), so it's not as if you gain any 119 * useful portability by using <netpacket/packet.h> 120 * 121 * XXX - should we just include <linux/if_packet.h> even if PF_PACKET 122 * isn't defined? It only defines one data structure in 2.0.x, so 123 * it shouldn't cause any problems. 124 */ 125 #ifdef PF_PACKET 126 # include <linux/if_packet.h> 127 128 /* 129 * On at least some Linux distributions (for example, Red Hat 5.2), 130 * there's no <netpacket/packet.h> file, but PF_PACKET is defined if 131 * you include <sys/socket.h>, but <linux/if_packet.h> doesn't define 132 * any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of 133 * the PACKET_xxx stuff. 134 * 135 * So we check whether PACKET_HOST is defined, and assume that we have 136 * PF_PACKET sockets only if it is defined. 137 */ 138 # ifdef PACKET_HOST 139 # define HAVE_PF_PACKET_SOCKETS 140 # endif /* PACKET_HOST */ 141 #endif /* PF_PACKET */ 142 143 #ifdef SO_ATTACH_FILTER 144 #include <linux/types.h> 145 #include <linux/filter.h> 146 #endif 147 148 #ifndef __GLIBC__ 149 typedef int socklen_t; 150 #endif 151 152 #ifndef MSG_TRUNC 153 /* 154 * This is being compiled on a system that lacks MSG_TRUNC; define it 155 * with the value it has in the 2.2 and later kernels, so that, on 156 * those kernels, when we pass it in the flags argument to "recvfrom()" 157 * we're passing the right value and thus get the MSG_TRUNC behavior 158 * we want. (We don't get that behavior on 2.0[.x] kernels, because 159 * they didn't support MSG_TRUNC.) 160 */ 161 #define MSG_TRUNC 0x20 162 #endif 163 164 #ifndef SOL_PACKET 165 /* 166 * This is being compiled on a system that lacks SOL_PACKET; define it 167 * with the value it has in the 2.2 and later kernels, so that we can 168 * set promiscuous mode in the good modern way rather than the old 169 * 2.0-kernel crappy way. 170 */ 171 #define SOL_PACKET 263 172 #endif 173 174 #define MAX_LINKHEADER_SIZE 256 175 176 /* 177 * When capturing on all interfaces we use this as the buffer size. 178 * Should be bigger then all MTUs that occur in real life. 179 * 64kB should be enough for now. 180 */ 181 #define BIGGER_THAN_ALL_MTUS (64*1024) 182 183 /* 184 * Prototypes for internal functions 185 */ 186 static void map_arphrd_to_dlt(pcap_t *, int, int); 187 static int live_open_old(pcap_t *, const char *, int, int, char *); 188 static int live_open_new(pcap_t *, const char *, int, int, char *); 189 static int pcap_read_linux(pcap_t *, int, pcap_handler, u_char *); 190 static int pcap_read_packet(pcap_t *, pcap_handler, u_char *); 191 static int pcap_stats_linux(pcap_t *, struct pcap_stat *); 192 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *); 193 static void pcap_close_linux(pcap_t *); 194 195 /* 196 * Wrap some ioctl calls 197 */ 198 #ifdef HAVE_PF_PACKET_SOCKETS 199 static int iface_get_id(int fd, const char *device, char *ebuf); 200 #endif 201 static int iface_get_mtu(int fd, const char *device, char *ebuf); 202 static int iface_get_arptype(int fd, const char *device, char *ebuf); 203 #ifdef HAVE_PF_PACKET_SOCKETS 204 static int iface_bind(int fd, int ifindex, char *ebuf); 205 #endif 206 static int iface_bind_old(int fd, const char *device, char *ebuf); 207 208 #ifdef SO_ATTACH_FILTER 209 static int fix_program(pcap_t *handle, struct sock_fprog *fcode); 210 static int fix_offset(struct bpf_insn *p); 211 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode); 212 static int reset_kernel_filter(pcap_t *handle); 213 214 static struct sock_filter total_insn 215 = BPF_STMT(BPF_RET | BPF_K, 0); 216 static struct sock_fprog total_fcode 217 = { 1, &total_insn }; 218 #endif 219 220 /* 221 * Get a handle for a live capture from the given device. You can 222 * pass NULL as device to get all packages (without link level 223 * information of course). If you pass 1 as promisc the interface 224 * will be set to promiscous mode (XXX: I think this usage should 225 * be deprecated and functions be added to select that later allow 226 * modification of that values -- Torsten). 227 * 228 * See also pcap(3). 229 */ 230 pcap_t * 231 pcap_open_live(const char *device, int snaplen, int promisc, int to_ms, 232 char *ebuf) 233 { 234 pcap_t *handle; 235 int mtu; 236 int err; 237 int live_open_ok = 0; 238 struct utsname utsname; 239 240 #ifdef HAVE_DAG_API 241 if (strstr(device, "dag")) { 242 return dag_open_live(device, snaplen, promisc, to_ms, ebuf); 243 } 244 #endif /* HAVE_DAG_API */ 245 246 /* Allocate a handle for this session. */ 247 248 handle = malloc(sizeof(*handle)); 249 if (handle == NULL) { 250 snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s", 251 pcap_strerror(errno)); 252 return NULL; 253 } 254 255 /* Initialize some components of the pcap structure. */ 256 257 memset(handle, 0, sizeof(*handle)); 258 handle->snapshot = snaplen; 259 handle->md.timeout = to_ms; 260 261 /* 262 * NULL and "any" are special devices which give us the hint to 263 * monitor all devices. 264 */ 265 if (!device || strcmp(device, "any") == 0) { 266 device = NULL; 267 handle->md.device = strdup("any"); 268 if (promisc) { 269 promisc = 0; 270 /* Just a warning. */ 271 snprintf(ebuf, PCAP_ERRBUF_SIZE, 272 "Promiscuous mode not supported on the \"any\" device"); 273 } 274 275 } else 276 handle->md.device = strdup(device); 277 278 if (handle->md.device == NULL) { 279 snprintf(ebuf, PCAP_ERRBUF_SIZE, "strdup: %s", 280 pcap_strerror(errno) ); 281 free(handle); 282 return NULL; 283 } 284 285 /* 286 * Current Linux kernels use the protocol family PF_PACKET to 287 * allow direct access to all packets on the network while 288 * older kernels had a special socket type SOCK_PACKET to 289 * implement this feature. 290 * While this old implementation is kind of obsolete we need 291 * to be compatible with older kernels for a while so we are 292 * trying both methods with the newer method preferred. 293 */ 294 295 if ((err = live_open_new(handle, device, promisc, to_ms, ebuf)) == 1) 296 live_open_ok = 1; 297 else if (err == 0) { 298 /* Non-fatal error; try old way */ 299 if (live_open_old(handle, device, promisc, to_ms, ebuf)) 300 live_open_ok = 1; 301 } 302 if (!live_open_ok) { 303 /* 304 * Both methods to open the packet socket failed. Tidy 305 * up and report our failure (ebuf is expected to be 306 * set by the functions above). 307 */ 308 309 if (handle->md.device != NULL) 310 free(handle->md.device); 311 free(handle); 312 return NULL; 313 } 314 315 /* 316 * Compute the buffer size. 317 * 318 * If we're using SOCK_PACKET, this might be a 2.0[.x] kernel, 319 * and might require special handling - check. 320 */ 321 if (handle->md.sock_packet && (uname(&utsname) < 0 || 322 strncmp(utsname.release, "2.0", 3) == 0)) { 323 /* 324 * We're using a SOCK_PACKET structure, and either 325 * we couldn't find out what kernel release this is, 326 * or it's a 2.0[.x] kernel. 327 * 328 * In the 2.0[.x] kernel, a "recvfrom()" on 329 * a SOCK_PACKET socket, with MSG_TRUNC set, will 330 * return the number of bytes read, so if we pass 331 * a length based on the snapshot length, it'll 332 * return the number of bytes from the packet 333 * copied to userland, not the actual length 334 * of the packet. 335 * 336 * This means that, for example, the IP dissector 337 * in tcpdump will get handed a packet length less 338 * than the length in the IP header, and will 339 * complain about "truncated-ip". 340 * 341 * So we don't bother trying to copy from the 342 * kernel only the bytes in which we're interested, 343 * but instead copy them all, just as the older 344 * versions of libpcap for Linux did. 345 * 346 * The buffer therefore needs to be big enough to 347 * hold the largest packet we can get from this 348 * device. Unfortunately, we can't get the MRU 349 * of the network; we can only get the MTU. The 350 * MTU may be too small, in which case a packet larger 351 * than the buffer size will be truncated *and* we 352 * won't get the actual packet size. 353 * 354 * However, if the snapshot length is larger than 355 * the buffer size based on the MTU, we use the 356 * snapshot length as the buffer size, instead; 357 * this means that with a sufficiently large snapshot 358 * length we won't artificially truncate packets 359 * to the MTU-based size. 360 * 361 * This mess just one of many problems with packet 362 * capture on 2.0[.x] kernels; you really want a 363 * 2.2[.x] or later kernel if you want packet capture 364 * to work well. 365 */ 366 mtu = iface_get_mtu(handle->fd, device, ebuf); 367 if (mtu == -1) { 368 pcap_close_linux(handle); 369 free(handle); 370 return NULL; 371 } 372 handle->bufsize = MAX_LINKHEADER_SIZE + mtu; 373 if (handle->bufsize < handle->snapshot) 374 handle->bufsize = handle->snapshot; 375 } else { 376 /* 377 * This is a 2.2[.x] or later kernel (we know that 378 * either because we're not using a SOCK_PACKET 379 * socket - PF_PACKET is supported only in 2.2 380 * and later kernels - or because we checked the 381 * kernel version). 382 * 383 * We can safely pass "recvfrom()" a byte count 384 * based on the snapshot length. 385 */ 386 handle->bufsize = handle->snapshot; 387 } 388 389 /* Allocate the buffer */ 390 391 handle->buffer = malloc(handle->bufsize + handle->offset); 392 if (!handle->buffer) { 393 snprintf(ebuf, PCAP_ERRBUF_SIZE, 394 "malloc: %s", pcap_strerror(errno)); 395 pcap_close_linux(handle); 396 free(handle); 397 return NULL; 398 } 399 400 /* 401 * "handle->fd" is a socket, so "select()" and "poll()" 402 * should work on it. 403 */ 404 handle->selectable_fd = handle->fd; 405 406 handle->read_op = pcap_read_linux; 407 handle->setfilter_op = pcap_setfilter_linux; 408 handle->set_datalink_op = NULL; /* can't change data link type */ 409 handle->getnonblock_op = pcap_getnonblock_fd; 410 handle->setnonblock_op = pcap_setnonblock_fd; 411 handle->stats_op = pcap_stats_linux; 412 handle->close_op = pcap_close_linux; 413 414 return handle; 415 } 416 417 /* 418 * Read at most max_packets from the capture stream and call the callback 419 * for each of them. Returns the number of packets handled or -1 if an 420 * error occured. 421 */ 422 static int 423 pcap_read_linux(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user) 424 { 425 /* 426 * Currently, on Linux only one packet is delivered per read, 427 * so we don't loop. 428 */ 429 return pcap_read_packet(handle, callback, user); 430 } 431 432 /* 433 * Read a packet from the socket calling the handler provided by 434 * the user. Returns the number of packets received or -1 if an 435 * error occured. 436 */ 437 static int 438 pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata) 439 { 440 u_char *bp; 441 int offset; 442 #ifdef HAVE_PF_PACKET_SOCKETS 443 struct sockaddr_ll from; 444 struct sll_header *hdrp; 445 #else 446 struct sockaddr from; 447 #endif 448 socklen_t fromlen; 449 int packet_len, caplen; 450 struct pcap_pkthdr pcap_header; 451 452 #ifdef HAVE_PF_PACKET_SOCKETS 453 /* 454 * If this is a cooked device, leave extra room for a 455 * fake packet header. 456 */ 457 if (handle->md.cooked) 458 offset = SLL_HDR_LEN; 459 else 460 offset = 0; 461 #else 462 /* 463 * This system doesn't have PF_PACKET sockets, so it doesn't 464 * support cooked devices. 465 */ 466 offset = 0; 467 #endif 468 469 /* Receive a single packet from the kernel */ 470 471 bp = handle->buffer + handle->offset; 472 do { 473 /* 474 * Has "pcap_breakloop()" been called? 475 */ 476 if (handle->break_loop) { 477 /* 478 * Yes - clear the flag that indicates that it 479 * has, and return -2 as an indication that we 480 * were told to break out of the loop. 481 */ 482 handle->break_loop = 0; 483 return -2; 484 } 485 fromlen = sizeof(from); 486 packet_len = recvfrom( 487 handle->fd, bp + offset, 488 handle->bufsize - offset, MSG_TRUNC, 489 (struct sockaddr *) &from, &fromlen); 490 } while (packet_len == -1 && errno == EINTR); 491 492 /* Check if an error occured */ 493 494 if (packet_len == -1) { 495 if (errno == EAGAIN) 496 return 0; /* no packet there */ 497 else { 498 snprintf(handle->errbuf, sizeof(handle->errbuf), 499 "recvfrom: %s", pcap_strerror(errno)); 500 return -1; 501 } 502 } 503 504 #ifdef HAVE_PF_PACKET_SOCKETS 505 /* 506 * If this is from the loopback device, reject outgoing packets; 507 * we'll see the packet as an incoming packet as well, and 508 * we don't want to see it twice. 509 * 510 * We can only do this if we're using PF_PACKET; the address 511 * returned for SOCK_PACKET is a "sockaddr_pkt" which lacks 512 * the relevant packet type information. 513 */ 514 if (!handle->md.sock_packet && 515 from.sll_ifindex == handle->md.lo_ifindex && 516 from.sll_pkttype == PACKET_OUTGOING) 517 return 0; 518 #endif 519 520 #ifdef HAVE_PF_PACKET_SOCKETS 521 /* 522 * If this is a cooked device, fill in the fake packet header. 523 */ 524 if (handle->md.cooked) { 525 /* 526 * Add the length of the fake header to the length 527 * of packet data we read. 528 */ 529 packet_len += SLL_HDR_LEN; 530 531 hdrp = (struct sll_header *)bp; 532 533 /* 534 * Map the PACKET_ value to a LINUX_SLL_ value; we 535 * want the same numerical value to be used in 536 * the link-layer header even if the numerical values 537 * for the PACKET_ #defines change, so that programs 538 * that look at the packet type field will always be 539 * able to handle DLT_LINUX_SLL captures. 540 */ 541 switch (from.sll_pkttype) { 542 543 case PACKET_HOST: 544 hdrp->sll_pkttype = htons(LINUX_SLL_HOST); 545 break; 546 547 case PACKET_BROADCAST: 548 hdrp->sll_pkttype = htons(LINUX_SLL_BROADCAST); 549 break; 550 551 case PACKET_MULTICAST: 552 hdrp->sll_pkttype = htons(LINUX_SLL_MULTICAST); 553 break; 554 555 case PACKET_OTHERHOST: 556 hdrp->sll_pkttype = htons(LINUX_SLL_OTHERHOST); 557 break; 558 559 case PACKET_OUTGOING: 560 hdrp->sll_pkttype = htons(LINUX_SLL_OUTGOING); 561 break; 562 563 default: 564 hdrp->sll_pkttype = -1; 565 break; 566 } 567 568 hdrp->sll_hatype = htons(from.sll_hatype); 569 hdrp->sll_halen = htons(from.sll_halen); 570 memcpy(hdrp->sll_addr, from.sll_addr, 571 (from.sll_halen > SLL_ADDRLEN) ? 572 SLL_ADDRLEN : 573 from.sll_halen); 574 hdrp->sll_protocol = from.sll_protocol; 575 } 576 #endif 577 578 /* 579 * XXX: According to the kernel source we should get the real 580 * packet len if calling recvfrom with MSG_TRUNC set. It does 581 * not seem to work here :(, but it is supported by this code 582 * anyway. 583 * To be honest the code RELIES on that feature so this is really 584 * broken with 2.2.x kernels. 585 * I spend a day to figure out what's going on and I found out 586 * that the following is happening: 587 * 588 * The packet comes from a random interface and the packet_rcv 589 * hook is called with a clone of the packet. That code inserts 590 * the packet into the receive queue of the packet socket. 591 * If a filter is attached to that socket that filter is run 592 * first - and there lies the problem. The default filter always 593 * cuts the packet at the snaplen: 594 * 595 * # tcpdump -d 596 * (000) ret #68 597 * 598 * So the packet filter cuts down the packet. The recvfrom call 599 * says "hey, it's only 68 bytes, it fits into the buffer" with 600 * the result that we don't get the real packet length. This 601 * is valid at least until kernel 2.2.17pre6. 602 * 603 * We currently handle this by making a copy of the filter 604 * program, fixing all "ret" instructions with non-zero 605 * operands to have an operand of 65535 so that the filter 606 * doesn't truncate the packet, and supplying that modified 607 * filter to the kernel. 608 */ 609 610 caplen = packet_len; 611 if (caplen > handle->snapshot) 612 caplen = handle->snapshot; 613 614 /* Run the packet filter if not using kernel filter */ 615 if (!handle->md.use_bpf && handle->fcode.bf_insns) { 616 if (bpf_filter(handle->fcode.bf_insns, bp, 617 packet_len, caplen) == 0) 618 { 619 /* rejected by filter */ 620 return 0; 621 } 622 } 623 624 /* Fill in our own header data */ 625 626 if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) { 627 snprintf(handle->errbuf, sizeof(handle->errbuf), 628 "ioctl: %s", pcap_strerror(errno)); 629 return -1; 630 } 631 pcap_header.caplen = caplen; 632 pcap_header.len = packet_len; 633 634 /* 635 * Count the packet. 636 * 637 * Arguably, we should count them before we check the filter, 638 * as on many other platforms "ps_recv" counts packets 639 * handed to the filter rather than packets that passed 640 * the filter, but if filtering is done in the kernel, we 641 * can't get a count of packets that passed the filter, 642 * and that would mean the meaning of "ps_recv" wouldn't 643 * be the same on all Linux systems. 644 * 645 * XXX - it's not the same on all systems in any case; 646 * ideally, we should have a "get the statistics" call 647 * that supplies more counts and indicates which of them 648 * it supplies, so that we supply a count of packets 649 * handed to the filter only on platforms where that 650 * information is available. 651 * 652 * We count them here even if we can get the packet count 653 * from the kernel, as we can only determine at run time 654 * whether we'll be able to get it from the kernel (if 655 * HAVE_TPACKET_STATS isn't defined, we can't get it from 656 * the kernel, but if it is defined, the library might 657 * have been built with a 2.4 or later kernel, but we 658 * might be running on a 2.2[.x] kernel without Alexey 659 * Kuznetzov's turbopacket patches, and thus the kernel 660 * might not be able to supply those statistics). We 661 * could, I guess, try, when opening the socket, to get 662 * the statistics, and if we can not increment the count 663 * here, but it's not clear that always incrementing 664 * the count is more expensive than always testing a flag 665 * in memory. 666 */ 667 handle->md.stat.ps_recv++; 668 669 /* Call the user supplied callback function */ 670 callback(userdata, &pcap_header, bp); 671 672 return 1; 673 } 674 675 /* 676 * Get the statistics for the given packet capture handle. 677 * Reports the number of dropped packets iff the kernel supports 678 * the PACKET_STATISTICS "getsockopt()" argument (2.4 and later 679 * kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket 680 * patches); otherwise, that information isn't available, and we lie 681 * and report 0 as the count of dropped packets. 682 */ 683 static int 684 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats) 685 { 686 #ifdef HAVE_TPACKET_STATS 687 struct tpacket_stats kstats; 688 socklen_t len = sizeof (struct tpacket_stats); 689 #endif 690 691 #ifdef HAVE_TPACKET_STATS 692 /* 693 * Try to get the packet counts from the kernel. 694 */ 695 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, 696 &kstats, &len) > -1) { 697 /* 698 * In "linux/net/packet/af_packet.c", at least in the 699 * 2.4.9 kernel, "tp_packets" is incremented for every 700 * packet that passes the packet filter *and* is 701 * successfully queued on the socket; "tp_drops" is 702 * incremented for every packet dropped because there's 703 * not enough free space in the socket buffer. 704 * 705 * When the statistics are returned for a PACKET_STATISTICS 706 * "getsockopt()" call, "tp_drops" is added to "tp_packets", 707 * so that "tp_packets" counts all packets handed to 708 * the PF_PACKET socket, including packets dropped because 709 * there wasn't room on the socket buffer - but not 710 * including packets that didn't pass the filter. 711 * 712 * In the BSD BPF, the count of received packets is 713 * incremented for every packet handed to BPF, regardless 714 * of whether it passed the filter. 715 * 716 * We can't make "pcap_stats()" work the same on both 717 * platforms, but the best approximation is to return 718 * "tp_packets" as the count of packets and "tp_drops" 719 * as the count of drops. 720 */ 721 handle->md.stat.ps_recv = kstats.tp_packets; 722 handle->md.stat.ps_drop = kstats.tp_drops; 723 } 724 else 725 { 726 /* 727 * If the error was EOPNOTSUPP, fall through, so that 728 * if you build the library on a system with 729 * "struct tpacket_stats" and run it on a system 730 * that doesn't, it works as it does if the library 731 * is built on a system without "struct tpacket_stats". 732 */ 733 if (errno != EOPNOTSUPP) { 734 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 735 "pcap_stats: %s", pcap_strerror(errno)); 736 return -1; 737 } 738 } 739 #endif 740 /* 741 * On systems where the PACKET_STATISTICS "getsockopt()" argument 742 * is supported on PF_PACKET sockets: 743 * 744 * "ps_recv" counts only packets that *passed* the filter, 745 * not packets that didn't pass the filter. This includes 746 * packets later dropped because we ran out of buffer space. 747 * 748 * "ps_drop" counts packets dropped because we ran out of 749 * buffer space. It doesn't count packets dropped by the 750 * interface driver. It counts only packets that passed 751 * the filter. 752 * 753 * Both statistics include packets not yet read from the 754 * kernel by libpcap, and thus not yet seen by the application. 755 * 756 * On systems where the PACKET_STATISTICS "getsockopt()" argument 757 * is not supported on PF_PACKET sockets: 758 * 759 * "ps_recv" counts only packets that *passed* the filter, 760 * not packets that didn't pass the filter. It does not 761 * count packets dropped because we ran out of buffer 762 * space. 763 * 764 * "ps_drop" is not supported. 765 * 766 * "ps_recv" doesn't include packets not yet read from 767 * the kernel by libpcap. 768 */ 769 *stats = handle->md.stat; 770 return 0; 771 } 772 773 /* 774 * Description string for the "any" device. 775 */ 776 static const char any_descr[] = "Pseudo-device that captures on all interfaces"; 777 778 int 779 pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf) 780 { 781 if (pcap_add_if(alldevsp, "any", 0, any_descr, errbuf) < 0) 782 return (-1); 783 784 #ifdef HAVE_DAG_API 785 if (dag_platform_finddevs(alldevsp, errbuf) < 0) 786 return (-1); 787 #endif /* HAVE_DAG_API */ 788 789 return (0); 790 } 791 792 /* 793 * Attach the given BPF code to the packet capture device. 794 */ 795 static int 796 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter) 797 { 798 #ifdef SO_ATTACH_FILTER 799 struct sock_fprog fcode; 800 int can_filter_in_kernel; 801 int err = 0; 802 #endif 803 804 if (!handle) 805 return -1; 806 if (!filter) { 807 strncpy(handle->errbuf, "setfilter: No filter specified", 808 sizeof(handle->errbuf)); 809 return -1; 810 } 811 812 /* Make our private copy of the filter */ 813 814 if (install_bpf_program(handle, filter) < 0) 815 /* install_bpf_program() filled in errbuf */ 816 return -1; 817 818 /* 819 * Run user level packet filter by default. Will be overriden if 820 * installing a kernel filter succeeds. 821 */ 822 handle->md.use_bpf = 0; 823 824 /* Install kernel level filter if possible */ 825 826 #ifdef SO_ATTACH_FILTER 827 #ifdef USHRT_MAX 828 if (handle->fcode.bf_len > USHRT_MAX) { 829 /* 830 * fcode.len is an unsigned short for current kernel. 831 * I have yet to see BPF-Code with that much 832 * instructions but still it is possible. So for the 833 * sake of correctness I added this check. 834 */ 835 fprintf(stderr, "Warning: Filter too complex for kernel\n"); 836 fcode.filter = NULL; 837 can_filter_in_kernel = 0; 838 } else 839 #endif /* USHRT_MAX */ 840 { 841 /* 842 * Oh joy, the Linux kernel uses struct sock_fprog instead 843 * of struct bpf_program and of course the length field is 844 * of different size. Pointed out by Sebastian 845 * 846 * Oh, and we also need to fix it up so that all "ret" 847 * instructions with non-zero operands have 65535 as the 848 * operand, and so that, if we're in cooked mode, all 849 * memory-reference instructions use special magic offsets 850 * in references to the link-layer header and assume that 851 * the link-layer payload begins at 0; "fix_program()" 852 * will do that. 853 */ 854 switch (fix_program(handle, &fcode)) { 855 856 case -1: 857 default: 858 /* 859 * Fatal error; just quit. 860 * (The "default" case shouldn't happen; we 861 * return -1 for that reason.) 862 */ 863 return -1; 864 865 case 0: 866 /* 867 * The program performed checks that we can't make 868 * work in the kernel. 869 */ 870 can_filter_in_kernel = 0; 871 break; 872 873 case 1: 874 /* 875 * We have a filter that'll work in the kernel. 876 */ 877 can_filter_in_kernel = 1; 878 break; 879 } 880 } 881 882 if (can_filter_in_kernel) { 883 if ((err = set_kernel_filter(handle, &fcode)) == 0) 884 { 885 /* Installation succeded - using kernel filter. */ 886 handle->md.use_bpf = 1; 887 } 888 else if (err == -1) /* Non-fatal error */ 889 { 890 /* 891 * Print a warning if we weren't able to install 892 * the filter for a reason other than "this kernel 893 * isn't configured to support socket filters. 894 */ 895 if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) { 896 fprintf(stderr, 897 "Warning: Kernel filter failed: %s\n", 898 pcap_strerror(errno)); 899 } 900 } 901 } 902 903 /* 904 * If we're not using the kernel filter, get rid of any kernel 905 * filter that might've been there before, e.g. because the 906 * previous filter could work in the kernel, or because some other 907 * code attached a filter to the socket by some means other than 908 * calling "pcap_setfilter()". Otherwise, the kernel filter may 909 * filter out packets that would pass the new userland filter. 910 */ 911 if (!handle->md.use_bpf) 912 reset_kernel_filter(handle); 913 914 /* 915 * Free up the copy of the filter that was made by "fix_program()". 916 */ 917 if (fcode.filter != NULL) 918 free(fcode.filter); 919 920 if (err == -2) 921 /* Fatal error */ 922 return -1; 923 #endif /* SO_ATTACH_FILTER */ 924 925 return 0; 926 } 927 928 /* 929 * Linux uses the ARP hardware type to identify the type of an 930 * interface. pcap uses the DLT_xxx constants for this. This 931 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx 932 * constant, as arguments, and sets "handle->linktype" to the 933 * appropriate DLT_XXX constant and sets "handle->offset" to 934 * the appropriate value (to make "handle->offset" plus link-layer 935 * header length be a multiple of 4, so that the link-layer payload 936 * will be aligned on a 4-byte boundary when capturing packets). 937 * (If the offset isn't set here, it'll be 0; add code as appropriate 938 * for cases where it shouldn't be 0.) 939 * 940 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture 941 * in cooked mode; otherwise, we can't use cooked mode, so we have 942 * to pick some type that works in raw mode, or fail. 943 * 944 * Sets the link type to -1 if unable to map the type. 945 */ 946 static void map_arphrd_to_dlt(pcap_t *handle, int arptype, int cooked_ok) 947 { 948 switch (arptype) { 949 950 case ARPHRD_ETHER: 951 case ARPHRD_METRICOM: 952 case ARPHRD_LOOPBACK: 953 handle->linktype = DLT_EN10MB; 954 handle->offset = 2; 955 break; 956 957 case ARPHRD_EETHER: 958 handle->linktype = DLT_EN3MB; 959 break; 960 961 case ARPHRD_AX25: 962 handle->linktype = DLT_AX25; 963 break; 964 965 case ARPHRD_PRONET: 966 handle->linktype = DLT_PRONET; 967 break; 968 969 case ARPHRD_CHAOS: 970 handle->linktype = DLT_CHAOS; 971 break; 972 973 #ifndef ARPHRD_IEEE802_TR 974 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */ 975 #endif 976 case ARPHRD_IEEE802_TR: 977 case ARPHRD_IEEE802: 978 handle->linktype = DLT_IEEE802; 979 handle->offset = 2; 980 break; 981 982 case ARPHRD_ARCNET: 983 handle->linktype = DLT_ARCNET_LINUX; 984 break; 985 986 #ifndef ARPHRD_FDDI /* From Linux 2.2.13 */ 987 #define ARPHRD_FDDI 774 988 #endif 989 case ARPHRD_FDDI: 990 handle->linktype = DLT_FDDI; 991 handle->offset = 3; 992 break; 993 994 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */ 995 #define ARPHRD_ATM 19 996 #endif 997 case ARPHRD_ATM: 998 /* 999 * The Classical IP implementation in ATM for Linux 1000 * supports both what RFC 1483 calls "LLC Encapsulation", 1001 * in which each packet has an LLC header, possibly 1002 * with a SNAP header as well, prepended to it, and 1003 * what RFC 1483 calls "VC Based Multiplexing", in which 1004 * different virtual circuits carry different network 1005 * layer protocols, and no header is prepended to packets. 1006 * 1007 * They both have an ARPHRD_ type of ARPHRD_ATM, so 1008 * you can't use the ARPHRD_ type to find out whether 1009 * captured packets will have an LLC header, and, 1010 * while there's a socket ioctl to *set* the encapsulation 1011 * type, there's no ioctl to *get* the encapsulation type. 1012 * 1013 * This means that 1014 * 1015 * programs that dissect Linux Classical IP frames 1016 * would have to check for an LLC header and, 1017 * depending on whether they see one or not, dissect 1018 * the frame as LLC-encapsulated or as raw IP (I 1019 * don't know whether there's any traffic other than 1020 * IP that would show up on the socket, or whether 1021 * there's any support for IPv6 in the Linux 1022 * Classical IP code); 1023 * 1024 * filter expressions would have to compile into 1025 * code that checks for an LLC header and does 1026 * the right thing. 1027 * 1028 * Both of those are a nuisance - and, at least on systems 1029 * that support PF_PACKET sockets, we don't have to put 1030 * up with those nuisances; instead, we can just capture 1031 * in cooked mode. That's what we'll do, if we can. 1032 * Otherwise, we'll just fail. 1033 */ 1034 if (cooked_ok) 1035 handle->linktype = DLT_LINUX_SLL; 1036 else 1037 handle->linktype = -1; 1038 break; 1039 1040 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */ 1041 #define ARPHRD_IEEE80211 801 1042 #endif 1043 case ARPHRD_IEEE80211: 1044 handle->linktype = DLT_IEEE802_11; 1045 break; 1046 1047 #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */ 1048 #define ARPHRD_IEEE80211_PRISM 802 1049 #endif 1050 case ARPHRD_IEEE80211_PRISM: 1051 handle->linktype = DLT_PRISM_HEADER; 1052 break; 1053 1054 case ARPHRD_PPP: 1055 /* 1056 * Some PPP code in the kernel supplies no link-layer 1057 * header whatsoever to PF_PACKET sockets; other PPP 1058 * code supplies PPP link-layer headers ("syncppp.c"); 1059 * some PPP code might supply random link-layer 1060 * headers (PPP over ISDN - there's code in Ethereal, 1061 * for example, to cope with PPP-over-ISDN captures 1062 * with which the Ethereal developers have had to cope, 1063 * heuristically trying to determine which of the 1064 * oddball link-layer headers particular packets have). 1065 * 1066 * As such, we just punt, and run all PPP interfaces 1067 * in cooked mode, if we can; otherwise, we just treat 1068 * it as DLT_RAW, for now - if somebody needs to capture, 1069 * on a 2.0[.x] kernel, on PPP devices that supply a 1070 * link-layer header, they'll have to add code here to 1071 * map to the appropriate DLT_ type (possibly adding a 1072 * new DLT_ type, if necessary). 1073 */ 1074 if (cooked_ok) 1075 handle->linktype = DLT_LINUX_SLL; 1076 else { 1077 /* 1078 * XXX - handle ISDN types here? We can't fall 1079 * back on cooked sockets, so we'd have to 1080 * figure out from the device name what type of 1081 * link-layer encapsulation it's using, and map 1082 * that to an appropriate DLT_ value, meaning 1083 * we'd map "isdnN" devices to DLT_RAW (they 1084 * supply raw IP packets with no link-layer 1085 * header) and "isdY" devices to a new DLT_I4L_IP 1086 * type that has only an Ethernet packet type as 1087 * a link-layer header. 1088 * 1089 * But sometimes we seem to get random crap 1090 * in the link-layer header when capturing on 1091 * ISDN devices.... 1092 */ 1093 handle->linktype = DLT_RAW; 1094 } 1095 break; 1096 1097 #ifndef ARPHRD_CISCO 1098 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */ 1099 #endif 1100 case ARPHRD_CISCO: 1101 handle->linktype = DLT_C_HDLC; 1102 break; 1103 1104 /* Not sure if this is correct for all tunnels, but it 1105 * works for CIPE */ 1106 case ARPHRD_TUNNEL: 1107 #ifndef ARPHRD_SIT 1108 #define ARPHRD_SIT 776 /* From Linux 2.2.13 */ 1109 #endif 1110 case ARPHRD_SIT: 1111 case ARPHRD_CSLIP: 1112 case ARPHRD_SLIP6: 1113 case ARPHRD_CSLIP6: 1114 case ARPHRD_ADAPT: 1115 case ARPHRD_SLIP: 1116 #ifndef ARPHRD_RAWHDLC 1117 #define ARPHRD_RAWHDLC 518 1118 #endif 1119 case ARPHRD_RAWHDLC: 1120 #ifndef ARPHRD_DLCI 1121 #define ARPHRD_DLCI 15 1122 #endif 1123 case ARPHRD_DLCI: 1124 /* 1125 * XXX - should some of those be mapped to DLT_LINUX_SLL 1126 * instead? Should we just map all of them to DLT_LINUX_SLL? 1127 */ 1128 handle->linktype = DLT_RAW; 1129 break; 1130 1131 #ifndef ARPHRD_FRAD 1132 #define ARPHRD_FRAD 770 1133 #endif 1134 case ARPHRD_FRAD: 1135 handle->linktype = DLT_FRELAY; 1136 break; 1137 1138 case ARPHRD_LOCALTLK: 1139 handle->linktype = DLT_LTALK; 1140 break; 1141 1142 #ifndef ARPHRD_FCPP 1143 #define ARPHRD_FCPP 784 1144 #endif 1145 case ARPHRD_FCPP: 1146 #ifndef ARPHRD_FCAL 1147 #define ARPHRD_FCAL 785 1148 #endif 1149 case ARPHRD_FCAL: 1150 #ifndef ARPHRD_FCPL 1151 #define ARPHRD_FCPL 786 1152 #endif 1153 case ARPHRD_FCPL: 1154 #ifndef ARPHRD_FCFABRIC 1155 #define ARPHRD_FCFABRIC 787 1156 #endif 1157 case ARPHRD_FCFABRIC: 1158 /* 1159 * We assume that those all mean RFC 2625 IP-over- 1160 * Fibre Channel, with the RFC 2625 header at 1161 * the beginning of the packet. 1162 */ 1163 handle->linktype = DLT_IP_OVER_FC; 1164 break; 1165 1166 case ARPHRD_IRDA: 1167 /* Don't expect IP packet out of this interfaces... */ 1168 handle->linktype = DLT_LINUX_IRDA; 1169 /* We need to save packet direction for IrDA decoding, 1170 * so let's use "Linux-cooked" mode. Jean II */ 1171 //handle->md.cooked = 1; 1172 break; 1173 1174 default: 1175 handle->linktype = -1; 1176 break; 1177 } 1178 } 1179 1180 /* ===== Functions to interface to the newer kernels ================== */ 1181 1182 /* 1183 * Try to open a packet socket using the new kernel interface. 1184 * Returns 0 on failure. 1185 * FIXME: 0 uses to mean success (Sebastian) 1186 */ 1187 static int 1188 live_open_new(pcap_t *handle, const char *device, int promisc, 1189 int to_ms, char *ebuf) 1190 { 1191 #ifdef HAVE_PF_PACKET_SOCKETS 1192 int sock_fd = -1, device_id, arptype; 1193 int err; 1194 int fatal_err = 0; 1195 struct packet_mreq mr; 1196 1197 /* One shot loop used for error handling - bail out with break */ 1198 1199 do { 1200 /* 1201 * Open a socket with protocol family packet. If a device is 1202 * given we try to open it in raw mode otherwise we use 1203 * the cooked interface. 1204 */ 1205 sock_fd = device ? 1206 socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL)) 1207 : socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL)); 1208 1209 if (sock_fd == -1) { 1210 snprintf(ebuf, PCAP_ERRBUF_SIZE, "socket: %s", 1211 pcap_strerror(errno) ); 1212 break; 1213 } 1214 1215 /* It seems the kernel supports the new interface. */ 1216 handle->md.sock_packet = 0; 1217 1218 /* 1219 * Get the interface index of the loopback device. 1220 * If the attempt fails, don't fail, just set the 1221 * "md.lo_ifindex" to -1. 1222 * 1223 * XXX - can there be more than one device that loops 1224 * packets back, i.e. devices other than "lo"? If so, 1225 * we'd need to find them all, and have an array of 1226 * indices for them, and check all of them in 1227 * "pcap_read_packet()". 1228 */ 1229 handle->md.lo_ifindex = iface_get_id(sock_fd, "lo", ebuf); 1230 1231 /* 1232 * Default value for offset to align link-layer payload 1233 * on a 4-byte boundary. 1234 */ 1235 handle->offset = 0; 1236 1237 /* 1238 * What kind of frames do we have to deal with? Fall back 1239 * to cooked mode if we have an unknown interface type. 1240 */ 1241 1242 if (device) { 1243 /* Assume for now we don't need cooked mode. */ 1244 handle->md.cooked = 0; 1245 1246 arptype = iface_get_arptype(sock_fd, device, ebuf); 1247 if (arptype == -1) { 1248 fatal_err = 1; 1249 break; 1250 } 1251 map_arphrd_to_dlt(handle, arptype, 1); 1252 if (handle->linktype == -1 || 1253 handle->linktype == DLT_LINUX_SLL || 1254 handle->linktype == DLT_LINUX_IRDA || 1255 (handle->linktype == DLT_EN10MB && 1256 (strncmp("isdn", device, 4) == 0 || 1257 strncmp("isdY", device, 4) == 0))) { 1258 /* 1259 * Unknown interface type (-1), or a 1260 * device we explicitly chose to run 1261 * in cooked mode (e.g., PPP devices), 1262 * or an ISDN device (whose link-layer 1263 * type we can only determine by using 1264 * APIs that may be different on different 1265 * kernels) - reopen in cooked mode. 1266 */ 1267 if (close(sock_fd) == -1) { 1268 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1269 "close: %s", pcap_strerror(errno)); 1270 break; 1271 } 1272 sock_fd = socket(PF_PACKET, SOCK_DGRAM, 1273 htons(ETH_P_ALL)); 1274 if (sock_fd == -1) { 1275 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1276 "socket: %s", pcap_strerror(errno)); 1277 break; 1278 } 1279 handle->md.cooked = 1; 1280 1281 if (handle->linktype == -1) { 1282 /* 1283 * Warn that we're falling back on 1284 * cooked mode; we may want to 1285 * update "map_arphrd_to_dlt()" 1286 * to handle the new type. 1287 */ 1288 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1289 "arptype %d not " 1290 "supported by libpcap - " 1291 "falling back to cooked " 1292 "socket", 1293 arptype); 1294 } 1295 /* IrDA capture is not a real "cooked" capture, 1296 * it's IrLAP frames, not IP packets. */ 1297 if(handle->linktype != DLT_LINUX_IRDA) 1298 handle->linktype = DLT_LINUX_SLL; 1299 } 1300 1301 device_id = iface_get_id(sock_fd, device, ebuf); 1302 if (device_id == -1) 1303 break; 1304 1305 if ((err = iface_bind(sock_fd, device_id, ebuf)) < 0) { 1306 if (err == -2) 1307 fatal_err = 1; 1308 break; 1309 } 1310 } else { 1311 /* 1312 * This is cooked mode. 1313 */ 1314 handle->md.cooked = 1; 1315 handle->linktype = DLT_LINUX_SLL; 1316 1317 /* 1318 * XXX - squelch GCC complaints about 1319 * uninitialized variables; if we can't 1320 * select promiscuous mode on all interfaces, 1321 * we should move the code below into the 1322 * "if (device)" branch of the "if" and 1323 * get rid of the next statement. 1324 */ 1325 device_id = -1; 1326 } 1327 1328 /* 1329 * Select promiscuous mode on if "promisc" is set. 1330 * 1331 * Do not turn allmulti mode on if we don't select 1332 * promiscuous mode - on some devices (e.g., Orinoco 1333 * wireless interfaces), allmulti mode isn't supported 1334 * and the driver implements it by turning promiscuous 1335 * mode on, and that screws up the operation of the 1336 * card as a normal networking interface, and on no 1337 * other platform I know of does starting a non- 1338 * promiscuous capture affect which multicast packets 1339 * are received by the interface. 1340 */ 1341 1342 /* 1343 * Hmm, how can we set promiscuous mode on all interfaces? 1344 * I am not sure if that is possible at all. 1345 */ 1346 1347 if (device && promisc) { 1348 memset(&mr, 0, sizeof(mr)); 1349 mr.mr_ifindex = device_id; 1350 mr.mr_type = PACKET_MR_PROMISC; 1351 if (setsockopt(sock_fd, SOL_PACKET, 1352 PACKET_ADD_MEMBERSHIP, &mr, sizeof(mr)) == -1) 1353 { 1354 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1355 "setsockopt: %s", pcap_strerror(errno)); 1356 break; 1357 } 1358 } 1359 1360 /* Save the socket FD in the pcap structure */ 1361 1362 handle->fd = sock_fd; 1363 1364 return 1; 1365 1366 } while(0); 1367 1368 if (sock_fd != -1) 1369 close(sock_fd); 1370 1371 if (fatal_err) 1372 return -2; 1373 else 1374 return 0; 1375 #else 1376 strncpy(ebuf, 1377 "New packet capturing interface not supported by build " 1378 "environment", PCAP_ERRBUF_SIZE); 1379 return 0; 1380 #endif 1381 } 1382 1383 #ifdef HAVE_PF_PACKET_SOCKETS 1384 /* 1385 * Return the index of the given device name. Fill ebuf and return 1386 * -1 on failure. 1387 */ 1388 static int 1389 iface_get_id(int fd, const char *device, char *ebuf) 1390 { 1391 struct ifreq ifr; 1392 1393 memset(&ifr, 0, sizeof(ifr)); 1394 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 1395 1396 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) { 1397 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1398 "ioctl: %s", pcap_strerror(errno)); 1399 return -1; 1400 } 1401 1402 return ifr.ifr_ifindex; 1403 } 1404 1405 /* 1406 * Bind the socket associated with FD to the given device. 1407 */ 1408 static int 1409 iface_bind(int fd, int ifindex, char *ebuf) 1410 { 1411 struct sockaddr_ll sll; 1412 int err; 1413 socklen_t errlen = sizeof(err); 1414 1415 memset(&sll, 0, sizeof(sll)); 1416 sll.sll_family = AF_PACKET; 1417 sll.sll_ifindex = ifindex; 1418 sll.sll_protocol = htons(ETH_P_ALL); 1419 1420 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) { 1421 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1422 "bind: %s", pcap_strerror(errno)); 1423 return -1; 1424 } 1425 1426 /* Any pending errors, e.g., network is down? */ 1427 1428 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) { 1429 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1430 "getsockopt: %s", pcap_strerror(errno)); 1431 return -2; 1432 } 1433 1434 if (err > 0) { 1435 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1436 "bind: %s", pcap_strerror(err)); 1437 return -2; 1438 } 1439 1440 return 0; 1441 } 1442 1443 #endif 1444 1445 1446 /* ===== Functions to interface to the older kernels ================== */ 1447 1448 /* 1449 * With older kernels promiscuous mode is kind of interesting because we 1450 * have to reset the interface before exiting. The problem can't really 1451 * be solved without some daemon taking care of managing usage counts. 1452 * If we put the interface into promiscuous mode, we set a flag indicating 1453 * that we must take it out of that mode when the interface is closed, 1454 * and, when closing the interface, if that flag is set we take it out 1455 * of promiscuous mode. 1456 */ 1457 1458 /* 1459 * List of pcaps for which we turned promiscuous mode on by hand. 1460 * If there are any such pcaps, we arrange to call "pcap_close_all()" 1461 * when we exit, and have it close all of them to turn promiscuous mode 1462 * off. 1463 */ 1464 static struct pcap *pcaps_to_close; 1465 1466 /* 1467 * TRUE if we've already called "atexit()" to cause "pcap_close_all()" to 1468 * be called on exit. 1469 */ 1470 static int did_atexit; 1471 1472 static void pcap_close_all(void) 1473 { 1474 struct pcap *handle; 1475 1476 while ((handle = pcaps_to_close) != NULL) 1477 pcap_close(handle); 1478 } 1479 1480 static void pcap_close_linux( pcap_t *handle ) 1481 { 1482 struct pcap *p, *prevp; 1483 struct ifreq ifr; 1484 1485 if (handle->md.clear_promisc) { 1486 /* 1487 * We put the interface into promiscuous mode; take 1488 * it out of promiscuous mode. 1489 * 1490 * XXX - if somebody else wants it in promiscuous mode, 1491 * this code cannot know that, so it'll take it out 1492 * of promiscuous mode. That's not fixable in 2.0[.x] 1493 * kernels. 1494 */ 1495 memset(&ifr, 0, sizeof(ifr)); 1496 strncpy(ifr.ifr_name, handle->md.device, sizeof(ifr.ifr_name)); 1497 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) { 1498 fprintf(stderr, 1499 "Can't restore interface flags (SIOCGIFFLAGS failed: %s).\n" 1500 "Please adjust manually.\n" 1501 "Hint: This can't happen with Linux >= 2.2.0.\n", 1502 strerror(errno)); 1503 } else { 1504 if (ifr.ifr_flags & IFF_PROMISC) { 1505 /* 1506 * Promiscuous mode is currently on; turn it 1507 * off. 1508 */ 1509 ifr.ifr_flags &= ~IFF_PROMISC; 1510 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) { 1511 fprintf(stderr, 1512 "Can't restore interface flags (SIOCSIFFLAGS failed: %s).\n" 1513 "Please adjust manually.\n" 1514 "Hint: This can't happen with Linux >= 2.2.0.\n", 1515 strerror(errno)); 1516 } 1517 } 1518 } 1519 1520 /* 1521 * Take this pcap out of the list of pcaps for which we 1522 * have to take the interface out of promiscuous mode. 1523 */ 1524 for (p = pcaps_to_close, prevp = NULL; p != NULL; 1525 prevp = p, p = p->md.next) { 1526 if (p == handle) { 1527 /* 1528 * Found it. Remove it from the list. 1529 */ 1530 if (prevp == NULL) { 1531 /* 1532 * It was at the head of the list. 1533 */ 1534 pcaps_to_close = p->md.next; 1535 } else { 1536 /* 1537 * It was in the middle of the list. 1538 */ 1539 prevp->md.next = p->md.next; 1540 } 1541 break; 1542 } 1543 } 1544 } 1545 1546 if (handle->md.device != NULL) 1547 free(handle->md.device); 1548 handle->md.device = NULL; 1549 if (handle->buffer != NULL) 1550 free(handle->buffer); 1551 if (handle->fd >= 0) 1552 close(handle->fd); 1553 } 1554 1555 /* 1556 * Try to open a packet socket using the old kernel interface. 1557 * Returns 0 on failure. 1558 * FIXME: 0 uses to mean success (Sebastian) 1559 */ 1560 static int 1561 live_open_old(pcap_t *handle, const char *device, int promisc, 1562 int to_ms, char *ebuf) 1563 { 1564 int arptype; 1565 struct ifreq ifr; 1566 1567 do { 1568 /* Open the socket */ 1569 1570 handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL)); 1571 if (handle->fd == -1) { 1572 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1573 "socket: %s", pcap_strerror(errno)); 1574 break; 1575 } 1576 1577 /* It worked - we are using the old interface */ 1578 handle->md.sock_packet = 1; 1579 1580 /* ...which means we get the link-layer header. */ 1581 handle->md.cooked = 0; 1582 1583 /* Bind to the given device */ 1584 1585 if (!device) { 1586 strncpy(ebuf, "pcap_open_live: The \"any\" device isn't supported on 2.0[.x]-kernel systems", 1587 PCAP_ERRBUF_SIZE); 1588 break; 1589 } 1590 if (iface_bind_old(handle->fd, device, ebuf) == -1) 1591 break; 1592 1593 /* 1594 * Try to get the link-layer type. 1595 */ 1596 arptype = iface_get_arptype(handle->fd, device, ebuf); 1597 if (arptype == -1) 1598 break; 1599 1600 /* 1601 * Try to find the DLT_ type corresponding to that 1602 * link-layer type. 1603 */ 1604 map_arphrd_to_dlt(handle, arptype, 0); 1605 if (handle->linktype == -1) { 1606 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1607 "unknown arptype %d", arptype); 1608 break; 1609 } 1610 1611 /* Go to promisc mode if requested */ 1612 1613 if (promisc) { 1614 memset(&ifr, 0, sizeof(ifr)); 1615 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 1616 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) { 1617 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1618 "ioctl: %s", pcap_strerror(errno)); 1619 break; 1620 } 1621 if ((ifr.ifr_flags & IFF_PROMISC) == 0) { 1622 /* 1623 * Promiscuous mode isn't currently on, 1624 * so turn it on, and remember that 1625 * we should turn it off when the 1626 * pcap_t is closed. 1627 */ 1628 1629 /* 1630 * If we haven't already done so, arrange 1631 * to have "pcap_close_all()" called when 1632 * we exit. 1633 */ 1634 if (!did_atexit) { 1635 if (atexit(pcap_close_all) == -1) { 1636 /* 1637 * "atexit()" failed; don't 1638 * put the interface in 1639 * promiscuous mode, just 1640 * give up. 1641 */ 1642 strncpy(ebuf, "atexit failed", 1643 PCAP_ERRBUF_SIZE); 1644 break; 1645 } 1646 did_atexit = 1; 1647 } 1648 1649 ifr.ifr_flags |= IFF_PROMISC; 1650 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) { 1651 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1652 "ioctl: %s", 1653 pcap_strerror(errno)); 1654 break; 1655 } 1656 handle->md.clear_promisc = 1; 1657 1658 /* 1659 * Add this to the list of pcaps 1660 * to close when we exit. 1661 */ 1662 handle->md.next = pcaps_to_close; 1663 pcaps_to_close = handle; 1664 } 1665 } 1666 1667 /* 1668 * Default value for offset to align link-layer payload 1669 * on a 4-byte boundary. 1670 */ 1671 handle->offset = 0; 1672 1673 return 1; 1674 1675 } while (0); 1676 1677 pcap_close_linux(handle); 1678 return 0; 1679 } 1680 1681 /* 1682 * Bind the socket associated with FD to the given device using the 1683 * interface of the old kernels. 1684 */ 1685 static int 1686 iface_bind_old(int fd, const char *device, char *ebuf) 1687 { 1688 struct sockaddr saddr; 1689 int err; 1690 socklen_t errlen = sizeof(err); 1691 1692 memset(&saddr, 0, sizeof(saddr)); 1693 strncpy(saddr.sa_data, device, sizeof(saddr.sa_data)); 1694 if (bind(fd, &saddr, sizeof(saddr)) == -1) { 1695 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1696 "bind: %s", pcap_strerror(errno)); 1697 return -1; 1698 } 1699 1700 /* Any pending errors, e.g., network is down? */ 1701 1702 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) { 1703 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1704 "getsockopt: %s", pcap_strerror(errno)); 1705 return -1; 1706 } 1707 1708 if (err > 0) { 1709 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1710 "bind: %s", pcap_strerror(err)); 1711 return -1; 1712 } 1713 1714 return 0; 1715 } 1716 1717 1718 /* ===== System calls available on all supported kernels ============== */ 1719 1720 /* 1721 * Query the kernel for the MTU of the given interface. 1722 */ 1723 static int 1724 iface_get_mtu(int fd, const char *device, char *ebuf) 1725 { 1726 struct ifreq ifr; 1727 1728 if (!device) 1729 return BIGGER_THAN_ALL_MTUS; 1730 1731 memset(&ifr, 0, sizeof(ifr)); 1732 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 1733 1734 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) { 1735 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1736 "ioctl: %s", pcap_strerror(errno)); 1737 return -1; 1738 } 1739 1740 return ifr.ifr_mtu; 1741 } 1742 1743 /* 1744 * Get the hardware type of the given interface as ARPHRD_xxx constant. 1745 */ 1746 static int 1747 iface_get_arptype(int fd, const char *device, char *ebuf) 1748 { 1749 struct ifreq ifr; 1750 1751 memset(&ifr, 0, sizeof(ifr)); 1752 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 1753 1754 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) { 1755 snprintf(ebuf, PCAP_ERRBUF_SIZE, 1756 "ioctl: %s", pcap_strerror(errno)); 1757 return -1; 1758 } 1759 1760 return ifr.ifr_hwaddr.sa_family; 1761 } 1762 1763 #ifdef SO_ATTACH_FILTER 1764 static int 1765 fix_program(pcap_t *handle, struct sock_fprog *fcode) 1766 { 1767 size_t prog_size; 1768 register int i; 1769 register struct bpf_insn *p; 1770 struct bpf_insn *f; 1771 int len; 1772 1773 /* 1774 * Make a copy of the filter, and modify that copy if 1775 * necessary. 1776 */ 1777 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len; 1778 len = handle->fcode.bf_len; 1779 f = (struct bpf_insn *)malloc(prog_size); 1780 if (f == NULL) { 1781 snprintf(handle->errbuf, sizeof(handle->errbuf), 1782 "malloc: %s", pcap_strerror(errno)); 1783 return -1; 1784 } 1785 memcpy(f, handle->fcode.bf_insns, prog_size); 1786 fcode->len = len; 1787 fcode->filter = (struct sock_filter *) f; 1788 1789 for (i = 0; i < len; ++i) { 1790 p = &f[i]; 1791 /* 1792 * What type of instruction is this? 1793 */ 1794 switch (BPF_CLASS(p->code)) { 1795 1796 case BPF_RET: 1797 /* 1798 * It's a return instruction; is the snapshot 1799 * length a constant, rather than the contents 1800 * of the accumulator? 1801 */ 1802 if (BPF_MODE(p->code) == BPF_K) { 1803 /* 1804 * Yes - if the value to be returned, 1805 * i.e. the snapshot length, is anything 1806 * other than 0, make it 65535, so that 1807 * the packet is truncated by "recvfrom()", 1808 * not by the filter. 1809 * 1810 * XXX - there's nothing we can easily do 1811 * if it's getting the value from the 1812 * accumulator; we'd have to insert 1813 * code to force non-zero values to be 1814 * 65535. 1815 */ 1816 if (p->k != 0) 1817 p->k = 65535; 1818 } 1819 break; 1820 1821 case BPF_LD: 1822 case BPF_LDX: 1823 /* 1824 * It's a load instruction; is it loading 1825 * from the packet? 1826 */ 1827 switch (BPF_MODE(p->code)) { 1828 1829 case BPF_ABS: 1830 case BPF_IND: 1831 case BPF_MSH: 1832 /* 1833 * Yes; are we in cooked mode? 1834 */ 1835 if (handle->md.cooked) { 1836 /* 1837 * Yes, so we need to fix this 1838 * instruction. 1839 */ 1840 if (fix_offset(p) < 0) { 1841 /* 1842 * We failed to do so. 1843 * Return 0, so our caller 1844 * knows to punt to userland. 1845 */ 1846 return 0; 1847 } 1848 } 1849 break; 1850 } 1851 break; 1852 } 1853 } 1854 return 1; /* we succeeded */ 1855 } 1856 1857 static int 1858 fix_offset(struct bpf_insn *p) 1859 { 1860 /* 1861 * What's the offset? 1862 */ 1863 if (p->k >= SLL_HDR_LEN) { 1864 /* 1865 * It's within the link-layer payload; that starts at an 1866 * offset of 0, as far as the kernel packet filter is 1867 * concerned, so subtract the length of the link-layer 1868 * header. 1869 */ 1870 p->k -= SLL_HDR_LEN; 1871 } else if (p->k == 14) { 1872 /* 1873 * It's the protocol field; map it to the special magic 1874 * kernel offset for that field. 1875 */ 1876 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL; 1877 } else { 1878 /* 1879 * It's within the header, but it's not one of those 1880 * fields; we can't do that in the kernel, so punt 1881 * to userland. 1882 */ 1883 return -1; 1884 } 1885 return 0; 1886 } 1887 1888 static int 1889 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode) 1890 { 1891 int total_filter_on = 0; 1892 int save_mode; 1893 int ret; 1894 int save_errno; 1895 1896 /* 1897 * The socket filter code doesn't discard all packets queued 1898 * up on the socket when the filter is changed; this means 1899 * that packets that don't match the new filter may show up 1900 * after the new filter is put onto the socket, if those 1901 * packets haven't yet been read. 1902 * 1903 * This means, for example, that if you do a tcpdump capture 1904 * with a filter, the first few packets in the capture might 1905 * be packets that wouldn't have passed the filter. 1906 * 1907 * We therefore discard all packets queued up on the socket 1908 * when setting a kernel filter. (This isn't an issue for 1909 * userland filters, as the userland filtering is done after 1910 * packets are queued up.) 1911 * 1912 * To flush those packets, we put the socket in read-only mode, 1913 * and read packets from the socket until there are no more to 1914 * read. 1915 * 1916 * In order to keep that from being an infinite loop - i.e., 1917 * to keep more packets from arriving while we're draining 1918 * the queue - we put the "total filter", which is a filter 1919 * that rejects all packets, onto the socket before draining 1920 * the queue. 1921 * 1922 * This code deliberately ignores any errors, so that you may 1923 * get bogus packets if an error occurs, rather than having 1924 * the filtering done in userland even if it could have been 1925 * done in the kernel. 1926 */ 1927 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER, 1928 &total_fcode, sizeof(total_fcode)) == 0) { 1929 char drain[1]; 1930 1931 /* 1932 * Note that we've put the total filter onto the socket. 1933 */ 1934 total_filter_on = 1; 1935 1936 /* 1937 * Save the socket's current mode, and put it in 1938 * non-blocking mode; we drain it by reading packets 1939 * until we get an error (which is normally a 1940 * "nothing more to be read" error). 1941 */ 1942 save_mode = fcntl(handle->fd, F_GETFL, 0); 1943 if (save_mode != -1 && 1944 fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) >= 0) { 1945 while (recv(handle->fd, &drain, sizeof drain, 1946 MSG_TRUNC) >= 0) 1947 ; 1948 save_errno = errno; 1949 fcntl(handle->fd, F_SETFL, save_mode); 1950 if (save_errno != EAGAIN) { 1951 /* Fatal error */ 1952 reset_kernel_filter(handle); 1953 snprintf(handle->errbuf, sizeof(handle->errbuf), 1954 "recv: %s", pcap_strerror(save_errno)); 1955 return -2; 1956 } 1957 } 1958 } 1959 1960 /* 1961 * Now attach the new filter. 1962 */ 1963 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER, 1964 fcode, sizeof(*fcode)); 1965 if (ret == -1 && total_filter_on) { 1966 /* 1967 * Well, we couldn't set that filter on the socket, 1968 * but we could set the total filter on the socket. 1969 * 1970 * This could, for example, mean that the filter was 1971 * too big to put into the kernel, so we'll have to 1972 * filter in userland; in any case, we'll be doing 1973 * filtering in userland, so we need to remove the 1974 * total filter so we see packets. 1975 */ 1976 save_errno = errno; 1977 1978 /* 1979 * XXX - if this fails, we're really screwed; 1980 * we have the total filter on the socket, 1981 * and it won't come off. What do we do then? 1982 */ 1983 reset_kernel_filter(handle); 1984 1985 errno = save_errno; 1986 } 1987 return ret; 1988 } 1989 1990 static int 1991 reset_kernel_filter(pcap_t *handle) 1992 { 1993 /* setsockopt() barfs unless it get a dummy parameter */ 1994 int dummy; 1995 1996 return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER, 1997 &dummy, sizeof(dummy)); 1998 } 1999 #endif 2000