1 /* 2 * Copyright (c) 1993, 1994, 1995, 1996, 1998 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that: (1) source code distributions 7 * retain the above copyright notice and this paragraph in its entirety, (2) 8 * distributions including binary code include the above copyright notice and 9 * this paragraph in its entirety in the documentation or other materials 10 * provided with the distribution, and (3) all advertising materials mentioning 11 * features or use of this software display the following acknowledgement: 12 * ``This product includes software developed by the University of California, 13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 14 * the University nor the names of its contributors may be used to endorse 15 * or promote products derived from this software without specific prior 16 * written permission. 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 20 * 21 * $FreeBSD$ 22 */ 23 24 #ifdef HAVE_CONFIG_H 25 #include "config.h" 26 #endif 27 28 #include <sys/param.h> /* optionally get BSD define */ 29 #ifdef HAVE_ZEROCOPY_BPF 30 #include <sys/mman.h> 31 #endif 32 #include <sys/socket.h> 33 #include <time.h> 34 /* 35 * <net/bpf.h> defines ioctls, but doesn't include <sys/ioccom.h>. 36 * 37 * We include <sys/ioctl.h> as it might be necessary to declare ioctl(); 38 * at least on *BSD and Mac OS X, it also defines various SIOC ioctls - 39 * we could include <sys/sockio.h>, but if we're already including 40 * <sys/ioctl.h>, which includes <sys/sockio.h> on those platforms, 41 * there's not much point in doing so. 42 * 43 * If we have <sys/ioccom.h>, we include it as well, to handle systems 44 * such as Solaris which don't arrange to include <sys/ioccom.h> if you 45 * include <sys/ioctl.h> 46 */ 47 #include <sys/ioctl.h> 48 #ifdef HAVE_SYS_IOCCOM_H 49 #include <sys/ioccom.h> 50 #endif 51 #include <sys/utsname.h> 52 53 #ifdef HAVE_ZEROCOPY_BPF 54 #include <machine/atomic.h> 55 #endif 56 57 #include <net/if.h> 58 59 #ifdef _AIX 60 61 /* 62 * Make "pcap.h" not include "pcap/bpf.h"; we are going to include the 63 * native OS version, as we need "struct bpf_config" from it. 64 */ 65 #define PCAP_DONT_INCLUDE_PCAP_BPF_H 66 67 #include <sys/types.h> 68 69 /* 70 * Prevent bpf.h from redefining the DLT_ values to their 71 * IFT_ values, as we're going to return the standard libpcap 72 * values, not IBM's non-standard IFT_ values. 73 */ 74 #undef _AIX 75 #include <net/bpf.h> 76 #define _AIX 77 78 #include <net/if_types.h> /* for IFT_ values */ 79 #include <sys/sysconfig.h> 80 #include <sys/device.h> 81 #include <sys/cfgodm.h> 82 #include <cf.h> 83 84 #ifdef __64BIT__ 85 #define domakedev makedev64 86 #define getmajor major64 87 #define bpf_hdr bpf_hdr32 88 #else /* __64BIT__ */ 89 #define domakedev makedev 90 #define getmajor major 91 #endif /* __64BIT__ */ 92 93 #define BPF_NAME "bpf" 94 #define BPF_MINORS 4 95 #define DRIVER_PATH "/usr/lib/drivers" 96 #define BPF_NODE "/dev/bpf" 97 static int bpfloadedflag = 0; 98 static int odmlockid = 0; 99 100 static int bpf_load(char *errbuf); 101 102 #else /* _AIX */ 103 104 #include <net/bpf.h> 105 106 #endif /* _AIX */ 107 108 #include <ctype.h> 109 #include <fcntl.h> 110 #include <errno.h> 111 #include <netdb.h> 112 #include <stdio.h> 113 #include <stdlib.h> 114 #include <string.h> 115 #include <unistd.h> 116 117 #ifdef HAVE_NET_IF_MEDIA_H 118 # include <net/if_media.h> 119 #endif 120 121 #include "pcap-int.h" 122 123 #ifdef HAVE_OS_PROTO_H 124 #include "os-proto.h" 125 #endif 126 127 /* 128 * Later versions of NetBSD stick padding in front of FDDI frames 129 * to align the IP header on a 4-byte boundary. 130 */ 131 #if defined(__NetBSD__) && __NetBSD_Version__ > 106000000 132 #define PCAP_FDDIPAD 3 133 #endif 134 135 /* 136 * Private data for capturing on BPF devices. 137 */ 138 struct pcap_bpf { 139 #ifdef PCAP_FDDIPAD 140 int fddipad; 141 #endif 142 143 #ifdef HAVE_ZEROCOPY_BPF 144 /* 145 * Zero-copy read buffer -- for zero-copy BPF. 'buffer' above will 146 * alternative between these two actual mmap'd buffers as required. 147 * As there is a header on the front size of the mmap'd buffer, only 148 * some of the buffer is exposed to libpcap as a whole via bufsize; 149 * zbufsize is the true size. zbuffer tracks the current zbuf 150 * assocated with buffer so that it can be used to decide which the 151 * next buffer to read will be. 152 */ 153 u_char *zbuf1, *zbuf2, *zbuffer; 154 u_int zbufsize; 155 u_int zerocopy; 156 u_int interrupted; 157 struct timespec firstsel; 158 /* 159 * If there's currently a buffer being actively processed, then it is 160 * referenced here; 'buffer' is also pointed at it, but offset by the 161 * size of the header. 162 */ 163 struct bpf_zbuf_header *bzh; 164 int nonblock; /* true if in nonblocking mode */ 165 #endif /* HAVE_ZEROCOPY_BPF */ 166 167 char *device; /* device name */ 168 int filtering_in_kernel; /* using kernel filter */ 169 int must_do_on_close; /* stuff we must do when we close */ 170 }; 171 172 /* 173 * Stuff to do when we close. 174 */ 175 #define MUST_CLEAR_RFMON 0x00000001 /* clear rfmon (monitor) mode */ 176 177 #ifdef BIOCGDLTLIST 178 # if (defined(HAVE_NET_IF_MEDIA_H) && defined(IFM_IEEE80211)) && !defined(__APPLE__) 179 #define HAVE_BSD_IEEE80211 180 # endif 181 182 # if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) 183 static int find_802_11(struct bpf_dltlist *); 184 185 # ifdef HAVE_BSD_IEEE80211 186 static int monitor_mode(pcap_t *, int); 187 # endif 188 189 # if defined(__APPLE__) 190 static void remove_en(pcap_t *); 191 static void remove_802_11(pcap_t *); 192 # endif 193 194 # endif /* defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) */ 195 196 #endif /* BIOCGDLTLIST */ 197 198 #if defined(sun) && defined(LIFNAMSIZ) && defined(lifr_zoneid) 199 #include <zone.h> 200 #endif 201 202 /* 203 * We include the OS's <net/bpf.h>, not our "pcap/bpf.h", so we probably 204 * don't get DLT_DOCSIS defined. 205 */ 206 #ifndef DLT_DOCSIS 207 #define DLT_DOCSIS 143 208 #endif 209 210 /* 211 * On OS X, we don't even get any of the 802.11-plus-radio-header DLT_'s 212 * defined, even though some of them are used by various Airport drivers. 213 */ 214 #ifndef DLT_PRISM_HEADER 215 #define DLT_PRISM_HEADER 119 216 #endif 217 #ifndef DLT_AIRONET_HEADER 218 #define DLT_AIRONET_HEADER 120 219 #endif 220 #ifndef DLT_IEEE802_11_RADIO 221 #define DLT_IEEE802_11_RADIO 127 222 #endif 223 #ifndef DLT_IEEE802_11_RADIO_AVS 224 #define DLT_IEEE802_11_RADIO_AVS 163 225 #endif 226 227 static int pcap_can_set_rfmon_bpf(pcap_t *p); 228 static int pcap_activate_bpf(pcap_t *p); 229 static int pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp); 230 static int pcap_setdirection_bpf(pcap_t *, pcap_direction_t); 231 static int pcap_set_datalink_bpf(pcap_t *p, int dlt); 232 233 /* 234 * For zerocopy bpf, the setnonblock/getnonblock routines need to modify 235 * pb->nonblock so we don't call select(2) if the pcap handle is in non- 236 * blocking mode. 237 */ 238 static int 239 pcap_getnonblock_bpf(pcap_t *p, char *errbuf) 240 { 241 #ifdef HAVE_ZEROCOPY_BPF 242 struct pcap_bpf *pb = p->priv; 243 244 if (pb->zerocopy) 245 return (pb->nonblock); 246 #endif 247 return (pcap_getnonblock_fd(p, errbuf)); 248 } 249 250 static int 251 pcap_setnonblock_bpf(pcap_t *p, int nonblock, char *errbuf) 252 { 253 #ifdef HAVE_ZEROCOPY_BPF 254 struct pcap_bpf *pb = p->priv; 255 256 if (pb->zerocopy) { 257 pb->nonblock = nonblock; 258 return (0); 259 } 260 #endif 261 return (pcap_setnonblock_fd(p, nonblock, errbuf)); 262 } 263 264 #ifdef HAVE_ZEROCOPY_BPF 265 /* 266 * Zero-copy BPF buffer routines to check for and acknowledge BPF data in 267 * shared memory buffers. 268 * 269 * pcap_next_zbuf_shm(): Check for a newly available shared memory buffer, 270 * and set up p->buffer and cc to reflect one if available. Notice that if 271 * there was no prior buffer, we select zbuf1 as this will be the first 272 * buffer filled for a fresh BPF session. 273 */ 274 static int 275 pcap_next_zbuf_shm(pcap_t *p, int *cc) 276 { 277 struct pcap_bpf *pb = p->priv; 278 struct bpf_zbuf_header *bzh; 279 280 if (pb->zbuffer == pb->zbuf2 || pb->zbuffer == NULL) { 281 bzh = (struct bpf_zbuf_header *)pb->zbuf1; 282 if (bzh->bzh_user_gen != 283 atomic_load_acq_int(&bzh->bzh_kernel_gen)) { 284 pb->bzh = bzh; 285 pb->zbuffer = (u_char *)pb->zbuf1; 286 p->buffer = pb->zbuffer + sizeof(*bzh); 287 *cc = bzh->bzh_kernel_len; 288 return (1); 289 } 290 } else if (pb->zbuffer == pb->zbuf1) { 291 bzh = (struct bpf_zbuf_header *)pb->zbuf2; 292 if (bzh->bzh_user_gen != 293 atomic_load_acq_int(&bzh->bzh_kernel_gen)) { 294 pb->bzh = bzh; 295 pb->zbuffer = (u_char *)pb->zbuf2; 296 p->buffer = pb->zbuffer + sizeof(*bzh); 297 *cc = bzh->bzh_kernel_len; 298 return (1); 299 } 300 } 301 *cc = 0; 302 return (0); 303 } 304 305 /* 306 * pcap_next_zbuf() -- Similar to pcap_next_zbuf_shm(), except wait using 307 * select() for data or a timeout, and possibly force rotation of the buffer 308 * in the event we time out or are in immediate mode. Invoke the shared 309 * memory check before doing system calls in order to avoid doing avoidable 310 * work. 311 */ 312 static int 313 pcap_next_zbuf(pcap_t *p, int *cc) 314 { 315 struct pcap_bpf *pb = p->priv; 316 struct bpf_zbuf bz; 317 struct timeval tv; 318 struct timespec cur; 319 fd_set r_set; 320 int data, r; 321 int expire, tmout; 322 323 #define TSTOMILLI(ts) (((ts)->tv_sec * 1000) + ((ts)->tv_nsec / 1000000)) 324 /* 325 * Start out by seeing whether anything is waiting by checking the 326 * next shared memory buffer for data. 327 */ 328 data = pcap_next_zbuf_shm(p, cc); 329 if (data) 330 return (data); 331 /* 332 * If a previous sleep was interrupted due to signal delivery, make 333 * sure that the timeout gets adjusted accordingly. This requires 334 * that we analyze when the timeout should be been expired, and 335 * subtract the current time from that. If after this operation, 336 * our timeout is less then or equal to zero, handle it like a 337 * regular timeout. 338 */ 339 tmout = p->opt.timeout; 340 if (tmout) 341 (void) clock_gettime(CLOCK_MONOTONIC, &cur); 342 if (pb->interrupted && p->opt.timeout) { 343 expire = TSTOMILLI(&pb->firstsel) + p->opt.timeout; 344 tmout = expire - TSTOMILLI(&cur); 345 #undef TSTOMILLI 346 if (tmout <= 0) { 347 pb->interrupted = 0; 348 data = pcap_next_zbuf_shm(p, cc); 349 if (data) 350 return (data); 351 if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) { 352 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 353 "BIOCROTZBUF: %s", strerror(errno)); 354 return (PCAP_ERROR); 355 } 356 return (pcap_next_zbuf_shm(p, cc)); 357 } 358 } 359 /* 360 * No data in the buffer, so must use select() to wait for data or 361 * the next timeout. Note that we only call select if the handle 362 * is in blocking mode. 363 */ 364 if (!pb->nonblock) { 365 FD_ZERO(&r_set); 366 FD_SET(p->fd, &r_set); 367 if (tmout != 0) { 368 tv.tv_sec = tmout / 1000; 369 tv.tv_usec = (tmout * 1000) % 1000000; 370 } 371 r = select(p->fd + 1, &r_set, NULL, NULL, 372 p->opt.timeout != 0 ? &tv : NULL); 373 if (r < 0 && errno == EINTR) { 374 if (!pb->interrupted && p->opt.timeout) { 375 pb->interrupted = 1; 376 pb->firstsel = cur; 377 } 378 return (0); 379 } else if (r < 0) { 380 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 381 "select: %s", strerror(errno)); 382 return (PCAP_ERROR); 383 } 384 } 385 pb->interrupted = 0; 386 /* 387 * Check again for data, which may exist now that we've either been 388 * woken up as a result of data or timed out. Try the "there's data" 389 * case first since it doesn't require a system call. 390 */ 391 data = pcap_next_zbuf_shm(p, cc); 392 if (data) 393 return (data); 394 /* 395 * Try forcing a buffer rotation to dislodge timed out or immediate 396 * data. 397 */ 398 if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) { 399 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 400 "BIOCROTZBUF: %s", strerror(errno)); 401 return (PCAP_ERROR); 402 } 403 return (pcap_next_zbuf_shm(p, cc)); 404 } 405 406 /* 407 * Notify kernel that we are done with the buffer. We don't reset zbuffer so 408 * that we know which buffer to use next time around. 409 */ 410 static int 411 pcap_ack_zbuf(pcap_t *p) 412 { 413 struct pcap_bpf *pb = p->priv; 414 415 atomic_store_rel_int(&pb->bzh->bzh_user_gen, 416 pb->bzh->bzh_kernel_gen); 417 pb->bzh = NULL; 418 p->buffer = NULL; 419 return (0); 420 } 421 #endif /* HAVE_ZEROCOPY_BPF */ 422 423 pcap_t * 424 pcap_create_interface(const char *device, char *ebuf) 425 { 426 pcap_t *p; 427 428 p = pcap_create_common(device, ebuf, sizeof (struct pcap_bpf)); 429 if (p == NULL) 430 return (NULL); 431 432 p->activate_op = pcap_activate_bpf; 433 p->can_set_rfmon_op = pcap_can_set_rfmon_bpf; 434 #ifdef BIOCSTSTAMP 435 /* 436 * We claim that we support microsecond and nanosecond time 437 * stamps. 438 */ 439 p->tstamp_precision_count = 2; 440 p->tstamp_precision_list = malloc(2 * sizeof(u_int)); 441 if (p->tstamp_precision_list == NULL) { 442 snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s", 443 pcap_strerror(errno)); 444 free(p); 445 return (NULL); 446 } 447 p->tstamp_precision_list[0] = PCAP_TSTAMP_PRECISION_MICRO; 448 p->tstamp_precision_list[1] = PCAP_TSTAMP_PRECISION_NANO; 449 #endif /* BIOCSTSTAMP */ 450 return (p); 451 } 452 453 /* 454 * On success, returns a file descriptor for a BPF device. 455 * On failure, returns a PCAP_ERROR_ value, and sets p->errbuf. 456 */ 457 static int 458 bpf_open(pcap_t *p) 459 { 460 int fd; 461 #ifdef HAVE_CLONING_BPF 462 static const char device[] = "/dev/bpf"; 463 #else 464 int n = 0; 465 char device[sizeof "/dev/bpf0000000000"]; 466 #endif 467 468 #ifdef _AIX 469 /* 470 * Load the bpf driver, if it isn't already loaded, 471 * and create the BPF device entries, if they don't 472 * already exist. 473 */ 474 if (bpf_load(p->errbuf) == PCAP_ERROR) 475 return (PCAP_ERROR); 476 #endif 477 478 #ifdef HAVE_CLONING_BPF 479 if ((fd = open(device, O_RDWR)) == -1 && 480 (errno != EACCES || (fd = open(device, O_RDONLY)) == -1)) { 481 if (errno == EACCES) 482 fd = PCAP_ERROR_PERM_DENIED; 483 else 484 fd = PCAP_ERROR; 485 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 486 "(cannot open device) %s: %s", device, pcap_strerror(errno)); 487 } 488 #else 489 /* 490 * Go through all the minors and find one that isn't in use. 491 */ 492 do { 493 (void)snprintf(device, sizeof(device), "/dev/bpf%d", n++); 494 /* 495 * Initially try a read/write open (to allow the inject 496 * method to work). If that fails due to permission 497 * issues, fall back to read-only. This allows a 498 * non-root user to be granted specific access to pcap 499 * capabilities via file permissions. 500 * 501 * XXX - we should have an API that has a flag that 502 * controls whether to open read-only or read-write, 503 * so that denial of permission to send (or inability 504 * to send, if sending packets isn't supported on 505 * the device in question) can be indicated at open 506 * time. 507 */ 508 fd = open(device, O_RDWR); 509 if (fd == -1 && errno == EACCES) 510 fd = open(device, O_RDONLY); 511 } while (fd < 0 && errno == EBUSY); 512 513 /* 514 * XXX better message for all minors used 515 */ 516 if (fd < 0) { 517 switch (errno) { 518 519 case ENOENT: 520 fd = PCAP_ERROR; 521 if (n == 1) { 522 /* 523 * /dev/bpf0 doesn't exist, which 524 * means we probably have no BPF 525 * devices. 526 */ 527 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 528 "(there are no BPF devices)"); 529 } else { 530 /* 531 * We got EBUSY on at least one 532 * BPF device, so we have BPF 533 * devices, but all the ones 534 * that exist are busy. 535 */ 536 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 537 "(all BPF devices are busy)"); 538 } 539 break; 540 541 case EACCES: 542 /* 543 * Got EACCES on the last device we tried, 544 * and EBUSY on all devices before that, 545 * if any. 546 */ 547 fd = PCAP_ERROR_PERM_DENIED; 548 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 549 "(cannot open BPF device) %s: %s", device, 550 pcap_strerror(errno)); 551 break; 552 553 default: 554 /* 555 * Some other problem. 556 */ 557 fd = PCAP_ERROR; 558 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 559 "(cannot open BPF device) %s: %s", device, 560 pcap_strerror(errno)); 561 break; 562 } 563 } 564 #endif 565 566 return (fd); 567 } 568 569 #ifdef BIOCGDLTLIST 570 static int 571 get_dlt_list(int fd, int v, struct bpf_dltlist *bdlp, char *ebuf) 572 { 573 memset(bdlp, 0, sizeof(*bdlp)); 574 if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) == 0) { 575 u_int i; 576 int is_ethernet; 577 578 bdlp->bfl_list = (u_int *) malloc(sizeof(u_int) * (bdlp->bfl_len + 1)); 579 if (bdlp->bfl_list == NULL) { 580 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s", 581 pcap_strerror(errno)); 582 return (PCAP_ERROR); 583 } 584 585 if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) < 0) { 586 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, 587 "BIOCGDLTLIST: %s", pcap_strerror(errno)); 588 free(bdlp->bfl_list); 589 return (PCAP_ERROR); 590 } 591 592 /* 593 * OK, for real Ethernet devices, add DLT_DOCSIS to the 594 * list, so that an application can let you choose it, 595 * in case you're capturing DOCSIS traffic that a Cisco 596 * Cable Modem Termination System is putting out onto 597 * an Ethernet (it doesn't put an Ethernet header onto 598 * the wire, it puts raw DOCSIS frames out on the wire 599 * inside the low-level Ethernet framing). 600 * 601 * A "real Ethernet device" is defined here as a device 602 * that has a link-layer type of DLT_EN10MB and that has 603 * no alternate link-layer types; that's done to exclude 604 * 802.11 interfaces (which might or might not be the 605 * right thing to do, but I suspect it is - Ethernet <-> 606 * 802.11 bridges would probably badly mishandle frames 607 * that don't have Ethernet headers). 608 * 609 * On Solaris with BPF, Ethernet devices also offer 610 * DLT_IPNET, so we, if DLT_IPNET is defined, we don't 611 * treat it as an indication that the device isn't an 612 * Ethernet. 613 */ 614 if (v == DLT_EN10MB) { 615 is_ethernet = 1; 616 for (i = 0; i < bdlp->bfl_len; i++) { 617 if (bdlp->bfl_list[i] != DLT_EN10MB 618 #ifdef DLT_IPNET 619 && bdlp->bfl_list[i] != DLT_IPNET 620 #endif 621 ) { 622 is_ethernet = 0; 623 break; 624 } 625 } 626 if (is_ethernet) { 627 /* 628 * We reserved one more slot at the end of 629 * the list. 630 */ 631 bdlp->bfl_list[bdlp->bfl_len] = DLT_DOCSIS; 632 bdlp->bfl_len++; 633 } 634 } 635 } else { 636 /* 637 * EINVAL just means "we don't support this ioctl on 638 * this device"; don't treat it as an error. 639 */ 640 if (errno != EINVAL) { 641 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, 642 "BIOCGDLTLIST: %s", pcap_strerror(errno)); 643 return (PCAP_ERROR); 644 } 645 } 646 return (0); 647 } 648 #endif 649 650 static int 651 pcap_can_set_rfmon_bpf(pcap_t *p) 652 { 653 #if defined(__APPLE__) 654 struct utsname osinfo; 655 struct ifreq ifr; 656 int fd; 657 #ifdef BIOCGDLTLIST 658 struct bpf_dltlist bdl; 659 #endif 660 661 /* 662 * The joys of monitor mode on OS X. 663 * 664 * Prior to 10.4, it's not supported at all. 665 * 666 * In 10.4, if adapter enN supports monitor mode, there's a 667 * wltN adapter corresponding to it; you open it, instead of 668 * enN, to get monitor mode. You get whatever link-layer 669 * headers it supplies. 670 * 671 * In 10.5, and, we assume, later releases, if adapter enN 672 * supports monitor mode, it offers, among its selectable 673 * DLT_ values, values that let you get the 802.11 header; 674 * selecting one of those values puts the adapter into monitor 675 * mode (i.e., you can't get 802.11 headers except in monitor 676 * mode, and you can't get Ethernet headers in monitor mode). 677 */ 678 if (uname(&osinfo) == -1) { 679 /* 680 * Can't get the OS version; just say "no". 681 */ 682 return (0); 683 } 684 /* 685 * We assume osinfo.sysname is "Darwin", because 686 * __APPLE__ is defined. We just check the version. 687 */ 688 if (osinfo.release[0] < '8' && osinfo.release[1] == '.') { 689 /* 690 * 10.3 (Darwin 7.x) or earlier. 691 * Monitor mode not supported. 692 */ 693 return (0); 694 } 695 if (osinfo.release[0] == '8' && osinfo.release[1] == '.') { 696 /* 697 * 10.4 (Darwin 8.x). s/en/wlt/, and check 698 * whether the device exists. 699 */ 700 if (strncmp(p->opt.source, "en", 2) != 0) { 701 /* 702 * Not an enN device; no monitor mode. 703 */ 704 return (0); 705 } 706 fd = socket(AF_INET, SOCK_DGRAM, 0); 707 if (fd == -1) { 708 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 709 "socket: %s", pcap_strerror(errno)); 710 return (PCAP_ERROR); 711 } 712 strlcpy(ifr.ifr_name, "wlt", sizeof(ifr.ifr_name)); 713 strlcat(ifr.ifr_name, p->opt.source + 2, sizeof(ifr.ifr_name)); 714 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) { 715 /* 716 * No such device? 717 */ 718 close(fd); 719 return (0); 720 } 721 close(fd); 722 return (1); 723 } 724 725 #ifdef BIOCGDLTLIST 726 /* 727 * Everything else is 10.5 or later; for those, 728 * we just open the enN device, and check whether 729 * we have any 802.11 devices. 730 * 731 * First, open a BPF device. 732 */ 733 fd = bpf_open(p); 734 if (fd < 0) 735 return (fd); /* fd is the appropriate error code */ 736 737 /* 738 * Now bind to the device. 739 */ 740 (void)strncpy(ifr.ifr_name, p->opt.source, sizeof(ifr.ifr_name)); 741 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) { 742 switch (errno) { 743 744 case ENXIO: 745 /* 746 * There's no such device. 747 */ 748 close(fd); 749 return (PCAP_ERROR_NO_SUCH_DEVICE); 750 751 case ENETDOWN: 752 /* 753 * Return a "network down" indication, so that 754 * the application can report that rather than 755 * saying we had a mysterious failure and 756 * suggest that they report a problem to the 757 * libpcap developers. 758 */ 759 close(fd); 760 return (PCAP_ERROR_IFACE_NOT_UP); 761 762 default: 763 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 764 "BIOCSETIF: %s: %s", 765 p->opt.source, pcap_strerror(errno)); 766 close(fd); 767 return (PCAP_ERROR); 768 } 769 } 770 771 /* 772 * We know the default link type -- now determine all the DLTs 773 * this interface supports. If this fails with EINVAL, it's 774 * not fatal; we just don't get to use the feature later. 775 * (We don't care about DLT_DOCSIS, so we pass DLT_NULL 776 * as the default DLT for this adapter.) 777 */ 778 if (get_dlt_list(fd, DLT_NULL, &bdl, p->errbuf) == PCAP_ERROR) { 779 close(fd); 780 return (PCAP_ERROR); 781 } 782 if (find_802_11(&bdl) != -1) { 783 /* 784 * We have an 802.11 DLT, so we can set monitor mode. 785 */ 786 free(bdl.bfl_list); 787 close(fd); 788 return (1); 789 } 790 free(bdl.bfl_list); 791 #endif /* BIOCGDLTLIST */ 792 return (0); 793 #elif defined(HAVE_BSD_IEEE80211) 794 int ret; 795 796 ret = monitor_mode(p, 0); 797 if (ret == PCAP_ERROR_RFMON_NOTSUP) 798 return (0); /* not an error, just a "can't do" */ 799 if (ret == 0) 800 return (1); /* success */ 801 return (ret); 802 #else 803 return (0); 804 #endif 805 } 806 807 static int 808 pcap_stats_bpf(pcap_t *p, struct pcap_stat *ps) 809 { 810 struct bpf_stat s; 811 812 /* 813 * "ps_recv" counts packets handed to the filter, not packets 814 * that passed the filter. This includes packets later dropped 815 * because we ran out of buffer space. 816 * 817 * "ps_drop" counts packets dropped inside the BPF device 818 * because we ran out of buffer space. It doesn't count 819 * packets dropped by the interface driver. It counts 820 * only packets that passed the filter. 821 * 822 * Both statistics include packets not yet read from the kernel 823 * by libpcap, and thus not yet seen by the application. 824 */ 825 if (ioctl(p->fd, BIOCGSTATS, (caddr_t)&s) < 0) { 826 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGSTATS: %s", 827 pcap_strerror(errno)); 828 return (PCAP_ERROR); 829 } 830 831 ps->ps_recv = s.bs_recv; 832 ps->ps_drop = s.bs_drop; 833 ps->ps_ifdrop = 0; 834 return (0); 835 } 836 837 static int 838 pcap_read_bpf(pcap_t *p, int cnt, pcap_handler callback, u_char *user) 839 { 840 struct pcap_bpf *pb = p->priv; 841 int cc; 842 int n = 0; 843 register u_char *bp, *ep; 844 u_char *datap; 845 #ifdef PCAP_FDDIPAD 846 register int pad; 847 #endif 848 #ifdef HAVE_ZEROCOPY_BPF 849 int i; 850 #endif 851 852 again: 853 /* 854 * Has "pcap_breakloop()" been called? 855 */ 856 if (p->break_loop) { 857 /* 858 * Yes - clear the flag that indicates that it 859 * has, and return PCAP_ERROR_BREAK to indicate 860 * that we were told to break out of the loop. 861 */ 862 p->break_loop = 0; 863 return (PCAP_ERROR_BREAK); 864 } 865 cc = p->cc; 866 if (p->cc == 0) { 867 /* 868 * When reading without zero-copy from a file descriptor, we 869 * use a single buffer and return a length of data in the 870 * buffer. With zero-copy, we update the p->buffer pointer 871 * to point at whatever underlying buffer contains the next 872 * data and update cc to reflect the data found in the 873 * buffer. 874 */ 875 #ifdef HAVE_ZEROCOPY_BPF 876 if (pb->zerocopy) { 877 if (p->buffer != NULL) 878 pcap_ack_zbuf(p); 879 i = pcap_next_zbuf(p, &cc); 880 if (i == 0) 881 goto again; 882 if (i < 0) 883 return (PCAP_ERROR); 884 } else 885 #endif 886 { 887 cc = read(p->fd, (char *)p->buffer, p->bufsize); 888 } 889 if (cc < 0) { 890 /* Don't choke when we get ptraced */ 891 switch (errno) { 892 893 case EINTR: 894 goto again; 895 896 #ifdef _AIX 897 case EFAULT: 898 /* 899 * Sigh. More AIX wonderfulness. 900 * 901 * For some unknown reason the uiomove() 902 * operation in the bpf kernel extension 903 * used to copy the buffer into user 904 * space sometimes returns EFAULT. I have 905 * no idea why this is the case given that 906 * a kernel debugger shows the user buffer 907 * is correct. This problem appears to 908 * be mostly mitigated by the memset of 909 * the buffer before it is first used. 910 * Very strange.... Shaun Clowes 911 * 912 * In any case this means that we shouldn't 913 * treat EFAULT as a fatal error; as we 914 * don't have an API for returning 915 * a "some packets were dropped since 916 * the last packet you saw" indication, 917 * we just ignore EFAULT and keep reading. 918 */ 919 goto again; 920 #endif 921 922 case EWOULDBLOCK: 923 return (0); 924 925 case ENXIO: 926 /* 927 * The device on which we're capturing 928 * went away. 929 * 930 * XXX - we should really return 931 * PCAP_ERROR_IFACE_NOT_UP, but 932 * pcap_dispatch() etc. aren't 933 * defined to retur that. 934 */ 935 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 936 "The interface went down"); 937 return (PCAP_ERROR); 938 939 #if defined(sun) && !defined(BSD) && !defined(__svr4__) && !defined(__SVR4) 940 /* 941 * Due to a SunOS bug, after 2^31 bytes, the kernel 942 * file offset overflows and read fails with EINVAL. 943 * The lseek() to 0 will fix things. 944 */ 945 case EINVAL: 946 if (lseek(p->fd, 0L, SEEK_CUR) + 947 p->bufsize < 0) { 948 (void)lseek(p->fd, 0L, SEEK_SET); 949 goto again; 950 } 951 /* fall through */ 952 #endif 953 } 954 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "read: %s", 955 pcap_strerror(errno)); 956 return (PCAP_ERROR); 957 } 958 bp = p->buffer; 959 } else 960 bp = p->bp; 961 962 /* 963 * Loop through each packet. 964 */ 965 #ifdef BIOCSTSTAMP 966 #define bhp ((struct bpf_xhdr *)bp) 967 #else 968 #define bhp ((struct bpf_hdr *)bp) 969 #endif 970 ep = bp + cc; 971 #ifdef PCAP_FDDIPAD 972 pad = p->fddipad; 973 #endif 974 while (bp < ep) { 975 register int caplen, hdrlen; 976 977 /* 978 * Has "pcap_breakloop()" been called? 979 * If so, return immediately - if we haven't read any 980 * packets, clear the flag and return PCAP_ERROR_BREAK 981 * to indicate that we were told to break out of the loop, 982 * otherwise leave the flag set, so that the *next* call 983 * will break out of the loop without having read any 984 * packets, and return the number of packets we've 985 * processed so far. 986 */ 987 if (p->break_loop) { 988 p->bp = bp; 989 p->cc = ep - bp; 990 /* 991 * ep is set based on the return value of read(), 992 * but read() from a BPF device doesn't necessarily 993 * return a value that's a multiple of the alignment 994 * value for BPF_WORDALIGN(). However, whenever we 995 * increment bp, we round up the increment value by 996 * a value rounded up by BPF_WORDALIGN(), so we 997 * could increment bp past ep after processing the 998 * last packet in the buffer. 999 * 1000 * We treat ep < bp as an indication that this 1001 * happened, and just set p->cc to 0. 1002 */ 1003 if (p->cc < 0) 1004 p->cc = 0; 1005 if (n == 0) { 1006 p->break_loop = 0; 1007 return (PCAP_ERROR_BREAK); 1008 } else 1009 return (n); 1010 } 1011 1012 caplen = bhp->bh_caplen; 1013 hdrlen = bhp->bh_hdrlen; 1014 datap = bp + hdrlen; 1015 /* 1016 * Short-circuit evaluation: if using BPF filter 1017 * in kernel, no need to do it now - we already know 1018 * the packet passed the filter. 1019 * 1020 #ifdef PCAP_FDDIPAD 1021 * Note: the filter code was generated assuming 1022 * that p->fddipad was the amount of padding 1023 * before the header, as that's what's required 1024 * in the kernel, so we run the filter before 1025 * skipping that padding. 1026 #endif 1027 */ 1028 if (pb->filtering_in_kernel || 1029 bpf_filter(p->fcode.bf_insns, datap, bhp->bh_datalen, caplen)) { 1030 struct pcap_pkthdr pkthdr; 1031 #ifdef BIOCSTSTAMP 1032 struct bintime bt; 1033 1034 bt.sec = bhp->bh_tstamp.bt_sec; 1035 bt.frac = bhp->bh_tstamp.bt_frac; 1036 if (p->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) { 1037 struct timespec ts; 1038 1039 bintime2timespec(&bt, &ts); 1040 pkthdr.ts.tv_sec = ts.tv_sec; 1041 pkthdr.ts.tv_usec = ts.tv_nsec; 1042 } else { 1043 struct timeval tv; 1044 1045 bintime2timeval(&bt, &tv); 1046 pkthdr.ts.tv_sec = tv.tv_sec; 1047 pkthdr.ts.tv_usec = tv.tv_usec; 1048 } 1049 #else 1050 pkthdr.ts.tv_sec = bhp->bh_tstamp.tv_sec; 1051 #ifdef _AIX 1052 /* 1053 * AIX's BPF returns seconds/nanoseconds time 1054 * stamps, not seconds/microseconds time stamps. 1055 */ 1056 pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec/1000; 1057 #else 1058 pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec; 1059 #endif 1060 #endif /* BIOCSTSTAMP */ 1061 #ifdef PCAP_FDDIPAD 1062 if (caplen > pad) 1063 pkthdr.caplen = caplen - pad; 1064 else 1065 pkthdr.caplen = 0; 1066 if (bhp->bh_datalen > pad) 1067 pkthdr.len = bhp->bh_datalen - pad; 1068 else 1069 pkthdr.len = 0; 1070 datap += pad; 1071 #else 1072 pkthdr.caplen = caplen; 1073 pkthdr.len = bhp->bh_datalen; 1074 #endif 1075 (*callback)(user, &pkthdr, datap); 1076 bp += BPF_WORDALIGN(caplen + hdrlen); 1077 if (++n >= cnt && !PACKET_COUNT_IS_UNLIMITED(cnt)) { 1078 p->bp = bp; 1079 p->cc = ep - bp; 1080 /* 1081 * See comment above about p->cc < 0. 1082 */ 1083 if (p->cc < 0) 1084 p->cc = 0; 1085 return (n); 1086 } 1087 } else { 1088 /* 1089 * Skip this packet. 1090 */ 1091 bp += BPF_WORDALIGN(caplen + hdrlen); 1092 } 1093 } 1094 #undef bhp 1095 p->cc = 0; 1096 return (n); 1097 } 1098 1099 static int 1100 pcap_inject_bpf(pcap_t *p, const void *buf, size_t size) 1101 { 1102 int ret; 1103 1104 ret = write(p->fd, buf, size); 1105 #ifdef __APPLE__ 1106 if (ret == -1 && errno == EAFNOSUPPORT) { 1107 /* 1108 * In Mac OS X, there's a bug wherein setting the 1109 * BIOCSHDRCMPLT flag causes writes to fail; see, 1110 * for example: 1111 * 1112 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/BIOCSHDRCMPLT-10.3.3.patch 1113 * 1114 * So, if, on OS X, we get EAFNOSUPPORT from the write, we 1115 * assume it's due to that bug, and turn off that flag 1116 * and try again. If we succeed, it either means that 1117 * somebody applied the fix from that URL, or other patches 1118 * for that bug from 1119 * 1120 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/ 1121 * 1122 * and are running a Darwin kernel with those fixes, or 1123 * that Apple fixed the problem in some OS X release. 1124 */ 1125 u_int spoof_eth_src = 0; 1126 1127 if (ioctl(p->fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) { 1128 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1129 "send: can't turn off BIOCSHDRCMPLT: %s", 1130 pcap_strerror(errno)); 1131 return (PCAP_ERROR); 1132 } 1133 1134 /* 1135 * Now try the write again. 1136 */ 1137 ret = write(p->fd, buf, size); 1138 } 1139 #endif /* __APPLE__ */ 1140 if (ret == -1) { 1141 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "send: %s", 1142 pcap_strerror(errno)); 1143 return (PCAP_ERROR); 1144 } 1145 return (ret); 1146 } 1147 1148 #ifdef _AIX 1149 static int 1150 bpf_odminit(char *errbuf) 1151 { 1152 char *errstr; 1153 1154 if (odm_initialize() == -1) { 1155 if (odm_err_msg(odmerrno, &errstr) == -1) 1156 errstr = "Unknown error"; 1157 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1158 "bpf_load: odm_initialize failed: %s", 1159 errstr); 1160 return (PCAP_ERROR); 1161 } 1162 1163 if ((odmlockid = odm_lock("/etc/objrepos/config_lock", ODM_WAIT)) == -1) { 1164 if (odm_err_msg(odmerrno, &errstr) == -1) 1165 errstr = "Unknown error"; 1166 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1167 "bpf_load: odm_lock of /etc/objrepos/config_lock failed: %s", 1168 errstr); 1169 (void)odm_terminate(); 1170 return (PCAP_ERROR); 1171 } 1172 1173 return (0); 1174 } 1175 1176 static int 1177 bpf_odmcleanup(char *errbuf) 1178 { 1179 char *errstr; 1180 1181 if (odm_unlock(odmlockid) == -1) { 1182 if (errbuf != NULL) { 1183 if (odm_err_msg(odmerrno, &errstr) == -1) 1184 errstr = "Unknown error"; 1185 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1186 "bpf_load: odm_unlock failed: %s", 1187 errstr); 1188 } 1189 return (PCAP_ERROR); 1190 } 1191 1192 if (odm_terminate() == -1) { 1193 if (errbuf != NULL) { 1194 if (odm_err_msg(odmerrno, &errstr) == -1) 1195 errstr = "Unknown error"; 1196 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1197 "bpf_load: odm_terminate failed: %s", 1198 errstr); 1199 } 1200 return (PCAP_ERROR); 1201 } 1202 1203 return (0); 1204 } 1205 1206 static int 1207 bpf_load(char *errbuf) 1208 { 1209 long major; 1210 int *minors; 1211 int numminors, i, rc; 1212 char buf[1024]; 1213 struct stat sbuf; 1214 struct bpf_config cfg_bpf; 1215 struct cfg_load cfg_ld; 1216 struct cfg_kmod cfg_km; 1217 1218 /* 1219 * This is very very close to what happens in the real implementation 1220 * but I've fixed some (unlikely) bug situations. 1221 */ 1222 if (bpfloadedflag) 1223 return (0); 1224 1225 if (bpf_odminit(errbuf) == PCAP_ERROR) 1226 return (PCAP_ERROR); 1227 1228 major = genmajor(BPF_NAME); 1229 if (major == -1) { 1230 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1231 "bpf_load: genmajor failed: %s", pcap_strerror(errno)); 1232 (void)bpf_odmcleanup(NULL); 1233 return (PCAP_ERROR); 1234 } 1235 1236 minors = getminor(major, &numminors, BPF_NAME); 1237 if (!minors) { 1238 minors = genminor("bpf", major, 0, BPF_MINORS, 1, 1); 1239 if (!minors) { 1240 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1241 "bpf_load: genminor failed: %s", 1242 pcap_strerror(errno)); 1243 (void)bpf_odmcleanup(NULL); 1244 return (PCAP_ERROR); 1245 } 1246 } 1247 1248 if (bpf_odmcleanup(errbuf) == PCAP_ERROR) 1249 return (PCAP_ERROR); 1250 1251 rc = stat(BPF_NODE "0", &sbuf); 1252 if (rc == -1 && errno != ENOENT) { 1253 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1254 "bpf_load: can't stat %s: %s", 1255 BPF_NODE "0", pcap_strerror(errno)); 1256 return (PCAP_ERROR); 1257 } 1258 1259 if (rc == -1 || getmajor(sbuf.st_rdev) != major) { 1260 for (i = 0; i < BPF_MINORS; i++) { 1261 sprintf(buf, "%s%d", BPF_NODE, i); 1262 unlink(buf); 1263 if (mknod(buf, S_IRUSR | S_IFCHR, domakedev(major, i)) == -1) { 1264 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1265 "bpf_load: can't mknod %s: %s", 1266 buf, pcap_strerror(errno)); 1267 return (PCAP_ERROR); 1268 } 1269 } 1270 } 1271 1272 /* Check if the driver is loaded */ 1273 memset(&cfg_ld, 0x0, sizeof(cfg_ld)); 1274 cfg_ld.path = buf; 1275 sprintf(cfg_ld.path, "%s/%s", DRIVER_PATH, BPF_NAME); 1276 if ((sysconfig(SYS_QUERYLOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) || 1277 (cfg_ld.kmid == 0)) { 1278 /* Driver isn't loaded, load it now */ 1279 if (sysconfig(SYS_SINGLELOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) { 1280 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1281 "bpf_load: could not load driver: %s", 1282 strerror(errno)); 1283 return (PCAP_ERROR); 1284 } 1285 } 1286 1287 /* Configure the driver */ 1288 cfg_km.cmd = CFG_INIT; 1289 cfg_km.kmid = cfg_ld.kmid; 1290 cfg_km.mdilen = sizeof(cfg_bpf); 1291 cfg_km.mdiptr = (void *)&cfg_bpf; 1292 for (i = 0; i < BPF_MINORS; i++) { 1293 cfg_bpf.devno = domakedev(major, i); 1294 if (sysconfig(SYS_CFGKMOD, (void *)&cfg_km, sizeof(cfg_km)) == -1) { 1295 snprintf(errbuf, PCAP_ERRBUF_SIZE, 1296 "bpf_load: could not configure driver: %s", 1297 strerror(errno)); 1298 return (PCAP_ERROR); 1299 } 1300 } 1301 1302 bpfloadedflag = 1; 1303 1304 return (0); 1305 } 1306 #endif 1307 1308 /* 1309 * Turn off rfmon mode if necessary. 1310 */ 1311 static void 1312 pcap_cleanup_bpf(pcap_t *p) 1313 { 1314 struct pcap_bpf *pb = p->priv; 1315 #ifdef HAVE_BSD_IEEE80211 1316 int sock; 1317 struct ifmediareq req; 1318 struct ifreq ifr; 1319 #endif 1320 1321 if (pb->must_do_on_close != 0) { 1322 /* 1323 * There's something we have to do when closing this 1324 * pcap_t. 1325 */ 1326 #ifdef HAVE_BSD_IEEE80211 1327 if (pb->must_do_on_close & MUST_CLEAR_RFMON) { 1328 /* 1329 * We put the interface into rfmon mode; 1330 * take it out of rfmon mode. 1331 * 1332 * XXX - if somebody else wants it in rfmon 1333 * mode, this code cannot know that, so it'll take 1334 * it out of rfmon mode. 1335 */ 1336 sock = socket(AF_INET, SOCK_DGRAM, 0); 1337 if (sock == -1) { 1338 fprintf(stderr, 1339 "Can't restore interface flags (socket() failed: %s).\n" 1340 "Please adjust manually.\n", 1341 strerror(errno)); 1342 } else { 1343 memset(&req, 0, sizeof(req)); 1344 strncpy(req.ifm_name, pb->device, 1345 sizeof(req.ifm_name)); 1346 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) { 1347 fprintf(stderr, 1348 "Can't restore interface flags (SIOCGIFMEDIA failed: %s).\n" 1349 "Please adjust manually.\n", 1350 strerror(errno)); 1351 } else { 1352 if (req.ifm_current & IFM_IEEE80211_MONITOR) { 1353 /* 1354 * Rfmon mode is currently on; 1355 * turn it off. 1356 */ 1357 memset(&ifr, 0, sizeof(ifr)); 1358 (void)strncpy(ifr.ifr_name, 1359 pb->device, 1360 sizeof(ifr.ifr_name)); 1361 ifr.ifr_media = 1362 req.ifm_current & ~IFM_IEEE80211_MONITOR; 1363 if (ioctl(sock, SIOCSIFMEDIA, 1364 &ifr) == -1) { 1365 fprintf(stderr, 1366 "Can't restore interface flags (SIOCSIFMEDIA failed: %s).\n" 1367 "Please adjust manually.\n", 1368 strerror(errno)); 1369 } 1370 } 1371 } 1372 close(sock); 1373 } 1374 } 1375 #endif /* HAVE_BSD_IEEE80211 */ 1376 1377 /* 1378 * Take this pcap out of the list of pcaps for which we 1379 * have to take the interface out of some mode. 1380 */ 1381 pcap_remove_from_pcaps_to_close(p); 1382 pb->must_do_on_close = 0; 1383 } 1384 1385 #ifdef HAVE_ZEROCOPY_BPF 1386 if (pb->zerocopy) { 1387 /* 1388 * Delete the mappings. Note that p->buffer gets 1389 * initialized to one of the mmapped regions in 1390 * this case, so do not try and free it directly; 1391 * null it out so that pcap_cleanup_live_common() 1392 * doesn't try to free it. 1393 */ 1394 if (pb->zbuf1 != MAP_FAILED && pb->zbuf1 != NULL) 1395 (void) munmap(pb->zbuf1, pb->zbufsize); 1396 if (pb->zbuf2 != MAP_FAILED && pb->zbuf2 != NULL) 1397 (void) munmap(pb->zbuf2, pb->zbufsize); 1398 p->buffer = NULL; 1399 p->buffer = NULL; 1400 } 1401 #endif 1402 if (pb->device != NULL) { 1403 free(pb->device); 1404 pb->device = NULL; 1405 } 1406 pcap_cleanup_live_common(p); 1407 } 1408 1409 static int 1410 check_setif_failure(pcap_t *p, int error) 1411 { 1412 #ifdef __APPLE__ 1413 int fd; 1414 struct ifreq ifr; 1415 int err; 1416 #endif 1417 1418 if (error == ENXIO) { 1419 /* 1420 * No such device exists. 1421 */ 1422 #ifdef __APPLE__ 1423 if (p->opt.rfmon && strncmp(p->opt.source, "wlt", 3) == 0) { 1424 /* 1425 * Monitor mode was requested, and we're trying 1426 * to open a "wltN" device. Assume that this 1427 * is 10.4 and that we were asked to open an 1428 * "enN" device; if that device exists, return 1429 * "monitor mode not supported on the device". 1430 */ 1431 fd = socket(AF_INET, SOCK_DGRAM, 0); 1432 if (fd != -1) { 1433 strlcpy(ifr.ifr_name, "en", 1434 sizeof(ifr.ifr_name)); 1435 strlcat(ifr.ifr_name, p->opt.source + 3, 1436 sizeof(ifr.ifr_name)); 1437 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) { 1438 /* 1439 * We assume this failed because 1440 * the underlying device doesn't 1441 * exist. 1442 */ 1443 err = PCAP_ERROR_NO_SUCH_DEVICE; 1444 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1445 "SIOCGIFFLAGS on %s failed: %s", 1446 ifr.ifr_name, pcap_strerror(errno)); 1447 } else { 1448 /* 1449 * The underlying "enN" device 1450 * exists, but there's no 1451 * corresponding "wltN" device; 1452 * that means that the "enN" 1453 * device doesn't support 1454 * monitor mode, probably because 1455 * it's an Ethernet device rather 1456 * than a wireless device. 1457 */ 1458 err = PCAP_ERROR_RFMON_NOTSUP; 1459 } 1460 close(fd); 1461 } else { 1462 /* 1463 * We can't find out whether there's 1464 * an underlying "enN" device, so 1465 * just report "no such device". 1466 */ 1467 err = PCAP_ERROR_NO_SUCH_DEVICE; 1468 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1469 "socket() failed: %s", 1470 pcap_strerror(errno)); 1471 } 1472 return (err); 1473 } 1474 #endif 1475 /* 1476 * No such device. 1477 */ 1478 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF failed: %s", 1479 pcap_strerror(errno)); 1480 return (PCAP_ERROR_NO_SUCH_DEVICE); 1481 } else if (errno == ENETDOWN) { 1482 /* 1483 * Return a "network down" indication, so that 1484 * the application can report that rather than 1485 * saying we had a mysterious failure and 1486 * suggest that they report a problem to the 1487 * libpcap developers. 1488 */ 1489 return (PCAP_ERROR_IFACE_NOT_UP); 1490 } else { 1491 /* 1492 * Some other error; fill in the error string, and 1493 * return PCAP_ERROR. 1494 */ 1495 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s", 1496 p->opt.source, pcap_strerror(errno)); 1497 return (PCAP_ERROR); 1498 } 1499 } 1500 1501 /* 1502 * Default capture buffer size. 1503 * 32K isn't very much for modern machines with fast networks; we 1504 * pick .5M, as that's the maximum on at least some systems with BPF. 1505 * 1506 * However, on AIX 3.5, the larger buffer sized caused unrecoverable 1507 * read failures under stress, so we leave it as 32K; yet another 1508 * place where AIX's BPF is broken. 1509 */ 1510 #ifdef _AIX 1511 #define DEFAULT_BUFSIZE 32768 1512 #else 1513 #define DEFAULT_BUFSIZE 524288 1514 #endif 1515 1516 static int 1517 pcap_activate_bpf(pcap_t *p) 1518 { 1519 struct pcap_bpf *pb = p->priv; 1520 int status = 0; 1521 #ifdef HAVE_BSD_IEEE80211 1522 int retv; 1523 #endif 1524 int fd; 1525 #ifdef LIFNAMSIZ 1526 char *zonesep; 1527 struct lifreq ifr; 1528 char *ifrname = ifr.lifr_name; 1529 const size_t ifnamsiz = sizeof(ifr.lifr_name); 1530 #else 1531 struct ifreq ifr; 1532 char *ifrname = ifr.ifr_name; 1533 const size_t ifnamsiz = sizeof(ifr.ifr_name); 1534 #endif 1535 struct bpf_version bv; 1536 #ifdef __APPLE__ 1537 int sockfd; 1538 char *wltdev = NULL; 1539 #endif 1540 #ifdef BIOCGDLTLIST 1541 struct bpf_dltlist bdl; 1542 #if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) 1543 int new_dlt; 1544 #endif 1545 #endif /* BIOCGDLTLIST */ 1546 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT) 1547 u_int spoof_eth_src = 1; 1548 #endif 1549 u_int v; 1550 struct bpf_insn total_insn; 1551 struct bpf_program total_prog; 1552 struct utsname osinfo; 1553 1554 #ifdef HAVE_DAG_API 1555 if (strstr(device, "dag")) { 1556 return dag_open_live(device, snaplen, promisc, to_ms, ebuf); 1557 } 1558 #endif /* HAVE_DAG_API */ 1559 1560 #ifdef BIOCGDLTLIST 1561 memset(&bdl, 0, sizeof(bdl)); 1562 int have_osinfo = 0; 1563 #ifdef HAVE_ZEROCOPY_BPF 1564 struct bpf_zbuf bz; 1565 u_int bufmode, zbufmax; 1566 #endif 1567 1568 fd = bpf_open(p); 1569 if (fd < 0) { 1570 status = fd; 1571 goto bad; 1572 } 1573 1574 p->fd = fd; 1575 1576 if (ioctl(fd, BIOCVERSION, (caddr_t)&bv) < 0) { 1577 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCVERSION: %s", 1578 pcap_strerror(errno)); 1579 status = PCAP_ERROR; 1580 goto bad; 1581 } 1582 if (bv.bv_major != BPF_MAJOR_VERSION || 1583 bv.bv_minor < BPF_MINOR_VERSION) { 1584 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1585 "kernel bpf filter out of date"); 1586 status = PCAP_ERROR; 1587 goto bad; 1588 } 1589 1590 #if defined(LIFNAMSIZ) && defined(ZONENAME_MAX) && defined(lifr_zoneid) 1591 /* 1592 * Check if the given source network device has a '/' separated 1593 * zonename prefix string. The zonename prefixed source device 1594 * can be used by libpcap consumers to capture network traffic 1595 * in non-global zones from the global zone on Solaris 11 and 1596 * above. If the zonename prefix is present then we strip the 1597 * prefix and pass the zone ID as part of lifr_zoneid. 1598 */ 1599 if ((zonesep = strchr(p->opt.source, '/')) != NULL) { 1600 char zonename[ZONENAME_MAX]; 1601 int znamelen; 1602 char *lnamep; 1603 1604 znamelen = zonesep - p->opt.source; 1605 (void) strlcpy(zonename, p->opt.source, znamelen + 1); 1606 lnamep = strdup(zonesep + 1); 1607 ifr.lifr_zoneid = getzoneidbyname(zonename); 1608 free(p->opt.source); 1609 p->opt.source = lnamep; 1610 } 1611 #endif 1612 1613 pb->device = strdup(p->opt.source); 1614 if (pb->device == NULL) { 1615 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s", 1616 pcap_strerror(errno)); 1617 status = PCAP_ERROR; 1618 goto bad; 1619 } 1620 1621 /* 1622 * Try finding a good size for the buffer; 32768 may be too 1623 * big, so keep cutting it in half until we find a size 1624 * that works, or run out of sizes to try. If the default 1625 * is larger, don't make it smaller. 1626 * 1627 * XXX - there should be a user-accessible hook to set the 1628 * initial buffer size. 1629 * Attempt to find out the version of the OS on which we're running. 1630 */ 1631 if (uname(&osinfo) == 0) 1632 have_osinfo = 1; 1633 1634 #ifdef __APPLE__ 1635 /* 1636 * See comment in pcap_can_set_rfmon_bpf() for an explanation 1637 * of why we check the version number. 1638 */ 1639 if (p->opt.rfmon) { 1640 if (have_osinfo) { 1641 /* 1642 * We assume osinfo.sysname is "Darwin", because 1643 * __APPLE__ is defined. We just check the version. 1644 */ 1645 if (osinfo.release[0] < '8' && 1646 osinfo.release[1] == '.') { 1647 /* 1648 * 10.3 (Darwin 7.x) or earlier. 1649 */ 1650 status = PCAP_ERROR_RFMON_NOTSUP; 1651 goto bad; 1652 } 1653 if (osinfo.release[0] == '8' && 1654 osinfo.release[1] == '.') { 1655 /* 1656 * 10.4 (Darwin 8.x). s/en/wlt/ 1657 */ 1658 if (strncmp(p->opt.source, "en", 2) != 0) { 1659 /* 1660 * Not an enN device; check 1661 * whether the device even exists. 1662 */ 1663 sockfd = socket(AF_INET, SOCK_DGRAM, 0); 1664 if (sockfd != -1) { 1665 strlcpy(ifrname, 1666 p->opt.source, ifnamsiz); 1667 if (ioctl(sockfd, SIOCGIFFLAGS, 1668 (char *)&ifr) < 0) { 1669 /* 1670 * We assume this 1671 * failed because 1672 * the underlying 1673 * device doesn't 1674 * exist. 1675 */ 1676 status = PCAP_ERROR_NO_SUCH_DEVICE; 1677 snprintf(p->errbuf, 1678 PCAP_ERRBUF_SIZE, 1679 "SIOCGIFFLAGS failed: %s", 1680 pcap_strerror(errno)); 1681 } else 1682 status = PCAP_ERROR_RFMON_NOTSUP; 1683 close(sockfd); 1684 } else { 1685 /* 1686 * We can't find out whether 1687 * the device exists, so just 1688 * report "no such device". 1689 */ 1690 status = PCAP_ERROR_NO_SUCH_DEVICE; 1691 snprintf(p->errbuf, 1692 PCAP_ERRBUF_SIZE, 1693 "socket() failed: %s", 1694 pcap_strerror(errno)); 1695 } 1696 goto bad; 1697 } 1698 wltdev = malloc(strlen(p->opt.source) + 2); 1699 if (wltdev == NULL) { 1700 (void)snprintf(p->errbuf, 1701 PCAP_ERRBUF_SIZE, "malloc: %s", 1702 pcap_strerror(errno)); 1703 status = PCAP_ERROR; 1704 goto bad; 1705 } 1706 strcpy(wltdev, "wlt"); 1707 strcat(wltdev, p->opt.source + 2); 1708 free(p->opt.source); 1709 p->opt.source = wltdev; 1710 } 1711 /* 1712 * Everything else is 10.5 or later; for those, 1713 * we just open the enN device, and set the DLT. 1714 */ 1715 } 1716 } 1717 #endif /* __APPLE__ */ 1718 #ifdef HAVE_ZEROCOPY_BPF 1719 /* 1720 * If the BPF extension to set buffer mode is present, try setting 1721 * the mode to zero-copy. If that fails, use regular buffering. If 1722 * it succeeds but other setup fails, return an error to the user. 1723 */ 1724 bufmode = BPF_BUFMODE_ZBUF; 1725 if (ioctl(fd, BIOCSETBUFMODE, (caddr_t)&bufmode) == 0) { 1726 /* 1727 * We have zerocopy BPF; use it. 1728 */ 1729 pb->zerocopy = 1; 1730 1731 /* 1732 * How to pick a buffer size: first, query the maximum buffer 1733 * size supported by zero-copy. This also lets us quickly 1734 * determine whether the kernel generally supports zero-copy. 1735 * Then, if a buffer size was specified, use that, otherwise 1736 * query the default buffer size, which reflects kernel 1737 * policy for a desired default. Round to the nearest page 1738 * size. 1739 */ 1740 if (ioctl(fd, BIOCGETZMAX, (caddr_t)&zbufmax) < 0) { 1741 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGETZMAX: %s", 1742 pcap_strerror(errno)); 1743 status = PCAP_ERROR; 1744 goto bad; 1745 } 1746 1747 if (p->opt.buffer_size != 0) { 1748 /* 1749 * A buffer size was explicitly specified; use it. 1750 */ 1751 v = p->opt.buffer_size; 1752 } else { 1753 if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) || 1754 v < DEFAULT_BUFSIZE) 1755 v = DEFAULT_BUFSIZE; 1756 } 1757 #ifndef roundup 1758 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ 1759 #endif 1760 pb->zbufsize = roundup(v, getpagesize()); 1761 if (pb->zbufsize > zbufmax) 1762 pb->zbufsize = zbufmax; 1763 pb->zbuf1 = mmap(NULL, pb->zbufsize, PROT_READ | PROT_WRITE, 1764 MAP_ANON, -1, 0); 1765 pb->zbuf2 = mmap(NULL, pb->zbufsize, PROT_READ | PROT_WRITE, 1766 MAP_ANON, -1, 0); 1767 if (pb->zbuf1 == MAP_FAILED || pb->zbuf2 == MAP_FAILED) { 1768 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "mmap: %s", 1769 pcap_strerror(errno)); 1770 status = PCAP_ERROR; 1771 goto bad; 1772 } 1773 memset(&bz, 0, sizeof(bz)); /* bzero() deprecated, replaced with memset() */ 1774 bz.bz_bufa = pb->zbuf1; 1775 bz.bz_bufb = pb->zbuf2; 1776 bz.bz_buflen = pb->zbufsize; 1777 if (ioctl(fd, BIOCSETZBUF, (caddr_t)&bz) < 0) { 1778 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETZBUF: %s", 1779 pcap_strerror(errno)); 1780 status = PCAP_ERROR; 1781 goto bad; 1782 } 1783 (void)strncpy(ifrname, p->opt.source, ifnamsiz); 1784 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) { 1785 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s", 1786 p->opt.source, pcap_strerror(errno)); 1787 status = PCAP_ERROR; 1788 goto bad; 1789 } 1790 v = pb->zbufsize - sizeof(struct bpf_zbuf_header); 1791 } else 1792 #endif 1793 { 1794 /* 1795 * We don't have zerocopy BPF. 1796 * Set the buffer size. 1797 */ 1798 if (p->opt.buffer_size != 0) { 1799 /* 1800 * A buffer size was explicitly specified; use it. 1801 */ 1802 if (ioctl(fd, BIOCSBLEN, 1803 (caddr_t)&p->opt.buffer_size) < 0) { 1804 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1805 "BIOCSBLEN: %s: %s", p->opt.source, 1806 pcap_strerror(errno)); 1807 status = PCAP_ERROR; 1808 goto bad; 1809 } 1810 1811 /* 1812 * Now bind to the device. 1813 */ 1814 (void)strncpy(ifrname, p->opt.source, ifnamsiz); 1815 #ifdef BIOCSETLIF 1816 if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) < 0) 1817 #else 1818 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) 1819 #endif 1820 { 1821 status = check_setif_failure(p, errno); 1822 goto bad; 1823 } 1824 } else { 1825 /* 1826 * No buffer size was explicitly specified. 1827 * 1828 * Try finding a good size for the buffer; 1829 * DEFAULT_BUFSIZE may be too big, so keep 1830 * cutting it in half until we find a size 1831 * that works, or run out of sizes to try. 1832 * If the default is larger, don't make it smaller. 1833 */ 1834 if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) || 1835 v < DEFAULT_BUFSIZE) 1836 v = DEFAULT_BUFSIZE; 1837 for ( ; v != 0; v >>= 1) { 1838 /* 1839 * Ignore the return value - this is because the 1840 * call fails on BPF systems that don't have 1841 * kernel malloc. And if the call fails, it's 1842 * no big deal, we just continue to use the 1843 * standard buffer size. 1844 */ 1845 (void) ioctl(fd, BIOCSBLEN, (caddr_t)&v); 1846 1847 (void)strncpy(ifrname, p->opt.source, ifnamsiz); 1848 #ifdef BIOCSETLIF 1849 if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) >= 0) 1850 #else 1851 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) >= 0) 1852 #endif 1853 break; /* that size worked; we're done */ 1854 1855 if (errno != ENOBUFS) { 1856 status = check_setif_failure(p, errno); 1857 goto bad; 1858 } 1859 } 1860 1861 if (v == 0) { 1862 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 1863 "BIOCSBLEN: %s: No buffer size worked", 1864 p->opt.source); 1865 status = PCAP_ERROR; 1866 goto bad; 1867 } 1868 } 1869 } 1870 #endif 1871 1872 /* Get the data link layer type. */ 1873 if (ioctl(fd, BIOCGDLT, (caddr_t)&v) < 0) { 1874 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGDLT: %s", 1875 pcap_strerror(errno)); 1876 status = PCAP_ERROR; 1877 goto bad; 1878 } 1879 1880 #ifdef _AIX 1881 /* 1882 * AIX's BPF returns IFF_ types, not DLT_ types, in BIOCGDLT. 1883 */ 1884 switch (v) { 1885 1886 case IFT_ETHER: 1887 case IFT_ISO88023: 1888 v = DLT_EN10MB; 1889 break; 1890 1891 case IFT_FDDI: 1892 v = DLT_FDDI; 1893 break; 1894 1895 case IFT_ISO88025: 1896 v = DLT_IEEE802; 1897 break; 1898 1899 case IFT_LOOP: 1900 v = DLT_NULL; 1901 break; 1902 1903 default: 1904 /* 1905 * We don't know what to map this to yet. 1906 */ 1907 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "unknown interface type %u", 1908 v); 1909 status = PCAP_ERROR; 1910 goto bad; 1911 } 1912 #endif 1913 #if _BSDI_VERSION - 0 >= 199510 1914 /* The SLIP and PPP link layer header changed in BSD/OS 2.1 */ 1915 switch (v) { 1916 1917 case DLT_SLIP: 1918 v = DLT_SLIP_BSDOS; 1919 break; 1920 1921 case DLT_PPP: 1922 v = DLT_PPP_BSDOS; 1923 break; 1924 1925 case 11: /*DLT_FR*/ 1926 v = DLT_FRELAY; 1927 break; 1928 1929 case 12: /*DLT_C_HDLC*/ 1930 v = DLT_CHDLC; 1931 break; 1932 } 1933 #endif 1934 1935 #ifdef BIOCGDLTLIST 1936 /* 1937 * We know the default link type -- now determine all the DLTs 1938 * this interface supports. If this fails with EINVAL, it's 1939 * not fatal; we just don't get to use the feature later. 1940 */ 1941 if (get_dlt_list(fd, v, &bdl, p->errbuf) == -1) { 1942 status = PCAP_ERROR; 1943 goto bad; 1944 } 1945 p->dlt_count = bdl.bfl_len; 1946 p->dlt_list = bdl.bfl_list; 1947 1948 #ifdef __APPLE__ 1949 /* 1950 * Monitor mode fun, continued. 1951 * 1952 * For 10.5 and, we're assuming, later releases, as noted above, 1953 * 802.1 adapters that support monitor mode offer both DLT_EN10MB, 1954 * DLT_IEEE802_11, and possibly some 802.11-plus-radio-information 1955 * DLT_ value. Choosing one of the 802.11 DLT_ values will turn 1956 * monitor mode on. 1957 * 1958 * Therefore, if the user asked for monitor mode, we filter out 1959 * the DLT_EN10MB value, as you can't get that in monitor mode, 1960 * and, if the user didn't ask for monitor mode, we filter out 1961 * the 802.11 DLT_ values, because selecting those will turn 1962 * monitor mode on. Then, for monitor mode, if an 802.11-plus- 1963 * radio DLT_ value is offered, we try to select that, otherwise 1964 * we try to select DLT_IEEE802_11. 1965 */ 1966 if (have_osinfo) { 1967 if (isdigit((unsigned)osinfo.release[0]) && 1968 (osinfo.release[0] == '9' || 1969 isdigit((unsigned)osinfo.release[1]))) { 1970 /* 1971 * 10.5 (Darwin 9.x), or later. 1972 */ 1973 new_dlt = find_802_11(&bdl); 1974 if (new_dlt != -1) { 1975 /* 1976 * We have at least one 802.11 DLT_ value, 1977 * so this is an 802.11 interface. 1978 * new_dlt is the best of the 802.11 1979 * DLT_ values in the list. 1980 */ 1981 if (p->opt.rfmon) { 1982 /* 1983 * Our caller wants monitor mode. 1984 * Purge DLT_EN10MB from the list 1985 * of link-layer types, as selecting 1986 * it will keep monitor mode off. 1987 */ 1988 remove_en(p); 1989 1990 /* 1991 * If the new mode we want isn't 1992 * the default mode, attempt to 1993 * select the new mode. 1994 */ 1995 if (new_dlt != v) { 1996 if (ioctl(p->fd, BIOCSDLT, 1997 &new_dlt) != -1) { 1998 /* 1999 * We succeeded; 2000 * make this the 2001 * new DLT_ value. 2002 */ 2003 v = new_dlt; 2004 } 2005 } 2006 } else { 2007 /* 2008 * Our caller doesn't want 2009 * monitor mode. Unless this 2010 * is being done by pcap_open_live(), 2011 * purge the 802.11 link-layer types 2012 * from the list, as selecting 2013 * one of them will turn monitor 2014 * mode on. 2015 */ 2016 if (!p->oldstyle) 2017 remove_802_11(p); 2018 } 2019 } else { 2020 if (p->opt.rfmon) { 2021 /* 2022 * The caller requested monitor 2023 * mode, but we have no 802.11 2024 * link-layer types, so they 2025 * can't have it. 2026 */ 2027 status = PCAP_ERROR_RFMON_NOTSUP; 2028 goto bad; 2029 } 2030 } 2031 } 2032 } 2033 #elif defined(HAVE_BSD_IEEE80211) 2034 /* 2035 * *BSD with the new 802.11 ioctls. 2036 * Do we want monitor mode? 2037 */ 2038 if (p->opt.rfmon) { 2039 /* 2040 * Try to put the interface into monitor mode. 2041 */ 2042 retv = monitor_mode(p, 1); 2043 if (retv != 0) { 2044 /* 2045 * We failed. 2046 */ 2047 status = retv; 2048 goto bad; 2049 } 2050 2051 /* 2052 * We're in monitor mode. 2053 * Try to find the best 802.11 DLT_ value and, if we 2054 * succeed, try to switch to that mode if we're not 2055 * already in that mode. 2056 */ 2057 new_dlt = find_802_11(&bdl); 2058 if (new_dlt != -1) { 2059 /* 2060 * We have at least one 802.11 DLT_ value. 2061 * new_dlt is the best of the 802.11 2062 * DLT_ values in the list. 2063 * 2064 * If the new mode we want isn't the default mode, 2065 * attempt to select the new mode. 2066 */ 2067 if (new_dlt != v) { 2068 if (ioctl(p->fd, BIOCSDLT, &new_dlt) != -1) { 2069 /* 2070 * We succeeded; make this the 2071 * new DLT_ value. 2072 */ 2073 v = new_dlt; 2074 } 2075 } 2076 } 2077 } 2078 #endif /* various platforms */ 2079 #endif /* BIOCGDLTLIST */ 2080 2081 /* 2082 * If this is an Ethernet device, and we don't have a DLT_ list, 2083 * give it a list with DLT_EN10MB and DLT_DOCSIS. (That'd give 2084 * 802.11 interfaces DLT_DOCSIS, which isn't the right thing to 2085 * do, but there's not much we can do about that without finding 2086 * some other way of determining whether it's an Ethernet or 802.11 2087 * device.) 2088 */ 2089 if (v == DLT_EN10MB && p->dlt_count == 0) { 2090 p->dlt_list = (u_int *) malloc(sizeof(u_int) * 2); 2091 /* 2092 * If that fails, just leave the list empty. 2093 */ 2094 if (p->dlt_list != NULL) { 2095 p->dlt_list[0] = DLT_EN10MB; 2096 p->dlt_list[1] = DLT_DOCSIS; 2097 p->dlt_count = 2; 2098 } 2099 } 2100 #ifdef PCAP_FDDIPAD 2101 if (v == DLT_FDDI) 2102 p->fddipad = PCAP_FDDIPAD; 2103 else 2104 #endif 2105 p->fddipad = 0; 2106 p->linktype = v; 2107 2108 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT) 2109 /* 2110 * Do a BIOCSHDRCMPLT, if defined, to turn that flag on, so 2111 * the link-layer source address isn't forcibly overwritten. 2112 * (Should we ignore errors? Should we do this only if 2113 * we're open for writing?) 2114 * 2115 * XXX - I seem to remember some packet-sending bug in some 2116 * BSDs - check CVS log for "bpf.c"? 2117 */ 2118 if (ioctl(fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) { 2119 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2120 "BIOCSHDRCMPLT: %s", pcap_strerror(errno)); 2121 status = PCAP_ERROR; 2122 goto bad; 2123 } 2124 #endif 2125 /* set timeout */ 2126 #ifdef HAVE_ZEROCOPY_BPF 2127 /* 2128 * In zero-copy mode, we just use the timeout in select(). 2129 * XXX - what if we're in non-blocking mode and the *application* 2130 * is using select() or poll() or kqueues or....? 2131 */ 2132 if (p->opt.timeout && !pb->zerocopy) { 2133 #else 2134 if (p->opt.timeout) { 2135 #endif 2136 /* 2137 * XXX - is this seconds/nanoseconds in AIX? 2138 * (Treating it as such doesn't fix the timeout 2139 * problem described below.) 2140 * 2141 * XXX - Mac OS X 10.6 mishandles BIOCSRTIMEOUT in 2142 * 64-bit userland - it takes, as an argument, a 2143 * "struct BPF_TIMEVAL", which has 32-bit tv_sec 2144 * and tv_usec, rather than a "struct timeval". 2145 * 2146 * If this platform defines "struct BPF_TIMEVAL", 2147 * we check whether the structure size in BIOCSRTIMEOUT 2148 * is that of a "struct timeval" and, if not, we use 2149 * a "struct BPF_TIMEVAL" rather than a "struct timeval". 2150 * (That way, if the bug is fixed in a future release, 2151 * we will still do the right thing.) 2152 */ 2153 struct timeval to; 2154 #ifdef HAVE_STRUCT_BPF_TIMEVAL 2155 struct BPF_TIMEVAL bpf_to; 2156 2157 if (IOCPARM_LEN(BIOCSRTIMEOUT) != sizeof(struct timeval)) { 2158 bpf_to.tv_sec = p->opt.timeout / 1000; 2159 bpf_to.tv_usec = (p->opt.timeout * 1000) % 1000000; 2160 if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&bpf_to) < 0) { 2161 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2162 "BIOCSRTIMEOUT: %s", pcap_strerror(errno)); 2163 status = PCAP_ERROR; 2164 goto bad; 2165 } 2166 } else { 2167 #endif 2168 to.tv_sec = p->opt.timeout / 1000; 2169 to.tv_usec = (p->opt.timeout * 1000) % 1000000; 2170 if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&to) < 0) { 2171 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2172 "BIOCSRTIMEOUT: %s", pcap_strerror(errno)); 2173 status = PCAP_ERROR; 2174 goto bad; 2175 } 2176 #ifdef HAVE_STRUCT_BPF_TIMEVAL 2177 } 2178 #endif 2179 } 2180 2181 #ifdef BIOCIMMEDIATE 2182 /* 2183 * Darren Reed notes that 2184 * 2185 * On AIX (4.2 at least), if BIOCIMMEDIATE is not set, the 2186 * timeout appears to be ignored and it waits until the buffer 2187 * is filled before returning. The result of not having it 2188 * set is almost worse than useless if your BPF filter 2189 * is reducing things to only a few packets (i.e. one every 2190 * second or so). 2191 * 2192 * so we always turn BIOCIMMEDIATE mode on if this is AIX. 2193 * 2194 * For other platforms, we don't turn immediate mode on by default, 2195 * as that would mean we get woken up for every packet, which 2196 * probably isn't what you want for a packet sniffer. 2197 * 2198 * We set immediate mode if the caller requested it by calling 2199 * pcap_set_immediate() before calling pcap_activate(). 2200 */ 2201 #ifndef _AIX 2202 if (p->opt.immediate) { 2203 #endif /* _AIX */ 2204 v = 1; 2205 if (ioctl(p->fd, BIOCIMMEDIATE, &v) < 0) { 2206 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2207 "BIOCIMMEDIATE: %s", pcap_strerror(errno)); 2208 status = PCAP_ERROR; 2209 goto bad; 2210 } 2211 #ifndef _AIX 2212 } 2213 #endif /* _AIX */ 2214 #else /* BIOCIMMEDIATE */ 2215 if (p->opt.immediate) { 2216 /* 2217 * We don't support immediate mode. Fail. 2218 */ 2219 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "Immediate mode not supported"); 2220 status = PCAP_ERROR; 2221 goto bad; 2222 } 2223 #endif /* BIOCIMMEDIATE */ 2224 2225 if (p->opt.promisc) { 2226 /* set promiscuous mode, just warn if it fails */ 2227 if (ioctl(p->fd, BIOCPROMISC, NULL) < 0) { 2228 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCPROMISC: %s", 2229 pcap_strerror(errno)); 2230 status = PCAP_WARNING_PROMISC_NOTSUP; 2231 } 2232 } 2233 2234 #ifdef BIOCSTSTAMP 2235 v = BPF_T_BINTIME; 2236 if (ioctl(p->fd, BIOCSTSTAMP, &v) < 0) { 2237 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSTSTAMP: %s", 2238 pcap_strerror(errno)); 2239 status = PCAP_ERROR; 2240 goto bad; 2241 } 2242 #endif /* BIOCSTSTAMP */ 2243 2244 if (ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) { 2245 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGBLEN: %s", 2246 pcap_strerror(errno)); 2247 status = PCAP_ERROR; 2248 goto bad; 2249 } 2250 p->bufsize = v; 2251 #ifdef HAVE_ZEROCOPY_BPF 2252 if (!pb->zerocopy) { 2253 #endif 2254 p->buffer = (u_char *)malloc(p->bufsize); 2255 if (p->buffer == NULL) { 2256 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s", 2257 pcap_strerror(errno)); 2258 status = PCAP_ERROR; 2259 goto bad; 2260 } 2261 #ifdef _AIX 2262 /* For some strange reason this seems to prevent the EFAULT 2263 * problems we have experienced from AIX BPF. */ 2264 memset(p->buffer, 0x0, p->bufsize); 2265 #endif 2266 #ifdef HAVE_ZEROCOPY_BPF 2267 } 2268 #endif 2269 2270 /* 2271 * If there's no filter program installed, there's 2272 * no indication to the kernel of what the snapshot 2273 * length should be, so no snapshotting is done. 2274 * 2275 * Therefore, when we open the device, we install 2276 * an "accept everything" filter with the specified 2277 * snapshot length. 2278 */ 2279 total_insn.code = (u_short)(BPF_RET | BPF_K); 2280 total_insn.jt = 0; 2281 total_insn.jf = 0; 2282 total_insn.k = p->snapshot; 2283 2284 total_prog.bf_len = 1; 2285 total_prog.bf_insns = &total_insn; 2286 if (ioctl(p->fd, BIOCSETF, (caddr_t)&total_prog) < 0) { 2287 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s", 2288 pcap_strerror(errno)); 2289 status = PCAP_ERROR; 2290 goto bad; 2291 } 2292 2293 /* 2294 * On most BPF platforms, either you can do a "select()" or 2295 * "poll()" on a BPF file descriptor and it works correctly, 2296 * or you can do it and it will return "readable" if the 2297 * hold buffer is full but not if the timeout expires *and* 2298 * a non-blocking read will, if the hold buffer is empty 2299 * but the store buffer isn't empty, rotate the buffers 2300 * and return what packets are available. 2301 * 2302 * In the latter case, the fact that a non-blocking read 2303 * will give you the available packets means you can work 2304 * around the failure of "select()" and "poll()" to wake up 2305 * and return "readable" when the timeout expires by using 2306 * the timeout as the "select()" or "poll()" timeout, putting 2307 * the BPF descriptor into non-blocking mode, and read from 2308 * it regardless of whether "select()" reports it as readable 2309 * or not. 2310 * 2311 * However, in FreeBSD 4.3 and 4.4, "select()" and "poll()" 2312 * won't wake up and return "readable" if the timer expires 2313 * and non-blocking reads return EWOULDBLOCK if the hold 2314 * buffer is empty, even if the store buffer is non-empty. 2315 * 2316 * This means the workaround in question won't work. 2317 * 2318 * Therefore, on FreeBSD 4.3 and 4.4, we set "p->selectable_fd" 2319 * to -1, which means "sorry, you can't use 'select()' or 'poll()' 2320 * here". On all other BPF platforms, we set it to the FD for 2321 * the BPF device; in NetBSD, OpenBSD, and Darwin, a non-blocking 2322 * read will, if the hold buffer is empty and the store buffer 2323 * isn't empty, rotate the buffers and return what packets are 2324 * there (and in sufficiently recent versions of OpenBSD 2325 * "select()" and "poll()" should work correctly). 2326 * 2327 * XXX - what about AIX? 2328 */ 2329 p->selectable_fd = p->fd; /* assume select() works until we know otherwise */ 2330 if (have_osinfo) { 2331 /* 2332 * We can check what OS this is. 2333 */ 2334 if (strcmp(osinfo.sysname, "FreeBSD") == 0) { 2335 if (strncmp(osinfo.release, "4.3-", 4) == 0 || 2336 strncmp(osinfo.release, "4.4-", 4) == 0) 2337 p->selectable_fd = -1; 2338 } 2339 } 2340 2341 p->read_op = pcap_read_bpf; 2342 p->inject_op = pcap_inject_bpf; 2343 p->setfilter_op = pcap_setfilter_bpf; 2344 p->setdirection_op = pcap_setdirection_bpf; 2345 p->set_datalink_op = pcap_set_datalink_bpf; 2346 p->getnonblock_op = pcap_getnonblock_bpf; 2347 p->setnonblock_op = pcap_setnonblock_bpf; 2348 p->stats_op = pcap_stats_bpf; 2349 p->cleanup_op = pcap_cleanup_bpf; 2350 2351 return (status); 2352 bad: 2353 pcap_cleanup_bpf(p); 2354 return (status); 2355 } 2356 2357 int 2358 pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf) 2359 { 2360 return (0); 2361 } 2362 2363 #ifdef HAVE_BSD_IEEE80211 2364 static int 2365 monitor_mode(pcap_t *p, int set) 2366 { 2367 struct pcap_bpf *pb = p->priv; 2368 int sock; 2369 struct ifmediareq req; 2370 int *media_list; 2371 int i; 2372 int can_do; 2373 struct ifreq ifr; 2374 2375 sock = socket(AF_INET, SOCK_DGRAM, 0); 2376 if (sock == -1) { 2377 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "can't open socket: %s", 2378 pcap_strerror(errno)); 2379 return (PCAP_ERROR); 2380 } 2381 2382 memset(&req, 0, sizeof req); 2383 strncpy(req.ifm_name, p->opt.source, sizeof req.ifm_name); 2384 2385 /* 2386 * Find out how many media types we have. 2387 */ 2388 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) { 2389 /* 2390 * Can't get the media types. 2391 */ 2392 switch (errno) { 2393 2394 case ENXIO: 2395 /* 2396 * There's no such device. 2397 */ 2398 close(sock); 2399 return (PCAP_ERROR_NO_SUCH_DEVICE); 2400 2401 case EINVAL: 2402 /* 2403 * Interface doesn't support SIOC{G,S}IFMEDIA. 2404 */ 2405 close(sock); 2406 return (PCAP_ERROR_RFMON_NOTSUP); 2407 2408 default: 2409 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2410 "SIOCGIFMEDIA 1: %s", pcap_strerror(errno)); 2411 close(sock); 2412 return (PCAP_ERROR); 2413 } 2414 } 2415 if (req.ifm_count == 0) { 2416 /* 2417 * No media types. 2418 */ 2419 close(sock); 2420 return (PCAP_ERROR_RFMON_NOTSUP); 2421 } 2422 2423 /* 2424 * Allocate a buffer to hold all the media types, and 2425 * get the media types. 2426 */ 2427 media_list = malloc(req.ifm_count * sizeof(int)); 2428 if (media_list == NULL) { 2429 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s", 2430 pcap_strerror(errno)); 2431 close(sock); 2432 return (PCAP_ERROR); 2433 } 2434 req.ifm_ulist = media_list; 2435 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) { 2436 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "SIOCGIFMEDIA: %s", 2437 pcap_strerror(errno)); 2438 free(media_list); 2439 close(sock); 2440 return (PCAP_ERROR); 2441 } 2442 2443 /* 2444 * Look for an 802.11 "automatic" media type. 2445 * We assume that all 802.11 adapters have that media type, 2446 * and that it will carry the monitor mode supported flag. 2447 */ 2448 can_do = 0; 2449 for (i = 0; i < req.ifm_count; i++) { 2450 if (IFM_TYPE(media_list[i]) == IFM_IEEE80211 2451 && IFM_SUBTYPE(media_list[i]) == IFM_AUTO) { 2452 /* OK, does it do monitor mode? */ 2453 if (media_list[i] & IFM_IEEE80211_MONITOR) { 2454 can_do = 1; 2455 break; 2456 } 2457 } 2458 } 2459 free(media_list); 2460 if (!can_do) { 2461 /* 2462 * This adapter doesn't support monitor mode. 2463 */ 2464 close(sock); 2465 return (PCAP_ERROR_RFMON_NOTSUP); 2466 } 2467 2468 if (set) { 2469 /* 2470 * Don't just check whether we can enable monitor mode, 2471 * do so, if it's not already enabled. 2472 */ 2473 if ((req.ifm_current & IFM_IEEE80211_MONITOR) == 0) { 2474 /* 2475 * Monitor mode isn't currently on, so turn it on, 2476 * and remember that we should turn it off when the 2477 * pcap_t is closed. 2478 */ 2479 2480 /* 2481 * If we haven't already done so, arrange to have 2482 * "pcap_close_all()" called when we exit. 2483 */ 2484 if (!pcap_do_addexit(p)) { 2485 /* 2486 * "atexit()" failed; don't put the interface 2487 * in monitor mode, just give up. 2488 */ 2489 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2490 "atexit failed"); 2491 close(sock); 2492 return (PCAP_ERROR); 2493 } 2494 memset(&ifr, 0, sizeof(ifr)); 2495 (void)strncpy(ifr.ifr_name, p->opt.source, 2496 sizeof(ifr.ifr_name)); 2497 ifr.ifr_media = req.ifm_current | IFM_IEEE80211_MONITOR; 2498 if (ioctl(sock, SIOCSIFMEDIA, &ifr) == -1) { 2499 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, 2500 "SIOCSIFMEDIA: %s", pcap_strerror(errno)); 2501 close(sock); 2502 return (PCAP_ERROR); 2503 } 2504 2505 pb->must_do_on_close |= MUST_CLEAR_RFMON; 2506 2507 /* 2508 * Add this to the list of pcaps to close when we exit. 2509 */ 2510 pcap_add_to_pcaps_to_close(p); 2511 } 2512 } 2513 return (0); 2514 } 2515 #endif /* HAVE_BSD_IEEE80211 */ 2516 2517 #if defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)) 2518 /* 2519 * Check whether we have any 802.11 link-layer types; return the best 2520 * of the 802.11 link-layer types if we find one, and return -1 2521 * otherwise. 2522 * 2523 * DLT_IEEE802_11_RADIO, with the radiotap header, is considered the 2524 * best 802.11 link-layer type; any of the other 802.11-plus-radio 2525 * headers are second-best; 802.11 with no radio information is 2526 * the least good. 2527 */ 2528 static int 2529 find_802_11(struct bpf_dltlist *bdlp) 2530 { 2531 int new_dlt; 2532 int i; 2533 2534 /* 2535 * Scan the list of DLT_ values, looking for 802.11 values, 2536 * and, if we find any, choose the best of them. 2537 */ 2538 new_dlt = -1; 2539 for (i = 0; i < bdlp->bfl_len; i++) { 2540 switch (bdlp->bfl_list[i]) { 2541 2542 case DLT_IEEE802_11: 2543 /* 2544 * 802.11, but no radio. 2545 * 2546 * Offer this, and select it as the new mode 2547 * unless we've already found an 802.11 2548 * header with radio information. 2549 */ 2550 if (new_dlt == -1) 2551 new_dlt = bdlp->bfl_list[i]; 2552 break; 2553 2554 case DLT_PRISM_HEADER: 2555 case DLT_AIRONET_HEADER: 2556 case DLT_IEEE802_11_RADIO_AVS: 2557 /* 2558 * 802.11 with radio, but not radiotap. 2559 * 2560 * Offer this, and select it as the new mode 2561 * unless we've already found the radiotap DLT_. 2562 */ 2563 if (new_dlt != DLT_IEEE802_11_RADIO) 2564 new_dlt = bdlp->bfl_list[i]; 2565 break; 2566 2567 case DLT_IEEE802_11_RADIO: 2568 /* 2569 * 802.11 with radiotap. 2570 * 2571 * Offer this, and select it as the new mode. 2572 */ 2573 new_dlt = bdlp->bfl_list[i]; 2574 break; 2575 2576 default: 2577 /* 2578 * Not 802.11. 2579 */ 2580 break; 2581 } 2582 } 2583 2584 return (new_dlt); 2585 } 2586 #endif /* defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)) */ 2587 2588 #if defined(__APPLE__) && defined(BIOCGDLTLIST) 2589 /* 2590 * Remove DLT_EN10MB from the list of DLT_ values, as we're in monitor mode, 2591 * and DLT_EN10MB isn't supported in monitor mode. 2592 */ 2593 static void 2594 remove_en(pcap_t *p) 2595 { 2596 int i, j; 2597 2598 /* 2599 * Scan the list of DLT_ values and discard DLT_EN10MB. 2600 */ 2601 j = 0; 2602 for (i = 0; i < p->dlt_count; i++) { 2603 switch (p->dlt_list[i]) { 2604 2605 case DLT_EN10MB: 2606 /* 2607 * Don't offer this one. 2608 */ 2609 continue; 2610 2611 default: 2612 /* 2613 * Just copy this mode over. 2614 */ 2615 break; 2616 } 2617 2618 /* 2619 * Copy this DLT_ value to its new position. 2620 */ 2621 p->dlt_list[j] = p->dlt_list[i]; 2622 j++; 2623 } 2624 2625 /* 2626 * Set the DLT_ count to the number of entries we copied. 2627 */ 2628 p->dlt_count = j; 2629 } 2630 2631 /* 2632 * Remove 802.11 link-layer types from the list of DLT_ values, as 2633 * we're not in monitor mode, and those DLT_ values will switch us 2634 * to monitor mode. 2635 */ 2636 static void 2637 remove_802_11(pcap_t *p) 2638 { 2639 int i, j; 2640 2641 /* 2642 * Scan the list of DLT_ values and discard 802.11 values. 2643 */ 2644 j = 0; 2645 for (i = 0; i < p->dlt_count; i++) { 2646 switch (p->dlt_list[i]) { 2647 2648 case DLT_IEEE802_11: 2649 case DLT_PRISM_HEADER: 2650 case DLT_AIRONET_HEADER: 2651 case DLT_IEEE802_11_RADIO: 2652 case DLT_IEEE802_11_RADIO_AVS: 2653 /* 2654 * 802.11. Don't offer this one. 2655 */ 2656 continue; 2657 2658 default: 2659 /* 2660 * Just copy this mode over. 2661 */ 2662 break; 2663 } 2664 2665 /* 2666 * Copy this DLT_ value to its new position. 2667 */ 2668 p->dlt_list[j] = p->dlt_list[i]; 2669 j++; 2670 } 2671 2672 /* 2673 * Set the DLT_ count to the number of entries we copied. 2674 */ 2675 p->dlt_count = j; 2676 } 2677 #endif /* defined(__APPLE__) && defined(BIOCGDLTLIST) */ 2678 2679 static int 2680 pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp) 2681 { 2682 struct pcap_bpf *pb = p->priv; 2683 2684 /* 2685 * Free any user-mode filter we might happen to have installed. 2686 */ 2687 pcap_freecode(&p->fcode); 2688 2689 /* 2690 * Try to install the kernel filter. 2691 */ 2692 if (ioctl(p->fd, BIOCSETF, (caddr_t)fp) == 0) { 2693 /* 2694 * It worked. 2695 */ 2696 pb->filtering_in_kernel = 1; /* filtering in the kernel */ 2697 2698 /* 2699 * Discard any previously-received packets, as they might 2700 * have passed whatever filter was formerly in effect, but 2701 * might not pass this filter (BIOCSETF discards packets 2702 * buffered in the kernel, so you can lose packets in any 2703 * case). 2704 */ 2705 p->cc = 0; 2706 return (0); 2707 } 2708 2709 /* 2710 * We failed. 2711 * 2712 * If it failed with EINVAL, that's probably because the program 2713 * is invalid or too big. Validate it ourselves; if we like it 2714 * (we currently allow backward branches, to support protochain), 2715 * run it in userland. (There's no notion of "too big" for 2716 * userland.) 2717 * 2718 * Otherwise, just give up. 2719 * XXX - if the copy of the program into the kernel failed, 2720 * we will get EINVAL rather than, say, EFAULT on at least 2721 * some kernels. 2722 */ 2723 if (errno != EINVAL) { 2724 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s", 2725 pcap_strerror(errno)); 2726 return (-1); 2727 } 2728 2729 /* 2730 * install_bpf_program() validates the program. 2731 * 2732 * XXX - what if we already have a filter in the kernel? 2733 */ 2734 if (install_bpf_program(p, fp) < 0) 2735 return (-1); 2736 pb->filtering_in_kernel = 0; /* filtering in userland */ 2737 return (0); 2738 } 2739 2740 /* 2741 * Set direction flag: Which packets do we accept on a forwarding 2742 * single device? IN, OUT or both? 2743 */ 2744 static int 2745 pcap_setdirection_bpf(pcap_t *p, pcap_direction_t d) 2746 { 2747 #if defined(BIOCSDIRECTION) 2748 u_int direction; 2749 2750 direction = (d == PCAP_D_IN) ? BPF_D_IN : 2751 ((d == PCAP_D_OUT) ? BPF_D_OUT : BPF_D_INOUT); 2752 if (ioctl(p->fd, BIOCSDIRECTION, &direction) == -1) { 2753 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2754 "Cannot set direction to %s: %s", 2755 (d == PCAP_D_IN) ? "PCAP_D_IN" : 2756 ((d == PCAP_D_OUT) ? "PCAP_D_OUT" : "PCAP_D_INOUT"), 2757 strerror(errno)); 2758 return (-1); 2759 } 2760 return (0); 2761 #elif defined(BIOCSSEESENT) 2762 u_int seesent; 2763 2764 /* 2765 * We don't support PCAP_D_OUT. 2766 */ 2767 if (d == PCAP_D_OUT) { 2768 snprintf(p->errbuf, sizeof(p->errbuf), 2769 "Setting direction to PCAP_D_OUT is not supported on BPF"); 2770 return -1; 2771 } 2772 2773 seesent = (d == PCAP_D_INOUT); 2774 if (ioctl(p->fd, BIOCSSEESENT, &seesent) == -1) { 2775 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2776 "Cannot set direction to %s: %s", 2777 (d == PCAP_D_INOUT) ? "PCAP_D_INOUT" : "PCAP_D_IN", 2778 strerror(errno)); 2779 return (-1); 2780 } 2781 return (0); 2782 #else 2783 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2784 "This system doesn't support BIOCSSEESENT, so the direction can't be set"); 2785 return (-1); 2786 #endif 2787 } 2788 2789 static int 2790 pcap_set_datalink_bpf(pcap_t *p, int dlt) 2791 { 2792 #ifdef BIOCSDLT 2793 if (ioctl(p->fd, BIOCSDLT, &dlt) == -1) { 2794 (void) snprintf(p->errbuf, sizeof(p->errbuf), 2795 "Cannot set DLT %d: %s", dlt, strerror(errno)); 2796 return (-1); 2797 } 2798 #endif 2799 return (0); 2800 } 2801