1 /* 2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that: (1) source code distributions 7 * retain the above copyright notice and this paragraph in its entirety, (2) 8 * distributions including binary code include the above copyright notice and 9 * this paragraph in its entirety in the documentation or other materials 10 * provided with the distribution, and (3) all advertising materials mentioning 11 * features or use of this software display the following acknowledgement: 12 * ``This product includes software developed by the University of California, 13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 14 * the University nor the names of its contributors may be used to endorse 15 * or promote products derived from this software without specific prior 16 * written permission. 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 20 * 21 * Optimization module for BPF code intermediate representation. 22 */ 23 24 #ifdef HAVE_CONFIG_H 25 #include <config.h> 26 #endif 27 28 #include <pcap-types.h> 29 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <memory.h> 33 #include <setjmp.h> 34 #include <string.h> 35 #include <limits.h> /* for SIZE_MAX */ 36 #include <errno.h> 37 38 #include "pcap-int.h" 39 40 #include "gencode.h" 41 #include "optimize.h" 42 #include "diag-control.h" 43 44 #ifdef HAVE_OS_PROTO_H 45 #include "os-proto.h" 46 #endif 47 48 #ifdef BDEBUG 49 /* 50 * The internal "debug printout" flag for the filter expression optimizer. 51 * The code to print that stuff is present only if BDEBUG is defined, so 52 * the flag, and the routine to set it, are defined only if BDEBUG is 53 * defined. 54 */ 55 static int pcap_optimizer_debug; 56 57 /* 58 * Routine to set that flag. 59 * 60 * This is intended for libpcap developers, not for general use. 61 * If you want to set these in a program, you'll have to declare this 62 * routine yourself, with the appropriate DLL import attribute on Windows; 63 * it's not declared in any header file, and won't be declared in any 64 * header file provided by libpcap. 65 */ 66 PCAP_API void pcap_set_optimizer_debug(int value); 67 68 PCAP_API_DEF void 69 pcap_set_optimizer_debug(int value) 70 { 71 pcap_optimizer_debug = value; 72 } 73 74 /* 75 * The internal "print dot graph" flag for the filter expression optimizer. 76 * The code to print that stuff is present only if BDEBUG is defined, so 77 * the flag, and the routine to set it, are defined only if BDEBUG is 78 * defined. 79 */ 80 static int pcap_print_dot_graph; 81 82 /* 83 * Routine to set that flag. 84 * 85 * This is intended for libpcap developers, not for general use. 86 * If you want to set these in a program, you'll have to declare this 87 * routine yourself, with the appropriate DLL import attribute on Windows; 88 * it's not declared in any header file, and won't be declared in any 89 * header file provided by libpcap. 90 */ 91 PCAP_API void pcap_set_print_dot_graph(int value); 92 93 PCAP_API_DEF void 94 pcap_set_print_dot_graph(int value) 95 { 96 pcap_print_dot_graph = value; 97 } 98 99 #endif 100 101 /* 102 * lowest_set_bit(). 103 * 104 * Takes a 32-bit integer as an argument. 105 * 106 * If handed a non-zero value, returns the index of the lowest set bit, 107 * counting upwards from zero. 108 * 109 * If handed zero, the results are platform- and compiler-dependent. 110 * Keep it out of the light, don't give it any water, don't feed it 111 * after midnight, and don't pass zero to it. 112 * 113 * This is the same as the count of trailing zeroes in the word. 114 */ 115 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4) 116 /* 117 * GCC 3.4 and later; we have __builtin_ctz(). 118 */ 119 #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask)) 120 #elif defined(_MSC_VER) 121 /* 122 * Visual Studio; we support only 2005 and later, so use 123 * _BitScanForward(). 124 */ 125 #include <intrin.h> 126 127 #ifndef __clang__ 128 #pragma intrinsic(_BitScanForward) 129 #endif 130 131 static __forceinline u_int 132 lowest_set_bit(int mask) 133 { 134 unsigned long bit; 135 136 /* 137 * Don't sign-extend mask if long is longer than int. 138 * (It's currently not, in MSVC, even on 64-bit platforms, but....) 139 */ 140 if (_BitScanForward(&bit, (unsigned int)mask) == 0) 141 abort(); /* mask is zero */ 142 return (u_int)bit; 143 } 144 #elif defined(MSDOS) && defined(__DJGPP__) 145 /* 146 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which 147 * we've already included. 148 */ 149 #define lowest_set_bit(mask) ((u_int)(ffs((mask)) - 1)) 150 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS) 151 /* 152 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there, 153 * or some other platform (UN*X conforming to a sufficient recent version 154 * of the Single UNIX Specification). 155 */ 156 #include <strings.h> 157 #define lowest_set_bit(mask) (u_int)((ffs((mask)) - 1)) 158 #else 159 /* 160 * None of the above. 161 * Use a perfect-hash-function-based function. 162 */ 163 static u_int 164 lowest_set_bit(int mask) 165 { 166 unsigned int v = (unsigned int)mask; 167 168 static const u_int MultiplyDeBruijnBitPosition[32] = { 169 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 170 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 171 }; 172 173 /* 174 * We strip off all but the lowermost set bit (v & ~v), 175 * and perform a minimal perfect hash on it to look up the 176 * number of low-order zero bits in a table. 177 * 178 * See: 179 * 180 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf 181 * 182 * http://supertech.csail.mit.edu/papers/debruijn.pdf 183 */ 184 return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]); 185 } 186 #endif 187 188 /* 189 * Represents a deleted instruction. 190 */ 191 #define NOP -1 192 193 /* 194 * Register numbers for use-def values. 195 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory 196 * location. A_ATOM is the accumulator and X_ATOM is the index 197 * register. 198 */ 199 #define A_ATOM BPF_MEMWORDS 200 #define X_ATOM (BPF_MEMWORDS+1) 201 202 /* 203 * This define is used to represent *both* the accumulator and 204 * x register in use-def computations. 205 * Currently, the use-def code assumes only one definition per instruction. 206 */ 207 #define AX_ATOM N_ATOMS 208 209 /* 210 * These data structures are used in a Cocke and Shwarz style 211 * value numbering scheme. Since the flowgraph is acyclic, 212 * exit values can be propagated from a node's predecessors 213 * provided it is uniquely defined. 214 */ 215 struct valnode { 216 int code; 217 bpf_u_int32 v0, v1; 218 int val; /* the value number */ 219 struct valnode *next; 220 }; 221 222 /* Integer constants mapped with the load immediate opcode. */ 223 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U) 224 225 struct vmapinfo { 226 int is_const; 227 bpf_u_int32 const_val; 228 }; 229 230 typedef struct { 231 /* 232 * Place to longjmp to on an error. 233 */ 234 jmp_buf top_ctx; 235 236 /* 237 * The buffer into which to put error message. 238 */ 239 char *errbuf; 240 241 /* 242 * A flag to indicate that further optimization is needed. 243 * Iterative passes are continued until a given pass yields no 244 * code simplification or branch movement. 245 */ 246 int done; 247 248 /* 249 * XXX - detect loops that do nothing but repeated AND/OR pullups 250 * and edge moves. 251 * If 100 passes in a row do nothing but that, treat that as a 252 * sign that we're in a loop that just shuffles in a cycle in 253 * which each pass just shuffles the code and we eventually 254 * get back to the original configuration. 255 * 256 * XXX - we need a non-heuristic way of detecting, or preventing, 257 * such a cycle. 258 */ 259 int non_branch_movement_performed; 260 261 u_int n_blocks; /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */ 262 struct block **blocks; 263 u_int n_edges; /* twice n_blocks, so guaranteed to be > 0 */ 264 struct edge **edges; 265 266 /* 267 * A bit vector set representation of the dominators. 268 * We round up the set size to the next power of two. 269 */ 270 u_int nodewords; /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */ 271 u_int edgewords; /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */ 272 struct block **levels; 273 bpf_u_int32 *space; 274 275 #define BITS_PER_WORD (8*sizeof(bpf_u_int32)) 276 /* 277 * True if a is in uset {p} 278 */ 279 #define SET_MEMBER(p, a) \ 280 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))) 281 282 /* 283 * Add 'a' to uset p. 284 */ 285 #define SET_INSERT(p, a) \ 286 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)) 287 288 /* 289 * Delete 'a' from uset p. 290 */ 291 #define SET_DELETE(p, a) \ 292 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)) 293 294 /* 295 * a := a intersect b 296 * n must be guaranteed to be > 0 297 */ 298 #define SET_INTERSECT(a, b, n)\ 299 {\ 300 register bpf_u_int32 *_x = a, *_y = b;\ 301 register u_int _n = n;\ 302 do *_x++ &= *_y++; while (--_n != 0);\ 303 } 304 305 /* 306 * a := a - b 307 * n must be guaranteed to be > 0 308 */ 309 #define SET_SUBTRACT(a, b, n)\ 310 {\ 311 register bpf_u_int32 *_x = a, *_y = b;\ 312 register u_int _n = n;\ 313 do *_x++ &=~ *_y++; while (--_n != 0);\ 314 } 315 316 /* 317 * a := a union b 318 * n must be guaranteed to be > 0 319 */ 320 #define SET_UNION(a, b, n)\ 321 {\ 322 register bpf_u_int32 *_x = a, *_y = b;\ 323 register u_int _n = n;\ 324 do *_x++ |= *_y++; while (--_n != 0);\ 325 } 326 327 uset all_dom_sets; 328 uset all_closure_sets; 329 uset all_edge_sets; 330 331 #define MODULUS 213 332 struct valnode *hashtbl[MODULUS]; 333 bpf_u_int32 curval; 334 bpf_u_int32 maxval; 335 336 struct vmapinfo *vmap; 337 struct valnode *vnode_base; 338 struct valnode *next_vnode; 339 } opt_state_t; 340 341 typedef struct { 342 /* 343 * Place to longjmp to on an error. 344 */ 345 jmp_buf top_ctx; 346 347 /* 348 * The buffer into which to put error message. 349 */ 350 char *errbuf; 351 352 /* 353 * Some pointers used to convert the basic block form of the code, 354 * into the array form that BPF requires. 'fstart' will point to 355 * the malloc'd array while 'ftail' is used during the recursive 356 * traversal. 357 */ 358 struct bpf_insn *fstart; 359 struct bpf_insn *ftail; 360 } conv_state_t; 361 362 static void opt_init(opt_state_t *, struct icode *); 363 static void opt_cleanup(opt_state_t *); 364 static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...) 365 PCAP_PRINTFLIKE(2, 3); 366 367 static void intern_blocks(opt_state_t *, struct icode *); 368 369 static void find_inedges(opt_state_t *, struct block *); 370 #ifdef BDEBUG 371 static void opt_dump(opt_state_t *, struct icode *); 372 #endif 373 374 #ifndef MAX 375 #define MAX(a,b) ((a)>(b)?(a):(b)) 376 #endif 377 378 static void 379 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b) 380 { 381 int level; 382 383 if (isMarked(ic, b)) 384 return; 385 386 Mark(ic, b); 387 b->link = 0; 388 389 if (JT(b)) { 390 find_levels_r(opt_state, ic, JT(b)); 391 find_levels_r(opt_state, ic, JF(b)); 392 level = MAX(JT(b)->level, JF(b)->level) + 1; 393 } else 394 level = 0; 395 b->level = level; 396 b->link = opt_state->levels[level]; 397 opt_state->levels[level] = b; 398 } 399 400 /* 401 * Level graph. The levels go from 0 at the leaves to 402 * N_LEVELS at the root. The opt_state->levels[] array points to the 403 * first node of the level list, whose elements are linked 404 * with the 'link' field of the struct block. 405 */ 406 static void 407 find_levels(opt_state_t *opt_state, struct icode *ic) 408 { 409 memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels)); 410 unMarkAll(ic); 411 find_levels_r(opt_state, ic, ic->root); 412 } 413 414 /* 415 * Find dominator relationships. 416 * Assumes graph has been leveled. 417 */ 418 static void 419 find_dom(opt_state_t *opt_state, struct block *root) 420 { 421 u_int i; 422 int level; 423 struct block *b; 424 bpf_u_int32 *x; 425 426 /* 427 * Initialize sets to contain all nodes. 428 */ 429 x = opt_state->all_dom_sets; 430 /* 431 * In opt_init(), we've made sure the product doesn't overflow. 432 */ 433 i = opt_state->n_blocks * opt_state->nodewords; 434 while (i != 0) { 435 --i; 436 *x++ = 0xFFFFFFFFU; 437 } 438 /* Root starts off empty. */ 439 for (i = opt_state->nodewords; i != 0;) { 440 --i; 441 root->dom[i] = 0; 442 } 443 444 /* root->level is the highest level no found. */ 445 for (level = root->level; level >= 0; --level) { 446 for (b = opt_state->levels[level]; b; b = b->link) { 447 SET_INSERT(b->dom, b->id); 448 if (JT(b) == 0) 449 continue; 450 SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords); 451 SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords); 452 } 453 } 454 } 455 456 static void 457 propedom(opt_state_t *opt_state, struct edge *ep) 458 { 459 SET_INSERT(ep->edom, ep->id); 460 if (ep->succ) { 461 SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords); 462 SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords); 463 } 464 } 465 466 /* 467 * Compute edge dominators. 468 * Assumes graph has been leveled and predecessors established. 469 */ 470 static void 471 find_edom(opt_state_t *opt_state, struct block *root) 472 { 473 u_int i; 474 uset x; 475 int level; 476 struct block *b; 477 478 x = opt_state->all_edge_sets; 479 /* 480 * In opt_init(), we've made sure the product doesn't overflow. 481 */ 482 for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) { 483 --i; 484 x[i] = 0xFFFFFFFFU; 485 } 486 487 /* root->level is the highest level no found. */ 488 memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); 489 memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); 490 for (level = root->level; level >= 0; --level) { 491 for (b = opt_state->levels[level]; b != 0; b = b->link) { 492 propedom(opt_state, &b->et); 493 propedom(opt_state, &b->ef); 494 } 495 } 496 } 497 498 /* 499 * Find the backwards transitive closure of the flow graph. These sets 500 * are backwards in the sense that we find the set of nodes that reach 501 * a given node, not the set of nodes that can be reached by a node. 502 * 503 * Assumes graph has been leveled. 504 */ 505 static void 506 find_closure(opt_state_t *opt_state, struct block *root) 507 { 508 int level; 509 struct block *b; 510 511 /* 512 * Initialize sets to contain no nodes. 513 */ 514 memset((char *)opt_state->all_closure_sets, 0, 515 opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets)); 516 517 /* root->level is the highest level no found. */ 518 for (level = root->level; level >= 0; --level) { 519 for (b = opt_state->levels[level]; b; b = b->link) { 520 SET_INSERT(b->closure, b->id); 521 if (JT(b) == 0) 522 continue; 523 SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords); 524 SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords); 525 } 526 } 527 } 528 529 /* 530 * Return the register number that is used by s. 531 * 532 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X 533 * are used, the scratch memory location's number if a scratch memory 534 * location is used (e.g., 0 for M[0]), or -1 if none of those are used. 535 * 536 * The implementation should probably change to an array access. 537 */ 538 static int 539 atomuse(struct stmt *s) 540 { 541 register int c = s->code; 542 543 if (c == NOP) 544 return -1; 545 546 switch (BPF_CLASS(c)) { 547 548 case BPF_RET: 549 return (BPF_RVAL(c) == BPF_A) ? A_ATOM : 550 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; 551 552 case BPF_LD: 553 case BPF_LDX: 554 /* 555 * As there are fewer than 2^31 memory locations, 556 * s->k should be convertible to int without problems. 557 */ 558 return (BPF_MODE(c) == BPF_IND) ? X_ATOM : 559 (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1; 560 561 case BPF_ST: 562 return A_ATOM; 563 564 case BPF_STX: 565 return X_ATOM; 566 567 case BPF_JMP: 568 case BPF_ALU: 569 if (BPF_SRC(c) == BPF_X) 570 return AX_ATOM; 571 return A_ATOM; 572 573 case BPF_MISC: 574 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; 575 } 576 abort(); 577 /* NOTREACHED */ 578 } 579 580 /* 581 * Return the register number that is defined by 's'. We assume that 582 * a single stmt cannot define more than one register. If no register 583 * is defined, return -1. 584 * 585 * The implementation should probably change to an array access. 586 */ 587 static int 588 atomdef(struct stmt *s) 589 { 590 if (s->code == NOP) 591 return -1; 592 593 switch (BPF_CLASS(s->code)) { 594 595 case BPF_LD: 596 case BPF_ALU: 597 return A_ATOM; 598 599 case BPF_LDX: 600 return X_ATOM; 601 602 case BPF_ST: 603 case BPF_STX: 604 return s->k; 605 606 case BPF_MISC: 607 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; 608 } 609 return -1; 610 } 611 612 /* 613 * Compute the sets of registers used, defined, and killed by 'b'. 614 * 615 * "Used" means that a statement in 'b' uses the register before any 616 * statement in 'b' defines it, i.e. it uses the value left in 617 * that register by a predecessor block of this block. 618 * "Defined" means that a statement in 'b' defines it. 619 * "Killed" means that a statement in 'b' defines it before any 620 * statement in 'b' uses it, i.e. it kills the value left in that 621 * register by a predecessor block of this block. 622 */ 623 static void 624 compute_local_ud(struct block *b) 625 { 626 struct slist *s; 627 atomset def = 0, use = 0, killed = 0; 628 int atom; 629 630 for (s = b->stmts; s; s = s->next) { 631 if (s->s.code == NOP) 632 continue; 633 atom = atomuse(&s->s); 634 if (atom >= 0) { 635 if (atom == AX_ATOM) { 636 if (!ATOMELEM(def, X_ATOM)) 637 use |= ATOMMASK(X_ATOM); 638 if (!ATOMELEM(def, A_ATOM)) 639 use |= ATOMMASK(A_ATOM); 640 } 641 else if (atom < N_ATOMS) { 642 if (!ATOMELEM(def, atom)) 643 use |= ATOMMASK(atom); 644 } 645 else 646 abort(); 647 } 648 atom = atomdef(&s->s); 649 if (atom >= 0) { 650 if (!ATOMELEM(use, atom)) 651 killed |= ATOMMASK(atom); 652 def |= ATOMMASK(atom); 653 } 654 } 655 if (BPF_CLASS(b->s.code) == BPF_JMP) { 656 /* 657 * XXX - what about RET? 658 */ 659 atom = atomuse(&b->s); 660 if (atom >= 0) { 661 if (atom == AX_ATOM) { 662 if (!ATOMELEM(def, X_ATOM)) 663 use |= ATOMMASK(X_ATOM); 664 if (!ATOMELEM(def, A_ATOM)) 665 use |= ATOMMASK(A_ATOM); 666 } 667 else if (atom < N_ATOMS) { 668 if (!ATOMELEM(def, atom)) 669 use |= ATOMMASK(atom); 670 } 671 else 672 abort(); 673 } 674 } 675 676 b->def = def; 677 b->kill = killed; 678 b->in_use = use; 679 } 680 681 /* 682 * Assume graph is already leveled. 683 */ 684 static void 685 find_ud(opt_state_t *opt_state, struct block *root) 686 { 687 int i, maxlevel; 688 struct block *p; 689 690 /* 691 * root->level is the highest level no found; 692 * count down from there. 693 */ 694 maxlevel = root->level; 695 for (i = maxlevel; i >= 0; --i) 696 for (p = opt_state->levels[i]; p; p = p->link) { 697 compute_local_ud(p); 698 p->out_use = 0; 699 } 700 701 for (i = 1; i <= maxlevel; ++i) { 702 for (p = opt_state->levels[i]; p; p = p->link) { 703 p->out_use |= JT(p)->in_use | JF(p)->in_use; 704 p->in_use |= p->out_use &~ p->kill; 705 } 706 } 707 } 708 static void 709 init_val(opt_state_t *opt_state) 710 { 711 opt_state->curval = 0; 712 opt_state->next_vnode = opt_state->vnode_base; 713 memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap)); 714 memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl); 715 } 716 717 /* 718 * Because we really don't have an IR, this stuff is a little messy. 719 * 720 * This routine looks in the table of existing value number for a value 721 * with generated from an operation with the specified opcode and 722 * the specified values. If it finds it, it returns its value number, 723 * otherwise it makes a new entry in the table and returns the 724 * value number of that entry. 725 */ 726 static bpf_u_int32 727 F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1) 728 { 729 u_int hash; 730 bpf_u_int32 val; 731 struct valnode *p; 732 733 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8); 734 hash %= MODULUS; 735 736 for (p = opt_state->hashtbl[hash]; p; p = p->next) 737 if (p->code == code && p->v0 == v0 && p->v1 == v1) 738 return p->val; 739 740 /* 741 * Not found. Allocate a new value, and assign it a new 742 * value number. 743 * 744 * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we 745 * increment it before using it as the new value number, which 746 * means we never assign VAL_UNKNOWN. 747 * 748 * XXX - unless we overflow, but we probably won't have 2^32-1 749 * values; we treat 32 bits as effectively infinite. 750 */ 751 val = ++opt_state->curval; 752 if (BPF_MODE(code) == BPF_IMM && 753 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { 754 opt_state->vmap[val].const_val = v0; 755 opt_state->vmap[val].is_const = 1; 756 } 757 p = opt_state->next_vnode++; 758 p->val = val; 759 p->code = code; 760 p->v0 = v0; 761 p->v1 = v1; 762 p->next = opt_state->hashtbl[hash]; 763 opt_state->hashtbl[hash] = p; 764 765 return val; 766 } 767 768 static inline void 769 vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter) 770 { 771 if (alter && newval != VAL_UNKNOWN && *valp == newval) 772 s->code = NOP; 773 else 774 *valp = newval; 775 } 776 777 /* 778 * Do constant-folding on binary operators. 779 * (Unary operators are handled elsewhere.) 780 */ 781 static void 782 fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1) 783 { 784 bpf_u_int32 a, b; 785 786 a = opt_state->vmap[v0].const_val; 787 b = opt_state->vmap[v1].const_val; 788 789 switch (BPF_OP(s->code)) { 790 case BPF_ADD: 791 a += b; 792 break; 793 794 case BPF_SUB: 795 a -= b; 796 break; 797 798 case BPF_MUL: 799 a *= b; 800 break; 801 802 case BPF_DIV: 803 if (b == 0) 804 opt_error(opt_state, "division by zero"); 805 a /= b; 806 break; 807 808 case BPF_MOD: 809 if (b == 0) 810 opt_error(opt_state, "modulus by zero"); 811 a %= b; 812 break; 813 814 case BPF_AND: 815 a &= b; 816 break; 817 818 case BPF_OR: 819 a |= b; 820 break; 821 822 case BPF_XOR: 823 a ^= b; 824 break; 825 826 case BPF_LSH: 827 /* 828 * A left shift of more than the width of the type 829 * is undefined in C; we'll just treat it as shifting 830 * all the bits out. 831 * 832 * XXX - the BPF interpreter doesn't check for this, 833 * so its behavior is dependent on the behavior of 834 * the processor on which it's running. There are 835 * processors on which it shifts all the bits out 836 * and processors on which it does no shift. 837 */ 838 if (b < 32) 839 a <<= b; 840 else 841 a = 0; 842 break; 843 844 case BPF_RSH: 845 /* 846 * A right shift of more than the width of the type 847 * is undefined in C; we'll just treat it as shifting 848 * all the bits out. 849 * 850 * XXX - the BPF interpreter doesn't check for this, 851 * so its behavior is dependent on the behavior of 852 * the processor on which it's running. There are 853 * processors on which it shifts all the bits out 854 * and processors on which it does no shift. 855 */ 856 if (b < 32) 857 a >>= b; 858 else 859 a = 0; 860 break; 861 862 default: 863 abort(); 864 } 865 s->k = a; 866 s->code = BPF_LD|BPF_IMM; 867 /* 868 * XXX - optimizer loop detection. 869 */ 870 opt_state->non_branch_movement_performed = 1; 871 opt_state->done = 0; 872 } 873 874 static inline struct slist * 875 this_op(struct slist *s) 876 { 877 while (s != 0 && s->s.code == NOP) 878 s = s->next; 879 return s; 880 } 881 882 static void 883 opt_not(struct block *b) 884 { 885 struct block *tmp = JT(b); 886 887 JT(b) = JF(b); 888 JF(b) = tmp; 889 } 890 891 static void 892 opt_peep(opt_state_t *opt_state, struct block *b) 893 { 894 struct slist *s; 895 struct slist *next, *last; 896 bpf_u_int32 val; 897 898 s = b->stmts; 899 if (s == 0) 900 return; 901 902 last = s; 903 for (/*empty*/; /*empty*/; s = next) { 904 /* 905 * Skip over nops. 906 */ 907 s = this_op(s); 908 if (s == 0) 909 break; /* nothing left in the block */ 910 911 /* 912 * Find the next real instruction after that one 913 * (skipping nops). 914 */ 915 next = this_op(s->next); 916 if (next == 0) 917 break; /* no next instruction */ 918 last = next; 919 920 /* 921 * st M[k] --> st M[k] 922 * ldx M[k] tax 923 */ 924 if (s->s.code == BPF_ST && 925 next->s.code == (BPF_LDX|BPF_MEM) && 926 s->s.k == next->s.k) { 927 /* 928 * XXX - optimizer loop detection. 929 */ 930 opt_state->non_branch_movement_performed = 1; 931 opt_state->done = 0; 932 next->s.code = BPF_MISC|BPF_TAX; 933 } 934 /* 935 * ld #k --> ldx #k 936 * tax txa 937 */ 938 if (s->s.code == (BPF_LD|BPF_IMM) && 939 next->s.code == (BPF_MISC|BPF_TAX)) { 940 s->s.code = BPF_LDX|BPF_IMM; 941 next->s.code = BPF_MISC|BPF_TXA; 942 /* 943 * XXX - optimizer loop detection. 944 */ 945 opt_state->non_branch_movement_performed = 1; 946 opt_state->done = 0; 947 } 948 /* 949 * This is an ugly special case, but it happens 950 * when you say tcp[k] or udp[k] where k is a constant. 951 */ 952 if (s->s.code == (BPF_LD|BPF_IMM)) { 953 struct slist *add, *tax, *ild; 954 955 /* 956 * Check that X isn't used on exit from this 957 * block (which the optimizer might cause). 958 * We know the code generator won't generate 959 * any local dependencies. 960 */ 961 if (ATOMELEM(b->out_use, X_ATOM)) 962 continue; 963 964 /* 965 * Check that the instruction following the ldi 966 * is an addx, or it's an ldxms with an addx 967 * following it (with 0 or more nops between the 968 * ldxms and addx). 969 */ 970 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) 971 add = next; 972 else 973 add = this_op(next->next); 974 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) 975 continue; 976 977 /* 978 * Check that a tax follows that (with 0 or more 979 * nops between them). 980 */ 981 tax = this_op(add->next); 982 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) 983 continue; 984 985 /* 986 * Check that an ild follows that (with 0 or more 987 * nops between them). 988 */ 989 ild = this_op(tax->next); 990 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || 991 BPF_MODE(ild->s.code) != BPF_IND) 992 continue; 993 /* 994 * We want to turn this sequence: 995 * 996 * (004) ldi #0x2 {s} 997 * (005) ldxms [14] {next} -- optional 998 * (006) addx {add} 999 * (007) tax {tax} 1000 * (008) ild [x+0] {ild} 1001 * 1002 * into this sequence: 1003 * 1004 * (004) nop 1005 * (005) ldxms [14] 1006 * (006) nop 1007 * (007) nop 1008 * (008) ild [x+2] 1009 * 1010 * XXX We need to check that X is not 1011 * subsequently used, because we want to change 1012 * what'll be in it after this sequence. 1013 * 1014 * We know we can eliminate the accumulator 1015 * modifications earlier in the sequence since 1016 * it is defined by the last stmt of this sequence 1017 * (i.e., the last statement of the sequence loads 1018 * a value into the accumulator, so we can eliminate 1019 * earlier operations on the accumulator). 1020 */ 1021 ild->s.k += s->s.k; 1022 s->s.code = NOP; 1023 add->s.code = NOP; 1024 tax->s.code = NOP; 1025 /* 1026 * XXX - optimizer loop detection. 1027 */ 1028 opt_state->non_branch_movement_performed = 1; 1029 opt_state->done = 0; 1030 } 1031 } 1032 /* 1033 * If the comparison at the end of a block is an equality 1034 * comparison against a constant, and nobody uses the value 1035 * we leave in the A register at the end of a block, and 1036 * the operation preceding the comparison is an arithmetic 1037 * operation, we can sometime optimize it away. 1038 */ 1039 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) && 1040 !ATOMELEM(b->out_use, A_ATOM)) { 1041 /* 1042 * We can optimize away certain subtractions of the 1043 * X register. 1044 */ 1045 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) { 1046 val = b->val[X_ATOM]; 1047 if (opt_state->vmap[val].is_const) { 1048 /* 1049 * If we have a subtract to do a comparison, 1050 * and the X register is a known constant, 1051 * we can merge this value into the 1052 * comparison: 1053 * 1054 * sub x -> nop 1055 * jeq #y jeq #(x+y) 1056 */ 1057 b->s.k += opt_state->vmap[val].const_val; 1058 last->s.code = NOP; 1059 /* 1060 * XXX - optimizer loop detection. 1061 */ 1062 opt_state->non_branch_movement_performed = 1; 1063 opt_state->done = 0; 1064 } else if (b->s.k == 0) { 1065 /* 1066 * If the X register isn't a constant, 1067 * and the comparison in the test is 1068 * against 0, we can compare with the 1069 * X register, instead: 1070 * 1071 * sub x -> nop 1072 * jeq #0 jeq x 1073 */ 1074 last->s.code = NOP; 1075 b->s.code = BPF_JMP|BPF_JEQ|BPF_X; 1076 /* 1077 * XXX - optimizer loop detection. 1078 */ 1079 opt_state->non_branch_movement_performed = 1; 1080 opt_state->done = 0; 1081 } 1082 } 1083 /* 1084 * Likewise, a constant subtract can be simplified: 1085 * 1086 * sub #x -> nop 1087 * jeq #y -> jeq #(x+y) 1088 */ 1089 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) { 1090 last->s.code = NOP; 1091 b->s.k += last->s.k; 1092 /* 1093 * XXX - optimizer loop detection. 1094 */ 1095 opt_state->non_branch_movement_performed = 1; 1096 opt_state->done = 0; 1097 } 1098 /* 1099 * And, similarly, a constant AND can be simplified 1100 * if we're testing against 0, i.e.: 1101 * 1102 * and #k nop 1103 * jeq #0 -> jset #k 1104 */ 1105 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && 1106 b->s.k == 0) { 1107 b->s.k = last->s.k; 1108 b->s.code = BPF_JMP|BPF_K|BPF_JSET; 1109 last->s.code = NOP; 1110 /* 1111 * XXX - optimizer loop detection. 1112 */ 1113 opt_state->non_branch_movement_performed = 1; 1114 opt_state->done = 0; 1115 opt_not(b); 1116 } 1117 } 1118 /* 1119 * jset #0 -> never 1120 * jset #ffffffff -> always 1121 */ 1122 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) { 1123 if (b->s.k == 0) 1124 JT(b) = JF(b); 1125 if (b->s.k == 0xffffffffU) 1126 JF(b) = JT(b); 1127 } 1128 /* 1129 * If we're comparing against the index register, and the index 1130 * register is a known constant, we can just compare against that 1131 * constant. 1132 */ 1133 val = b->val[X_ATOM]; 1134 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) { 1135 bpf_u_int32 v = opt_state->vmap[val].const_val; 1136 b->s.code &= ~BPF_X; 1137 b->s.k = v; 1138 } 1139 /* 1140 * If the accumulator is a known constant, we can compute the 1141 * comparison result. 1142 */ 1143 val = b->val[A_ATOM]; 1144 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { 1145 bpf_u_int32 v = opt_state->vmap[val].const_val; 1146 switch (BPF_OP(b->s.code)) { 1147 1148 case BPF_JEQ: 1149 v = v == b->s.k; 1150 break; 1151 1152 case BPF_JGT: 1153 v = v > b->s.k; 1154 break; 1155 1156 case BPF_JGE: 1157 v = v >= b->s.k; 1158 break; 1159 1160 case BPF_JSET: 1161 v &= b->s.k; 1162 break; 1163 1164 default: 1165 abort(); 1166 } 1167 if (JF(b) != JT(b)) { 1168 /* 1169 * XXX - optimizer loop detection. 1170 */ 1171 opt_state->non_branch_movement_performed = 1; 1172 opt_state->done = 0; 1173 } 1174 if (v) 1175 JF(b) = JT(b); 1176 else 1177 JT(b) = JF(b); 1178 } 1179 } 1180 1181 /* 1182 * Compute the symbolic value of expression of 's', and update 1183 * anything it defines in the value table 'val'. If 'alter' is true, 1184 * do various optimizations. This code would be cleaner if symbolic 1185 * evaluation and code transformations weren't folded together. 1186 */ 1187 static void 1188 opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter) 1189 { 1190 int op; 1191 bpf_u_int32 v; 1192 1193 switch (s->code) { 1194 1195 case BPF_LD|BPF_ABS|BPF_W: 1196 case BPF_LD|BPF_ABS|BPF_H: 1197 case BPF_LD|BPF_ABS|BPF_B: 1198 v = F(opt_state, s->code, s->k, 0L); 1199 vstore(s, &val[A_ATOM], v, alter); 1200 break; 1201 1202 case BPF_LD|BPF_IND|BPF_W: 1203 case BPF_LD|BPF_IND|BPF_H: 1204 case BPF_LD|BPF_IND|BPF_B: 1205 v = val[X_ATOM]; 1206 if (alter && opt_state->vmap[v].is_const) { 1207 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); 1208 s->k += opt_state->vmap[v].const_val; 1209 v = F(opt_state, s->code, s->k, 0L); 1210 /* 1211 * XXX - optimizer loop detection. 1212 */ 1213 opt_state->non_branch_movement_performed = 1; 1214 opt_state->done = 0; 1215 } 1216 else 1217 v = F(opt_state, s->code, s->k, v); 1218 vstore(s, &val[A_ATOM], v, alter); 1219 break; 1220 1221 case BPF_LD|BPF_LEN: 1222 v = F(opt_state, s->code, 0L, 0L); 1223 vstore(s, &val[A_ATOM], v, alter); 1224 break; 1225 1226 case BPF_LD|BPF_IMM: 1227 v = K(s->k); 1228 vstore(s, &val[A_ATOM], v, alter); 1229 break; 1230 1231 case BPF_LDX|BPF_IMM: 1232 v = K(s->k); 1233 vstore(s, &val[X_ATOM], v, alter); 1234 break; 1235 1236 case BPF_LDX|BPF_MSH|BPF_B: 1237 v = F(opt_state, s->code, s->k, 0L); 1238 vstore(s, &val[X_ATOM], v, alter); 1239 break; 1240 1241 case BPF_ALU|BPF_NEG: 1242 if (alter && opt_state->vmap[val[A_ATOM]].is_const) { 1243 s->code = BPF_LD|BPF_IMM; 1244 /* 1245 * Do this negation as unsigned arithmetic; that's 1246 * what modern BPF engines do, and it guarantees 1247 * that all possible values can be negated. (Yeah, 1248 * negating 0x80000000, the minimum signed 32-bit 1249 * two's-complement value, results in 0x80000000, 1250 * so it's still negative, but we *should* be doing 1251 * all unsigned arithmetic here, to match what 1252 * modern BPF engines do.) 1253 * 1254 * Express it as 0U - (unsigned value) so that we 1255 * don't get compiler warnings about negating an 1256 * unsigned value and don't get UBSan warnings 1257 * about the result of negating 0x80000000 being 1258 * undefined. 1259 */ 1260 s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val; 1261 val[A_ATOM] = K(s->k); 1262 } 1263 else 1264 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L); 1265 break; 1266 1267 case BPF_ALU|BPF_ADD|BPF_K: 1268 case BPF_ALU|BPF_SUB|BPF_K: 1269 case BPF_ALU|BPF_MUL|BPF_K: 1270 case BPF_ALU|BPF_DIV|BPF_K: 1271 case BPF_ALU|BPF_MOD|BPF_K: 1272 case BPF_ALU|BPF_AND|BPF_K: 1273 case BPF_ALU|BPF_OR|BPF_K: 1274 case BPF_ALU|BPF_XOR|BPF_K: 1275 case BPF_ALU|BPF_LSH|BPF_K: 1276 case BPF_ALU|BPF_RSH|BPF_K: 1277 op = BPF_OP(s->code); 1278 if (alter) { 1279 if (s->k == 0) { 1280 /* 1281 * Optimize operations where the constant 1282 * is zero. 1283 * 1284 * Don't optimize away "sub #0" 1285 * as it may be needed later to 1286 * fixup the generated math code. 1287 * 1288 * Fail if we're dividing by zero or taking 1289 * a modulus by zero. 1290 */ 1291 if (op == BPF_ADD || 1292 op == BPF_LSH || op == BPF_RSH || 1293 op == BPF_OR || op == BPF_XOR) { 1294 s->code = NOP; 1295 break; 1296 } 1297 if (op == BPF_MUL || op == BPF_AND) { 1298 s->code = BPF_LD|BPF_IMM; 1299 val[A_ATOM] = K(s->k); 1300 break; 1301 } 1302 if (op == BPF_DIV) 1303 opt_error(opt_state, 1304 "division by zero"); 1305 if (op == BPF_MOD) 1306 opt_error(opt_state, 1307 "modulus by zero"); 1308 } 1309 if (opt_state->vmap[val[A_ATOM]].is_const) { 1310 fold_op(opt_state, s, val[A_ATOM], K(s->k)); 1311 val[A_ATOM] = K(s->k); 1312 break; 1313 } 1314 } 1315 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k)); 1316 break; 1317 1318 case BPF_ALU|BPF_ADD|BPF_X: 1319 case BPF_ALU|BPF_SUB|BPF_X: 1320 case BPF_ALU|BPF_MUL|BPF_X: 1321 case BPF_ALU|BPF_DIV|BPF_X: 1322 case BPF_ALU|BPF_MOD|BPF_X: 1323 case BPF_ALU|BPF_AND|BPF_X: 1324 case BPF_ALU|BPF_OR|BPF_X: 1325 case BPF_ALU|BPF_XOR|BPF_X: 1326 case BPF_ALU|BPF_LSH|BPF_X: 1327 case BPF_ALU|BPF_RSH|BPF_X: 1328 op = BPF_OP(s->code); 1329 if (alter && opt_state->vmap[val[X_ATOM]].is_const) { 1330 if (opt_state->vmap[val[A_ATOM]].is_const) { 1331 fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]); 1332 val[A_ATOM] = K(s->k); 1333 } 1334 else { 1335 s->code = BPF_ALU|BPF_K|op; 1336 s->k = opt_state->vmap[val[X_ATOM]].const_val; 1337 if ((op == BPF_LSH || op == BPF_RSH) && 1338 s->k > 31) 1339 opt_error(opt_state, 1340 "shift by more than 31 bits"); 1341 /* 1342 * XXX - optimizer loop detection. 1343 */ 1344 opt_state->non_branch_movement_performed = 1; 1345 opt_state->done = 0; 1346 val[A_ATOM] = 1347 F(opt_state, s->code, val[A_ATOM], K(s->k)); 1348 } 1349 break; 1350 } 1351 /* 1352 * Check if we're doing something to an accumulator 1353 * that is 0, and simplify. This may not seem like 1354 * much of a simplification but it could open up further 1355 * optimizations. 1356 * XXX We could also check for mul by 1, etc. 1357 */ 1358 if (alter && opt_state->vmap[val[A_ATOM]].is_const 1359 && opt_state->vmap[val[A_ATOM]].const_val == 0) { 1360 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) { 1361 s->code = BPF_MISC|BPF_TXA; 1362 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1363 break; 1364 } 1365 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD || 1366 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) { 1367 s->code = BPF_LD|BPF_IMM; 1368 s->k = 0; 1369 vstore(s, &val[A_ATOM], K(s->k), alter); 1370 break; 1371 } 1372 else if (op == BPF_NEG) { 1373 s->code = NOP; 1374 break; 1375 } 1376 } 1377 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]); 1378 break; 1379 1380 case BPF_MISC|BPF_TXA: 1381 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1382 break; 1383 1384 case BPF_LD|BPF_MEM: 1385 v = val[s->k]; 1386 if (alter && opt_state->vmap[v].is_const) { 1387 s->code = BPF_LD|BPF_IMM; 1388 s->k = opt_state->vmap[v].const_val; 1389 /* 1390 * XXX - optimizer loop detection. 1391 */ 1392 opt_state->non_branch_movement_performed = 1; 1393 opt_state->done = 0; 1394 } 1395 vstore(s, &val[A_ATOM], v, alter); 1396 break; 1397 1398 case BPF_MISC|BPF_TAX: 1399 vstore(s, &val[X_ATOM], val[A_ATOM], alter); 1400 break; 1401 1402 case BPF_LDX|BPF_MEM: 1403 v = val[s->k]; 1404 if (alter && opt_state->vmap[v].is_const) { 1405 s->code = BPF_LDX|BPF_IMM; 1406 s->k = opt_state->vmap[v].const_val; 1407 /* 1408 * XXX - optimizer loop detection. 1409 */ 1410 opt_state->non_branch_movement_performed = 1; 1411 opt_state->done = 0; 1412 } 1413 vstore(s, &val[X_ATOM], v, alter); 1414 break; 1415 1416 case BPF_ST: 1417 vstore(s, &val[s->k], val[A_ATOM], alter); 1418 break; 1419 1420 case BPF_STX: 1421 vstore(s, &val[s->k], val[X_ATOM], alter); 1422 break; 1423 } 1424 } 1425 1426 static void 1427 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[]) 1428 { 1429 register int atom; 1430 1431 atom = atomuse(s); 1432 if (atom >= 0) { 1433 if (atom == AX_ATOM) { 1434 last[X_ATOM] = 0; 1435 last[A_ATOM] = 0; 1436 } 1437 else 1438 last[atom] = 0; 1439 } 1440 atom = atomdef(s); 1441 if (atom >= 0) { 1442 if (last[atom]) { 1443 /* 1444 * XXX - optimizer loop detection. 1445 */ 1446 opt_state->non_branch_movement_performed = 1; 1447 opt_state->done = 0; 1448 last[atom]->code = NOP; 1449 } 1450 last[atom] = s; 1451 } 1452 } 1453 1454 static void 1455 opt_deadstores(opt_state_t *opt_state, register struct block *b) 1456 { 1457 register struct slist *s; 1458 register int atom; 1459 struct stmt *last[N_ATOMS]; 1460 1461 memset((char *)last, 0, sizeof last); 1462 1463 for (s = b->stmts; s != 0; s = s->next) 1464 deadstmt(opt_state, &s->s, last); 1465 deadstmt(opt_state, &b->s, last); 1466 1467 for (atom = 0; atom < N_ATOMS; ++atom) 1468 if (last[atom] && !ATOMELEM(b->out_use, atom)) { 1469 last[atom]->code = NOP; 1470 /* 1471 * XXX - optimizer loop detection. 1472 */ 1473 opt_state->non_branch_movement_performed = 1; 1474 opt_state->done = 0; 1475 } 1476 } 1477 1478 static void 1479 opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts) 1480 { 1481 struct slist *s; 1482 struct edge *p; 1483 int i; 1484 bpf_u_int32 aval, xval; 1485 1486 #if 0 1487 for (s = b->stmts; s && s->next; s = s->next) 1488 if (BPF_CLASS(s->s.code) == BPF_JMP) { 1489 do_stmts = 0; 1490 break; 1491 } 1492 #endif 1493 1494 /* 1495 * Initialize the atom values. 1496 */ 1497 p = b->in_edges; 1498 if (p == 0) { 1499 /* 1500 * We have no predecessors, so everything is undefined 1501 * upon entry to this block. 1502 */ 1503 memset((char *)b->val, 0, sizeof(b->val)); 1504 } else { 1505 /* 1506 * Inherit values from our predecessors. 1507 * 1508 * First, get the values from the predecessor along the 1509 * first edge leading to this node. 1510 */ 1511 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); 1512 /* 1513 * Now look at all the other nodes leading to this node. 1514 * If, for the predecessor along that edge, a register 1515 * has a different value from the one we have (i.e., 1516 * control paths are merging, and the merging paths 1517 * assign different values to that register), give the 1518 * register the undefined value of 0. 1519 */ 1520 while ((p = p->next) != NULL) { 1521 for (i = 0; i < N_ATOMS; ++i) 1522 if (b->val[i] != p->pred->val[i]) 1523 b->val[i] = 0; 1524 } 1525 } 1526 aval = b->val[A_ATOM]; 1527 xval = b->val[X_ATOM]; 1528 for (s = b->stmts; s; s = s->next) 1529 opt_stmt(opt_state, &s->s, b->val, do_stmts); 1530 1531 /* 1532 * This is a special case: if we don't use anything from this 1533 * block, and we load the accumulator or index register with a 1534 * value that is already there, or if this block is a return, 1535 * eliminate all the statements. 1536 * 1537 * XXX - what if it does a store? Presumably that falls under 1538 * the heading of "if we don't use anything from this block", 1539 * i.e., if we use any memory location set to a different 1540 * value by this block, then we use something from this block. 1541 * 1542 * XXX - why does it matter whether we use anything from this 1543 * block? If the accumulator or index register doesn't change 1544 * its value, isn't that OK even if we use that value? 1545 * 1546 * XXX - if we load the accumulator with a different value, 1547 * and the block ends with a conditional branch, we obviously 1548 * can't eliminate it, as the branch depends on that value. 1549 * For the index register, the conditional branch only depends 1550 * on the index register value if the test is against the index 1551 * register value rather than a constant; if nothing uses the 1552 * value we put into the index register, and we're not testing 1553 * against the index register's value, and there aren't any 1554 * other problems that would keep us from eliminating this 1555 * block, can we eliminate it? 1556 */ 1557 if (do_stmts && 1558 ((b->out_use == 0 && 1559 aval != VAL_UNKNOWN && b->val[A_ATOM] == aval && 1560 xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) || 1561 BPF_CLASS(b->s.code) == BPF_RET)) { 1562 if (b->stmts != 0) { 1563 b->stmts = 0; 1564 /* 1565 * XXX - optimizer loop detection. 1566 */ 1567 opt_state->non_branch_movement_performed = 1; 1568 opt_state->done = 0; 1569 } 1570 } else { 1571 opt_peep(opt_state, b); 1572 opt_deadstores(opt_state, b); 1573 } 1574 /* 1575 * Set up values for branch optimizer. 1576 */ 1577 if (BPF_SRC(b->s.code) == BPF_K) 1578 b->oval = K(b->s.k); 1579 else 1580 b->oval = b->val[X_ATOM]; 1581 b->et.code = b->s.code; 1582 b->ef.code = -b->s.code; 1583 } 1584 1585 /* 1586 * Return true if any register that is used on exit from 'succ', has 1587 * an exit value that is different from the corresponding exit value 1588 * from 'b'. 1589 */ 1590 static int 1591 use_conflict(struct block *b, struct block *succ) 1592 { 1593 int atom; 1594 atomset use = succ->out_use; 1595 1596 if (use == 0) 1597 return 0; 1598 1599 for (atom = 0; atom < N_ATOMS; ++atom) 1600 if (ATOMELEM(use, atom)) 1601 if (b->val[atom] != succ->val[atom]) 1602 return 1; 1603 return 0; 1604 } 1605 1606 /* 1607 * Given a block that is the successor of an edge, and an edge that 1608 * dominates that edge, return either a pointer to a child of that 1609 * block (a block to which that block jumps) if that block is a 1610 * candidate to replace the successor of the latter edge or NULL 1611 * if neither of the children of the first block are candidates. 1612 */ 1613 static struct block * 1614 fold_edge(struct block *child, struct edge *ep) 1615 { 1616 int sense; 1617 bpf_u_int32 aval0, aval1, oval0, oval1; 1618 int code = ep->code; 1619 1620 if (code < 0) { 1621 /* 1622 * This edge is a "branch if false" edge. 1623 */ 1624 code = -code; 1625 sense = 0; 1626 } else { 1627 /* 1628 * This edge is a "branch if true" edge. 1629 */ 1630 sense = 1; 1631 } 1632 1633 /* 1634 * If the opcode for the branch at the end of the block we 1635 * were handed isn't the same as the opcode for the branch 1636 * to which the edge we were handed corresponds, the tests 1637 * for those branches aren't testing the same conditions, 1638 * so the blocks to which the first block branches aren't 1639 * candidates to replace the successor of the edge. 1640 */ 1641 if (child->s.code != code) 1642 return 0; 1643 1644 aval0 = child->val[A_ATOM]; 1645 oval0 = child->oval; 1646 aval1 = ep->pred->val[A_ATOM]; 1647 oval1 = ep->pred->oval; 1648 1649 /* 1650 * If the A register value on exit from the successor block 1651 * isn't the same as the A register value on exit from the 1652 * predecessor of the edge, the blocks to which the first 1653 * block branches aren't candidates to replace the successor 1654 * of the edge. 1655 */ 1656 if (aval0 != aval1) 1657 return 0; 1658 1659 if (oval0 == oval1) 1660 /* 1661 * The operands of the branch instructions are 1662 * identical, so the branches are testing the 1663 * same condition, and the result is true if a true 1664 * branch was taken to get here, otherwise false. 1665 */ 1666 return sense ? JT(child) : JF(child); 1667 1668 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) 1669 /* 1670 * At this point, we only know the comparison if we 1671 * came down the true branch, and it was an equality 1672 * comparison with a constant. 1673 * 1674 * I.e., if we came down the true branch, and the branch 1675 * was an equality comparison with a constant, we know the 1676 * accumulator contains that constant. If we came down 1677 * the false branch, or the comparison wasn't with a 1678 * constant, we don't know what was in the accumulator. 1679 * 1680 * We rely on the fact that distinct constants have distinct 1681 * value numbers. 1682 */ 1683 return JF(child); 1684 1685 return 0; 1686 } 1687 1688 /* 1689 * If we can make this edge go directly to a child of the edge's current 1690 * successor, do so. 1691 */ 1692 static void 1693 opt_j(opt_state_t *opt_state, struct edge *ep) 1694 { 1695 register u_int i, k; 1696 register struct block *target; 1697 1698 /* 1699 * Does this edge go to a block where, if the test 1700 * at the end of it succeeds, it goes to a block 1701 * that's a leaf node of the DAG, i.e. a return 1702 * statement? 1703 * If so, there's nothing to optimize. 1704 */ 1705 if (JT(ep->succ) == 0) 1706 return; 1707 1708 /* 1709 * Does this edge go to a block that goes, in turn, to 1710 * the same block regardless of whether the test at the 1711 * end succeeds or fails? 1712 */ 1713 if (JT(ep->succ) == JF(ep->succ)) { 1714 /* 1715 * Common branch targets can be eliminated, provided 1716 * there is no data dependency. 1717 * 1718 * Check whether any register used on exit from the 1719 * block to which the successor of this edge goes 1720 * has a value at that point that's different from 1721 * the value it has on exit from the predecessor of 1722 * this edge. If not, the predecessor of this edge 1723 * can just go to the block to which the successor 1724 * of this edge goes, bypassing the successor of this 1725 * edge, as the successor of this edge isn't doing 1726 * any calculations whose results are different 1727 * from what the blocks before it did and isn't 1728 * doing any tests the results of which matter. 1729 */ 1730 if (!use_conflict(ep->pred, JT(ep->succ))) { 1731 /* 1732 * No, there isn't. 1733 * Make this edge go to the block to 1734 * which the successor of that edge 1735 * goes. 1736 * 1737 * XXX - optimizer loop detection. 1738 */ 1739 opt_state->non_branch_movement_performed = 1; 1740 opt_state->done = 0; 1741 ep->succ = JT(ep->succ); 1742 } 1743 } 1744 /* 1745 * For each edge dominator that matches the successor of this 1746 * edge, promote the edge successor to the its grandchild. 1747 * 1748 * XXX We violate the set abstraction here in favor a reasonably 1749 * efficient loop. 1750 */ 1751 top: 1752 for (i = 0; i < opt_state->edgewords; ++i) { 1753 /* i'th word in the bitset of dominators */ 1754 register bpf_u_int32 x = ep->edom[i]; 1755 1756 while (x != 0) { 1757 /* Find the next dominator in that word and mark it as found */ 1758 k = lowest_set_bit(x); 1759 x &=~ ((bpf_u_int32)1 << k); 1760 k += i * BITS_PER_WORD; 1761 1762 target = fold_edge(ep->succ, opt_state->edges[k]); 1763 /* 1764 * We have a candidate to replace the successor 1765 * of ep. 1766 * 1767 * Check that there is no data dependency between 1768 * nodes that will be violated if we move the edge; 1769 * i.e., if any register used on exit from the 1770 * candidate has a value at that point different 1771 * from the value it has when we exit the 1772 * predecessor of that edge, there's a data 1773 * dependency that will be violated. 1774 */ 1775 if (target != 0 && !use_conflict(ep->pred, target)) { 1776 /* 1777 * It's safe to replace the successor of 1778 * ep; do so, and note that we've made 1779 * at least one change. 1780 * 1781 * XXX - this is one of the operations that 1782 * happens when the optimizer gets into 1783 * one of those infinite loops. 1784 */ 1785 opt_state->done = 0; 1786 ep->succ = target; 1787 if (JT(target) != 0) 1788 /* 1789 * Start over unless we hit a leaf. 1790 */ 1791 goto top; 1792 return; 1793 } 1794 } 1795 } 1796 } 1797 1798 /* 1799 * XXX - is this, and and_pullup(), what's described in section 6.1.2 1800 * "Predicate Assertion Propagation" in the BPF+ paper? 1801 * 1802 * Note that this looks at block dominators, not edge dominators. 1803 * Don't think so. 1804 * 1805 * "A or B" compiles into 1806 * 1807 * A 1808 * t / \ f 1809 * / B 1810 * / t / \ f 1811 * \ / 1812 * \ / 1813 * X 1814 * 1815 * 1816 */ 1817 static void 1818 or_pullup(opt_state_t *opt_state, struct block *b) 1819 { 1820 bpf_u_int32 val; 1821 int at_top; 1822 struct block *pull; 1823 struct block **diffp, **samep; 1824 struct edge *ep; 1825 1826 ep = b->in_edges; 1827 if (ep == 0) 1828 return; 1829 1830 /* 1831 * Make sure each predecessor loads the same value. 1832 * XXX why? 1833 */ 1834 val = ep->pred->val[A_ATOM]; 1835 for (ep = ep->next; ep != 0; ep = ep->next) 1836 if (val != ep->pred->val[A_ATOM]) 1837 return; 1838 1839 /* 1840 * For the first edge in the list of edges coming into this block, 1841 * see whether the predecessor of that edge comes here via a true 1842 * branch or a false branch. 1843 */ 1844 if (JT(b->in_edges->pred) == b) 1845 diffp = &JT(b->in_edges->pred); /* jt */ 1846 else 1847 diffp = &JF(b->in_edges->pred); /* jf */ 1848 1849 /* 1850 * diffp is a pointer to a pointer to the block. 1851 * 1852 * Go down the false chain looking as far as you can, 1853 * making sure that each jump-compare is doing the 1854 * same as the original block. 1855 * 1856 * If you reach the bottom before you reach a 1857 * different jump-compare, just exit. There's nothing 1858 * to do here. XXX - no, this version is checking for 1859 * the value leaving the block; that's from the BPF+ 1860 * pullup routine. 1861 */ 1862 at_top = 1; 1863 for (;;) { 1864 /* 1865 * Done if that's not going anywhere XXX 1866 */ 1867 if (*diffp == 0) 1868 return; 1869 1870 /* 1871 * Done if that predecessor blah blah blah isn't 1872 * going the same place we're going XXX 1873 * 1874 * Does the true edge of this block point to the same 1875 * location as the true edge of b? 1876 */ 1877 if (JT(*diffp) != JT(b)) 1878 return; 1879 1880 /* 1881 * Done if this node isn't a dominator of that 1882 * node blah blah blah XXX 1883 * 1884 * Does b dominate diffp? 1885 */ 1886 if (!SET_MEMBER((*diffp)->dom, b->id)) 1887 return; 1888 1889 /* 1890 * Break out of the loop if that node's value of A 1891 * isn't the value of A above XXX 1892 */ 1893 if ((*diffp)->val[A_ATOM] != val) 1894 break; 1895 1896 /* 1897 * Get the JF for that node XXX 1898 * Go down the false path. 1899 */ 1900 diffp = &JF(*diffp); 1901 at_top = 0; 1902 } 1903 1904 /* 1905 * Now that we've found a different jump-compare in a chain 1906 * below b, search further down until we find another 1907 * jump-compare that looks at the original value. This 1908 * jump-compare should get pulled up. XXX again we're 1909 * comparing values not jump-compares. 1910 */ 1911 samep = &JF(*diffp); 1912 for (;;) { 1913 /* 1914 * Done if that's not going anywhere XXX 1915 */ 1916 if (*samep == 0) 1917 return; 1918 1919 /* 1920 * Done if that predecessor blah blah blah isn't 1921 * going the same place we're going XXX 1922 */ 1923 if (JT(*samep) != JT(b)) 1924 return; 1925 1926 /* 1927 * Done if this node isn't a dominator of that 1928 * node blah blah blah XXX 1929 * 1930 * Does b dominate samep? 1931 */ 1932 if (!SET_MEMBER((*samep)->dom, b->id)) 1933 return; 1934 1935 /* 1936 * Break out of the loop if that node's value of A 1937 * is the value of A above XXX 1938 */ 1939 if ((*samep)->val[A_ATOM] == val) 1940 break; 1941 1942 /* XXX Need to check that there are no data dependencies 1943 between dp0 and dp1. Currently, the code generator 1944 will not produce such dependencies. */ 1945 samep = &JF(*samep); 1946 } 1947 #ifdef notdef 1948 /* XXX This doesn't cover everything. */ 1949 for (i = 0; i < N_ATOMS; ++i) 1950 if ((*samep)->val[i] != pred->val[i]) 1951 return; 1952 #endif 1953 /* Pull up the node. */ 1954 pull = *samep; 1955 *samep = JF(pull); 1956 JF(pull) = *diffp; 1957 1958 /* 1959 * At the top of the chain, each predecessor needs to point at the 1960 * pulled up node. Inside the chain, there is only one predecessor 1961 * to worry about. 1962 */ 1963 if (at_top) { 1964 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1965 if (JT(ep->pred) == b) 1966 JT(ep->pred) = pull; 1967 else 1968 JF(ep->pred) = pull; 1969 } 1970 } 1971 else 1972 *diffp = pull; 1973 1974 /* 1975 * XXX - this is one of the operations that happens when the 1976 * optimizer gets into one of those infinite loops. 1977 */ 1978 opt_state->done = 0; 1979 } 1980 1981 static void 1982 and_pullup(opt_state_t *opt_state, struct block *b) 1983 { 1984 bpf_u_int32 val; 1985 int at_top; 1986 struct block *pull; 1987 struct block **diffp, **samep; 1988 struct edge *ep; 1989 1990 ep = b->in_edges; 1991 if (ep == 0) 1992 return; 1993 1994 /* 1995 * Make sure each predecessor loads the same value. 1996 */ 1997 val = ep->pred->val[A_ATOM]; 1998 for (ep = ep->next; ep != 0; ep = ep->next) 1999 if (val != ep->pred->val[A_ATOM]) 2000 return; 2001 2002 if (JT(b->in_edges->pred) == b) 2003 diffp = &JT(b->in_edges->pred); 2004 else 2005 diffp = &JF(b->in_edges->pred); 2006 2007 at_top = 1; 2008 for (;;) { 2009 if (*diffp == 0) 2010 return; 2011 2012 if (JF(*diffp) != JF(b)) 2013 return; 2014 2015 if (!SET_MEMBER((*diffp)->dom, b->id)) 2016 return; 2017 2018 if ((*diffp)->val[A_ATOM] != val) 2019 break; 2020 2021 diffp = &JT(*diffp); 2022 at_top = 0; 2023 } 2024 samep = &JT(*diffp); 2025 for (;;) { 2026 if (*samep == 0) 2027 return; 2028 2029 if (JF(*samep) != JF(b)) 2030 return; 2031 2032 if (!SET_MEMBER((*samep)->dom, b->id)) 2033 return; 2034 2035 if ((*samep)->val[A_ATOM] == val) 2036 break; 2037 2038 /* XXX Need to check that there are no data dependencies 2039 between diffp and samep. Currently, the code generator 2040 will not produce such dependencies. */ 2041 samep = &JT(*samep); 2042 } 2043 #ifdef notdef 2044 /* XXX This doesn't cover everything. */ 2045 for (i = 0; i < N_ATOMS; ++i) 2046 if ((*samep)->val[i] != pred->val[i]) 2047 return; 2048 #endif 2049 /* Pull up the node. */ 2050 pull = *samep; 2051 *samep = JT(pull); 2052 JT(pull) = *diffp; 2053 2054 /* 2055 * At the top of the chain, each predecessor needs to point at the 2056 * pulled up node. Inside the chain, there is only one predecessor 2057 * to worry about. 2058 */ 2059 if (at_top) { 2060 for (ep = b->in_edges; ep != 0; ep = ep->next) { 2061 if (JT(ep->pred) == b) 2062 JT(ep->pred) = pull; 2063 else 2064 JF(ep->pred) = pull; 2065 } 2066 } 2067 else 2068 *diffp = pull; 2069 2070 /* 2071 * XXX - this is one of the operations that happens when the 2072 * optimizer gets into one of those infinite loops. 2073 */ 2074 opt_state->done = 0; 2075 } 2076 2077 static void 2078 opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts) 2079 { 2080 int i, maxlevel; 2081 struct block *p; 2082 2083 init_val(opt_state); 2084 maxlevel = ic->root->level; 2085 2086 find_inedges(opt_state, ic->root); 2087 for (i = maxlevel; i >= 0; --i) 2088 for (p = opt_state->levels[i]; p; p = p->link) 2089 opt_blk(opt_state, p, do_stmts); 2090 2091 if (do_stmts) 2092 /* 2093 * No point trying to move branches; it can't possibly 2094 * make a difference at this point. 2095 * 2096 * XXX - this might be after we detect a loop where 2097 * we were just looping infinitely moving branches 2098 * in such a fashion that we went through two or more 2099 * versions of the machine code, eventually returning 2100 * to the first version. (We're really not doing a 2101 * full loop detection, we're just testing for two 2102 * passes in a row where we do nothing but 2103 * move branches.) 2104 */ 2105 return; 2106 2107 /* 2108 * Is this what the BPF+ paper describes in sections 6.1.1, 2109 * 6.1.2, and 6.1.3? 2110 */ 2111 for (i = 1; i <= maxlevel; ++i) { 2112 for (p = opt_state->levels[i]; p; p = p->link) { 2113 opt_j(opt_state, &p->et); 2114 opt_j(opt_state, &p->ef); 2115 } 2116 } 2117 2118 find_inedges(opt_state, ic->root); 2119 for (i = 1; i <= maxlevel; ++i) { 2120 for (p = opt_state->levels[i]; p; p = p->link) { 2121 or_pullup(opt_state, p); 2122 and_pullup(opt_state, p); 2123 } 2124 } 2125 } 2126 2127 static inline void 2128 link_inedge(struct edge *parent, struct block *child) 2129 { 2130 parent->next = child->in_edges; 2131 child->in_edges = parent; 2132 } 2133 2134 static void 2135 find_inedges(opt_state_t *opt_state, struct block *root) 2136 { 2137 u_int i; 2138 int level; 2139 struct block *b; 2140 2141 for (i = 0; i < opt_state->n_blocks; ++i) 2142 opt_state->blocks[i]->in_edges = 0; 2143 2144 /* 2145 * Traverse the graph, adding each edge to the predecessor 2146 * list of its successors. Skip the leaves (i.e. level 0). 2147 */ 2148 for (level = root->level; level > 0; --level) { 2149 for (b = opt_state->levels[level]; b != 0; b = b->link) { 2150 link_inedge(&b->et, JT(b)); 2151 link_inedge(&b->ef, JF(b)); 2152 } 2153 } 2154 } 2155 2156 static void 2157 opt_root(struct block **b) 2158 { 2159 struct slist *tmp, *s; 2160 2161 s = (*b)->stmts; 2162 (*b)->stmts = 0; 2163 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) 2164 *b = JT(*b); 2165 2166 tmp = (*b)->stmts; 2167 if (tmp != 0) 2168 sappend(s, tmp); 2169 (*b)->stmts = s; 2170 2171 /* 2172 * If the root node is a return, then there is no 2173 * point executing any statements (since the bpf machine 2174 * has no side effects). 2175 */ 2176 if (BPF_CLASS((*b)->s.code) == BPF_RET) 2177 (*b)->stmts = 0; 2178 } 2179 2180 static void 2181 opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts) 2182 { 2183 2184 #ifdef BDEBUG 2185 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 2186 printf("opt_loop(root, %d) begin\n", do_stmts); 2187 opt_dump(opt_state, ic); 2188 } 2189 #endif 2190 2191 /* 2192 * XXX - optimizer loop detection. 2193 */ 2194 int loop_count = 0; 2195 for (;;) { 2196 opt_state->done = 1; 2197 /* 2198 * XXX - optimizer loop detection. 2199 */ 2200 opt_state->non_branch_movement_performed = 0; 2201 find_levels(opt_state, ic); 2202 find_dom(opt_state, ic->root); 2203 find_closure(opt_state, ic->root); 2204 find_ud(opt_state, ic->root); 2205 find_edom(opt_state, ic->root); 2206 opt_blks(opt_state, ic, do_stmts); 2207 #ifdef BDEBUG 2208 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 2209 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done); 2210 opt_dump(opt_state, ic); 2211 } 2212 #endif 2213 2214 /* 2215 * Was anything done in this optimizer pass? 2216 */ 2217 if (opt_state->done) { 2218 /* 2219 * No, so we've reached a fixed point. 2220 * We're done. 2221 */ 2222 break; 2223 } 2224 2225 /* 2226 * XXX - was anything done other than branch movement 2227 * in this pass? 2228 */ 2229 if (opt_state->non_branch_movement_performed) { 2230 /* 2231 * Yes. Clear any loop-detection counter; 2232 * we're making some form of progress (assuming 2233 * we can't get into a cycle doing *other* 2234 * optimizations...). 2235 */ 2236 loop_count = 0; 2237 } else { 2238 /* 2239 * No - increment the counter, and quit if 2240 * it's up to 100. 2241 */ 2242 loop_count++; 2243 if (loop_count >= 100) { 2244 /* 2245 * We've done nothing but branch movement 2246 * for 100 passes; we're probably 2247 * in a cycle and will never reach a 2248 * fixed point. 2249 * 2250 * XXX - yes, we really need a non- 2251 * heuristic way of detecting a cycle. 2252 */ 2253 opt_state->done = 1; 2254 break; 2255 } 2256 } 2257 } 2258 } 2259 2260 /* 2261 * Optimize the filter code in its dag representation. 2262 * Return 0 on success, -1 on error. 2263 */ 2264 int 2265 bpf_optimize(struct icode *ic, char *errbuf) 2266 { 2267 opt_state_t opt_state; 2268 2269 memset(&opt_state, 0, sizeof(opt_state)); 2270 opt_state.errbuf = errbuf; 2271 opt_state.non_branch_movement_performed = 0; 2272 if (setjmp(opt_state.top_ctx)) { 2273 opt_cleanup(&opt_state); 2274 return -1; 2275 } 2276 opt_init(&opt_state, ic); 2277 opt_loop(&opt_state, ic, 0); 2278 opt_loop(&opt_state, ic, 1); 2279 intern_blocks(&opt_state, ic); 2280 #ifdef BDEBUG 2281 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 2282 printf("after intern_blocks()\n"); 2283 opt_dump(&opt_state, ic); 2284 } 2285 #endif 2286 opt_root(&ic->root); 2287 #ifdef BDEBUG 2288 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 2289 printf("after opt_root()\n"); 2290 opt_dump(&opt_state, ic); 2291 } 2292 #endif 2293 opt_cleanup(&opt_state); 2294 return 0; 2295 } 2296 2297 static void 2298 make_marks(struct icode *ic, struct block *p) 2299 { 2300 if (!isMarked(ic, p)) { 2301 Mark(ic, p); 2302 if (BPF_CLASS(p->s.code) != BPF_RET) { 2303 make_marks(ic, JT(p)); 2304 make_marks(ic, JF(p)); 2305 } 2306 } 2307 } 2308 2309 /* 2310 * Mark code array such that isMarked(ic->cur_mark, i) is true 2311 * only for nodes that are alive. 2312 */ 2313 static void 2314 mark_code(struct icode *ic) 2315 { 2316 ic->cur_mark += 1; 2317 make_marks(ic, ic->root); 2318 } 2319 2320 /* 2321 * True iff the two stmt lists load the same value from the packet into 2322 * the accumulator. 2323 */ 2324 static int 2325 eq_slist(struct slist *x, struct slist *y) 2326 { 2327 for (;;) { 2328 while (x && x->s.code == NOP) 2329 x = x->next; 2330 while (y && y->s.code == NOP) 2331 y = y->next; 2332 if (x == 0) 2333 return y == 0; 2334 if (y == 0) 2335 return x == 0; 2336 if (x->s.code != y->s.code || x->s.k != y->s.k) 2337 return 0; 2338 x = x->next; 2339 y = y->next; 2340 } 2341 } 2342 2343 static inline int 2344 eq_blk(struct block *b0, struct block *b1) 2345 { 2346 if (b0->s.code == b1->s.code && 2347 b0->s.k == b1->s.k && 2348 b0->et.succ == b1->et.succ && 2349 b0->ef.succ == b1->ef.succ) 2350 return eq_slist(b0->stmts, b1->stmts); 2351 return 0; 2352 } 2353 2354 static void 2355 intern_blocks(opt_state_t *opt_state, struct icode *ic) 2356 { 2357 struct block *p; 2358 u_int i, j; 2359 int done1; /* don't shadow global */ 2360 top: 2361 done1 = 1; 2362 for (i = 0; i < opt_state->n_blocks; ++i) 2363 opt_state->blocks[i]->link = 0; 2364 2365 mark_code(ic); 2366 2367 for (i = opt_state->n_blocks - 1; i != 0; ) { 2368 --i; 2369 if (!isMarked(ic, opt_state->blocks[i])) 2370 continue; 2371 for (j = i + 1; j < opt_state->n_blocks; ++j) { 2372 if (!isMarked(ic, opt_state->blocks[j])) 2373 continue; 2374 if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) { 2375 opt_state->blocks[i]->link = opt_state->blocks[j]->link ? 2376 opt_state->blocks[j]->link : opt_state->blocks[j]; 2377 break; 2378 } 2379 } 2380 } 2381 for (i = 0; i < opt_state->n_blocks; ++i) { 2382 p = opt_state->blocks[i]; 2383 if (JT(p) == 0) 2384 continue; 2385 if (JT(p)->link) { 2386 done1 = 0; 2387 JT(p) = JT(p)->link; 2388 } 2389 if (JF(p)->link) { 2390 done1 = 0; 2391 JF(p) = JF(p)->link; 2392 } 2393 } 2394 if (!done1) 2395 goto top; 2396 } 2397 2398 static void 2399 opt_cleanup(opt_state_t *opt_state) 2400 { 2401 free((void *)opt_state->vnode_base); 2402 free((void *)opt_state->vmap); 2403 free((void *)opt_state->edges); 2404 free((void *)opt_state->space); 2405 free((void *)opt_state->levels); 2406 free((void *)opt_state->blocks); 2407 } 2408 2409 /* 2410 * For optimizer errors. 2411 */ 2412 static void PCAP_NORETURN 2413 opt_error(opt_state_t *opt_state, const char *fmt, ...) 2414 { 2415 va_list ap; 2416 2417 if (opt_state->errbuf != NULL) { 2418 va_start(ap, fmt); 2419 (void)vsnprintf(opt_state->errbuf, 2420 PCAP_ERRBUF_SIZE, fmt, ap); 2421 va_end(ap); 2422 } 2423 longjmp(opt_state->top_ctx, 1); 2424 /* NOTREACHED */ 2425 #ifdef _AIX 2426 PCAP_UNREACHABLE 2427 #endif /* _AIX */ 2428 } 2429 2430 /* 2431 * Return the number of stmts in 's'. 2432 */ 2433 static u_int 2434 slength(struct slist *s) 2435 { 2436 u_int n = 0; 2437 2438 for (; s; s = s->next) 2439 if (s->s.code != NOP) 2440 ++n; 2441 return n; 2442 } 2443 2444 /* 2445 * Return the number of nodes reachable by 'p'. 2446 * All nodes should be initially unmarked. 2447 */ 2448 static int 2449 count_blocks(struct icode *ic, struct block *p) 2450 { 2451 if (p == 0 || isMarked(ic, p)) 2452 return 0; 2453 Mark(ic, p); 2454 return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1; 2455 } 2456 2457 /* 2458 * Do a depth first search on the flow graph, numbering the 2459 * the basic blocks, and entering them into the 'blocks' array.` 2460 */ 2461 static void 2462 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p) 2463 { 2464 u_int n; 2465 2466 if (p == 0 || isMarked(ic, p)) 2467 return; 2468 2469 Mark(ic, p); 2470 n = opt_state->n_blocks++; 2471 if (opt_state->n_blocks == 0) { 2472 /* 2473 * Overflow. 2474 */ 2475 opt_error(opt_state, "filter is too complex to optimize"); 2476 } 2477 p->id = n; 2478 opt_state->blocks[n] = p; 2479 2480 number_blks_r(opt_state, ic, JT(p)); 2481 number_blks_r(opt_state, ic, JF(p)); 2482 } 2483 2484 /* 2485 * Return the number of stmts in the flowgraph reachable by 'p'. 2486 * The nodes should be unmarked before calling. 2487 * 2488 * Note that "stmts" means "instructions", and that this includes 2489 * 2490 * side-effect statements in 'p' (slength(p->stmts)); 2491 * 2492 * statements in the true branch from 'p' (count_stmts(JT(p))); 2493 * 2494 * statements in the false branch from 'p' (count_stmts(JF(p))); 2495 * 2496 * the conditional jump itself (1); 2497 * 2498 * an extra long jump if the true branch requires it (p->longjt); 2499 * 2500 * an extra long jump if the false branch requires it (p->longjf). 2501 */ 2502 static u_int 2503 count_stmts(struct icode *ic, struct block *p) 2504 { 2505 u_int n; 2506 2507 if (p == 0 || isMarked(ic, p)) 2508 return 0; 2509 Mark(ic, p); 2510 n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p)); 2511 return slength(p->stmts) + n + 1 + p->longjt + p->longjf; 2512 } 2513 2514 /* 2515 * Allocate memory. All allocation is done before optimization 2516 * is begun. A linear bound on the size of all data structures is computed 2517 * from the total number of blocks and/or statements. 2518 */ 2519 static void 2520 opt_init(opt_state_t *opt_state, struct icode *ic) 2521 { 2522 bpf_u_int32 *p; 2523 int i, n, max_stmts; 2524 u_int product; 2525 size_t block_memsize, edge_memsize; 2526 2527 /* 2528 * First, count the blocks, so we can malloc an array to map 2529 * block number to block. Then, put the blocks into the array. 2530 */ 2531 unMarkAll(ic); 2532 n = count_blocks(ic, ic->root); 2533 opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks)); 2534 if (opt_state->blocks == NULL) 2535 opt_error(opt_state, "malloc"); 2536 unMarkAll(ic); 2537 opt_state->n_blocks = 0; 2538 number_blks_r(opt_state, ic, ic->root); 2539 2540 /* 2541 * This "should not happen". 2542 */ 2543 if (opt_state->n_blocks == 0) 2544 opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue"); 2545 2546 opt_state->n_edges = 2 * opt_state->n_blocks; 2547 if ((opt_state->n_edges / 2) != opt_state->n_blocks) { 2548 /* 2549 * Overflow. 2550 */ 2551 opt_error(opt_state, "filter is too complex to optimize"); 2552 } 2553 opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges)); 2554 if (opt_state->edges == NULL) { 2555 opt_error(opt_state, "malloc"); 2556 } 2557 2558 /* 2559 * The number of levels is bounded by the number of nodes. 2560 */ 2561 opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels)); 2562 if (opt_state->levels == NULL) { 2563 opt_error(opt_state, "malloc"); 2564 } 2565 2566 opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1; 2567 opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1; 2568 2569 /* 2570 * Make sure opt_state->n_blocks * opt_state->nodewords fits 2571 * in a u_int; we use it as a u_int number-of-iterations 2572 * value. 2573 */ 2574 product = opt_state->n_blocks * opt_state->nodewords; 2575 if ((product / opt_state->n_blocks) != opt_state->nodewords) { 2576 /* 2577 * XXX - just punt and don't try to optimize? 2578 * In practice, this is unlikely to happen with 2579 * a normal filter. 2580 */ 2581 opt_error(opt_state, "filter is too complex to optimize"); 2582 } 2583 2584 /* 2585 * Make sure the total memory required for that doesn't 2586 * overflow. 2587 */ 2588 block_memsize = (size_t)2 * product * sizeof(*opt_state->space); 2589 if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) { 2590 opt_error(opt_state, "filter is too complex to optimize"); 2591 } 2592 2593 /* 2594 * Make sure opt_state->n_edges * opt_state->edgewords fits 2595 * in a u_int; we use it as a u_int number-of-iterations 2596 * value. 2597 */ 2598 product = opt_state->n_edges * opt_state->edgewords; 2599 if ((product / opt_state->n_edges) != opt_state->edgewords) { 2600 opt_error(opt_state, "filter is too complex to optimize"); 2601 } 2602 2603 /* 2604 * Make sure the total memory required for that doesn't 2605 * overflow. 2606 */ 2607 edge_memsize = (size_t)product * sizeof(*opt_state->space); 2608 if (edge_memsize / product != sizeof(*opt_state->space)) { 2609 opt_error(opt_state, "filter is too complex to optimize"); 2610 } 2611 2612 /* 2613 * Make sure the total memory required for both of them doesn't 2614 * overflow. 2615 */ 2616 if (block_memsize > SIZE_MAX - edge_memsize) { 2617 opt_error(opt_state, "filter is too complex to optimize"); 2618 } 2619 2620 /* XXX */ 2621 opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize); 2622 if (opt_state->space == NULL) { 2623 opt_error(opt_state, "malloc"); 2624 } 2625 p = opt_state->space; 2626 opt_state->all_dom_sets = p; 2627 for (i = 0; i < n; ++i) { 2628 opt_state->blocks[i]->dom = p; 2629 p += opt_state->nodewords; 2630 } 2631 opt_state->all_closure_sets = p; 2632 for (i = 0; i < n; ++i) { 2633 opt_state->blocks[i]->closure = p; 2634 p += opt_state->nodewords; 2635 } 2636 opt_state->all_edge_sets = p; 2637 for (i = 0; i < n; ++i) { 2638 register struct block *b = opt_state->blocks[i]; 2639 2640 b->et.edom = p; 2641 p += opt_state->edgewords; 2642 b->ef.edom = p; 2643 p += opt_state->edgewords; 2644 b->et.id = i; 2645 opt_state->edges[i] = &b->et; 2646 b->ef.id = opt_state->n_blocks + i; 2647 opt_state->edges[opt_state->n_blocks + i] = &b->ef; 2648 b->et.pred = b; 2649 b->ef.pred = b; 2650 } 2651 max_stmts = 0; 2652 for (i = 0; i < n; ++i) 2653 max_stmts += slength(opt_state->blocks[i]->stmts) + 1; 2654 /* 2655 * We allocate at most 3 value numbers per statement, 2656 * so this is an upper bound on the number of valnodes 2657 * we'll need. 2658 */ 2659 opt_state->maxval = 3 * max_stmts; 2660 opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap)); 2661 if (opt_state->vmap == NULL) { 2662 opt_error(opt_state, "malloc"); 2663 } 2664 opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base)); 2665 if (opt_state->vnode_base == NULL) { 2666 opt_error(opt_state, "malloc"); 2667 } 2668 } 2669 2670 /* 2671 * This is only used when supporting optimizer debugging. It is 2672 * global state, so do *not* do more than one compile in parallel 2673 * and expect it to provide meaningful information. 2674 */ 2675 #ifdef BDEBUG 2676 int bids[NBIDS]; 2677 #endif 2678 2679 static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...) 2680 PCAP_PRINTFLIKE(2, 3); 2681 2682 /* 2683 * Returns true if successful. Returns false if a branch has 2684 * an offset that is too large. If so, we have marked that 2685 * branch so that on a subsequent iteration, it will be treated 2686 * properly. 2687 */ 2688 static int 2689 convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p) 2690 { 2691 struct bpf_insn *dst; 2692 struct slist *src; 2693 u_int slen; 2694 u_int off; 2695 struct slist **offset = NULL; 2696 2697 if (p == 0 || isMarked(ic, p)) 2698 return (1); 2699 Mark(ic, p); 2700 2701 if (convert_code_r(conv_state, ic, JF(p)) == 0) 2702 return (0); 2703 if (convert_code_r(conv_state, ic, JT(p)) == 0) 2704 return (0); 2705 2706 slen = slength(p->stmts); 2707 dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf); 2708 /* inflate length by any extra jumps */ 2709 2710 p->offset = (int)(dst - conv_state->fstart); 2711 2712 /* generate offset[] for convenience */ 2713 if (slen) { 2714 offset = (struct slist **)calloc(slen, sizeof(struct slist *)); 2715 if (!offset) { 2716 conv_error(conv_state, "not enough core"); 2717 /*NOTREACHED*/ 2718 } 2719 } 2720 src = p->stmts; 2721 for (off = 0; off < slen && src; off++) { 2722 #if 0 2723 printf("off=%d src=%x\n", off, src); 2724 #endif 2725 offset[off] = src; 2726 src = src->next; 2727 } 2728 2729 off = 0; 2730 for (src = p->stmts; src; src = src->next) { 2731 if (src->s.code == NOP) 2732 continue; 2733 dst->code = (u_short)src->s.code; 2734 dst->k = src->s.k; 2735 2736 /* fill block-local relative jump */ 2737 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) { 2738 #if 0 2739 if (src->s.jt || src->s.jf) { 2740 free(offset); 2741 conv_error(conv_state, "illegal jmp destination"); 2742 /*NOTREACHED*/ 2743 } 2744 #endif 2745 goto filled; 2746 } 2747 if (off == slen - 2) /*???*/ 2748 goto filled; 2749 2750 { 2751 u_int i; 2752 int jt, jf; 2753 const char ljerr[] = "%s for block-local relative jump: off=%d"; 2754 2755 #if 0 2756 printf("code=%x off=%d %x %x\n", src->s.code, 2757 off, src->s.jt, src->s.jf); 2758 #endif 2759 2760 if (!src->s.jt || !src->s.jf) { 2761 free(offset); 2762 conv_error(conv_state, ljerr, "no jmp destination", off); 2763 /*NOTREACHED*/ 2764 } 2765 2766 jt = jf = 0; 2767 for (i = 0; i < slen; i++) { 2768 if (offset[i] == src->s.jt) { 2769 if (jt) { 2770 free(offset); 2771 conv_error(conv_state, ljerr, "multiple matches", off); 2772 /*NOTREACHED*/ 2773 } 2774 2775 if (i - off - 1 >= 256) { 2776 free(offset); 2777 conv_error(conv_state, ljerr, "out-of-range jump", off); 2778 /*NOTREACHED*/ 2779 } 2780 dst->jt = (u_char)(i - off - 1); 2781 jt++; 2782 } 2783 if (offset[i] == src->s.jf) { 2784 if (jf) { 2785 free(offset); 2786 conv_error(conv_state, ljerr, "multiple matches", off); 2787 /*NOTREACHED*/ 2788 } 2789 if (i - off - 1 >= 256) { 2790 free(offset); 2791 conv_error(conv_state, ljerr, "out-of-range jump", off); 2792 /*NOTREACHED*/ 2793 } 2794 dst->jf = (u_char)(i - off - 1); 2795 jf++; 2796 } 2797 } 2798 if (!jt || !jf) { 2799 free(offset); 2800 conv_error(conv_state, ljerr, "no destination found", off); 2801 /*NOTREACHED*/ 2802 } 2803 } 2804 filled: 2805 ++dst; 2806 ++off; 2807 } 2808 if (offset) 2809 free(offset); 2810 2811 #ifdef BDEBUG 2812 if (dst - conv_state->fstart < NBIDS) 2813 bids[dst - conv_state->fstart] = p->id + 1; 2814 #endif 2815 dst->code = (u_short)p->s.code; 2816 dst->k = p->s.k; 2817 if (JT(p)) { 2818 /* number of extra jumps inserted */ 2819 u_char extrajmps = 0; 2820 off = JT(p)->offset - (p->offset + slen) - 1; 2821 if (off >= 256) { 2822 /* offset too large for branch, must add a jump */ 2823 if (p->longjt == 0) { 2824 /* mark this instruction and retry */ 2825 p->longjt++; 2826 return(0); 2827 } 2828 dst->jt = extrajmps; 2829 extrajmps++; 2830 dst[extrajmps].code = BPF_JMP|BPF_JA; 2831 dst[extrajmps].k = off - extrajmps; 2832 } 2833 else 2834 dst->jt = (u_char)off; 2835 off = JF(p)->offset - (p->offset + slen) - 1; 2836 if (off >= 256) { 2837 /* offset too large for branch, must add a jump */ 2838 if (p->longjf == 0) { 2839 /* mark this instruction and retry */ 2840 p->longjf++; 2841 return(0); 2842 } 2843 /* branch if F to following jump */ 2844 /* if two jumps are inserted, F goes to second one */ 2845 dst->jf = extrajmps; 2846 extrajmps++; 2847 dst[extrajmps].code = BPF_JMP|BPF_JA; 2848 dst[extrajmps].k = off - extrajmps; 2849 } 2850 else 2851 dst->jf = (u_char)off; 2852 } 2853 return (1); 2854 } 2855 2856 2857 /* 2858 * Convert flowgraph intermediate representation to the 2859 * BPF array representation. Set *lenp to the number of instructions. 2860 * 2861 * This routine does *NOT* leak the memory pointed to by fp. It *must 2862 * not* do free(fp) before returning fp; doing so would make no sense, 2863 * as the BPF array pointed to by the return value of icode_to_fcode() 2864 * must be valid - it's being returned for use in a bpf_program structure. 2865 * 2866 * If it appears that icode_to_fcode() is leaking, the problem is that 2867 * the program using pcap_compile() is failing to free the memory in 2868 * the BPF program when it's done - the leak is in the program, not in 2869 * the routine that happens to be allocating the memory. (By analogy, if 2870 * a program calls fopen() without ever calling fclose() on the FILE *, 2871 * it will leak the FILE structure; the leak is not in fopen(), it's in 2872 * the program.) Change the program to use pcap_freecode() when it's 2873 * done with the filter program. See the pcap man page. 2874 */ 2875 struct bpf_insn * 2876 icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp, 2877 char *errbuf) 2878 { 2879 u_int n; 2880 struct bpf_insn *fp; 2881 conv_state_t conv_state; 2882 2883 conv_state.fstart = NULL; 2884 conv_state.errbuf = errbuf; 2885 if (setjmp(conv_state.top_ctx) != 0) { 2886 free(conv_state.fstart); 2887 return NULL; 2888 } 2889 2890 /* 2891 * Loop doing convert_code_r() until no branches remain 2892 * with too-large offsets. 2893 */ 2894 for (;;) { 2895 unMarkAll(ic); 2896 n = *lenp = count_stmts(ic, root); 2897 2898 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n); 2899 if (fp == NULL) { 2900 (void)snprintf(errbuf, PCAP_ERRBUF_SIZE, 2901 "malloc"); 2902 return NULL; 2903 } 2904 memset((char *)fp, 0, sizeof(*fp) * n); 2905 conv_state.fstart = fp; 2906 conv_state.ftail = fp + n; 2907 2908 unMarkAll(ic); 2909 if (convert_code_r(&conv_state, ic, root)) 2910 break; 2911 free(fp); 2912 } 2913 2914 return fp; 2915 } 2916 2917 /* 2918 * For iconv_to_fconv() errors. 2919 */ 2920 static void PCAP_NORETURN 2921 conv_error(conv_state_t *conv_state, const char *fmt, ...) 2922 { 2923 va_list ap; 2924 2925 va_start(ap, fmt); 2926 (void)vsnprintf(conv_state->errbuf, 2927 PCAP_ERRBUF_SIZE, fmt, ap); 2928 va_end(ap); 2929 longjmp(conv_state->top_ctx, 1); 2930 /* NOTREACHED */ 2931 #ifdef _AIX 2932 PCAP_UNREACHABLE 2933 #endif /* _AIX */ 2934 } 2935 2936 /* 2937 * Make a copy of a BPF program and put it in the "fcode" member of 2938 * a "pcap_t". 2939 * 2940 * If we fail to allocate memory for the copy, fill in the "errbuf" 2941 * member of the "pcap_t" with an error message, and return -1; 2942 * otherwise, return 0. 2943 */ 2944 int 2945 install_bpf_program(pcap_t *p, struct bpf_program *fp) 2946 { 2947 size_t prog_size; 2948 2949 /* 2950 * Validate the program. 2951 */ 2952 if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) { 2953 snprintf(p->errbuf, sizeof(p->errbuf), 2954 "BPF program is not valid"); 2955 return (-1); 2956 } 2957 2958 /* 2959 * Free up any already installed program. 2960 */ 2961 pcap_freecode(&p->fcode); 2962 2963 prog_size = sizeof(*fp->bf_insns) * fp->bf_len; 2964 p->fcode.bf_len = fp->bf_len; 2965 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size); 2966 if (p->fcode.bf_insns == NULL) { 2967 pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf), 2968 errno, "malloc"); 2969 return (-1); 2970 } 2971 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size); 2972 return (0); 2973 } 2974 2975 #ifdef BDEBUG 2976 static void 2977 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog, 2978 FILE *out) 2979 { 2980 int icount, noffset; 2981 int i; 2982 2983 if (block == NULL || isMarked(ic, block)) 2984 return; 2985 Mark(ic, block); 2986 2987 icount = slength(block->stmts) + 1 + block->longjt + block->longjf; 2988 noffset = min(block->offset + icount, (int)prog->bf_len); 2989 2990 fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id); 2991 for (i = block->offset; i < noffset; i++) { 2992 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i)); 2993 } 2994 fprintf(out, "\" tooltip=\""); 2995 for (i = 0; i < BPF_MEMWORDS; i++) 2996 if (block->val[i] != VAL_UNKNOWN) 2997 fprintf(out, "val[%d]=%d ", i, block->val[i]); 2998 fprintf(out, "val[A]=%d ", block->val[A_ATOM]); 2999 fprintf(out, "val[X]=%d", block->val[X_ATOM]); 3000 fprintf(out, "\""); 3001 if (JT(block) == NULL) 3002 fprintf(out, ", peripheries=2"); 3003 fprintf(out, "];\n"); 3004 3005 dot_dump_node(ic, JT(block), prog, out); 3006 dot_dump_node(ic, JF(block), prog, out); 3007 } 3008 3009 static void 3010 dot_dump_edge(struct icode *ic, struct block *block, FILE *out) 3011 { 3012 if (block == NULL || isMarked(ic, block)) 3013 return; 3014 Mark(ic, block); 3015 3016 if (JT(block)) { 3017 fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n", 3018 block->id, JT(block)->id); 3019 fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n", 3020 block->id, JF(block)->id); 3021 } 3022 dot_dump_edge(ic, JT(block), out); 3023 dot_dump_edge(ic, JF(block), out); 3024 } 3025 3026 /* Output the block CFG using graphviz/DOT language 3027 * In the CFG, block's code, value index for each registers at EXIT, 3028 * and the jump relationship is show. 3029 * 3030 * example DOT for BPF `ip src host 1.1.1.1' is: 3031 digraph BPF { 3032 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"]; 3033 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"]; 3034 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2]; 3035 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2]; 3036 "block0":se -> "block1":n [label="T"]; 3037 "block0":sw -> "block3":n [label="F"]; 3038 "block1":se -> "block2":n [label="T"]; 3039 "block1":sw -> "block3":n [label="F"]; 3040 } 3041 * 3042 * After install graphviz on https://www.graphviz.org/, save it as bpf.dot 3043 * and run `dot -Tpng -O bpf.dot' to draw the graph. 3044 */ 3045 static int 3046 dot_dump(struct icode *ic, char *errbuf) 3047 { 3048 struct bpf_program f; 3049 FILE *out = stdout; 3050 3051 memset(bids, 0, sizeof bids); 3052 f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf); 3053 if (f.bf_insns == NULL) 3054 return -1; 3055 3056 fprintf(out, "digraph BPF {\n"); 3057 unMarkAll(ic); 3058 dot_dump_node(ic, ic->root, &f, out); 3059 unMarkAll(ic); 3060 dot_dump_edge(ic, ic->root, out); 3061 fprintf(out, "}\n"); 3062 3063 free((char *)f.bf_insns); 3064 return 0; 3065 } 3066 3067 static int 3068 plain_dump(struct icode *ic, char *errbuf) 3069 { 3070 struct bpf_program f; 3071 3072 memset(bids, 0, sizeof bids); 3073 f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf); 3074 if (f.bf_insns == NULL) 3075 return -1; 3076 bpf_dump(&f, 1); 3077 putchar('\n'); 3078 free((char *)f.bf_insns); 3079 return 0; 3080 } 3081 3082 static void 3083 opt_dump(opt_state_t *opt_state, struct icode *ic) 3084 { 3085 int status; 3086 char errbuf[PCAP_ERRBUF_SIZE]; 3087 3088 /* 3089 * If the CFG, in DOT format, is requested, output it rather than 3090 * the code that would be generated from that graph. 3091 */ 3092 if (pcap_print_dot_graph) 3093 status = dot_dump(ic, errbuf); 3094 else 3095 status = plain_dump(ic, errbuf); 3096 if (status == -1) 3097 opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf); 3098 } 3099 #endif 3100