1 /* 2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that: (1) source code distributions 7 * retain the above copyright notice and this paragraph in its entirety, (2) 8 * distributions including binary code include the above copyright notice and 9 * this paragraph in its entirety in the documentation or other materials 10 * provided with the distribution, and (3) all advertising materials mentioning 11 * features or use of this software display the following acknowledgement: 12 * ``This product includes software developed by the University of California, 13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 14 * the University nor the names of its contributors may be used to endorse 15 * or promote products derived from this software without specific prior 16 * written permission. 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 20 * 21 * Optimization module for tcpdump intermediate representation. 22 */ 23 24 #ifdef HAVE_CONFIG_H 25 #include "config.h" 26 #endif 27 28 #ifdef _WIN32 29 #include <pcap-stdinc.h> 30 #else /* _WIN32 */ 31 #if HAVE_INTTYPES_H 32 #include <inttypes.h> 33 #elif HAVE_STDINT_H 34 #include <stdint.h> 35 #endif 36 #ifdef HAVE_SYS_BITYPES_H 37 #include <sys/bitypes.h> 38 #endif 39 #include <sys/types.h> 40 #endif /* _WIN32 */ 41 42 #include <stdio.h> 43 #include <stdlib.h> 44 #include <memory.h> 45 #include <string.h> 46 47 #include <errno.h> 48 49 #include "pcap-int.h" 50 51 #include "gencode.h" 52 53 #ifdef HAVE_OS_PROTO_H 54 #include "os-proto.h" 55 #endif 56 57 #ifdef BDEBUG 58 int pcap_optimizer_debug; 59 #endif 60 61 #if defined(MSDOS) && !defined(__DJGPP__) 62 extern int _w32_ffs (int mask); 63 #define ffs _w32_ffs 64 #endif 65 66 /* 67 * So is the check for _MSC_VER done because MinGW has this? 68 */ 69 #if defined(_WIN32) && defined (_MSC_VER) 70 /* 71 * ffs -- vax ffs instruction 72 * 73 * XXX - with versions of VS that have it, use _BitScanForward()? 74 */ 75 static int 76 ffs(int mask) 77 { 78 int bit; 79 80 if (mask == 0) 81 return(0); 82 for (bit = 1; !(mask & 1); bit++) 83 mask >>= 1; 84 return(bit); 85 } 86 #endif 87 88 /* 89 * Represents a deleted instruction. 90 */ 91 #define NOP -1 92 93 /* 94 * Register numbers for use-def values. 95 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory 96 * location. A_ATOM is the accumulator and X_ATOM is the index 97 * register. 98 */ 99 #define A_ATOM BPF_MEMWORDS 100 #define X_ATOM (BPF_MEMWORDS+1) 101 102 /* 103 * This define is used to represent *both* the accumulator and 104 * x register in use-def computations. 105 * Currently, the use-def code assumes only one definition per instruction. 106 */ 107 #define AX_ATOM N_ATOMS 108 109 /* 110 * These data structures are used in a Cocke and Shwarz style 111 * value numbering scheme. Since the flowgraph is acyclic, 112 * exit values can be propagated from a node's predecessors 113 * provided it is uniquely defined. 114 */ 115 struct valnode { 116 int code; 117 int v0, v1; 118 int val; 119 struct valnode *next; 120 }; 121 122 /* Integer constants mapped with the load immediate opcode. */ 123 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L) 124 125 struct vmapinfo { 126 int is_const; 127 bpf_int32 const_val; 128 }; 129 130 struct _opt_state { 131 /* 132 * A flag to indicate that further optimization is needed. 133 * Iterative passes are continued until a given pass yields no 134 * branch movement. 135 */ 136 int done; 137 138 int n_blocks; 139 struct block **blocks; 140 int n_edges; 141 struct edge **edges; 142 143 /* 144 * A bit vector set representation of the dominators. 145 * We round up the set size to the next power of two. 146 */ 147 int nodewords; 148 int edgewords; 149 struct block **levels; 150 bpf_u_int32 *space; 151 152 #define BITS_PER_WORD (8*sizeof(bpf_u_int32)) 153 /* 154 * True if a is in uset {p} 155 */ 156 #define SET_MEMBER(p, a) \ 157 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD))) 158 159 /* 160 * Add 'a' to uset p. 161 */ 162 #define SET_INSERT(p, a) \ 163 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD)) 164 165 /* 166 * Delete 'a' from uset p. 167 */ 168 #define SET_DELETE(p, a) \ 169 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD)) 170 171 /* 172 * a := a intersect b 173 */ 174 #define SET_INTERSECT(a, b, n)\ 175 {\ 176 register bpf_u_int32 *_x = a, *_y = b;\ 177 register int _n = n;\ 178 while (--_n >= 0) *_x++ &= *_y++;\ 179 } 180 181 /* 182 * a := a - b 183 */ 184 #define SET_SUBTRACT(a, b, n)\ 185 {\ 186 register bpf_u_int32 *_x = a, *_y = b;\ 187 register int _n = n;\ 188 while (--_n >= 0) *_x++ &=~ *_y++;\ 189 } 190 191 /* 192 * a := a union b 193 */ 194 #define SET_UNION(a, b, n)\ 195 {\ 196 register bpf_u_int32 *_x = a, *_y = b;\ 197 register int _n = n;\ 198 while (--_n >= 0) *_x++ |= *_y++;\ 199 } 200 201 uset all_dom_sets; 202 uset all_closure_sets; 203 uset all_edge_sets; 204 205 #define MODULUS 213 206 struct valnode *hashtbl[MODULUS]; 207 int curval; 208 int maxval; 209 210 struct vmapinfo *vmap; 211 struct valnode *vnode_base; 212 struct valnode *next_vnode; 213 }; 214 215 typedef struct { 216 /* 217 * Some pointers used to convert the basic block form of the code, 218 * into the array form that BPF requires. 'fstart' will point to 219 * the malloc'd array while 'ftail' is used during the recursive 220 * traversal. 221 */ 222 struct bpf_insn *fstart; 223 struct bpf_insn *ftail; 224 } conv_state_t; 225 226 static void opt_init(compiler_state_t *, opt_state_t *, struct icode *); 227 static void opt_cleanup(opt_state_t *); 228 229 static void intern_blocks(opt_state_t *, struct icode *); 230 231 static void find_inedges(opt_state_t *, struct block *); 232 #ifdef BDEBUG 233 static void opt_dump(compiler_state_t *, struct icode *); 234 #endif 235 236 #ifndef MAX 237 #define MAX(a,b) ((a)>(b)?(a):(b)) 238 #endif 239 240 static void 241 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b) 242 { 243 int level; 244 245 if (isMarked(ic, b)) 246 return; 247 248 Mark(ic, b); 249 b->link = 0; 250 251 if (JT(b)) { 252 find_levels_r(opt_state, ic, JT(b)); 253 find_levels_r(opt_state, ic, JF(b)); 254 level = MAX(JT(b)->level, JF(b)->level) + 1; 255 } else 256 level = 0; 257 b->level = level; 258 b->link = opt_state->levels[level]; 259 opt_state->levels[level] = b; 260 } 261 262 /* 263 * Level graph. The levels go from 0 at the leaves to 264 * N_LEVELS at the root. The opt_state->levels[] array points to the 265 * first node of the level list, whose elements are linked 266 * with the 'link' field of the struct block. 267 */ 268 static void 269 find_levels(opt_state_t *opt_state, struct icode *ic) 270 { 271 memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels)); 272 unMarkAll(ic); 273 find_levels_r(opt_state, ic, ic->root); 274 } 275 276 /* 277 * Find dominator relationships. 278 * Assumes graph has been leveled. 279 */ 280 static void 281 find_dom(opt_state_t *opt_state, struct block *root) 282 { 283 int i; 284 struct block *b; 285 bpf_u_int32 *x; 286 287 /* 288 * Initialize sets to contain all nodes. 289 */ 290 x = opt_state->all_dom_sets; 291 i = opt_state->n_blocks * opt_state->nodewords; 292 while (--i >= 0) 293 *x++ = ~0; 294 /* Root starts off empty. */ 295 for (i = opt_state->nodewords; --i >= 0;) 296 root->dom[i] = 0; 297 298 /* root->level is the highest level no found. */ 299 for (i = root->level; i >= 0; --i) { 300 for (b = opt_state->levels[i]; b; b = b->link) { 301 SET_INSERT(b->dom, b->id); 302 if (JT(b) == 0) 303 continue; 304 SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords); 305 SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords); 306 } 307 } 308 } 309 310 static void 311 propedom(opt_state_t *opt_state, struct edge *ep) 312 { 313 SET_INSERT(ep->edom, ep->id); 314 if (ep->succ) { 315 SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords); 316 SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords); 317 } 318 } 319 320 /* 321 * Compute edge dominators. 322 * Assumes graph has been leveled and predecessors established. 323 */ 324 static void 325 find_edom(opt_state_t *opt_state, struct block *root) 326 { 327 int i; 328 uset x; 329 struct block *b; 330 331 x = opt_state->all_edge_sets; 332 for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; ) 333 x[i] = ~0; 334 335 /* root->level is the highest level no found. */ 336 memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); 337 memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); 338 for (i = root->level; i >= 0; --i) { 339 for (b = opt_state->levels[i]; b != 0; b = b->link) { 340 propedom(opt_state, &b->et); 341 propedom(opt_state, &b->ef); 342 } 343 } 344 } 345 346 /* 347 * Find the backwards transitive closure of the flow graph. These sets 348 * are backwards in the sense that we find the set of nodes that reach 349 * a given node, not the set of nodes that can be reached by a node. 350 * 351 * Assumes graph has been leveled. 352 */ 353 static void 354 find_closure(opt_state_t *opt_state, struct block *root) 355 { 356 int i; 357 struct block *b; 358 359 /* 360 * Initialize sets to contain no nodes. 361 */ 362 memset((char *)opt_state->all_closure_sets, 0, 363 opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets)); 364 365 /* root->level is the highest level no found. */ 366 for (i = root->level; i >= 0; --i) { 367 for (b = opt_state->levels[i]; b; b = b->link) { 368 SET_INSERT(b->closure, b->id); 369 if (JT(b) == 0) 370 continue; 371 SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords); 372 SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords); 373 } 374 } 375 } 376 377 /* 378 * Return the register number that is used by s. If A and X are both 379 * used, return AX_ATOM. If no register is used, return -1. 380 * 381 * The implementation should probably change to an array access. 382 */ 383 static int 384 atomuse(struct stmt *s) 385 { 386 register int c = s->code; 387 388 if (c == NOP) 389 return -1; 390 391 switch (BPF_CLASS(c)) { 392 393 case BPF_RET: 394 return (BPF_RVAL(c) == BPF_A) ? A_ATOM : 395 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; 396 397 case BPF_LD: 398 case BPF_LDX: 399 return (BPF_MODE(c) == BPF_IND) ? X_ATOM : 400 (BPF_MODE(c) == BPF_MEM) ? s->k : -1; 401 402 case BPF_ST: 403 return A_ATOM; 404 405 case BPF_STX: 406 return X_ATOM; 407 408 case BPF_JMP: 409 case BPF_ALU: 410 if (BPF_SRC(c) == BPF_X) 411 return AX_ATOM; 412 return A_ATOM; 413 414 case BPF_MISC: 415 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; 416 } 417 abort(); 418 /* NOTREACHED */ 419 } 420 421 /* 422 * Return the register number that is defined by 's'. We assume that 423 * a single stmt cannot define more than one register. If no register 424 * is defined, return -1. 425 * 426 * The implementation should probably change to an array access. 427 */ 428 static int 429 atomdef(struct stmt *s) 430 { 431 if (s->code == NOP) 432 return -1; 433 434 switch (BPF_CLASS(s->code)) { 435 436 case BPF_LD: 437 case BPF_ALU: 438 return A_ATOM; 439 440 case BPF_LDX: 441 return X_ATOM; 442 443 case BPF_ST: 444 case BPF_STX: 445 return s->k; 446 447 case BPF_MISC: 448 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; 449 } 450 return -1; 451 } 452 453 /* 454 * Compute the sets of registers used, defined, and killed by 'b'. 455 * 456 * "Used" means that a statement in 'b' uses the register before any 457 * statement in 'b' defines it, i.e. it uses the value left in 458 * that register by a predecessor block of this block. 459 * "Defined" means that a statement in 'b' defines it. 460 * "Killed" means that a statement in 'b' defines it before any 461 * statement in 'b' uses it, i.e. it kills the value left in that 462 * register by a predecessor block of this block. 463 */ 464 static void 465 compute_local_ud(struct block *b) 466 { 467 struct slist *s; 468 atomset def = 0, use = 0, killed = 0; 469 int atom; 470 471 for (s = b->stmts; s; s = s->next) { 472 if (s->s.code == NOP) 473 continue; 474 atom = atomuse(&s->s); 475 if (atom >= 0) { 476 if (atom == AX_ATOM) { 477 if (!ATOMELEM(def, X_ATOM)) 478 use |= ATOMMASK(X_ATOM); 479 if (!ATOMELEM(def, A_ATOM)) 480 use |= ATOMMASK(A_ATOM); 481 } 482 else if (atom < N_ATOMS) { 483 if (!ATOMELEM(def, atom)) 484 use |= ATOMMASK(atom); 485 } 486 else 487 abort(); 488 } 489 atom = atomdef(&s->s); 490 if (atom >= 0) { 491 if (!ATOMELEM(use, atom)) 492 killed |= ATOMMASK(atom); 493 def |= ATOMMASK(atom); 494 } 495 } 496 if (BPF_CLASS(b->s.code) == BPF_JMP) { 497 /* 498 * XXX - what about RET? 499 */ 500 atom = atomuse(&b->s); 501 if (atom >= 0) { 502 if (atom == AX_ATOM) { 503 if (!ATOMELEM(def, X_ATOM)) 504 use |= ATOMMASK(X_ATOM); 505 if (!ATOMELEM(def, A_ATOM)) 506 use |= ATOMMASK(A_ATOM); 507 } 508 else if (atom < N_ATOMS) { 509 if (!ATOMELEM(def, atom)) 510 use |= ATOMMASK(atom); 511 } 512 else 513 abort(); 514 } 515 } 516 517 b->def = def; 518 b->kill = killed; 519 b->in_use = use; 520 } 521 522 /* 523 * Assume graph is already leveled. 524 */ 525 static void 526 find_ud(opt_state_t *opt_state, struct block *root) 527 { 528 int i, maxlevel; 529 struct block *p; 530 531 /* 532 * root->level is the highest level no found; 533 * count down from there. 534 */ 535 maxlevel = root->level; 536 for (i = maxlevel; i >= 0; --i) 537 for (p = opt_state->levels[i]; p; p = p->link) { 538 compute_local_ud(p); 539 p->out_use = 0; 540 } 541 542 for (i = 1; i <= maxlevel; ++i) { 543 for (p = opt_state->levels[i]; p; p = p->link) { 544 p->out_use |= JT(p)->in_use | JF(p)->in_use; 545 p->in_use |= p->out_use &~ p->kill; 546 } 547 } 548 } 549 static void 550 init_val(opt_state_t *opt_state) 551 { 552 opt_state->curval = 0; 553 opt_state->next_vnode = opt_state->vnode_base; 554 memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap)); 555 memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl); 556 } 557 558 /* Because we really don't have an IR, this stuff is a little messy. */ 559 static int 560 F(opt_state_t *opt_state, int code, int v0, int v1) 561 { 562 u_int hash; 563 int val; 564 struct valnode *p; 565 566 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8); 567 hash %= MODULUS; 568 569 for (p = opt_state->hashtbl[hash]; p; p = p->next) 570 if (p->code == code && p->v0 == v0 && p->v1 == v1) 571 return p->val; 572 573 val = ++opt_state->curval; 574 if (BPF_MODE(code) == BPF_IMM && 575 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { 576 opt_state->vmap[val].const_val = v0; 577 opt_state->vmap[val].is_const = 1; 578 } 579 p = opt_state->next_vnode++; 580 p->val = val; 581 p->code = code; 582 p->v0 = v0; 583 p->v1 = v1; 584 p->next = opt_state->hashtbl[hash]; 585 opt_state->hashtbl[hash] = p; 586 587 return val; 588 } 589 590 static inline void 591 vstore(struct stmt *s, int *valp, int newval, int alter) 592 { 593 if (alter && *valp == newval) 594 s->code = NOP; 595 else 596 *valp = newval; 597 } 598 599 /* 600 * Do constant-folding on binary operators. 601 * (Unary operators are handled elsewhere.) 602 */ 603 static void 604 fold_op(compiler_state_t *cstate, struct icode *ic, opt_state_t *opt_state, 605 struct stmt *s, int v0, int v1) 606 { 607 bpf_u_int32 a, b; 608 609 a = opt_state->vmap[v0].const_val; 610 b = opt_state->vmap[v1].const_val; 611 612 switch (BPF_OP(s->code)) { 613 case BPF_ADD: 614 a += b; 615 break; 616 617 case BPF_SUB: 618 a -= b; 619 break; 620 621 case BPF_MUL: 622 a *= b; 623 break; 624 625 case BPF_DIV: 626 if (b == 0) 627 bpf_error(cstate, "division by zero"); 628 a /= b; 629 break; 630 631 case BPF_MOD: 632 if (b == 0) 633 bpf_error(cstate, "modulus by zero"); 634 a %= b; 635 break; 636 637 case BPF_AND: 638 a &= b; 639 break; 640 641 case BPF_OR: 642 a |= b; 643 break; 644 645 case BPF_XOR: 646 a ^= b; 647 break; 648 649 case BPF_LSH: 650 a <<= b; 651 break; 652 653 case BPF_RSH: 654 a >>= b; 655 break; 656 657 default: 658 abort(); 659 } 660 s->k = a; 661 s->code = BPF_LD|BPF_IMM; 662 opt_state->done = 0; 663 } 664 665 static inline struct slist * 666 this_op(struct slist *s) 667 { 668 while (s != 0 && s->s.code == NOP) 669 s = s->next; 670 return s; 671 } 672 673 static void 674 opt_not(struct block *b) 675 { 676 struct block *tmp = JT(b); 677 678 JT(b) = JF(b); 679 JF(b) = tmp; 680 } 681 682 static void 683 opt_peep(opt_state_t *opt_state, struct block *b) 684 { 685 struct slist *s; 686 struct slist *next, *last; 687 int val; 688 689 s = b->stmts; 690 if (s == 0) 691 return; 692 693 last = s; 694 for (/*empty*/; /*empty*/; s = next) { 695 /* 696 * Skip over nops. 697 */ 698 s = this_op(s); 699 if (s == 0) 700 break; /* nothing left in the block */ 701 702 /* 703 * Find the next real instruction after that one 704 * (skipping nops). 705 */ 706 next = this_op(s->next); 707 if (next == 0) 708 break; /* no next instruction */ 709 last = next; 710 711 /* 712 * st M[k] --> st M[k] 713 * ldx M[k] tax 714 */ 715 if (s->s.code == BPF_ST && 716 next->s.code == (BPF_LDX|BPF_MEM) && 717 s->s.k == next->s.k) { 718 opt_state->done = 0; 719 next->s.code = BPF_MISC|BPF_TAX; 720 } 721 /* 722 * ld #k --> ldx #k 723 * tax txa 724 */ 725 if (s->s.code == (BPF_LD|BPF_IMM) && 726 next->s.code == (BPF_MISC|BPF_TAX)) { 727 s->s.code = BPF_LDX|BPF_IMM; 728 next->s.code = BPF_MISC|BPF_TXA; 729 opt_state->done = 0; 730 } 731 /* 732 * This is an ugly special case, but it happens 733 * when you say tcp[k] or udp[k] where k is a constant. 734 */ 735 if (s->s.code == (BPF_LD|BPF_IMM)) { 736 struct slist *add, *tax, *ild; 737 738 /* 739 * Check that X isn't used on exit from this 740 * block (which the optimizer might cause). 741 * We know the code generator won't generate 742 * any local dependencies. 743 */ 744 if (ATOMELEM(b->out_use, X_ATOM)) 745 continue; 746 747 /* 748 * Check that the instruction following the ldi 749 * is an addx, or it's an ldxms with an addx 750 * following it (with 0 or more nops between the 751 * ldxms and addx). 752 */ 753 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) 754 add = next; 755 else 756 add = this_op(next->next); 757 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) 758 continue; 759 760 /* 761 * Check that a tax follows that (with 0 or more 762 * nops between them). 763 */ 764 tax = this_op(add->next); 765 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) 766 continue; 767 768 /* 769 * Check that an ild follows that (with 0 or more 770 * nops between them). 771 */ 772 ild = this_op(tax->next); 773 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || 774 BPF_MODE(ild->s.code) != BPF_IND) 775 continue; 776 /* 777 * We want to turn this sequence: 778 * 779 * (004) ldi #0x2 {s} 780 * (005) ldxms [14] {next} -- optional 781 * (006) addx {add} 782 * (007) tax {tax} 783 * (008) ild [x+0] {ild} 784 * 785 * into this sequence: 786 * 787 * (004) nop 788 * (005) ldxms [14] 789 * (006) nop 790 * (007) nop 791 * (008) ild [x+2] 792 * 793 * XXX We need to check that X is not 794 * subsequently used, because we want to change 795 * what'll be in it after this sequence. 796 * 797 * We know we can eliminate the accumulator 798 * modifications earlier in the sequence since 799 * it is defined by the last stmt of this sequence 800 * (i.e., the last statement of the sequence loads 801 * a value into the accumulator, so we can eliminate 802 * earlier operations on the accumulator). 803 */ 804 ild->s.k += s->s.k; 805 s->s.code = NOP; 806 add->s.code = NOP; 807 tax->s.code = NOP; 808 opt_state->done = 0; 809 } 810 } 811 /* 812 * If the comparison at the end of a block is an equality 813 * comparison against a constant, and nobody uses the value 814 * we leave in the A register at the end of a block, and 815 * the operation preceding the comparison is an arithmetic 816 * operation, we can sometime optimize it away. 817 */ 818 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) && 819 !ATOMELEM(b->out_use, A_ATOM)) { 820 /* 821 * We can optimize away certain subtractions of the 822 * X register. 823 */ 824 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) { 825 val = b->val[X_ATOM]; 826 if (opt_state->vmap[val].is_const) { 827 /* 828 * If we have a subtract to do a comparison, 829 * and the X register is a known constant, 830 * we can merge this value into the 831 * comparison: 832 * 833 * sub x -> nop 834 * jeq #y jeq #(x+y) 835 */ 836 b->s.k += opt_state->vmap[val].const_val; 837 last->s.code = NOP; 838 opt_state->done = 0; 839 } else if (b->s.k == 0) { 840 /* 841 * If the X register isn't a constant, 842 * and the comparison in the test is 843 * against 0, we can compare with the 844 * X register, instead: 845 * 846 * sub x -> nop 847 * jeq #0 jeq x 848 */ 849 last->s.code = NOP; 850 b->s.code = BPF_JMP|BPF_JEQ|BPF_X; 851 opt_state->done = 0; 852 } 853 } 854 /* 855 * Likewise, a constant subtract can be simplified: 856 * 857 * sub #x -> nop 858 * jeq #y -> jeq #(x+y) 859 */ 860 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) { 861 last->s.code = NOP; 862 b->s.k += last->s.k; 863 opt_state->done = 0; 864 } 865 /* 866 * And, similarly, a constant AND can be simplified 867 * if we're testing against 0, i.e.: 868 * 869 * and #k nop 870 * jeq #0 -> jset #k 871 */ 872 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && 873 b->s.k == 0) { 874 b->s.k = last->s.k; 875 b->s.code = BPF_JMP|BPF_K|BPF_JSET; 876 last->s.code = NOP; 877 opt_state->done = 0; 878 opt_not(b); 879 } 880 } 881 /* 882 * jset #0 -> never 883 * jset #ffffffff -> always 884 */ 885 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) { 886 if (b->s.k == 0) 887 JT(b) = JF(b); 888 if ((u_int)b->s.k == 0xffffffffU) 889 JF(b) = JT(b); 890 } 891 /* 892 * If we're comparing against the index register, and the index 893 * register is a known constant, we can just compare against that 894 * constant. 895 */ 896 val = b->val[X_ATOM]; 897 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) { 898 bpf_int32 v = opt_state->vmap[val].const_val; 899 b->s.code &= ~BPF_X; 900 b->s.k = v; 901 } 902 /* 903 * If the accumulator is a known constant, we can compute the 904 * comparison result. 905 */ 906 val = b->val[A_ATOM]; 907 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { 908 bpf_int32 v = opt_state->vmap[val].const_val; 909 switch (BPF_OP(b->s.code)) { 910 911 case BPF_JEQ: 912 v = v == b->s.k; 913 break; 914 915 case BPF_JGT: 916 v = (unsigned)v > (unsigned)b->s.k; 917 break; 918 919 case BPF_JGE: 920 v = (unsigned)v >= (unsigned)b->s.k; 921 break; 922 923 case BPF_JSET: 924 v &= b->s.k; 925 break; 926 927 default: 928 abort(); 929 } 930 if (JF(b) != JT(b)) 931 opt_state->done = 0; 932 if (v) 933 JF(b) = JT(b); 934 else 935 JT(b) = JF(b); 936 } 937 } 938 939 /* 940 * Compute the symbolic value of expression of 's', and update 941 * anything it defines in the value table 'val'. If 'alter' is true, 942 * do various optimizations. This code would be cleaner if symbolic 943 * evaluation and code transformations weren't folded together. 944 */ 945 static void 946 opt_stmt(compiler_state_t *cstate, struct icode *ic, opt_state_t *opt_state, 947 struct stmt *s, int val[], int alter) 948 { 949 int op; 950 int v; 951 952 switch (s->code) { 953 954 case BPF_LD|BPF_ABS|BPF_W: 955 case BPF_LD|BPF_ABS|BPF_H: 956 case BPF_LD|BPF_ABS|BPF_B: 957 v = F(opt_state, s->code, s->k, 0L); 958 vstore(s, &val[A_ATOM], v, alter); 959 break; 960 961 case BPF_LD|BPF_IND|BPF_W: 962 case BPF_LD|BPF_IND|BPF_H: 963 case BPF_LD|BPF_IND|BPF_B: 964 v = val[X_ATOM]; 965 if (alter && opt_state->vmap[v].is_const) { 966 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); 967 s->k += opt_state->vmap[v].const_val; 968 v = F(opt_state, s->code, s->k, 0L); 969 opt_state->done = 0; 970 } 971 else 972 v = F(opt_state, s->code, s->k, v); 973 vstore(s, &val[A_ATOM], v, alter); 974 break; 975 976 case BPF_LD|BPF_LEN: 977 v = F(opt_state, s->code, 0L, 0L); 978 vstore(s, &val[A_ATOM], v, alter); 979 break; 980 981 case BPF_LD|BPF_IMM: 982 v = K(s->k); 983 vstore(s, &val[A_ATOM], v, alter); 984 break; 985 986 case BPF_LDX|BPF_IMM: 987 v = K(s->k); 988 vstore(s, &val[X_ATOM], v, alter); 989 break; 990 991 case BPF_LDX|BPF_MSH|BPF_B: 992 v = F(opt_state, s->code, s->k, 0L); 993 vstore(s, &val[X_ATOM], v, alter); 994 break; 995 996 case BPF_ALU|BPF_NEG: 997 if (alter && opt_state->vmap[val[A_ATOM]].is_const) { 998 s->code = BPF_LD|BPF_IMM; 999 s->k = -opt_state->vmap[val[A_ATOM]].const_val; 1000 val[A_ATOM] = K(s->k); 1001 } 1002 else 1003 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L); 1004 break; 1005 1006 case BPF_ALU|BPF_ADD|BPF_K: 1007 case BPF_ALU|BPF_SUB|BPF_K: 1008 case BPF_ALU|BPF_MUL|BPF_K: 1009 case BPF_ALU|BPF_DIV|BPF_K: 1010 case BPF_ALU|BPF_MOD|BPF_K: 1011 case BPF_ALU|BPF_AND|BPF_K: 1012 case BPF_ALU|BPF_OR|BPF_K: 1013 case BPF_ALU|BPF_XOR|BPF_K: 1014 case BPF_ALU|BPF_LSH|BPF_K: 1015 case BPF_ALU|BPF_RSH|BPF_K: 1016 op = BPF_OP(s->code); 1017 if (alter) { 1018 if (s->k == 0) { 1019 /* don't optimize away "sub #0" 1020 * as it may be needed later to 1021 * fixup the generated math code */ 1022 if (op == BPF_ADD || 1023 op == BPF_LSH || op == BPF_RSH || 1024 op == BPF_OR || op == BPF_XOR) { 1025 s->code = NOP; 1026 break; 1027 } 1028 if (op == BPF_MUL || op == BPF_AND) { 1029 s->code = BPF_LD|BPF_IMM; 1030 val[A_ATOM] = K(s->k); 1031 break; 1032 } 1033 } 1034 if (opt_state->vmap[val[A_ATOM]].is_const) { 1035 fold_op(cstate, ic, opt_state, s, val[A_ATOM], K(s->k)); 1036 val[A_ATOM] = K(s->k); 1037 break; 1038 } 1039 } 1040 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k)); 1041 break; 1042 1043 case BPF_ALU|BPF_ADD|BPF_X: 1044 case BPF_ALU|BPF_SUB|BPF_X: 1045 case BPF_ALU|BPF_MUL|BPF_X: 1046 case BPF_ALU|BPF_DIV|BPF_X: 1047 case BPF_ALU|BPF_MOD|BPF_X: 1048 case BPF_ALU|BPF_AND|BPF_X: 1049 case BPF_ALU|BPF_OR|BPF_X: 1050 case BPF_ALU|BPF_XOR|BPF_X: 1051 case BPF_ALU|BPF_LSH|BPF_X: 1052 case BPF_ALU|BPF_RSH|BPF_X: 1053 op = BPF_OP(s->code); 1054 if (alter && opt_state->vmap[val[X_ATOM]].is_const) { 1055 if (opt_state->vmap[val[A_ATOM]].is_const) { 1056 fold_op(cstate, ic, opt_state, s, val[A_ATOM], val[X_ATOM]); 1057 val[A_ATOM] = K(s->k); 1058 } 1059 else { 1060 s->code = BPF_ALU|BPF_K|op; 1061 s->k = opt_state->vmap[val[X_ATOM]].const_val; 1062 opt_state->done = 0; 1063 val[A_ATOM] = 1064 F(opt_state, s->code, val[A_ATOM], K(s->k)); 1065 } 1066 break; 1067 } 1068 /* 1069 * Check if we're doing something to an accumulator 1070 * that is 0, and simplify. This may not seem like 1071 * much of a simplification but it could open up further 1072 * optimizations. 1073 * XXX We could also check for mul by 1, etc. 1074 */ 1075 if (alter && opt_state->vmap[val[A_ATOM]].is_const 1076 && opt_state->vmap[val[A_ATOM]].const_val == 0) { 1077 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) { 1078 s->code = BPF_MISC|BPF_TXA; 1079 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1080 break; 1081 } 1082 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD || 1083 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) { 1084 s->code = BPF_LD|BPF_IMM; 1085 s->k = 0; 1086 vstore(s, &val[A_ATOM], K(s->k), alter); 1087 break; 1088 } 1089 else if (op == BPF_NEG) { 1090 s->code = NOP; 1091 break; 1092 } 1093 } 1094 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]); 1095 break; 1096 1097 case BPF_MISC|BPF_TXA: 1098 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1099 break; 1100 1101 case BPF_LD|BPF_MEM: 1102 v = val[s->k]; 1103 if (alter && opt_state->vmap[v].is_const) { 1104 s->code = BPF_LD|BPF_IMM; 1105 s->k = opt_state->vmap[v].const_val; 1106 opt_state->done = 0; 1107 } 1108 vstore(s, &val[A_ATOM], v, alter); 1109 break; 1110 1111 case BPF_MISC|BPF_TAX: 1112 vstore(s, &val[X_ATOM], val[A_ATOM], alter); 1113 break; 1114 1115 case BPF_LDX|BPF_MEM: 1116 v = val[s->k]; 1117 if (alter && opt_state->vmap[v].is_const) { 1118 s->code = BPF_LDX|BPF_IMM; 1119 s->k = opt_state->vmap[v].const_val; 1120 opt_state->done = 0; 1121 } 1122 vstore(s, &val[X_ATOM], v, alter); 1123 break; 1124 1125 case BPF_ST: 1126 vstore(s, &val[s->k], val[A_ATOM], alter); 1127 break; 1128 1129 case BPF_STX: 1130 vstore(s, &val[s->k], val[X_ATOM], alter); 1131 break; 1132 } 1133 } 1134 1135 static void 1136 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[]) 1137 { 1138 register int atom; 1139 1140 atom = atomuse(s); 1141 if (atom >= 0) { 1142 if (atom == AX_ATOM) { 1143 last[X_ATOM] = 0; 1144 last[A_ATOM] = 0; 1145 } 1146 else 1147 last[atom] = 0; 1148 } 1149 atom = atomdef(s); 1150 if (atom >= 0) { 1151 if (last[atom]) { 1152 opt_state->done = 0; 1153 last[atom]->code = NOP; 1154 } 1155 last[atom] = s; 1156 } 1157 } 1158 1159 static void 1160 opt_deadstores(opt_state_t *opt_state, register struct block *b) 1161 { 1162 register struct slist *s; 1163 register int atom; 1164 struct stmt *last[N_ATOMS]; 1165 1166 memset((char *)last, 0, sizeof last); 1167 1168 for (s = b->stmts; s != 0; s = s->next) 1169 deadstmt(opt_state, &s->s, last); 1170 deadstmt(opt_state, &b->s, last); 1171 1172 for (atom = 0; atom < N_ATOMS; ++atom) 1173 if (last[atom] && !ATOMELEM(b->out_use, atom)) { 1174 last[atom]->code = NOP; 1175 opt_state->done = 0; 1176 } 1177 } 1178 1179 static void 1180 opt_blk(compiler_state_t *cstate, struct icode *ic, opt_state_t *opt_state, 1181 struct block *b, int do_stmts) 1182 { 1183 struct slist *s; 1184 struct edge *p; 1185 int i; 1186 bpf_int32 aval, xval; 1187 1188 #if 0 1189 for (s = b->stmts; s && s->next; s = s->next) 1190 if (BPF_CLASS(s->s.code) == BPF_JMP) { 1191 do_stmts = 0; 1192 break; 1193 } 1194 #endif 1195 1196 /* 1197 * Initialize the atom values. 1198 */ 1199 p = b->in_edges; 1200 if (p == 0) { 1201 /* 1202 * We have no predecessors, so everything is undefined 1203 * upon entry to this block. 1204 */ 1205 memset((char *)b->val, 0, sizeof(b->val)); 1206 } else { 1207 /* 1208 * Inherit values from our predecessors. 1209 * 1210 * First, get the values from the predecessor along the 1211 * first edge leading to this node. 1212 */ 1213 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); 1214 /* 1215 * Now look at all the other nodes leading to this node. 1216 * If, for the predecessor along that edge, a register 1217 * has a different value from the one we have (i.e., 1218 * control paths are merging, and the merging paths 1219 * assign different values to that register), give the 1220 * register the undefined value of 0. 1221 */ 1222 while ((p = p->next) != NULL) { 1223 for (i = 0; i < N_ATOMS; ++i) 1224 if (b->val[i] != p->pred->val[i]) 1225 b->val[i] = 0; 1226 } 1227 } 1228 aval = b->val[A_ATOM]; 1229 xval = b->val[X_ATOM]; 1230 for (s = b->stmts; s; s = s->next) 1231 opt_stmt(cstate, ic, opt_state, &s->s, b->val, do_stmts); 1232 1233 /* 1234 * This is a special case: if we don't use anything from this 1235 * block, and we load the accumulator or index register with a 1236 * value that is already there, or if this block is a return, 1237 * eliminate all the statements. 1238 * 1239 * XXX - what if it does a store? 1240 * 1241 * XXX - why does it matter whether we use anything from this 1242 * block? If the accumulator or index register doesn't change 1243 * its value, isn't that OK even if we use that value? 1244 * 1245 * XXX - if we load the accumulator with a different value, 1246 * and the block ends with a conditional branch, we obviously 1247 * can't eliminate it, as the branch depends on that value. 1248 * For the index register, the conditional branch only depends 1249 * on the index register value if the test is against the index 1250 * register value rather than a constant; if nothing uses the 1251 * value we put into the index register, and we're not testing 1252 * against the index register's value, and there aren't any 1253 * other problems that would keep us from eliminating this 1254 * block, can we eliminate it? 1255 */ 1256 if (do_stmts && 1257 ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval && 1258 xval != 0 && b->val[X_ATOM] == xval) || 1259 BPF_CLASS(b->s.code) == BPF_RET)) { 1260 if (b->stmts != 0) { 1261 b->stmts = 0; 1262 opt_state->done = 0; 1263 } 1264 } else { 1265 opt_peep(opt_state, b); 1266 opt_deadstores(opt_state, b); 1267 } 1268 /* 1269 * Set up values for branch optimizer. 1270 */ 1271 if (BPF_SRC(b->s.code) == BPF_K) 1272 b->oval = K(b->s.k); 1273 else 1274 b->oval = b->val[X_ATOM]; 1275 b->et.code = b->s.code; 1276 b->ef.code = -b->s.code; 1277 } 1278 1279 /* 1280 * Return true if any register that is used on exit from 'succ', has 1281 * an exit value that is different from the corresponding exit value 1282 * from 'b'. 1283 */ 1284 static int 1285 use_conflict(struct block *b, struct block *succ) 1286 { 1287 int atom; 1288 atomset use = succ->out_use; 1289 1290 if (use == 0) 1291 return 0; 1292 1293 for (atom = 0; atom < N_ATOMS; ++atom) 1294 if (ATOMELEM(use, atom)) 1295 if (b->val[atom] != succ->val[atom]) 1296 return 1; 1297 return 0; 1298 } 1299 1300 static struct block * 1301 fold_edge(struct block *child, struct edge *ep) 1302 { 1303 int sense; 1304 int aval0, aval1, oval0, oval1; 1305 int code = ep->code; 1306 1307 if (code < 0) { 1308 code = -code; 1309 sense = 0; 1310 } else 1311 sense = 1; 1312 1313 if (child->s.code != code) 1314 return 0; 1315 1316 aval0 = child->val[A_ATOM]; 1317 oval0 = child->oval; 1318 aval1 = ep->pred->val[A_ATOM]; 1319 oval1 = ep->pred->oval; 1320 1321 if (aval0 != aval1) 1322 return 0; 1323 1324 if (oval0 == oval1) 1325 /* 1326 * The operands of the branch instructions are 1327 * identical, so the result is true if a true 1328 * branch was taken to get here, otherwise false. 1329 */ 1330 return sense ? JT(child) : JF(child); 1331 1332 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) 1333 /* 1334 * At this point, we only know the comparison if we 1335 * came down the true branch, and it was an equality 1336 * comparison with a constant. 1337 * 1338 * I.e., if we came down the true branch, and the branch 1339 * was an equality comparison with a constant, we know the 1340 * accumulator contains that constant. If we came down 1341 * the false branch, or the comparison wasn't with a 1342 * constant, we don't know what was in the accumulator. 1343 * 1344 * We rely on the fact that distinct constants have distinct 1345 * value numbers. 1346 */ 1347 return JF(child); 1348 1349 return 0; 1350 } 1351 1352 static void 1353 opt_j(opt_state_t *opt_state, struct edge *ep) 1354 { 1355 register int i, k; 1356 register struct block *target; 1357 1358 if (JT(ep->succ) == 0) 1359 return; 1360 1361 if (JT(ep->succ) == JF(ep->succ)) { 1362 /* 1363 * Common branch targets can be eliminated, provided 1364 * there is no data dependency. 1365 */ 1366 if (!use_conflict(ep->pred, ep->succ->et.succ)) { 1367 opt_state->done = 0; 1368 ep->succ = JT(ep->succ); 1369 } 1370 } 1371 /* 1372 * For each edge dominator that matches the successor of this 1373 * edge, promote the edge successor to the its grandchild. 1374 * 1375 * XXX We violate the set abstraction here in favor a reasonably 1376 * efficient loop. 1377 */ 1378 top: 1379 for (i = 0; i < opt_state->edgewords; ++i) { 1380 register bpf_u_int32 x = ep->edom[i]; 1381 1382 while (x != 0) { 1383 k = ffs(x) - 1; 1384 x &=~ (1 << k); 1385 k += i * BITS_PER_WORD; 1386 1387 target = fold_edge(ep->succ, opt_state->edges[k]); 1388 /* 1389 * Check that there is no data dependency between 1390 * nodes that will be violated if we move the edge. 1391 */ 1392 if (target != 0 && !use_conflict(ep->pred, target)) { 1393 opt_state->done = 0; 1394 ep->succ = target; 1395 if (JT(target) != 0) 1396 /* 1397 * Start over unless we hit a leaf. 1398 */ 1399 goto top; 1400 return; 1401 } 1402 } 1403 } 1404 } 1405 1406 1407 static void 1408 or_pullup(opt_state_t *opt_state, struct block *b) 1409 { 1410 int val, at_top; 1411 struct block *pull; 1412 struct block **diffp, **samep; 1413 struct edge *ep; 1414 1415 ep = b->in_edges; 1416 if (ep == 0) 1417 return; 1418 1419 /* 1420 * Make sure each predecessor loads the same value. 1421 * XXX why? 1422 */ 1423 val = ep->pred->val[A_ATOM]; 1424 for (ep = ep->next; ep != 0; ep = ep->next) 1425 if (val != ep->pred->val[A_ATOM]) 1426 return; 1427 1428 if (JT(b->in_edges->pred) == b) 1429 diffp = &JT(b->in_edges->pred); 1430 else 1431 diffp = &JF(b->in_edges->pred); 1432 1433 at_top = 1; 1434 while (1) { 1435 if (*diffp == 0) 1436 return; 1437 1438 if (JT(*diffp) != JT(b)) 1439 return; 1440 1441 if (!SET_MEMBER((*diffp)->dom, b->id)) 1442 return; 1443 1444 if ((*diffp)->val[A_ATOM] != val) 1445 break; 1446 1447 diffp = &JF(*diffp); 1448 at_top = 0; 1449 } 1450 samep = &JF(*diffp); 1451 while (1) { 1452 if (*samep == 0) 1453 return; 1454 1455 if (JT(*samep) != JT(b)) 1456 return; 1457 1458 if (!SET_MEMBER((*samep)->dom, b->id)) 1459 return; 1460 1461 if ((*samep)->val[A_ATOM] == val) 1462 break; 1463 1464 /* XXX Need to check that there are no data dependencies 1465 between dp0 and dp1. Currently, the code generator 1466 will not produce such dependencies. */ 1467 samep = &JF(*samep); 1468 } 1469 #ifdef notdef 1470 /* XXX This doesn't cover everything. */ 1471 for (i = 0; i < N_ATOMS; ++i) 1472 if ((*samep)->val[i] != pred->val[i]) 1473 return; 1474 #endif 1475 /* Pull up the node. */ 1476 pull = *samep; 1477 *samep = JF(pull); 1478 JF(pull) = *diffp; 1479 1480 /* 1481 * At the top of the chain, each predecessor needs to point at the 1482 * pulled up node. Inside the chain, there is only one predecessor 1483 * to worry about. 1484 */ 1485 if (at_top) { 1486 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1487 if (JT(ep->pred) == b) 1488 JT(ep->pred) = pull; 1489 else 1490 JF(ep->pred) = pull; 1491 } 1492 } 1493 else 1494 *diffp = pull; 1495 1496 opt_state->done = 0; 1497 } 1498 1499 static void 1500 and_pullup(opt_state_t *opt_state, struct block *b) 1501 { 1502 int val, at_top; 1503 struct block *pull; 1504 struct block **diffp, **samep; 1505 struct edge *ep; 1506 1507 ep = b->in_edges; 1508 if (ep == 0) 1509 return; 1510 1511 /* 1512 * Make sure each predecessor loads the same value. 1513 */ 1514 val = ep->pred->val[A_ATOM]; 1515 for (ep = ep->next; ep != 0; ep = ep->next) 1516 if (val != ep->pred->val[A_ATOM]) 1517 return; 1518 1519 if (JT(b->in_edges->pred) == b) 1520 diffp = &JT(b->in_edges->pred); 1521 else 1522 diffp = &JF(b->in_edges->pred); 1523 1524 at_top = 1; 1525 while (1) { 1526 if (*diffp == 0) 1527 return; 1528 1529 if (JF(*diffp) != JF(b)) 1530 return; 1531 1532 if (!SET_MEMBER((*diffp)->dom, b->id)) 1533 return; 1534 1535 if ((*diffp)->val[A_ATOM] != val) 1536 break; 1537 1538 diffp = &JT(*diffp); 1539 at_top = 0; 1540 } 1541 samep = &JT(*diffp); 1542 while (1) { 1543 if (*samep == 0) 1544 return; 1545 1546 if (JF(*samep) != JF(b)) 1547 return; 1548 1549 if (!SET_MEMBER((*samep)->dom, b->id)) 1550 return; 1551 1552 if ((*samep)->val[A_ATOM] == val) 1553 break; 1554 1555 /* XXX Need to check that there are no data dependencies 1556 between diffp and samep. Currently, the code generator 1557 will not produce such dependencies. */ 1558 samep = &JT(*samep); 1559 } 1560 #ifdef notdef 1561 /* XXX This doesn't cover everything. */ 1562 for (i = 0; i < N_ATOMS; ++i) 1563 if ((*samep)->val[i] != pred->val[i]) 1564 return; 1565 #endif 1566 /* Pull up the node. */ 1567 pull = *samep; 1568 *samep = JT(pull); 1569 JT(pull) = *diffp; 1570 1571 /* 1572 * At the top of the chain, each predecessor needs to point at the 1573 * pulled up node. Inside the chain, there is only one predecessor 1574 * to worry about. 1575 */ 1576 if (at_top) { 1577 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1578 if (JT(ep->pred) == b) 1579 JT(ep->pred) = pull; 1580 else 1581 JF(ep->pred) = pull; 1582 } 1583 } 1584 else 1585 *diffp = pull; 1586 1587 opt_state->done = 0; 1588 } 1589 1590 static void 1591 opt_blks(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic, 1592 int do_stmts) 1593 { 1594 int i, maxlevel; 1595 struct block *p; 1596 1597 init_val(opt_state); 1598 maxlevel = ic->root->level; 1599 1600 find_inedges(opt_state, ic->root); 1601 for (i = maxlevel; i >= 0; --i) 1602 for (p = opt_state->levels[i]; p; p = p->link) 1603 opt_blk(cstate, ic, opt_state, p, do_stmts); 1604 1605 if (do_stmts) 1606 /* 1607 * No point trying to move branches; it can't possibly 1608 * make a difference at this point. 1609 */ 1610 return; 1611 1612 for (i = 1; i <= maxlevel; ++i) { 1613 for (p = opt_state->levels[i]; p; p = p->link) { 1614 opt_j(opt_state, &p->et); 1615 opt_j(opt_state, &p->ef); 1616 } 1617 } 1618 1619 find_inedges(opt_state, ic->root); 1620 for (i = 1; i <= maxlevel; ++i) { 1621 for (p = opt_state->levels[i]; p; p = p->link) { 1622 or_pullup(opt_state, p); 1623 and_pullup(opt_state, p); 1624 } 1625 } 1626 } 1627 1628 static inline void 1629 link_inedge(struct edge *parent, struct block *child) 1630 { 1631 parent->next = child->in_edges; 1632 child->in_edges = parent; 1633 } 1634 1635 static void 1636 find_inedges(opt_state_t *opt_state, struct block *root) 1637 { 1638 int i; 1639 struct block *b; 1640 1641 for (i = 0; i < opt_state->n_blocks; ++i) 1642 opt_state->blocks[i]->in_edges = 0; 1643 1644 /* 1645 * Traverse the graph, adding each edge to the predecessor 1646 * list of its successors. Skip the leaves (i.e. level 0). 1647 */ 1648 for (i = root->level; i > 0; --i) { 1649 for (b = opt_state->levels[i]; b != 0; b = b->link) { 1650 link_inedge(&b->et, JT(b)); 1651 link_inedge(&b->ef, JF(b)); 1652 } 1653 } 1654 } 1655 1656 static void 1657 opt_root(struct block **b) 1658 { 1659 struct slist *tmp, *s; 1660 1661 s = (*b)->stmts; 1662 (*b)->stmts = 0; 1663 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) 1664 *b = JT(*b); 1665 1666 tmp = (*b)->stmts; 1667 if (tmp != 0) 1668 sappend(s, tmp); 1669 (*b)->stmts = s; 1670 1671 /* 1672 * If the root node is a return, then there is no 1673 * point executing any statements (since the bpf machine 1674 * has no side effects). 1675 */ 1676 if (BPF_CLASS((*b)->s.code) == BPF_RET) 1677 (*b)->stmts = 0; 1678 } 1679 1680 static void 1681 opt_loop(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic, 1682 int do_stmts) 1683 { 1684 1685 #ifdef BDEBUG 1686 if (pcap_optimizer_debug > 1) { 1687 printf("opt_loop(root, %d) begin\n", do_stmts); 1688 opt_dump(cstate, ic); 1689 } 1690 #endif 1691 do { 1692 opt_state->done = 1; 1693 find_levels(opt_state, ic); 1694 find_dom(opt_state, ic->root); 1695 find_closure(opt_state, ic->root); 1696 find_ud(opt_state, ic->root); 1697 find_edom(opt_state, ic->root); 1698 opt_blks(cstate, opt_state, ic, do_stmts); 1699 #ifdef BDEBUG 1700 if (pcap_optimizer_debug > 1) { 1701 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done); 1702 opt_dump(cstate, ic); 1703 } 1704 #endif 1705 } while (!opt_state->done); 1706 } 1707 1708 /* 1709 * Optimize the filter code in its dag representation. 1710 */ 1711 void 1712 bpf_optimize(compiler_state_t *cstate, struct icode *ic) 1713 { 1714 opt_state_t opt_state; 1715 1716 opt_init(cstate, &opt_state, ic); 1717 opt_loop(cstate, &opt_state, ic, 0); 1718 opt_loop(cstate, &opt_state, ic, 1); 1719 intern_blocks(&opt_state, ic); 1720 #ifdef BDEBUG 1721 if (pcap_optimizer_debug > 1) { 1722 printf("after intern_blocks()\n"); 1723 opt_dump(cstate, ic); 1724 } 1725 #endif 1726 opt_root(&ic->root); 1727 #ifdef BDEBUG 1728 if (pcap_optimizer_debug > 1) { 1729 printf("after opt_root()\n"); 1730 opt_dump(cstate, ic); 1731 } 1732 #endif 1733 opt_cleanup(&opt_state); 1734 } 1735 1736 static void 1737 make_marks(struct icode *ic, struct block *p) 1738 { 1739 if (!isMarked(ic, p)) { 1740 Mark(ic, p); 1741 if (BPF_CLASS(p->s.code) != BPF_RET) { 1742 make_marks(ic, JT(p)); 1743 make_marks(ic, JF(p)); 1744 } 1745 } 1746 } 1747 1748 /* 1749 * Mark code array such that isMarked(ic->cur_mark, i) is true 1750 * only for nodes that are alive. 1751 */ 1752 static void 1753 mark_code(struct icode *ic) 1754 { 1755 ic->cur_mark += 1; 1756 make_marks(ic, ic->root); 1757 } 1758 1759 /* 1760 * True iff the two stmt lists load the same value from the packet into 1761 * the accumulator. 1762 */ 1763 static int 1764 eq_slist(struct slist *x, struct slist *y) 1765 { 1766 while (1) { 1767 while (x && x->s.code == NOP) 1768 x = x->next; 1769 while (y && y->s.code == NOP) 1770 y = y->next; 1771 if (x == 0) 1772 return y == 0; 1773 if (y == 0) 1774 return x == 0; 1775 if (x->s.code != y->s.code || x->s.k != y->s.k) 1776 return 0; 1777 x = x->next; 1778 y = y->next; 1779 } 1780 } 1781 1782 static inline int 1783 eq_blk(struct block *b0, struct block *b1) 1784 { 1785 if (b0->s.code == b1->s.code && 1786 b0->s.k == b1->s.k && 1787 b0->et.succ == b1->et.succ && 1788 b0->ef.succ == b1->ef.succ) 1789 return eq_slist(b0->stmts, b1->stmts); 1790 return 0; 1791 } 1792 1793 static void 1794 intern_blocks(opt_state_t *opt_state, struct icode *ic) 1795 { 1796 struct block *p; 1797 int i, j; 1798 int done1; /* don't shadow global */ 1799 top: 1800 done1 = 1; 1801 for (i = 0; i < opt_state->n_blocks; ++i) 1802 opt_state->blocks[i]->link = 0; 1803 1804 mark_code(ic); 1805 1806 for (i = opt_state->n_blocks - 1; --i >= 0; ) { 1807 if (!isMarked(ic, opt_state->blocks[i])) 1808 continue; 1809 for (j = i + 1; j < opt_state->n_blocks; ++j) { 1810 if (!isMarked(ic, opt_state->blocks[j])) 1811 continue; 1812 if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) { 1813 opt_state->blocks[i]->link = opt_state->blocks[j]->link ? 1814 opt_state->blocks[j]->link : opt_state->blocks[j]; 1815 break; 1816 } 1817 } 1818 } 1819 for (i = 0; i < opt_state->n_blocks; ++i) { 1820 p = opt_state->blocks[i]; 1821 if (JT(p) == 0) 1822 continue; 1823 if (JT(p)->link) { 1824 done1 = 0; 1825 JT(p) = JT(p)->link; 1826 } 1827 if (JF(p)->link) { 1828 done1 = 0; 1829 JF(p) = JF(p)->link; 1830 } 1831 } 1832 if (!done1) 1833 goto top; 1834 } 1835 1836 static void 1837 opt_cleanup(opt_state_t *opt_state) 1838 { 1839 free((void *)opt_state->vnode_base); 1840 free((void *)opt_state->vmap); 1841 free((void *)opt_state->edges); 1842 free((void *)opt_state->space); 1843 free((void *)opt_state->levels); 1844 free((void *)opt_state->blocks); 1845 } 1846 1847 /* 1848 * Return the number of stmts in 's'. 1849 */ 1850 static u_int 1851 slength(struct slist *s) 1852 { 1853 u_int n = 0; 1854 1855 for (; s; s = s->next) 1856 if (s->s.code != NOP) 1857 ++n; 1858 return n; 1859 } 1860 1861 /* 1862 * Return the number of nodes reachable by 'p'. 1863 * All nodes should be initially unmarked. 1864 */ 1865 static int 1866 count_blocks(struct icode *ic, struct block *p) 1867 { 1868 if (p == 0 || isMarked(ic, p)) 1869 return 0; 1870 Mark(ic, p); 1871 return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1; 1872 } 1873 1874 /* 1875 * Do a depth first search on the flow graph, numbering the 1876 * the basic blocks, and entering them into the 'blocks' array.` 1877 */ 1878 static void 1879 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p) 1880 { 1881 int n; 1882 1883 if (p == 0 || isMarked(ic, p)) 1884 return; 1885 1886 Mark(ic, p); 1887 n = opt_state->n_blocks++; 1888 p->id = n; 1889 opt_state->blocks[n] = p; 1890 1891 number_blks_r(opt_state, ic, JT(p)); 1892 number_blks_r(opt_state, ic, JF(p)); 1893 } 1894 1895 /* 1896 * Return the number of stmts in the flowgraph reachable by 'p'. 1897 * The nodes should be unmarked before calling. 1898 * 1899 * Note that "stmts" means "instructions", and that this includes 1900 * 1901 * side-effect statements in 'p' (slength(p->stmts)); 1902 * 1903 * statements in the true branch from 'p' (count_stmts(JT(p))); 1904 * 1905 * statements in the false branch from 'p' (count_stmts(JF(p))); 1906 * 1907 * the conditional jump itself (1); 1908 * 1909 * an extra long jump if the true branch requires it (p->longjt); 1910 * 1911 * an extra long jump if the false branch requires it (p->longjf). 1912 */ 1913 static u_int 1914 count_stmts(struct icode *ic, struct block *p) 1915 { 1916 u_int n; 1917 1918 if (p == 0 || isMarked(ic, p)) 1919 return 0; 1920 Mark(ic, p); 1921 n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p)); 1922 return slength(p->stmts) + n + 1 + p->longjt + p->longjf; 1923 } 1924 1925 /* 1926 * Allocate memory. All allocation is done before optimization 1927 * is begun. A linear bound on the size of all data structures is computed 1928 * from the total number of blocks and/or statements. 1929 */ 1930 static void 1931 opt_init(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic) 1932 { 1933 bpf_u_int32 *p; 1934 int i, n, max_stmts; 1935 1936 /* 1937 * First, count the blocks, so we can malloc an array to map 1938 * block number to block. Then, put the blocks into the array. 1939 */ 1940 unMarkAll(ic); 1941 n = count_blocks(ic, ic->root); 1942 opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks)); 1943 if (opt_state->blocks == NULL) 1944 bpf_error(cstate, "malloc"); 1945 unMarkAll(ic); 1946 opt_state->n_blocks = 0; 1947 number_blks_r(opt_state, ic, ic->root); 1948 1949 opt_state->n_edges = 2 * opt_state->n_blocks; 1950 opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges)); 1951 if (opt_state->edges == NULL) 1952 bpf_error(cstate, "malloc"); 1953 1954 /* 1955 * The number of levels is bounded by the number of nodes. 1956 */ 1957 opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels)); 1958 if (opt_state->levels == NULL) 1959 bpf_error(cstate, "malloc"); 1960 1961 opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1; 1962 opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1; 1963 1964 /* XXX */ 1965 opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space) 1966 + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space)); 1967 if (opt_state->space == NULL) 1968 bpf_error(cstate, "malloc"); 1969 p = opt_state->space; 1970 opt_state->all_dom_sets = p; 1971 for (i = 0; i < n; ++i) { 1972 opt_state->blocks[i]->dom = p; 1973 p += opt_state->nodewords; 1974 } 1975 opt_state->all_closure_sets = p; 1976 for (i = 0; i < n; ++i) { 1977 opt_state->blocks[i]->closure = p; 1978 p += opt_state->nodewords; 1979 } 1980 opt_state->all_edge_sets = p; 1981 for (i = 0; i < n; ++i) { 1982 register struct block *b = opt_state->blocks[i]; 1983 1984 b->et.edom = p; 1985 p += opt_state->edgewords; 1986 b->ef.edom = p; 1987 p += opt_state->edgewords; 1988 b->et.id = i; 1989 opt_state->edges[i] = &b->et; 1990 b->ef.id = opt_state->n_blocks + i; 1991 opt_state->edges[opt_state->n_blocks + i] = &b->ef; 1992 b->et.pred = b; 1993 b->ef.pred = b; 1994 } 1995 max_stmts = 0; 1996 for (i = 0; i < n; ++i) 1997 max_stmts += slength(opt_state->blocks[i]->stmts) + 1; 1998 /* 1999 * We allocate at most 3 value numbers per statement, 2000 * so this is an upper bound on the number of valnodes 2001 * we'll need. 2002 */ 2003 opt_state->maxval = 3 * max_stmts; 2004 opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap)); 2005 opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base)); 2006 if (opt_state->vmap == NULL || opt_state->vnode_base == NULL) 2007 bpf_error(cstate, "malloc"); 2008 } 2009 2010 /* 2011 * This is only used when supporting optimizer debugging. It is 2012 * global state, so do *not* do more than one compile in parallel 2013 * and expect it to provide meaningful information. 2014 */ 2015 #ifdef BDEBUG 2016 int bids[1000]; 2017 #endif 2018 2019 /* 2020 * Returns true if successful. Returns false if a branch has 2021 * an offset that is too large. If so, we have marked that 2022 * branch so that on a subsequent iteration, it will be treated 2023 * properly. 2024 */ 2025 static int 2026 convert_code_r(compiler_state_t *cstate, conv_state_t *conv_state, 2027 struct icode *ic, struct block *p) 2028 { 2029 struct bpf_insn *dst; 2030 struct slist *src; 2031 u_int slen; 2032 u_int off; 2033 int extrajmps; /* number of extra jumps inserted */ 2034 struct slist **offset = NULL; 2035 2036 if (p == 0 || isMarked(ic, p)) 2037 return (1); 2038 Mark(ic, p); 2039 2040 if (convert_code_r(cstate, conv_state, ic, JF(p)) == 0) 2041 return (0); 2042 if (convert_code_r(cstate, conv_state, ic, JT(p)) == 0) 2043 return (0); 2044 2045 slen = slength(p->stmts); 2046 dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf); 2047 /* inflate length by any extra jumps */ 2048 2049 p->offset = (int)(dst - conv_state->fstart); 2050 2051 /* generate offset[] for convenience */ 2052 if (slen) { 2053 offset = (struct slist **)calloc(slen, sizeof(struct slist *)); 2054 if (!offset) { 2055 bpf_error(cstate, "not enough core"); 2056 /*NOTREACHED*/ 2057 } 2058 } 2059 src = p->stmts; 2060 for (off = 0; off < slen && src; off++) { 2061 #if 0 2062 printf("off=%d src=%x\n", off, src); 2063 #endif 2064 offset[off] = src; 2065 src = src->next; 2066 } 2067 2068 off = 0; 2069 for (src = p->stmts; src; src = src->next) { 2070 if (src->s.code == NOP) 2071 continue; 2072 dst->code = (u_short)src->s.code; 2073 dst->k = src->s.k; 2074 2075 /* fill block-local relative jump */ 2076 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) { 2077 #if 0 2078 if (src->s.jt || src->s.jf) { 2079 bpf_error(cstate, "illegal jmp destination"); 2080 /*NOTREACHED*/ 2081 } 2082 #endif 2083 goto filled; 2084 } 2085 if (off == slen - 2) /*???*/ 2086 goto filled; 2087 2088 { 2089 u_int i; 2090 int jt, jf; 2091 const char *ljerr = "%s for block-local relative jump: off=%d"; 2092 2093 #if 0 2094 printf("code=%x off=%d %x %x\n", src->s.code, 2095 off, src->s.jt, src->s.jf); 2096 #endif 2097 2098 if (!src->s.jt || !src->s.jf) { 2099 bpf_error(cstate, ljerr, "no jmp destination", off); 2100 /*NOTREACHED*/ 2101 } 2102 2103 jt = jf = 0; 2104 for (i = 0; i < slen; i++) { 2105 if (offset[i] == src->s.jt) { 2106 if (jt) { 2107 bpf_error(cstate, ljerr, "multiple matches", off); 2108 /*NOTREACHED*/ 2109 } 2110 2111 dst->jt = i - off - 1; 2112 jt++; 2113 } 2114 if (offset[i] == src->s.jf) { 2115 if (jf) { 2116 bpf_error(cstate, ljerr, "multiple matches", off); 2117 /*NOTREACHED*/ 2118 } 2119 dst->jf = i - off - 1; 2120 jf++; 2121 } 2122 } 2123 if (!jt || !jf) { 2124 bpf_error(cstate, ljerr, "no destination found", off); 2125 /*NOTREACHED*/ 2126 } 2127 } 2128 filled: 2129 ++dst; 2130 ++off; 2131 } 2132 if (offset) 2133 free(offset); 2134 2135 #ifdef BDEBUG 2136 bids[dst - conv_state->fstart] = p->id + 1; 2137 #endif 2138 dst->code = (u_short)p->s.code; 2139 dst->k = p->s.k; 2140 if (JT(p)) { 2141 extrajmps = 0; 2142 off = JT(p)->offset - (p->offset + slen) - 1; 2143 if (off >= 256) { 2144 /* offset too large for branch, must add a jump */ 2145 if (p->longjt == 0) { 2146 /* mark this instruction and retry */ 2147 p->longjt++; 2148 return(0); 2149 } 2150 /* branch if T to following jump */ 2151 dst->jt = extrajmps; 2152 extrajmps++; 2153 dst[extrajmps].code = BPF_JMP|BPF_JA; 2154 dst[extrajmps].k = off - extrajmps; 2155 } 2156 else 2157 dst->jt = off; 2158 off = JF(p)->offset - (p->offset + slen) - 1; 2159 if (off >= 256) { 2160 /* offset too large for branch, must add a jump */ 2161 if (p->longjf == 0) { 2162 /* mark this instruction and retry */ 2163 p->longjf++; 2164 return(0); 2165 } 2166 /* branch if F to following jump */ 2167 /* if two jumps are inserted, F goes to second one */ 2168 dst->jf = extrajmps; 2169 extrajmps++; 2170 dst[extrajmps].code = BPF_JMP|BPF_JA; 2171 dst[extrajmps].k = off - extrajmps; 2172 } 2173 else 2174 dst->jf = off; 2175 } 2176 return (1); 2177 } 2178 2179 2180 /* 2181 * Convert flowgraph intermediate representation to the 2182 * BPF array representation. Set *lenp to the number of instructions. 2183 * 2184 * This routine does *NOT* leak the memory pointed to by fp. It *must 2185 * not* do free(fp) before returning fp; doing so would make no sense, 2186 * as the BPF array pointed to by the return value of icode_to_fcode() 2187 * must be valid - it's being returned for use in a bpf_program structure. 2188 * 2189 * If it appears that icode_to_fcode() is leaking, the problem is that 2190 * the program using pcap_compile() is failing to free the memory in 2191 * the BPF program when it's done - the leak is in the program, not in 2192 * the routine that happens to be allocating the memory. (By analogy, if 2193 * a program calls fopen() without ever calling fclose() on the FILE *, 2194 * it will leak the FILE structure; the leak is not in fopen(), it's in 2195 * the program.) Change the program to use pcap_freecode() when it's 2196 * done with the filter program. See the pcap man page. 2197 */ 2198 struct bpf_insn * 2199 icode_to_fcode(compiler_state_t *cstate, struct icode *ic, 2200 struct block *root, u_int *lenp) 2201 { 2202 u_int n; 2203 struct bpf_insn *fp; 2204 conv_state_t conv_state; 2205 2206 /* 2207 * Loop doing convert_code_r() until no branches remain 2208 * with too-large offsets. 2209 */ 2210 while (1) { 2211 unMarkAll(ic); 2212 n = *lenp = count_stmts(ic, root); 2213 2214 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n); 2215 if (fp == NULL) 2216 bpf_error(cstate, "malloc"); 2217 memset((char *)fp, 0, sizeof(*fp) * n); 2218 conv_state.fstart = fp; 2219 conv_state.ftail = fp + n; 2220 2221 unMarkAll(ic); 2222 if (convert_code_r(cstate, &conv_state, ic, root)) 2223 break; 2224 free(fp); 2225 } 2226 2227 return fp; 2228 } 2229 2230 /* 2231 * Make a copy of a BPF program and put it in the "fcode" member of 2232 * a "pcap_t". 2233 * 2234 * If we fail to allocate memory for the copy, fill in the "errbuf" 2235 * member of the "pcap_t" with an error message, and return -1; 2236 * otherwise, return 0. 2237 */ 2238 int 2239 install_bpf_program(pcap_t *p, struct bpf_program *fp) 2240 { 2241 size_t prog_size; 2242 2243 /* 2244 * Validate the program. 2245 */ 2246 if (!bpf_validate(fp->bf_insns, fp->bf_len)) { 2247 pcap_snprintf(p->errbuf, sizeof(p->errbuf), 2248 "BPF program is not valid"); 2249 return (-1); 2250 } 2251 2252 /* 2253 * Free up any already installed program. 2254 */ 2255 pcap_freecode(&p->fcode); 2256 2257 prog_size = sizeof(*fp->bf_insns) * fp->bf_len; 2258 p->fcode.bf_len = fp->bf_len; 2259 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size); 2260 if (p->fcode.bf_insns == NULL) { 2261 pcap_snprintf(p->errbuf, sizeof(p->errbuf), 2262 "malloc: %s", pcap_strerror(errno)); 2263 return (-1); 2264 } 2265 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size); 2266 return (0); 2267 } 2268 2269 #ifdef BDEBUG 2270 static void 2271 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog, 2272 FILE *out) 2273 { 2274 int icount, noffset; 2275 int i; 2276 2277 if (block == NULL || isMarked(ic, block)) 2278 return; 2279 Mark(ic, block); 2280 2281 icount = slength(block->stmts) + 1 + block->longjt + block->longjf; 2282 noffset = min(block->offset + icount, (int)prog->bf_len); 2283 2284 fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id); 2285 for (i = block->offset; i < noffset; i++) { 2286 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i)); 2287 } 2288 fprintf(out, "\" tooltip=\""); 2289 for (i = 0; i < BPF_MEMWORDS; i++) 2290 if (block->val[i] != 0) 2291 fprintf(out, "val[%d]=%d ", i, block->val[i]); 2292 fprintf(out, "val[A]=%d ", block->val[A_ATOM]); 2293 fprintf(out, "val[X]=%d", block->val[X_ATOM]); 2294 fprintf(out, "\""); 2295 if (JT(block) == NULL) 2296 fprintf(out, ", peripheries=2"); 2297 fprintf(out, "];\n"); 2298 2299 dot_dump_node(ic, JT(block), prog, out); 2300 dot_dump_node(ic, JF(block), prog, out); 2301 } 2302 2303 static void 2304 dot_dump_edge(struct icode *ic, struct block *block, FILE *out) 2305 { 2306 if (block == NULL || isMarked(ic, block)) 2307 return; 2308 Mark(ic, block); 2309 2310 if (JT(block)) { 2311 fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n", 2312 block->id, JT(block)->id); 2313 fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n", 2314 block->id, JF(block)->id); 2315 } 2316 dot_dump_edge(ic, JT(block), out); 2317 dot_dump_edge(ic, JF(block), out); 2318 } 2319 2320 /* Output the block CFG using graphviz/DOT language 2321 * In the CFG, block's code, value index for each registers at EXIT, 2322 * and the jump relationship is show. 2323 * 2324 * example DOT for BPF `ip src host 1.1.1.1' is: 2325 digraph BPF { 2326 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"]; 2327 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"]; 2328 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2]; 2329 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2]; 2330 "block0":se -> "block1":n [label="T"]; 2331 "block0":sw -> "block3":n [label="F"]; 2332 "block1":se -> "block2":n [label="T"]; 2333 "block1":sw -> "block3":n [label="F"]; 2334 } 2335 * 2336 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot 2337 * and run `dot -Tpng -O bpf.dot' to draw the graph. 2338 */ 2339 static void 2340 dot_dump(compiler_state_t *cstate, struct icode *ic) 2341 { 2342 struct bpf_program f; 2343 FILE *out = stdout; 2344 2345 memset(bids, 0, sizeof bids); 2346 f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len); 2347 2348 fprintf(out, "digraph BPF {\n"); 2349 ic->cur_mark = 0; 2350 unMarkAll(ic); 2351 dot_dump_node(ic, ic->root, &f, out); 2352 ic->cur_mark = 0; 2353 unMarkAll(ic); 2354 dot_dump_edge(ic, ic->root, out); 2355 fprintf(out, "}\n"); 2356 2357 free((char *)f.bf_insns); 2358 } 2359 2360 static void 2361 plain_dump(compiler_state_t *cstate, struct icode *ic) 2362 { 2363 struct bpf_program f; 2364 2365 memset(bids, 0, sizeof bids); 2366 f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len); 2367 bpf_dump(&f, 1); 2368 putchar('\n'); 2369 free((char *)f.bf_insns); 2370 } 2371 2372 static void 2373 opt_dump(compiler_state_t *cstate, struct icode *ic) 2374 { 2375 /* if optimizer debugging is enabled, output DOT graph 2376 * `pcap_optimizer_debug=4' is equivalent to -dddd to follow -d/-dd/-ddd 2377 * convention in tcpdump command line 2378 */ 2379 if (pcap_optimizer_debug > 3) 2380 dot_dump(cstate, ic); 2381 else 2382 plain_dump(cstate, ic); 2383 } 2384 #endif 2385