xref: /freebsd/contrib/libpcap/optimize.c (revision 6b3455a7665208c366849f0b2b3bc916fb97516e)
1 /*
2  * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that: (1) source code distributions
7  * retain the above copyright notice and this paragraph in its entirety, (2)
8  * distributions including binary code include the above copyright notice and
9  * this paragraph in its entirety in the documentation or other materials
10  * provided with the distribution, and (3) all advertising materials mentioning
11  * features or use of this software display the following acknowledgement:
12  * ``This product includes software developed by the University of California,
13  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14  * the University nor the names of its contributors may be used to endorse
15  * or promote products derived from this software without specific prior
16  * written permission.
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20  *
21  *  Optimization module for tcpdump intermediate representation.
22  */
23 #ifndef lint
24 static const char rcsid[] _U_ =
25     "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.76.2.3 2003/12/22 00:26:36 guy Exp $ (LBL)";
26 #endif
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <memory.h>
35 
36 #include <errno.h>
37 
38 #include "pcap-int.h"
39 
40 #include "gencode.h"
41 
42 #ifdef HAVE_OS_PROTO_H
43 #include "os-proto.h"
44 #endif
45 
46 #ifdef BDEBUG
47 extern int dflag;
48 #endif
49 
50 #define A_ATOM BPF_MEMWORDS
51 #define X_ATOM (BPF_MEMWORDS+1)
52 
53 #define NOP -1
54 
55 /*
56  * This define is used to represent *both* the accumulator and
57  * x register in use-def computations.
58  * Currently, the use-def code assumes only one definition per instruction.
59  */
60 #define AX_ATOM N_ATOMS
61 
62 /*
63  * A flag to indicate that further optimization is needed.
64  * Iterative passes are continued until a given pass yields no
65  * branch movement.
66  */
67 static int done;
68 
69 /*
70  * A block is marked if only if its mark equals the current mark.
71  * Rather than traverse the code array, marking each item, 'cur_mark' is
72  * incremented.  This automatically makes each element unmarked.
73  */
74 static int cur_mark;
75 #define isMarked(p) ((p)->mark == cur_mark)
76 #define unMarkAll() cur_mark += 1
77 #define Mark(p) ((p)->mark = cur_mark)
78 
79 static void opt_init(struct block *);
80 static void opt_cleanup(void);
81 
82 static void make_marks(struct block *);
83 static void mark_code(struct block *);
84 
85 static void intern_blocks(struct block *);
86 
87 static int eq_slist(struct slist *, struct slist *);
88 
89 static void find_levels_r(struct block *);
90 
91 static void find_levels(struct block *);
92 static void find_dom(struct block *);
93 static void propedom(struct edge *);
94 static void find_edom(struct block *);
95 static void find_closure(struct block *);
96 static int atomuse(struct stmt *);
97 static int atomdef(struct stmt *);
98 static void compute_local_ud(struct block *);
99 static void find_ud(struct block *);
100 static void init_val(void);
101 static int F(int, int, int);
102 static inline void vstore(struct stmt *, int *, int, int);
103 static void opt_blk(struct block *, int);
104 static int use_conflict(struct block *, struct block *);
105 static void opt_j(struct edge *);
106 static void or_pullup(struct block *);
107 static void and_pullup(struct block *);
108 static void opt_blks(struct block *, int);
109 static inline void link_inedge(struct edge *, struct block *);
110 static void find_inedges(struct block *);
111 static void opt_root(struct block **);
112 static void opt_loop(struct block *, int);
113 static void fold_op(struct stmt *, int, int);
114 static inline struct slist *this_op(struct slist *);
115 static void opt_not(struct block *);
116 static void opt_peep(struct block *);
117 static void opt_stmt(struct stmt *, int[], int);
118 static void deadstmt(struct stmt *, struct stmt *[]);
119 static void opt_deadstores(struct block *);
120 static struct block *fold_edge(struct block *, struct edge *);
121 static inline int eq_blk(struct block *, struct block *);
122 static int slength(struct slist *);
123 static int count_blocks(struct block *);
124 static void number_blks_r(struct block *);
125 static int count_stmts(struct block *);
126 static int convert_code_r(struct block *);
127 #ifdef BDEBUG
128 static void opt_dump(struct block *);
129 #endif
130 
131 static int n_blocks;
132 struct block **blocks;
133 static int n_edges;
134 struct edge **edges;
135 
136 /*
137  * A bit vector set representation of the dominators.
138  * We round up the set size to the next power of two.
139  */
140 static int nodewords;
141 static int edgewords;
142 struct block **levels;
143 bpf_u_int32 *space;
144 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
145 /*
146  * True if a is in uset {p}
147  */
148 #define SET_MEMBER(p, a) \
149 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
150 
151 /*
152  * Add 'a' to uset p.
153  */
154 #define SET_INSERT(p, a) \
155 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
156 
157 /*
158  * Delete 'a' from uset p.
159  */
160 #define SET_DELETE(p, a) \
161 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
162 
163 /*
164  * a := a intersect b
165  */
166 #define SET_INTERSECT(a, b, n)\
167 {\
168 	register bpf_u_int32 *_x = a, *_y = b;\
169 	register int _n = n;\
170 	while (--_n >= 0) *_x++ &= *_y++;\
171 }
172 
173 /*
174  * a := a - b
175  */
176 #define SET_SUBTRACT(a, b, n)\
177 {\
178 	register bpf_u_int32 *_x = a, *_y = b;\
179 	register int _n = n;\
180 	while (--_n >= 0) *_x++ &=~ *_y++;\
181 }
182 
183 /*
184  * a := a union b
185  */
186 #define SET_UNION(a, b, n)\
187 {\
188 	register bpf_u_int32 *_x = a, *_y = b;\
189 	register int _n = n;\
190 	while (--_n >= 0) *_x++ |= *_y++;\
191 }
192 
193 static uset all_dom_sets;
194 static uset all_closure_sets;
195 static uset all_edge_sets;
196 
197 #ifndef MAX
198 #define MAX(a,b) ((a)>(b)?(a):(b))
199 #endif
200 
201 static void
202 find_levels_r(b)
203 	struct block *b;
204 {
205 	int level;
206 
207 	if (isMarked(b))
208 		return;
209 
210 	Mark(b);
211 	b->link = 0;
212 
213 	if (JT(b)) {
214 		find_levels_r(JT(b));
215 		find_levels_r(JF(b));
216 		level = MAX(JT(b)->level, JF(b)->level) + 1;
217 	} else
218 		level = 0;
219 	b->level = level;
220 	b->link = levels[level];
221 	levels[level] = b;
222 }
223 
224 /*
225  * Level graph.  The levels go from 0 at the leaves to
226  * N_LEVELS at the root.  The levels[] array points to the
227  * first node of the level list, whose elements are linked
228  * with the 'link' field of the struct block.
229  */
230 static void
231 find_levels(root)
232 	struct block *root;
233 {
234 	memset((char *)levels, 0, n_blocks * sizeof(*levels));
235 	unMarkAll();
236 	find_levels_r(root);
237 }
238 
239 /*
240  * Find dominator relationships.
241  * Assumes graph has been leveled.
242  */
243 static void
244 find_dom(root)
245 	struct block *root;
246 {
247 	int i;
248 	struct block *b;
249 	bpf_u_int32 *x;
250 
251 	/*
252 	 * Initialize sets to contain all nodes.
253 	 */
254 	x = all_dom_sets;
255 	i = n_blocks * nodewords;
256 	while (--i >= 0)
257 		*x++ = ~0;
258 	/* Root starts off empty. */
259 	for (i = nodewords; --i >= 0;)
260 		root->dom[i] = 0;
261 
262 	/* root->level is the highest level no found. */
263 	for (i = root->level; i >= 0; --i) {
264 		for (b = levels[i]; b; b = b->link) {
265 			SET_INSERT(b->dom, b->id);
266 			if (JT(b) == 0)
267 				continue;
268 			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
269 			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
270 		}
271 	}
272 }
273 
274 static void
275 propedom(ep)
276 	struct edge *ep;
277 {
278 	SET_INSERT(ep->edom, ep->id);
279 	if (ep->succ) {
280 		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
281 		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
282 	}
283 }
284 
285 /*
286  * Compute edge dominators.
287  * Assumes graph has been leveled and predecessors established.
288  */
289 static void
290 find_edom(root)
291 	struct block *root;
292 {
293 	int i;
294 	uset x;
295 	struct block *b;
296 
297 	x = all_edge_sets;
298 	for (i = n_edges * edgewords; --i >= 0; )
299 		x[i] = ~0;
300 
301 	/* root->level is the highest level no found. */
302 	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
303 	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
304 	for (i = root->level; i >= 0; --i) {
305 		for (b = levels[i]; b != 0; b = b->link) {
306 			propedom(&b->et);
307 			propedom(&b->ef);
308 		}
309 	}
310 }
311 
312 /*
313  * Find the backwards transitive closure of the flow graph.  These sets
314  * are backwards in the sense that we find the set of nodes that reach
315  * a given node, not the set of nodes that can be reached by a node.
316  *
317  * Assumes graph has been leveled.
318  */
319 static void
320 find_closure(root)
321 	struct block *root;
322 {
323 	int i;
324 	struct block *b;
325 
326 	/*
327 	 * Initialize sets to contain no nodes.
328 	 */
329 	memset((char *)all_closure_sets, 0,
330 	      n_blocks * nodewords * sizeof(*all_closure_sets));
331 
332 	/* root->level is the highest level no found. */
333 	for (i = root->level; i >= 0; --i) {
334 		for (b = levels[i]; b; b = b->link) {
335 			SET_INSERT(b->closure, b->id);
336 			if (JT(b) == 0)
337 				continue;
338 			SET_UNION(JT(b)->closure, b->closure, nodewords);
339 			SET_UNION(JF(b)->closure, b->closure, nodewords);
340 		}
341 	}
342 }
343 
344 /*
345  * Return the register number that is used by s.  If A and X are both
346  * used, return AX_ATOM.  If no register is used, return -1.
347  *
348  * The implementation should probably change to an array access.
349  */
350 static int
351 atomuse(s)
352 	struct stmt *s;
353 {
354 	register int c = s->code;
355 
356 	if (c == NOP)
357 		return -1;
358 
359 	switch (BPF_CLASS(c)) {
360 
361 	case BPF_RET:
362 		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
363 			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
364 
365 	case BPF_LD:
366 	case BPF_LDX:
367 		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
368 			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
369 
370 	case BPF_ST:
371 		return A_ATOM;
372 
373 	case BPF_STX:
374 		return X_ATOM;
375 
376 	case BPF_JMP:
377 	case BPF_ALU:
378 		if (BPF_SRC(c) == BPF_X)
379 			return AX_ATOM;
380 		return A_ATOM;
381 
382 	case BPF_MISC:
383 		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
384 	}
385 	abort();
386 	/* NOTREACHED */
387 }
388 
389 /*
390  * Return the register number that is defined by 's'.  We assume that
391  * a single stmt cannot define more than one register.  If no register
392  * is defined, return -1.
393  *
394  * The implementation should probably change to an array access.
395  */
396 static int
397 atomdef(s)
398 	struct stmt *s;
399 {
400 	if (s->code == NOP)
401 		return -1;
402 
403 	switch (BPF_CLASS(s->code)) {
404 
405 	case BPF_LD:
406 	case BPF_ALU:
407 		return A_ATOM;
408 
409 	case BPF_LDX:
410 		return X_ATOM;
411 
412 	case BPF_ST:
413 	case BPF_STX:
414 		return s->k;
415 
416 	case BPF_MISC:
417 		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
418 	}
419 	return -1;
420 }
421 
422 static void
423 compute_local_ud(b)
424 	struct block *b;
425 {
426 	struct slist *s;
427 	atomset def = 0, use = 0, kill = 0;
428 	int atom;
429 
430 	for (s = b->stmts; s; s = s->next) {
431 		if (s->s.code == NOP)
432 			continue;
433 		atom = atomuse(&s->s);
434 		if (atom >= 0) {
435 			if (atom == AX_ATOM) {
436 				if (!ATOMELEM(def, X_ATOM))
437 					use |= ATOMMASK(X_ATOM);
438 				if (!ATOMELEM(def, A_ATOM))
439 					use |= ATOMMASK(A_ATOM);
440 			}
441 			else if (atom < N_ATOMS) {
442 				if (!ATOMELEM(def, atom))
443 					use |= ATOMMASK(atom);
444 			}
445 			else
446 				abort();
447 		}
448 		atom = atomdef(&s->s);
449 		if (atom >= 0) {
450 			if (!ATOMELEM(use, atom))
451 				kill |= ATOMMASK(atom);
452 			def |= ATOMMASK(atom);
453 		}
454 	}
455 	if (!ATOMELEM(def, A_ATOM) && BPF_CLASS(b->s.code) == BPF_JMP)
456 		use |= ATOMMASK(A_ATOM);
457 
458 	b->def = def;
459 	b->kill = kill;
460 	b->in_use = use;
461 }
462 
463 /*
464  * Assume graph is already leveled.
465  */
466 static void
467 find_ud(root)
468 	struct block *root;
469 {
470 	int i, maxlevel;
471 	struct block *p;
472 
473 	/*
474 	 * root->level is the highest level no found;
475 	 * count down from there.
476 	 */
477 	maxlevel = root->level;
478 	for (i = maxlevel; i >= 0; --i)
479 		for (p = levels[i]; p; p = p->link) {
480 			compute_local_ud(p);
481 			p->out_use = 0;
482 		}
483 
484 	for (i = 1; i <= maxlevel; ++i) {
485 		for (p = levels[i]; p; p = p->link) {
486 			p->out_use |= JT(p)->in_use | JF(p)->in_use;
487 			p->in_use |= p->out_use &~ p->kill;
488 		}
489 	}
490 }
491 
492 /*
493  * These data structures are used in a Cocke and Shwarz style
494  * value numbering scheme.  Since the flowgraph is acyclic,
495  * exit values can be propagated from a node's predecessors
496  * provided it is uniquely defined.
497  */
498 struct valnode {
499 	int code;
500 	int v0, v1;
501 	int val;
502 	struct valnode *next;
503 };
504 
505 #define MODULUS 213
506 static struct valnode *hashtbl[MODULUS];
507 static int curval;
508 static int maxval;
509 
510 /* Integer constants mapped with the load immediate opcode. */
511 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
512 
513 struct vmapinfo {
514 	int is_const;
515 	bpf_int32 const_val;
516 };
517 
518 struct vmapinfo *vmap;
519 struct valnode *vnode_base;
520 struct valnode *next_vnode;
521 
522 static void
523 init_val()
524 {
525 	curval = 0;
526 	next_vnode = vnode_base;
527 	memset((char *)vmap, 0, maxval * sizeof(*vmap));
528 	memset((char *)hashtbl, 0, sizeof hashtbl);
529 }
530 
531 /* Because we really don't have an IR, this stuff is a little messy. */
532 static int
533 F(code, v0, v1)
534 	int code;
535 	int v0, v1;
536 {
537 	u_int hash;
538 	int val;
539 	struct valnode *p;
540 
541 	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
542 	hash %= MODULUS;
543 
544 	for (p = hashtbl[hash]; p; p = p->next)
545 		if (p->code == code && p->v0 == v0 && p->v1 == v1)
546 			return p->val;
547 
548 	val = ++curval;
549 	if (BPF_MODE(code) == BPF_IMM &&
550 	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
551 		vmap[val].const_val = v0;
552 		vmap[val].is_const = 1;
553 	}
554 	p = next_vnode++;
555 	p->val = val;
556 	p->code = code;
557 	p->v0 = v0;
558 	p->v1 = v1;
559 	p->next = hashtbl[hash];
560 	hashtbl[hash] = p;
561 
562 	return val;
563 }
564 
565 static inline void
566 vstore(s, valp, newval, alter)
567 	struct stmt *s;
568 	int *valp;
569 	int newval;
570 	int alter;
571 {
572 	if (alter && *valp == newval)
573 		s->code = NOP;
574 	else
575 		*valp = newval;
576 }
577 
578 static void
579 fold_op(s, v0, v1)
580 	struct stmt *s;
581 	int v0, v1;
582 {
583 	bpf_int32 a, b;
584 
585 	a = vmap[v0].const_val;
586 	b = vmap[v1].const_val;
587 
588 	switch (BPF_OP(s->code)) {
589 	case BPF_ADD:
590 		a += b;
591 		break;
592 
593 	case BPF_SUB:
594 		a -= b;
595 		break;
596 
597 	case BPF_MUL:
598 		a *= b;
599 		break;
600 
601 	case BPF_DIV:
602 		if (b == 0)
603 			bpf_error("division by zero");
604 		a /= b;
605 		break;
606 
607 	case BPF_AND:
608 		a &= b;
609 		break;
610 
611 	case BPF_OR:
612 		a |= b;
613 		break;
614 
615 	case BPF_LSH:
616 		a <<= b;
617 		break;
618 
619 	case BPF_RSH:
620 		a >>= b;
621 		break;
622 
623 	case BPF_NEG:
624 		a = -a;
625 		break;
626 
627 	default:
628 		abort();
629 	}
630 	s->k = a;
631 	s->code = BPF_LD|BPF_IMM;
632 	done = 0;
633 }
634 
635 static inline struct slist *
636 this_op(s)
637 	struct slist *s;
638 {
639 	while (s != 0 && s->s.code == NOP)
640 		s = s->next;
641 	return s;
642 }
643 
644 static void
645 opt_not(b)
646 	struct block *b;
647 {
648 	struct block *tmp = JT(b);
649 
650 	JT(b) = JF(b);
651 	JF(b) = tmp;
652 }
653 
654 static void
655 opt_peep(b)
656 	struct block *b;
657 {
658 	struct slist *s;
659 	struct slist *next, *last;
660 	int val;
661 
662 	s = b->stmts;
663 	if (s == 0)
664 		return;
665 
666 	last = s;
667 	while (1) {
668 		s = this_op(s);
669 		if (s == 0)
670 			break;
671 		next = this_op(s->next);
672 		if (next == 0)
673 			break;
674 		last = next;
675 
676 		/*
677 		 * st  M[k]	-->	st  M[k]
678 		 * ldx M[k]		tax
679 		 */
680 		if (s->s.code == BPF_ST &&
681 		    next->s.code == (BPF_LDX|BPF_MEM) &&
682 		    s->s.k == next->s.k) {
683 			done = 0;
684 			next->s.code = BPF_MISC|BPF_TAX;
685 		}
686 		/*
687 		 * ld  #k	-->	ldx  #k
688 		 * tax			txa
689 		 */
690 		if (s->s.code == (BPF_LD|BPF_IMM) &&
691 		    next->s.code == (BPF_MISC|BPF_TAX)) {
692 			s->s.code = BPF_LDX|BPF_IMM;
693 			next->s.code = BPF_MISC|BPF_TXA;
694 			done = 0;
695 		}
696 		/*
697 		 * This is an ugly special case, but it happens
698 		 * when you say tcp[k] or udp[k] where k is a constant.
699 		 */
700 		if (s->s.code == (BPF_LD|BPF_IMM)) {
701 			struct slist *add, *tax, *ild;
702 
703 			/*
704 			 * Check that X isn't used on exit from this
705 			 * block (which the optimizer might cause).
706 			 * We know the code generator won't generate
707 			 * any local dependencies.
708 			 */
709 			if (ATOMELEM(b->out_use, X_ATOM))
710 				break;
711 
712 			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
713 				add = next;
714 			else
715 				add = this_op(next->next);
716 			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
717 				break;
718 
719 			tax = this_op(add->next);
720 			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
721 				break;
722 
723 			ild = this_op(tax->next);
724 			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
725 			    BPF_MODE(ild->s.code) != BPF_IND)
726 				break;
727 			/*
728 			 * XXX We need to check that X is not
729 			 * subsequently used.  We know we can eliminate the
730 			 * accumulator modifications since it is defined
731 			 * by the last stmt of this sequence.
732 			 *
733 			 * We want to turn this sequence:
734 			 *
735 			 * (004) ldi     #0x2		{s}
736 			 * (005) ldxms   [14]		{next}  -- optional
737 			 * (006) addx			{add}
738 			 * (007) tax			{tax}
739 			 * (008) ild     [x+0]		{ild}
740 			 *
741 			 * into this sequence:
742 			 *
743 			 * (004) nop
744 			 * (005) ldxms   [14]
745 			 * (006) nop
746 			 * (007) nop
747 			 * (008) ild     [x+2]
748 			 *
749 			 */
750 			ild->s.k += s->s.k;
751 			s->s.code = NOP;
752 			add->s.code = NOP;
753 			tax->s.code = NOP;
754 			done = 0;
755 		}
756 		s = next;
757 	}
758 	/*
759 	 * If we have a subtract to do a comparison, and the X register
760 	 * is a known constant, we can merge this value into the
761 	 * comparison.
762 	 */
763 	if (BPF_OP(b->s.code) == BPF_JEQ) {
764 		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X) &&
765 		    !ATOMELEM(b->out_use, A_ATOM)) {
766 			val = b->val[X_ATOM];
767 			if (vmap[val].is_const) {
768 				/*
769 				 * sub x  ->	nop
770 				 * jeq #y	jeq #(x+y)
771 				 */
772 				b->s.k += vmap[val].const_val;
773 				last->s.code = NOP;
774 				done = 0;
775 			} else if (b->s.k == 0) {
776 				/*
777 				 * sub #x  ->	nop
778 				 * jeq #0	jeq #x
779 				 */
780 				last->s.code = NOP;
781 				b->s.code = BPF_CLASS(b->s.code) |
782 					BPF_OP(b->s.code) | BPF_X;
783 				done = 0;
784 			}
785 		}
786 		/*
787 		 * Likewise, a constant subtract can be simplified.
788 		 */
789 		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K) &&
790 			 !ATOMELEM(b->out_use, A_ATOM)) {
791 
792 			last->s.code = NOP;
793 			b->s.k += last->s.k;
794 			done = 0;
795 		}
796 	}
797 	/*
798 	 * and #k	nop
799 	 * jeq #0  ->	jset #k
800 	 */
801 	if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
802 	    !ATOMELEM(b->out_use, A_ATOM) && b->s.k == 0) {
803 		b->s.k = last->s.k;
804 		b->s.code = BPF_JMP|BPF_K|BPF_JSET;
805 		last->s.code = NOP;
806 		done = 0;
807 		opt_not(b);
808 	}
809 	/*
810 	 * jset #0        ->   never
811 	 * jset #ffffffff ->   always
812 	 */
813 	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
814 		if (b->s.k == 0)
815 			JT(b) = JF(b);
816 		if (b->s.k == 0xffffffff)
817 			JF(b) = JT(b);
818 	}
819 	/*
820 	 * If the accumulator is a known constant, we can compute the
821 	 * comparison result.
822 	 */
823 	val = b->val[A_ATOM];
824 	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
825 		bpf_int32 v = vmap[val].const_val;
826 		switch (BPF_OP(b->s.code)) {
827 
828 		case BPF_JEQ:
829 			v = v == b->s.k;
830 			break;
831 
832 		case BPF_JGT:
833 			v = (unsigned)v > b->s.k;
834 			break;
835 
836 		case BPF_JGE:
837 			v = (unsigned)v >= b->s.k;
838 			break;
839 
840 		case BPF_JSET:
841 			v &= b->s.k;
842 			break;
843 
844 		default:
845 			abort();
846 		}
847 		if (JF(b) != JT(b))
848 			done = 0;
849 		if (v)
850 			JF(b) = JT(b);
851 		else
852 			JT(b) = JF(b);
853 	}
854 }
855 
856 /*
857  * Compute the symbolic value of expression of 's', and update
858  * anything it defines in the value table 'val'.  If 'alter' is true,
859  * do various optimizations.  This code would be cleaner if symbolic
860  * evaluation and code transformations weren't folded together.
861  */
862 static void
863 opt_stmt(s, val, alter)
864 	struct stmt *s;
865 	int val[];
866 	int alter;
867 {
868 	int op;
869 	int v;
870 
871 	switch (s->code) {
872 
873 	case BPF_LD|BPF_ABS|BPF_W:
874 	case BPF_LD|BPF_ABS|BPF_H:
875 	case BPF_LD|BPF_ABS|BPF_B:
876 		v = F(s->code, s->k, 0L);
877 		vstore(s, &val[A_ATOM], v, alter);
878 		break;
879 
880 	case BPF_LD|BPF_IND|BPF_W:
881 	case BPF_LD|BPF_IND|BPF_H:
882 	case BPF_LD|BPF_IND|BPF_B:
883 		v = val[X_ATOM];
884 		if (alter && vmap[v].is_const) {
885 			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
886 			s->k += vmap[v].const_val;
887 			v = F(s->code, s->k, 0L);
888 			done = 0;
889 		}
890 		else
891 			v = F(s->code, s->k, v);
892 		vstore(s, &val[A_ATOM], v, alter);
893 		break;
894 
895 	case BPF_LD|BPF_LEN:
896 		v = F(s->code, 0L, 0L);
897 		vstore(s, &val[A_ATOM], v, alter);
898 		break;
899 
900 	case BPF_LD|BPF_IMM:
901 		v = K(s->k);
902 		vstore(s, &val[A_ATOM], v, alter);
903 		break;
904 
905 	case BPF_LDX|BPF_IMM:
906 		v = K(s->k);
907 		vstore(s, &val[X_ATOM], v, alter);
908 		break;
909 
910 	case BPF_LDX|BPF_MSH|BPF_B:
911 		v = F(s->code, s->k, 0L);
912 		vstore(s, &val[X_ATOM], v, alter);
913 		break;
914 
915 	case BPF_ALU|BPF_NEG:
916 		if (alter && vmap[val[A_ATOM]].is_const) {
917 			s->code = BPF_LD|BPF_IMM;
918 			s->k = -vmap[val[A_ATOM]].const_val;
919 			val[A_ATOM] = K(s->k);
920 		}
921 		else
922 			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
923 		break;
924 
925 	case BPF_ALU|BPF_ADD|BPF_K:
926 	case BPF_ALU|BPF_SUB|BPF_K:
927 	case BPF_ALU|BPF_MUL|BPF_K:
928 	case BPF_ALU|BPF_DIV|BPF_K:
929 	case BPF_ALU|BPF_AND|BPF_K:
930 	case BPF_ALU|BPF_OR|BPF_K:
931 	case BPF_ALU|BPF_LSH|BPF_K:
932 	case BPF_ALU|BPF_RSH|BPF_K:
933 		op = BPF_OP(s->code);
934 		if (alter) {
935 			if (s->k == 0) {
936 				/* don't optimize away "sub #0"
937 				 * as it may be needed later to
938 				 * fixup the generated math code */
939 				if (op == BPF_ADD ||
940 				    op == BPF_LSH || op == BPF_RSH ||
941 				    op == BPF_OR) {
942 					s->code = NOP;
943 					break;
944 				}
945 				if (op == BPF_MUL || op == BPF_AND) {
946 					s->code = BPF_LD|BPF_IMM;
947 					val[A_ATOM] = K(s->k);
948 					break;
949 				}
950 			}
951 			if (vmap[val[A_ATOM]].is_const) {
952 				fold_op(s, val[A_ATOM], K(s->k));
953 				val[A_ATOM] = K(s->k);
954 				break;
955 			}
956 		}
957 		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
958 		break;
959 
960 	case BPF_ALU|BPF_ADD|BPF_X:
961 	case BPF_ALU|BPF_SUB|BPF_X:
962 	case BPF_ALU|BPF_MUL|BPF_X:
963 	case BPF_ALU|BPF_DIV|BPF_X:
964 	case BPF_ALU|BPF_AND|BPF_X:
965 	case BPF_ALU|BPF_OR|BPF_X:
966 	case BPF_ALU|BPF_LSH|BPF_X:
967 	case BPF_ALU|BPF_RSH|BPF_X:
968 		op = BPF_OP(s->code);
969 		if (alter && vmap[val[X_ATOM]].is_const) {
970 			if (vmap[val[A_ATOM]].is_const) {
971 				fold_op(s, val[A_ATOM], val[X_ATOM]);
972 				val[A_ATOM] = K(s->k);
973 			}
974 			else {
975 				s->code = BPF_ALU|BPF_K|op;
976 				s->k = vmap[val[X_ATOM]].const_val;
977 				done = 0;
978 				val[A_ATOM] =
979 					F(s->code, val[A_ATOM], K(s->k));
980 			}
981 			break;
982 		}
983 		/*
984 		 * Check if we're doing something to an accumulator
985 		 * that is 0, and simplify.  This may not seem like
986 		 * much of a simplification but it could open up further
987 		 * optimizations.
988 		 * XXX We could also check for mul by 1, etc.
989 		 */
990 		if (alter && vmap[val[A_ATOM]].is_const
991 		    && vmap[val[A_ATOM]].const_val == 0) {
992 			if (op == BPF_ADD || op == BPF_OR) {
993 				s->code = BPF_MISC|BPF_TXA;
994 				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
995 				break;
996 			}
997 			else if (op == BPF_MUL || op == BPF_DIV ||
998 				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
999 				s->code = BPF_LD|BPF_IMM;
1000 				s->k = 0;
1001 				vstore(s, &val[A_ATOM], K(s->k), alter);
1002 				break;
1003 			}
1004 			else if (op == BPF_NEG) {
1005 				s->code = NOP;
1006 				break;
1007 			}
1008 		}
1009 		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1010 		break;
1011 
1012 	case BPF_MISC|BPF_TXA:
1013 		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1014 		break;
1015 
1016 	case BPF_LD|BPF_MEM:
1017 		v = val[s->k];
1018 		if (alter && vmap[v].is_const) {
1019 			s->code = BPF_LD|BPF_IMM;
1020 			s->k = vmap[v].const_val;
1021 			done = 0;
1022 		}
1023 		vstore(s, &val[A_ATOM], v, alter);
1024 		break;
1025 
1026 	case BPF_MISC|BPF_TAX:
1027 		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1028 		break;
1029 
1030 	case BPF_LDX|BPF_MEM:
1031 		v = val[s->k];
1032 		if (alter && vmap[v].is_const) {
1033 			s->code = BPF_LDX|BPF_IMM;
1034 			s->k = vmap[v].const_val;
1035 			done = 0;
1036 		}
1037 		vstore(s, &val[X_ATOM], v, alter);
1038 		break;
1039 
1040 	case BPF_ST:
1041 		vstore(s, &val[s->k], val[A_ATOM], alter);
1042 		break;
1043 
1044 	case BPF_STX:
1045 		vstore(s, &val[s->k], val[X_ATOM], alter);
1046 		break;
1047 	}
1048 }
1049 
1050 static void
1051 deadstmt(s, last)
1052 	register struct stmt *s;
1053 	register struct stmt *last[];
1054 {
1055 	register int atom;
1056 
1057 	atom = atomuse(s);
1058 	if (atom >= 0) {
1059 		if (atom == AX_ATOM) {
1060 			last[X_ATOM] = 0;
1061 			last[A_ATOM] = 0;
1062 		}
1063 		else
1064 			last[atom] = 0;
1065 	}
1066 	atom = atomdef(s);
1067 	if (atom >= 0) {
1068 		if (last[atom]) {
1069 			done = 0;
1070 			last[atom]->code = NOP;
1071 		}
1072 		last[atom] = s;
1073 	}
1074 }
1075 
1076 static void
1077 opt_deadstores(b)
1078 	register struct block *b;
1079 {
1080 	register struct slist *s;
1081 	register int atom;
1082 	struct stmt *last[N_ATOMS];
1083 
1084 	memset((char *)last, 0, sizeof last);
1085 
1086 	for (s = b->stmts; s != 0; s = s->next)
1087 		deadstmt(&s->s, last);
1088 	deadstmt(&b->s, last);
1089 
1090 	for (atom = 0; atom < N_ATOMS; ++atom)
1091 		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1092 			last[atom]->code = NOP;
1093 			done = 0;
1094 		}
1095 }
1096 
1097 static void
1098 opt_blk(b, do_stmts)
1099 	struct block *b;
1100 	int do_stmts;
1101 {
1102 	struct slist *s;
1103 	struct edge *p;
1104 	int i;
1105 	bpf_int32 aval;
1106 
1107 #if 0
1108 	for (s = b->stmts; s && s->next; s = s->next)
1109 		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1110 			do_stmts = 0;
1111 			break;
1112 		}
1113 #endif
1114 
1115 	/*
1116 	 * Initialize the atom values.
1117 	 * If we have no predecessors, everything is undefined.
1118 	 * Otherwise, we inherent our values from our predecessors.
1119 	 * If any register has an ambiguous value (i.e. control paths are
1120 	 * merging) give it the undefined value of 0.
1121 	 */
1122 	p = b->in_edges;
1123 	if (p == 0)
1124 		memset((char *)b->val, 0, sizeof(b->val));
1125 	else {
1126 		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1127 		while ((p = p->next) != NULL) {
1128 			for (i = 0; i < N_ATOMS; ++i)
1129 				if (b->val[i] != p->pred->val[i])
1130 					b->val[i] = 0;
1131 		}
1132 	}
1133 	aval = b->val[A_ATOM];
1134 	for (s = b->stmts; s; s = s->next)
1135 		opt_stmt(&s->s, b->val, do_stmts);
1136 
1137 	/*
1138 	 * This is a special case: if we don't use anything from this
1139 	 * block, and we load the accumulator with value that is
1140 	 * already there, or if this block is a return,
1141 	 * eliminate all the statements.
1142 	 */
1143 	if (do_stmts &&
1144 	    ((b->out_use == 0 && aval != 0 &&b->val[A_ATOM] == aval) ||
1145 	     BPF_CLASS(b->s.code) == BPF_RET)) {
1146 		if (b->stmts != 0) {
1147 			b->stmts = 0;
1148 			done = 0;
1149 		}
1150 	} else {
1151 		opt_peep(b);
1152 		opt_deadstores(b);
1153 	}
1154 	/*
1155 	 * Set up values for branch optimizer.
1156 	 */
1157 	if (BPF_SRC(b->s.code) == BPF_K)
1158 		b->oval = K(b->s.k);
1159 	else
1160 		b->oval = b->val[X_ATOM];
1161 	b->et.code = b->s.code;
1162 	b->ef.code = -b->s.code;
1163 }
1164 
1165 /*
1166  * Return true if any register that is used on exit from 'succ', has
1167  * an exit value that is different from the corresponding exit value
1168  * from 'b'.
1169  */
1170 static int
1171 use_conflict(b, succ)
1172 	struct block *b, *succ;
1173 {
1174 	int atom;
1175 	atomset use = succ->out_use;
1176 
1177 	if (use == 0)
1178 		return 0;
1179 
1180 	for (atom = 0; atom < N_ATOMS; ++atom)
1181 		if (ATOMELEM(use, atom))
1182 			if (b->val[atom] != succ->val[atom])
1183 				return 1;
1184 	return 0;
1185 }
1186 
1187 static struct block *
1188 fold_edge(child, ep)
1189 	struct block *child;
1190 	struct edge *ep;
1191 {
1192 	int sense;
1193 	int aval0, aval1, oval0, oval1;
1194 	int code = ep->code;
1195 
1196 	if (code < 0) {
1197 		code = -code;
1198 		sense = 0;
1199 	} else
1200 		sense = 1;
1201 
1202 	if (child->s.code != code)
1203 		return 0;
1204 
1205 	aval0 = child->val[A_ATOM];
1206 	oval0 = child->oval;
1207 	aval1 = ep->pred->val[A_ATOM];
1208 	oval1 = ep->pred->oval;
1209 
1210 	if (aval0 != aval1)
1211 		return 0;
1212 
1213 	if (oval0 == oval1)
1214 		/*
1215 		 * The operands are identical, so the
1216 		 * result is true if a true branch was
1217 		 * taken to get here, otherwise false.
1218 		 */
1219 		return sense ? JT(child) : JF(child);
1220 
1221 	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1222 		/*
1223 		 * At this point, we only know the comparison if we
1224 		 * came down the true branch, and it was an equality
1225 		 * comparison with a constant.  We rely on the fact that
1226 		 * distinct constants have distinct value numbers.
1227 		 */
1228 		return JF(child);
1229 
1230 	return 0;
1231 }
1232 
1233 static void
1234 opt_j(ep)
1235 	struct edge *ep;
1236 {
1237 	register int i, k;
1238 	register struct block *target;
1239 
1240 	if (JT(ep->succ) == 0)
1241 		return;
1242 
1243 	if (JT(ep->succ) == JF(ep->succ)) {
1244 		/*
1245 		 * Common branch targets can be eliminated, provided
1246 		 * there is no data dependency.
1247 		 */
1248 		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1249 			done = 0;
1250 			ep->succ = JT(ep->succ);
1251 		}
1252 	}
1253 	/*
1254 	 * For each edge dominator that matches the successor of this
1255 	 * edge, promote the edge successor to the its grandchild.
1256 	 *
1257 	 * XXX We violate the set abstraction here in favor a reasonably
1258 	 * efficient loop.
1259 	 */
1260  top:
1261 	for (i = 0; i < edgewords; ++i) {
1262 		register bpf_u_int32 x = ep->edom[i];
1263 
1264 		while (x != 0) {
1265 			k = ffs(x) - 1;
1266 			x &=~ (1 << k);
1267 			k += i * BITS_PER_WORD;
1268 
1269 			target = fold_edge(ep->succ, edges[k]);
1270 			/*
1271 			 * Check that there is no data dependency between
1272 			 * nodes that will be violated if we move the edge.
1273 			 */
1274 			if (target != 0 && !use_conflict(ep->pred, target)) {
1275 				done = 0;
1276 				ep->succ = target;
1277 				if (JT(target) != 0)
1278 					/*
1279 					 * Start over unless we hit a leaf.
1280 					 */
1281 					goto top;
1282 				return;
1283 			}
1284 		}
1285 	}
1286 }
1287 
1288 
1289 static void
1290 or_pullup(b)
1291 	struct block *b;
1292 {
1293 	int val, at_top;
1294 	struct block *pull;
1295 	struct block **diffp, **samep;
1296 	struct edge *ep;
1297 
1298 	ep = b->in_edges;
1299 	if (ep == 0)
1300 		return;
1301 
1302 	/*
1303 	 * Make sure each predecessor loads the same value.
1304 	 * XXX why?
1305 	 */
1306 	val = ep->pred->val[A_ATOM];
1307 	for (ep = ep->next; ep != 0; ep = ep->next)
1308 		if (val != ep->pred->val[A_ATOM])
1309 			return;
1310 
1311 	if (JT(b->in_edges->pred) == b)
1312 		diffp = &JT(b->in_edges->pred);
1313 	else
1314 		diffp = &JF(b->in_edges->pred);
1315 
1316 	at_top = 1;
1317 	while (1) {
1318 		if (*diffp == 0)
1319 			return;
1320 
1321 		if (JT(*diffp) != JT(b))
1322 			return;
1323 
1324 		if (!SET_MEMBER((*diffp)->dom, b->id))
1325 			return;
1326 
1327 		if ((*diffp)->val[A_ATOM] != val)
1328 			break;
1329 
1330 		diffp = &JF(*diffp);
1331 		at_top = 0;
1332 	}
1333 	samep = &JF(*diffp);
1334 	while (1) {
1335 		if (*samep == 0)
1336 			return;
1337 
1338 		if (JT(*samep) != JT(b))
1339 			return;
1340 
1341 		if (!SET_MEMBER((*samep)->dom, b->id))
1342 			return;
1343 
1344 		if ((*samep)->val[A_ATOM] == val)
1345 			break;
1346 
1347 		/* XXX Need to check that there are no data dependencies
1348 		   between dp0 and dp1.  Currently, the code generator
1349 		   will not produce such dependencies. */
1350 		samep = &JF(*samep);
1351 	}
1352 #ifdef notdef
1353 	/* XXX This doesn't cover everything. */
1354 	for (i = 0; i < N_ATOMS; ++i)
1355 		if ((*samep)->val[i] != pred->val[i])
1356 			return;
1357 #endif
1358 	/* Pull up the node. */
1359 	pull = *samep;
1360 	*samep = JF(pull);
1361 	JF(pull) = *diffp;
1362 
1363 	/*
1364 	 * At the top of the chain, each predecessor needs to point at the
1365 	 * pulled up node.  Inside the chain, there is only one predecessor
1366 	 * to worry about.
1367 	 */
1368 	if (at_top) {
1369 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1370 			if (JT(ep->pred) == b)
1371 				JT(ep->pred) = pull;
1372 			else
1373 				JF(ep->pred) = pull;
1374 		}
1375 	}
1376 	else
1377 		*diffp = pull;
1378 
1379 	done = 0;
1380 }
1381 
1382 static void
1383 and_pullup(b)
1384 	struct block *b;
1385 {
1386 	int val, at_top;
1387 	struct block *pull;
1388 	struct block **diffp, **samep;
1389 	struct edge *ep;
1390 
1391 	ep = b->in_edges;
1392 	if (ep == 0)
1393 		return;
1394 
1395 	/*
1396 	 * Make sure each predecessor loads the same value.
1397 	 */
1398 	val = ep->pred->val[A_ATOM];
1399 	for (ep = ep->next; ep != 0; ep = ep->next)
1400 		if (val != ep->pred->val[A_ATOM])
1401 			return;
1402 
1403 	if (JT(b->in_edges->pred) == b)
1404 		diffp = &JT(b->in_edges->pred);
1405 	else
1406 		diffp = &JF(b->in_edges->pred);
1407 
1408 	at_top = 1;
1409 	while (1) {
1410 		if (*diffp == 0)
1411 			return;
1412 
1413 		if (JF(*diffp) != JF(b))
1414 			return;
1415 
1416 		if (!SET_MEMBER((*diffp)->dom, b->id))
1417 			return;
1418 
1419 		if ((*diffp)->val[A_ATOM] != val)
1420 			break;
1421 
1422 		diffp = &JT(*diffp);
1423 		at_top = 0;
1424 	}
1425 	samep = &JT(*diffp);
1426 	while (1) {
1427 		if (*samep == 0)
1428 			return;
1429 
1430 		if (JF(*samep) != JF(b))
1431 			return;
1432 
1433 		if (!SET_MEMBER((*samep)->dom, b->id))
1434 			return;
1435 
1436 		if ((*samep)->val[A_ATOM] == val)
1437 			break;
1438 
1439 		/* XXX Need to check that there are no data dependencies
1440 		   between diffp and samep.  Currently, the code generator
1441 		   will not produce such dependencies. */
1442 		samep = &JT(*samep);
1443 	}
1444 #ifdef notdef
1445 	/* XXX This doesn't cover everything. */
1446 	for (i = 0; i < N_ATOMS; ++i)
1447 		if ((*samep)->val[i] != pred->val[i])
1448 			return;
1449 #endif
1450 	/* Pull up the node. */
1451 	pull = *samep;
1452 	*samep = JT(pull);
1453 	JT(pull) = *diffp;
1454 
1455 	/*
1456 	 * At the top of the chain, each predecessor needs to point at the
1457 	 * pulled up node.  Inside the chain, there is only one predecessor
1458 	 * to worry about.
1459 	 */
1460 	if (at_top) {
1461 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1462 			if (JT(ep->pred) == b)
1463 				JT(ep->pred) = pull;
1464 			else
1465 				JF(ep->pred) = pull;
1466 		}
1467 	}
1468 	else
1469 		*diffp = pull;
1470 
1471 	done = 0;
1472 }
1473 
1474 static void
1475 opt_blks(root, do_stmts)
1476 	struct block *root;
1477 	int do_stmts;
1478 {
1479 	int i, maxlevel;
1480 	struct block *p;
1481 
1482 	init_val();
1483 	maxlevel = root->level;
1484 
1485 	find_inedges(root);
1486 	for (i = maxlevel; i >= 0; --i)
1487 		for (p = levels[i]; p; p = p->link)
1488 			opt_blk(p, do_stmts);
1489 
1490 	if (do_stmts)
1491 		/*
1492 		 * No point trying to move branches; it can't possibly
1493 		 * make a difference at this point.
1494 		 */
1495 		return;
1496 
1497 	for (i = 1; i <= maxlevel; ++i) {
1498 		for (p = levels[i]; p; p = p->link) {
1499 			opt_j(&p->et);
1500 			opt_j(&p->ef);
1501 		}
1502 	}
1503 
1504 	find_inedges(root);
1505 	for (i = 1; i <= maxlevel; ++i) {
1506 		for (p = levels[i]; p; p = p->link) {
1507 			or_pullup(p);
1508 			and_pullup(p);
1509 		}
1510 	}
1511 }
1512 
1513 static inline void
1514 link_inedge(parent, child)
1515 	struct edge *parent;
1516 	struct block *child;
1517 {
1518 	parent->next = child->in_edges;
1519 	child->in_edges = parent;
1520 }
1521 
1522 static void
1523 find_inedges(root)
1524 	struct block *root;
1525 {
1526 	int i;
1527 	struct block *b;
1528 
1529 	for (i = 0; i < n_blocks; ++i)
1530 		blocks[i]->in_edges = 0;
1531 
1532 	/*
1533 	 * Traverse the graph, adding each edge to the predecessor
1534 	 * list of its successors.  Skip the leaves (i.e. level 0).
1535 	 */
1536 	for (i = root->level; i > 0; --i) {
1537 		for (b = levels[i]; b != 0; b = b->link) {
1538 			link_inedge(&b->et, JT(b));
1539 			link_inedge(&b->ef, JF(b));
1540 		}
1541 	}
1542 }
1543 
1544 static void
1545 opt_root(b)
1546 	struct block **b;
1547 {
1548 	struct slist *tmp, *s;
1549 
1550 	s = (*b)->stmts;
1551 	(*b)->stmts = 0;
1552 	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1553 		*b = JT(*b);
1554 
1555 	tmp = (*b)->stmts;
1556 	if (tmp != 0)
1557 		sappend(s, tmp);
1558 	(*b)->stmts = s;
1559 
1560 	/*
1561 	 * If the root node is a return, then there is no
1562 	 * point executing any statements (since the bpf machine
1563 	 * has no side effects).
1564 	 */
1565 	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1566 		(*b)->stmts = 0;
1567 }
1568 
1569 static void
1570 opt_loop(root, do_stmts)
1571 	struct block *root;
1572 	int do_stmts;
1573 {
1574 
1575 #ifdef BDEBUG
1576 	if (dflag > 1) {
1577 		printf("opt_loop(root, %d) begin\n", do_stmts);
1578 		opt_dump(root);
1579 	}
1580 #endif
1581 	do {
1582 		done = 1;
1583 		find_levels(root);
1584 		find_dom(root);
1585 		find_closure(root);
1586 		find_ud(root);
1587 		find_edom(root);
1588 		opt_blks(root, do_stmts);
1589 #ifdef BDEBUG
1590 		if (dflag > 1) {
1591 			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1592 			opt_dump(root);
1593 		}
1594 #endif
1595 	} while (!done);
1596 }
1597 
1598 /*
1599  * Optimize the filter code in its dag representation.
1600  */
1601 void
1602 bpf_optimize(rootp)
1603 	struct block **rootp;
1604 {
1605 	struct block *root;
1606 
1607 	root = *rootp;
1608 
1609 	opt_init(root);
1610 	opt_loop(root, 0);
1611 	opt_loop(root, 1);
1612 	intern_blocks(root);
1613 #ifdef BDEBUG
1614 	if (dflag > 1) {
1615 		printf("after intern_blocks()\n");
1616 		opt_dump(root);
1617 	}
1618 #endif
1619 	opt_root(rootp);
1620 #ifdef BDEBUG
1621 	if (dflag > 1) {
1622 		printf("after opt_root()\n");
1623 		opt_dump(root);
1624 	}
1625 #endif
1626 	opt_cleanup();
1627 }
1628 
1629 static void
1630 make_marks(p)
1631 	struct block *p;
1632 {
1633 	if (!isMarked(p)) {
1634 		Mark(p);
1635 		if (BPF_CLASS(p->s.code) != BPF_RET) {
1636 			make_marks(JT(p));
1637 			make_marks(JF(p));
1638 		}
1639 	}
1640 }
1641 
1642 /*
1643  * Mark code array such that isMarked(i) is true
1644  * only for nodes that are alive.
1645  */
1646 static void
1647 mark_code(p)
1648 	struct block *p;
1649 {
1650 	cur_mark += 1;
1651 	make_marks(p);
1652 }
1653 
1654 /*
1655  * True iff the two stmt lists load the same value from the packet into
1656  * the accumulator.
1657  */
1658 static int
1659 eq_slist(x, y)
1660 	struct slist *x, *y;
1661 {
1662 	while (1) {
1663 		while (x && x->s.code == NOP)
1664 			x = x->next;
1665 		while (y && y->s.code == NOP)
1666 			y = y->next;
1667 		if (x == 0)
1668 			return y == 0;
1669 		if (y == 0)
1670 			return x == 0;
1671 		if (x->s.code != y->s.code || x->s.k != y->s.k)
1672 			return 0;
1673 		x = x->next;
1674 		y = y->next;
1675 	}
1676 }
1677 
1678 static inline int
1679 eq_blk(b0, b1)
1680 	struct block *b0, *b1;
1681 {
1682 	if (b0->s.code == b1->s.code &&
1683 	    b0->s.k == b1->s.k &&
1684 	    b0->et.succ == b1->et.succ &&
1685 	    b0->ef.succ == b1->ef.succ)
1686 		return eq_slist(b0->stmts, b1->stmts);
1687 	return 0;
1688 }
1689 
1690 static void
1691 intern_blocks(root)
1692 	struct block *root;
1693 {
1694 	struct block *p;
1695 	int i, j;
1696 	int done;
1697  top:
1698 	done = 1;
1699 	for (i = 0; i < n_blocks; ++i)
1700 		blocks[i]->link = 0;
1701 
1702 	mark_code(root);
1703 
1704 	for (i = n_blocks - 1; --i >= 0; ) {
1705 		if (!isMarked(blocks[i]))
1706 			continue;
1707 		for (j = i + 1; j < n_blocks; ++j) {
1708 			if (!isMarked(blocks[j]))
1709 				continue;
1710 			if (eq_blk(blocks[i], blocks[j])) {
1711 				blocks[i]->link = blocks[j]->link ?
1712 					blocks[j]->link : blocks[j];
1713 				break;
1714 			}
1715 		}
1716 	}
1717 	for (i = 0; i < n_blocks; ++i) {
1718 		p = blocks[i];
1719 		if (JT(p) == 0)
1720 			continue;
1721 		if (JT(p)->link) {
1722 			done = 0;
1723 			JT(p) = JT(p)->link;
1724 		}
1725 		if (JF(p)->link) {
1726 			done = 0;
1727 			JF(p) = JF(p)->link;
1728 		}
1729 	}
1730 	if (!done)
1731 		goto top;
1732 }
1733 
1734 static void
1735 opt_cleanup()
1736 {
1737 	free((void *)vnode_base);
1738 	free((void *)vmap);
1739 	free((void *)edges);
1740 	free((void *)space);
1741 	free((void *)levels);
1742 	free((void *)blocks);
1743 }
1744 
1745 /*
1746  * Return the number of stmts in 's'.
1747  */
1748 static int
1749 slength(s)
1750 	struct slist *s;
1751 {
1752 	int n = 0;
1753 
1754 	for (; s; s = s->next)
1755 		if (s->s.code != NOP)
1756 			++n;
1757 	return n;
1758 }
1759 
1760 /*
1761  * Return the number of nodes reachable by 'p'.
1762  * All nodes should be initially unmarked.
1763  */
1764 static int
1765 count_blocks(p)
1766 	struct block *p;
1767 {
1768 	if (p == 0 || isMarked(p))
1769 		return 0;
1770 	Mark(p);
1771 	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1772 }
1773 
1774 /*
1775  * Do a depth first search on the flow graph, numbering the
1776  * the basic blocks, and entering them into the 'blocks' array.`
1777  */
1778 static void
1779 number_blks_r(p)
1780 	struct block *p;
1781 {
1782 	int n;
1783 
1784 	if (p == 0 || isMarked(p))
1785 		return;
1786 
1787 	Mark(p);
1788 	n = n_blocks++;
1789 	p->id = n;
1790 	blocks[n] = p;
1791 
1792 	number_blks_r(JT(p));
1793 	number_blks_r(JF(p));
1794 }
1795 
1796 /*
1797  * Return the number of stmts in the flowgraph reachable by 'p'.
1798  * The nodes should be unmarked before calling.
1799  *
1800  * Note that "stmts" means "instructions", and that this includes
1801  *
1802  *	side-effect statements in 'p' (slength(p->stmts));
1803  *
1804  *	statements in the true branch from 'p' (count_stmts(JT(p)));
1805  *
1806  *	statements in the false branch from 'p' (count_stmts(JF(p)));
1807  *
1808  *	the conditional jump itself (1);
1809  *
1810  *	an extra long jump if the true branch requires it (p->longjt);
1811  *
1812  *	an extra long jump if the false branch requires it (p->longjf).
1813  */
1814 static int
1815 count_stmts(p)
1816 	struct block *p;
1817 {
1818 	int n;
1819 
1820 	if (p == 0 || isMarked(p))
1821 		return 0;
1822 	Mark(p);
1823 	n = count_stmts(JT(p)) + count_stmts(JF(p));
1824 	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1825 }
1826 
1827 /*
1828  * Allocate memory.  All allocation is done before optimization
1829  * is begun.  A linear bound on the size of all data structures is computed
1830  * from the total number of blocks and/or statements.
1831  */
1832 static void
1833 opt_init(root)
1834 	struct block *root;
1835 {
1836 	bpf_u_int32 *p;
1837 	int i, n, max_stmts;
1838 
1839 	/*
1840 	 * First, count the blocks, so we can malloc an array to map
1841 	 * block number to block.  Then, put the blocks into the array.
1842 	 */
1843 	unMarkAll();
1844 	n = count_blocks(root);
1845 	blocks = (struct block **)malloc(n * sizeof(*blocks));
1846 	if (blocks == NULL)
1847 		bpf_error("malloc");
1848 	unMarkAll();
1849 	n_blocks = 0;
1850 	number_blks_r(root);
1851 
1852 	n_edges = 2 * n_blocks;
1853 	edges = (struct edge **)malloc(n_edges * sizeof(*edges));
1854 	if (edges == NULL)
1855 		bpf_error("malloc");
1856 
1857 	/*
1858 	 * The number of levels is bounded by the number of nodes.
1859 	 */
1860 	levels = (struct block **)malloc(n_blocks * sizeof(*levels));
1861 	if (levels == NULL)
1862 		bpf_error("malloc");
1863 
1864 	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1865 	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1866 
1867 	/* XXX */
1868 	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1869 				 + n_edges * edgewords * sizeof(*space));
1870 	if (space == NULL)
1871 		bpf_error("malloc");
1872 	p = space;
1873 	all_dom_sets = p;
1874 	for (i = 0; i < n; ++i) {
1875 		blocks[i]->dom = p;
1876 		p += nodewords;
1877 	}
1878 	all_closure_sets = p;
1879 	for (i = 0; i < n; ++i) {
1880 		blocks[i]->closure = p;
1881 		p += nodewords;
1882 	}
1883 	all_edge_sets = p;
1884 	for (i = 0; i < n; ++i) {
1885 		register struct block *b = blocks[i];
1886 
1887 		b->et.edom = p;
1888 		p += edgewords;
1889 		b->ef.edom = p;
1890 		p += edgewords;
1891 		b->et.id = i;
1892 		edges[i] = &b->et;
1893 		b->ef.id = n_blocks + i;
1894 		edges[n_blocks + i] = &b->ef;
1895 		b->et.pred = b;
1896 		b->ef.pred = b;
1897 	}
1898 	max_stmts = 0;
1899 	for (i = 0; i < n; ++i)
1900 		max_stmts += slength(blocks[i]->stmts) + 1;
1901 	/*
1902 	 * We allocate at most 3 value numbers per statement,
1903 	 * so this is an upper bound on the number of valnodes
1904 	 * we'll need.
1905 	 */
1906 	maxval = 3 * max_stmts;
1907 	vmap = (struct vmapinfo *)malloc(maxval * sizeof(*vmap));
1908 	vnode_base = (struct valnode *)malloc(maxval * sizeof(*vnode_base));
1909 	if (vmap == NULL || vnode_base == NULL)
1910 		bpf_error("malloc");
1911 }
1912 
1913 /*
1914  * Some pointers used to convert the basic block form of the code,
1915  * into the array form that BPF requires.  'fstart' will point to
1916  * the malloc'd array while 'ftail' is used during the recursive traversal.
1917  */
1918 static struct bpf_insn *fstart;
1919 static struct bpf_insn *ftail;
1920 
1921 #ifdef BDEBUG
1922 int bids[1000];
1923 #endif
1924 
1925 /*
1926  * Returns true if successful.  Returns false if a branch has
1927  * an offset that is too large.  If so, we have marked that
1928  * branch so that on a subsequent iteration, it will be treated
1929  * properly.
1930  */
1931 static int
1932 convert_code_r(p)
1933 	struct block *p;
1934 {
1935 	struct bpf_insn *dst;
1936 	struct slist *src;
1937 	int slen;
1938 	u_int off;
1939 	int extrajmps;		/* number of extra jumps inserted */
1940 	struct slist **offset = NULL;
1941 
1942 	if (p == 0 || isMarked(p))
1943 		return (1);
1944 	Mark(p);
1945 
1946 	if (convert_code_r(JF(p)) == 0)
1947 		return (0);
1948 	if (convert_code_r(JT(p)) == 0)
1949 		return (0);
1950 
1951 	slen = slength(p->stmts);
1952 	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
1953 		/* inflate length by any extra jumps */
1954 
1955 	p->offset = dst - fstart;
1956 
1957 	/* generate offset[] for convenience  */
1958 	if (slen) {
1959 		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
1960 		if (!offset) {
1961 			bpf_error("not enough core");
1962 			/*NOTREACHED*/
1963 		}
1964 	}
1965 	src = p->stmts;
1966 	for (off = 0; off < slen && src; off++) {
1967 #if 0
1968 		printf("off=%d src=%x\n", off, src);
1969 #endif
1970 		offset[off] = src;
1971 		src = src->next;
1972 	}
1973 
1974 	off = 0;
1975 	for (src = p->stmts; src; src = src->next) {
1976 		if (src->s.code == NOP)
1977 			continue;
1978 		dst->code = (u_short)src->s.code;
1979 		dst->k = src->s.k;
1980 
1981 		/* fill block-local relative jump */
1982 		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
1983 #if 0
1984 			if (src->s.jt || src->s.jf) {
1985 				bpf_error("illegal jmp destination");
1986 				/*NOTREACHED*/
1987 			}
1988 #endif
1989 			goto filled;
1990 		}
1991 		if (off == slen - 2)	/*???*/
1992 			goto filled;
1993 
1994 	    {
1995 		int i;
1996 		int jt, jf;
1997 		char *ljerr = "%s for block-local relative jump: off=%d";
1998 
1999 #if 0
2000 		printf("code=%x off=%d %x %x\n", src->s.code,
2001 			off, src->s.jt, src->s.jf);
2002 #endif
2003 
2004 		if (!src->s.jt || !src->s.jf) {
2005 			bpf_error(ljerr, "no jmp destination", off);
2006 			/*NOTREACHED*/
2007 		}
2008 
2009 		jt = jf = 0;
2010 		for (i = 0; i < slen; i++) {
2011 			if (offset[i] == src->s.jt) {
2012 				if (jt) {
2013 					bpf_error(ljerr, "multiple matches", off);
2014 					/*NOTREACHED*/
2015 				}
2016 
2017 				dst->jt = i - off - 1;
2018 				jt++;
2019 			}
2020 			if (offset[i] == src->s.jf) {
2021 				if (jf) {
2022 					bpf_error(ljerr, "multiple matches", off);
2023 					/*NOTREACHED*/
2024 				}
2025 				dst->jf = i - off - 1;
2026 				jf++;
2027 			}
2028 		}
2029 		if (!jt || !jf) {
2030 			bpf_error(ljerr, "no destination found", off);
2031 			/*NOTREACHED*/
2032 		}
2033 	    }
2034 filled:
2035 		++dst;
2036 		++off;
2037 	}
2038 	if (offset)
2039 		free(offset);
2040 
2041 #ifdef BDEBUG
2042 	bids[dst - fstart] = p->id + 1;
2043 #endif
2044 	dst->code = (u_short)p->s.code;
2045 	dst->k = p->s.k;
2046 	if (JT(p)) {
2047 		extrajmps = 0;
2048 		off = JT(p)->offset - (p->offset + slen) - 1;
2049 		if (off >= 256) {
2050 		    /* offset too large for branch, must add a jump */
2051 		    if (p->longjt == 0) {
2052 		    	/* mark this instruction and retry */
2053 			p->longjt++;
2054 			return(0);
2055 		    }
2056 		    /* branch if T to following jump */
2057 		    dst->jt = extrajmps;
2058 		    extrajmps++;
2059 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2060 		    dst[extrajmps].k = off - extrajmps;
2061 		}
2062 		else
2063 		    dst->jt = off;
2064 		off = JF(p)->offset - (p->offset + slen) - 1;
2065 		if (off >= 256) {
2066 		    /* offset too large for branch, must add a jump */
2067 		    if (p->longjf == 0) {
2068 		    	/* mark this instruction and retry */
2069 			p->longjf++;
2070 			return(0);
2071 		    }
2072 		    /* branch if F to following jump */
2073 		    /* if two jumps are inserted, F goes to second one */
2074 		    dst->jf = extrajmps;
2075 		    extrajmps++;
2076 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2077 		    dst[extrajmps].k = off - extrajmps;
2078 		}
2079 		else
2080 		    dst->jf = off;
2081 	}
2082 	return (1);
2083 }
2084 
2085 
2086 /*
2087  * Convert flowgraph intermediate representation to the
2088  * BPF array representation.  Set *lenp to the number of instructions.
2089  */
2090 struct bpf_insn *
2091 icode_to_fcode(root, lenp)
2092 	struct block *root;
2093 	int *lenp;
2094 {
2095 	int n;
2096 	struct bpf_insn *fp;
2097 
2098 	/*
2099 	 * Loop doing convert_code_r() until no branches remain
2100 	 * with too-large offsets.
2101 	 */
2102 	while (1) {
2103 	    unMarkAll();
2104 	    n = *lenp = count_stmts(root);
2105 
2106 	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2107 	    if (fp == NULL)
2108 		    bpf_error("malloc");
2109 	    memset((char *)fp, 0, sizeof(*fp) * n);
2110 	    fstart = fp;
2111 	    ftail = fp + n;
2112 
2113 	    unMarkAll();
2114 	    if (convert_code_r(root))
2115 		break;
2116 	    free(fp);
2117 	}
2118 
2119 	return fp;
2120 }
2121 
2122 /*
2123  * Make a copy of a BPF program and put it in the "fcode" member of
2124  * a "pcap_t".
2125  *
2126  * If we fail to allocate memory for the copy, fill in the "errbuf"
2127  * member of the "pcap_t" with an error message, and return -1;
2128  * otherwise, return 0.
2129  */
2130 int
2131 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2132 {
2133 	size_t prog_size;
2134 
2135 	/*
2136 	 * Free up any already installed program.
2137 	 */
2138 	pcap_freecode(&p->fcode);
2139 
2140 	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2141 	p->fcode.bf_len = fp->bf_len;
2142 	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2143 	if (p->fcode.bf_insns == NULL) {
2144 		snprintf(p->errbuf, sizeof(p->errbuf),
2145 			 "malloc: %s", pcap_strerror(errno));
2146 		return (-1);
2147 	}
2148 	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2149 	return (0);
2150 }
2151 
2152 #ifdef BDEBUG
2153 static void
2154 opt_dump(root)
2155 	struct block *root;
2156 {
2157 	struct bpf_program f;
2158 
2159 	memset(bids, 0, sizeof bids);
2160 	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2161 	bpf_dump(&f, 1);
2162 	putchar('\n');
2163 	free((char *)f.bf_insns);
2164 }
2165 #endif
2166