xref: /freebsd/contrib/libpcap/optimize.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*
2  * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that: (1) source code distributions
7  * retain the above copyright notice and this paragraph in its entirety, (2)
8  * distributions including binary code include the above copyright notice and
9  * this paragraph in its entirety in the documentation or other materials
10  * provided with the distribution, and (3) all advertising materials mentioning
11  * features or use of this software display the following acknowledgement:
12  * ``This product includes software developed by the University of California,
13  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14  * the University nor the names of its contributors may be used to endorse
15  * or promote products derived from this software without specific prior
16  * written permission.
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20  *
21  *  Optimization module for tcpdump intermediate representation.
22  */
23 #ifndef lint
24 static const char rcsid[] _U_ =
25     "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.91 2008-01-02 04:16:46 guy Exp $ (LBL)";
26 #endif
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #ifdef WIN32
33 #include <pcap-stdinc.h>
34 #else /* WIN32 */
35 #if HAVE_INTTYPES_H
36 #include <inttypes.h>
37 #elif HAVE_STDINT_H
38 #include <stdint.h>
39 #endif
40 #ifdef HAVE_SYS_BITYPES_H
41 #include <sys/bitypes.h>
42 #endif
43 #include <sys/types.h>
44 #endif /* WIN32 */
45 
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <memory.h>
49 #include <string.h>
50 
51 #include <errno.h>
52 
53 #include "pcap-int.h"
54 
55 #include "gencode.h"
56 
57 #ifdef HAVE_OS_PROTO_H
58 #include "os-proto.h"
59 #endif
60 
61 #ifdef BDEBUG
62 extern int dflag;
63 #endif
64 
65 #if defined(MSDOS) && !defined(__DJGPP__)
66 extern int _w32_ffs (int mask);
67 #define ffs _w32_ffs
68 #endif
69 
70 #if defined(WIN32) && defined (_MSC_VER)
71 int ffs(int mask);
72 #endif
73 
74 /*
75  * Represents a deleted instruction.
76  */
77 #define NOP -1
78 
79 /*
80  * Register numbers for use-def values.
81  * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
82  * location.  A_ATOM is the accumulator and X_ATOM is the index
83  * register.
84  */
85 #define A_ATOM BPF_MEMWORDS
86 #define X_ATOM (BPF_MEMWORDS+1)
87 
88 /*
89  * This define is used to represent *both* the accumulator and
90  * x register in use-def computations.
91  * Currently, the use-def code assumes only one definition per instruction.
92  */
93 #define AX_ATOM N_ATOMS
94 
95 /*
96  * A flag to indicate that further optimization is needed.
97  * Iterative passes are continued until a given pass yields no
98  * branch movement.
99  */
100 static int done;
101 
102 /*
103  * A block is marked if only if its mark equals the current mark.
104  * Rather than traverse the code array, marking each item, 'cur_mark' is
105  * incremented.  This automatically makes each element unmarked.
106  */
107 static int cur_mark;
108 #define isMarked(p) ((p)->mark == cur_mark)
109 #define unMarkAll() cur_mark += 1
110 #define Mark(p) ((p)->mark = cur_mark)
111 
112 static void opt_init(struct block *);
113 static void opt_cleanup(void);
114 
115 static void make_marks(struct block *);
116 static void mark_code(struct block *);
117 
118 static void intern_blocks(struct block *);
119 
120 static int eq_slist(struct slist *, struct slist *);
121 
122 static void find_levels_r(struct block *);
123 
124 static void find_levels(struct block *);
125 static void find_dom(struct block *);
126 static void propedom(struct edge *);
127 static void find_edom(struct block *);
128 static void find_closure(struct block *);
129 static int atomuse(struct stmt *);
130 static int atomdef(struct stmt *);
131 static void compute_local_ud(struct block *);
132 static void find_ud(struct block *);
133 static void init_val(void);
134 static int F(int, int, int);
135 static inline void vstore(struct stmt *, int *, int, int);
136 static void opt_blk(struct block *, int);
137 static int use_conflict(struct block *, struct block *);
138 static void opt_j(struct edge *);
139 static void or_pullup(struct block *);
140 static void and_pullup(struct block *);
141 static void opt_blks(struct block *, int);
142 static inline void link_inedge(struct edge *, struct block *);
143 static void find_inedges(struct block *);
144 static void opt_root(struct block **);
145 static void opt_loop(struct block *, int);
146 static void fold_op(struct stmt *, int, int);
147 static inline struct slist *this_op(struct slist *);
148 static void opt_not(struct block *);
149 static void opt_peep(struct block *);
150 static void opt_stmt(struct stmt *, int[], int);
151 static void deadstmt(struct stmt *, struct stmt *[]);
152 static void opt_deadstores(struct block *);
153 static struct block *fold_edge(struct block *, struct edge *);
154 static inline int eq_blk(struct block *, struct block *);
155 static int slength(struct slist *);
156 static int count_blocks(struct block *);
157 static void number_blks_r(struct block *);
158 static int count_stmts(struct block *);
159 static int convert_code_r(struct block *);
160 #ifdef BDEBUG
161 static void opt_dump(struct block *);
162 #endif
163 
164 static int n_blocks;
165 struct block **blocks;
166 static int n_edges;
167 struct edge **edges;
168 
169 /*
170  * A bit vector set representation of the dominators.
171  * We round up the set size to the next power of two.
172  */
173 static int nodewords;
174 static int edgewords;
175 struct block **levels;
176 bpf_u_int32 *space;
177 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
178 /*
179  * True if a is in uset {p}
180  */
181 #define SET_MEMBER(p, a) \
182 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
183 
184 /*
185  * Add 'a' to uset p.
186  */
187 #define SET_INSERT(p, a) \
188 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
189 
190 /*
191  * Delete 'a' from uset p.
192  */
193 #define SET_DELETE(p, a) \
194 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
195 
196 /*
197  * a := a intersect b
198  */
199 #define SET_INTERSECT(a, b, n)\
200 {\
201 	register bpf_u_int32 *_x = a, *_y = b;\
202 	register int _n = n;\
203 	while (--_n >= 0) *_x++ &= *_y++;\
204 }
205 
206 /*
207  * a := a - b
208  */
209 #define SET_SUBTRACT(a, b, n)\
210 {\
211 	register bpf_u_int32 *_x = a, *_y = b;\
212 	register int _n = n;\
213 	while (--_n >= 0) *_x++ &=~ *_y++;\
214 }
215 
216 /*
217  * a := a union b
218  */
219 #define SET_UNION(a, b, n)\
220 {\
221 	register bpf_u_int32 *_x = a, *_y = b;\
222 	register int _n = n;\
223 	while (--_n >= 0) *_x++ |= *_y++;\
224 }
225 
226 static uset all_dom_sets;
227 static uset all_closure_sets;
228 static uset all_edge_sets;
229 
230 #ifndef MAX
231 #define MAX(a,b) ((a)>(b)?(a):(b))
232 #endif
233 
234 static void
235 find_levels_r(b)
236 	struct block *b;
237 {
238 	int level;
239 
240 	if (isMarked(b))
241 		return;
242 
243 	Mark(b);
244 	b->link = 0;
245 
246 	if (JT(b)) {
247 		find_levels_r(JT(b));
248 		find_levels_r(JF(b));
249 		level = MAX(JT(b)->level, JF(b)->level) + 1;
250 	} else
251 		level = 0;
252 	b->level = level;
253 	b->link = levels[level];
254 	levels[level] = b;
255 }
256 
257 /*
258  * Level graph.  The levels go from 0 at the leaves to
259  * N_LEVELS at the root.  The levels[] array points to the
260  * first node of the level list, whose elements are linked
261  * with the 'link' field of the struct block.
262  */
263 static void
264 find_levels(root)
265 	struct block *root;
266 {
267 	memset((char *)levels, 0, n_blocks * sizeof(*levels));
268 	unMarkAll();
269 	find_levels_r(root);
270 }
271 
272 /*
273  * Find dominator relationships.
274  * Assumes graph has been leveled.
275  */
276 static void
277 find_dom(root)
278 	struct block *root;
279 {
280 	int i;
281 	struct block *b;
282 	bpf_u_int32 *x;
283 
284 	/*
285 	 * Initialize sets to contain all nodes.
286 	 */
287 	x = all_dom_sets;
288 	i = n_blocks * nodewords;
289 	while (--i >= 0)
290 		*x++ = ~0;
291 	/* Root starts off empty. */
292 	for (i = nodewords; --i >= 0;)
293 		root->dom[i] = 0;
294 
295 	/* root->level is the highest level no found. */
296 	for (i = root->level; i >= 0; --i) {
297 		for (b = levels[i]; b; b = b->link) {
298 			SET_INSERT(b->dom, b->id);
299 			if (JT(b) == 0)
300 				continue;
301 			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
302 			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
303 		}
304 	}
305 }
306 
307 static void
308 propedom(ep)
309 	struct edge *ep;
310 {
311 	SET_INSERT(ep->edom, ep->id);
312 	if (ep->succ) {
313 		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
314 		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
315 	}
316 }
317 
318 /*
319  * Compute edge dominators.
320  * Assumes graph has been leveled and predecessors established.
321  */
322 static void
323 find_edom(root)
324 	struct block *root;
325 {
326 	int i;
327 	uset x;
328 	struct block *b;
329 
330 	x = all_edge_sets;
331 	for (i = n_edges * edgewords; --i >= 0; )
332 		x[i] = ~0;
333 
334 	/* root->level is the highest level no found. */
335 	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
336 	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
337 	for (i = root->level; i >= 0; --i) {
338 		for (b = levels[i]; b != 0; b = b->link) {
339 			propedom(&b->et);
340 			propedom(&b->ef);
341 		}
342 	}
343 }
344 
345 /*
346  * Find the backwards transitive closure of the flow graph.  These sets
347  * are backwards in the sense that we find the set of nodes that reach
348  * a given node, not the set of nodes that can be reached by a node.
349  *
350  * Assumes graph has been leveled.
351  */
352 static void
353 find_closure(root)
354 	struct block *root;
355 {
356 	int i;
357 	struct block *b;
358 
359 	/*
360 	 * Initialize sets to contain no nodes.
361 	 */
362 	memset((char *)all_closure_sets, 0,
363 	      n_blocks * nodewords * sizeof(*all_closure_sets));
364 
365 	/* root->level is the highest level no found. */
366 	for (i = root->level; i >= 0; --i) {
367 		for (b = levels[i]; b; b = b->link) {
368 			SET_INSERT(b->closure, b->id);
369 			if (JT(b) == 0)
370 				continue;
371 			SET_UNION(JT(b)->closure, b->closure, nodewords);
372 			SET_UNION(JF(b)->closure, b->closure, nodewords);
373 		}
374 	}
375 }
376 
377 /*
378  * Return the register number that is used by s.  If A and X are both
379  * used, return AX_ATOM.  If no register is used, return -1.
380  *
381  * The implementation should probably change to an array access.
382  */
383 static int
384 atomuse(s)
385 	struct stmt *s;
386 {
387 	register int c = s->code;
388 
389 	if (c == NOP)
390 		return -1;
391 
392 	switch (BPF_CLASS(c)) {
393 
394 	case BPF_RET:
395 		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
396 			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
397 
398 	case BPF_LD:
399 	case BPF_LDX:
400 		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
401 			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
402 
403 	case BPF_ST:
404 		return A_ATOM;
405 
406 	case BPF_STX:
407 		return X_ATOM;
408 
409 	case BPF_JMP:
410 	case BPF_ALU:
411 		if (BPF_SRC(c) == BPF_X)
412 			return AX_ATOM;
413 		return A_ATOM;
414 
415 	case BPF_MISC:
416 		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
417 	}
418 	abort();
419 	/* NOTREACHED */
420 }
421 
422 /*
423  * Return the register number that is defined by 's'.  We assume that
424  * a single stmt cannot define more than one register.  If no register
425  * is defined, return -1.
426  *
427  * The implementation should probably change to an array access.
428  */
429 static int
430 atomdef(s)
431 	struct stmt *s;
432 {
433 	if (s->code == NOP)
434 		return -1;
435 
436 	switch (BPF_CLASS(s->code)) {
437 
438 	case BPF_LD:
439 	case BPF_ALU:
440 		return A_ATOM;
441 
442 	case BPF_LDX:
443 		return X_ATOM;
444 
445 	case BPF_ST:
446 	case BPF_STX:
447 		return s->k;
448 
449 	case BPF_MISC:
450 		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
451 	}
452 	return -1;
453 }
454 
455 /*
456  * Compute the sets of registers used, defined, and killed by 'b'.
457  *
458  * "Used" means that a statement in 'b' uses the register before any
459  * statement in 'b' defines it, i.e. it uses the value left in
460  * that register by a predecessor block of this block.
461  * "Defined" means that a statement in 'b' defines it.
462  * "Killed" means that a statement in 'b' defines it before any
463  * statement in 'b' uses it, i.e. it kills the value left in that
464  * register by a predecessor block of this block.
465  */
466 static void
467 compute_local_ud(b)
468 	struct block *b;
469 {
470 	struct slist *s;
471 	atomset def = 0, use = 0, kill = 0;
472 	int atom;
473 
474 	for (s = b->stmts; s; s = s->next) {
475 		if (s->s.code == NOP)
476 			continue;
477 		atom = atomuse(&s->s);
478 		if (atom >= 0) {
479 			if (atom == AX_ATOM) {
480 				if (!ATOMELEM(def, X_ATOM))
481 					use |= ATOMMASK(X_ATOM);
482 				if (!ATOMELEM(def, A_ATOM))
483 					use |= ATOMMASK(A_ATOM);
484 			}
485 			else if (atom < N_ATOMS) {
486 				if (!ATOMELEM(def, atom))
487 					use |= ATOMMASK(atom);
488 			}
489 			else
490 				abort();
491 		}
492 		atom = atomdef(&s->s);
493 		if (atom >= 0) {
494 			if (!ATOMELEM(use, atom))
495 				kill |= ATOMMASK(atom);
496 			def |= ATOMMASK(atom);
497 		}
498 	}
499 	if (BPF_CLASS(b->s.code) == BPF_JMP) {
500 		/*
501 		 * XXX - what about RET?
502 		 */
503 		atom = atomuse(&b->s);
504 		if (atom >= 0) {
505 			if (atom == AX_ATOM) {
506 				if (!ATOMELEM(def, X_ATOM))
507 					use |= ATOMMASK(X_ATOM);
508 				if (!ATOMELEM(def, A_ATOM))
509 					use |= ATOMMASK(A_ATOM);
510 			}
511 			else if (atom < N_ATOMS) {
512 				if (!ATOMELEM(def, atom))
513 					use |= ATOMMASK(atom);
514 			}
515 			else
516 				abort();
517 		}
518 	}
519 
520 	b->def = def;
521 	b->kill = kill;
522 	b->in_use = use;
523 }
524 
525 /*
526  * Assume graph is already leveled.
527  */
528 static void
529 find_ud(root)
530 	struct block *root;
531 {
532 	int i, maxlevel;
533 	struct block *p;
534 
535 	/*
536 	 * root->level is the highest level no found;
537 	 * count down from there.
538 	 */
539 	maxlevel = root->level;
540 	for (i = maxlevel; i >= 0; --i)
541 		for (p = levels[i]; p; p = p->link) {
542 			compute_local_ud(p);
543 			p->out_use = 0;
544 		}
545 
546 	for (i = 1; i <= maxlevel; ++i) {
547 		for (p = levels[i]; p; p = p->link) {
548 			p->out_use |= JT(p)->in_use | JF(p)->in_use;
549 			p->in_use |= p->out_use &~ p->kill;
550 		}
551 	}
552 }
553 
554 /*
555  * These data structures are used in a Cocke and Shwarz style
556  * value numbering scheme.  Since the flowgraph is acyclic,
557  * exit values can be propagated from a node's predecessors
558  * provided it is uniquely defined.
559  */
560 struct valnode {
561 	int code;
562 	int v0, v1;
563 	int val;
564 	struct valnode *next;
565 };
566 
567 #define MODULUS 213
568 static struct valnode *hashtbl[MODULUS];
569 static int curval;
570 static int maxval;
571 
572 /* Integer constants mapped with the load immediate opcode. */
573 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
574 
575 struct vmapinfo {
576 	int is_const;
577 	bpf_int32 const_val;
578 };
579 
580 struct vmapinfo *vmap;
581 struct valnode *vnode_base;
582 struct valnode *next_vnode;
583 
584 static void
585 init_val()
586 {
587 	curval = 0;
588 	next_vnode = vnode_base;
589 	memset((char *)vmap, 0, maxval * sizeof(*vmap));
590 	memset((char *)hashtbl, 0, sizeof hashtbl);
591 }
592 
593 /* Because we really don't have an IR, this stuff is a little messy. */
594 static int
595 F(code, v0, v1)
596 	int code;
597 	int v0, v1;
598 {
599 	u_int hash;
600 	int val;
601 	struct valnode *p;
602 
603 	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
604 	hash %= MODULUS;
605 
606 	for (p = hashtbl[hash]; p; p = p->next)
607 		if (p->code == code && p->v0 == v0 && p->v1 == v1)
608 			return p->val;
609 
610 	val = ++curval;
611 	if (BPF_MODE(code) == BPF_IMM &&
612 	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
613 		vmap[val].const_val = v0;
614 		vmap[val].is_const = 1;
615 	}
616 	p = next_vnode++;
617 	p->val = val;
618 	p->code = code;
619 	p->v0 = v0;
620 	p->v1 = v1;
621 	p->next = hashtbl[hash];
622 	hashtbl[hash] = p;
623 
624 	return val;
625 }
626 
627 static inline void
628 vstore(s, valp, newval, alter)
629 	struct stmt *s;
630 	int *valp;
631 	int newval;
632 	int alter;
633 {
634 	if (alter && *valp == newval)
635 		s->code = NOP;
636 	else
637 		*valp = newval;
638 }
639 
640 static void
641 fold_op(s, v0, v1)
642 	struct stmt *s;
643 	int v0, v1;
644 {
645 	bpf_u_int32 a, b;
646 
647 	a = vmap[v0].const_val;
648 	b = vmap[v1].const_val;
649 
650 	switch (BPF_OP(s->code)) {
651 	case BPF_ADD:
652 		a += b;
653 		break;
654 
655 	case BPF_SUB:
656 		a -= b;
657 		break;
658 
659 	case BPF_MUL:
660 		a *= b;
661 		break;
662 
663 	case BPF_DIV:
664 		if (b == 0)
665 			bpf_error("division by zero");
666 		a /= b;
667 		break;
668 
669 	case BPF_AND:
670 		a &= b;
671 		break;
672 
673 	case BPF_OR:
674 		a |= b;
675 		break;
676 
677 	case BPF_LSH:
678 		a <<= b;
679 		break;
680 
681 	case BPF_RSH:
682 		a >>= b;
683 		break;
684 
685 	case BPF_NEG:
686 		a = -a;
687 		break;
688 
689 	default:
690 		abort();
691 	}
692 	s->k = a;
693 	s->code = BPF_LD|BPF_IMM;
694 	done = 0;
695 }
696 
697 static inline struct slist *
698 this_op(s)
699 	struct slist *s;
700 {
701 	while (s != 0 && s->s.code == NOP)
702 		s = s->next;
703 	return s;
704 }
705 
706 static void
707 opt_not(b)
708 	struct block *b;
709 {
710 	struct block *tmp = JT(b);
711 
712 	JT(b) = JF(b);
713 	JF(b) = tmp;
714 }
715 
716 static void
717 opt_peep(b)
718 	struct block *b;
719 {
720 	struct slist *s;
721 	struct slist *next, *last;
722 	int val;
723 
724 	s = b->stmts;
725 	if (s == 0)
726 		return;
727 
728 	last = s;
729 	for (/*empty*/; /*empty*/; s = next) {
730 		/*
731 		 * Skip over nops.
732 		 */
733 		s = this_op(s);
734 		if (s == 0)
735 			break;	/* nothing left in the block */
736 
737 		/*
738 		 * Find the next real instruction after that one
739 		 * (skipping nops).
740 		 */
741 		next = this_op(s->next);
742 		if (next == 0)
743 			break;	/* no next instruction */
744 		last = next;
745 
746 		/*
747 		 * st  M[k]	-->	st  M[k]
748 		 * ldx M[k]		tax
749 		 */
750 		if (s->s.code == BPF_ST &&
751 		    next->s.code == (BPF_LDX|BPF_MEM) &&
752 		    s->s.k == next->s.k) {
753 			done = 0;
754 			next->s.code = BPF_MISC|BPF_TAX;
755 		}
756 		/*
757 		 * ld  #k	-->	ldx  #k
758 		 * tax			txa
759 		 */
760 		if (s->s.code == (BPF_LD|BPF_IMM) &&
761 		    next->s.code == (BPF_MISC|BPF_TAX)) {
762 			s->s.code = BPF_LDX|BPF_IMM;
763 			next->s.code = BPF_MISC|BPF_TXA;
764 			done = 0;
765 		}
766 		/*
767 		 * This is an ugly special case, but it happens
768 		 * when you say tcp[k] or udp[k] where k is a constant.
769 		 */
770 		if (s->s.code == (BPF_LD|BPF_IMM)) {
771 			struct slist *add, *tax, *ild;
772 
773 			/*
774 			 * Check that X isn't used on exit from this
775 			 * block (which the optimizer might cause).
776 			 * We know the code generator won't generate
777 			 * any local dependencies.
778 			 */
779 			if (ATOMELEM(b->out_use, X_ATOM))
780 				continue;
781 
782 			/*
783 			 * Check that the instruction following the ldi
784 			 * is an addx, or it's an ldxms with an addx
785 			 * following it (with 0 or more nops between the
786 			 * ldxms and addx).
787 			 */
788 			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
789 				add = next;
790 			else
791 				add = this_op(next->next);
792 			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
793 				continue;
794 
795 			/*
796 			 * Check that a tax follows that (with 0 or more
797 			 * nops between them).
798 			 */
799 			tax = this_op(add->next);
800 			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
801 				continue;
802 
803 			/*
804 			 * Check that an ild follows that (with 0 or more
805 			 * nops between them).
806 			 */
807 			ild = this_op(tax->next);
808 			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
809 			    BPF_MODE(ild->s.code) != BPF_IND)
810 				continue;
811 			/*
812 			 * We want to turn this sequence:
813 			 *
814 			 * (004) ldi     #0x2		{s}
815 			 * (005) ldxms   [14]		{next}  -- optional
816 			 * (006) addx			{add}
817 			 * (007) tax			{tax}
818 			 * (008) ild     [x+0]		{ild}
819 			 *
820 			 * into this sequence:
821 			 *
822 			 * (004) nop
823 			 * (005) ldxms   [14]
824 			 * (006) nop
825 			 * (007) nop
826 			 * (008) ild     [x+2]
827 			 *
828 			 * XXX We need to check that X is not
829 			 * subsequently used, because we want to change
830 			 * what'll be in it after this sequence.
831 			 *
832 			 * We know we can eliminate the accumulator
833 			 * modifications earlier in the sequence since
834 			 * it is defined by the last stmt of this sequence
835 			 * (i.e., the last statement of the sequence loads
836 			 * a value into the accumulator, so we can eliminate
837 			 * earlier operations on the accumulator).
838 			 */
839 			ild->s.k += s->s.k;
840 			s->s.code = NOP;
841 			add->s.code = NOP;
842 			tax->s.code = NOP;
843 			done = 0;
844 		}
845 	}
846 	/*
847 	 * If the comparison at the end of a block is an equality
848 	 * comparison against a constant, and nobody uses the value
849 	 * we leave in the A register at the end of a block, and
850 	 * the operation preceding the comparison is an arithmetic
851 	 * operation, we can sometime optimize it away.
852 	 */
853 	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
854 	    !ATOMELEM(b->out_use, A_ATOM)) {
855 	    	/*
856 	    	 * We can optimize away certain subtractions of the
857 	    	 * X register.
858 	    	 */
859 		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
860 			val = b->val[X_ATOM];
861 			if (vmap[val].is_const) {
862 				/*
863 				 * If we have a subtract to do a comparison,
864 				 * and the X register is a known constant,
865 				 * we can merge this value into the
866 				 * comparison:
867 				 *
868 				 * sub x  ->	nop
869 				 * jeq #y	jeq #(x+y)
870 				 */
871 				b->s.k += vmap[val].const_val;
872 				last->s.code = NOP;
873 				done = 0;
874 			} else if (b->s.k == 0) {
875 				/*
876 				 * If the X register isn't a constant,
877 				 * and the comparison in the test is
878 				 * against 0, we can compare with the
879 				 * X register, instead:
880 				 *
881 				 * sub x  ->	nop
882 				 * jeq #0	jeq x
883 				 */
884 				last->s.code = NOP;
885 				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
886 				done = 0;
887 			}
888 		}
889 		/*
890 		 * Likewise, a constant subtract can be simplified:
891 		 *
892 		 * sub #x ->	nop
893 		 * jeq #y ->	jeq #(x+y)
894 		 */
895 		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
896 			last->s.code = NOP;
897 			b->s.k += last->s.k;
898 			done = 0;
899 		}
900 		/*
901 		 * And, similarly, a constant AND can be simplified
902 		 * if we're testing against 0, i.e.:
903 		 *
904 		 * and #k	nop
905 		 * jeq #0  ->	jset #k
906 		 */
907 		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
908 		    b->s.k == 0) {
909 			b->s.k = last->s.k;
910 			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
911 			last->s.code = NOP;
912 			done = 0;
913 			opt_not(b);
914 		}
915 	}
916 	/*
917 	 * jset #0        ->   never
918 	 * jset #ffffffff ->   always
919 	 */
920 	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
921 		if (b->s.k == 0)
922 			JT(b) = JF(b);
923 		if (b->s.k == 0xffffffff)
924 			JF(b) = JT(b);
925 	}
926 	/*
927 	 * If we're comparing against the index register, and the index
928 	 * register is a known constant, we can just compare against that
929 	 * constant.
930 	 */
931 	val = b->val[X_ATOM];
932 	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
933 		bpf_int32 v = vmap[val].const_val;
934 		b->s.code &= ~BPF_X;
935 		b->s.k = v;
936 	}
937 	/*
938 	 * If the accumulator is a known constant, we can compute the
939 	 * comparison result.
940 	 */
941 	val = b->val[A_ATOM];
942 	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
943 		bpf_int32 v = vmap[val].const_val;
944 		switch (BPF_OP(b->s.code)) {
945 
946 		case BPF_JEQ:
947 			v = v == b->s.k;
948 			break;
949 
950 		case BPF_JGT:
951 			v = (unsigned)v > b->s.k;
952 			break;
953 
954 		case BPF_JGE:
955 			v = (unsigned)v >= b->s.k;
956 			break;
957 
958 		case BPF_JSET:
959 			v &= b->s.k;
960 			break;
961 
962 		default:
963 			abort();
964 		}
965 		if (JF(b) != JT(b))
966 			done = 0;
967 		if (v)
968 			JF(b) = JT(b);
969 		else
970 			JT(b) = JF(b);
971 	}
972 }
973 
974 /*
975  * Compute the symbolic value of expression of 's', and update
976  * anything it defines in the value table 'val'.  If 'alter' is true,
977  * do various optimizations.  This code would be cleaner if symbolic
978  * evaluation and code transformations weren't folded together.
979  */
980 static void
981 opt_stmt(s, val, alter)
982 	struct stmt *s;
983 	int val[];
984 	int alter;
985 {
986 	int op;
987 	int v;
988 
989 	switch (s->code) {
990 
991 	case BPF_LD|BPF_ABS|BPF_W:
992 	case BPF_LD|BPF_ABS|BPF_H:
993 	case BPF_LD|BPF_ABS|BPF_B:
994 		v = F(s->code, s->k, 0L);
995 		vstore(s, &val[A_ATOM], v, alter);
996 		break;
997 
998 	case BPF_LD|BPF_IND|BPF_W:
999 	case BPF_LD|BPF_IND|BPF_H:
1000 	case BPF_LD|BPF_IND|BPF_B:
1001 		v = val[X_ATOM];
1002 		if (alter && vmap[v].is_const) {
1003 			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1004 			s->k += vmap[v].const_val;
1005 			v = F(s->code, s->k, 0L);
1006 			done = 0;
1007 		}
1008 		else
1009 			v = F(s->code, s->k, v);
1010 		vstore(s, &val[A_ATOM], v, alter);
1011 		break;
1012 
1013 	case BPF_LD|BPF_LEN:
1014 		v = F(s->code, 0L, 0L);
1015 		vstore(s, &val[A_ATOM], v, alter);
1016 		break;
1017 
1018 	case BPF_LD|BPF_IMM:
1019 		v = K(s->k);
1020 		vstore(s, &val[A_ATOM], v, alter);
1021 		break;
1022 
1023 	case BPF_LDX|BPF_IMM:
1024 		v = K(s->k);
1025 		vstore(s, &val[X_ATOM], v, alter);
1026 		break;
1027 
1028 	case BPF_LDX|BPF_MSH|BPF_B:
1029 		v = F(s->code, s->k, 0L);
1030 		vstore(s, &val[X_ATOM], v, alter);
1031 		break;
1032 
1033 	case BPF_ALU|BPF_NEG:
1034 		if (alter && vmap[val[A_ATOM]].is_const) {
1035 			s->code = BPF_LD|BPF_IMM;
1036 			s->k = -vmap[val[A_ATOM]].const_val;
1037 			val[A_ATOM] = K(s->k);
1038 		}
1039 		else
1040 			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
1041 		break;
1042 
1043 	case BPF_ALU|BPF_ADD|BPF_K:
1044 	case BPF_ALU|BPF_SUB|BPF_K:
1045 	case BPF_ALU|BPF_MUL|BPF_K:
1046 	case BPF_ALU|BPF_DIV|BPF_K:
1047 	case BPF_ALU|BPF_AND|BPF_K:
1048 	case BPF_ALU|BPF_OR|BPF_K:
1049 	case BPF_ALU|BPF_LSH|BPF_K:
1050 	case BPF_ALU|BPF_RSH|BPF_K:
1051 		op = BPF_OP(s->code);
1052 		if (alter) {
1053 			if (s->k == 0) {
1054 				/* don't optimize away "sub #0"
1055 				 * as it may be needed later to
1056 				 * fixup the generated math code */
1057 				if (op == BPF_ADD ||
1058 				    op == BPF_LSH || op == BPF_RSH ||
1059 				    op == BPF_OR) {
1060 					s->code = NOP;
1061 					break;
1062 				}
1063 				if (op == BPF_MUL || op == BPF_AND) {
1064 					s->code = BPF_LD|BPF_IMM;
1065 					val[A_ATOM] = K(s->k);
1066 					break;
1067 				}
1068 			}
1069 			if (vmap[val[A_ATOM]].is_const) {
1070 				fold_op(s, val[A_ATOM], K(s->k));
1071 				val[A_ATOM] = K(s->k);
1072 				break;
1073 			}
1074 		}
1075 		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1076 		break;
1077 
1078 	case BPF_ALU|BPF_ADD|BPF_X:
1079 	case BPF_ALU|BPF_SUB|BPF_X:
1080 	case BPF_ALU|BPF_MUL|BPF_X:
1081 	case BPF_ALU|BPF_DIV|BPF_X:
1082 	case BPF_ALU|BPF_AND|BPF_X:
1083 	case BPF_ALU|BPF_OR|BPF_X:
1084 	case BPF_ALU|BPF_LSH|BPF_X:
1085 	case BPF_ALU|BPF_RSH|BPF_X:
1086 		op = BPF_OP(s->code);
1087 		if (alter && vmap[val[X_ATOM]].is_const) {
1088 			if (vmap[val[A_ATOM]].is_const) {
1089 				fold_op(s, val[A_ATOM], val[X_ATOM]);
1090 				val[A_ATOM] = K(s->k);
1091 			}
1092 			else {
1093 				s->code = BPF_ALU|BPF_K|op;
1094 				s->k = vmap[val[X_ATOM]].const_val;
1095 				done = 0;
1096 				val[A_ATOM] =
1097 					F(s->code, val[A_ATOM], K(s->k));
1098 			}
1099 			break;
1100 		}
1101 		/*
1102 		 * Check if we're doing something to an accumulator
1103 		 * that is 0, and simplify.  This may not seem like
1104 		 * much of a simplification but it could open up further
1105 		 * optimizations.
1106 		 * XXX We could also check for mul by 1, etc.
1107 		 */
1108 		if (alter && vmap[val[A_ATOM]].is_const
1109 		    && vmap[val[A_ATOM]].const_val == 0) {
1110 			if (op == BPF_ADD || op == BPF_OR) {
1111 				s->code = BPF_MISC|BPF_TXA;
1112 				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1113 				break;
1114 			}
1115 			else if (op == BPF_MUL || op == BPF_DIV ||
1116 				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1117 				s->code = BPF_LD|BPF_IMM;
1118 				s->k = 0;
1119 				vstore(s, &val[A_ATOM], K(s->k), alter);
1120 				break;
1121 			}
1122 			else if (op == BPF_NEG) {
1123 				s->code = NOP;
1124 				break;
1125 			}
1126 		}
1127 		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1128 		break;
1129 
1130 	case BPF_MISC|BPF_TXA:
1131 		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1132 		break;
1133 
1134 	case BPF_LD|BPF_MEM:
1135 		v = val[s->k];
1136 		if (alter && vmap[v].is_const) {
1137 			s->code = BPF_LD|BPF_IMM;
1138 			s->k = vmap[v].const_val;
1139 			done = 0;
1140 		}
1141 		vstore(s, &val[A_ATOM], v, alter);
1142 		break;
1143 
1144 	case BPF_MISC|BPF_TAX:
1145 		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1146 		break;
1147 
1148 	case BPF_LDX|BPF_MEM:
1149 		v = val[s->k];
1150 		if (alter && vmap[v].is_const) {
1151 			s->code = BPF_LDX|BPF_IMM;
1152 			s->k = vmap[v].const_val;
1153 			done = 0;
1154 		}
1155 		vstore(s, &val[X_ATOM], v, alter);
1156 		break;
1157 
1158 	case BPF_ST:
1159 		vstore(s, &val[s->k], val[A_ATOM], alter);
1160 		break;
1161 
1162 	case BPF_STX:
1163 		vstore(s, &val[s->k], val[X_ATOM], alter);
1164 		break;
1165 	}
1166 }
1167 
1168 static void
1169 deadstmt(s, last)
1170 	register struct stmt *s;
1171 	register struct stmt *last[];
1172 {
1173 	register int atom;
1174 
1175 	atom = atomuse(s);
1176 	if (atom >= 0) {
1177 		if (atom == AX_ATOM) {
1178 			last[X_ATOM] = 0;
1179 			last[A_ATOM] = 0;
1180 		}
1181 		else
1182 			last[atom] = 0;
1183 	}
1184 	atom = atomdef(s);
1185 	if (atom >= 0) {
1186 		if (last[atom]) {
1187 			done = 0;
1188 			last[atom]->code = NOP;
1189 		}
1190 		last[atom] = s;
1191 	}
1192 }
1193 
1194 static void
1195 opt_deadstores(b)
1196 	register struct block *b;
1197 {
1198 	register struct slist *s;
1199 	register int atom;
1200 	struct stmt *last[N_ATOMS];
1201 
1202 	memset((char *)last, 0, sizeof last);
1203 
1204 	for (s = b->stmts; s != 0; s = s->next)
1205 		deadstmt(&s->s, last);
1206 	deadstmt(&b->s, last);
1207 
1208 	for (atom = 0; atom < N_ATOMS; ++atom)
1209 		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1210 			last[atom]->code = NOP;
1211 			done = 0;
1212 		}
1213 }
1214 
1215 static void
1216 opt_blk(b, do_stmts)
1217 	struct block *b;
1218 	int do_stmts;
1219 {
1220 	struct slist *s;
1221 	struct edge *p;
1222 	int i;
1223 	bpf_int32 aval, xval;
1224 
1225 #if 0
1226 	for (s = b->stmts; s && s->next; s = s->next)
1227 		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1228 			do_stmts = 0;
1229 			break;
1230 		}
1231 #endif
1232 
1233 	/*
1234 	 * Initialize the atom values.
1235 	 */
1236 	p = b->in_edges;
1237 	if (p == 0) {
1238 		/*
1239 		 * We have no predecessors, so everything is undefined
1240 		 * upon entry to this block.
1241 		 */
1242 		memset((char *)b->val, 0, sizeof(b->val));
1243 	} else {
1244 		/*
1245 		 * Inherit values from our predecessors.
1246 		 *
1247 		 * First, get the values from the predecessor along the
1248 		 * first edge leading to this node.
1249 		 */
1250 		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1251 		/*
1252 		 * Now look at all the other nodes leading to this node.
1253 		 * If, for the predecessor along that edge, a register
1254 		 * has a different value from the one we have (i.e.,
1255 		 * control paths are merging, and the merging paths
1256 		 * assign different values to that register), give the
1257 		 * register the undefined value of 0.
1258 		 */
1259 		while ((p = p->next) != NULL) {
1260 			for (i = 0; i < N_ATOMS; ++i)
1261 				if (b->val[i] != p->pred->val[i])
1262 					b->val[i] = 0;
1263 		}
1264 	}
1265 	aval = b->val[A_ATOM];
1266 	xval = b->val[X_ATOM];
1267 	for (s = b->stmts; s; s = s->next)
1268 		opt_stmt(&s->s, b->val, do_stmts);
1269 
1270 	/*
1271 	 * This is a special case: if we don't use anything from this
1272 	 * block, and we load the accumulator or index register with a
1273 	 * value that is already there, or if this block is a return,
1274 	 * eliminate all the statements.
1275 	 *
1276 	 * XXX - what if it does a store?
1277 	 *
1278 	 * XXX - why does it matter whether we use anything from this
1279 	 * block?  If the accumulator or index register doesn't change
1280 	 * its value, isn't that OK even if we use that value?
1281 	 *
1282 	 * XXX - if we load the accumulator with a different value,
1283 	 * and the block ends with a conditional branch, we obviously
1284 	 * can't eliminate it, as the branch depends on that value.
1285 	 * For the index register, the conditional branch only depends
1286 	 * on the index register value if the test is against the index
1287 	 * register value rather than a constant; if nothing uses the
1288 	 * value we put into the index register, and we're not testing
1289 	 * against the index register's value, and there aren't any
1290 	 * other problems that would keep us from eliminating this
1291 	 * block, can we eliminate it?
1292 	 */
1293 	if (do_stmts &&
1294 	    ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1295 	      xval != 0 && b->val[X_ATOM] == xval) ||
1296 	     BPF_CLASS(b->s.code) == BPF_RET)) {
1297 		if (b->stmts != 0) {
1298 			b->stmts = 0;
1299 			done = 0;
1300 		}
1301 	} else {
1302 		opt_peep(b);
1303 		opt_deadstores(b);
1304 	}
1305 	/*
1306 	 * Set up values for branch optimizer.
1307 	 */
1308 	if (BPF_SRC(b->s.code) == BPF_K)
1309 		b->oval = K(b->s.k);
1310 	else
1311 		b->oval = b->val[X_ATOM];
1312 	b->et.code = b->s.code;
1313 	b->ef.code = -b->s.code;
1314 }
1315 
1316 /*
1317  * Return true if any register that is used on exit from 'succ', has
1318  * an exit value that is different from the corresponding exit value
1319  * from 'b'.
1320  */
1321 static int
1322 use_conflict(b, succ)
1323 	struct block *b, *succ;
1324 {
1325 	int atom;
1326 	atomset use = succ->out_use;
1327 
1328 	if (use == 0)
1329 		return 0;
1330 
1331 	for (atom = 0; atom < N_ATOMS; ++atom)
1332 		if (ATOMELEM(use, atom))
1333 			if (b->val[atom] != succ->val[atom])
1334 				return 1;
1335 	return 0;
1336 }
1337 
1338 static struct block *
1339 fold_edge(child, ep)
1340 	struct block *child;
1341 	struct edge *ep;
1342 {
1343 	int sense;
1344 	int aval0, aval1, oval0, oval1;
1345 	int code = ep->code;
1346 
1347 	if (code < 0) {
1348 		code = -code;
1349 		sense = 0;
1350 	} else
1351 		sense = 1;
1352 
1353 	if (child->s.code != code)
1354 		return 0;
1355 
1356 	aval0 = child->val[A_ATOM];
1357 	oval0 = child->oval;
1358 	aval1 = ep->pred->val[A_ATOM];
1359 	oval1 = ep->pred->oval;
1360 
1361 	if (aval0 != aval1)
1362 		return 0;
1363 
1364 	if (oval0 == oval1)
1365 		/*
1366 		 * The operands of the branch instructions are
1367 		 * identical, so the result is true if a true
1368 		 * branch was taken to get here, otherwise false.
1369 		 */
1370 		return sense ? JT(child) : JF(child);
1371 
1372 	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1373 		/*
1374 		 * At this point, we only know the comparison if we
1375 		 * came down the true branch, and it was an equality
1376 		 * comparison with a constant.
1377 		 *
1378 		 * I.e., if we came down the true branch, and the branch
1379 		 * was an equality comparison with a constant, we know the
1380 		 * accumulator contains that constant.  If we came down
1381 		 * the false branch, or the comparison wasn't with a
1382 		 * constant, we don't know what was in the accumulator.
1383 		 *
1384 		 * We rely on the fact that distinct constants have distinct
1385 		 * value numbers.
1386 		 */
1387 		return JF(child);
1388 
1389 	return 0;
1390 }
1391 
1392 static void
1393 opt_j(ep)
1394 	struct edge *ep;
1395 {
1396 	register int i, k;
1397 	register struct block *target;
1398 
1399 	if (JT(ep->succ) == 0)
1400 		return;
1401 
1402 	if (JT(ep->succ) == JF(ep->succ)) {
1403 		/*
1404 		 * Common branch targets can be eliminated, provided
1405 		 * there is no data dependency.
1406 		 */
1407 		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1408 			done = 0;
1409 			ep->succ = JT(ep->succ);
1410 		}
1411 	}
1412 	/*
1413 	 * For each edge dominator that matches the successor of this
1414 	 * edge, promote the edge successor to the its grandchild.
1415 	 *
1416 	 * XXX We violate the set abstraction here in favor a reasonably
1417 	 * efficient loop.
1418 	 */
1419  top:
1420 	for (i = 0; i < edgewords; ++i) {
1421 		register bpf_u_int32 x = ep->edom[i];
1422 
1423 		while (x != 0) {
1424 			k = ffs(x) - 1;
1425 			x &=~ (1 << k);
1426 			k += i * BITS_PER_WORD;
1427 
1428 			target = fold_edge(ep->succ, edges[k]);
1429 			/*
1430 			 * Check that there is no data dependency between
1431 			 * nodes that will be violated if we move the edge.
1432 			 */
1433 			if (target != 0 && !use_conflict(ep->pred, target)) {
1434 				done = 0;
1435 				ep->succ = target;
1436 				if (JT(target) != 0)
1437 					/*
1438 					 * Start over unless we hit a leaf.
1439 					 */
1440 					goto top;
1441 				return;
1442 			}
1443 		}
1444 	}
1445 }
1446 
1447 
1448 static void
1449 or_pullup(b)
1450 	struct block *b;
1451 {
1452 	int val, at_top;
1453 	struct block *pull;
1454 	struct block **diffp, **samep;
1455 	struct edge *ep;
1456 
1457 	ep = b->in_edges;
1458 	if (ep == 0)
1459 		return;
1460 
1461 	/*
1462 	 * Make sure each predecessor loads the same value.
1463 	 * XXX why?
1464 	 */
1465 	val = ep->pred->val[A_ATOM];
1466 	for (ep = ep->next; ep != 0; ep = ep->next)
1467 		if (val != ep->pred->val[A_ATOM])
1468 			return;
1469 
1470 	if (JT(b->in_edges->pred) == b)
1471 		diffp = &JT(b->in_edges->pred);
1472 	else
1473 		diffp = &JF(b->in_edges->pred);
1474 
1475 	at_top = 1;
1476 	while (1) {
1477 		if (*diffp == 0)
1478 			return;
1479 
1480 		if (JT(*diffp) != JT(b))
1481 			return;
1482 
1483 		if (!SET_MEMBER((*diffp)->dom, b->id))
1484 			return;
1485 
1486 		if ((*diffp)->val[A_ATOM] != val)
1487 			break;
1488 
1489 		diffp = &JF(*diffp);
1490 		at_top = 0;
1491 	}
1492 	samep = &JF(*diffp);
1493 	while (1) {
1494 		if (*samep == 0)
1495 			return;
1496 
1497 		if (JT(*samep) != JT(b))
1498 			return;
1499 
1500 		if (!SET_MEMBER((*samep)->dom, b->id))
1501 			return;
1502 
1503 		if ((*samep)->val[A_ATOM] == val)
1504 			break;
1505 
1506 		/* XXX Need to check that there are no data dependencies
1507 		   between dp0 and dp1.  Currently, the code generator
1508 		   will not produce such dependencies. */
1509 		samep = &JF(*samep);
1510 	}
1511 #ifdef notdef
1512 	/* XXX This doesn't cover everything. */
1513 	for (i = 0; i < N_ATOMS; ++i)
1514 		if ((*samep)->val[i] != pred->val[i])
1515 			return;
1516 #endif
1517 	/* Pull up the node. */
1518 	pull = *samep;
1519 	*samep = JF(pull);
1520 	JF(pull) = *diffp;
1521 
1522 	/*
1523 	 * At the top of the chain, each predecessor needs to point at the
1524 	 * pulled up node.  Inside the chain, there is only one predecessor
1525 	 * to worry about.
1526 	 */
1527 	if (at_top) {
1528 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1529 			if (JT(ep->pred) == b)
1530 				JT(ep->pred) = pull;
1531 			else
1532 				JF(ep->pred) = pull;
1533 		}
1534 	}
1535 	else
1536 		*diffp = pull;
1537 
1538 	done = 0;
1539 }
1540 
1541 static void
1542 and_pullup(b)
1543 	struct block *b;
1544 {
1545 	int val, at_top;
1546 	struct block *pull;
1547 	struct block **diffp, **samep;
1548 	struct edge *ep;
1549 
1550 	ep = b->in_edges;
1551 	if (ep == 0)
1552 		return;
1553 
1554 	/*
1555 	 * Make sure each predecessor loads the same value.
1556 	 */
1557 	val = ep->pred->val[A_ATOM];
1558 	for (ep = ep->next; ep != 0; ep = ep->next)
1559 		if (val != ep->pred->val[A_ATOM])
1560 			return;
1561 
1562 	if (JT(b->in_edges->pred) == b)
1563 		diffp = &JT(b->in_edges->pred);
1564 	else
1565 		diffp = &JF(b->in_edges->pred);
1566 
1567 	at_top = 1;
1568 	while (1) {
1569 		if (*diffp == 0)
1570 			return;
1571 
1572 		if (JF(*diffp) != JF(b))
1573 			return;
1574 
1575 		if (!SET_MEMBER((*diffp)->dom, b->id))
1576 			return;
1577 
1578 		if ((*diffp)->val[A_ATOM] != val)
1579 			break;
1580 
1581 		diffp = &JT(*diffp);
1582 		at_top = 0;
1583 	}
1584 	samep = &JT(*diffp);
1585 	while (1) {
1586 		if (*samep == 0)
1587 			return;
1588 
1589 		if (JF(*samep) != JF(b))
1590 			return;
1591 
1592 		if (!SET_MEMBER((*samep)->dom, b->id))
1593 			return;
1594 
1595 		if ((*samep)->val[A_ATOM] == val)
1596 			break;
1597 
1598 		/* XXX Need to check that there are no data dependencies
1599 		   between diffp and samep.  Currently, the code generator
1600 		   will not produce such dependencies. */
1601 		samep = &JT(*samep);
1602 	}
1603 #ifdef notdef
1604 	/* XXX This doesn't cover everything. */
1605 	for (i = 0; i < N_ATOMS; ++i)
1606 		if ((*samep)->val[i] != pred->val[i])
1607 			return;
1608 #endif
1609 	/* Pull up the node. */
1610 	pull = *samep;
1611 	*samep = JT(pull);
1612 	JT(pull) = *diffp;
1613 
1614 	/*
1615 	 * At the top of the chain, each predecessor needs to point at the
1616 	 * pulled up node.  Inside the chain, there is only one predecessor
1617 	 * to worry about.
1618 	 */
1619 	if (at_top) {
1620 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1621 			if (JT(ep->pred) == b)
1622 				JT(ep->pred) = pull;
1623 			else
1624 				JF(ep->pred) = pull;
1625 		}
1626 	}
1627 	else
1628 		*diffp = pull;
1629 
1630 	done = 0;
1631 }
1632 
1633 static void
1634 opt_blks(root, do_stmts)
1635 	struct block *root;
1636 	int do_stmts;
1637 {
1638 	int i, maxlevel;
1639 	struct block *p;
1640 
1641 	init_val();
1642 	maxlevel = root->level;
1643 
1644 	find_inedges(root);
1645 	for (i = maxlevel; i >= 0; --i)
1646 		for (p = levels[i]; p; p = p->link)
1647 			opt_blk(p, do_stmts);
1648 
1649 	if (do_stmts)
1650 		/*
1651 		 * No point trying to move branches; it can't possibly
1652 		 * make a difference at this point.
1653 		 */
1654 		return;
1655 
1656 	for (i = 1; i <= maxlevel; ++i) {
1657 		for (p = levels[i]; p; p = p->link) {
1658 			opt_j(&p->et);
1659 			opt_j(&p->ef);
1660 		}
1661 	}
1662 
1663 	find_inedges(root);
1664 	for (i = 1; i <= maxlevel; ++i) {
1665 		for (p = levels[i]; p; p = p->link) {
1666 			or_pullup(p);
1667 			and_pullup(p);
1668 		}
1669 	}
1670 }
1671 
1672 static inline void
1673 link_inedge(parent, child)
1674 	struct edge *parent;
1675 	struct block *child;
1676 {
1677 	parent->next = child->in_edges;
1678 	child->in_edges = parent;
1679 }
1680 
1681 static void
1682 find_inedges(root)
1683 	struct block *root;
1684 {
1685 	int i;
1686 	struct block *b;
1687 
1688 	for (i = 0; i < n_blocks; ++i)
1689 		blocks[i]->in_edges = 0;
1690 
1691 	/*
1692 	 * Traverse the graph, adding each edge to the predecessor
1693 	 * list of its successors.  Skip the leaves (i.e. level 0).
1694 	 */
1695 	for (i = root->level; i > 0; --i) {
1696 		for (b = levels[i]; b != 0; b = b->link) {
1697 			link_inedge(&b->et, JT(b));
1698 			link_inedge(&b->ef, JF(b));
1699 		}
1700 	}
1701 }
1702 
1703 static void
1704 opt_root(b)
1705 	struct block **b;
1706 {
1707 	struct slist *tmp, *s;
1708 
1709 	s = (*b)->stmts;
1710 	(*b)->stmts = 0;
1711 	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1712 		*b = JT(*b);
1713 
1714 	tmp = (*b)->stmts;
1715 	if (tmp != 0)
1716 		sappend(s, tmp);
1717 	(*b)->stmts = s;
1718 
1719 	/*
1720 	 * If the root node is a return, then there is no
1721 	 * point executing any statements (since the bpf machine
1722 	 * has no side effects).
1723 	 */
1724 	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1725 		(*b)->stmts = 0;
1726 }
1727 
1728 static void
1729 opt_loop(root, do_stmts)
1730 	struct block *root;
1731 	int do_stmts;
1732 {
1733 
1734 #ifdef BDEBUG
1735 	if (dflag > 1) {
1736 		printf("opt_loop(root, %d) begin\n", do_stmts);
1737 		opt_dump(root);
1738 	}
1739 #endif
1740 	do {
1741 		done = 1;
1742 		find_levels(root);
1743 		find_dom(root);
1744 		find_closure(root);
1745 		find_ud(root);
1746 		find_edom(root);
1747 		opt_blks(root, do_stmts);
1748 #ifdef BDEBUG
1749 		if (dflag > 1) {
1750 			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1751 			opt_dump(root);
1752 		}
1753 #endif
1754 	} while (!done);
1755 }
1756 
1757 /*
1758  * Optimize the filter code in its dag representation.
1759  */
1760 void
1761 bpf_optimize(rootp)
1762 	struct block **rootp;
1763 {
1764 	struct block *root;
1765 
1766 	root = *rootp;
1767 
1768 	opt_init(root);
1769 	opt_loop(root, 0);
1770 	opt_loop(root, 1);
1771 	intern_blocks(root);
1772 #ifdef BDEBUG
1773 	if (dflag > 1) {
1774 		printf("after intern_blocks()\n");
1775 		opt_dump(root);
1776 	}
1777 #endif
1778 	opt_root(rootp);
1779 #ifdef BDEBUG
1780 	if (dflag > 1) {
1781 		printf("after opt_root()\n");
1782 		opt_dump(root);
1783 	}
1784 #endif
1785 	opt_cleanup();
1786 }
1787 
1788 static void
1789 make_marks(p)
1790 	struct block *p;
1791 {
1792 	if (!isMarked(p)) {
1793 		Mark(p);
1794 		if (BPF_CLASS(p->s.code) != BPF_RET) {
1795 			make_marks(JT(p));
1796 			make_marks(JF(p));
1797 		}
1798 	}
1799 }
1800 
1801 /*
1802  * Mark code array such that isMarked(i) is true
1803  * only for nodes that are alive.
1804  */
1805 static void
1806 mark_code(p)
1807 	struct block *p;
1808 {
1809 	cur_mark += 1;
1810 	make_marks(p);
1811 }
1812 
1813 /*
1814  * True iff the two stmt lists load the same value from the packet into
1815  * the accumulator.
1816  */
1817 static int
1818 eq_slist(x, y)
1819 	struct slist *x, *y;
1820 {
1821 	while (1) {
1822 		while (x && x->s.code == NOP)
1823 			x = x->next;
1824 		while (y && y->s.code == NOP)
1825 			y = y->next;
1826 		if (x == 0)
1827 			return y == 0;
1828 		if (y == 0)
1829 			return x == 0;
1830 		if (x->s.code != y->s.code || x->s.k != y->s.k)
1831 			return 0;
1832 		x = x->next;
1833 		y = y->next;
1834 	}
1835 }
1836 
1837 static inline int
1838 eq_blk(b0, b1)
1839 	struct block *b0, *b1;
1840 {
1841 	if (b0->s.code == b1->s.code &&
1842 	    b0->s.k == b1->s.k &&
1843 	    b0->et.succ == b1->et.succ &&
1844 	    b0->ef.succ == b1->ef.succ)
1845 		return eq_slist(b0->stmts, b1->stmts);
1846 	return 0;
1847 }
1848 
1849 static void
1850 intern_blocks(root)
1851 	struct block *root;
1852 {
1853 	struct block *p;
1854 	int i, j;
1855 	int done1; /* don't shadow global */
1856  top:
1857 	done1 = 1;
1858 	for (i = 0; i < n_blocks; ++i)
1859 		blocks[i]->link = 0;
1860 
1861 	mark_code(root);
1862 
1863 	for (i = n_blocks - 1; --i >= 0; ) {
1864 		if (!isMarked(blocks[i]))
1865 			continue;
1866 		for (j = i + 1; j < n_blocks; ++j) {
1867 			if (!isMarked(blocks[j]))
1868 				continue;
1869 			if (eq_blk(blocks[i], blocks[j])) {
1870 				blocks[i]->link = blocks[j]->link ?
1871 					blocks[j]->link : blocks[j];
1872 				break;
1873 			}
1874 		}
1875 	}
1876 	for (i = 0; i < n_blocks; ++i) {
1877 		p = blocks[i];
1878 		if (JT(p) == 0)
1879 			continue;
1880 		if (JT(p)->link) {
1881 			done1 = 0;
1882 			JT(p) = JT(p)->link;
1883 		}
1884 		if (JF(p)->link) {
1885 			done1 = 0;
1886 			JF(p) = JF(p)->link;
1887 		}
1888 	}
1889 	if (!done1)
1890 		goto top;
1891 }
1892 
1893 static void
1894 opt_cleanup()
1895 {
1896 	free((void *)vnode_base);
1897 	free((void *)vmap);
1898 	free((void *)edges);
1899 	free((void *)space);
1900 	free((void *)levels);
1901 	free((void *)blocks);
1902 }
1903 
1904 /*
1905  * Return the number of stmts in 's'.
1906  */
1907 static int
1908 slength(s)
1909 	struct slist *s;
1910 {
1911 	int n = 0;
1912 
1913 	for (; s; s = s->next)
1914 		if (s->s.code != NOP)
1915 			++n;
1916 	return n;
1917 }
1918 
1919 /*
1920  * Return the number of nodes reachable by 'p'.
1921  * All nodes should be initially unmarked.
1922  */
1923 static int
1924 count_blocks(p)
1925 	struct block *p;
1926 {
1927 	if (p == 0 || isMarked(p))
1928 		return 0;
1929 	Mark(p);
1930 	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1931 }
1932 
1933 /*
1934  * Do a depth first search on the flow graph, numbering the
1935  * the basic blocks, and entering them into the 'blocks' array.`
1936  */
1937 static void
1938 number_blks_r(p)
1939 	struct block *p;
1940 {
1941 	int n;
1942 
1943 	if (p == 0 || isMarked(p))
1944 		return;
1945 
1946 	Mark(p);
1947 	n = n_blocks++;
1948 	p->id = n;
1949 	blocks[n] = p;
1950 
1951 	number_blks_r(JT(p));
1952 	number_blks_r(JF(p));
1953 }
1954 
1955 /*
1956  * Return the number of stmts in the flowgraph reachable by 'p'.
1957  * The nodes should be unmarked before calling.
1958  *
1959  * Note that "stmts" means "instructions", and that this includes
1960  *
1961  *	side-effect statements in 'p' (slength(p->stmts));
1962  *
1963  *	statements in the true branch from 'p' (count_stmts(JT(p)));
1964  *
1965  *	statements in the false branch from 'p' (count_stmts(JF(p)));
1966  *
1967  *	the conditional jump itself (1);
1968  *
1969  *	an extra long jump if the true branch requires it (p->longjt);
1970  *
1971  *	an extra long jump if the false branch requires it (p->longjf).
1972  */
1973 static int
1974 count_stmts(p)
1975 	struct block *p;
1976 {
1977 	int n;
1978 
1979 	if (p == 0 || isMarked(p))
1980 		return 0;
1981 	Mark(p);
1982 	n = count_stmts(JT(p)) + count_stmts(JF(p));
1983 	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1984 }
1985 
1986 /*
1987  * Allocate memory.  All allocation is done before optimization
1988  * is begun.  A linear bound on the size of all data structures is computed
1989  * from the total number of blocks and/or statements.
1990  */
1991 static void
1992 opt_init(root)
1993 	struct block *root;
1994 {
1995 	bpf_u_int32 *p;
1996 	int i, n, max_stmts;
1997 
1998 	/*
1999 	 * First, count the blocks, so we can malloc an array to map
2000 	 * block number to block.  Then, put the blocks into the array.
2001 	 */
2002 	unMarkAll();
2003 	n = count_blocks(root);
2004 	blocks = (struct block **)calloc(n, sizeof(*blocks));
2005 	if (blocks == NULL)
2006 		bpf_error("malloc");
2007 	unMarkAll();
2008 	n_blocks = 0;
2009 	number_blks_r(root);
2010 
2011 	n_edges = 2 * n_blocks;
2012 	edges = (struct edge **)calloc(n_edges, sizeof(*edges));
2013 	if (edges == NULL)
2014 		bpf_error("malloc");
2015 
2016 	/*
2017 	 * The number of levels is bounded by the number of nodes.
2018 	 */
2019 	levels = (struct block **)calloc(n_blocks, sizeof(*levels));
2020 	if (levels == NULL)
2021 		bpf_error("malloc");
2022 
2023 	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
2024 	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
2025 
2026 	/* XXX */
2027 	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
2028 				 + n_edges * edgewords * sizeof(*space));
2029 	if (space == NULL)
2030 		bpf_error("malloc");
2031 	p = space;
2032 	all_dom_sets = p;
2033 	for (i = 0; i < n; ++i) {
2034 		blocks[i]->dom = p;
2035 		p += nodewords;
2036 	}
2037 	all_closure_sets = p;
2038 	for (i = 0; i < n; ++i) {
2039 		blocks[i]->closure = p;
2040 		p += nodewords;
2041 	}
2042 	all_edge_sets = p;
2043 	for (i = 0; i < n; ++i) {
2044 		register struct block *b = blocks[i];
2045 
2046 		b->et.edom = p;
2047 		p += edgewords;
2048 		b->ef.edom = p;
2049 		p += edgewords;
2050 		b->et.id = i;
2051 		edges[i] = &b->et;
2052 		b->ef.id = n_blocks + i;
2053 		edges[n_blocks + i] = &b->ef;
2054 		b->et.pred = b;
2055 		b->ef.pred = b;
2056 	}
2057 	max_stmts = 0;
2058 	for (i = 0; i < n; ++i)
2059 		max_stmts += slength(blocks[i]->stmts) + 1;
2060 	/*
2061 	 * We allocate at most 3 value numbers per statement,
2062 	 * so this is an upper bound on the number of valnodes
2063 	 * we'll need.
2064 	 */
2065 	maxval = 3 * max_stmts;
2066 	vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
2067 	vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
2068 	if (vmap == NULL || vnode_base == NULL)
2069 		bpf_error("malloc");
2070 }
2071 
2072 /*
2073  * Some pointers used to convert the basic block form of the code,
2074  * into the array form that BPF requires.  'fstart' will point to
2075  * the malloc'd array while 'ftail' is used during the recursive traversal.
2076  */
2077 static struct bpf_insn *fstart;
2078 static struct bpf_insn *ftail;
2079 
2080 #ifdef BDEBUG
2081 int bids[1000];
2082 #endif
2083 
2084 /*
2085  * Returns true if successful.  Returns false if a branch has
2086  * an offset that is too large.  If so, we have marked that
2087  * branch so that on a subsequent iteration, it will be treated
2088  * properly.
2089  */
2090 static int
2091 convert_code_r(p)
2092 	struct block *p;
2093 {
2094 	struct bpf_insn *dst;
2095 	struct slist *src;
2096 	int slen;
2097 	u_int off;
2098 	int extrajmps;		/* number of extra jumps inserted */
2099 	struct slist **offset = NULL;
2100 
2101 	if (p == 0 || isMarked(p))
2102 		return (1);
2103 	Mark(p);
2104 
2105 	if (convert_code_r(JF(p)) == 0)
2106 		return (0);
2107 	if (convert_code_r(JT(p)) == 0)
2108 		return (0);
2109 
2110 	slen = slength(p->stmts);
2111 	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2112 		/* inflate length by any extra jumps */
2113 
2114 	p->offset = dst - fstart;
2115 
2116 	/* generate offset[] for convenience  */
2117 	if (slen) {
2118 		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2119 		if (!offset) {
2120 			bpf_error("not enough core");
2121 			/*NOTREACHED*/
2122 		}
2123 	}
2124 	src = p->stmts;
2125 	for (off = 0; off < slen && src; off++) {
2126 #if 0
2127 		printf("off=%d src=%x\n", off, src);
2128 #endif
2129 		offset[off] = src;
2130 		src = src->next;
2131 	}
2132 
2133 	off = 0;
2134 	for (src = p->stmts; src; src = src->next) {
2135 		if (src->s.code == NOP)
2136 			continue;
2137 		dst->code = (u_short)src->s.code;
2138 		dst->k = src->s.k;
2139 
2140 		/* fill block-local relative jump */
2141 		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2142 #if 0
2143 			if (src->s.jt || src->s.jf) {
2144 				bpf_error("illegal jmp destination");
2145 				/*NOTREACHED*/
2146 			}
2147 #endif
2148 			goto filled;
2149 		}
2150 		if (off == slen - 2)	/*???*/
2151 			goto filled;
2152 
2153 	    {
2154 		int i;
2155 		int jt, jf;
2156 		const char *ljerr = "%s for block-local relative jump: off=%d";
2157 
2158 #if 0
2159 		printf("code=%x off=%d %x %x\n", src->s.code,
2160 			off, src->s.jt, src->s.jf);
2161 #endif
2162 
2163 		if (!src->s.jt || !src->s.jf) {
2164 			bpf_error(ljerr, "no jmp destination", off);
2165 			/*NOTREACHED*/
2166 		}
2167 
2168 		jt = jf = 0;
2169 		for (i = 0; i < slen; i++) {
2170 			if (offset[i] == src->s.jt) {
2171 				if (jt) {
2172 					bpf_error(ljerr, "multiple matches", off);
2173 					/*NOTREACHED*/
2174 				}
2175 
2176 				dst->jt = i - off - 1;
2177 				jt++;
2178 			}
2179 			if (offset[i] == src->s.jf) {
2180 				if (jf) {
2181 					bpf_error(ljerr, "multiple matches", off);
2182 					/*NOTREACHED*/
2183 				}
2184 				dst->jf = i - off - 1;
2185 				jf++;
2186 			}
2187 		}
2188 		if (!jt || !jf) {
2189 			bpf_error(ljerr, "no destination found", off);
2190 			/*NOTREACHED*/
2191 		}
2192 	    }
2193 filled:
2194 		++dst;
2195 		++off;
2196 	}
2197 	if (offset)
2198 		free(offset);
2199 
2200 #ifdef BDEBUG
2201 	bids[dst - fstart] = p->id + 1;
2202 #endif
2203 	dst->code = (u_short)p->s.code;
2204 	dst->k = p->s.k;
2205 	if (JT(p)) {
2206 		extrajmps = 0;
2207 		off = JT(p)->offset - (p->offset + slen) - 1;
2208 		if (off >= 256) {
2209 		    /* offset too large for branch, must add a jump */
2210 		    if (p->longjt == 0) {
2211 		    	/* mark this instruction and retry */
2212 			p->longjt++;
2213 			return(0);
2214 		    }
2215 		    /* branch if T to following jump */
2216 		    dst->jt = extrajmps;
2217 		    extrajmps++;
2218 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2219 		    dst[extrajmps].k = off - extrajmps;
2220 		}
2221 		else
2222 		    dst->jt = off;
2223 		off = JF(p)->offset - (p->offset + slen) - 1;
2224 		if (off >= 256) {
2225 		    /* offset too large for branch, must add a jump */
2226 		    if (p->longjf == 0) {
2227 		    	/* mark this instruction and retry */
2228 			p->longjf++;
2229 			return(0);
2230 		    }
2231 		    /* branch if F to following jump */
2232 		    /* if two jumps are inserted, F goes to second one */
2233 		    dst->jf = extrajmps;
2234 		    extrajmps++;
2235 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2236 		    dst[extrajmps].k = off - extrajmps;
2237 		}
2238 		else
2239 		    dst->jf = off;
2240 	}
2241 	return (1);
2242 }
2243 
2244 
2245 /*
2246  * Convert flowgraph intermediate representation to the
2247  * BPF array representation.  Set *lenp to the number of instructions.
2248  *
2249  * This routine does *NOT* leak the memory pointed to by fp.  It *must
2250  * not* do free(fp) before returning fp; doing so would make no sense,
2251  * as the BPF array pointed to by the return value of icode_to_fcode()
2252  * must be valid - it's being returned for use in a bpf_program structure.
2253  *
2254  * If it appears that icode_to_fcode() is leaking, the problem is that
2255  * the program using pcap_compile() is failing to free the memory in
2256  * the BPF program when it's done - the leak is in the program, not in
2257  * the routine that happens to be allocating the memory.  (By analogy, if
2258  * a program calls fopen() without ever calling fclose() on the FILE *,
2259  * it will leak the FILE structure; the leak is not in fopen(), it's in
2260  * the program.)  Change the program to use pcap_freecode() when it's
2261  * done with the filter program.  See the pcap man page.
2262  */
2263 struct bpf_insn *
2264 icode_to_fcode(root, lenp)
2265 	struct block *root;
2266 	int *lenp;
2267 {
2268 	int n;
2269 	struct bpf_insn *fp;
2270 
2271 	/*
2272 	 * Loop doing convert_code_r() until no branches remain
2273 	 * with too-large offsets.
2274 	 */
2275 	while (1) {
2276 	    unMarkAll();
2277 	    n = *lenp = count_stmts(root);
2278 
2279 	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2280 	    if (fp == NULL)
2281 		    bpf_error("malloc");
2282 	    memset((char *)fp, 0, sizeof(*fp) * n);
2283 	    fstart = fp;
2284 	    ftail = fp + n;
2285 
2286 	    unMarkAll();
2287 	    if (convert_code_r(root))
2288 		break;
2289 	    free(fp);
2290 	}
2291 
2292 	return fp;
2293 }
2294 
2295 /*
2296  * Make a copy of a BPF program and put it in the "fcode" member of
2297  * a "pcap_t".
2298  *
2299  * If we fail to allocate memory for the copy, fill in the "errbuf"
2300  * member of the "pcap_t" with an error message, and return -1;
2301  * otherwise, return 0.
2302  */
2303 int
2304 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2305 {
2306 	size_t prog_size;
2307 
2308 	/*
2309 	 * Validate the program.
2310 	 */
2311 	if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2312 		snprintf(p->errbuf, sizeof(p->errbuf),
2313 			"BPF program is not valid");
2314 		return (-1);
2315 	}
2316 
2317 	/*
2318 	 * Free up any already installed program.
2319 	 */
2320 	pcap_freecode(&p->fcode);
2321 
2322 	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2323 	p->fcode.bf_len = fp->bf_len;
2324 	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2325 	if (p->fcode.bf_insns == NULL) {
2326 		snprintf(p->errbuf, sizeof(p->errbuf),
2327 			 "malloc: %s", pcap_strerror(errno));
2328 		return (-1);
2329 	}
2330 	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2331 	return (0);
2332 }
2333 
2334 #ifdef BDEBUG
2335 static void
2336 opt_dump(root)
2337 	struct block *root;
2338 {
2339 	struct bpf_program f;
2340 
2341 	memset(bids, 0, sizeof bids);
2342 	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2343 	bpf_dump(&f, 1);
2344 	putchar('\n');
2345 	free((char *)f.bf_insns);
2346 }
2347 #endif
2348