xref: /freebsd/contrib/libpcap/optimize.c (revision d9a42747950146bf03cda7f6e25d219253f8a57a)
1 /*
2  * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that: (1) source code distributions
7  * retain the above copyright notice and this paragraph in its entirety, (2)
8  * distributions including binary code include the above copyright notice and
9  * this paragraph in its entirety in the documentation or other materials
10  * provided with the distribution, and (3) all advertising materials mentioning
11  * features or use of this software display the following acknowledgement:
12  * ``This product includes software developed by the University of California,
13  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14  * the University nor the names of its contributors may be used to endorse
15  * or promote products derived from this software without specific prior
16  * written permission.
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20  *
21  *  Optimization module for BPF code intermediate representation.
22  */
23 
24 #ifdef HAVE_CONFIG_H
25 #include <config.h>
26 #endif
27 
28 #include <pcap-types.h>
29 
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <memory.h>
33 #include <setjmp.h>
34 #include <string.h>
35 #include <limits.h> /* for SIZE_MAX */
36 #include <errno.h>
37 
38 #include "pcap-int.h"
39 
40 #include "gencode.h"
41 #include "optimize.h"
42 #include "diag-control.h"
43 
44 #ifdef HAVE_OS_PROTO_H
45 #include "os-proto.h"
46 #endif
47 
48 #ifdef BDEBUG
49 /*
50  * The internal "debug printout" flag for the filter expression optimizer.
51  * The code to print that stuff is present only if BDEBUG is defined, so
52  * the flag, and the routine to set it, are defined only if BDEBUG is
53  * defined.
54  */
55 static int pcap_optimizer_debug;
56 
57 /*
58  * Routine to set that flag.
59  *
60  * This is intended for libpcap developers, not for general use.
61  * If you want to set these in a program, you'll have to declare this
62  * routine yourself, with the appropriate DLL import attribute on Windows;
63  * it's not declared in any header file, and won't be declared in any
64  * header file provided by libpcap.
65  */
66 PCAP_API void pcap_set_optimizer_debug(int value);
67 
68 PCAP_API_DEF void
69 pcap_set_optimizer_debug(int value)
70 {
71 	pcap_optimizer_debug = value;
72 }
73 
74 /*
75  * The internal "print dot graph" flag for the filter expression optimizer.
76  * The code to print that stuff is present only if BDEBUG is defined, so
77  * the flag, and the routine to set it, are defined only if BDEBUG is
78  * defined.
79  */
80 static int pcap_print_dot_graph;
81 
82 /*
83  * Routine to set that flag.
84  *
85  * This is intended for libpcap developers, not for general use.
86  * If you want to set these in a program, you'll have to declare this
87  * routine yourself, with the appropriate DLL import attribute on Windows;
88  * it's not declared in any header file, and won't be declared in any
89  * header file provided by libpcap.
90  */
91 PCAP_API void pcap_set_print_dot_graph(int value);
92 
93 PCAP_API_DEF void
94 pcap_set_print_dot_graph(int value)
95 {
96 	pcap_print_dot_graph = value;
97 }
98 
99 #endif
100 
101 /*
102  * lowest_set_bit().
103  *
104  * Takes a 32-bit integer as an argument.
105  *
106  * If handed a non-zero value, returns the index of the lowest set bit,
107  * counting upwards from zero.
108  *
109  * If handed zero, the results are platform- and compiler-dependent.
110  * Keep it out of the light, don't give it any water, don't feed it
111  * after midnight, and don't pass zero to it.
112  *
113  * This is the same as the count of trailing zeroes in the word.
114  */
115 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116   /*
117    * GCC 3.4 and later; we have __builtin_ctz().
118    */
119   #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120 #elif defined(_MSC_VER)
121   /*
122    * Visual Studio; we support only 2005 and later, so use
123    * _BitScanForward().
124    */
125 #include <intrin.h>
126 
127 #ifndef __clang__
128 #pragma intrinsic(_BitScanForward)
129 #endif
130 
131 static __forceinline u_int
132 lowest_set_bit(int mask)
133 {
134 	unsigned long bit;
135 
136 	/*
137 	 * Don't sign-extend mask if long is longer than int.
138 	 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139 	 */
140 	if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141 		abort();	/* mask is zero */
142 	return (u_int)bit;
143 }
144 #elif defined(MSDOS) && defined(__DJGPP__)
145   /*
146    * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147    * we've already included.
148    */
149   #define lowest_set_bit(mask)	((u_int)(ffs((mask)) - 1))
150 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151   /*
152    * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153    * or some other platform (UN*X conforming to a sufficient recent version
154    * of the Single UNIX Specification).
155    */
156   #include <strings.h>
157   #define lowest_set_bit(mask)	(u_int)((ffs((mask)) - 1))
158 #else
159 /*
160  * None of the above.
161  * Use a perfect-hash-function-based function.
162  */
163 static u_int
164 lowest_set_bit(int mask)
165 {
166 	unsigned int v = (unsigned int)mask;
167 
168 	static const u_int MultiplyDeBruijnBitPosition[32] = {
169 		0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170 		31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171 	};
172 
173 	/*
174 	 * We strip off all but the lowermost set bit (v & ~v),
175 	 * and perform a minimal perfect hash on it to look up the
176 	 * number of low-order zero bits in a table.
177 	 *
178 	 * See:
179 	 *
180 	 *	http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181 	 *
182 	 *	http://supertech.csail.mit.edu/papers/debruijn.pdf
183 	 */
184 	return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185 }
186 #endif
187 
188 /*
189  * Represents a deleted instruction.
190  */
191 #define NOP -1
192 
193 /*
194  * Register numbers for use-def values.
195  * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196  * location.  A_ATOM is the accumulator and X_ATOM is the index
197  * register.
198  */
199 #define A_ATOM BPF_MEMWORDS
200 #define X_ATOM (BPF_MEMWORDS+1)
201 
202 /*
203  * This define is used to represent *both* the accumulator and
204  * x register in use-def computations.
205  * Currently, the use-def code assumes only one definition per instruction.
206  */
207 #define AX_ATOM N_ATOMS
208 
209 /*
210  * These data structures are used in a Cocke and Shwarz style
211  * value numbering scheme.  Since the flowgraph is acyclic,
212  * exit values can be propagated from a node's predecessors
213  * provided it is uniquely defined.
214  */
215 struct valnode {
216 	int code;
217 	bpf_u_int32 v0, v1;
218 	int val;		/* the value number */
219 	struct valnode *next;
220 };
221 
222 /* Integer constants mapped with the load immediate opcode. */
223 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224 
225 struct vmapinfo {
226 	int is_const;
227 	bpf_u_int32 const_val;
228 };
229 
230 typedef struct {
231 	/*
232 	 * Place to longjmp to on an error.
233 	 */
234 	jmp_buf top_ctx;
235 
236 	/*
237 	 * The buffer into which to put error message.
238 	 */
239 	char *errbuf;
240 
241 	/*
242 	 * A flag to indicate that further optimization is needed.
243 	 * Iterative passes are continued until a given pass yields no
244 	 * code simplification or branch movement.
245 	 */
246 	int done;
247 
248 	/*
249 	 * XXX - detect loops that do nothing but repeated AND/OR pullups
250 	 * and edge moves.
251 	 * If 100 passes in a row do nothing but that, treat that as a
252 	 * sign that we're in a loop that just shuffles in a cycle in
253 	 * which each pass just shuffles the code and we eventually
254 	 * get back to the original configuration.
255 	 *
256 	 * XXX - we need a non-heuristic way of detecting, or preventing,
257 	 * such a cycle.
258 	 */
259 	int non_branch_movement_performed;
260 
261 	u_int n_blocks;		/* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262 	struct block **blocks;
263 	u_int n_edges;		/* twice n_blocks, so guaranteed to be > 0 */
264 	struct edge **edges;
265 
266 	/*
267 	 * A bit vector set representation of the dominators.
268 	 * We round up the set size to the next power of two.
269 	 */
270 	u_int nodewords;	/* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271 	u_int edgewords;	/* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272 	struct block **levels;
273 	bpf_u_int32 *space;
274 
275 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276 /*
277  * True if a is in uset {p}
278  */
279 #define SET_MEMBER(p, a) \
280 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281 
282 /*
283  * Add 'a' to uset p.
284  */
285 #define SET_INSERT(p, a) \
286 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287 
288 /*
289  * Delete 'a' from uset p.
290  */
291 #define SET_DELETE(p, a) \
292 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293 
294 /*
295  * a := a intersect b
296  * n must be guaranteed to be > 0
297  */
298 #define SET_INTERSECT(a, b, n)\
299 {\
300 	register bpf_u_int32 *_x = a, *_y = b;\
301 	register u_int _n = n;\
302 	do *_x++ &= *_y++; while (--_n != 0);\
303 }
304 
305 /*
306  * a := a - b
307  * n must be guaranteed to be > 0
308  */
309 #define SET_SUBTRACT(a, b, n)\
310 {\
311 	register bpf_u_int32 *_x = a, *_y = b;\
312 	register u_int _n = n;\
313 	do *_x++ &=~ *_y++; while (--_n != 0);\
314 }
315 
316 /*
317  * a := a union b
318  * n must be guaranteed to be > 0
319  */
320 #define SET_UNION(a, b, n)\
321 {\
322 	register bpf_u_int32 *_x = a, *_y = b;\
323 	register u_int _n = n;\
324 	do *_x++ |= *_y++; while (--_n != 0);\
325 }
326 
327 	uset all_dom_sets;
328 	uset all_closure_sets;
329 	uset all_edge_sets;
330 
331 #define MODULUS 213
332 	struct valnode *hashtbl[MODULUS];
333 	bpf_u_int32 curval;
334 	bpf_u_int32 maxval;
335 
336 	struct vmapinfo *vmap;
337 	struct valnode *vnode_base;
338 	struct valnode *next_vnode;
339 } opt_state_t;
340 
341 typedef struct {
342 	/*
343 	 * Place to longjmp to on an error.
344 	 */
345 	jmp_buf top_ctx;
346 
347 	/*
348 	 * The buffer into which to put error message.
349 	 */
350 	char *errbuf;
351 
352 	/*
353 	 * Some pointers used to convert the basic block form of the code,
354 	 * into the array form that BPF requires.  'fstart' will point to
355 	 * the malloc'd array while 'ftail' is used during the recursive
356 	 * traversal.
357 	 */
358 	struct bpf_insn *fstart;
359 	struct bpf_insn *ftail;
360 } conv_state_t;
361 
362 static void opt_init(opt_state_t *, struct icode *);
363 static void opt_cleanup(opt_state_t *);
364 static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365     PCAP_PRINTFLIKE(2, 3);
366 
367 static void intern_blocks(opt_state_t *, struct icode *);
368 
369 static void find_inedges(opt_state_t *, struct block *);
370 #ifdef BDEBUG
371 static void opt_dump(opt_state_t *, struct icode *);
372 #endif
373 
374 #ifndef MAX
375 #define MAX(a,b) ((a)>(b)?(a):(b))
376 #endif
377 
378 static void
379 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380 {
381 	int level;
382 
383 	if (isMarked(ic, b))
384 		return;
385 
386 	Mark(ic, b);
387 	b->link = 0;
388 
389 	if (JT(b)) {
390 		find_levels_r(opt_state, ic, JT(b));
391 		find_levels_r(opt_state, ic, JF(b));
392 		level = MAX(JT(b)->level, JF(b)->level) + 1;
393 	} else
394 		level = 0;
395 	b->level = level;
396 	b->link = opt_state->levels[level];
397 	opt_state->levels[level] = b;
398 }
399 
400 /*
401  * Level graph.  The levels go from 0 at the leaves to
402  * N_LEVELS at the root.  The opt_state->levels[] array points to the
403  * first node of the level list, whose elements are linked
404  * with the 'link' field of the struct block.
405  */
406 static void
407 find_levels(opt_state_t *opt_state, struct icode *ic)
408 {
409 	memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410 	unMarkAll(ic);
411 	find_levels_r(opt_state, ic, ic->root);
412 }
413 
414 /*
415  * Find dominator relationships.
416  * Assumes graph has been leveled.
417  */
418 static void
419 find_dom(opt_state_t *opt_state, struct block *root)
420 {
421 	u_int i;
422 	int level;
423 	struct block *b;
424 	bpf_u_int32 *x;
425 
426 	/*
427 	 * Initialize sets to contain all nodes.
428 	 */
429 	x = opt_state->all_dom_sets;
430 	/*
431 	 * In opt_init(), we've made sure the product doesn't overflow.
432 	 */
433 	i = opt_state->n_blocks * opt_state->nodewords;
434 	while (i != 0) {
435 		--i;
436 		*x++ = 0xFFFFFFFFU;
437 	}
438 	/* Root starts off empty. */
439 	for (i = opt_state->nodewords; i != 0;) {
440 		--i;
441 		root->dom[i] = 0;
442 	}
443 
444 	/* root->level is the highest level no found. */
445 	for (level = root->level; level >= 0; --level) {
446 		for (b = opt_state->levels[level]; b; b = b->link) {
447 			SET_INSERT(b->dom, b->id);
448 			if (JT(b) == 0)
449 				continue;
450 			SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451 			SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452 		}
453 	}
454 }
455 
456 static void
457 propedom(opt_state_t *opt_state, struct edge *ep)
458 {
459 	SET_INSERT(ep->edom, ep->id);
460 	if (ep->succ) {
461 		SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462 		SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463 	}
464 }
465 
466 /*
467  * Compute edge dominators.
468  * Assumes graph has been leveled and predecessors established.
469  */
470 static void
471 find_edom(opt_state_t *opt_state, struct block *root)
472 {
473 	u_int i;
474 	uset x;
475 	int level;
476 	struct block *b;
477 
478 	x = opt_state->all_edge_sets;
479 	/*
480 	 * In opt_init(), we've made sure the product doesn't overflow.
481 	 */
482 	for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483 		--i;
484 		x[i] = 0xFFFFFFFFU;
485 	}
486 
487 	/* root->level is the highest level no found. */
488 	memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489 	memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490 	for (level = root->level; level >= 0; --level) {
491 		for (b = opt_state->levels[level]; b != 0; b = b->link) {
492 			propedom(opt_state, &b->et);
493 			propedom(opt_state, &b->ef);
494 		}
495 	}
496 }
497 
498 /*
499  * Find the backwards transitive closure of the flow graph.  These sets
500  * are backwards in the sense that we find the set of nodes that reach
501  * a given node, not the set of nodes that can be reached by a node.
502  *
503  * Assumes graph has been leveled.
504  */
505 static void
506 find_closure(opt_state_t *opt_state, struct block *root)
507 {
508 	int level;
509 	struct block *b;
510 
511 	/*
512 	 * Initialize sets to contain no nodes.
513 	 */
514 	memset((char *)opt_state->all_closure_sets, 0,
515 	      opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516 
517 	/* root->level is the highest level no found. */
518 	for (level = root->level; level >= 0; --level) {
519 		for (b = opt_state->levels[level]; b; b = b->link) {
520 			SET_INSERT(b->closure, b->id);
521 			if (JT(b) == 0)
522 				continue;
523 			SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524 			SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525 		}
526 	}
527 }
528 
529 /*
530  * Return the register number that is used by s.
531  *
532  * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533  * are used, the scratch memory location's number if a scratch memory
534  * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535  *
536  * The implementation should probably change to an array access.
537  */
538 static int
539 atomuse(struct stmt *s)
540 {
541 	register int c = s->code;
542 
543 	if (c == NOP)
544 		return -1;
545 
546 	switch (BPF_CLASS(c)) {
547 
548 	case BPF_RET:
549 		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550 			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551 
552 	case BPF_LD:
553 	case BPF_LDX:
554 		/*
555 		 * As there are fewer than 2^31 memory locations,
556 		 * s->k should be convertible to int without problems.
557 		 */
558 		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559 			(BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560 
561 	case BPF_ST:
562 		return A_ATOM;
563 
564 	case BPF_STX:
565 		return X_ATOM;
566 
567 	case BPF_JMP:
568 	case BPF_ALU:
569 		if (BPF_SRC(c) == BPF_X)
570 			return AX_ATOM;
571 		return A_ATOM;
572 
573 	case BPF_MISC:
574 		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575 	}
576 	abort();
577 	/* NOTREACHED */
578 }
579 
580 /*
581  * Return the register number that is defined by 's'.  We assume that
582  * a single stmt cannot define more than one register.  If no register
583  * is defined, return -1.
584  *
585  * The implementation should probably change to an array access.
586  */
587 static int
588 atomdef(struct stmt *s)
589 {
590 	if (s->code == NOP)
591 		return -1;
592 
593 	switch (BPF_CLASS(s->code)) {
594 
595 	case BPF_LD:
596 	case BPF_ALU:
597 		return A_ATOM;
598 
599 	case BPF_LDX:
600 		return X_ATOM;
601 
602 	case BPF_ST:
603 	case BPF_STX:
604 		return s->k;
605 
606 	case BPF_MISC:
607 		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608 	}
609 	return -1;
610 }
611 
612 /*
613  * Compute the sets of registers used, defined, and killed by 'b'.
614  *
615  * "Used" means that a statement in 'b' uses the register before any
616  * statement in 'b' defines it, i.e. it uses the value left in
617  * that register by a predecessor block of this block.
618  * "Defined" means that a statement in 'b' defines it.
619  * "Killed" means that a statement in 'b' defines it before any
620  * statement in 'b' uses it, i.e. it kills the value left in that
621  * register by a predecessor block of this block.
622  */
623 static void
624 compute_local_ud(struct block *b)
625 {
626 	struct slist *s;
627 	atomset def = 0, use = 0, killed = 0;
628 	int atom;
629 
630 	for (s = b->stmts; s; s = s->next) {
631 		if (s->s.code == NOP)
632 			continue;
633 		atom = atomuse(&s->s);
634 		if (atom >= 0) {
635 			if (atom == AX_ATOM) {
636 				if (!ATOMELEM(def, X_ATOM))
637 					use |= ATOMMASK(X_ATOM);
638 				if (!ATOMELEM(def, A_ATOM))
639 					use |= ATOMMASK(A_ATOM);
640 			}
641 			else if (atom < N_ATOMS) {
642 				if (!ATOMELEM(def, atom))
643 					use |= ATOMMASK(atom);
644 			}
645 			else
646 				abort();
647 		}
648 		atom = atomdef(&s->s);
649 		if (atom >= 0) {
650 			if (!ATOMELEM(use, atom))
651 				killed |= ATOMMASK(atom);
652 			def |= ATOMMASK(atom);
653 		}
654 	}
655 	if (BPF_CLASS(b->s.code) == BPF_JMP) {
656 		/*
657 		 * XXX - what about RET?
658 		 */
659 		atom = atomuse(&b->s);
660 		if (atom >= 0) {
661 			if (atom == AX_ATOM) {
662 				if (!ATOMELEM(def, X_ATOM))
663 					use |= ATOMMASK(X_ATOM);
664 				if (!ATOMELEM(def, A_ATOM))
665 					use |= ATOMMASK(A_ATOM);
666 			}
667 			else if (atom < N_ATOMS) {
668 				if (!ATOMELEM(def, atom))
669 					use |= ATOMMASK(atom);
670 			}
671 			else
672 				abort();
673 		}
674 	}
675 
676 	b->def = def;
677 	b->kill = killed;
678 	b->in_use = use;
679 }
680 
681 /*
682  * Assume graph is already leveled.
683  */
684 static void
685 find_ud(opt_state_t *opt_state, struct block *root)
686 {
687 	int i, maxlevel;
688 	struct block *p;
689 
690 	/*
691 	 * root->level is the highest level no found;
692 	 * count down from there.
693 	 */
694 	maxlevel = root->level;
695 	for (i = maxlevel; i >= 0; --i)
696 		for (p = opt_state->levels[i]; p; p = p->link) {
697 			compute_local_ud(p);
698 			p->out_use = 0;
699 		}
700 
701 	for (i = 1; i <= maxlevel; ++i) {
702 		for (p = opt_state->levels[i]; p; p = p->link) {
703 			p->out_use |= JT(p)->in_use | JF(p)->in_use;
704 			p->in_use |= p->out_use &~ p->kill;
705 		}
706 	}
707 }
708 static void
709 init_val(opt_state_t *opt_state)
710 {
711 	opt_state->curval = 0;
712 	opt_state->next_vnode = opt_state->vnode_base;
713 	memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714 	memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715 }
716 
717 /*
718  * Because we really don't have an IR, this stuff is a little messy.
719  *
720  * This routine looks in the table of existing value number for a value
721  * with generated from an operation with the specified opcode and
722  * the specified values.  If it finds it, it returns its value number,
723  * otherwise it makes a new entry in the table and returns the
724  * value number of that entry.
725  */
726 static bpf_u_int32
727 F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728 {
729 	u_int hash;
730 	bpf_u_int32 val;
731 	struct valnode *p;
732 
733 	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734 	hash %= MODULUS;
735 
736 	for (p = opt_state->hashtbl[hash]; p; p = p->next)
737 		if (p->code == code && p->v0 == v0 && p->v1 == v1)
738 			return p->val;
739 
740 	/*
741 	 * Not found.  Allocate a new value, and assign it a new
742 	 * value number.
743 	 *
744 	 * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745 	 * increment it before using it as the new value number, which
746 	 * means we never assign VAL_UNKNOWN.
747 	 *
748 	 * XXX - unless we overflow, but we probably won't have 2^32-1
749 	 * values; we treat 32 bits as effectively infinite.
750 	 */
751 	val = ++opt_state->curval;
752 	if (BPF_MODE(code) == BPF_IMM &&
753 	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754 		opt_state->vmap[val].const_val = v0;
755 		opt_state->vmap[val].is_const = 1;
756 	}
757 	p = opt_state->next_vnode++;
758 	p->val = val;
759 	p->code = code;
760 	p->v0 = v0;
761 	p->v1 = v1;
762 	p->next = opt_state->hashtbl[hash];
763 	opt_state->hashtbl[hash] = p;
764 
765 	return val;
766 }
767 
768 static inline void
769 vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770 {
771 	if (alter && newval != VAL_UNKNOWN && *valp == newval)
772 		s->code = NOP;
773 	else
774 		*valp = newval;
775 }
776 
777 /*
778  * Do constant-folding on binary operators.
779  * (Unary operators are handled elsewhere.)
780  */
781 static void
782 fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783 {
784 	bpf_u_int32 a, b;
785 
786 	a = opt_state->vmap[v0].const_val;
787 	b = opt_state->vmap[v1].const_val;
788 
789 	switch (BPF_OP(s->code)) {
790 	case BPF_ADD:
791 		a += b;
792 		break;
793 
794 	case BPF_SUB:
795 		a -= b;
796 		break;
797 
798 	case BPF_MUL:
799 		a *= b;
800 		break;
801 
802 	case BPF_DIV:
803 		if (b == 0)
804 			opt_error(opt_state, "division by zero");
805 		a /= b;
806 		break;
807 
808 	case BPF_MOD:
809 		if (b == 0)
810 			opt_error(opt_state, "modulus by zero");
811 		a %= b;
812 		break;
813 
814 	case BPF_AND:
815 		a &= b;
816 		break;
817 
818 	case BPF_OR:
819 		a |= b;
820 		break;
821 
822 	case BPF_XOR:
823 		a ^= b;
824 		break;
825 
826 	case BPF_LSH:
827 		/*
828 		 * A left shift of more than the width of the type
829 		 * is undefined in C; we'll just treat it as shifting
830 		 * all the bits out.
831 		 *
832 		 * XXX - the BPF interpreter doesn't check for this,
833 		 * so its behavior is dependent on the behavior of
834 		 * the processor on which it's running.  There are
835 		 * processors on which it shifts all the bits out
836 		 * and processors on which it does no shift.
837 		 */
838 		if (b < 32)
839 			a <<= b;
840 		else
841 			a = 0;
842 		break;
843 
844 	case BPF_RSH:
845 		/*
846 		 * A right shift of more than the width of the type
847 		 * is undefined in C; we'll just treat it as shifting
848 		 * all the bits out.
849 		 *
850 		 * XXX - the BPF interpreter doesn't check for this,
851 		 * so its behavior is dependent on the behavior of
852 		 * the processor on which it's running.  There are
853 		 * processors on which it shifts all the bits out
854 		 * and processors on which it does no shift.
855 		 */
856 		if (b < 32)
857 			a >>= b;
858 		else
859 			a = 0;
860 		break;
861 
862 	default:
863 		abort();
864 	}
865 	s->k = a;
866 	s->code = BPF_LD|BPF_IMM;
867 	/*
868 	 * XXX - optimizer loop detection.
869 	 */
870 	opt_state->non_branch_movement_performed = 1;
871 	opt_state->done = 0;
872 }
873 
874 static inline struct slist *
875 this_op(struct slist *s)
876 {
877 	while (s != 0 && s->s.code == NOP)
878 		s = s->next;
879 	return s;
880 }
881 
882 static void
883 opt_not(struct block *b)
884 {
885 	struct block *tmp = JT(b);
886 
887 	JT(b) = JF(b);
888 	JF(b) = tmp;
889 }
890 
891 static void
892 opt_peep(opt_state_t *opt_state, struct block *b)
893 {
894 	struct slist *s;
895 	struct slist *next, *last;
896 	bpf_u_int32 val;
897 
898 	s = b->stmts;
899 	if (s == 0)
900 		return;
901 
902 	last = s;
903 	for (/*empty*/; /*empty*/; s = next) {
904 		/*
905 		 * Skip over nops.
906 		 */
907 		s = this_op(s);
908 		if (s == 0)
909 			break;	/* nothing left in the block */
910 
911 		/*
912 		 * Find the next real instruction after that one
913 		 * (skipping nops).
914 		 */
915 		next = this_op(s->next);
916 		if (next == 0)
917 			break;	/* no next instruction */
918 		last = next;
919 
920 		/*
921 		 * st  M[k]	-->	st  M[k]
922 		 * ldx M[k]		tax
923 		 */
924 		if (s->s.code == BPF_ST &&
925 		    next->s.code == (BPF_LDX|BPF_MEM) &&
926 		    s->s.k == next->s.k) {
927 			/*
928 			 * XXX - optimizer loop detection.
929 			 */
930 			opt_state->non_branch_movement_performed = 1;
931 			opt_state->done = 0;
932 			next->s.code = BPF_MISC|BPF_TAX;
933 		}
934 		/*
935 		 * ld  #k	-->	ldx  #k
936 		 * tax			txa
937 		 */
938 		if (s->s.code == (BPF_LD|BPF_IMM) &&
939 		    next->s.code == (BPF_MISC|BPF_TAX)) {
940 			s->s.code = BPF_LDX|BPF_IMM;
941 			next->s.code = BPF_MISC|BPF_TXA;
942 			/*
943 			 * XXX - optimizer loop detection.
944 			 */
945 			opt_state->non_branch_movement_performed = 1;
946 			opt_state->done = 0;
947 		}
948 		/*
949 		 * This is an ugly special case, but it happens
950 		 * when you say tcp[k] or udp[k] where k is a constant.
951 		 */
952 		if (s->s.code == (BPF_LD|BPF_IMM)) {
953 			struct slist *add, *tax, *ild;
954 
955 			/*
956 			 * Check that X isn't used on exit from this
957 			 * block (which the optimizer might cause).
958 			 * We know the code generator won't generate
959 			 * any local dependencies.
960 			 */
961 			if (ATOMELEM(b->out_use, X_ATOM))
962 				continue;
963 
964 			/*
965 			 * Check that the instruction following the ldi
966 			 * is an addx, or it's an ldxms with an addx
967 			 * following it (with 0 or more nops between the
968 			 * ldxms and addx).
969 			 */
970 			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971 				add = next;
972 			else
973 				add = this_op(next->next);
974 			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975 				continue;
976 
977 			/*
978 			 * Check that a tax follows that (with 0 or more
979 			 * nops between them).
980 			 */
981 			tax = this_op(add->next);
982 			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983 				continue;
984 
985 			/*
986 			 * Check that an ild follows that (with 0 or more
987 			 * nops between them).
988 			 */
989 			ild = this_op(tax->next);
990 			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991 			    BPF_MODE(ild->s.code) != BPF_IND)
992 				continue;
993 			/*
994 			 * We want to turn this sequence:
995 			 *
996 			 * (004) ldi     #0x2		{s}
997 			 * (005) ldxms   [14]		{next}  -- optional
998 			 * (006) addx			{add}
999 			 * (007) tax			{tax}
1000 			 * (008) ild     [x+0]		{ild}
1001 			 *
1002 			 * into this sequence:
1003 			 *
1004 			 * (004) nop
1005 			 * (005) ldxms   [14]
1006 			 * (006) nop
1007 			 * (007) nop
1008 			 * (008) ild     [x+2]
1009 			 *
1010 			 * XXX We need to check that X is not
1011 			 * subsequently used, because we want to change
1012 			 * what'll be in it after this sequence.
1013 			 *
1014 			 * We know we can eliminate the accumulator
1015 			 * modifications earlier in the sequence since
1016 			 * it is defined by the last stmt of this sequence
1017 			 * (i.e., the last statement of the sequence loads
1018 			 * a value into the accumulator, so we can eliminate
1019 			 * earlier operations on the accumulator).
1020 			 */
1021 			ild->s.k += s->s.k;
1022 			s->s.code = NOP;
1023 			add->s.code = NOP;
1024 			tax->s.code = NOP;
1025 			/*
1026 			 * XXX - optimizer loop detection.
1027 			 */
1028 			opt_state->non_branch_movement_performed = 1;
1029 			opt_state->done = 0;
1030 		}
1031 	}
1032 	/*
1033 	 * If the comparison at the end of a block is an equality
1034 	 * comparison against a constant, and nobody uses the value
1035 	 * we leave in the A register at the end of a block, and
1036 	 * the operation preceding the comparison is an arithmetic
1037 	 * operation, we can sometime optimize it away.
1038 	 */
1039 	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040 	    !ATOMELEM(b->out_use, A_ATOM)) {
1041 		/*
1042 		 * We can optimize away certain subtractions of the
1043 		 * X register.
1044 		 */
1045 		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046 			val = b->val[X_ATOM];
1047 			if (opt_state->vmap[val].is_const) {
1048 				/*
1049 				 * If we have a subtract to do a comparison,
1050 				 * and the X register is a known constant,
1051 				 * we can merge this value into the
1052 				 * comparison:
1053 				 *
1054 				 * sub x  ->	nop
1055 				 * jeq #y	jeq #(x+y)
1056 				 */
1057 				b->s.k += opt_state->vmap[val].const_val;
1058 				last->s.code = NOP;
1059 				/*
1060 				 * XXX - optimizer loop detection.
1061 				 */
1062 				opt_state->non_branch_movement_performed = 1;
1063 				opt_state->done = 0;
1064 			} else if (b->s.k == 0) {
1065 				/*
1066 				 * If the X register isn't a constant,
1067 				 * and the comparison in the test is
1068 				 * against 0, we can compare with the
1069 				 * X register, instead:
1070 				 *
1071 				 * sub x  ->	nop
1072 				 * jeq #0	jeq x
1073 				 */
1074 				last->s.code = NOP;
1075 				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076 				/*
1077 				 * XXX - optimizer loop detection.
1078 				 */
1079 				opt_state->non_branch_movement_performed = 1;
1080 				opt_state->done = 0;
1081 			}
1082 		}
1083 		/*
1084 		 * Likewise, a constant subtract can be simplified:
1085 		 *
1086 		 * sub #x ->	nop
1087 		 * jeq #y ->	jeq #(x+y)
1088 		 */
1089 		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090 			last->s.code = NOP;
1091 			b->s.k += last->s.k;
1092 			/*
1093 			 * XXX - optimizer loop detection.
1094 			 */
1095 			opt_state->non_branch_movement_performed = 1;
1096 			opt_state->done = 0;
1097 		}
1098 		/*
1099 		 * And, similarly, a constant AND can be simplified
1100 		 * if we're testing against 0, i.e.:
1101 		 *
1102 		 * and #k	nop
1103 		 * jeq #0  ->	jset #k
1104 		 */
1105 		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106 		    b->s.k == 0) {
1107 			b->s.k = last->s.k;
1108 			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109 			last->s.code = NOP;
1110 			/*
1111 			 * XXX - optimizer loop detection.
1112 			 */
1113 			opt_state->non_branch_movement_performed = 1;
1114 			opt_state->done = 0;
1115 			opt_not(b);
1116 		}
1117 	}
1118 	/*
1119 	 * jset #0        ->   never
1120 	 * jset #ffffffff ->   always
1121 	 */
1122 	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123 		if (b->s.k == 0)
1124 			JT(b) = JF(b);
1125 		if (b->s.k == 0xffffffffU)
1126 			JF(b) = JT(b);
1127 	}
1128 	/*
1129 	 * If we're comparing against the index register, and the index
1130 	 * register is a known constant, we can just compare against that
1131 	 * constant.
1132 	 */
1133 	val = b->val[X_ATOM];
1134 	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135 		bpf_u_int32 v = opt_state->vmap[val].const_val;
1136 		b->s.code &= ~BPF_X;
1137 		b->s.k = v;
1138 	}
1139 	/*
1140 	 * If the accumulator is a known constant, we can compute the
1141 	 * comparison result.
1142 	 */
1143 	val = b->val[A_ATOM];
1144 	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145 		bpf_u_int32 v = opt_state->vmap[val].const_val;
1146 		switch (BPF_OP(b->s.code)) {
1147 
1148 		case BPF_JEQ:
1149 			v = v == b->s.k;
1150 			break;
1151 
1152 		case BPF_JGT:
1153 			v = v > b->s.k;
1154 			break;
1155 
1156 		case BPF_JGE:
1157 			v = v >= b->s.k;
1158 			break;
1159 
1160 		case BPF_JSET:
1161 			v &= b->s.k;
1162 			break;
1163 
1164 		default:
1165 			abort();
1166 		}
1167 		if (JF(b) != JT(b)) {
1168 			/*
1169 			 * XXX - optimizer loop detection.
1170 			 */
1171 			opt_state->non_branch_movement_performed = 1;
1172 			opt_state->done = 0;
1173 		}
1174 		if (v)
1175 			JF(b) = JT(b);
1176 		else
1177 			JT(b) = JF(b);
1178 	}
1179 }
1180 
1181 /*
1182  * Compute the symbolic value of expression of 's', and update
1183  * anything it defines in the value table 'val'.  If 'alter' is true,
1184  * do various optimizations.  This code would be cleaner if symbolic
1185  * evaluation and code transformations weren't folded together.
1186  */
1187 static void
1188 opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189 {
1190 	int op;
1191 	bpf_u_int32 v;
1192 
1193 	switch (s->code) {
1194 
1195 	case BPF_LD|BPF_ABS|BPF_W:
1196 	case BPF_LD|BPF_ABS|BPF_H:
1197 	case BPF_LD|BPF_ABS|BPF_B:
1198 		v = F(opt_state, s->code, s->k, 0L);
1199 		vstore(s, &val[A_ATOM], v, alter);
1200 		break;
1201 
1202 	case BPF_LD|BPF_IND|BPF_W:
1203 	case BPF_LD|BPF_IND|BPF_H:
1204 	case BPF_LD|BPF_IND|BPF_B:
1205 		v = val[X_ATOM];
1206 		if (alter && opt_state->vmap[v].is_const) {
1207 			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208 			s->k += opt_state->vmap[v].const_val;
1209 			v = F(opt_state, s->code, s->k, 0L);
1210 			/*
1211 			 * XXX - optimizer loop detection.
1212 			 */
1213 			opt_state->non_branch_movement_performed = 1;
1214 			opt_state->done = 0;
1215 		}
1216 		else
1217 			v = F(opt_state, s->code, s->k, v);
1218 		vstore(s, &val[A_ATOM], v, alter);
1219 		break;
1220 
1221 	case BPF_LD|BPF_LEN:
1222 		v = F(opt_state, s->code, 0L, 0L);
1223 		vstore(s, &val[A_ATOM], v, alter);
1224 		break;
1225 
1226 	case BPF_LD|BPF_IMM:
1227 		v = K(s->k);
1228 		vstore(s, &val[A_ATOM], v, alter);
1229 		break;
1230 
1231 	case BPF_LDX|BPF_IMM:
1232 		v = K(s->k);
1233 		vstore(s, &val[X_ATOM], v, alter);
1234 		break;
1235 
1236 	case BPF_LDX|BPF_MSH|BPF_B:
1237 		v = F(opt_state, s->code, s->k, 0L);
1238 		vstore(s, &val[X_ATOM], v, alter);
1239 		break;
1240 
1241 	case BPF_ALU|BPF_NEG:
1242 		if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243 			s->code = BPF_LD|BPF_IMM;
1244 			/*
1245 			 * Do this negation as unsigned arithmetic; that's
1246 			 * what modern BPF engines do, and it guarantees
1247 			 * that all possible values can be negated.  (Yeah,
1248 			 * negating 0x80000000, the minimum signed 32-bit
1249 			 * two's-complement value, results in 0x80000000,
1250 			 * so it's still negative, but we *should* be doing
1251 			 * all unsigned arithmetic here, to match what
1252 			 * modern BPF engines do.)
1253 			 *
1254 			 * Express it as 0U - (unsigned value) so that we
1255 			 * don't get compiler warnings about negating an
1256 			 * unsigned value and don't get UBSan warnings
1257 			 * about the result of negating 0x80000000 being
1258 			 * undefined.
1259 			 */
1260 			s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261 			val[A_ATOM] = K(s->k);
1262 		}
1263 		else
1264 			val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265 		break;
1266 
1267 	case BPF_ALU|BPF_ADD|BPF_K:
1268 	case BPF_ALU|BPF_SUB|BPF_K:
1269 	case BPF_ALU|BPF_MUL|BPF_K:
1270 	case BPF_ALU|BPF_DIV|BPF_K:
1271 	case BPF_ALU|BPF_MOD|BPF_K:
1272 	case BPF_ALU|BPF_AND|BPF_K:
1273 	case BPF_ALU|BPF_OR|BPF_K:
1274 	case BPF_ALU|BPF_XOR|BPF_K:
1275 	case BPF_ALU|BPF_LSH|BPF_K:
1276 	case BPF_ALU|BPF_RSH|BPF_K:
1277 		op = BPF_OP(s->code);
1278 		if (alter) {
1279 			if (s->k == 0) {
1280 				/*
1281 				 * Optimize operations where the constant
1282 				 * is zero.
1283 				 *
1284 				 * Don't optimize away "sub #0"
1285 				 * as it may be needed later to
1286 				 * fixup the generated math code.
1287 				 *
1288 				 * Fail if we're dividing by zero or taking
1289 				 * a modulus by zero.
1290 				 */
1291 				if (op == BPF_ADD ||
1292 				    op == BPF_LSH || op == BPF_RSH ||
1293 				    op == BPF_OR || op == BPF_XOR) {
1294 					s->code = NOP;
1295 					break;
1296 				}
1297 				if (op == BPF_MUL || op == BPF_AND) {
1298 					s->code = BPF_LD|BPF_IMM;
1299 					val[A_ATOM] = K(s->k);
1300 					break;
1301 				}
1302 				if (op == BPF_DIV)
1303 					opt_error(opt_state,
1304 					    "division by zero");
1305 				if (op == BPF_MOD)
1306 					opt_error(opt_state,
1307 					    "modulus by zero");
1308 			}
1309 			if (opt_state->vmap[val[A_ATOM]].is_const) {
1310 				fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311 				val[A_ATOM] = K(s->k);
1312 				break;
1313 			}
1314 		}
1315 		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316 		break;
1317 
1318 	case BPF_ALU|BPF_ADD|BPF_X:
1319 	case BPF_ALU|BPF_SUB|BPF_X:
1320 	case BPF_ALU|BPF_MUL|BPF_X:
1321 	case BPF_ALU|BPF_DIV|BPF_X:
1322 	case BPF_ALU|BPF_MOD|BPF_X:
1323 	case BPF_ALU|BPF_AND|BPF_X:
1324 	case BPF_ALU|BPF_OR|BPF_X:
1325 	case BPF_ALU|BPF_XOR|BPF_X:
1326 	case BPF_ALU|BPF_LSH|BPF_X:
1327 	case BPF_ALU|BPF_RSH|BPF_X:
1328 		op = BPF_OP(s->code);
1329 		if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330 			if (opt_state->vmap[val[A_ATOM]].is_const) {
1331 				fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332 				val[A_ATOM] = K(s->k);
1333 			}
1334 			else {
1335 				s->code = BPF_ALU|BPF_K|op;
1336 				s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337 				if ((op == BPF_LSH || op == BPF_RSH) &&
1338 				    s->k > 31)
1339 					opt_error(opt_state,
1340 					    "shift by more than 31 bits");
1341 				/*
1342 				 * XXX - optimizer loop detection.
1343 				 */
1344 				opt_state->non_branch_movement_performed = 1;
1345 				opt_state->done = 0;
1346 				val[A_ATOM] =
1347 					F(opt_state, s->code, val[A_ATOM], K(s->k));
1348 			}
1349 			break;
1350 		}
1351 		/*
1352 		 * Check if we're doing something to an accumulator
1353 		 * that is 0, and simplify.  This may not seem like
1354 		 * much of a simplification but it could open up further
1355 		 * optimizations.
1356 		 * XXX We could also check for mul by 1, etc.
1357 		 */
1358 		if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359 		    && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360 			if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361 				s->code = BPF_MISC|BPF_TXA;
1362 				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363 				break;
1364 			}
1365 			else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366 				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367 				s->code = BPF_LD|BPF_IMM;
1368 				s->k = 0;
1369 				vstore(s, &val[A_ATOM], K(s->k), alter);
1370 				break;
1371 			}
1372 			else if (op == BPF_NEG) {
1373 				s->code = NOP;
1374 				break;
1375 			}
1376 		}
1377 		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378 		break;
1379 
1380 	case BPF_MISC|BPF_TXA:
1381 		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382 		break;
1383 
1384 	case BPF_LD|BPF_MEM:
1385 		v = val[s->k];
1386 		if (alter && opt_state->vmap[v].is_const) {
1387 			s->code = BPF_LD|BPF_IMM;
1388 			s->k = opt_state->vmap[v].const_val;
1389 			/*
1390 			 * XXX - optimizer loop detection.
1391 			 */
1392 			opt_state->non_branch_movement_performed = 1;
1393 			opt_state->done = 0;
1394 		}
1395 		vstore(s, &val[A_ATOM], v, alter);
1396 		break;
1397 
1398 	case BPF_MISC|BPF_TAX:
1399 		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400 		break;
1401 
1402 	case BPF_LDX|BPF_MEM:
1403 		v = val[s->k];
1404 		if (alter && opt_state->vmap[v].is_const) {
1405 			s->code = BPF_LDX|BPF_IMM;
1406 			s->k = opt_state->vmap[v].const_val;
1407 			/*
1408 			 * XXX - optimizer loop detection.
1409 			 */
1410 			opt_state->non_branch_movement_performed = 1;
1411 			opt_state->done = 0;
1412 		}
1413 		vstore(s, &val[X_ATOM], v, alter);
1414 		break;
1415 
1416 	case BPF_ST:
1417 		vstore(s, &val[s->k], val[A_ATOM], alter);
1418 		break;
1419 
1420 	case BPF_STX:
1421 		vstore(s, &val[s->k], val[X_ATOM], alter);
1422 		break;
1423 	}
1424 }
1425 
1426 static void
1427 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428 {
1429 	register int atom;
1430 
1431 	atom = atomuse(s);
1432 	if (atom >= 0) {
1433 		if (atom == AX_ATOM) {
1434 			last[X_ATOM] = 0;
1435 			last[A_ATOM] = 0;
1436 		}
1437 		else
1438 			last[atom] = 0;
1439 	}
1440 	atom = atomdef(s);
1441 	if (atom >= 0) {
1442 		if (last[atom]) {
1443 			/*
1444 			 * XXX - optimizer loop detection.
1445 			 */
1446 			opt_state->non_branch_movement_performed = 1;
1447 			opt_state->done = 0;
1448 			last[atom]->code = NOP;
1449 		}
1450 		last[atom] = s;
1451 	}
1452 }
1453 
1454 static void
1455 opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456 {
1457 	register struct slist *s;
1458 	register int atom;
1459 	struct stmt *last[N_ATOMS];
1460 
1461 	memset((char *)last, 0, sizeof last);
1462 
1463 	for (s = b->stmts; s != 0; s = s->next)
1464 		deadstmt(opt_state, &s->s, last);
1465 	deadstmt(opt_state, &b->s, last);
1466 
1467 	for (atom = 0; atom < N_ATOMS; ++atom)
1468 		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469 			last[atom]->code = NOP;
1470 			/*
1471 			 * XXX - optimizer loop detection.
1472 			 */
1473 			opt_state->non_branch_movement_performed = 1;
1474 			opt_state->done = 0;
1475 		}
1476 }
1477 
1478 static void
1479 opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480 {
1481 	struct slist *s;
1482 	struct edge *p;
1483 	int i;
1484 	bpf_u_int32 aval, xval;
1485 
1486 #if 0
1487 	for (s = b->stmts; s && s->next; s = s->next)
1488 		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489 			do_stmts = 0;
1490 			break;
1491 		}
1492 #endif
1493 
1494 	/*
1495 	 * Initialize the atom values.
1496 	 */
1497 	p = b->in_edges;
1498 	if (p == 0) {
1499 		/*
1500 		 * We have no predecessors, so everything is undefined
1501 		 * upon entry to this block.
1502 		 */
1503 		memset((char *)b->val, 0, sizeof(b->val));
1504 	} else {
1505 		/*
1506 		 * Inherit values from our predecessors.
1507 		 *
1508 		 * First, get the values from the predecessor along the
1509 		 * first edge leading to this node.
1510 		 */
1511 		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512 		/*
1513 		 * Now look at all the other nodes leading to this node.
1514 		 * If, for the predecessor along that edge, a register
1515 		 * has a different value from the one we have (i.e.,
1516 		 * control paths are merging, and the merging paths
1517 		 * assign different values to that register), give the
1518 		 * register the undefined value of 0.
1519 		 */
1520 		while ((p = p->next) != NULL) {
1521 			for (i = 0; i < N_ATOMS; ++i)
1522 				if (b->val[i] != p->pred->val[i])
1523 					b->val[i] = 0;
1524 		}
1525 	}
1526 	aval = b->val[A_ATOM];
1527 	xval = b->val[X_ATOM];
1528 	for (s = b->stmts; s; s = s->next)
1529 		opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530 
1531 	/*
1532 	 * This is a special case: if we don't use anything from this
1533 	 * block, and we load the accumulator or index register with a
1534 	 * value that is already there, or if this block is a return,
1535 	 * eliminate all the statements.
1536 	 *
1537 	 * XXX - what if it does a store?  Presumably that falls under
1538 	 * the heading of "if we don't use anything from this block",
1539 	 * i.e., if we use any memory location set to a different
1540 	 * value by this block, then we use something from this block.
1541 	 *
1542 	 * XXX - why does it matter whether we use anything from this
1543 	 * block?  If the accumulator or index register doesn't change
1544 	 * its value, isn't that OK even if we use that value?
1545 	 *
1546 	 * XXX - if we load the accumulator with a different value,
1547 	 * and the block ends with a conditional branch, we obviously
1548 	 * can't eliminate it, as the branch depends on that value.
1549 	 * For the index register, the conditional branch only depends
1550 	 * on the index register value if the test is against the index
1551 	 * register value rather than a constant; if nothing uses the
1552 	 * value we put into the index register, and we're not testing
1553 	 * against the index register's value, and there aren't any
1554 	 * other problems that would keep us from eliminating this
1555 	 * block, can we eliminate it?
1556 	 */
1557 	if (do_stmts &&
1558 	    ((b->out_use == 0 &&
1559 	      aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560 	      xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561 	     BPF_CLASS(b->s.code) == BPF_RET)) {
1562 		if (b->stmts != 0) {
1563 			b->stmts = 0;
1564 			/*
1565 			 * XXX - optimizer loop detection.
1566 			 */
1567 			opt_state->non_branch_movement_performed = 1;
1568 			opt_state->done = 0;
1569 		}
1570 	} else {
1571 		opt_peep(opt_state, b);
1572 		opt_deadstores(opt_state, b);
1573 	}
1574 	/*
1575 	 * Set up values for branch optimizer.
1576 	 */
1577 	if (BPF_SRC(b->s.code) == BPF_K)
1578 		b->oval = K(b->s.k);
1579 	else
1580 		b->oval = b->val[X_ATOM];
1581 	b->et.code = b->s.code;
1582 	b->ef.code = -b->s.code;
1583 }
1584 
1585 /*
1586  * Return true if any register that is used on exit from 'succ', has
1587  * an exit value that is different from the corresponding exit value
1588  * from 'b'.
1589  */
1590 static int
1591 use_conflict(struct block *b, struct block *succ)
1592 {
1593 	int atom;
1594 	atomset use = succ->out_use;
1595 
1596 	if (use == 0)
1597 		return 0;
1598 
1599 	for (atom = 0; atom < N_ATOMS; ++atom)
1600 		if (ATOMELEM(use, atom))
1601 			if (b->val[atom] != succ->val[atom])
1602 				return 1;
1603 	return 0;
1604 }
1605 
1606 /*
1607  * Given a block that is the successor of an edge, and an edge that
1608  * dominates that edge, return either a pointer to a child of that
1609  * block (a block to which that block jumps) if that block is a
1610  * candidate to replace the successor of the latter edge or NULL
1611  * if neither of the children of the first block are candidates.
1612  */
1613 static struct block *
1614 fold_edge(struct block *child, struct edge *ep)
1615 {
1616 	int sense;
1617 	bpf_u_int32 aval0, aval1, oval0, oval1;
1618 	int code = ep->code;
1619 
1620 	if (code < 0) {
1621 		/*
1622 		 * This edge is a "branch if false" edge.
1623 		 */
1624 		code = -code;
1625 		sense = 0;
1626 	} else {
1627 		/*
1628 		 * This edge is a "branch if true" edge.
1629 		 */
1630 		sense = 1;
1631 	}
1632 
1633 	/*
1634 	 * If the opcode for the branch at the end of the block we
1635 	 * were handed isn't the same as the opcode for the branch
1636 	 * to which the edge we were handed corresponds, the tests
1637 	 * for those branches aren't testing the same conditions,
1638 	 * so the blocks to which the first block branches aren't
1639 	 * candidates to replace the successor of the edge.
1640 	 */
1641 	if (child->s.code != code)
1642 		return 0;
1643 
1644 	aval0 = child->val[A_ATOM];
1645 	oval0 = child->oval;
1646 	aval1 = ep->pred->val[A_ATOM];
1647 	oval1 = ep->pred->oval;
1648 
1649 	/*
1650 	 * If the A register value on exit from the successor block
1651 	 * isn't the same as the A register value on exit from the
1652 	 * predecessor of the edge, the blocks to which the first
1653 	 * block branches aren't candidates to replace the successor
1654 	 * of the edge.
1655 	 */
1656 	if (aval0 != aval1)
1657 		return 0;
1658 
1659 	if (oval0 == oval1)
1660 		/*
1661 		 * The operands of the branch instructions are
1662 		 * identical, so the branches are testing the
1663 		 * same condition, and the result is true if a true
1664 		 * branch was taken to get here, otherwise false.
1665 		 */
1666 		return sense ? JT(child) : JF(child);
1667 
1668 	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669 		/*
1670 		 * At this point, we only know the comparison if we
1671 		 * came down the true branch, and it was an equality
1672 		 * comparison with a constant.
1673 		 *
1674 		 * I.e., if we came down the true branch, and the branch
1675 		 * was an equality comparison with a constant, we know the
1676 		 * accumulator contains that constant.  If we came down
1677 		 * the false branch, or the comparison wasn't with a
1678 		 * constant, we don't know what was in the accumulator.
1679 		 *
1680 		 * We rely on the fact that distinct constants have distinct
1681 		 * value numbers.
1682 		 */
1683 		return JF(child);
1684 
1685 	return 0;
1686 }
1687 
1688 /*
1689  * If we can make this edge go directly to a child of the edge's current
1690  * successor, do so.
1691  */
1692 static void
1693 opt_j(opt_state_t *opt_state, struct edge *ep)
1694 {
1695 	register u_int i, k;
1696 	register struct block *target;
1697 
1698 	/*
1699 	 * Does this edge go to a block where, if the test
1700 	 * at the end of it succeeds, it goes to a block
1701 	 * that's a leaf node of the DAG, i.e. a return
1702 	 * statement?
1703 	 * If so, there's nothing to optimize.
1704 	 */
1705 	if (JT(ep->succ) == 0)
1706 		return;
1707 
1708 	/*
1709 	 * Does this edge go to a block that goes, in turn, to
1710 	 * the same block regardless of whether the test at the
1711 	 * end succeeds or fails?
1712 	 */
1713 	if (JT(ep->succ) == JF(ep->succ)) {
1714 		/*
1715 		 * Common branch targets can be eliminated, provided
1716 		 * there is no data dependency.
1717 		 *
1718 		 * Check whether any register used on exit from the
1719 		 * block to which the successor of this edge goes
1720 		 * has a value at that point that's different from
1721 		 * the value it has on exit from the predecessor of
1722 		 * this edge.  If not, the predecessor of this edge
1723 		 * can just go to the block to which the successor
1724 		 * of this edge goes, bypassing the successor of this
1725 		 * edge, as the successor of this edge isn't doing
1726 		 * any calculations whose results are different
1727 		 * from what the blocks before it did and isn't
1728 		 * doing any tests the results of which matter.
1729 		 */
1730 		if (!use_conflict(ep->pred, JT(ep->succ))) {
1731 			/*
1732 			 * No, there isn't.
1733 			 * Make this edge go to the block to
1734 			 * which the successor of that edge
1735 			 * goes.
1736 			 *
1737 			 * XXX - optimizer loop detection.
1738 			 */
1739 			opt_state->non_branch_movement_performed = 1;
1740 			opt_state->done = 0;
1741 			ep->succ = JT(ep->succ);
1742 		}
1743 	}
1744 	/*
1745 	 * For each edge dominator that matches the successor of this
1746 	 * edge, promote the edge successor to the its grandchild.
1747 	 *
1748 	 * XXX We violate the set abstraction here in favor a reasonably
1749 	 * efficient loop.
1750 	 */
1751  top:
1752 	for (i = 0; i < opt_state->edgewords; ++i) {
1753 		/* i'th word in the bitset of dominators */
1754 		register bpf_u_int32 x = ep->edom[i];
1755 
1756 		while (x != 0) {
1757 			/* Find the next dominator in that word and mark it as found */
1758 			k = lowest_set_bit(x);
1759 			x &=~ ((bpf_u_int32)1 << k);
1760 			k += i * BITS_PER_WORD;
1761 
1762 			target = fold_edge(ep->succ, opt_state->edges[k]);
1763 			/*
1764 			 * We have a candidate to replace the successor
1765 			 * of ep.
1766 			 *
1767 			 * Check that there is no data dependency between
1768 			 * nodes that will be violated if we move the edge;
1769 			 * i.e., if any register used on exit from the
1770 			 * candidate has a value at that point different
1771 			 * from the value it has when we exit the
1772 			 * predecessor of that edge, there's a data
1773 			 * dependency that will be violated.
1774 			 */
1775 			if (target != 0 && !use_conflict(ep->pred, target)) {
1776 				/*
1777 				 * It's safe to replace the successor of
1778 				 * ep; do so, and note that we've made
1779 				 * at least one change.
1780 				 *
1781 				 * XXX - this is one of the operations that
1782 				 * happens when the optimizer gets into
1783 				 * one of those infinite loops.
1784 				 */
1785 				opt_state->done = 0;
1786 				ep->succ = target;
1787 				if (JT(target) != 0)
1788 					/*
1789 					 * Start over unless we hit a leaf.
1790 					 */
1791 					goto top;
1792 				return;
1793 			}
1794 		}
1795 	}
1796 }
1797 
1798 /*
1799  * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800  * "Predicate Assertion Propagation" in the BPF+ paper?
1801  *
1802  * Note that this looks at block dominators, not edge dominators.
1803  * Don't think so.
1804  *
1805  * "A or B" compiles into
1806  *
1807  *          A
1808  *       t / \ f
1809  *        /   B
1810  *       / t / \ f
1811  *      \   /
1812  *       \ /
1813  *        X
1814  *
1815  *
1816  */
1817 static void
1818 or_pullup(opt_state_t *opt_state, struct block *b)
1819 {
1820 	bpf_u_int32 val;
1821 	int at_top;
1822 	struct block *pull;
1823 	struct block **diffp, **samep;
1824 	struct edge *ep;
1825 
1826 	ep = b->in_edges;
1827 	if (ep == 0)
1828 		return;
1829 
1830 	/*
1831 	 * Make sure each predecessor loads the same value.
1832 	 * XXX why?
1833 	 */
1834 	val = ep->pred->val[A_ATOM];
1835 	for (ep = ep->next; ep != 0; ep = ep->next)
1836 		if (val != ep->pred->val[A_ATOM])
1837 			return;
1838 
1839 	/*
1840 	 * For the first edge in the list of edges coming into this block,
1841 	 * see whether the predecessor of that edge comes here via a true
1842 	 * branch or a false branch.
1843 	 */
1844 	if (JT(b->in_edges->pred) == b)
1845 		diffp = &JT(b->in_edges->pred);	/* jt */
1846 	else
1847 		diffp = &JF(b->in_edges->pred);	/* jf */
1848 
1849 	/*
1850 	 * diffp is a pointer to a pointer to the block.
1851 	 *
1852 	 * Go down the false chain looking as far as you can,
1853 	 * making sure that each jump-compare is doing the
1854 	 * same as the original block.
1855 	 *
1856 	 * If you reach the bottom before you reach a
1857 	 * different jump-compare, just exit.  There's nothing
1858 	 * to do here.  XXX - no, this version is checking for
1859 	 * the value leaving the block; that's from the BPF+
1860 	 * pullup routine.
1861 	 */
1862 	at_top = 1;
1863 	for (;;) {
1864 		/*
1865 		 * Done if that's not going anywhere XXX
1866 		 */
1867 		if (*diffp == 0)
1868 			return;
1869 
1870 		/*
1871 		 * Done if that predecessor blah blah blah isn't
1872 		 * going the same place we're going XXX
1873 		 *
1874 		 * Does the true edge of this block point to the same
1875 		 * location as the true edge of b?
1876 		 */
1877 		if (JT(*diffp) != JT(b))
1878 			return;
1879 
1880 		/*
1881 		 * Done if this node isn't a dominator of that
1882 		 * node blah blah blah XXX
1883 		 *
1884 		 * Does b dominate diffp?
1885 		 */
1886 		if (!SET_MEMBER((*diffp)->dom, b->id))
1887 			return;
1888 
1889 		/*
1890 		 * Break out of the loop if that node's value of A
1891 		 * isn't the value of A above XXX
1892 		 */
1893 		if ((*diffp)->val[A_ATOM] != val)
1894 			break;
1895 
1896 		/*
1897 		 * Get the JF for that node XXX
1898 		 * Go down the false path.
1899 		 */
1900 		diffp = &JF(*diffp);
1901 		at_top = 0;
1902 	}
1903 
1904 	/*
1905 	 * Now that we've found a different jump-compare in a chain
1906 	 * below b, search further down until we find another
1907 	 * jump-compare that looks at the original value.  This
1908 	 * jump-compare should get pulled up.  XXX again we're
1909 	 * comparing values not jump-compares.
1910 	 */
1911 	samep = &JF(*diffp);
1912 	for (;;) {
1913 		/*
1914 		 * Done if that's not going anywhere XXX
1915 		 */
1916 		if (*samep == 0)
1917 			return;
1918 
1919 		/*
1920 		 * Done if that predecessor blah blah blah isn't
1921 		 * going the same place we're going XXX
1922 		 */
1923 		if (JT(*samep) != JT(b))
1924 			return;
1925 
1926 		/*
1927 		 * Done if this node isn't a dominator of that
1928 		 * node blah blah blah XXX
1929 		 *
1930 		 * Does b dominate samep?
1931 		 */
1932 		if (!SET_MEMBER((*samep)->dom, b->id))
1933 			return;
1934 
1935 		/*
1936 		 * Break out of the loop if that node's value of A
1937 		 * is the value of A above XXX
1938 		 */
1939 		if ((*samep)->val[A_ATOM] == val)
1940 			break;
1941 
1942 		/* XXX Need to check that there are no data dependencies
1943 		   between dp0 and dp1.  Currently, the code generator
1944 		   will not produce such dependencies. */
1945 		samep = &JF(*samep);
1946 	}
1947 #ifdef notdef
1948 	/* XXX This doesn't cover everything. */
1949 	for (i = 0; i < N_ATOMS; ++i)
1950 		if ((*samep)->val[i] != pred->val[i])
1951 			return;
1952 #endif
1953 	/* Pull up the node. */
1954 	pull = *samep;
1955 	*samep = JF(pull);
1956 	JF(pull) = *diffp;
1957 
1958 	/*
1959 	 * At the top of the chain, each predecessor needs to point at the
1960 	 * pulled up node.  Inside the chain, there is only one predecessor
1961 	 * to worry about.
1962 	 */
1963 	if (at_top) {
1964 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965 			if (JT(ep->pred) == b)
1966 				JT(ep->pred) = pull;
1967 			else
1968 				JF(ep->pred) = pull;
1969 		}
1970 	}
1971 	else
1972 		*diffp = pull;
1973 
1974 	/*
1975 	 * XXX - this is one of the operations that happens when the
1976 	 * optimizer gets into one of those infinite loops.
1977 	 */
1978 	opt_state->done = 0;
1979 }
1980 
1981 static void
1982 and_pullup(opt_state_t *opt_state, struct block *b)
1983 {
1984 	bpf_u_int32 val;
1985 	int at_top;
1986 	struct block *pull;
1987 	struct block **diffp, **samep;
1988 	struct edge *ep;
1989 
1990 	ep = b->in_edges;
1991 	if (ep == 0)
1992 		return;
1993 
1994 	/*
1995 	 * Make sure each predecessor loads the same value.
1996 	 */
1997 	val = ep->pred->val[A_ATOM];
1998 	for (ep = ep->next; ep != 0; ep = ep->next)
1999 		if (val != ep->pred->val[A_ATOM])
2000 			return;
2001 
2002 	if (JT(b->in_edges->pred) == b)
2003 		diffp = &JT(b->in_edges->pred);
2004 	else
2005 		diffp = &JF(b->in_edges->pred);
2006 
2007 	at_top = 1;
2008 	for (;;) {
2009 		if (*diffp == 0)
2010 			return;
2011 
2012 		if (JF(*diffp) != JF(b))
2013 			return;
2014 
2015 		if (!SET_MEMBER((*diffp)->dom, b->id))
2016 			return;
2017 
2018 		if ((*diffp)->val[A_ATOM] != val)
2019 			break;
2020 
2021 		diffp = &JT(*diffp);
2022 		at_top = 0;
2023 	}
2024 	samep = &JT(*diffp);
2025 	for (;;) {
2026 		if (*samep == 0)
2027 			return;
2028 
2029 		if (JF(*samep) != JF(b))
2030 			return;
2031 
2032 		if (!SET_MEMBER((*samep)->dom, b->id))
2033 			return;
2034 
2035 		if ((*samep)->val[A_ATOM] == val)
2036 			break;
2037 
2038 		/* XXX Need to check that there are no data dependencies
2039 		   between diffp and samep.  Currently, the code generator
2040 		   will not produce such dependencies. */
2041 		samep = &JT(*samep);
2042 	}
2043 #ifdef notdef
2044 	/* XXX This doesn't cover everything. */
2045 	for (i = 0; i < N_ATOMS; ++i)
2046 		if ((*samep)->val[i] != pred->val[i])
2047 			return;
2048 #endif
2049 	/* Pull up the node. */
2050 	pull = *samep;
2051 	*samep = JT(pull);
2052 	JT(pull) = *diffp;
2053 
2054 	/*
2055 	 * At the top of the chain, each predecessor needs to point at the
2056 	 * pulled up node.  Inside the chain, there is only one predecessor
2057 	 * to worry about.
2058 	 */
2059 	if (at_top) {
2060 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061 			if (JT(ep->pred) == b)
2062 				JT(ep->pred) = pull;
2063 			else
2064 				JF(ep->pred) = pull;
2065 		}
2066 	}
2067 	else
2068 		*diffp = pull;
2069 
2070 	/*
2071 	 * XXX - this is one of the operations that happens when the
2072 	 * optimizer gets into one of those infinite loops.
2073 	 */
2074 	opt_state->done = 0;
2075 }
2076 
2077 static void
2078 opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079 {
2080 	int i, maxlevel;
2081 	struct block *p;
2082 
2083 	init_val(opt_state);
2084 	maxlevel = ic->root->level;
2085 
2086 	find_inedges(opt_state, ic->root);
2087 	for (i = maxlevel; i >= 0; --i)
2088 		for (p = opt_state->levels[i]; p; p = p->link)
2089 			opt_blk(opt_state, p, do_stmts);
2090 
2091 	if (do_stmts)
2092 		/*
2093 		 * No point trying to move branches; it can't possibly
2094 		 * make a difference at this point.
2095 		 *
2096 		 * XXX - this might be after we detect a loop where
2097 		 * we were just looping infinitely moving branches
2098 		 * in such a fashion that we went through two or more
2099 		 * versions of the machine code, eventually returning
2100 		 * to the first version.  (We're really not doing a
2101 		 * full loop detection, we're just testing for two
2102 		 * passes in a row where we do nothing but
2103 		 * move branches.)
2104 		 */
2105 		return;
2106 
2107 	/*
2108 	 * Is this what the BPF+ paper describes in sections 6.1.1,
2109 	 * 6.1.2, and 6.1.3?
2110 	 */
2111 	for (i = 1; i <= maxlevel; ++i) {
2112 		for (p = opt_state->levels[i]; p; p = p->link) {
2113 			opt_j(opt_state, &p->et);
2114 			opt_j(opt_state, &p->ef);
2115 		}
2116 	}
2117 
2118 	find_inedges(opt_state, ic->root);
2119 	for (i = 1; i <= maxlevel; ++i) {
2120 		for (p = opt_state->levels[i]; p; p = p->link) {
2121 			or_pullup(opt_state, p);
2122 			and_pullup(opt_state, p);
2123 		}
2124 	}
2125 }
2126 
2127 static inline void
2128 link_inedge(struct edge *parent, struct block *child)
2129 {
2130 	parent->next = child->in_edges;
2131 	child->in_edges = parent;
2132 }
2133 
2134 static void
2135 find_inedges(opt_state_t *opt_state, struct block *root)
2136 {
2137 	u_int i;
2138 	int level;
2139 	struct block *b;
2140 
2141 	for (i = 0; i < opt_state->n_blocks; ++i)
2142 		opt_state->blocks[i]->in_edges = 0;
2143 
2144 	/*
2145 	 * Traverse the graph, adding each edge to the predecessor
2146 	 * list of its successors.  Skip the leaves (i.e. level 0).
2147 	 */
2148 	for (level = root->level; level > 0; --level) {
2149 		for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150 			link_inedge(&b->et, JT(b));
2151 			link_inedge(&b->ef, JF(b));
2152 		}
2153 	}
2154 }
2155 
2156 static void
2157 opt_root(struct block **b)
2158 {
2159 	struct slist *tmp, *s;
2160 
2161 	s = (*b)->stmts;
2162 	(*b)->stmts = 0;
2163 	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164 		*b = JT(*b);
2165 
2166 	tmp = (*b)->stmts;
2167 	if (tmp != 0)
2168 		sappend(s, tmp);
2169 	(*b)->stmts = s;
2170 
2171 	/*
2172 	 * If the root node is a return, then there is no
2173 	 * point executing any statements (since the bpf machine
2174 	 * has no side effects).
2175 	 */
2176 	if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177 		(*b)->stmts = 0;
2178 }
2179 
2180 static void
2181 opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182 {
2183 
2184 #ifdef BDEBUG
2185 	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186 		printf("opt_loop(root, %d) begin\n", do_stmts);
2187 		opt_dump(opt_state, ic);
2188 	}
2189 #endif
2190 
2191 	/*
2192 	 * XXX - optimizer loop detection.
2193 	 */
2194 	int loop_count = 0;
2195 	for (;;) {
2196 		opt_state->done = 1;
2197 		/*
2198 		 * XXX - optimizer loop detection.
2199 		 */
2200 		opt_state->non_branch_movement_performed = 0;
2201 		find_levels(opt_state, ic);
2202 		find_dom(opt_state, ic->root);
2203 		find_closure(opt_state, ic->root);
2204 		find_ud(opt_state, ic->root);
2205 		find_edom(opt_state, ic->root);
2206 		opt_blks(opt_state, ic, do_stmts);
2207 #ifdef BDEBUG
2208 		if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209 			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210 			opt_dump(opt_state, ic);
2211 		}
2212 #endif
2213 
2214 		/*
2215 		 * Was anything done in this optimizer pass?
2216 		 */
2217 		if (opt_state->done) {
2218 			/*
2219 			 * No, so we've reached a fixed point.
2220 			 * We're done.
2221 			 */
2222 			break;
2223 		}
2224 
2225 		/*
2226 		 * XXX - was anything done other than branch movement
2227 		 * in this pass?
2228 		 */
2229 		if (opt_state->non_branch_movement_performed) {
2230 			/*
2231 			 * Yes.  Clear any loop-detection counter;
2232 			 * we're making some form of progress (assuming
2233 			 * we can't get into a cycle doing *other*
2234 			 * optimizations...).
2235 			 */
2236 			loop_count = 0;
2237 		} else {
2238 			/*
2239 			 * No - increment the counter, and quit if
2240 			 * it's up to 100.
2241 			 */
2242 			loop_count++;
2243 			if (loop_count >= 100) {
2244 				/*
2245 				 * We've done nothing but branch movement
2246 				 * for 100 passes; we're probably
2247 				 * in a cycle and will never reach a
2248 				 * fixed point.
2249 				 *
2250 				 * XXX - yes, we really need a non-
2251 				 * heuristic way of detecting a cycle.
2252 				 */
2253 				opt_state->done = 1;
2254 				break;
2255 			}
2256 		}
2257 	}
2258 }
2259 
2260 /*
2261  * Optimize the filter code in its dag representation.
2262  * Return 0 on success, -1 on error.
2263  */
2264 int
2265 bpf_optimize(struct icode *ic, char *errbuf)
2266 {
2267 	opt_state_t opt_state;
2268 
2269 	memset(&opt_state, 0, sizeof(opt_state));
2270 	opt_state.errbuf = errbuf;
2271 	opt_state.non_branch_movement_performed = 0;
2272 	if (setjmp(opt_state.top_ctx)) {
2273 		opt_cleanup(&opt_state);
2274 		return -1;
2275 	}
2276 	opt_init(&opt_state, ic);
2277 	opt_loop(&opt_state, ic, 0);
2278 	opt_loop(&opt_state, ic, 1);
2279 	intern_blocks(&opt_state, ic);
2280 #ifdef BDEBUG
2281 	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282 		printf("after intern_blocks()\n");
2283 		opt_dump(&opt_state, ic);
2284 	}
2285 #endif
2286 	opt_root(&ic->root);
2287 #ifdef BDEBUG
2288 	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289 		printf("after opt_root()\n");
2290 		opt_dump(&opt_state, ic);
2291 	}
2292 #endif
2293 	opt_cleanup(&opt_state);
2294 	return 0;
2295 }
2296 
2297 static void
2298 make_marks(struct icode *ic, struct block *p)
2299 {
2300 	if (!isMarked(ic, p)) {
2301 		Mark(ic, p);
2302 		if (BPF_CLASS(p->s.code) != BPF_RET) {
2303 			make_marks(ic, JT(p));
2304 			make_marks(ic, JF(p));
2305 		}
2306 	}
2307 }
2308 
2309 /*
2310  * Mark code array such that isMarked(ic->cur_mark, i) is true
2311  * only for nodes that are alive.
2312  */
2313 static void
2314 mark_code(struct icode *ic)
2315 {
2316 	ic->cur_mark += 1;
2317 	make_marks(ic, ic->root);
2318 }
2319 
2320 /*
2321  * True iff the two stmt lists load the same value from the packet into
2322  * the accumulator.
2323  */
2324 static int
2325 eq_slist(struct slist *x, struct slist *y)
2326 {
2327 	for (;;) {
2328 		while (x && x->s.code == NOP)
2329 			x = x->next;
2330 		while (y && y->s.code == NOP)
2331 			y = y->next;
2332 		if (x == 0)
2333 			return y == 0;
2334 		if (y == 0)
2335 			return x == 0;
2336 		if (x->s.code != y->s.code || x->s.k != y->s.k)
2337 			return 0;
2338 		x = x->next;
2339 		y = y->next;
2340 	}
2341 }
2342 
2343 static inline int
2344 eq_blk(struct block *b0, struct block *b1)
2345 {
2346 	if (b0->s.code == b1->s.code &&
2347 	    b0->s.k == b1->s.k &&
2348 	    b0->et.succ == b1->et.succ &&
2349 	    b0->ef.succ == b1->ef.succ)
2350 		return eq_slist(b0->stmts, b1->stmts);
2351 	return 0;
2352 }
2353 
2354 static void
2355 intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356 {
2357 	struct block *p;
2358 	u_int i, j;
2359 	int done1; /* don't shadow global */
2360  top:
2361 	done1 = 1;
2362 	for (i = 0; i < opt_state->n_blocks; ++i)
2363 		opt_state->blocks[i]->link = 0;
2364 
2365 	mark_code(ic);
2366 
2367 	for (i = opt_state->n_blocks - 1; i != 0; ) {
2368 		--i;
2369 		if (!isMarked(ic, opt_state->blocks[i]))
2370 			continue;
2371 		for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372 			if (!isMarked(ic, opt_state->blocks[j]))
2373 				continue;
2374 			if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375 				opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376 					opt_state->blocks[j]->link : opt_state->blocks[j];
2377 				break;
2378 			}
2379 		}
2380 	}
2381 	for (i = 0; i < opt_state->n_blocks; ++i) {
2382 		p = opt_state->blocks[i];
2383 		if (JT(p) == 0)
2384 			continue;
2385 		if (JT(p)->link) {
2386 			done1 = 0;
2387 			JT(p) = JT(p)->link;
2388 		}
2389 		if (JF(p)->link) {
2390 			done1 = 0;
2391 			JF(p) = JF(p)->link;
2392 		}
2393 	}
2394 	if (!done1)
2395 		goto top;
2396 }
2397 
2398 static void
2399 opt_cleanup(opt_state_t *opt_state)
2400 {
2401 	free((void *)opt_state->vnode_base);
2402 	free((void *)opt_state->vmap);
2403 	free((void *)opt_state->edges);
2404 	free((void *)opt_state->space);
2405 	free((void *)opt_state->levels);
2406 	free((void *)opt_state->blocks);
2407 }
2408 
2409 /*
2410  * For optimizer errors.
2411  */
2412 static void PCAP_NORETURN
2413 opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414 {
2415 	va_list ap;
2416 
2417 	if (opt_state->errbuf != NULL) {
2418 		va_start(ap, fmt);
2419 		(void)vsnprintf(opt_state->errbuf,
2420 		    PCAP_ERRBUF_SIZE, fmt, ap);
2421 		va_end(ap);
2422 	}
2423 	longjmp(opt_state->top_ctx, 1);
2424 	/* NOTREACHED */
2425 #ifdef _AIX
2426 	PCAP_UNREACHABLE
2427 #endif /* _AIX */
2428 }
2429 
2430 /*
2431  * Return the number of stmts in 's'.
2432  */
2433 static u_int
2434 slength(struct slist *s)
2435 {
2436 	u_int n = 0;
2437 
2438 	for (; s; s = s->next)
2439 		if (s->s.code != NOP)
2440 			++n;
2441 	return n;
2442 }
2443 
2444 /*
2445  * Return the number of nodes reachable by 'p'.
2446  * All nodes should be initially unmarked.
2447  */
2448 static int
2449 count_blocks(struct icode *ic, struct block *p)
2450 {
2451 	if (p == 0 || isMarked(ic, p))
2452 		return 0;
2453 	Mark(ic, p);
2454 	return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455 }
2456 
2457 /*
2458  * Do a depth first search on the flow graph, numbering the
2459  * the basic blocks, and entering them into the 'blocks' array.`
2460  */
2461 static void
2462 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463 {
2464 	u_int n;
2465 
2466 	if (p == 0 || isMarked(ic, p))
2467 		return;
2468 
2469 	Mark(ic, p);
2470 	n = opt_state->n_blocks++;
2471 	if (opt_state->n_blocks == 0) {
2472 		/*
2473 		 * Overflow.
2474 		 */
2475 		opt_error(opt_state, "filter is too complex to optimize");
2476 	}
2477 	p->id = n;
2478 	opt_state->blocks[n] = p;
2479 
2480 	number_blks_r(opt_state, ic, JT(p));
2481 	number_blks_r(opt_state, ic, JF(p));
2482 }
2483 
2484 /*
2485  * Return the number of stmts in the flowgraph reachable by 'p'.
2486  * The nodes should be unmarked before calling.
2487  *
2488  * Note that "stmts" means "instructions", and that this includes
2489  *
2490  *	side-effect statements in 'p' (slength(p->stmts));
2491  *
2492  *	statements in the true branch from 'p' (count_stmts(JT(p)));
2493  *
2494  *	statements in the false branch from 'p' (count_stmts(JF(p)));
2495  *
2496  *	the conditional jump itself (1);
2497  *
2498  *	an extra long jump if the true branch requires it (p->longjt);
2499  *
2500  *	an extra long jump if the false branch requires it (p->longjf).
2501  */
2502 static u_int
2503 count_stmts(struct icode *ic, struct block *p)
2504 {
2505 	u_int n;
2506 
2507 	if (p == 0 || isMarked(ic, p))
2508 		return 0;
2509 	Mark(ic, p);
2510 	n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511 	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512 }
2513 
2514 /*
2515  * Allocate memory.  All allocation is done before optimization
2516  * is begun.  A linear bound on the size of all data structures is computed
2517  * from the total number of blocks and/or statements.
2518  */
2519 static void
2520 opt_init(opt_state_t *opt_state, struct icode *ic)
2521 {
2522 	bpf_u_int32 *p;
2523 	int i, n, max_stmts;
2524 	u_int product;
2525 	size_t block_memsize, edge_memsize;
2526 
2527 	/*
2528 	 * First, count the blocks, so we can malloc an array to map
2529 	 * block number to block.  Then, put the blocks into the array.
2530 	 */
2531 	unMarkAll(ic);
2532 	n = count_blocks(ic, ic->root);
2533 	opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534 	if (opt_state->blocks == NULL)
2535 		opt_error(opt_state, "malloc");
2536 	unMarkAll(ic);
2537 	opt_state->n_blocks = 0;
2538 	number_blks_r(opt_state, ic, ic->root);
2539 
2540 	/*
2541 	 * This "should not happen".
2542 	 */
2543 	if (opt_state->n_blocks == 0)
2544 		opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545 
2546 	opt_state->n_edges = 2 * opt_state->n_blocks;
2547 	if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548 		/*
2549 		 * Overflow.
2550 		 */
2551 		opt_error(opt_state, "filter is too complex to optimize");
2552 	}
2553 	opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554 	if (opt_state->edges == NULL) {
2555 		opt_error(opt_state, "malloc");
2556 	}
2557 
2558 	/*
2559 	 * The number of levels is bounded by the number of nodes.
2560 	 */
2561 	opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562 	if (opt_state->levels == NULL) {
2563 		opt_error(opt_state, "malloc");
2564 	}
2565 
2566 	opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567 	opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568 
2569 	/*
2570 	 * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571 	 * in a u_int; we use it as a u_int number-of-iterations
2572 	 * value.
2573 	 */
2574 	product = opt_state->n_blocks * opt_state->nodewords;
2575 	if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576 		/*
2577 		 * XXX - just punt and don't try to optimize?
2578 		 * In practice, this is unlikely to happen with
2579 		 * a normal filter.
2580 		 */
2581 		opt_error(opt_state, "filter is too complex to optimize");
2582 	}
2583 
2584 	/*
2585 	 * Make sure the total memory required for that doesn't
2586 	 * overflow.
2587 	 */
2588 	block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589 	if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590 		opt_error(opt_state, "filter is too complex to optimize");
2591 	}
2592 
2593 	/*
2594 	 * Make sure opt_state->n_edges * opt_state->edgewords fits
2595 	 * in a u_int; we use it as a u_int number-of-iterations
2596 	 * value.
2597 	 */
2598 	product = opt_state->n_edges * opt_state->edgewords;
2599 	if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600 		opt_error(opt_state, "filter is too complex to optimize");
2601 	}
2602 
2603 	/*
2604 	 * Make sure the total memory required for that doesn't
2605 	 * overflow.
2606 	 */
2607 	edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608 	if (edge_memsize / product != sizeof(*opt_state->space)) {
2609 		opt_error(opt_state, "filter is too complex to optimize");
2610 	}
2611 
2612 	/*
2613 	 * Make sure the total memory required for both of them doesn't
2614 	 * overflow.
2615 	 */
2616 	if (block_memsize > SIZE_MAX - edge_memsize) {
2617 		opt_error(opt_state, "filter is too complex to optimize");
2618 	}
2619 
2620 	/* XXX */
2621 	opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622 	if (opt_state->space == NULL) {
2623 		opt_error(opt_state, "malloc");
2624 	}
2625 	p = opt_state->space;
2626 	opt_state->all_dom_sets = p;
2627 	for (i = 0; i < n; ++i) {
2628 		opt_state->blocks[i]->dom = p;
2629 		p += opt_state->nodewords;
2630 	}
2631 	opt_state->all_closure_sets = p;
2632 	for (i = 0; i < n; ++i) {
2633 		opt_state->blocks[i]->closure = p;
2634 		p += opt_state->nodewords;
2635 	}
2636 	opt_state->all_edge_sets = p;
2637 	for (i = 0; i < n; ++i) {
2638 		register struct block *b = opt_state->blocks[i];
2639 
2640 		b->et.edom = p;
2641 		p += opt_state->edgewords;
2642 		b->ef.edom = p;
2643 		p += opt_state->edgewords;
2644 		b->et.id = i;
2645 		opt_state->edges[i] = &b->et;
2646 		b->ef.id = opt_state->n_blocks + i;
2647 		opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648 		b->et.pred = b;
2649 		b->ef.pred = b;
2650 	}
2651 	max_stmts = 0;
2652 	for (i = 0; i < n; ++i)
2653 		max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654 	/*
2655 	 * We allocate at most 3 value numbers per statement,
2656 	 * so this is an upper bound on the number of valnodes
2657 	 * we'll need.
2658 	 */
2659 	opt_state->maxval = 3 * max_stmts;
2660 	opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661 	if (opt_state->vmap == NULL) {
2662 		opt_error(opt_state, "malloc");
2663 	}
2664 	opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665 	if (opt_state->vnode_base == NULL) {
2666 		opt_error(opt_state, "malloc");
2667 	}
2668 }
2669 
2670 /*
2671  * This is only used when supporting optimizer debugging.  It is
2672  * global state, so do *not* do more than one compile in parallel
2673  * and expect it to provide meaningful information.
2674  */
2675 #ifdef BDEBUG
2676 int bids[NBIDS];
2677 #endif
2678 
2679 static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680     PCAP_PRINTFLIKE(2, 3);
2681 
2682 /*
2683  * Returns true if successful.  Returns false if a branch has
2684  * an offset that is too large.  If so, we have marked that
2685  * branch so that on a subsequent iteration, it will be treated
2686  * properly.
2687  */
2688 static int
2689 convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690 {
2691 	struct bpf_insn *dst;
2692 	struct slist *src;
2693 	u_int slen;
2694 	u_int off;
2695 	struct slist **offset = NULL;
2696 
2697 	if (p == 0 || isMarked(ic, p))
2698 		return (1);
2699 	Mark(ic, p);
2700 
2701 	if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702 		return (0);
2703 	if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704 		return (0);
2705 
2706 	slen = slength(p->stmts);
2707 	dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708 		/* inflate length by any extra jumps */
2709 
2710 	p->offset = (int)(dst - conv_state->fstart);
2711 
2712 	/* generate offset[] for convenience  */
2713 	if (slen) {
2714 		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715 		if (!offset) {
2716 			conv_error(conv_state, "not enough core");
2717 			/*NOTREACHED*/
2718 		}
2719 	}
2720 	src = p->stmts;
2721 	for (off = 0; off < slen && src; off++) {
2722 #if 0
2723 		printf("off=%d src=%x\n", off, src);
2724 #endif
2725 		offset[off] = src;
2726 		src = src->next;
2727 	}
2728 
2729 	off = 0;
2730 	for (src = p->stmts; src; src = src->next) {
2731 		if (src->s.code == NOP)
2732 			continue;
2733 		dst->code = (u_short)src->s.code;
2734 		dst->k = src->s.k;
2735 
2736 		/* fill block-local relative jump */
2737 		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738 #if 0
2739 			if (src->s.jt || src->s.jf) {
2740 				free(offset);
2741 				conv_error(conv_state, "illegal jmp destination");
2742 				/*NOTREACHED*/
2743 			}
2744 #endif
2745 			goto filled;
2746 		}
2747 		if (off == slen - 2)	/*???*/
2748 			goto filled;
2749 
2750 	    {
2751 		u_int i;
2752 		int jt, jf;
2753 		const char ljerr[] = "%s for block-local relative jump: off=%d";
2754 
2755 #if 0
2756 		printf("code=%x off=%d %x %x\n", src->s.code,
2757 			off, src->s.jt, src->s.jf);
2758 #endif
2759 
2760 		if (!src->s.jt || !src->s.jf) {
2761 			free(offset);
2762 			conv_error(conv_state, ljerr, "no jmp destination", off);
2763 			/*NOTREACHED*/
2764 		}
2765 
2766 		jt = jf = 0;
2767 		for (i = 0; i < slen; i++) {
2768 			if (offset[i] == src->s.jt) {
2769 				if (jt) {
2770 					free(offset);
2771 					conv_error(conv_state, ljerr, "multiple matches", off);
2772 					/*NOTREACHED*/
2773 				}
2774 
2775 				if (i - off - 1 >= 256) {
2776 					free(offset);
2777 					conv_error(conv_state, ljerr, "out-of-range jump", off);
2778 					/*NOTREACHED*/
2779 				}
2780 				dst->jt = (u_char)(i - off - 1);
2781 				jt++;
2782 			}
2783 			if (offset[i] == src->s.jf) {
2784 				if (jf) {
2785 					free(offset);
2786 					conv_error(conv_state, ljerr, "multiple matches", off);
2787 					/*NOTREACHED*/
2788 				}
2789 				if (i - off - 1 >= 256) {
2790 					free(offset);
2791 					conv_error(conv_state, ljerr, "out-of-range jump", off);
2792 					/*NOTREACHED*/
2793 				}
2794 				dst->jf = (u_char)(i - off - 1);
2795 				jf++;
2796 			}
2797 		}
2798 		if (!jt || !jf) {
2799 			free(offset);
2800 			conv_error(conv_state, ljerr, "no destination found", off);
2801 			/*NOTREACHED*/
2802 		}
2803 	    }
2804 filled:
2805 		++dst;
2806 		++off;
2807 	}
2808 	if (offset)
2809 		free(offset);
2810 
2811 #ifdef BDEBUG
2812 	if (dst - conv_state->fstart < NBIDS)
2813 		bids[dst - conv_state->fstart] = p->id + 1;
2814 #endif
2815 	dst->code = (u_short)p->s.code;
2816 	dst->k = p->s.k;
2817 	if (JT(p)) {
2818 		/* number of extra jumps inserted */
2819 		u_char extrajmps = 0;
2820 		off = JT(p)->offset - (p->offset + slen) - 1;
2821 		if (off >= 256) {
2822 		    /* offset too large for branch, must add a jump */
2823 		    if (p->longjt == 0) {
2824 			/* mark this instruction and retry */
2825 			p->longjt++;
2826 			return(0);
2827 		    }
2828 		    dst->jt = extrajmps;
2829 		    extrajmps++;
2830 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2831 		    dst[extrajmps].k = off - extrajmps;
2832 		}
2833 		else
2834 		    dst->jt = (u_char)off;
2835 		off = JF(p)->offset - (p->offset + slen) - 1;
2836 		if (off >= 256) {
2837 		    /* offset too large for branch, must add a jump */
2838 		    if (p->longjf == 0) {
2839 			/* mark this instruction and retry */
2840 			p->longjf++;
2841 			return(0);
2842 		    }
2843 		    /* branch if F to following jump */
2844 		    /* if two jumps are inserted, F goes to second one */
2845 		    dst->jf = extrajmps;
2846 		    extrajmps++;
2847 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2848 		    dst[extrajmps].k = off - extrajmps;
2849 		}
2850 		else
2851 		    dst->jf = (u_char)off;
2852 	}
2853 	return (1);
2854 }
2855 
2856 
2857 /*
2858  * Convert flowgraph intermediate representation to the
2859  * BPF array representation.  Set *lenp to the number of instructions.
2860  *
2861  * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862  * not* do free(fp) before returning fp; doing so would make no sense,
2863  * as the BPF array pointed to by the return value of icode_to_fcode()
2864  * must be valid - it's being returned for use in a bpf_program structure.
2865  *
2866  * If it appears that icode_to_fcode() is leaking, the problem is that
2867  * the program using pcap_compile() is failing to free the memory in
2868  * the BPF program when it's done - the leak is in the program, not in
2869  * the routine that happens to be allocating the memory.  (By analogy, if
2870  * a program calls fopen() without ever calling fclose() on the FILE *,
2871  * it will leak the FILE structure; the leak is not in fopen(), it's in
2872  * the program.)  Change the program to use pcap_freecode() when it's
2873  * done with the filter program.  See the pcap man page.
2874  */
2875 struct bpf_insn *
2876 icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877     char *errbuf)
2878 {
2879 	u_int n;
2880 	struct bpf_insn *fp;
2881 	conv_state_t conv_state;
2882 
2883 	conv_state.fstart = NULL;
2884 	conv_state.errbuf = errbuf;
2885 	if (setjmp(conv_state.top_ctx) != 0) {
2886 		free(conv_state.fstart);
2887 		return NULL;
2888 	}
2889 
2890 	/*
2891 	 * Loop doing convert_code_r() until no branches remain
2892 	 * with too-large offsets.
2893 	 */
2894 	for (;;) {
2895 	    unMarkAll(ic);
2896 	    n = *lenp = count_stmts(ic, root);
2897 
2898 	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899 	    if (fp == NULL) {
2900 		(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901 		    "malloc");
2902 		return NULL;
2903 	    }
2904 	    memset((char *)fp, 0, sizeof(*fp) * n);
2905 	    conv_state.fstart = fp;
2906 	    conv_state.ftail = fp + n;
2907 
2908 	    unMarkAll(ic);
2909 	    if (convert_code_r(&conv_state, ic, root))
2910 		break;
2911 	    free(fp);
2912 	}
2913 
2914 	return fp;
2915 }
2916 
2917 /*
2918  * For iconv_to_fconv() errors.
2919  */
2920 static void PCAP_NORETURN
2921 conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922 {
2923 	va_list ap;
2924 
2925 	va_start(ap, fmt);
2926 	(void)vsnprintf(conv_state->errbuf,
2927 	    PCAP_ERRBUF_SIZE, fmt, ap);
2928 	va_end(ap);
2929 	longjmp(conv_state->top_ctx, 1);
2930 	/* NOTREACHED */
2931 #ifdef _AIX
2932 	PCAP_UNREACHABLE
2933 #endif /* _AIX */
2934 }
2935 
2936 /*
2937  * Make a copy of a BPF program and put it in the "fcode" member of
2938  * a "pcap_t".
2939  *
2940  * If we fail to allocate memory for the copy, fill in the "errbuf"
2941  * member of the "pcap_t" with an error message, and return -1;
2942  * otherwise, return 0.
2943  */
2944 int
2945 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946 {
2947 	size_t prog_size;
2948 
2949 	/*
2950 	 * Validate the program.
2951 	 */
2952 	if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953 		snprintf(p->errbuf, sizeof(p->errbuf),
2954 			"BPF program is not valid");
2955 		return (-1);
2956 	}
2957 
2958 	/*
2959 	 * Free up any already installed program.
2960 	 */
2961 	pcap_freecode(&p->fcode);
2962 
2963 	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964 	p->fcode.bf_len = fp->bf_len;
2965 	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966 	if (p->fcode.bf_insns == NULL) {
2967 		pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968 		    errno, "malloc");
2969 		return (-1);
2970 	}
2971 	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972 	return (0);
2973 }
2974 
2975 #ifdef BDEBUG
2976 static void
2977 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978     FILE *out)
2979 {
2980 	int icount, noffset;
2981 	int i;
2982 
2983 	if (block == NULL || isMarked(ic, block))
2984 		return;
2985 	Mark(ic, block);
2986 
2987 	icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988 	noffset = min(block->offset + icount, (int)prog->bf_len);
2989 
2990 	fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991 	for (i = block->offset; i < noffset; i++) {
2992 		fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993 	}
2994 	fprintf(out, "\" tooltip=\"");
2995 	for (i = 0; i < BPF_MEMWORDS; i++)
2996 		if (block->val[i] != VAL_UNKNOWN)
2997 			fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998 	fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999 	fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000 	fprintf(out, "\"");
3001 	if (JT(block) == NULL)
3002 		fprintf(out, ", peripheries=2");
3003 	fprintf(out, "];\n");
3004 
3005 	dot_dump_node(ic, JT(block), prog, out);
3006 	dot_dump_node(ic, JF(block), prog, out);
3007 }
3008 
3009 static void
3010 dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011 {
3012 	if (block == NULL || isMarked(ic, block))
3013 		return;
3014 	Mark(ic, block);
3015 
3016 	if (JT(block)) {
3017 		fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018 				block->id, JT(block)->id);
3019 		fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020 			   block->id, JF(block)->id);
3021 	}
3022 	dot_dump_edge(ic, JT(block), out);
3023 	dot_dump_edge(ic, JF(block), out);
3024 }
3025 
3026 /* Output the block CFG using graphviz/DOT language
3027  * In the CFG, block's code, value index for each registers at EXIT,
3028  * and the jump relationship is show.
3029  *
3030  * example DOT for BPF `ip src host 1.1.1.1' is:
3031     digraph BPF {
3032     	block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2	jf 5" tooltip="val[A]=0 val[X]=0"];
3033     	block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4	jf 5" tooltip="val[A]=0 val[X]=0"];
3034     	block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035     	block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036     	"block0":se -> "block1":n [label="T"];
3037     	"block0":sw -> "block3":n [label="F"];
3038     	"block1":se -> "block2":n [label="T"];
3039     	"block1":sw -> "block3":n [label="F"];
3040     }
3041  *
3042  *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043  *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044  */
3045 static int
3046 dot_dump(struct icode *ic, char *errbuf)
3047 {
3048 	struct bpf_program f;
3049 	FILE *out = stdout;
3050 
3051 	memset(bids, 0, sizeof bids);
3052 	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053 	if (f.bf_insns == NULL)
3054 		return -1;
3055 
3056 	fprintf(out, "digraph BPF {\n");
3057 	unMarkAll(ic);
3058 	dot_dump_node(ic, ic->root, &f, out);
3059 	unMarkAll(ic);
3060 	dot_dump_edge(ic, ic->root, out);
3061 	fprintf(out, "}\n");
3062 
3063 	free((char *)f.bf_insns);
3064 	return 0;
3065 }
3066 
3067 static int
3068 plain_dump(struct icode *ic, char *errbuf)
3069 {
3070 	struct bpf_program f;
3071 
3072 	memset(bids, 0, sizeof bids);
3073 	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074 	if (f.bf_insns == NULL)
3075 		return -1;
3076 	bpf_dump(&f, 1);
3077 	putchar('\n');
3078 	free((char *)f.bf_insns);
3079 	return 0;
3080 }
3081 
3082 static void
3083 opt_dump(opt_state_t *opt_state, struct icode *ic)
3084 {
3085 	int status;
3086 	char errbuf[PCAP_ERRBUF_SIZE];
3087 
3088 	/*
3089 	 * If the CFG, in DOT format, is requested, output it rather than
3090 	 * the code that would be generated from that graph.
3091 	 */
3092 	if (pcap_print_dot_graph)
3093 		status = dot_dump(ic, errbuf);
3094 	else
3095 		status = plain_dump(ic, errbuf);
3096 	if (status == -1)
3097 		opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098 }
3099 #endif
3100