1 /* 2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that: (1) source code distributions 7 * retain the above copyright notice and this paragraph in its entirety, (2) 8 * distributions including binary code include the above copyright notice and 9 * this paragraph in its entirety in the documentation or other materials 10 * provided with the distribution, and (3) all advertising materials mentioning 11 * features or use of this software display the following acknowledgement: 12 * ``This product includes software developed by the University of California, 13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 14 * the University nor the names of its contributors may be used to endorse 15 * or promote products derived from this software without specific prior 16 * written permission. 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 20 * 21 * Optimization module for BPF code intermediate representation. 22 */ 23 24 #ifdef HAVE_CONFIG_H 25 #include <config.h> 26 #endif 27 28 #include <pcap-types.h> 29 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <memory.h> 33 #include <setjmp.h> 34 #include <string.h> 35 36 #include <errno.h> 37 38 #include "pcap-int.h" 39 40 #include "gencode.h" 41 #include "optimize.h" 42 43 #ifdef HAVE_OS_PROTO_H 44 #include "os-proto.h" 45 #endif 46 47 #ifdef BDEBUG 48 /* 49 * The internal "debug printout" flag for the filter expression optimizer. 50 * The code to print that stuff is present only if BDEBUG is defined, so 51 * the flag, and the routine to set it, are defined only if BDEBUG is 52 * defined. 53 */ 54 static int pcap_optimizer_debug; 55 56 /* 57 * Routine to set that flag. 58 * 59 * This is intended for libpcap developers, not for general use. 60 * If you want to set these in a program, you'll have to declare this 61 * routine yourself, with the appropriate DLL import attribute on Windows; 62 * it's not declared in any header file, and won't be declared in any 63 * header file provided by libpcap. 64 */ 65 PCAP_API void pcap_set_optimizer_debug(int value); 66 67 PCAP_API_DEF void 68 pcap_set_optimizer_debug(int value) 69 { 70 pcap_optimizer_debug = value; 71 } 72 73 /* 74 * The internal "print dot graph" flag for the filter expression optimizer. 75 * The code to print that stuff is present only if BDEBUG is defined, so 76 * the flag, and the routine to set it, are defined only if BDEBUG is 77 * defined. 78 */ 79 static int pcap_print_dot_graph; 80 81 /* 82 * Routine to set that flag. 83 * 84 * This is intended for libpcap developers, not for general use. 85 * If you want to set these in a program, you'll have to declare this 86 * routine yourself, with the appropriate DLL import attribute on Windows; 87 * it's not declared in any header file, and won't be declared in any 88 * header file provided by libpcap. 89 */ 90 PCAP_API void pcap_set_print_dot_graph(int value); 91 92 PCAP_API_DEF void 93 pcap_set_print_dot_graph(int value) 94 { 95 pcap_print_dot_graph = value; 96 } 97 98 #endif 99 100 /* 101 * lowest_set_bit(). 102 * 103 * Takes a 32-bit integer as an argument. 104 * 105 * If handed a non-zero value, returns the index of the lowest set bit, 106 * counting upwards fro zero. 107 * 108 * If handed zero, the results are platform- and compiler-dependent. 109 * Keep it out of the light, don't give it any water, don't feed it 110 * after midnight, and don't pass zero to it. 111 * 112 * This is the same as the count of trailing zeroes in the word. 113 */ 114 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4) 115 /* 116 * GCC 3.4 and later; we have __builtin_ctz(). 117 */ 118 #define lowest_set_bit(mask) __builtin_ctz(mask) 119 #elif defined(_MSC_VER) 120 /* 121 * Visual Studio; we support only 2005 and later, so use 122 * _BitScanForward(). 123 */ 124 #include <intrin.h> 125 126 #ifndef __clang__ 127 #pragma intrinsic(_BitScanForward) 128 #endif 129 130 static __forceinline int 131 lowest_set_bit(int mask) 132 { 133 unsigned long bit; 134 135 /* 136 * Don't sign-extend mask if long is longer than int. 137 * (It's currently not, in MSVC, even on 64-bit platforms, but....) 138 */ 139 if (_BitScanForward(&bit, (unsigned int)mask) == 0) 140 return -1; /* mask is zero */ 141 return (int)bit; 142 } 143 #elif defined(MSDOS) && defined(__DJGPP__) 144 /* 145 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which 146 * we've already included. 147 */ 148 #define lowest_set_bit(mask) (ffs((mask)) - 1) 149 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS) 150 /* 151 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there, 152 * or some other platform (UN*X conforming to a sufficient recent version 153 * of the Single UNIX Specification). 154 */ 155 #include <strings.h> 156 #define lowest_set_bit(mask) (ffs((mask)) - 1) 157 #else 158 /* 159 * None of the above. 160 * Use a perfect-hash-function-based function. 161 */ 162 static int 163 lowest_set_bit(int mask) 164 { 165 unsigned int v = (unsigned int)mask; 166 167 static const int MultiplyDeBruijnBitPosition[32] = { 168 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 169 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 170 }; 171 172 /* 173 * We strip off all but the lowermost set bit (v & ~v), 174 * and perform a minimal perfect hash on it to look up the 175 * number of low-order zero bits in a table. 176 * 177 * See: 178 * 179 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf 180 * 181 * http://supertech.csail.mit.edu/papers/debruijn.pdf 182 */ 183 return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]); 184 } 185 #endif 186 187 /* 188 * Represents a deleted instruction. 189 */ 190 #define NOP -1 191 192 /* 193 * Register numbers for use-def values. 194 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory 195 * location. A_ATOM is the accumulator and X_ATOM is the index 196 * register. 197 */ 198 #define A_ATOM BPF_MEMWORDS 199 #define X_ATOM (BPF_MEMWORDS+1) 200 201 /* 202 * This define is used to represent *both* the accumulator and 203 * x register in use-def computations. 204 * Currently, the use-def code assumes only one definition per instruction. 205 */ 206 #define AX_ATOM N_ATOMS 207 208 /* 209 * These data structures are used in a Cocke and Shwarz style 210 * value numbering scheme. Since the flowgraph is acyclic, 211 * exit values can be propagated from a node's predecessors 212 * provided it is uniquely defined. 213 */ 214 struct valnode { 215 int code; 216 int v0, v1; 217 int val; 218 struct valnode *next; 219 }; 220 221 /* Integer constants mapped with the load immediate opcode. */ 222 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L) 223 224 struct vmapinfo { 225 int is_const; 226 bpf_int32 const_val; 227 }; 228 229 typedef struct { 230 /* 231 * Place to longjmp to on an error. 232 */ 233 jmp_buf top_ctx; 234 235 /* 236 * The buffer into which to put error message. 237 */ 238 char *errbuf; 239 240 /* 241 * A flag to indicate that further optimization is needed. 242 * Iterative passes are continued until a given pass yields no 243 * branch movement. 244 */ 245 int done; 246 247 int n_blocks; 248 struct block **blocks; 249 int n_edges; 250 struct edge **edges; 251 252 /* 253 * A bit vector set representation of the dominators. 254 * We round up the set size to the next power of two. 255 */ 256 int nodewords; 257 int edgewords; 258 struct block **levels; 259 bpf_u_int32 *space; 260 261 #define BITS_PER_WORD (8*sizeof(bpf_u_int32)) 262 /* 263 * True if a is in uset {p} 264 */ 265 #define SET_MEMBER(p, a) \ 266 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))) 267 268 /* 269 * Add 'a' to uset p. 270 */ 271 #define SET_INSERT(p, a) \ 272 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)) 273 274 /* 275 * Delete 'a' from uset p. 276 */ 277 #define SET_DELETE(p, a) \ 278 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)) 279 280 /* 281 * a := a intersect b 282 */ 283 #define SET_INTERSECT(a, b, n)\ 284 {\ 285 register bpf_u_int32 *_x = a, *_y = b;\ 286 register int _n = n;\ 287 while (--_n >= 0) *_x++ &= *_y++;\ 288 } 289 290 /* 291 * a := a - b 292 */ 293 #define SET_SUBTRACT(a, b, n)\ 294 {\ 295 register bpf_u_int32 *_x = a, *_y = b;\ 296 register int _n = n;\ 297 while (--_n >= 0) *_x++ &=~ *_y++;\ 298 } 299 300 /* 301 * a := a union b 302 */ 303 #define SET_UNION(a, b, n)\ 304 {\ 305 register bpf_u_int32 *_x = a, *_y = b;\ 306 register int _n = n;\ 307 while (--_n >= 0) *_x++ |= *_y++;\ 308 } 309 310 uset all_dom_sets; 311 uset all_closure_sets; 312 uset all_edge_sets; 313 314 #define MODULUS 213 315 struct valnode *hashtbl[MODULUS]; 316 int curval; 317 int maxval; 318 319 struct vmapinfo *vmap; 320 struct valnode *vnode_base; 321 struct valnode *next_vnode; 322 } opt_state_t; 323 324 typedef struct { 325 /* 326 * Place to longjmp to on an error. 327 */ 328 jmp_buf top_ctx; 329 330 /* 331 * The buffer into which to put error message. 332 */ 333 char *errbuf; 334 335 /* 336 * Some pointers used to convert the basic block form of the code, 337 * into the array form that BPF requires. 'fstart' will point to 338 * the malloc'd array while 'ftail' is used during the recursive 339 * traversal. 340 */ 341 struct bpf_insn *fstart; 342 struct bpf_insn *ftail; 343 } conv_state_t; 344 345 static void opt_init(opt_state_t *, struct icode *); 346 static void opt_cleanup(opt_state_t *); 347 static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...) 348 PCAP_PRINTFLIKE(2, 3); 349 350 static void intern_blocks(opt_state_t *, struct icode *); 351 352 static void find_inedges(opt_state_t *, struct block *); 353 #ifdef BDEBUG 354 static void opt_dump(opt_state_t *, struct icode *); 355 #endif 356 357 #ifndef MAX 358 #define MAX(a,b) ((a)>(b)?(a):(b)) 359 #endif 360 361 static void 362 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b) 363 { 364 int level; 365 366 if (isMarked(ic, b)) 367 return; 368 369 Mark(ic, b); 370 b->link = 0; 371 372 if (JT(b)) { 373 find_levels_r(opt_state, ic, JT(b)); 374 find_levels_r(opt_state, ic, JF(b)); 375 level = MAX(JT(b)->level, JF(b)->level) + 1; 376 } else 377 level = 0; 378 b->level = level; 379 b->link = opt_state->levels[level]; 380 opt_state->levels[level] = b; 381 } 382 383 /* 384 * Level graph. The levels go from 0 at the leaves to 385 * N_LEVELS at the root. The opt_state->levels[] array points to the 386 * first node of the level list, whose elements are linked 387 * with the 'link' field of the struct block. 388 */ 389 static void 390 find_levels(opt_state_t *opt_state, struct icode *ic) 391 { 392 memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels)); 393 unMarkAll(ic); 394 find_levels_r(opt_state, ic, ic->root); 395 } 396 397 /* 398 * Find dominator relationships. 399 * Assumes graph has been leveled. 400 */ 401 static void 402 find_dom(opt_state_t *opt_state, struct block *root) 403 { 404 int i; 405 struct block *b; 406 bpf_u_int32 *x; 407 408 /* 409 * Initialize sets to contain all nodes. 410 */ 411 x = opt_state->all_dom_sets; 412 i = opt_state->n_blocks * opt_state->nodewords; 413 while (--i >= 0) 414 *x++ = 0xFFFFFFFFU; 415 /* Root starts off empty. */ 416 for (i = opt_state->nodewords; --i >= 0;) 417 root->dom[i] = 0; 418 419 /* root->level is the highest level no found. */ 420 for (i = root->level; i >= 0; --i) { 421 for (b = opt_state->levels[i]; b; b = b->link) { 422 SET_INSERT(b->dom, b->id); 423 if (JT(b) == 0) 424 continue; 425 SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords); 426 SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords); 427 } 428 } 429 } 430 431 static void 432 propedom(opt_state_t *opt_state, struct edge *ep) 433 { 434 SET_INSERT(ep->edom, ep->id); 435 if (ep->succ) { 436 SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords); 437 SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords); 438 } 439 } 440 441 /* 442 * Compute edge dominators. 443 * Assumes graph has been leveled and predecessors established. 444 */ 445 static void 446 find_edom(opt_state_t *opt_state, struct block *root) 447 { 448 int i; 449 uset x; 450 struct block *b; 451 452 x = opt_state->all_edge_sets; 453 for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; ) 454 x[i] = 0xFFFFFFFFU; 455 456 /* root->level is the highest level no found. */ 457 memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); 458 memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); 459 for (i = root->level; i >= 0; --i) { 460 for (b = opt_state->levels[i]; b != 0; b = b->link) { 461 propedom(opt_state, &b->et); 462 propedom(opt_state, &b->ef); 463 } 464 } 465 } 466 467 /* 468 * Find the backwards transitive closure of the flow graph. These sets 469 * are backwards in the sense that we find the set of nodes that reach 470 * a given node, not the set of nodes that can be reached by a node. 471 * 472 * Assumes graph has been leveled. 473 */ 474 static void 475 find_closure(opt_state_t *opt_state, struct block *root) 476 { 477 int i; 478 struct block *b; 479 480 /* 481 * Initialize sets to contain no nodes. 482 */ 483 memset((char *)opt_state->all_closure_sets, 0, 484 opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets)); 485 486 /* root->level is the highest level no found. */ 487 for (i = root->level; i >= 0; --i) { 488 for (b = opt_state->levels[i]; b; b = b->link) { 489 SET_INSERT(b->closure, b->id); 490 if (JT(b) == 0) 491 continue; 492 SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords); 493 SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords); 494 } 495 } 496 } 497 498 /* 499 * Return the register number that is used by s. If A and X are both 500 * used, return AX_ATOM. If no register is used, return -1. 501 * 502 * The implementation should probably change to an array access. 503 */ 504 static int 505 atomuse(struct stmt *s) 506 { 507 register int c = s->code; 508 509 if (c == NOP) 510 return -1; 511 512 switch (BPF_CLASS(c)) { 513 514 case BPF_RET: 515 return (BPF_RVAL(c) == BPF_A) ? A_ATOM : 516 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; 517 518 case BPF_LD: 519 case BPF_LDX: 520 return (BPF_MODE(c) == BPF_IND) ? X_ATOM : 521 (BPF_MODE(c) == BPF_MEM) ? s->k : -1; 522 523 case BPF_ST: 524 return A_ATOM; 525 526 case BPF_STX: 527 return X_ATOM; 528 529 case BPF_JMP: 530 case BPF_ALU: 531 if (BPF_SRC(c) == BPF_X) 532 return AX_ATOM; 533 return A_ATOM; 534 535 case BPF_MISC: 536 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; 537 } 538 abort(); 539 /* NOTREACHED */ 540 } 541 542 /* 543 * Return the register number that is defined by 's'. We assume that 544 * a single stmt cannot define more than one register. If no register 545 * is defined, return -1. 546 * 547 * The implementation should probably change to an array access. 548 */ 549 static int 550 atomdef(struct stmt *s) 551 { 552 if (s->code == NOP) 553 return -1; 554 555 switch (BPF_CLASS(s->code)) { 556 557 case BPF_LD: 558 case BPF_ALU: 559 return A_ATOM; 560 561 case BPF_LDX: 562 return X_ATOM; 563 564 case BPF_ST: 565 case BPF_STX: 566 return s->k; 567 568 case BPF_MISC: 569 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; 570 } 571 return -1; 572 } 573 574 /* 575 * Compute the sets of registers used, defined, and killed by 'b'. 576 * 577 * "Used" means that a statement in 'b' uses the register before any 578 * statement in 'b' defines it, i.e. it uses the value left in 579 * that register by a predecessor block of this block. 580 * "Defined" means that a statement in 'b' defines it. 581 * "Killed" means that a statement in 'b' defines it before any 582 * statement in 'b' uses it, i.e. it kills the value left in that 583 * register by a predecessor block of this block. 584 */ 585 static void 586 compute_local_ud(struct block *b) 587 { 588 struct slist *s; 589 atomset def = 0, use = 0, killed = 0; 590 int atom; 591 592 for (s = b->stmts; s; s = s->next) { 593 if (s->s.code == NOP) 594 continue; 595 atom = atomuse(&s->s); 596 if (atom >= 0) { 597 if (atom == AX_ATOM) { 598 if (!ATOMELEM(def, X_ATOM)) 599 use |= ATOMMASK(X_ATOM); 600 if (!ATOMELEM(def, A_ATOM)) 601 use |= ATOMMASK(A_ATOM); 602 } 603 else if (atom < N_ATOMS) { 604 if (!ATOMELEM(def, atom)) 605 use |= ATOMMASK(atom); 606 } 607 else 608 abort(); 609 } 610 atom = atomdef(&s->s); 611 if (atom >= 0) { 612 if (!ATOMELEM(use, atom)) 613 killed |= ATOMMASK(atom); 614 def |= ATOMMASK(atom); 615 } 616 } 617 if (BPF_CLASS(b->s.code) == BPF_JMP) { 618 /* 619 * XXX - what about RET? 620 */ 621 atom = atomuse(&b->s); 622 if (atom >= 0) { 623 if (atom == AX_ATOM) { 624 if (!ATOMELEM(def, X_ATOM)) 625 use |= ATOMMASK(X_ATOM); 626 if (!ATOMELEM(def, A_ATOM)) 627 use |= ATOMMASK(A_ATOM); 628 } 629 else if (atom < N_ATOMS) { 630 if (!ATOMELEM(def, atom)) 631 use |= ATOMMASK(atom); 632 } 633 else 634 abort(); 635 } 636 } 637 638 b->def = def; 639 b->kill = killed; 640 b->in_use = use; 641 } 642 643 /* 644 * Assume graph is already leveled. 645 */ 646 static void 647 find_ud(opt_state_t *opt_state, struct block *root) 648 { 649 int i, maxlevel; 650 struct block *p; 651 652 /* 653 * root->level is the highest level no found; 654 * count down from there. 655 */ 656 maxlevel = root->level; 657 for (i = maxlevel; i >= 0; --i) 658 for (p = opt_state->levels[i]; p; p = p->link) { 659 compute_local_ud(p); 660 p->out_use = 0; 661 } 662 663 for (i = 1; i <= maxlevel; ++i) { 664 for (p = opt_state->levels[i]; p; p = p->link) { 665 p->out_use |= JT(p)->in_use | JF(p)->in_use; 666 p->in_use |= p->out_use &~ p->kill; 667 } 668 } 669 } 670 static void 671 init_val(opt_state_t *opt_state) 672 { 673 opt_state->curval = 0; 674 opt_state->next_vnode = opt_state->vnode_base; 675 memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap)); 676 memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl); 677 } 678 679 /* Because we really don't have an IR, this stuff is a little messy. */ 680 static int 681 F(opt_state_t *opt_state, int code, int v0, int v1) 682 { 683 u_int hash; 684 int val; 685 struct valnode *p; 686 687 hash = (u_int)code ^ ((u_int)v0 << 4) ^ ((u_int)v1 << 8); 688 hash %= MODULUS; 689 690 for (p = opt_state->hashtbl[hash]; p; p = p->next) 691 if (p->code == code && p->v0 == v0 && p->v1 == v1) 692 return p->val; 693 694 val = ++opt_state->curval; 695 if (BPF_MODE(code) == BPF_IMM && 696 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { 697 opt_state->vmap[val].const_val = v0; 698 opt_state->vmap[val].is_const = 1; 699 } 700 p = opt_state->next_vnode++; 701 p->val = val; 702 p->code = code; 703 p->v0 = v0; 704 p->v1 = v1; 705 p->next = opt_state->hashtbl[hash]; 706 opt_state->hashtbl[hash] = p; 707 708 return val; 709 } 710 711 static inline void 712 vstore(struct stmt *s, int *valp, int newval, int alter) 713 { 714 if (alter && newval != VAL_UNKNOWN && *valp == newval) 715 s->code = NOP; 716 else 717 *valp = newval; 718 } 719 720 /* 721 * Do constant-folding on binary operators. 722 * (Unary operators are handled elsewhere.) 723 */ 724 static void 725 fold_op(opt_state_t *opt_state, struct stmt *s, int v0, int v1) 726 { 727 bpf_u_int32 a, b; 728 729 a = opt_state->vmap[v0].const_val; 730 b = opt_state->vmap[v1].const_val; 731 732 switch (BPF_OP(s->code)) { 733 case BPF_ADD: 734 a += b; 735 break; 736 737 case BPF_SUB: 738 a -= b; 739 break; 740 741 case BPF_MUL: 742 a *= b; 743 break; 744 745 case BPF_DIV: 746 if (b == 0) 747 opt_error(opt_state, "division by zero"); 748 a /= b; 749 break; 750 751 case BPF_MOD: 752 if (b == 0) 753 opt_error(opt_state, "modulus by zero"); 754 a %= b; 755 break; 756 757 case BPF_AND: 758 a &= b; 759 break; 760 761 case BPF_OR: 762 a |= b; 763 break; 764 765 case BPF_XOR: 766 a ^= b; 767 break; 768 769 case BPF_LSH: 770 /* 771 * A left shift of more than the width of the type 772 * is undefined in C; we'll just treat it as shifting 773 * all the bits out. 774 * 775 * XXX - the BPF interpreter doesn't check for this, 776 * so its behavior is dependent on the behavior of 777 * the processor on which it's running. There are 778 * processors on which it shifts all the bits out 779 * and processors on which it does no shift. 780 */ 781 if (b < 32) 782 a <<= b; 783 else 784 a = 0; 785 break; 786 787 case BPF_RSH: 788 /* 789 * A right shift of more than the width of the type 790 * is undefined in C; we'll just treat it as shifting 791 * all the bits out. 792 * 793 * XXX - the BPF interpreter doesn't check for this, 794 * so its behavior is dependent on the behavior of 795 * the processor on which it's running. There are 796 * processors on which it shifts all the bits out 797 * and processors on which it does no shift. 798 */ 799 if (b < 32) 800 a >>= b; 801 else 802 a = 0; 803 break; 804 805 default: 806 abort(); 807 } 808 s->k = a; 809 s->code = BPF_LD|BPF_IMM; 810 opt_state->done = 0; 811 } 812 813 static inline struct slist * 814 this_op(struct slist *s) 815 { 816 while (s != 0 && s->s.code == NOP) 817 s = s->next; 818 return s; 819 } 820 821 static void 822 opt_not(struct block *b) 823 { 824 struct block *tmp = JT(b); 825 826 JT(b) = JF(b); 827 JF(b) = tmp; 828 } 829 830 static void 831 opt_peep(opt_state_t *opt_state, struct block *b) 832 { 833 struct slist *s; 834 struct slist *next, *last; 835 int val; 836 837 s = b->stmts; 838 if (s == 0) 839 return; 840 841 last = s; 842 for (/*empty*/; /*empty*/; s = next) { 843 /* 844 * Skip over nops. 845 */ 846 s = this_op(s); 847 if (s == 0) 848 break; /* nothing left in the block */ 849 850 /* 851 * Find the next real instruction after that one 852 * (skipping nops). 853 */ 854 next = this_op(s->next); 855 if (next == 0) 856 break; /* no next instruction */ 857 last = next; 858 859 /* 860 * st M[k] --> st M[k] 861 * ldx M[k] tax 862 */ 863 if (s->s.code == BPF_ST && 864 next->s.code == (BPF_LDX|BPF_MEM) && 865 s->s.k == next->s.k) { 866 opt_state->done = 0; 867 next->s.code = BPF_MISC|BPF_TAX; 868 } 869 /* 870 * ld #k --> ldx #k 871 * tax txa 872 */ 873 if (s->s.code == (BPF_LD|BPF_IMM) && 874 next->s.code == (BPF_MISC|BPF_TAX)) { 875 s->s.code = BPF_LDX|BPF_IMM; 876 next->s.code = BPF_MISC|BPF_TXA; 877 opt_state->done = 0; 878 } 879 /* 880 * This is an ugly special case, but it happens 881 * when you say tcp[k] or udp[k] where k is a constant. 882 */ 883 if (s->s.code == (BPF_LD|BPF_IMM)) { 884 struct slist *add, *tax, *ild; 885 886 /* 887 * Check that X isn't used on exit from this 888 * block (which the optimizer might cause). 889 * We know the code generator won't generate 890 * any local dependencies. 891 */ 892 if (ATOMELEM(b->out_use, X_ATOM)) 893 continue; 894 895 /* 896 * Check that the instruction following the ldi 897 * is an addx, or it's an ldxms with an addx 898 * following it (with 0 or more nops between the 899 * ldxms and addx). 900 */ 901 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) 902 add = next; 903 else 904 add = this_op(next->next); 905 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) 906 continue; 907 908 /* 909 * Check that a tax follows that (with 0 or more 910 * nops between them). 911 */ 912 tax = this_op(add->next); 913 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) 914 continue; 915 916 /* 917 * Check that an ild follows that (with 0 or more 918 * nops between them). 919 */ 920 ild = this_op(tax->next); 921 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || 922 BPF_MODE(ild->s.code) != BPF_IND) 923 continue; 924 /* 925 * We want to turn this sequence: 926 * 927 * (004) ldi #0x2 {s} 928 * (005) ldxms [14] {next} -- optional 929 * (006) addx {add} 930 * (007) tax {tax} 931 * (008) ild [x+0] {ild} 932 * 933 * into this sequence: 934 * 935 * (004) nop 936 * (005) ldxms [14] 937 * (006) nop 938 * (007) nop 939 * (008) ild [x+2] 940 * 941 * XXX We need to check that X is not 942 * subsequently used, because we want to change 943 * what'll be in it after this sequence. 944 * 945 * We know we can eliminate the accumulator 946 * modifications earlier in the sequence since 947 * it is defined by the last stmt of this sequence 948 * (i.e., the last statement of the sequence loads 949 * a value into the accumulator, so we can eliminate 950 * earlier operations on the accumulator). 951 */ 952 ild->s.k += s->s.k; 953 s->s.code = NOP; 954 add->s.code = NOP; 955 tax->s.code = NOP; 956 opt_state->done = 0; 957 } 958 } 959 /* 960 * If the comparison at the end of a block is an equality 961 * comparison against a constant, and nobody uses the value 962 * we leave in the A register at the end of a block, and 963 * the operation preceding the comparison is an arithmetic 964 * operation, we can sometime optimize it away. 965 */ 966 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) && 967 !ATOMELEM(b->out_use, A_ATOM)) { 968 /* 969 * We can optimize away certain subtractions of the 970 * X register. 971 */ 972 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) { 973 val = b->val[X_ATOM]; 974 if (opt_state->vmap[val].is_const) { 975 /* 976 * If we have a subtract to do a comparison, 977 * and the X register is a known constant, 978 * we can merge this value into the 979 * comparison: 980 * 981 * sub x -> nop 982 * jeq #y jeq #(x+y) 983 */ 984 b->s.k += opt_state->vmap[val].const_val; 985 last->s.code = NOP; 986 opt_state->done = 0; 987 } else if (b->s.k == 0) { 988 /* 989 * If the X register isn't a constant, 990 * and the comparison in the test is 991 * against 0, we can compare with the 992 * X register, instead: 993 * 994 * sub x -> nop 995 * jeq #0 jeq x 996 */ 997 last->s.code = NOP; 998 b->s.code = BPF_JMP|BPF_JEQ|BPF_X; 999 opt_state->done = 0; 1000 } 1001 } 1002 /* 1003 * Likewise, a constant subtract can be simplified: 1004 * 1005 * sub #x -> nop 1006 * jeq #y -> jeq #(x+y) 1007 */ 1008 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) { 1009 last->s.code = NOP; 1010 b->s.k += last->s.k; 1011 opt_state->done = 0; 1012 } 1013 /* 1014 * And, similarly, a constant AND can be simplified 1015 * if we're testing against 0, i.e.: 1016 * 1017 * and #k nop 1018 * jeq #0 -> jset #k 1019 */ 1020 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && 1021 b->s.k == 0) { 1022 b->s.k = last->s.k; 1023 b->s.code = BPF_JMP|BPF_K|BPF_JSET; 1024 last->s.code = NOP; 1025 opt_state->done = 0; 1026 opt_not(b); 1027 } 1028 } 1029 /* 1030 * jset #0 -> never 1031 * jset #ffffffff -> always 1032 */ 1033 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) { 1034 if (b->s.k == 0) 1035 JT(b) = JF(b); 1036 if ((u_int)b->s.k == 0xffffffffU) 1037 JF(b) = JT(b); 1038 } 1039 /* 1040 * If we're comparing against the index register, and the index 1041 * register is a known constant, we can just compare against that 1042 * constant. 1043 */ 1044 val = b->val[X_ATOM]; 1045 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) { 1046 bpf_int32 v = opt_state->vmap[val].const_val; 1047 b->s.code &= ~BPF_X; 1048 b->s.k = v; 1049 } 1050 /* 1051 * If the accumulator is a known constant, we can compute the 1052 * comparison result. 1053 */ 1054 val = b->val[A_ATOM]; 1055 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { 1056 bpf_int32 v = opt_state->vmap[val].const_val; 1057 switch (BPF_OP(b->s.code)) { 1058 1059 case BPF_JEQ: 1060 v = v == b->s.k; 1061 break; 1062 1063 case BPF_JGT: 1064 v = (unsigned)v > (unsigned)b->s.k; 1065 break; 1066 1067 case BPF_JGE: 1068 v = (unsigned)v >= (unsigned)b->s.k; 1069 break; 1070 1071 case BPF_JSET: 1072 v &= b->s.k; 1073 break; 1074 1075 default: 1076 abort(); 1077 } 1078 if (JF(b) != JT(b)) 1079 opt_state->done = 0; 1080 if (v) 1081 JF(b) = JT(b); 1082 else 1083 JT(b) = JF(b); 1084 } 1085 } 1086 1087 /* 1088 * Compute the symbolic value of expression of 's', and update 1089 * anything it defines in the value table 'val'. If 'alter' is true, 1090 * do various optimizations. This code would be cleaner if symbolic 1091 * evaluation and code transformations weren't folded together. 1092 */ 1093 static void 1094 opt_stmt(opt_state_t *opt_state, struct stmt *s, int val[], int alter) 1095 { 1096 int op; 1097 int v; 1098 1099 switch (s->code) { 1100 1101 case BPF_LD|BPF_ABS|BPF_W: 1102 case BPF_LD|BPF_ABS|BPF_H: 1103 case BPF_LD|BPF_ABS|BPF_B: 1104 v = F(opt_state, s->code, s->k, 0L); 1105 vstore(s, &val[A_ATOM], v, alter); 1106 break; 1107 1108 case BPF_LD|BPF_IND|BPF_W: 1109 case BPF_LD|BPF_IND|BPF_H: 1110 case BPF_LD|BPF_IND|BPF_B: 1111 v = val[X_ATOM]; 1112 if (alter && opt_state->vmap[v].is_const) { 1113 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); 1114 s->k += opt_state->vmap[v].const_val; 1115 v = F(opt_state, s->code, s->k, 0L); 1116 opt_state->done = 0; 1117 } 1118 else 1119 v = F(opt_state, s->code, s->k, v); 1120 vstore(s, &val[A_ATOM], v, alter); 1121 break; 1122 1123 case BPF_LD|BPF_LEN: 1124 v = F(opt_state, s->code, 0L, 0L); 1125 vstore(s, &val[A_ATOM], v, alter); 1126 break; 1127 1128 case BPF_LD|BPF_IMM: 1129 v = K(s->k); 1130 vstore(s, &val[A_ATOM], v, alter); 1131 break; 1132 1133 case BPF_LDX|BPF_IMM: 1134 v = K(s->k); 1135 vstore(s, &val[X_ATOM], v, alter); 1136 break; 1137 1138 case BPF_LDX|BPF_MSH|BPF_B: 1139 v = F(opt_state, s->code, s->k, 0L); 1140 vstore(s, &val[X_ATOM], v, alter); 1141 break; 1142 1143 case BPF_ALU|BPF_NEG: 1144 if (alter && opt_state->vmap[val[A_ATOM]].is_const) { 1145 s->code = BPF_LD|BPF_IMM; 1146 /* 1147 * Do this negation as unsigned arithmetic; that's 1148 * what modern BPF engines do, and it guarantees 1149 * that all possible values can be negated. (Yeah, 1150 * negating 0x80000000, the minimum signed 32-bit 1151 * two's-complement value, results in 0x80000000, 1152 * so it's still negative, but we *should* be doing 1153 * all unsigned arithmetic here, to match what 1154 * modern BPF engines do.) 1155 * 1156 * Express it as 0U - (unsigned value) so that we 1157 * don't get compiler warnings about negating an 1158 * unsigned value and don't get UBSan warnings 1159 * about the result of negating 0x80000000 being 1160 * undefined. 1161 */ 1162 s->k = 0U - (bpf_u_int32)(opt_state->vmap[val[A_ATOM]].const_val); 1163 val[A_ATOM] = K(s->k); 1164 } 1165 else 1166 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L); 1167 break; 1168 1169 case BPF_ALU|BPF_ADD|BPF_K: 1170 case BPF_ALU|BPF_SUB|BPF_K: 1171 case BPF_ALU|BPF_MUL|BPF_K: 1172 case BPF_ALU|BPF_DIV|BPF_K: 1173 case BPF_ALU|BPF_MOD|BPF_K: 1174 case BPF_ALU|BPF_AND|BPF_K: 1175 case BPF_ALU|BPF_OR|BPF_K: 1176 case BPF_ALU|BPF_XOR|BPF_K: 1177 case BPF_ALU|BPF_LSH|BPF_K: 1178 case BPF_ALU|BPF_RSH|BPF_K: 1179 op = BPF_OP(s->code); 1180 if (alter) { 1181 if (s->k == 0) { 1182 /* 1183 * Optimize operations where the constant 1184 * is zero. 1185 * 1186 * Don't optimize away "sub #0" 1187 * as it may be needed later to 1188 * fixup the generated math code. 1189 * 1190 * Fail if we're dividing by zero or taking 1191 * a modulus by zero. 1192 */ 1193 if (op == BPF_ADD || 1194 op == BPF_LSH || op == BPF_RSH || 1195 op == BPF_OR || op == BPF_XOR) { 1196 s->code = NOP; 1197 break; 1198 } 1199 if (op == BPF_MUL || op == BPF_AND) { 1200 s->code = BPF_LD|BPF_IMM; 1201 val[A_ATOM] = K(s->k); 1202 break; 1203 } 1204 if (op == BPF_DIV) 1205 opt_error(opt_state, 1206 "division by zero"); 1207 if (op == BPF_MOD) 1208 opt_error(opt_state, 1209 "modulus by zero"); 1210 } 1211 if (opt_state->vmap[val[A_ATOM]].is_const) { 1212 fold_op(opt_state, s, val[A_ATOM], K(s->k)); 1213 val[A_ATOM] = K(s->k); 1214 break; 1215 } 1216 } 1217 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k)); 1218 break; 1219 1220 case BPF_ALU|BPF_ADD|BPF_X: 1221 case BPF_ALU|BPF_SUB|BPF_X: 1222 case BPF_ALU|BPF_MUL|BPF_X: 1223 case BPF_ALU|BPF_DIV|BPF_X: 1224 case BPF_ALU|BPF_MOD|BPF_X: 1225 case BPF_ALU|BPF_AND|BPF_X: 1226 case BPF_ALU|BPF_OR|BPF_X: 1227 case BPF_ALU|BPF_XOR|BPF_X: 1228 case BPF_ALU|BPF_LSH|BPF_X: 1229 case BPF_ALU|BPF_RSH|BPF_X: 1230 op = BPF_OP(s->code); 1231 if (alter && opt_state->vmap[val[X_ATOM]].is_const) { 1232 if (opt_state->vmap[val[A_ATOM]].is_const) { 1233 fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]); 1234 val[A_ATOM] = K(s->k); 1235 } 1236 else { 1237 s->code = BPF_ALU|BPF_K|op; 1238 s->k = opt_state->vmap[val[X_ATOM]].const_val; 1239 /* 1240 * XXX - we need to make up our minds 1241 * as to what integers are signed and 1242 * what integers are unsigned in BPF 1243 * programs and in our IR. 1244 */ 1245 if ((op == BPF_LSH || op == BPF_RSH) && 1246 (s->k < 0 || s->k > 31)) 1247 opt_error(opt_state, 1248 "shift by more than 31 bits"); 1249 opt_state->done = 0; 1250 val[A_ATOM] = 1251 F(opt_state, s->code, val[A_ATOM], K(s->k)); 1252 } 1253 break; 1254 } 1255 /* 1256 * Check if we're doing something to an accumulator 1257 * that is 0, and simplify. This may not seem like 1258 * much of a simplification but it could open up further 1259 * optimizations. 1260 * XXX We could also check for mul by 1, etc. 1261 */ 1262 if (alter && opt_state->vmap[val[A_ATOM]].is_const 1263 && opt_state->vmap[val[A_ATOM]].const_val == 0) { 1264 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) { 1265 s->code = BPF_MISC|BPF_TXA; 1266 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1267 break; 1268 } 1269 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD || 1270 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) { 1271 s->code = BPF_LD|BPF_IMM; 1272 s->k = 0; 1273 vstore(s, &val[A_ATOM], K(s->k), alter); 1274 break; 1275 } 1276 else if (op == BPF_NEG) { 1277 s->code = NOP; 1278 break; 1279 } 1280 } 1281 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]); 1282 break; 1283 1284 case BPF_MISC|BPF_TXA: 1285 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1286 break; 1287 1288 case BPF_LD|BPF_MEM: 1289 v = val[s->k]; 1290 if (alter && opt_state->vmap[v].is_const) { 1291 s->code = BPF_LD|BPF_IMM; 1292 s->k = opt_state->vmap[v].const_val; 1293 opt_state->done = 0; 1294 } 1295 vstore(s, &val[A_ATOM], v, alter); 1296 break; 1297 1298 case BPF_MISC|BPF_TAX: 1299 vstore(s, &val[X_ATOM], val[A_ATOM], alter); 1300 break; 1301 1302 case BPF_LDX|BPF_MEM: 1303 v = val[s->k]; 1304 if (alter && opt_state->vmap[v].is_const) { 1305 s->code = BPF_LDX|BPF_IMM; 1306 s->k = opt_state->vmap[v].const_val; 1307 opt_state->done = 0; 1308 } 1309 vstore(s, &val[X_ATOM], v, alter); 1310 break; 1311 1312 case BPF_ST: 1313 vstore(s, &val[s->k], val[A_ATOM], alter); 1314 break; 1315 1316 case BPF_STX: 1317 vstore(s, &val[s->k], val[X_ATOM], alter); 1318 break; 1319 } 1320 } 1321 1322 static void 1323 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[]) 1324 { 1325 register int atom; 1326 1327 atom = atomuse(s); 1328 if (atom >= 0) { 1329 if (atom == AX_ATOM) { 1330 last[X_ATOM] = 0; 1331 last[A_ATOM] = 0; 1332 } 1333 else 1334 last[atom] = 0; 1335 } 1336 atom = atomdef(s); 1337 if (atom >= 0) { 1338 if (last[atom]) { 1339 opt_state->done = 0; 1340 last[atom]->code = NOP; 1341 } 1342 last[atom] = s; 1343 } 1344 } 1345 1346 static void 1347 opt_deadstores(opt_state_t *opt_state, register struct block *b) 1348 { 1349 register struct slist *s; 1350 register int atom; 1351 struct stmt *last[N_ATOMS]; 1352 1353 memset((char *)last, 0, sizeof last); 1354 1355 for (s = b->stmts; s != 0; s = s->next) 1356 deadstmt(opt_state, &s->s, last); 1357 deadstmt(opt_state, &b->s, last); 1358 1359 for (atom = 0; atom < N_ATOMS; ++atom) 1360 if (last[atom] && !ATOMELEM(b->out_use, atom)) { 1361 last[atom]->code = NOP; 1362 opt_state->done = 0; 1363 } 1364 } 1365 1366 static void 1367 opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts) 1368 { 1369 struct slist *s; 1370 struct edge *p; 1371 int i; 1372 bpf_int32 aval, xval; 1373 1374 #if 0 1375 for (s = b->stmts; s && s->next; s = s->next) 1376 if (BPF_CLASS(s->s.code) == BPF_JMP) { 1377 do_stmts = 0; 1378 break; 1379 } 1380 #endif 1381 1382 /* 1383 * Initialize the atom values. 1384 */ 1385 p = b->in_edges; 1386 if (p == 0) { 1387 /* 1388 * We have no predecessors, so everything is undefined 1389 * upon entry to this block. 1390 */ 1391 memset((char *)b->val, 0, sizeof(b->val)); 1392 } else { 1393 /* 1394 * Inherit values from our predecessors. 1395 * 1396 * First, get the values from the predecessor along the 1397 * first edge leading to this node. 1398 */ 1399 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); 1400 /* 1401 * Now look at all the other nodes leading to this node. 1402 * If, for the predecessor along that edge, a register 1403 * has a different value from the one we have (i.e., 1404 * control paths are merging, and the merging paths 1405 * assign different values to that register), give the 1406 * register the undefined value of 0. 1407 */ 1408 while ((p = p->next) != NULL) { 1409 for (i = 0; i < N_ATOMS; ++i) 1410 if (b->val[i] != p->pred->val[i]) 1411 b->val[i] = 0; 1412 } 1413 } 1414 aval = b->val[A_ATOM]; 1415 xval = b->val[X_ATOM]; 1416 for (s = b->stmts; s; s = s->next) 1417 opt_stmt(opt_state, &s->s, b->val, do_stmts); 1418 1419 /* 1420 * This is a special case: if we don't use anything from this 1421 * block, and we load the accumulator or index register with a 1422 * value that is already there, or if this block is a return, 1423 * eliminate all the statements. 1424 * 1425 * XXX - what if it does a store? 1426 * 1427 * XXX - why does it matter whether we use anything from this 1428 * block? If the accumulator or index register doesn't change 1429 * its value, isn't that OK even if we use that value? 1430 * 1431 * XXX - if we load the accumulator with a different value, 1432 * and the block ends with a conditional branch, we obviously 1433 * can't eliminate it, as the branch depends on that value. 1434 * For the index register, the conditional branch only depends 1435 * on the index register value if the test is against the index 1436 * register value rather than a constant; if nothing uses the 1437 * value we put into the index register, and we're not testing 1438 * against the index register's value, and there aren't any 1439 * other problems that would keep us from eliminating this 1440 * block, can we eliminate it? 1441 */ 1442 if (do_stmts && 1443 ((b->out_use == 0 && 1444 aval != VAL_UNKNOWN && b->val[A_ATOM] == aval && 1445 xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) || 1446 BPF_CLASS(b->s.code) == BPF_RET)) { 1447 if (b->stmts != 0) { 1448 b->stmts = 0; 1449 opt_state->done = 0; 1450 } 1451 } else { 1452 opt_peep(opt_state, b); 1453 opt_deadstores(opt_state, b); 1454 } 1455 /* 1456 * Set up values for branch optimizer. 1457 */ 1458 if (BPF_SRC(b->s.code) == BPF_K) 1459 b->oval = K(b->s.k); 1460 else 1461 b->oval = b->val[X_ATOM]; 1462 b->et.code = b->s.code; 1463 b->ef.code = -b->s.code; 1464 } 1465 1466 /* 1467 * Return true if any register that is used on exit from 'succ', has 1468 * an exit value that is different from the corresponding exit value 1469 * from 'b'. 1470 */ 1471 static int 1472 use_conflict(struct block *b, struct block *succ) 1473 { 1474 int atom; 1475 atomset use = succ->out_use; 1476 1477 if (use == 0) 1478 return 0; 1479 1480 for (atom = 0; atom < N_ATOMS; ++atom) 1481 if (ATOMELEM(use, atom)) 1482 if (b->val[atom] != succ->val[atom]) 1483 return 1; 1484 return 0; 1485 } 1486 1487 static struct block * 1488 fold_edge(struct block *child, struct edge *ep) 1489 { 1490 int sense; 1491 int aval0, aval1, oval0, oval1; 1492 int code = ep->code; 1493 1494 if (code < 0) { 1495 code = -code; 1496 sense = 0; 1497 } else 1498 sense = 1; 1499 1500 if (child->s.code != code) 1501 return 0; 1502 1503 aval0 = child->val[A_ATOM]; 1504 oval0 = child->oval; 1505 aval1 = ep->pred->val[A_ATOM]; 1506 oval1 = ep->pred->oval; 1507 1508 if (aval0 != aval1) 1509 return 0; 1510 1511 if (oval0 == oval1) 1512 /* 1513 * The operands of the branch instructions are 1514 * identical, so the result is true if a true 1515 * branch was taken to get here, otherwise false. 1516 */ 1517 return sense ? JT(child) : JF(child); 1518 1519 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) 1520 /* 1521 * At this point, we only know the comparison if we 1522 * came down the true branch, and it was an equality 1523 * comparison with a constant. 1524 * 1525 * I.e., if we came down the true branch, and the branch 1526 * was an equality comparison with a constant, we know the 1527 * accumulator contains that constant. If we came down 1528 * the false branch, or the comparison wasn't with a 1529 * constant, we don't know what was in the accumulator. 1530 * 1531 * We rely on the fact that distinct constants have distinct 1532 * value numbers. 1533 */ 1534 return JF(child); 1535 1536 return 0; 1537 } 1538 1539 static void 1540 opt_j(opt_state_t *opt_state, struct edge *ep) 1541 { 1542 register int i, k; 1543 register struct block *target; 1544 1545 if (JT(ep->succ) == 0) 1546 return; 1547 1548 if (JT(ep->succ) == JF(ep->succ)) { 1549 /* 1550 * Common branch targets can be eliminated, provided 1551 * there is no data dependency. 1552 */ 1553 if (!use_conflict(ep->pred, ep->succ->et.succ)) { 1554 opt_state->done = 0; 1555 ep->succ = JT(ep->succ); 1556 } 1557 } 1558 /* 1559 * For each edge dominator that matches the successor of this 1560 * edge, promote the edge successor to the its grandchild. 1561 * 1562 * XXX We violate the set abstraction here in favor a reasonably 1563 * efficient loop. 1564 */ 1565 top: 1566 for (i = 0; i < opt_state->edgewords; ++i) { 1567 register bpf_u_int32 x = ep->edom[i]; 1568 1569 while (x != 0) { 1570 k = lowest_set_bit(x); 1571 x &=~ ((bpf_u_int32)1 << k); 1572 k += i * BITS_PER_WORD; 1573 1574 target = fold_edge(ep->succ, opt_state->edges[k]); 1575 /* 1576 * Check that there is no data dependency between 1577 * nodes that will be violated if we move the edge. 1578 */ 1579 if (target != 0 && !use_conflict(ep->pred, target)) { 1580 opt_state->done = 0; 1581 ep->succ = target; 1582 if (JT(target) != 0) 1583 /* 1584 * Start over unless we hit a leaf. 1585 */ 1586 goto top; 1587 return; 1588 } 1589 } 1590 } 1591 } 1592 1593 1594 static void 1595 or_pullup(opt_state_t *opt_state, struct block *b) 1596 { 1597 int val, at_top; 1598 struct block *pull; 1599 struct block **diffp, **samep; 1600 struct edge *ep; 1601 1602 ep = b->in_edges; 1603 if (ep == 0) 1604 return; 1605 1606 /* 1607 * Make sure each predecessor loads the same value. 1608 * XXX why? 1609 */ 1610 val = ep->pred->val[A_ATOM]; 1611 for (ep = ep->next; ep != 0; ep = ep->next) 1612 if (val != ep->pred->val[A_ATOM]) 1613 return; 1614 1615 if (JT(b->in_edges->pred) == b) 1616 diffp = &JT(b->in_edges->pred); 1617 else 1618 diffp = &JF(b->in_edges->pred); 1619 1620 at_top = 1; 1621 for (;;) { 1622 if (*diffp == 0) 1623 return; 1624 1625 if (JT(*diffp) != JT(b)) 1626 return; 1627 1628 if (!SET_MEMBER((*diffp)->dom, b->id)) 1629 return; 1630 1631 if ((*diffp)->val[A_ATOM] != val) 1632 break; 1633 1634 diffp = &JF(*diffp); 1635 at_top = 0; 1636 } 1637 samep = &JF(*diffp); 1638 for (;;) { 1639 if (*samep == 0) 1640 return; 1641 1642 if (JT(*samep) != JT(b)) 1643 return; 1644 1645 if (!SET_MEMBER((*samep)->dom, b->id)) 1646 return; 1647 1648 if ((*samep)->val[A_ATOM] == val) 1649 break; 1650 1651 /* XXX Need to check that there are no data dependencies 1652 between dp0 and dp1. Currently, the code generator 1653 will not produce such dependencies. */ 1654 samep = &JF(*samep); 1655 } 1656 #ifdef notdef 1657 /* XXX This doesn't cover everything. */ 1658 for (i = 0; i < N_ATOMS; ++i) 1659 if ((*samep)->val[i] != pred->val[i]) 1660 return; 1661 #endif 1662 /* Pull up the node. */ 1663 pull = *samep; 1664 *samep = JF(pull); 1665 JF(pull) = *diffp; 1666 1667 /* 1668 * At the top of the chain, each predecessor needs to point at the 1669 * pulled up node. Inside the chain, there is only one predecessor 1670 * to worry about. 1671 */ 1672 if (at_top) { 1673 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1674 if (JT(ep->pred) == b) 1675 JT(ep->pred) = pull; 1676 else 1677 JF(ep->pred) = pull; 1678 } 1679 } 1680 else 1681 *diffp = pull; 1682 1683 opt_state->done = 0; 1684 } 1685 1686 static void 1687 and_pullup(opt_state_t *opt_state, struct block *b) 1688 { 1689 int val, at_top; 1690 struct block *pull; 1691 struct block **diffp, **samep; 1692 struct edge *ep; 1693 1694 ep = b->in_edges; 1695 if (ep == 0) 1696 return; 1697 1698 /* 1699 * Make sure each predecessor loads the same value. 1700 */ 1701 val = ep->pred->val[A_ATOM]; 1702 for (ep = ep->next; ep != 0; ep = ep->next) 1703 if (val != ep->pred->val[A_ATOM]) 1704 return; 1705 1706 if (JT(b->in_edges->pred) == b) 1707 diffp = &JT(b->in_edges->pred); 1708 else 1709 diffp = &JF(b->in_edges->pred); 1710 1711 at_top = 1; 1712 for (;;) { 1713 if (*diffp == 0) 1714 return; 1715 1716 if (JF(*diffp) != JF(b)) 1717 return; 1718 1719 if (!SET_MEMBER((*diffp)->dom, b->id)) 1720 return; 1721 1722 if ((*diffp)->val[A_ATOM] != val) 1723 break; 1724 1725 diffp = &JT(*diffp); 1726 at_top = 0; 1727 } 1728 samep = &JT(*diffp); 1729 for (;;) { 1730 if (*samep == 0) 1731 return; 1732 1733 if (JF(*samep) != JF(b)) 1734 return; 1735 1736 if (!SET_MEMBER((*samep)->dom, b->id)) 1737 return; 1738 1739 if ((*samep)->val[A_ATOM] == val) 1740 break; 1741 1742 /* XXX Need to check that there are no data dependencies 1743 between diffp and samep. Currently, the code generator 1744 will not produce such dependencies. */ 1745 samep = &JT(*samep); 1746 } 1747 #ifdef notdef 1748 /* XXX This doesn't cover everything. */ 1749 for (i = 0; i < N_ATOMS; ++i) 1750 if ((*samep)->val[i] != pred->val[i]) 1751 return; 1752 #endif 1753 /* Pull up the node. */ 1754 pull = *samep; 1755 *samep = JT(pull); 1756 JT(pull) = *diffp; 1757 1758 /* 1759 * At the top of the chain, each predecessor needs to point at the 1760 * pulled up node. Inside the chain, there is only one predecessor 1761 * to worry about. 1762 */ 1763 if (at_top) { 1764 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1765 if (JT(ep->pred) == b) 1766 JT(ep->pred) = pull; 1767 else 1768 JF(ep->pred) = pull; 1769 } 1770 } 1771 else 1772 *diffp = pull; 1773 1774 opt_state->done = 0; 1775 } 1776 1777 static void 1778 opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts) 1779 { 1780 int i, maxlevel; 1781 struct block *p; 1782 1783 init_val(opt_state); 1784 maxlevel = ic->root->level; 1785 1786 find_inedges(opt_state, ic->root); 1787 for (i = maxlevel; i >= 0; --i) 1788 for (p = opt_state->levels[i]; p; p = p->link) 1789 opt_blk(opt_state, p, do_stmts); 1790 1791 if (do_stmts) 1792 /* 1793 * No point trying to move branches; it can't possibly 1794 * make a difference at this point. 1795 */ 1796 return; 1797 1798 for (i = 1; i <= maxlevel; ++i) { 1799 for (p = opt_state->levels[i]; p; p = p->link) { 1800 opt_j(opt_state, &p->et); 1801 opt_j(opt_state, &p->ef); 1802 } 1803 } 1804 1805 find_inedges(opt_state, ic->root); 1806 for (i = 1; i <= maxlevel; ++i) { 1807 for (p = opt_state->levels[i]; p; p = p->link) { 1808 or_pullup(opt_state, p); 1809 and_pullup(opt_state, p); 1810 } 1811 } 1812 } 1813 1814 static inline void 1815 link_inedge(struct edge *parent, struct block *child) 1816 { 1817 parent->next = child->in_edges; 1818 child->in_edges = parent; 1819 } 1820 1821 static void 1822 find_inedges(opt_state_t *opt_state, struct block *root) 1823 { 1824 int i; 1825 struct block *b; 1826 1827 for (i = 0; i < opt_state->n_blocks; ++i) 1828 opt_state->blocks[i]->in_edges = 0; 1829 1830 /* 1831 * Traverse the graph, adding each edge to the predecessor 1832 * list of its successors. Skip the leaves (i.e. level 0). 1833 */ 1834 for (i = root->level; i > 0; --i) { 1835 for (b = opt_state->levels[i]; b != 0; b = b->link) { 1836 link_inedge(&b->et, JT(b)); 1837 link_inedge(&b->ef, JF(b)); 1838 } 1839 } 1840 } 1841 1842 static void 1843 opt_root(struct block **b) 1844 { 1845 struct slist *tmp, *s; 1846 1847 s = (*b)->stmts; 1848 (*b)->stmts = 0; 1849 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) 1850 *b = JT(*b); 1851 1852 tmp = (*b)->stmts; 1853 if (tmp != 0) 1854 sappend(s, tmp); 1855 (*b)->stmts = s; 1856 1857 /* 1858 * If the root node is a return, then there is no 1859 * point executing any statements (since the bpf machine 1860 * has no side effects). 1861 */ 1862 if (BPF_CLASS((*b)->s.code) == BPF_RET) 1863 (*b)->stmts = 0; 1864 } 1865 1866 static void 1867 opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts) 1868 { 1869 1870 #ifdef BDEBUG 1871 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 1872 printf("opt_loop(root, %d) begin\n", do_stmts); 1873 opt_dump(opt_state, ic); 1874 } 1875 #endif 1876 do { 1877 opt_state->done = 1; 1878 find_levels(opt_state, ic); 1879 find_dom(opt_state, ic->root); 1880 find_closure(opt_state, ic->root); 1881 find_ud(opt_state, ic->root); 1882 find_edom(opt_state, ic->root); 1883 opt_blks(opt_state, ic, do_stmts); 1884 #ifdef BDEBUG 1885 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 1886 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done); 1887 opt_dump(opt_state, ic); 1888 } 1889 #endif 1890 } while (!opt_state->done); 1891 } 1892 1893 /* 1894 * Optimize the filter code in its dag representation. 1895 * Return 0 on success, -1 on error. 1896 */ 1897 int 1898 bpf_optimize(struct icode *ic, char *errbuf) 1899 { 1900 opt_state_t opt_state; 1901 1902 memset(&opt_state, 0, sizeof(opt_state)); 1903 opt_state.errbuf = errbuf; 1904 if (setjmp(opt_state.top_ctx)) { 1905 opt_cleanup(&opt_state); 1906 return -1; 1907 } 1908 opt_init(&opt_state, ic); 1909 opt_loop(&opt_state, ic, 0); 1910 opt_loop(&opt_state, ic, 1); 1911 intern_blocks(&opt_state, ic); 1912 #ifdef BDEBUG 1913 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 1914 printf("after intern_blocks()\n"); 1915 opt_dump(&opt_state, ic); 1916 } 1917 #endif 1918 opt_root(&ic->root); 1919 #ifdef BDEBUG 1920 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 1921 printf("after opt_root()\n"); 1922 opt_dump(&opt_state, ic); 1923 } 1924 #endif 1925 opt_cleanup(&opt_state); 1926 return 0; 1927 } 1928 1929 static void 1930 make_marks(struct icode *ic, struct block *p) 1931 { 1932 if (!isMarked(ic, p)) { 1933 Mark(ic, p); 1934 if (BPF_CLASS(p->s.code) != BPF_RET) { 1935 make_marks(ic, JT(p)); 1936 make_marks(ic, JF(p)); 1937 } 1938 } 1939 } 1940 1941 /* 1942 * Mark code array such that isMarked(ic->cur_mark, i) is true 1943 * only for nodes that are alive. 1944 */ 1945 static void 1946 mark_code(struct icode *ic) 1947 { 1948 ic->cur_mark += 1; 1949 make_marks(ic, ic->root); 1950 } 1951 1952 /* 1953 * True iff the two stmt lists load the same value from the packet into 1954 * the accumulator. 1955 */ 1956 static int 1957 eq_slist(struct slist *x, struct slist *y) 1958 { 1959 for (;;) { 1960 while (x && x->s.code == NOP) 1961 x = x->next; 1962 while (y && y->s.code == NOP) 1963 y = y->next; 1964 if (x == 0) 1965 return y == 0; 1966 if (y == 0) 1967 return x == 0; 1968 if (x->s.code != y->s.code || x->s.k != y->s.k) 1969 return 0; 1970 x = x->next; 1971 y = y->next; 1972 } 1973 } 1974 1975 static inline int 1976 eq_blk(struct block *b0, struct block *b1) 1977 { 1978 if (b0->s.code == b1->s.code && 1979 b0->s.k == b1->s.k && 1980 b0->et.succ == b1->et.succ && 1981 b0->ef.succ == b1->ef.succ) 1982 return eq_slist(b0->stmts, b1->stmts); 1983 return 0; 1984 } 1985 1986 static void 1987 intern_blocks(opt_state_t *opt_state, struct icode *ic) 1988 { 1989 struct block *p; 1990 int i, j; 1991 int done1; /* don't shadow global */ 1992 top: 1993 done1 = 1; 1994 for (i = 0; i < opt_state->n_blocks; ++i) 1995 opt_state->blocks[i]->link = 0; 1996 1997 mark_code(ic); 1998 1999 for (i = opt_state->n_blocks - 1; --i >= 0; ) { 2000 if (!isMarked(ic, opt_state->blocks[i])) 2001 continue; 2002 for (j = i + 1; j < opt_state->n_blocks; ++j) { 2003 if (!isMarked(ic, opt_state->blocks[j])) 2004 continue; 2005 if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) { 2006 opt_state->blocks[i]->link = opt_state->blocks[j]->link ? 2007 opt_state->blocks[j]->link : opt_state->blocks[j]; 2008 break; 2009 } 2010 } 2011 } 2012 for (i = 0; i < opt_state->n_blocks; ++i) { 2013 p = opt_state->blocks[i]; 2014 if (JT(p) == 0) 2015 continue; 2016 if (JT(p)->link) { 2017 done1 = 0; 2018 JT(p) = JT(p)->link; 2019 } 2020 if (JF(p)->link) { 2021 done1 = 0; 2022 JF(p) = JF(p)->link; 2023 } 2024 } 2025 if (!done1) 2026 goto top; 2027 } 2028 2029 static void 2030 opt_cleanup(opt_state_t *opt_state) 2031 { 2032 free((void *)opt_state->vnode_base); 2033 free((void *)opt_state->vmap); 2034 free((void *)opt_state->edges); 2035 free((void *)opt_state->space); 2036 free((void *)opt_state->levels); 2037 free((void *)opt_state->blocks); 2038 } 2039 2040 /* 2041 * For optimizer errors. 2042 */ 2043 static void PCAP_NORETURN 2044 opt_error(opt_state_t *opt_state, const char *fmt, ...) 2045 { 2046 va_list ap; 2047 2048 if (opt_state->errbuf != NULL) { 2049 va_start(ap, fmt); 2050 (void)pcap_vsnprintf(opt_state->errbuf, 2051 PCAP_ERRBUF_SIZE, fmt, ap); 2052 va_end(ap); 2053 } 2054 longjmp(opt_state->top_ctx, 1); 2055 /* NOTREACHED */ 2056 } 2057 2058 /* 2059 * Return the number of stmts in 's'. 2060 */ 2061 static u_int 2062 slength(struct slist *s) 2063 { 2064 u_int n = 0; 2065 2066 for (; s; s = s->next) 2067 if (s->s.code != NOP) 2068 ++n; 2069 return n; 2070 } 2071 2072 /* 2073 * Return the number of nodes reachable by 'p'. 2074 * All nodes should be initially unmarked. 2075 */ 2076 static int 2077 count_blocks(struct icode *ic, struct block *p) 2078 { 2079 if (p == 0 || isMarked(ic, p)) 2080 return 0; 2081 Mark(ic, p); 2082 return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1; 2083 } 2084 2085 /* 2086 * Do a depth first search on the flow graph, numbering the 2087 * the basic blocks, and entering them into the 'blocks' array.` 2088 */ 2089 static void 2090 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p) 2091 { 2092 int n; 2093 2094 if (p == 0 || isMarked(ic, p)) 2095 return; 2096 2097 Mark(ic, p); 2098 n = opt_state->n_blocks++; 2099 p->id = n; 2100 opt_state->blocks[n] = p; 2101 2102 number_blks_r(opt_state, ic, JT(p)); 2103 number_blks_r(opt_state, ic, JF(p)); 2104 } 2105 2106 /* 2107 * Return the number of stmts in the flowgraph reachable by 'p'. 2108 * The nodes should be unmarked before calling. 2109 * 2110 * Note that "stmts" means "instructions", and that this includes 2111 * 2112 * side-effect statements in 'p' (slength(p->stmts)); 2113 * 2114 * statements in the true branch from 'p' (count_stmts(JT(p))); 2115 * 2116 * statements in the false branch from 'p' (count_stmts(JF(p))); 2117 * 2118 * the conditional jump itself (1); 2119 * 2120 * an extra long jump if the true branch requires it (p->longjt); 2121 * 2122 * an extra long jump if the false branch requires it (p->longjf). 2123 */ 2124 static u_int 2125 count_stmts(struct icode *ic, struct block *p) 2126 { 2127 u_int n; 2128 2129 if (p == 0 || isMarked(ic, p)) 2130 return 0; 2131 Mark(ic, p); 2132 n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p)); 2133 return slength(p->stmts) + n + 1 + p->longjt + p->longjf; 2134 } 2135 2136 /* 2137 * Allocate memory. All allocation is done before optimization 2138 * is begun. A linear bound on the size of all data structures is computed 2139 * from the total number of blocks and/or statements. 2140 */ 2141 static void 2142 opt_init(opt_state_t *opt_state, struct icode *ic) 2143 { 2144 bpf_u_int32 *p; 2145 int i, n, max_stmts; 2146 2147 /* 2148 * First, count the blocks, so we can malloc an array to map 2149 * block number to block. Then, put the blocks into the array. 2150 */ 2151 unMarkAll(ic); 2152 n = count_blocks(ic, ic->root); 2153 opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks)); 2154 if (opt_state->blocks == NULL) 2155 opt_error(opt_state, "malloc"); 2156 unMarkAll(ic); 2157 opt_state->n_blocks = 0; 2158 number_blks_r(opt_state, ic, ic->root); 2159 2160 opt_state->n_edges = 2 * opt_state->n_blocks; 2161 opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges)); 2162 if (opt_state->edges == NULL) { 2163 opt_error(opt_state, "malloc"); 2164 } 2165 2166 /* 2167 * The number of levels is bounded by the number of nodes. 2168 */ 2169 opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels)); 2170 if (opt_state->levels == NULL) { 2171 opt_error(opt_state, "malloc"); 2172 } 2173 2174 opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1; 2175 opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1; 2176 2177 /* XXX */ 2178 opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space) 2179 + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space)); 2180 if (opt_state->space == NULL) { 2181 opt_error(opt_state, "malloc"); 2182 } 2183 p = opt_state->space; 2184 opt_state->all_dom_sets = p; 2185 for (i = 0; i < n; ++i) { 2186 opt_state->blocks[i]->dom = p; 2187 p += opt_state->nodewords; 2188 } 2189 opt_state->all_closure_sets = p; 2190 for (i = 0; i < n; ++i) { 2191 opt_state->blocks[i]->closure = p; 2192 p += opt_state->nodewords; 2193 } 2194 opt_state->all_edge_sets = p; 2195 for (i = 0; i < n; ++i) { 2196 register struct block *b = opt_state->blocks[i]; 2197 2198 b->et.edom = p; 2199 p += opt_state->edgewords; 2200 b->ef.edom = p; 2201 p += opt_state->edgewords; 2202 b->et.id = i; 2203 opt_state->edges[i] = &b->et; 2204 b->ef.id = opt_state->n_blocks + i; 2205 opt_state->edges[opt_state->n_blocks + i] = &b->ef; 2206 b->et.pred = b; 2207 b->ef.pred = b; 2208 } 2209 max_stmts = 0; 2210 for (i = 0; i < n; ++i) 2211 max_stmts += slength(opt_state->blocks[i]->stmts) + 1; 2212 /* 2213 * We allocate at most 3 value numbers per statement, 2214 * so this is an upper bound on the number of valnodes 2215 * we'll need. 2216 */ 2217 opt_state->maxval = 3 * max_stmts; 2218 opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap)); 2219 if (opt_state->vmap == NULL) { 2220 opt_error(opt_state, "malloc"); 2221 } 2222 opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base)); 2223 if (opt_state->vnode_base == NULL) { 2224 opt_error(opt_state, "malloc"); 2225 } 2226 } 2227 2228 /* 2229 * This is only used when supporting optimizer debugging. It is 2230 * global state, so do *not* do more than one compile in parallel 2231 * and expect it to provide meaningful information. 2232 */ 2233 #ifdef BDEBUG 2234 int bids[NBIDS]; 2235 #endif 2236 2237 static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...) 2238 PCAP_PRINTFLIKE(2, 3); 2239 2240 /* 2241 * Returns true if successful. Returns false if a branch has 2242 * an offset that is too large. If so, we have marked that 2243 * branch so that on a subsequent iteration, it will be treated 2244 * properly. 2245 */ 2246 static int 2247 convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p) 2248 { 2249 struct bpf_insn *dst; 2250 struct slist *src; 2251 u_int slen; 2252 u_int off; 2253 u_int extrajmps; /* number of extra jumps inserted */ 2254 struct slist **offset = NULL; 2255 2256 if (p == 0 || isMarked(ic, p)) 2257 return (1); 2258 Mark(ic, p); 2259 2260 if (convert_code_r(conv_state, ic, JF(p)) == 0) 2261 return (0); 2262 if (convert_code_r(conv_state, ic, JT(p)) == 0) 2263 return (0); 2264 2265 slen = slength(p->stmts); 2266 dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf); 2267 /* inflate length by any extra jumps */ 2268 2269 p->offset = (int)(dst - conv_state->fstart); 2270 2271 /* generate offset[] for convenience */ 2272 if (slen) { 2273 offset = (struct slist **)calloc(slen, sizeof(struct slist *)); 2274 if (!offset) { 2275 conv_error(conv_state, "not enough core"); 2276 /*NOTREACHED*/ 2277 } 2278 } 2279 src = p->stmts; 2280 for (off = 0; off < slen && src; off++) { 2281 #if 0 2282 printf("off=%d src=%x\n", off, src); 2283 #endif 2284 offset[off] = src; 2285 src = src->next; 2286 } 2287 2288 off = 0; 2289 for (src = p->stmts; src; src = src->next) { 2290 if (src->s.code == NOP) 2291 continue; 2292 dst->code = (u_short)src->s.code; 2293 dst->k = src->s.k; 2294 2295 /* fill block-local relative jump */ 2296 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) { 2297 #if 0 2298 if (src->s.jt || src->s.jf) { 2299 free(offset); 2300 conv_error(conv_state, "illegal jmp destination"); 2301 /*NOTREACHED*/ 2302 } 2303 #endif 2304 goto filled; 2305 } 2306 if (off == slen - 2) /*???*/ 2307 goto filled; 2308 2309 { 2310 u_int i; 2311 int jt, jf; 2312 const char ljerr[] = "%s for block-local relative jump: off=%d"; 2313 2314 #if 0 2315 printf("code=%x off=%d %x %x\n", src->s.code, 2316 off, src->s.jt, src->s.jf); 2317 #endif 2318 2319 if (!src->s.jt || !src->s.jf) { 2320 free(offset); 2321 conv_error(conv_state, ljerr, "no jmp destination", off); 2322 /*NOTREACHED*/ 2323 } 2324 2325 jt = jf = 0; 2326 for (i = 0; i < slen; i++) { 2327 if (offset[i] == src->s.jt) { 2328 if (jt) { 2329 free(offset); 2330 conv_error(conv_state, ljerr, "multiple matches", off); 2331 /*NOTREACHED*/ 2332 } 2333 2334 if (i - off - 1 >= 256) { 2335 free(offset); 2336 conv_error(conv_state, ljerr, "out-of-range jump", off); 2337 /*NOTREACHED*/ 2338 } 2339 dst->jt = (u_char)(i - off - 1); 2340 jt++; 2341 } 2342 if (offset[i] == src->s.jf) { 2343 if (jf) { 2344 free(offset); 2345 conv_error(conv_state, ljerr, "multiple matches", off); 2346 /*NOTREACHED*/ 2347 } 2348 if (i - off - 1 >= 256) { 2349 free(offset); 2350 conv_error(conv_state, ljerr, "out-of-range jump", off); 2351 /*NOTREACHED*/ 2352 } 2353 dst->jf = (u_char)(i - off - 1); 2354 jf++; 2355 } 2356 } 2357 if (!jt || !jf) { 2358 free(offset); 2359 conv_error(conv_state, ljerr, "no destination found", off); 2360 /*NOTREACHED*/ 2361 } 2362 } 2363 filled: 2364 ++dst; 2365 ++off; 2366 } 2367 if (offset) 2368 free(offset); 2369 2370 #ifdef BDEBUG 2371 if (dst - conv_state->fstart < NBIDS) 2372 bids[dst - conv_state->fstart] = p->id + 1; 2373 #endif 2374 dst->code = (u_short)p->s.code; 2375 dst->k = p->s.k; 2376 if (JT(p)) { 2377 extrajmps = 0; 2378 off = JT(p)->offset - (p->offset + slen) - 1; 2379 if (off >= 256) { 2380 /* offset too large for branch, must add a jump */ 2381 if (p->longjt == 0) { 2382 /* mark this instruction and retry */ 2383 p->longjt++; 2384 return(0); 2385 } 2386 /* branch if T to following jump */ 2387 if (extrajmps >= 256) { 2388 conv_error(conv_state, "too many extra jumps"); 2389 /*NOTREACHED*/ 2390 } 2391 dst->jt = (u_char)extrajmps; 2392 extrajmps++; 2393 dst[extrajmps].code = BPF_JMP|BPF_JA; 2394 dst[extrajmps].k = off - extrajmps; 2395 } 2396 else 2397 dst->jt = (u_char)off; 2398 off = JF(p)->offset - (p->offset + slen) - 1; 2399 if (off >= 256) { 2400 /* offset too large for branch, must add a jump */ 2401 if (p->longjf == 0) { 2402 /* mark this instruction and retry */ 2403 p->longjf++; 2404 return(0); 2405 } 2406 /* branch if F to following jump */ 2407 /* if two jumps are inserted, F goes to second one */ 2408 if (extrajmps >= 256) { 2409 conv_error(conv_state, "too many extra jumps"); 2410 /*NOTREACHED*/ 2411 } 2412 dst->jf = (u_char)extrajmps; 2413 extrajmps++; 2414 dst[extrajmps].code = BPF_JMP|BPF_JA; 2415 dst[extrajmps].k = off - extrajmps; 2416 } 2417 else 2418 dst->jf = (u_char)off; 2419 } 2420 return (1); 2421 } 2422 2423 2424 /* 2425 * Convert flowgraph intermediate representation to the 2426 * BPF array representation. Set *lenp to the number of instructions. 2427 * 2428 * This routine does *NOT* leak the memory pointed to by fp. It *must 2429 * not* do free(fp) before returning fp; doing so would make no sense, 2430 * as the BPF array pointed to by the return value of icode_to_fcode() 2431 * must be valid - it's being returned for use in a bpf_program structure. 2432 * 2433 * If it appears that icode_to_fcode() is leaking, the problem is that 2434 * the program using pcap_compile() is failing to free the memory in 2435 * the BPF program when it's done - the leak is in the program, not in 2436 * the routine that happens to be allocating the memory. (By analogy, if 2437 * a program calls fopen() without ever calling fclose() on the FILE *, 2438 * it will leak the FILE structure; the leak is not in fopen(), it's in 2439 * the program.) Change the program to use pcap_freecode() when it's 2440 * done with the filter program. See the pcap man page. 2441 */ 2442 struct bpf_insn * 2443 icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp, 2444 char *errbuf) 2445 { 2446 u_int n; 2447 struct bpf_insn *fp; 2448 conv_state_t conv_state; 2449 2450 conv_state.fstart = NULL; 2451 conv_state.errbuf = errbuf; 2452 if (setjmp(conv_state.top_ctx) != 0) { 2453 free(conv_state.fstart); 2454 return NULL; 2455 } 2456 2457 /* 2458 * Loop doing convert_code_r() until no branches remain 2459 * with too-large offsets. 2460 */ 2461 for (;;) { 2462 unMarkAll(ic); 2463 n = *lenp = count_stmts(ic, root); 2464 2465 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n); 2466 if (fp == NULL) { 2467 (void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, 2468 "malloc"); 2469 free(fp); 2470 return NULL; 2471 } 2472 memset((char *)fp, 0, sizeof(*fp) * n); 2473 conv_state.fstart = fp; 2474 conv_state.ftail = fp + n; 2475 2476 unMarkAll(ic); 2477 if (convert_code_r(&conv_state, ic, root)) 2478 break; 2479 free(fp); 2480 } 2481 2482 return fp; 2483 } 2484 2485 /* 2486 * For iconv_to_fconv() errors. 2487 */ 2488 static void PCAP_NORETURN 2489 conv_error(conv_state_t *conv_state, const char *fmt, ...) 2490 { 2491 va_list ap; 2492 2493 va_start(ap, fmt); 2494 (void)pcap_vsnprintf(conv_state->errbuf, 2495 PCAP_ERRBUF_SIZE, fmt, ap); 2496 va_end(ap); 2497 longjmp(conv_state->top_ctx, 1); 2498 /* NOTREACHED */ 2499 } 2500 2501 /* 2502 * Make a copy of a BPF program and put it in the "fcode" member of 2503 * a "pcap_t". 2504 * 2505 * If we fail to allocate memory for the copy, fill in the "errbuf" 2506 * member of the "pcap_t" with an error message, and return -1; 2507 * otherwise, return 0. 2508 */ 2509 int 2510 install_bpf_program(pcap_t *p, struct bpf_program *fp) 2511 { 2512 size_t prog_size; 2513 2514 /* 2515 * Validate the program. 2516 */ 2517 if (!bpf_validate(fp->bf_insns, fp->bf_len)) { 2518 pcap_snprintf(p->errbuf, sizeof(p->errbuf), 2519 "BPF program is not valid"); 2520 return (-1); 2521 } 2522 2523 /* 2524 * Free up any already installed program. 2525 */ 2526 pcap_freecode(&p->fcode); 2527 2528 prog_size = sizeof(*fp->bf_insns) * fp->bf_len; 2529 p->fcode.bf_len = fp->bf_len; 2530 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size); 2531 if (p->fcode.bf_insns == NULL) { 2532 pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf), 2533 errno, "malloc"); 2534 return (-1); 2535 } 2536 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size); 2537 return (0); 2538 } 2539 2540 #ifdef BDEBUG 2541 static void 2542 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog, 2543 FILE *out) 2544 { 2545 int icount, noffset; 2546 int i; 2547 2548 if (block == NULL || isMarked(ic, block)) 2549 return; 2550 Mark(ic, block); 2551 2552 icount = slength(block->stmts) + 1 + block->longjt + block->longjf; 2553 noffset = min(block->offset + icount, (int)prog->bf_len); 2554 2555 fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id); 2556 for (i = block->offset; i < noffset; i++) { 2557 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i)); 2558 } 2559 fprintf(out, "\" tooltip=\""); 2560 for (i = 0; i < BPF_MEMWORDS; i++) 2561 if (block->val[i] != VAL_UNKNOWN) 2562 fprintf(out, "val[%d]=%d ", i, block->val[i]); 2563 fprintf(out, "val[A]=%d ", block->val[A_ATOM]); 2564 fprintf(out, "val[X]=%d", block->val[X_ATOM]); 2565 fprintf(out, "\""); 2566 if (JT(block) == NULL) 2567 fprintf(out, ", peripheries=2"); 2568 fprintf(out, "];\n"); 2569 2570 dot_dump_node(ic, JT(block), prog, out); 2571 dot_dump_node(ic, JF(block), prog, out); 2572 } 2573 2574 static void 2575 dot_dump_edge(struct icode *ic, struct block *block, FILE *out) 2576 { 2577 if (block == NULL || isMarked(ic, block)) 2578 return; 2579 Mark(ic, block); 2580 2581 if (JT(block)) { 2582 fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n", 2583 block->id, JT(block)->id); 2584 fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n", 2585 block->id, JF(block)->id); 2586 } 2587 dot_dump_edge(ic, JT(block), out); 2588 dot_dump_edge(ic, JF(block), out); 2589 } 2590 2591 /* Output the block CFG using graphviz/DOT language 2592 * In the CFG, block's code, value index for each registers at EXIT, 2593 * and the jump relationship is show. 2594 * 2595 * example DOT for BPF `ip src host 1.1.1.1' is: 2596 digraph BPF { 2597 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"]; 2598 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"]; 2599 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2]; 2600 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2]; 2601 "block0":se -> "block1":n [label="T"]; 2602 "block0":sw -> "block3":n [label="F"]; 2603 "block1":se -> "block2":n [label="T"]; 2604 "block1":sw -> "block3":n [label="F"]; 2605 } 2606 * 2607 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot 2608 * and run `dot -Tpng -O bpf.dot' to draw the graph. 2609 */ 2610 static int 2611 dot_dump(struct icode *ic, char *errbuf) 2612 { 2613 struct bpf_program f; 2614 FILE *out = stdout; 2615 2616 memset(bids, 0, sizeof bids); 2617 f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf); 2618 if (f.bf_insns == NULL) 2619 return -1; 2620 2621 fprintf(out, "digraph BPF {\n"); 2622 unMarkAll(ic); 2623 dot_dump_node(ic, ic->root, &f, out); 2624 unMarkAll(ic); 2625 dot_dump_edge(ic, ic->root, out); 2626 fprintf(out, "}\n"); 2627 2628 free((char *)f.bf_insns); 2629 return 0; 2630 } 2631 2632 static int 2633 plain_dump(struct icode *ic, char *errbuf) 2634 { 2635 struct bpf_program f; 2636 2637 memset(bids, 0, sizeof bids); 2638 f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf); 2639 if (f.bf_insns == NULL) 2640 return -1; 2641 bpf_dump(&f, 1); 2642 putchar('\n'); 2643 free((char *)f.bf_insns); 2644 return 0; 2645 } 2646 2647 static void 2648 opt_dump(opt_state_t *opt_state, struct icode *ic) 2649 { 2650 int status; 2651 char errbuf[PCAP_ERRBUF_SIZE]; 2652 2653 /* 2654 * If the CFG, in DOT format, is requested, output it rather than 2655 * the code that would be generated from that graph. 2656 */ 2657 if (pcap_print_dot_graph) 2658 status = dot_dump(ic, errbuf); 2659 else 2660 status = plain_dump(ic, errbuf); 2661 if (status == -1) 2662 opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf); 2663 } 2664 #endif 2665