xref: /freebsd/contrib/libpcap/optimize.c (revision a3e8fd0b7f663db7eafff527d5c3ca3bcfa8a537)
1 /*
2  * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that: (1) source code distributions
7  * retain the above copyright notice and this paragraph in its entirety, (2)
8  * distributions including binary code include the above copyright notice and
9  * this paragraph in its entirety in the documentation or other materials
10  * provided with the distribution, and (3) all advertising materials mentioning
11  * features or use of this software display the following acknowledgement:
12  * ``This product includes software developed by the University of California,
13  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14  * the University nor the names of its contributors may be used to endorse
15  * or promote products derived from this software without specific prior
16  * written permission.
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20  *
21  *  Optimization module for tcpdump intermediate representation.
22  */
23 #ifndef lint
24 static const char rcsid[] =
25     "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.69 2001/11/12 21:57:06 fenner Exp $ (LBL)";
26 #endif
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #include <sys/types.h>
33 #include <sys/time.h>
34 
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <memory.h>
38 
39 #include <errno.h>
40 
41 #include "pcap-int.h"
42 
43 #include "gencode.h"
44 
45 #ifdef HAVE_OS_PROTO_H
46 #include "os-proto.h"
47 #endif
48 
49 #ifdef BDEBUG
50 extern int dflag;
51 #endif
52 
53 #define A_ATOM BPF_MEMWORDS
54 #define X_ATOM (BPF_MEMWORDS+1)
55 
56 #define NOP -1
57 
58 /*
59  * This define is used to represent *both* the accumulator and
60  * x register in use-def computations.
61  * Currently, the use-def code assumes only one definition per instruction.
62  */
63 #define AX_ATOM N_ATOMS
64 
65 /*
66  * A flag to indicate that further optimization is needed.
67  * Iterative passes are continued until a given pass yields no
68  * branch movement.
69  */
70 static int done;
71 
72 /*
73  * A block is marked if only if its mark equals the current mark.
74  * Rather than traverse the code array, marking each item, 'cur_mark' is
75  * incremented.  This automatically makes each element unmarked.
76  */
77 static int cur_mark;
78 #define isMarked(p) ((p)->mark == cur_mark)
79 #define unMarkAll() cur_mark += 1
80 #define Mark(p) ((p)->mark = cur_mark)
81 
82 static void opt_init(struct block *);
83 static void opt_cleanup(void);
84 
85 static void make_marks(struct block *);
86 static void mark_code(struct block *);
87 
88 static void intern_blocks(struct block *);
89 
90 static int eq_slist(struct slist *, struct slist *);
91 
92 static void find_levels_r(struct block *);
93 
94 static void find_levels(struct block *);
95 static void find_dom(struct block *);
96 static void propedom(struct edge *);
97 static void find_edom(struct block *);
98 static void find_closure(struct block *);
99 static int atomuse(struct stmt *);
100 static int atomdef(struct stmt *);
101 static void compute_local_ud(struct block *);
102 static void find_ud(struct block *);
103 static void init_val(void);
104 static int F(int, int, int);
105 static inline void vstore(struct stmt *, int *, int, int);
106 static void opt_blk(struct block *, int);
107 static int use_conflict(struct block *, struct block *);
108 static void opt_j(struct edge *);
109 static void or_pullup(struct block *);
110 static void and_pullup(struct block *);
111 static void opt_blks(struct block *, int);
112 static inline void link_inedge(struct edge *, struct block *);
113 static void find_inedges(struct block *);
114 static void opt_root(struct block **);
115 static void opt_loop(struct block *, int);
116 static void fold_op(struct stmt *, int, int);
117 static inline struct slist *this_op(struct slist *);
118 static void opt_not(struct block *);
119 static void opt_peep(struct block *);
120 static void opt_stmt(struct stmt *, int[], int);
121 static void deadstmt(struct stmt *, struct stmt *[]);
122 static void opt_deadstores(struct block *);
123 static void opt_blk(struct block *, int);
124 static int use_conflict(struct block *, struct block *);
125 static void opt_j(struct edge *);
126 static struct block *fold_edge(struct block *, struct edge *);
127 static inline int eq_blk(struct block *, struct block *);
128 static int slength(struct slist *);
129 static int count_blocks(struct block *);
130 static void number_blks_r(struct block *);
131 static int count_stmts(struct block *);
132 static int convert_code_r(struct block *);
133 #ifdef BDEBUG
134 static void opt_dump(struct block *);
135 #endif
136 
137 static int n_blocks;
138 struct block **blocks;
139 static int n_edges;
140 struct edge **edges;
141 
142 /*
143  * A bit vector set representation of the dominators.
144  * We round up the set size to the next power of two.
145  */
146 static int nodewords;
147 static int edgewords;
148 struct block **levels;
149 bpf_u_int32 *space;
150 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
151 /*
152  * True if a is in uset {p}
153  */
154 #define SET_MEMBER(p, a) \
155 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
156 
157 /*
158  * Add 'a' to uset p.
159  */
160 #define SET_INSERT(p, a) \
161 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
162 
163 /*
164  * Delete 'a' from uset p.
165  */
166 #define SET_DELETE(p, a) \
167 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
168 
169 /*
170  * a := a intersect b
171  */
172 #define SET_INTERSECT(a, b, n)\
173 {\
174 	register bpf_u_int32 *_x = a, *_y = b;\
175 	register int _n = n;\
176 	while (--_n >= 0) *_x++ &= *_y++;\
177 }
178 
179 /*
180  * a := a - b
181  */
182 #define SET_SUBTRACT(a, b, n)\
183 {\
184 	register bpf_u_int32 *_x = a, *_y = b;\
185 	register int _n = n;\
186 	while (--_n >= 0) *_x++ &=~ *_y++;\
187 }
188 
189 /*
190  * a := a union b
191  */
192 #define SET_UNION(a, b, n)\
193 {\
194 	register bpf_u_int32 *_x = a, *_y = b;\
195 	register int _n = n;\
196 	while (--_n >= 0) *_x++ |= *_y++;\
197 }
198 
199 static uset all_dom_sets;
200 static uset all_closure_sets;
201 static uset all_edge_sets;
202 
203 #ifndef MAX
204 #define MAX(a,b) ((a)>(b)?(a):(b))
205 #endif
206 
207 static void
208 find_levels_r(b)
209 	struct block *b;
210 {
211 	int level;
212 
213 	if (isMarked(b))
214 		return;
215 
216 	Mark(b);
217 	b->link = 0;
218 
219 	if (JT(b)) {
220 		find_levels_r(JT(b));
221 		find_levels_r(JF(b));
222 		level = MAX(JT(b)->level, JF(b)->level) + 1;
223 	} else
224 		level = 0;
225 	b->level = level;
226 	b->link = levels[level];
227 	levels[level] = b;
228 }
229 
230 /*
231  * Level graph.  The levels go from 0 at the leaves to
232  * N_LEVELS at the root.  The levels[] array points to the
233  * first node of the level list, whose elements are linked
234  * with the 'link' field of the struct block.
235  */
236 static void
237 find_levels(root)
238 	struct block *root;
239 {
240 	memset((char *)levels, 0, n_blocks * sizeof(*levels));
241 	unMarkAll();
242 	find_levels_r(root);
243 }
244 
245 /*
246  * Find dominator relationships.
247  * Assumes graph has been leveled.
248  */
249 static void
250 find_dom(root)
251 	struct block *root;
252 {
253 	int i;
254 	struct block *b;
255 	bpf_u_int32 *x;
256 
257 	/*
258 	 * Initialize sets to contain all nodes.
259 	 */
260 	x = all_dom_sets;
261 	i = n_blocks * nodewords;
262 	while (--i >= 0)
263 		*x++ = ~0;
264 	/* Root starts off empty. */
265 	for (i = nodewords; --i >= 0;)
266 		root->dom[i] = 0;
267 
268 	/* root->level is the highest level no found. */
269 	for (i = root->level; i >= 0; --i) {
270 		for (b = levels[i]; b; b = b->link) {
271 			SET_INSERT(b->dom, b->id);
272 			if (JT(b) == 0)
273 				continue;
274 			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
275 			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
276 		}
277 	}
278 }
279 
280 static void
281 propedom(ep)
282 	struct edge *ep;
283 {
284 	SET_INSERT(ep->edom, ep->id);
285 	if (ep->succ) {
286 		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
287 		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
288 	}
289 }
290 
291 /*
292  * Compute edge dominators.
293  * Assumes graph has been leveled and predecessors established.
294  */
295 static void
296 find_edom(root)
297 	struct block *root;
298 {
299 	int i;
300 	uset x;
301 	struct block *b;
302 
303 	x = all_edge_sets;
304 	for (i = n_edges * edgewords; --i >= 0; )
305 		x[i] = ~0;
306 
307 	/* root->level is the highest level no found. */
308 	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
309 	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
310 	for (i = root->level; i >= 0; --i) {
311 		for (b = levels[i]; b != 0; b = b->link) {
312 			propedom(&b->et);
313 			propedom(&b->ef);
314 		}
315 	}
316 }
317 
318 /*
319  * Find the backwards transitive closure of the flow graph.  These sets
320  * are backwards in the sense that we find the set of nodes that reach
321  * a given node, not the set of nodes that can be reached by a node.
322  *
323  * Assumes graph has been leveled.
324  */
325 static void
326 find_closure(root)
327 	struct block *root;
328 {
329 	int i;
330 	struct block *b;
331 
332 	/*
333 	 * Initialize sets to contain no nodes.
334 	 */
335 	memset((char *)all_closure_sets, 0,
336 	      n_blocks * nodewords * sizeof(*all_closure_sets));
337 
338 	/* root->level is the highest level no found. */
339 	for (i = root->level; i >= 0; --i) {
340 		for (b = levels[i]; b; b = b->link) {
341 			SET_INSERT(b->closure, b->id);
342 			if (JT(b) == 0)
343 				continue;
344 			SET_UNION(JT(b)->closure, b->closure, nodewords);
345 			SET_UNION(JF(b)->closure, b->closure, nodewords);
346 		}
347 	}
348 }
349 
350 /*
351  * Return the register number that is used by s.  If A and X are both
352  * used, return AX_ATOM.  If no register is used, return -1.
353  *
354  * The implementation should probably change to an array access.
355  */
356 static int
357 atomuse(s)
358 	struct stmt *s;
359 {
360 	register int c = s->code;
361 
362 	if (c == NOP)
363 		return -1;
364 
365 	switch (BPF_CLASS(c)) {
366 
367 	case BPF_RET:
368 		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
369 			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
370 
371 	case BPF_LD:
372 	case BPF_LDX:
373 		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
374 			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
375 
376 	case BPF_ST:
377 		return A_ATOM;
378 
379 	case BPF_STX:
380 		return X_ATOM;
381 
382 	case BPF_JMP:
383 	case BPF_ALU:
384 		if (BPF_SRC(c) == BPF_X)
385 			return AX_ATOM;
386 		return A_ATOM;
387 
388 	case BPF_MISC:
389 		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
390 	}
391 	abort();
392 	/* NOTREACHED */
393 }
394 
395 /*
396  * Return the register number that is defined by 's'.  We assume that
397  * a single stmt cannot define more than one register.  If no register
398  * is defined, return -1.
399  *
400  * The implementation should probably change to an array access.
401  */
402 static int
403 atomdef(s)
404 	struct stmt *s;
405 {
406 	if (s->code == NOP)
407 		return -1;
408 
409 	switch (BPF_CLASS(s->code)) {
410 
411 	case BPF_LD:
412 	case BPF_ALU:
413 		return A_ATOM;
414 
415 	case BPF_LDX:
416 		return X_ATOM;
417 
418 	case BPF_ST:
419 	case BPF_STX:
420 		return s->k;
421 
422 	case BPF_MISC:
423 		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
424 	}
425 	return -1;
426 }
427 
428 static void
429 compute_local_ud(b)
430 	struct block *b;
431 {
432 	struct slist *s;
433 	atomset def = 0, use = 0, kill = 0;
434 	int atom;
435 
436 	for (s = b->stmts; s; s = s->next) {
437 		if (s->s.code == NOP)
438 			continue;
439 		atom = atomuse(&s->s);
440 		if (atom >= 0) {
441 			if (atom == AX_ATOM) {
442 				if (!ATOMELEM(def, X_ATOM))
443 					use |= ATOMMASK(X_ATOM);
444 				if (!ATOMELEM(def, A_ATOM))
445 					use |= ATOMMASK(A_ATOM);
446 			}
447 			else if (atom < N_ATOMS) {
448 				if (!ATOMELEM(def, atom))
449 					use |= ATOMMASK(atom);
450 			}
451 			else
452 				abort();
453 		}
454 		atom = atomdef(&s->s);
455 		if (atom >= 0) {
456 			if (!ATOMELEM(use, atom))
457 				kill |= ATOMMASK(atom);
458 			def |= ATOMMASK(atom);
459 		}
460 	}
461 	if (!ATOMELEM(def, A_ATOM) && BPF_CLASS(b->s.code) == BPF_JMP)
462 		use |= ATOMMASK(A_ATOM);
463 
464 	b->def = def;
465 	b->kill = kill;
466 	b->in_use = use;
467 }
468 
469 /*
470  * Assume graph is already leveled.
471  */
472 static void
473 find_ud(root)
474 	struct block *root;
475 {
476 	int i, maxlevel;
477 	struct block *p;
478 
479 	/*
480 	 * root->level is the highest level no found;
481 	 * count down from there.
482 	 */
483 	maxlevel = root->level;
484 	for (i = maxlevel; i >= 0; --i)
485 		for (p = levels[i]; p; p = p->link) {
486 			compute_local_ud(p);
487 			p->out_use = 0;
488 		}
489 
490 	for (i = 1; i <= maxlevel; ++i) {
491 		for (p = levels[i]; p; p = p->link) {
492 			p->out_use |= JT(p)->in_use | JF(p)->in_use;
493 			p->in_use |= p->out_use &~ p->kill;
494 		}
495 	}
496 }
497 
498 /*
499  * These data structures are used in a Cocke and Shwarz style
500  * value numbering scheme.  Since the flowgraph is acyclic,
501  * exit values can be propagated from a node's predecessors
502  * provided it is uniquely defined.
503  */
504 struct valnode {
505 	int code;
506 	int v0, v1;
507 	int val;
508 	struct valnode *next;
509 };
510 
511 #define MODULUS 213
512 static struct valnode *hashtbl[MODULUS];
513 static int curval;
514 static int maxval;
515 
516 /* Integer constants mapped with the load immediate opcode. */
517 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
518 
519 struct vmapinfo {
520 	int is_const;
521 	bpf_int32 const_val;
522 };
523 
524 struct vmapinfo *vmap;
525 struct valnode *vnode_base;
526 struct valnode *next_vnode;
527 
528 static void
529 init_val()
530 {
531 	curval = 0;
532 	next_vnode = vnode_base;
533 	memset((char *)vmap, 0, maxval * sizeof(*vmap));
534 	memset((char *)hashtbl, 0, sizeof hashtbl);
535 }
536 
537 /* Because we really don't have an IR, this stuff is a little messy. */
538 static int
539 F(code, v0, v1)
540 	int code;
541 	int v0, v1;
542 {
543 	u_int hash;
544 	int val;
545 	struct valnode *p;
546 
547 	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
548 	hash %= MODULUS;
549 
550 	for (p = hashtbl[hash]; p; p = p->next)
551 		if (p->code == code && p->v0 == v0 && p->v1 == v1)
552 			return p->val;
553 
554 	val = ++curval;
555 	if (BPF_MODE(code) == BPF_IMM &&
556 	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
557 		vmap[val].const_val = v0;
558 		vmap[val].is_const = 1;
559 	}
560 	p = next_vnode++;
561 	p->val = val;
562 	p->code = code;
563 	p->v0 = v0;
564 	p->v1 = v1;
565 	p->next = hashtbl[hash];
566 	hashtbl[hash] = p;
567 
568 	return val;
569 }
570 
571 static inline void
572 vstore(s, valp, newval, alter)
573 	struct stmt *s;
574 	int *valp;
575 	int newval;
576 	int alter;
577 {
578 	if (alter && *valp == newval)
579 		s->code = NOP;
580 	else
581 		*valp = newval;
582 }
583 
584 static void
585 fold_op(s, v0, v1)
586 	struct stmt *s;
587 	int v0, v1;
588 {
589 	bpf_int32 a, b;
590 
591 	a = vmap[v0].const_val;
592 	b = vmap[v1].const_val;
593 
594 	switch (BPF_OP(s->code)) {
595 	case BPF_ADD:
596 		a += b;
597 		break;
598 
599 	case BPF_SUB:
600 		a -= b;
601 		break;
602 
603 	case BPF_MUL:
604 		a *= b;
605 		break;
606 
607 	case BPF_DIV:
608 		if (b == 0)
609 			bpf_error("division by zero");
610 		a /= b;
611 		break;
612 
613 	case BPF_AND:
614 		a &= b;
615 		break;
616 
617 	case BPF_OR:
618 		a |= b;
619 		break;
620 
621 	case BPF_LSH:
622 		a <<= b;
623 		break;
624 
625 	case BPF_RSH:
626 		a >>= b;
627 		break;
628 
629 	case BPF_NEG:
630 		a = -a;
631 		break;
632 
633 	default:
634 		abort();
635 	}
636 	s->k = a;
637 	s->code = BPF_LD|BPF_IMM;
638 	done = 0;
639 }
640 
641 static inline struct slist *
642 this_op(s)
643 	struct slist *s;
644 {
645 	while (s != 0 && s->s.code == NOP)
646 		s = s->next;
647 	return s;
648 }
649 
650 static void
651 opt_not(b)
652 	struct block *b;
653 {
654 	struct block *tmp = JT(b);
655 
656 	JT(b) = JF(b);
657 	JF(b) = tmp;
658 }
659 
660 static void
661 opt_peep(b)
662 	struct block *b;
663 {
664 	struct slist *s;
665 	struct slist *next, *last;
666 	int val;
667 
668 	s = b->stmts;
669 	if (s == 0)
670 		return;
671 
672 	last = s;
673 	while (1) {
674 		s = this_op(s);
675 		if (s == 0)
676 			break;
677 		next = this_op(s->next);
678 		if (next == 0)
679 			break;
680 		last = next;
681 
682 		/*
683 		 * st  M[k]	-->	st  M[k]
684 		 * ldx M[k]		tax
685 		 */
686 		if (s->s.code == BPF_ST &&
687 		    next->s.code == (BPF_LDX|BPF_MEM) &&
688 		    s->s.k == next->s.k) {
689 			done = 0;
690 			next->s.code = BPF_MISC|BPF_TAX;
691 		}
692 		/*
693 		 * ld  #k	-->	ldx  #k
694 		 * tax			txa
695 		 */
696 		if (s->s.code == (BPF_LD|BPF_IMM) &&
697 		    next->s.code == (BPF_MISC|BPF_TAX)) {
698 			s->s.code = BPF_LDX|BPF_IMM;
699 			next->s.code = BPF_MISC|BPF_TXA;
700 			done = 0;
701 		}
702 		/*
703 		 * This is an ugly special case, but it happens
704 		 * when you say tcp[k] or udp[k] where k is a constant.
705 		 */
706 		if (s->s.code == (BPF_LD|BPF_IMM)) {
707 			struct slist *add, *tax, *ild;
708 
709 			/*
710 			 * Check that X isn't used on exit from this
711 			 * block (which the optimizer might cause).
712 			 * We know the code generator won't generate
713 			 * any local dependencies.
714 			 */
715 			if (ATOMELEM(b->out_use, X_ATOM))
716 				break;
717 
718 			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
719 				add = next;
720 			else
721 				add = this_op(next->next);
722 			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
723 				break;
724 
725 			tax = this_op(add->next);
726 			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
727 				break;
728 
729 			ild = this_op(tax->next);
730 			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
731 			    BPF_MODE(ild->s.code) != BPF_IND)
732 				break;
733 			/*
734 			 * XXX We need to check that X is not
735 			 * subsequently used.  We know we can eliminate the
736 			 * accumulator modifications since it is defined
737 			 * by the last stmt of this sequence.
738 			 *
739 			 * We want to turn this sequence:
740 			 *
741 			 * (004) ldi     #0x2		{s}
742 			 * (005) ldxms   [14]		{next}  -- optional
743 			 * (006) addx			{add}
744 			 * (007) tax			{tax}
745 			 * (008) ild     [x+0]		{ild}
746 			 *
747 			 * into this sequence:
748 			 *
749 			 * (004) nop
750 			 * (005) ldxms   [14]
751 			 * (006) nop
752 			 * (007) nop
753 			 * (008) ild     [x+2]
754 			 *
755 			 */
756 			ild->s.k += s->s.k;
757 			s->s.code = NOP;
758 			add->s.code = NOP;
759 			tax->s.code = NOP;
760 			done = 0;
761 		}
762 		s = next;
763 	}
764 	/*
765 	 * If we have a subtract to do a comparison, and the X register
766 	 * is a known constant, we can merge this value into the
767 	 * comparison.
768 	 */
769 	if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X) &&
770 	    !ATOMELEM(b->out_use, A_ATOM)) {
771 		val = b->val[X_ATOM];
772 		if (vmap[val].is_const) {
773 			int op;
774 
775 			b->s.k += vmap[val].const_val;
776 			op = BPF_OP(b->s.code);
777 			if (op == BPF_JGT || op == BPF_JGE) {
778 				struct block *t = JT(b);
779 				JT(b) = JF(b);
780 				JF(b) = t;
781 				b->s.k += 0x80000000;
782 			}
783 			last->s.code = NOP;
784 			done = 0;
785 		} else if (b->s.k == 0) {
786 			/*
787 			 * sub x  ->	nop
788 			 * j  #0	j  x
789 			 */
790 			last->s.code = NOP;
791 			b->s.code = BPF_CLASS(b->s.code) | BPF_OP(b->s.code) |
792 				BPF_X;
793 			done = 0;
794 		}
795 	}
796 	/*
797 	 * Likewise, a constant subtract can be simplified.
798 	 */
799 	else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K) &&
800 		 !ATOMELEM(b->out_use, A_ATOM)) {
801 		int op;
802 
803 		b->s.k += last->s.k;
804 		last->s.code = NOP;
805 		op = BPF_OP(b->s.code);
806 		if (op == BPF_JGT || op == BPF_JGE) {
807 			struct block *t = JT(b);
808 			JT(b) = JF(b);
809 			JF(b) = t;
810 			b->s.k += 0x80000000;
811 		}
812 		done = 0;
813 	}
814 	/*
815 	 * and #k	nop
816 	 * jeq #0  ->	jset #k
817 	 */
818 	if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
819 	    !ATOMELEM(b->out_use, A_ATOM) && b->s.k == 0) {
820 		b->s.k = last->s.k;
821 		b->s.code = BPF_JMP|BPF_K|BPF_JSET;
822 		last->s.code = NOP;
823 		done = 0;
824 		opt_not(b);
825 	}
826 	/*
827 	 * If the accumulator is a known constant, we can compute the
828 	 * comparison result.
829 	 */
830 	val = b->val[A_ATOM];
831 	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
832 		bpf_int32 v = vmap[val].const_val;
833 		switch (BPF_OP(b->s.code)) {
834 
835 		case BPF_JEQ:
836 			v = v == b->s.k;
837 			break;
838 
839 		case BPF_JGT:
840 			v = (unsigned)v > b->s.k;
841 			break;
842 
843 		case BPF_JGE:
844 			v = (unsigned)v >= b->s.k;
845 			break;
846 
847 		case BPF_JSET:
848 			v &= b->s.k;
849 			break;
850 
851 		default:
852 			abort();
853 		}
854 		if (JF(b) != JT(b))
855 			done = 0;
856 		if (v)
857 			JF(b) = JT(b);
858 		else
859 			JT(b) = JF(b);
860 	}
861 }
862 
863 /*
864  * Compute the symbolic value of expression of 's', and update
865  * anything it defines in the value table 'val'.  If 'alter' is true,
866  * do various optimizations.  This code would be cleaner if symbolic
867  * evaluation and code transformations weren't folded together.
868  */
869 static void
870 opt_stmt(s, val, alter)
871 	struct stmt *s;
872 	int val[];
873 	int alter;
874 {
875 	int op;
876 	int v;
877 
878 	switch (s->code) {
879 
880 	case BPF_LD|BPF_ABS|BPF_W:
881 	case BPF_LD|BPF_ABS|BPF_H:
882 	case BPF_LD|BPF_ABS|BPF_B:
883 		v = F(s->code, s->k, 0L);
884 		vstore(s, &val[A_ATOM], v, alter);
885 		break;
886 
887 	case BPF_LD|BPF_IND|BPF_W:
888 	case BPF_LD|BPF_IND|BPF_H:
889 	case BPF_LD|BPF_IND|BPF_B:
890 		v = val[X_ATOM];
891 		if (alter && vmap[v].is_const) {
892 			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
893 			s->k += vmap[v].const_val;
894 			v = F(s->code, s->k, 0L);
895 			done = 0;
896 		}
897 		else
898 			v = F(s->code, s->k, v);
899 		vstore(s, &val[A_ATOM], v, alter);
900 		break;
901 
902 	case BPF_LD|BPF_LEN:
903 		v = F(s->code, 0L, 0L);
904 		vstore(s, &val[A_ATOM], v, alter);
905 		break;
906 
907 	case BPF_LD|BPF_IMM:
908 		v = K(s->k);
909 		vstore(s, &val[A_ATOM], v, alter);
910 		break;
911 
912 	case BPF_LDX|BPF_IMM:
913 		v = K(s->k);
914 		vstore(s, &val[X_ATOM], v, alter);
915 		break;
916 
917 	case BPF_LDX|BPF_MSH|BPF_B:
918 		v = F(s->code, s->k, 0L);
919 		vstore(s, &val[X_ATOM], v, alter);
920 		break;
921 
922 	case BPF_ALU|BPF_NEG:
923 		if (alter && vmap[val[A_ATOM]].is_const) {
924 			s->code = BPF_LD|BPF_IMM;
925 			s->k = -vmap[val[A_ATOM]].const_val;
926 			val[A_ATOM] = K(s->k);
927 		}
928 		else
929 			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
930 		break;
931 
932 	case BPF_ALU|BPF_ADD|BPF_K:
933 	case BPF_ALU|BPF_SUB|BPF_K:
934 	case BPF_ALU|BPF_MUL|BPF_K:
935 	case BPF_ALU|BPF_DIV|BPF_K:
936 	case BPF_ALU|BPF_AND|BPF_K:
937 	case BPF_ALU|BPF_OR|BPF_K:
938 	case BPF_ALU|BPF_LSH|BPF_K:
939 	case BPF_ALU|BPF_RSH|BPF_K:
940 		op = BPF_OP(s->code);
941 		if (alter) {
942 			if (s->k == 0) {
943 				/* don't optimize away "sub #0"
944 				 * as it may be needed later to
945 				 * fixup the generated math code */
946 				if (op == BPF_ADD ||
947 				    op == BPF_LSH || op == BPF_RSH ||
948 				    op == BPF_OR) {
949 					s->code = NOP;
950 					break;
951 				}
952 				if (op == BPF_MUL || op == BPF_AND) {
953 					s->code = BPF_LD|BPF_IMM;
954 					val[A_ATOM] = K(s->k);
955 					break;
956 				}
957 			}
958 			if (vmap[val[A_ATOM]].is_const) {
959 				fold_op(s, val[A_ATOM], K(s->k));
960 				val[A_ATOM] = K(s->k);
961 				break;
962 			}
963 		}
964 		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
965 		break;
966 
967 	case BPF_ALU|BPF_ADD|BPF_X:
968 	case BPF_ALU|BPF_SUB|BPF_X:
969 	case BPF_ALU|BPF_MUL|BPF_X:
970 	case BPF_ALU|BPF_DIV|BPF_X:
971 	case BPF_ALU|BPF_AND|BPF_X:
972 	case BPF_ALU|BPF_OR|BPF_X:
973 	case BPF_ALU|BPF_LSH|BPF_X:
974 	case BPF_ALU|BPF_RSH|BPF_X:
975 		op = BPF_OP(s->code);
976 		if (alter && vmap[val[X_ATOM]].is_const) {
977 			if (vmap[val[A_ATOM]].is_const) {
978 				fold_op(s, val[A_ATOM], val[X_ATOM]);
979 				val[A_ATOM] = K(s->k);
980 			}
981 			else {
982 				s->code = BPF_ALU|BPF_K|op;
983 				s->k = vmap[val[X_ATOM]].const_val;
984 				done = 0;
985 				val[A_ATOM] =
986 					F(s->code, val[A_ATOM], K(s->k));
987 			}
988 			break;
989 		}
990 		/*
991 		 * Check if we're doing something to an accumulator
992 		 * that is 0, and simplify.  This may not seem like
993 		 * much of a simplification but it could open up further
994 		 * optimizations.
995 		 * XXX We could also check for mul by 1, and -1, etc.
996 		 */
997 		if (alter && vmap[val[A_ATOM]].is_const
998 		    && vmap[val[A_ATOM]].const_val == 0) {
999 			if (op == BPF_ADD || op == BPF_OR ||
1000 			    op == BPF_LSH || op == BPF_RSH || op == BPF_SUB) {
1001 				s->code = BPF_MISC|BPF_TXA;
1002 				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1003 				break;
1004 			}
1005 			else if (op == BPF_MUL || op == BPF_DIV ||
1006 				 op == BPF_AND) {
1007 				s->code = BPF_LD|BPF_IMM;
1008 				s->k = 0;
1009 				vstore(s, &val[A_ATOM], K(s->k), alter);
1010 				break;
1011 			}
1012 			else if (op == BPF_NEG) {
1013 				s->code = NOP;
1014 				break;
1015 			}
1016 		}
1017 		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1018 		break;
1019 
1020 	case BPF_MISC|BPF_TXA:
1021 		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1022 		break;
1023 
1024 	case BPF_LD|BPF_MEM:
1025 		v = val[s->k];
1026 		if (alter && vmap[v].is_const) {
1027 			s->code = BPF_LD|BPF_IMM;
1028 			s->k = vmap[v].const_val;
1029 			done = 0;
1030 		}
1031 		vstore(s, &val[A_ATOM], v, alter);
1032 		break;
1033 
1034 	case BPF_MISC|BPF_TAX:
1035 		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1036 		break;
1037 
1038 	case BPF_LDX|BPF_MEM:
1039 		v = val[s->k];
1040 		if (alter && vmap[v].is_const) {
1041 			s->code = BPF_LDX|BPF_IMM;
1042 			s->k = vmap[v].const_val;
1043 			done = 0;
1044 		}
1045 		vstore(s, &val[X_ATOM], v, alter);
1046 		break;
1047 
1048 	case BPF_ST:
1049 		vstore(s, &val[s->k], val[A_ATOM], alter);
1050 		break;
1051 
1052 	case BPF_STX:
1053 		vstore(s, &val[s->k], val[X_ATOM], alter);
1054 		break;
1055 	}
1056 }
1057 
1058 static void
1059 deadstmt(s, last)
1060 	register struct stmt *s;
1061 	register struct stmt *last[];
1062 {
1063 	register int atom;
1064 
1065 	atom = atomuse(s);
1066 	if (atom >= 0) {
1067 		if (atom == AX_ATOM) {
1068 			last[X_ATOM] = 0;
1069 			last[A_ATOM] = 0;
1070 		}
1071 		else
1072 			last[atom] = 0;
1073 	}
1074 	atom = atomdef(s);
1075 	if (atom >= 0) {
1076 		if (last[atom]) {
1077 			done = 0;
1078 			last[atom]->code = NOP;
1079 		}
1080 		last[atom] = s;
1081 	}
1082 }
1083 
1084 static void
1085 opt_deadstores(b)
1086 	register struct block *b;
1087 {
1088 	register struct slist *s;
1089 	register int atom;
1090 	struct stmt *last[N_ATOMS];
1091 
1092 	memset((char *)last, 0, sizeof last);
1093 
1094 	for (s = b->stmts; s != 0; s = s->next)
1095 		deadstmt(&s->s, last);
1096 	deadstmt(&b->s, last);
1097 
1098 	for (atom = 0; atom < N_ATOMS; ++atom)
1099 		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1100 			last[atom]->code = NOP;
1101 			done = 0;
1102 		}
1103 }
1104 
1105 static void
1106 opt_blk(b, do_stmts)
1107 	struct block *b;
1108 	int do_stmts;
1109 {
1110 	struct slist *s;
1111 	struct edge *p;
1112 	int i;
1113 	bpf_int32 aval;
1114 
1115 #if 0
1116 	for (s = b->stmts; s && s->next; s = s->next)
1117 		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1118 			do_stmts = 0;
1119 			break;
1120 		}
1121 #endif
1122 
1123 	/*
1124 	 * Initialize the atom values.
1125 	 * If we have no predecessors, everything is undefined.
1126 	 * Otherwise, we inherent our values from our predecessors.
1127 	 * If any register has an ambiguous value (i.e. control paths are
1128 	 * merging) give it the undefined value of 0.
1129 	 */
1130 	p = b->in_edges;
1131 	if (p == 0)
1132 		memset((char *)b->val, 0, sizeof(b->val));
1133 	else {
1134 		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1135 		while ((p = p->next) != NULL) {
1136 			for (i = 0; i < N_ATOMS; ++i)
1137 				if (b->val[i] != p->pred->val[i])
1138 					b->val[i] = 0;
1139 		}
1140 	}
1141 	aval = b->val[A_ATOM];
1142 	for (s = b->stmts; s; s = s->next)
1143 		opt_stmt(&s->s, b->val, do_stmts);
1144 
1145 	/*
1146 	 * This is a special case: if we don't use anything from this
1147 	 * block, and we load the accumulator with value that is
1148 	 * already there, or if this block is a return,
1149 	 * eliminate all the statements.
1150 	 */
1151 	if (do_stmts &&
1152 	    ((b->out_use == 0 && aval != 0 &&b->val[A_ATOM] == aval) ||
1153 	     BPF_CLASS(b->s.code) == BPF_RET)) {
1154 		if (b->stmts != 0) {
1155 			b->stmts = 0;
1156 			done = 0;
1157 		}
1158 	} else {
1159 		opt_peep(b);
1160 		opt_deadstores(b);
1161 	}
1162 	/*
1163 	 * Set up values for branch optimizer.
1164 	 */
1165 	if (BPF_SRC(b->s.code) == BPF_K)
1166 		b->oval = K(b->s.k);
1167 	else
1168 		b->oval = b->val[X_ATOM];
1169 	b->et.code = b->s.code;
1170 	b->ef.code = -b->s.code;
1171 }
1172 
1173 /*
1174  * Return true if any register that is used on exit from 'succ', has
1175  * an exit value that is different from the corresponding exit value
1176  * from 'b'.
1177  */
1178 static int
1179 use_conflict(b, succ)
1180 	struct block *b, *succ;
1181 {
1182 	int atom;
1183 	atomset use = succ->out_use;
1184 
1185 	if (use == 0)
1186 		return 0;
1187 
1188 	for (atom = 0; atom < N_ATOMS; ++atom)
1189 		if (ATOMELEM(use, atom))
1190 			if (b->val[atom] != succ->val[atom])
1191 				return 1;
1192 	return 0;
1193 }
1194 
1195 static struct block *
1196 fold_edge(child, ep)
1197 	struct block *child;
1198 	struct edge *ep;
1199 {
1200 	int sense;
1201 	int aval0, aval1, oval0, oval1;
1202 	int code = ep->code;
1203 
1204 	if (code < 0) {
1205 		code = -code;
1206 		sense = 0;
1207 	} else
1208 		sense = 1;
1209 
1210 	if (child->s.code != code)
1211 		return 0;
1212 
1213 	aval0 = child->val[A_ATOM];
1214 	oval0 = child->oval;
1215 	aval1 = ep->pred->val[A_ATOM];
1216 	oval1 = ep->pred->oval;
1217 
1218 	if (aval0 != aval1)
1219 		return 0;
1220 
1221 	if (oval0 == oval1)
1222 		/*
1223 		 * The operands are identical, so the
1224 		 * result is true if a true branch was
1225 		 * taken to get here, otherwise false.
1226 		 */
1227 		return sense ? JT(child) : JF(child);
1228 
1229 	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1230 		/*
1231 		 * At this point, we only know the comparison if we
1232 		 * came down the true branch, and it was an equality
1233 		 * comparison with a constant.  We rely on the fact that
1234 		 * distinct constants have distinct value numbers.
1235 		 */
1236 		return JF(child);
1237 
1238 	return 0;
1239 }
1240 
1241 static void
1242 opt_j(ep)
1243 	struct edge *ep;
1244 {
1245 	register int i, k;
1246 	register struct block *target;
1247 
1248 	if (JT(ep->succ) == 0)
1249 		return;
1250 
1251 	if (JT(ep->succ) == JF(ep->succ)) {
1252 		/*
1253 		 * Common branch targets can be eliminated, provided
1254 		 * there is no data dependency.
1255 		 */
1256 		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1257 			done = 0;
1258 			ep->succ = JT(ep->succ);
1259 		}
1260 	}
1261 	/*
1262 	 * For each edge dominator that matches the successor of this
1263 	 * edge, promote the edge successor to the its grandchild.
1264 	 *
1265 	 * XXX We violate the set abstraction here in favor a reasonably
1266 	 * efficient loop.
1267 	 */
1268  top:
1269 	for (i = 0; i < edgewords; ++i) {
1270 		register bpf_u_int32 x = ep->edom[i];
1271 
1272 		while (x != 0) {
1273 			k = ffs(x) - 1;
1274 			x &=~ (1 << k);
1275 			k += i * BITS_PER_WORD;
1276 
1277 			target = fold_edge(ep->succ, edges[k]);
1278 			/*
1279 			 * Check that there is no data dependency between
1280 			 * nodes that will be violated if we move the edge.
1281 			 */
1282 			if (target != 0 && !use_conflict(ep->pred, target)) {
1283 				done = 0;
1284 				ep->succ = target;
1285 				if (JT(target) != 0)
1286 					/*
1287 					 * Start over unless we hit a leaf.
1288 					 */
1289 					goto top;
1290 				return;
1291 			}
1292 		}
1293 	}
1294 }
1295 
1296 
1297 static void
1298 or_pullup(b)
1299 	struct block *b;
1300 {
1301 	int val, at_top;
1302 	struct block *pull;
1303 	struct block **diffp, **samep;
1304 	struct edge *ep;
1305 
1306 	ep = b->in_edges;
1307 	if (ep == 0)
1308 		return;
1309 
1310 	/*
1311 	 * Make sure each predecessor loads the same value.
1312 	 * XXX why?
1313 	 */
1314 	val = ep->pred->val[A_ATOM];
1315 	for (ep = ep->next; ep != 0; ep = ep->next)
1316 		if (val != ep->pred->val[A_ATOM])
1317 			return;
1318 
1319 	if (JT(b->in_edges->pred) == b)
1320 		diffp = &JT(b->in_edges->pred);
1321 	else
1322 		diffp = &JF(b->in_edges->pred);
1323 
1324 	at_top = 1;
1325 	while (1) {
1326 		if (*diffp == 0)
1327 			return;
1328 
1329 		if (JT(*diffp) != JT(b))
1330 			return;
1331 
1332 		if (!SET_MEMBER((*diffp)->dom, b->id))
1333 			return;
1334 
1335 		if ((*diffp)->val[A_ATOM] != val)
1336 			break;
1337 
1338 		diffp = &JF(*diffp);
1339 		at_top = 0;
1340 	}
1341 	samep = &JF(*diffp);
1342 	while (1) {
1343 		if (*samep == 0)
1344 			return;
1345 
1346 		if (JT(*samep) != JT(b))
1347 			return;
1348 
1349 		if (!SET_MEMBER((*samep)->dom, b->id))
1350 			return;
1351 
1352 		if ((*samep)->val[A_ATOM] == val)
1353 			break;
1354 
1355 		/* XXX Need to check that there are no data dependencies
1356 		   between dp0 and dp1.  Currently, the code generator
1357 		   will not produce such dependencies. */
1358 		samep = &JF(*samep);
1359 	}
1360 #ifdef notdef
1361 	/* XXX This doesn't cover everything. */
1362 	for (i = 0; i < N_ATOMS; ++i)
1363 		if ((*samep)->val[i] != pred->val[i])
1364 			return;
1365 #endif
1366 	/* Pull up the node. */
1367 	pull = *samep;
1368 	*samep = JF(pull);
1369 	JF(pull) = *diffp;
1370 
1371 	/*
1372 	 * At the top of the chain, each predecessor needs to point at the
1373 	 * pulled up node.  Inside the chain, there is only one predecessor
1374 	 * to worry about.
1375 	 */
1376 	if (at_top) {
1377 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1378 			if (JT(ep->pred) == b)
1379 				JT(ep->pred) = pull;
1380 			else
1381 				JF(ep->pred) = pull;
1382 		}
1383 	}
1384 	else
1385 		*diffp = pull;
1386 
1387 	done = 0;
1388 }
1389 
1390 static void
1391 and_pullup(b)
1392 	struct block *b;
1393 {
1394 	int val, at_top;
1395 	struct block *pull;
1396 	struct block **diffp, **samep;
1397 	struct edge *ep;
1398 
1399 	ep = b->in_edges;
1400 	if (ep == 0)
1401 		return;
1402 
1403 	/*
1404 	 * Make sure each predecessor loads the same value.
1405 	 */
1406 	val = ep->pred->val[A_ATOM];
1407 	for (ep = ep->next; ep != 0; ep = ep->next)
1408 		if (val != ep->pred->val[A_ATOM])
1409 			return;
1410 
1411 	if (JT(b->in_edges->pred) == b)
1412 		diffp = &JT(b->in_edges->pred);
1413 	else
1414 		diffp = &JF(b->in_edges->pred);
1415 
1416 	at_top = 1;
1417 	while (1) {
1418 		if (*diffp == 0)
1419 			return;
1420 
1421 		if (JF(*diffp) != JF(b))
1422 			return;
1423 
1424 		if (!SET_MEMBER((*diffp)->dom, b->id))
1425 			return;
1426 
1427 		if ((*diffp)->val[A_ATOM] != val)
1428 			break;
1429 
1430 		diffp = &JT(*diffp);
1431 		at_top = 0;
1432 	}
1433 	samep = &JT(*diffp);
1434 	while (1) {
1435 		if (*samep == 0)
1436 			return;
1437 
1438 		if (JF(*samep) != JF(b))
1439 			return;
1440 
1441 		if (!SET_MEMBER((*samep)->dom, b->id))
1442 			return;
1443 
1444 		if ((*samep)->val[A_ATOM] == val)
1445 			break;
1446 
1447 		/* XXX Need to check that there are no data dependencies
1448 		   between diffp and samep.  Currently, the code generator
1449 		   will not produce such dependencies. */
1450 		samep = &JT(*samep);
1451 	}
1452 #ifdef notdef
1453 	/* XXX This doesn't cover everything. */
1454 	for (i = 0; i < N_ATOMS; ++i)
1455 		if ((*samep)->val[i] != pred->val[i])
1456 			return;
1457 #endif
1458 	/* Pull up the node. */
1459 	pull = *samep;
1460 	*samep = JT(pull);
1461 	JT(pull) = *diffp;
1462 
1463 	/*
1464 	 * At the top of the chain, each predecessor needs to point at the
1465 	 * pulled up node.  Inside the chain, there is only one predecessor
1466 	 * to worry about.
1467 	 */
1468 	if (at_top) {
1469 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1470 			if (JT(ep->pred) == b)
1471 				JT(ep->pred) = pull;
1472 			else
1473 				JF(ep->pred) = pull;
1474 		}
1475 	}
1476 	else
1477 		*diffp = pull;
1478 
1479 	done = 0;
1480 }
1481 
1482 static void
1483 opt_blks(root, do_stmts)
1484 	struct block *root;
1485 	int do_stmts;
1486 {
1487 	int i, maxlevel;
1488 	struct block *p;
1489 
1490 	init_val();
1491 	maxlevel = root->level;
1492 
1493 	find_inedges(root);
1494 	for (i = maxlevel; i >= 0; --i)
1495 		for (p = levels[i]; p; p = p->link)
1496 			opt_blk(p, do_stmts);
1497 
1498 	if (do_stmts)
1499 		/*
1500 		 * No point trying to move branches; it can't possibly
1501 		 * make a difference at this point.
1502 		 */
1503 		return;
1504 
1505 	for (i = 1; i <= maxlevel; ++i) {
1506 		for (p = levels[i]; p; p = p->link) {
1507 			opt_j(&p->et);
1508 			opt_j(&p->ef);
1509 		}
1510 	}
1511 
1512 	find_inedges(root);
1513 	for (i = 1; i <= maxlevel; ++i) {
1514 		for (p = levels[i]; p; p = p->link) {
1515 			or_pullup(p);
1516 			and_pullup(p);
1517 		}
1518 	}
1519 }
1520 
1521 static inline void
1522 link_inedge(parent, child)
1523 	struct edge *parent;
1524 	struct block *child;
1525 {
1526 	parent->next = child->in_edges;
1527 	child->in_edges = parent;
1528 }
1529 
1530 static void
1531 find_inedges(root)
1532 	struct block *root;
1533 {
1534 	int i;
1535 	struct block *b;
1536 
1537 	for (i = 0; i < n_blocks; ++i)
1538 		blocks[i]->in_edges = 0;
1539 
1540 	/*
1541 	 * Traverse the graph, adding each edge to the predecessor
1542 	 * list of its successors.  Skip the leaves (i.e. level 0).
1543 	 */
1544 	for (i = root->level; i > 0; --i) {
1545 		for (b = levels[i]; b != 0; b = b->link) {
1546 			link_inedge(&b->et, JT(b));
1547 			link_inedge(&b->ef, JF(b));
1548 		}
1549 	}
1550 }
1551 
1552 static void
1553 opt_root(b)
1554 	struct block **b;
1555 {
1556 	struct slist *tmp, *s;
1557 
1558 	s = (*b)->stmts;
1559 	(*b)->stmts = 0;
1560 	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1561 		*b = JT(*b);
1562 
1563 	tmp = (*b)->stmts;
1564 	if (tmp != 0)
1565 		sappend(s, tmp);
1566 	(*b)->stmts = s;
1567 
1568 	/*
1569 	 * If the root node is a return, then there is no
1570 	 * point executing any statements (since the bpf machine
1571 	 * has no side effects).
1572 	 */
1573 	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1574 		(*b)->stmts = 0;
1575 }
1576 
1577 static void
1578 opt_loop(root, do_stmts)
1579 	struct block *root;
1580 	int do_stmts;
1581 {
1582 
1583 #ifdef BDEBUG
1584 	if (dflag > 1) {
1585 		printf("opt_loop(root, %d) begin\n", do_stmts);
1586 		opt_dump(root);
1587 	}
1588 #endif
1589 	do {
1590 		done = 1;
1591 		find_levels(root);
1592 		find_dom(root);
1593 		find_closure(root);
1594 		find_ud(root);
1595 		find_edom(root);
1596 		opt_blks(root, do_stmts);
1597 #ifdef BDEBUG
1598 		if (dflag > 1) {
1599 			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1600 			opt_dump(root);
1601 		}
1602 #endif
1603 	} while (!done);
1604 }
1605 
1606 /*
1607  * Optimize the filter code in its dag representation.
1608  */
1609 void
1610 bpf_optimize(rootp)
1611 	struct block **rootp;
1612 {
1613 	struct block *root;
1614 
1615 	root = *rootp;
1616 
1617 	opt_init(root);
1618 	opt_loop(root, 0);
1619 	opt_loop(root, 1);
1620 	intern_blocks(root);
1621 #ifdef BDEBUG
1622 	if (dflag > 1) {
1623 		printf("after intern_blocks()\n");
1624 		opt_dump(root);
1625 	}
1626 #endif
1627 	opt_root(rootp);
1628 #ifdef BDEBUG
1629 	if (dflag > 1) {
1630 		printf("after opt_root()\n");
1631 		opt_dump(root);
1632 	}
1633 #endif
1634 	opt_cleanup();
1635 }
1636 
1637 static void
1638 make_marks(p)
1639 	struct block *p;
1640 {
1641 	if (!isMarked(p)) {
1642 		Mark(p);
1643 		if (BPF_CLASS(p->s.code) != BPF_RET) {
1644 			make_marks(JT(p));
1645 			make_marks(JF(p));
1646 		}
1647 	}
1648 }
1649 
1650 /*
1651  * Mark code array such that isMarked(i) is true
1652  * only for nodes that are alive.
1653  */
1654 static void
1655 mark_code(p)
1656 	struct block *p;
1657 {
1658 	cur_mark += 1;
1659 	make_marks(p);
1660 }
1661 
1662 /*
1663  * True iff the two stmt lists load the same value from the packet into
1664  * the accumulator.
1665  */
1666 static int
1667 eq_slist(x, y)
1668 	struct slist *x, *y;
1669 {
1670 	while (1) {
1671 		while (x && x->s.code == NOP)
1672 			x = x->next;
1673 		while (y && y->s.code == NOP)
1674 			y = y->next;
1675 		if (x == 0)
1676 			return y == 0;
1677 		if (y == 0)
1678 			return x == 0;
1679 		if (x->s.code != y->s.code || x->s.k != y->s.k)
1680 			return 0;
1681 		x = x->next;
1682 		y = y->next;
1683 	}
1684 }
1685 
1686 static inline int
1687 eq_blk(b0, b1)
1688 	struct block *b0, *b1;
1689 {
1690 	if (b0->s.code == b1->s.code &&
1691 	    b0->s.k == b1->s.k &&
1692 	    b0->et.succ == b1->et.succ &&
1693 	    b0->ef.succ == b1->ef.succ)
1694 		return eq_slist(b0->stmts, b1->stmts);
1695 	return 0;
1696 }
1697 
1698 static void
1699 intern_blocks(root)
1700 	struct block *root;
1701 {
1702 	struct block *p;
1703 	int i, j;
1704 	int done;
1705  top:
1706 	done = 1;
1707 	for (i = 0; i < n_blocks; ++i)
1708 		blocks[i]->link = 0;
1709 
1710 	mark_code(root);
1711 
1712 	for (i = n_blocks - 1; --i >= 0; ) {
1713 		if (!isMarked(blocks[i]))
1714 			continue;
1715 		for (j = i + 1; j < n_blocks; ++j) {
1716 			if (!isMarked(blocks[j]))
1717 				continue;
1718 			if (eq_blk(blocks[i], blocks[j])) {
1719 				blocks[i]->link = blocks[j]->link ?
1720 					blocks[j]->link : blocks[j];
1721 				break;
1722 			}
1723 		}
1724 	}
1725 	for (i = 0; i < n_blocks; ++i) {
1726 		p = blocks[i];
1727 		if (JT(p) == 0)
1728 			continue;
1729 		if (JT(p)->link) {
1730 			done = 0;
1731 			JT(p) = JT(p)->link;
1732 		}
1733 		if (JF(p)->link) {
1734 			done = 0;
1735 			JF(p) = JF(p)->link;
1736 		}
1737 	}
1738 	if (!done)
1739 		goto top;
1740 }
1741 
1742 static void
1743 opt_cleanup()
1744 {
1745 	free((void *)vnode_base);
1746 	free((void *)vmap);
1747 	free((void *)edges);
1748 	free((void *)space);
1749 	free((void *)levels);
1750 	free((void *)blocks);
1751 }
1752 
1753 /*
1754  * Return the number of stmts in 's'.
1755  */
1756 static int
1757 slength(s)
1758 	struct slist *s;
1759 {
1760 	int n = 0;
1761 
1762 	for (; s; s = s->next)
1763 		if (s->s.code != NOP)
1764 			++n;
1765 	return n;
1766 }
1767 
1768 /*
1769  * Return the number of nodes reachable by 'p'.
1770  * All nodes should be initially unmarked.
1771  */
1772 static int
1773 count_blocks(p)
1774 	struct block *p;
1775 {
1776 	if (p == 0 || isMarked(p))
1777 		return 0;
1778 	Mark(p);
1779 	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1780 }
1781 
1782 /*
1783  * Do a depth first search on the flow graph, numbering the
1784  * the basic blocks, and entering them into the 'blocks' array.`
1785  */
1786 static void
1787 number_blks_r(p)
1788 	struct block *p;
1789 {
1790 	int n;
1791 
1792 	if (p == 0 || isMarked(p))
1793 		return;
1794 
1795 	Mark(p);
1796 	n = n_blocks++;
1797 	p->id = n;
1798 	blocks[n] = p;
1799 
1800 	number_blks_r(JT(p));
1801 	number_blks_r(JF(p));
1802 }
1803 
1804 /*
1805  * Return the number of stmts in the flowgraph reachable by 'p'.
1806  * The nodes should be unmarked before calling.
1807  *
1808  * Note that "stmts" means "instructions", and that this includes
1809  *
1810  *	side-effect statements in 'p' (slength(p->stmts));
1811  *
1812  *	statements in the true branch from 'p' (count_stmts(JT(p)));
1813  *
1814  *	statements in the false branch from 'p' (count_stmts(JF(p)));
1815  *
1816  *	the conditional jump itself (1);
1817  *
1818  *	an extra long jump if the true branch requires it (p->longjt);
1819  *
1820  *	an extra long jump if the false branch requires it (p->longjf).
1821  */
1822 static int
1823 count_stmts(p)
1824 	struct block *p;
1825 {
1826 	int n;
1827 
1828 	if (p == 0 || isMarked(p))
1829 		return 0;
1830 	Mark(p);
1831 	n = count_stmts(JT(p)) + count_stmts(JF(p));
1832 	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1833 }
1834 
1835 /*
1836  * Allocate memory.  All allocation is done before optimization
1837  * is begun.  A linear bound on the size of all data structures is computed
1838  * from the total number of blocks and/or statements.
1839  */
1840 static void
1841 opt_init(root)
1842 	struct block *root;
1843 {
1844 	bpf_u_int32 *p;
1845 	int i, n, max_stmts;
1846 
1847 	/*
1848 	 * First, count the blocks, so we can malloc an array to map
1849 	 * block number to block.  Then, put the blocks into the array.
1850 	 */
1851 	unMarkAll();
1852 	n = count_blocks(root);
1853 	blocks = (struct block **)malloc(n * sizeof(*blocks));
1854 	unMarkAll();
1855 	n_blocks = 0;
1856 	number_blks_r(root);
1857 
1858 	n_edges = 2 * n_blocks;
1859 	edges = (struct edge **)malloc(n_edges * sizeof(*edges));
1860 
1861 	/*
1862 	 * The number of levels is bounded by the number of nodes.
1863 	 */
1864 	levels = (struct block **)malloc(n_blocks * sizeof(*levels));
1865 
1866 	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1867 	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1868 
1869 	/* XXX */
1870 	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1871 				 + n_edges * edgewords * sizeof(*space));
1872 	p = space;
1873 	all_dom_sets = p;
1874 	for (i = 0; i < n; ++i) {
1875 		blocks[i]->dom = p;
1876 		p += nodewords;
1877 	}
1878 	all_closure_sets = p;
1879 	for (i = 0; i < n; ++i) {
1880 		blocks[i]->closure = p;
1881 		p += nodewords;
1882 	}
1883 	all_edge_sets = p;
1884 	for (i = 0; i < n; ++i) {
1885 		register struct block *b = blocks[i];
1886 
1887 		b->et.edom = p;
1888 		p += edgewords;
1889 		b->ef.edom = p;
1890 		p += edgewords;
1891 		b->et.id = i;
1892 		edges[i] = &b->et;
1893 		b->ef.id = n_blocks + i;
1894 		edges[n_blocks + i] = &b->ef;
1895 		b->et.pred = b;
1896 		b->ef.pred = b;
1897 	}
1898 	max_stmts = 0;
1899 	for (i = 0; i < n; ++i)
1900 		max_stmts += slength(blocks[i]->stmts) + 1;
1901 	/*
1902 	 * We allocate at most 3 value numbers per statement,
1903 	 * so this is an upper bound on the number of valnodes
1904 	 * we'll need.
1905 	 */
1906 	maxval = 3 * max_stmts;
1907 	vmap = (struct vmapinfo *)malloc(maxval * sizeof(*vmap));
1908 	vnode_base = (struct valnode *)malloc(maxval * sizeof(*vnode_base));
1909 }
1910 
1911 /*
1912  * Some pointers used to convert the basic block form of the code,
1913  * into the array form that BPF requires.  'fstart' will point to
1914  * the malloc'd array while 'ftail' is used during the recursive traversal.
1915  */
1916 static struct bpf_insn *fstart;
1917 static struct bpf_insn *ftail;
1918 
1919 #ifdef BDEBUG
1920 int bids[1000];
1921 #endif
1922 
1923 /*
1924  * Returns true if successful.  Returns false if a branch has
1925  * an offset that is too large.  If so, we have marked that
1926  * branch so that on a subsequent iteration, it will be treated
1927  * properly.
1928  */
1929 static int
1930 convert_code_r(p)
1931 	struct block *p;
1932 {
1933 	struct bpf_insn *dst;
1934 	struct slist *src;
1935 	int slen;
1936 	u_int off;
1937 	int extrajmps;		/* number of extra jumps inserted */
1938 	struct slist **offset = NULL;
1939 
1940 	if (p == 0 || isMarked(p))
1941 		return (1);
1942 	Mark(p);
1943 
1944 	if (convert_code_r(JF(p)) == 0)
1945 		return (0);
1946 	if (convert_code_r(JT(p)) == 0)
1947 		return (0);
1948 
1949 	slen = slength(p->stmts);
1950 	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
1951 		/* inflate length by any extra jumps */
1952 
1953 	p->offset = dst - fstart;
1954 
1955 	/* generate offset[] for convenience  */
1956 	if (slen) {
1957 		offset = (struct slist **)calloc(sizeof(struct slist *), slen);
1958 		if (!offset) {
1959 			bpf_error("not enough core");
1960 			/*NOTREACHED*/
1961 		}
1962 	}
1963 	src = p->stmts;
1964 	for (off = 0; off < slen && src; off++) {
1965 #if 0
1966 		printf("off=%d src=%x\n", off, src);
1967 #endif
1968 		offset[off] = src;
1969 		src = src->next;
1970 	}
1971 
1972 	off = 0;
1973 	for (src = p->stmts; src; src = src->next) {
1974 		if (src->s.code == NOP)
1975 			continue;
1976 		dst->code = (u_short)src->s.code;
1977 		dst->k = src->s.k;
1978 
1979 		/* fill block-local relative jump */
1980 		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
1981 #if 0
1982 			if (src->s.jt || src->s.jf) {
1983 				bpf_error("illegal jmp destination");
1984 				/*NOTREACHED*/
1985 			}
1986 #endif
1987 			goto filled;
1988 		}
1989 		if (off == slen - 2)	/*???*/
1990 			goto filled;
1991 
1992 	    {
1993 		int i;
1994 		int jt, jf;
1995 		char *ljerr = "%s for block-local relative jump: off=%d";
1996 
1997 #if 0
1998 		printf("code=%x off=%d %x %x\n", src->s.code,
1999 			off, src->s.jt, src->s.jf);
2000 #endif
2001 
2002 		if (!src->s.jt || !src->s.jf) {
2003 			bpf_error(ljerr, "no jmp destination", off);
2004 			/*NOTREACHED*/
2005 		}
2006 
2007 		jt = jf = 0;
2008 		for (i = 0; i < slen; i++) {
2009 			if (offset[i] == src->s.jt) {
2010 				if (jt) {
2011 					bpf_error(ljerr, "multiple matches", off);
2012 					/*NOTREACHED*/
2013 				}
2014 
2015 				dst->jt = i - off - 1;
2016 				jt++;
2017 			}
2018 			if (offset[i] == src->s.jf) {
2019 				if (jf) {
2020 					bpf_error(ljerr, "multiple matches", off);
2021 					/*NOTREACHED*/
2022 				}
2023 				dst->jf = i - off - 1;
2024 				jf++;
2025 			}
2026 		}
2027 		if (!jt || !jf) {
2028 			bpf_error(ljerr, "no destination found", off);
2029 			/*NOTREACHED*/
2030 		}
2031 	    }
2032 filled:
2033 		++dst;
2034 		++off;
2035 	}
2036 	if (offset)
2037 		free(offset);
2038 
2039 #ifdef BDEBUG
2040 	bids[dst - fstart] = p->id + 1;
2041 #endif
2042 	dst->code = (u_short)p->s.code;
2043 	dst->k = p->s.k;
2044 	if (JT(p)) {
2045 		extrajmps = 0;
2046 		off = JT(p)->offset - (p->offset + slen) - 1;
2047 		if (off >= 256) {
2048 		    /* offset too large for branch, must add a jump */
2049 		    if (p->longjt == 0) {
2050 		    	/* mark this instruction and retry */
2051 			p->longjt++;
2052 			return(0);
2053 		    }
2054 		    /* branch if T to following jump */
2055 		    dst->jt = extrajmps;
2056 		    extrajmps++;
2057 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2058 		    dst[extrajmps].k = off - extrajmps;
2059 		}
2060 		else
2061 		    dst->jt = off;
2062 		off = JF(p)->offset - (p->offset + slen) - 1;
2063 		if (off >= 256) {
2064 		    /* offset too large for branch, must add a jump */
2065 		    if (p->longjf == 0) {
2066 		    	/* mark this instruction and retry */
2067 			p->longjf++;
2068 			return(0);
2069 		    }
2070 		    /* branch if F to following jump */
2071 		    /* if two jumps are inserted, F goes to second one */
2072 		    dst->jf = extrajmps;
2073 		    extrajmps++;
2074 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2075 		    dst[extrajmps].k = off - extrajmps;
2076 		}
2077 		else
2078 		    dst->jf = off;
2079 	}
2080 	return (1);
2081 }
2082 
2083 
2084 /*
2085  * Convert flowgraph intermediate representation to the
2086  * BPF array representation.  Set *lenp to the number of instructions.
2087  */
2088 struct bpf_insn *
2089 icode_to_fcode(root, lenp)
2090 	struct block *root;
2091 	int *lenp;
2092 {
2093 	int n;
2094 	struct bpf_insn *fp;
2095 
2096 	/*
2097 	 * Loop doing convert_code_r() until no branches remain
2098 	 * with too-large offsets.
2099 	 */
2100 	while (1) {
2101 	    unMarkAll();
2102 	    n = *lenp = count_stmts(root);
2103 
2104 	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2105 	    memset((char *)fp, 0, sizeof(*fp) * n);
2106 	    fstart = fp;
2107 	    ftail = fp + n;
2108 
2109 	    unMarkAll();
2110 	    if (convert_code_r(root))
2111 		break;
2112 	    free(fp);
2113 	}
2114 
2115 	return fp;
2116 }
2117 
2118 /*
2119  * Make a copy of a BPF program and put it in the "fcode" member of
2120  * a "pcap_t".
2121  *
2122  * If we fail to allocate memory for the copy, fill in the "errbuf"
2123  * member of the "pcap_t" with an error message, and return -1;
2124  * otherwise, return 0.
2125  */
2126 int
2127 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2128 {
2129 	size_t prog_size;
2130 
2131 	/*
2132 	 * Free up any already installed program.
2133 	 */
2134 	pcap_freecode(&p->fcode);
2135 
2136 	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2137 	p->fcode.bf_len = fp->bf_len;
2138 	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2139 	if (p->fcode.bf_insns == NULL) {
2140 		snprintf(p->errbuf, sizeof(p->errbuf),
2141 			 "malloc: %s", pcap_strerror(errno));
2142 		return (-1);
2143 	}
2144 	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2145 	return (0);
2146 }
2147 
2148 #ifdef BDEBUG
2149 static void
2150 opt_dump(root)
2151 	struct block *root;
2152 {
2153 	struct bpf_program f;
2154 
2155 	memset(bids, 0, sizeof bids);
2156 	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2157 	bpf_dump(&f, 1);
2158 	putchar('\n');
2159 	free((char *)f.bf_insns);
2160 }
2161 #endif
2162