xref: /freebsd/contrib/libpcap/optimize.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*
2  * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that: (1) source code distributions
7  * retain the above copyright notice and this paragraph in its entirety, (2)
8  * distributions including binary code include the above copyright notice and
9  * this paragraph in its entirety in the documentation or other materials
10  * provided with the distribution, and (3) all advertising materials mentioning
11  * features or use of this software display the following acknowledgement:
12  * ``This product includes software developed by the University of California,
13  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14  * the University nor the names of its contributors may be used to endorse
15  * or promote products derived from this software without specific prior
16  * written permission.
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20  *
21  *  Optimization module for BPF code intermediate representation.
22  */
23 
24 #ifdef HAVE_CONFIG_H
25 #include <config.h>
26 #endif
27 
28 #include <pcap-types.h>
29 
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <memory.h>
33 #include <setjmp.h>
34 #include <string.h>
35 
36 #include <errno.h>
37 
38 #include "pcap-int.h"
39 
40 #include "gencode.h"
41 #include "optimize.h"
42 
43 #ifdef HAVE_OS_PROTO_H
44 #include "os-proto.h"
45 #endif
46 
47 #ifdef BDEBUG
48 /*
49  * The internal "debug printout" flag for the filter expression optimizer.
50  * The code to print that stuff is present only if BDEBUG is defined, so
51  * the flag, and the routine to set it, are defined only if BDEBUG is
52  * defined.
53  */
54 static int pcap_optimizer_debug;
55 
56 /*
57  * Routine to set that flag.
58  *
59  * This is intended for libpcap developers, not for general use.
60  * If you want to set these in a program, you'll have to declare this
61  * routine yourself, with the appropriate DLL import attribute on Windows;
62  * it's not declared in any header file, and won't be declared in any
63  * header file provided by libpcap.
64  */
65 PCAP_API void pcap_set_optimizer_debug(int value);
66 
67 PCAP_API_DEF void
68 pcap_set_optimizer_debug(int value)
69 {
70 	pcap_optimizer_debug = value;
71 }
72 
73 /*
74  * The internal "print dot graph" flag for the filter expression optimizer.
75  * The code to print that stuff is present only if BDEBUG is defined, so
76  * the flag, and the routine to set it, are defined only if BDEBUG is
77  * defined.
78  */
79 static int pcap_print_dot_graph;
80 
81 /*
82  * Routine to set that flag.
83  *
84  * This is intended for libpcap developers, not for general use.
85  * If you want to set these in a program, you'll have to declare this
86  * routine yourself, with the appropriate DLL import attribute on Windows;
87  * it's not declared in any header file, and won't be declared in any
88  * header file provided by libpcap.
89  */
90 PCAP_API void pcap_set_print_dot_graph(int value);
91 
92 PCAP_API_DEF void
93 pcap_set_print_dot_graph(int value)
94 {
95 	pcap_print_dot_graph = value;
96 }
97 
98 #endif
99 
100 /*
101  * lowest_set_bit().
102  *
103  * Takes a 32-bit integer as an argument.
104  *
105  * If handed a non-zero value, returns the index of the lowest set bit,
106  * counting upwards fro zero.
107  *
108  * If handed zero, the results are platform- and compiler-dependent.
109  * Keep it out of the light, don't give it any water, don't feed it
110  * after midnight, and don't pass zero to it.
111  *
112  * This is the same as the count of trailing zeroes in the word.
113  */
114 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
115   /*
116    * GCC 3.4 and later; we have __builtin_ctz().
117    */
118   #define lowest_set_bit(mask) __builtin_ctz(mask)
119 #elif defined(_MSC_VER)
120   /*
121    * Visual Studio; we support only 2005 and later, so use
122    * _BitScanForward().
123    */
124 #include <intrin.h>
125 
126 #ifndef __clang__
127 #pragma intrinsic(_BitScanForward)
128 #endif
129 
130 static __forceinline int
131 lowest_set_bit(int mask)
132 {
133 	unsigned long bit;
134 
135 	/*
136 	 * Don't sign-extend mask if long is longer than int.
137 	 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
138 	 */
139 	if (_BitScanForward(&bit, (unsigned int)mask) == 0)
140 		return -1;	/* mask is zero */
141 	return (int)bit;
142 }
143 #elif defined(MSDOS) && defined(__DJGPP__)
144   /*
145    * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
146    * we've already included.
147    */
148   #define lowest_set_bit(mask)	(ffs((mask)) - 1)
149 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
150   /*
151    * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
152    * or some other platform (UN*X conforming to a sufficient recent version
153    * of the Single UNIX Specification).
154    */
155   #include <strings.h>
156   #define lowest_set_bit(mask)	(ffs((mask)) - 1)
157 #else
158 /*
159  * None of the above.
160  * Use a perfect-hash-function-based function.
161  */
162 static int
163 lowest_set_bit(int mask)
164 {
165 	unsigned int v = (unsigned int)mask;
166 
167 	static const int MultiplyDeBruijnBitPosition[32] = {
168 		0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
169 		31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
170 	};
171 
172 	/*
173 	 * We strip off all but the lowermost set bit (v & ~v),
174 	 * and perform a minimal perfect hash on it to look up the
175 	 * number of low-order zero bits in a table.
176 	 *
177 	 * See:
178 	 *
179 	 *	http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
180 	 *
181 	 *	http://supertech.csail.mit.edu/papers/debruijn.pdf
182 	 */
183 	return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
184 }
185 #endif
186 
187 /*
188  * Represents a deleted instruction.
189  */
190 #define NOP -1
191 
192 /*
193  * Register numbers for use-def values.
194  * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
195  * location.  A_ATOM is the accumulator and X_ATOM is the index
196  * register.
197  */
198 #define A_ATOM BPF_MEMWORDS
199 #define X_ATOM (BPF_MEMWORDS+1)
200 
201 /*
202  * This define is used to represent *both* the accumulator and
203  * x register in use-def computations.
204  * Currently, the use-def code assumes only one definition per instruction.
205  */
206 #define AX_ATOM N_ATOMS
207 
208 /*
209  * These data structures are used in a Cocke and Shwarz style
210  * value numbering scheme.  Since the flowgraph is acyclic,
211  * exit values can be propagated from a node's predecessors
212  * provided it is uniquely defined.
213  */
214 struct valnode {
215 	int code;
216 	int v0, v1;
217 	int val;
218 	struct valnode *next;
219 };
220 
221 /* Integer constants mapped with the load immediate opcode. */
222 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
223 
224 struct vmapinfo {
225 	int is_const;
226 	bpf_int32 const_val;
227 };
228 
229 typedef struct {
230 	/*
231 	 * Place to longjmp to on an error.
232 	 */
233 	jmp_buf top_ctx;
234 
235 	/*
236 	 * The buffer into which to put error message.
237 	 */
238 	char *errbuf;
239 
240 	/*
241 	 * A flag to indicate that further optimization is needed.
242 	 * Iterative passes are continued until a given pass yields no
243 	 * branch movement.
244 	 */
245 	int done;
246 
247 	int n_blocks;
248 	struct block **blocks;
249 	int n_edges;
250 	struct edge **edges;
251 
252 	/*
253 	 * A bit vector set representation of the dominators.
254 	 * We round up the set size to the next power of two.
255 	 */
256 	int nodewords;
257 	int edgewords;
258 	struct block **levels;
259 	bpf_u_int32 *space;
260 
261 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
262 /*
263  * True if a is in uset {p}
264  */
265 #define SET_MEMBER(p, a) \
266 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
267 
268 /*
269  * Add 'a' to uset p.
270  */
271 #define SET_INSERT(p, a) \
272 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
273 
274 /*
275  * Delete 'a' from uset p.
276  */
277 #define SET_DELETE(p, a) \
278 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
279 
280 /*
281  * a := a intersect b
282  */
283 #define SET_INTERSECT(a, b, n)\
284 {\
285 	register bpf_u_int32 *_x = a, *_y = b;\
286 	register int _n = n;\
287 	while (--_n >= 0) *_x++ &= *_y++;\
288 }
289 
290 /*
291  * a := a - b
292  */
293 #define SET_SUBTRACT(a, b, n)\
294 {\
295 	register bpf_u_int32 *_x = a, *_y = b;\
296 	register int _n = n;\
297 	while (--_n >= 0) *_x++ &=~ *_y++;\
298 }
299 
300 /*
301  * a := a union b
302  */
303 #define SET_UNION(a, b, n)\
304 {\
305 	register bpf_u_int32 *_x = a, *_y = b;\
306 	register int _n = n;\
307 	while (--_n >= 0) *_x++ |= *_y++;\
308 }
309 
310 	uset all_dom_sets;
311 	uset all_closure_sets;
312 	uset all_edge_sets;
313 
314 #define MODULUS 213
315 	struct valnode *hashtbl[MODULUS];
316 	int curval;
317 	int maxval;
318 
319 	struct vmapinfo *vmap;
320 	struct valnode *vnode_base;
321 	struct valnode *next_vnode;
322 } opt_state_t;
323 
324 typedef struct {
325 	/*
326 	 * Place to longjmp to on an error.
327 	 */
328 	jmp_buf top_ctx;
329 
330 	/*
331 	 * The buffer into which to put error message.
332 	 */
333 	char *errbuf;
334 
335 	/*
336 	 * Some pointers used to convert the basic block form of the code,
337 	 * into the array form that BPF requires.  'fstart' will point to
338 	 * the malloc'd array while 'ftail' is used during the recursive
339 	 * traversal.
340 	 */
341 	struct bpf_insn *fstart;
342 	struct bpf_insn *ftail;
343 } conv_state_t;
344 
345 static void opt_init(opt_state_t *, struct icode *);
346 static void opt_cleanup(opt_state_t *);
347 static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
348     PCAP_PRINTFLIKE(2, 3);
349 
350 static void intern_blocks(opt_state_t *, struct icode *);
351 
352 static void find_inedges(opt_state_t *, struct block *);
353 #ifdef BDEBUG
354 static void opt_dump(opt_state_t *, struct icode *);
355 #endif
356 
357 #ifndef MAX
358 #define MAX(a,b) ((a)>(b)?(a):(b))
359 #endif
360 
361 static void
362 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
363 {
364 	int level;
365 
366 	if (isMarked(ic, b))
367 		return;
368 
369 	Mark(ic, b);
370 	b->link = 0;
371 
372 	if (JT(b)) {
373 		find_levels_r(opt_state, ic, JT(b));
374 		find_levels_r(opt_state, ic, JF(b));
375 		level = MAX(JT(b)->level, JF(b)->level) + 1;
376 	} else
377 		level = 0;
378 	b->level = level;
379 	b->link = opt_state->levels[level];
380 	opt_state->levels[level] = b;
381 }
382 
383 /*
384  * Level graph.  The levels go from 0 at the leaves to
385  * N_LEVELS at the root.  The opt_state->levels[] array points to the
386  * first node of the level list, whose elements are linked
387  * with the 'link' field of the struct block.
388  */
389 static void
390 find_levels(opt_state_t *opt_state, struct icode *ic)
391 {
392 	memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
393 	unMarkAll(ic);
394 	find_levels_r(opt_state, ic, ic->root);
395 }
396 
397 /*
398  * Find dominator relationships.
399  * Assumes graph has been leveled.
400  */
401 static void
402 find_dom(opt_state_t *opt_state, struct block *root)
403 {
404 	int i;
405 	struct block *b;
406 	bpf_u_int32 *x;
407 
408 	/*
409 	 * Initialize sets to contain all nodes.
410 	 */
411 	x = opt_state->all_dom_sets;
412 	i = opt_state->n_blocks * opt_state->nodewords;
413 	while (--i >= 0)
414 		*x++ = 0xFFFFFFFFU;
415 	/* Root starts off empty. */
416 	for (i = opt_state->nodewords; --i >= 0;)
417 		root->dom[i] = 0;
418 
419 	/* root->level is the highest level no found. */
420 	for (i = root->level; i >= 0; --i) {
421 		for (b = opt_state->levels[i]; b; b = b->link) {
422 			SET_INSERT(b->dom, b->id);
423 			if (JT(b) == 0)
424 				continue;
425 			SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
426 			SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
427 		}
428 	}
429 }
430 
431 static void
432 propedom(opt_state_t *opt_state, struct edge *ep)
433 {
434 	SET_INSERT(ep->edom, ep->id);
435 	if (ep->succ) {
436 		SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
437 		SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
438 	}
439 }
440 
441 /*
442  * Compute edge dominators.
443  * Assumes graph has been leveled and predecessors established.
444  */
445 static void
446 find_edom(opt_state_t *opt_state, struct block *root)
447 {
448 	int i;
449 	uset x;
450 	struct block *b;
451 
452 	x = opt_state->all_edge_sets;
453 	for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; )
454 		x[i] = 0xFFFFFFFFU;
455 
456 	/* root->level is the highest level no found. */
457 	memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
458 	memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
459 	for (i = root->level; i >= 0; --i) {
460 		for (b = opt_state->levels[i]; b != 0; b = b->link) {
461 			propedom(opt_state, &b->et);
462 			propedom(opt_state, &b->ef);
463 		}
464 	}
465 }
466 
467 /*
468  * Find the backwards transitive closure of the flow graph.  These sets
469  * are backwards in the sense that we find the set of nodes that reach
470  * a given node, not the set of nodes that can be reached by a node.
471  *
472  * Assumes graph has been leveled.
473  */
474 static void
475 find_closure(opt_state_t *opt_state, struct block *root)
476 {
477 	int i;
478 	struct block *b;
479 
480 	/*
481 	 * Initialize sets to contain no nodes.
482 	 */
483 	memset((char *)opt_state->all_closure_sets, 0,
484 	      opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
485 
486 	/* root->level is the highest level no found. */
487 	for (i = root->level; i >= 0; --i) {
488 		for (b = opt_state->levels[i]; b; b = b->link) {
489 			SET_INSERT(b->closure, b->id);
490 			if (JT(b) == 0)
491 				continue;
492 			SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
493 			SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
494 		}
495 	}
496 }
497 
498 /*
499  * Return the register number that is used by s.  If A and X are both
500  * used, return AX_ATOM.  If no register is used, return -1.
501  *
502  * The implementation should probably change to an array access.
503  */
504 static int
505 atomuse(struct stmt *s)
506 {
507 	register int c = s->code;
508 
509 	if (c == NOP)
510 		return -1;
511 
512 	switch (BPF_CLASS(c)) {
513 
514 	case BPF_RET:
515 		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
516 			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
517 
518 	case BPF_LD:
519 	case BPF_LDX:
520 		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
521 			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
522 
523 	case BPF_ST:
524 		return A_ATOM;
525 
526 	case BPF_STX:
527 		return X_ATOM;
528 
529 	case BPF_JMP:
530 	case BPF_ALU:
531 		if (BPF_SRC(c) == BPF_X)
532 			return AX_ATOM;
533 		return A_ATOM;
534 
535 	case BPF_MISC:
536 		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
537 	}
538 	abort();
539 	/* NOTREACHED */
540 }
541 
542 /*
543  * Return the register number that is defined by 's'.  We assume that
544  * a single stmt cannot define more than one register.  If no register
545  * is defined, return -1.
546  *
547  * The implementation should probably change to an array access.
548  */
549 static int
550 atomdef(struct stmt *s)
551 {
552 	if (s->code == NOP)
553 		return -1;
554 
555 	switch (BPF_CLASS(s->code)) {
556 
557 	case BPF_LD:
558 	case BPF_ALU:
559 		return A_ATOM;
560 
561 	case BPF_LDX:
562 		return X_ATOM;
563 
564 	case BPF_ST:
565 	case BPF_STX:
566 		return s->k;
567 
568 	case BPF_MISC:
569 		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
570 	}
571 	return -1;
572 }
573 
574 /*
575  * Compute the sets of registers used, defined, and killed by 'b'.
576  *
577  * "Used" means that a statement in 'b' uses the register before any
578  * statement in 'b' defines it, i.e. it uses the value left in
579  * that register by a predecessor block of this block.
580  * "Defined" means that a statement in 'b' defines it.
581  * "Killed" means that a statement in 'b' defines it before any
582  * statement in 'b' uses it, i.e. it kills the value left in that
583  * register by a predecessor block of this block.
584  */
585 static void
586 compute_local_ud(struct block *b)
587 {
588 	struct slist *s;
589 	atomset def = 0, use = 0, killed = 0;
590 	int atom;
591 
592 	for (s = b->stmts; s; s = s->next) {
593 		if (s->s.code == NOP)
594 			continue;
595 		atom = atomuse(&s->s);
596 		if (atom >= 0) {
597 			if (atom == AX_ATOM) {
598 				if (!ATOMELEM(def, X_ATOM))
599 					use |= ATOMMASK(X_ATOM);
600 				if (!ATOMELEM(def, A_ATOM))
601 					use |= ATOMMASK(A_ATOM);
602 			}
603 			else if (atom < N_ATOMS) {
604 				if (!ATOMELEM(def, atom))
605 					use |= ATOMMASK(atom);
606 			}
607 			else
608 				abort();
609 		}
610 		atom = atomdef(&s->s);
611 		if (atom >= 0) {
612 			if (!ATOMELEM(use, atom))
613 				killed |= ATOMMASK(atom);
614 			def |= ATOMMASK(atom);
615 		}
616 	}
617 	if (BPF_CLASS(b->s.code) == BPF_JMP) {
618 		/*
619 		 * XXX - what about RET?
620 		 */
621 		atom = atomuse(&b->s);
622 		if (atom >= 0) {
623 			if (atom == AX_ATOM) {
624 				if (!ATOMELEM(def, X_ATOM))
625 					use |= ATOMMASK(X_ATOM);
626 				if (!ATOMELEM(def, A_ATOM))
627 					use |= ATOMMASK(A_ATOM);
628 			}
629 			else if (atom < N_ATOMS) {
630 				if (!ATOMELEM(def, atom))
631 					use |= ATOMMASK(atom);
632 			}
633 			else
634 				abort();
635 		}
636 	}
637 
638 	b->def = def;
639 	b->kill = killed;
640 	b->in_use = use;
641 }
642 
643 /*
644  * Assume graph is already leveled.
645  */
646 static void
647 find_ud(opt_state_t *opt_state, struct block *root)
648 {
649 	int i, maxlevel;
650 	struct block *p;
651 
652 	/*
653 	 * root->level is the highest level no found;
654 	 * count down from there.
655 	 */
656 	maxlevel = root->level;
657 	for (i = maxlevel; i >= 0; --i)
658 		for (p = opt_state->levels[i]; p; p = p->link) {
659 			compute_local_ud(p);
660 			p->out_use = 0;
661 		}
662 
663 	for (i = 1; i <= maxlevel; ++i) {
664 		for (p = opt_state->levels[i]; p; p = p->link) {
665 			p->out_use |= JT(p)->in_use | JF(p)->in_use;
666 			p->in_use |= p->out_use &~ p->kill;
667 		}
668 	}
669 }
670 static void
671 init_val(opt_state_t *opt_state)
672 {
673 	opt_state->curval = 0;
674 	opt_state->next_vnode = opt_state->vnode_base;
675 	memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
676 	memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
677 }
678 
679 /* Because we really don't have an IR, this stuff is a little messy. */
680 static int
681 F(opt_state_t *opt_state, int code, int v0, int v1)
682 {
683 	u_int hash;
684 	int val;
685 	struct valnode *p;
686 
687 	hash = (u_int)code ^ ((u_int)v0 << 4) ^ ((u_int)v1 << 8);
688 	hash %= MODULUS;
689 
690 	for (p = opt_state->hashtbl[hash]; p; p = p->next)
691 		if (p->code == code && p->v0 == v0 && p->v1 == v1)
692 			return p->val;
693 
694 	val = ++opt_state->curval;
695 	if (BPF_MODE(code) == BPF_IMM &&
696 	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
697 		opt_state->vmap[val].const_val = v0;
698 		opt_state->vmap[val].is_const = 1;
699 	}
700 	p = opt_state->next_vnode++;
701 	p->val = val;
702 	p->code = code;
703 	p->v0 = v0;
704 	p->v1 = v1;
705 	p->next = opt_state->hashtbl[hash];
706 	opt_state->hashtbl[hash] = p;
707 
708 	return val;
709 }
710 
711 static inline void
712 vstore(struct stmt *s, int *valp, int newval, int alter)
713 {
714 	if (alter && newval != VAL_UNKNOWN && *valp == newval)
715 		s->code = NOP;
716 	else
717 		*valp = newval;
718 }
719 
720 /*
721  * Do constant-folding on binary operators.
722  * (Unary operators are handled elsewhere.)
723  */
724 static void
725 fold_op(opt_state_t *opt_state, struct stmt *s, int v0, int v1)
726 {
727 	bpf_u_int32 a, b;
728 
729 	a = opt_state->vmap[v0].const_val;
730 	b = opt_state->vmap[v1].const_val;
731 
732 	switch (BPF_OP(s->code)) {
733 	case BPF_ADD:
734 		a += b;
735 		break;
736 
737 	case BPF_SUB:
738 		a -= b;
739 		break;
740 
741 	case BPF_MUL:
742 		a *= b;
743 		break;
744 
745 	case BPF_DIV:
746 		if (b == 0)
747 			opt_error(opt_state, "division by zero");
748 		a /= b;
749 		break;
750 
751 	case BPF_MOD:
752 		if (b == 0)
753 			opt_error(opt_state, "modulus by zero");
754 		a %= b;
755 		break;
756 
757 	case BPF_AND:
758 		a &= b;
759 		break;
760 
761 	case BPF_OR:
762 		a |= b;
763 		break;
764 
765 	case BPF_XOR:
766 		a ^= b;
767 		break;
768 
769 	case BPF_LSH:
770 		/*
771 		 * A left shift of more than the width of the type
772 		 * is undefined in C; we'll just treat it as shifting
773 		 * all the bits out.
774 		 *
775 		 * XXX - the BPF interpreter doesn't check for this,
776 		 * so its behavior is dependent on the behavior of
777 		 * the processor on which it's running.  There are
778 		 * processors on which it shifts all the bits out
779 		 * and processors on which it does no shift.
780 		 */
781 		if (b < 32)
782 			a <<= b;
783 		else
784 			a = 0;
785 		break;
786 
787 	case BPF_RSH:
788 		/*
789 		 * A right shift of more than the width of the type
790 		 * is undefined in C; we'll just treat it as shifting
791 		 * all the bits out.
792 		 *
793 		 * XXX - the BPF interpreter doesn't check for this,
794 		 * so its behavior is dependent on the behavior of
795 		 * the processor on which it's running.  There are
796 		 * processors on which it shifts all the bits out
797 		 * and processors on which it does no shift.
798 		 */
799 		if (b < 32)
800 			a >>= b;
801 		else
802 			a = 0;
803 		break;
804 
805 	default:
806 		abort();
807 	}
808 	s->k = a;
809 	s->code = BPF_LD|BPF_IMM;
810 	opt_state->done = 0;
811 }
812 
813 static inline struct slist *
814 this_op(struct slist *s)
815 {
816 	while (s != 0 && s->s.code == NOP)
817 		s = s->next;
818 	return s;
819 }
820 
821 static void
822 opt_not(struct block *b)
823 {
824 	struct block *tmp = JT(b);
825 
826 	JT(b) = JF(b);
827 	JF(b) = tmp;
828 }
829 
830 static void
831 opt_peep(opt_state_t *opt_state, struct block *b)
832 {
833 	struct slist *s;
834 	struct slist *next, *last;
835 	int val;
836 
837 	s = b->stmts;
838 	if (s == 0)
839 		return;
840 
841 	last = s;
842 	for (/*empty*/; /*empty*/; s = next) {
843 		/*
844 		 * Skip over nops.
845 		 */
846 		s = this_op(s);
847 		if (s == 0)
848 			break;	/* nothing left in the block */
849 
850 		/*
851 		 * Find the next real instruction after that one
852 		 * (skipping nops).
853 		 */
854 		next = this_op(s->next);
855 		if (next == 0)
856 			break;	/* no next instruction */
857 		last = next;
858 
859 		/*
860 		 * st  M[k]	-->	st  M[k]
861 		 * ldx M[k]		tax
862 		 */
863 		if (s->s.code == BPF_ST &&
864 		    next->s.code == (BPF_LDX|BPF_MEM) &&
865 		    s->s.k == next->s.k) {
866 			opt_state->done = 0;
867 			next->s.code = BPF_MISC|BPF_TAX;
868 		}
869 		/*
870 		 * ld  #k	-->	ldx  #k
871 		 * tax			txa
872 		 */
873 		if (s->s.code == (BPF_LD|BPF_IMM) &&
874 		    next->s.code == (BPF_MISC|BPF_TAX)) {
875 			s->s.code = BPF_LDX|BPF_IMM;
876 			next->s.code = BPF_MISC|BPF_TXA;
877 			opt_state->done = 0;
878 		}
879 		/*
880 		 * This is an ugly special case, but it happens
881 		 * when you say tcp[k] or udp[k] where k is a constant.
882 		 */
883 		if (s->s.code == (BPF_LD|BPF_IMM)) {
884 			struct slist *add, *tax, *ild;
885 
886 			/*
887 			 * Check that X isn't used on exit from this
888 			 * block (which the optimizer might cause).
889 			 * We know the code generator won't generate
890 			 * any local dependencies.
891 			 */
892 			if (ATOMELEM(b->out_use, X_ATOM))
893 				continue;
894 
895 			/*
896 			 * Check that the instruction following the ldi
897 			 * is an addx, or it's an ldxms with an addx
898 			 * following it (with 0 or more nops between the
899 			 * ldxms and addx).
900 			 */
901 			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
902 				add = next;
903 			else
904 				add = this_op(next->next);
905 			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
906 				continue;
907 
908 			/*
909 			 * Check that a tax follows that (with 0 or more
910 			 * nops between them).
911 			 */
912 			tax = this_op(add->next);
913 			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
914 				continue;
915 
916 			/*
917 			 * Check that an ild follows that (with 0 or more
918 			 * nops between them).
919 			 */
920 			ild = this_op(tax->next);
921 			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
922 			    BPF_MODE(ild->s.code) != BPF_IND)
923 				continue;
924 			/*
925 			 * We want to turn this sequence:
926 			 *
927 			 * (004) ldi     #0x2		{s}
928 			 * (005) ldxms   [14]		{next}  -- optional
929 			 * (006) addx			{add}
930 			 * (007) tax			{tax}
931 			 * (008) ild     [x+0]		{ild}
932 			 *
933 			 * into this sequence:
934 			 *
935 			 * (004) nop
936 			 * (005) ldxms   [14]
937 			 * (006) nop
938 			 * (007) nop
939 			 * (008) ild     [x+2]
940 			 *
941 			 * XXX We need to check that X is not
942 			 * subsequently used, because we want to change
943 			 * what'll be in it after this sequence.
944 			 *
945 			 * We know we can eliminate the accumulator
946 			 * modifications earlier in the sequence since
947 			 * it is defined by the last stmt of this sequence
948 			 * (i.e., the last statement of the sequence loads
949 			 * a value into the accumulator, so we can eliminate
950 			 * earlier operations on the accumulator).
951 			 */
952 			ild->s.k += s->s.k;
953 			s->s.code = NOP;
954 			add->s.code = NOP;
955 			tax->s.code = NOP;
956 			opt_state->done = 0;
957 		}
958 	}
959 	/*
960 	 * If the comparison at the end of a block is an equality
961 	 * comparison against a constant, and nobody uses the value
962 	 * we leave in the A register at the end of a block, and
963 	 * the operation preceding the comparison is an arithmetic
964 	 * operation, we can sometime optimize it away.
965 	 */
966 	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
967 	    !ATOMELEM(b->out_use, A_ATOM)) {
968 	    	/*
969 	    	 * We can optimize away certain subtractions of the
970 	    	 * X register.
971 	    	 */
972 		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
973 			val = b->val[X_ATOM];
974 			if (opt_state->vmap[val].is_const) {
975 				/*
976 				 * If we have a subtract to do a comparison,
977 				 * and the X register is a known constant,
978 				 * we can merge this value into the
979 				 * comparison:
980 				 *
981 				 * sub x  ->	nop
982 				 * jeq #y	jeq #(x+y)
983 				 */
984 				b->s.k += opt_state->vmap[val].const_val;
985 				last->s.code = NOP;
986 				opt_state->done = 0;
987 			} else if (b->s.k == 0) {
988 				/*
989 				 * If the X register isn't a constant,
990 				 * and the comparison in the test is
991 				 * against 0, we can compare with the
992 				 * X register, instead:
993 				 *
994 				 * sub x  ->	nop
995 				 * jeq #0	jeq x
996 				 */
997 				last->s.code = NOP;
998 				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
999 				opt_state->done = 0;
1000 			}
1001 		}
1002 		/*
1003 		 * Likewise, a constant subtract can be simplified:
1004 		 *
1005 		 * sub #x ->	nop
1006 		 * jeq #y ->	jeq #(x+y)
1007 		 */
1008 		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1009 			last->s.code = NOP;
1010 			b->s.k += last->s.k;
1011 			opt_state->done = 0;
1012 		}
1013 		/*
1014 		 * And, similarly, a constant AND can be simplified
1015 		 * if we're testing against 0, i.e.:
1016 		 *
1017 		 * and #k	nop
1018 		 * jeq #0  ->	jset #k
1019 		 */
1020 		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1021 		    b->s.k == 0) {
1022 			b->s.k = last->s.k;
1023 			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1024 			last->s.code = NOP;
1025 			opt_state->done = 0;
1026 			opt_not(b);
1027 		}
1028 	}
1029 	/*
1030 	 * jset #0        ->   never
1031 	 * jset #ffffffff ->   always
1032 	 */
1033 	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1034 		if (b->s.k == 0)
1035 			JT(b) = JF(b);
1036 		if ((u_int)b->s.k == 0xffffffffU)
1037 			JF(b) = JT(b);
1038 	}
1039 	/*
1040 	 * If we're comparing against the index register, and the index
1041 	 * register is a known constant, we can just compare against that
1042 	 * constant.
1043 	 */
1044 	val = b->val[X_ATOM];
1045 	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1046 		bpf_int32 v = opt_state->vmap[val].const_val;
1047 		b->s.code &= ~BPF_X;
1048 		b->s.k = v;
1049 	}
1050 	/*
1051 	 * If the accumulator is a known constant, we can compute the
1052 	 * comparison result.
1053 	 */
1054 	val = b->val[A_ATOM];
1055 	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1056 		bpf_int32 v = opt_state->vmap[val].const_val;
1057 		switch (BPF_OP(b->s.code)) {
1058 
1059 		case BPF_JEQ:
1060 			v = v == b->s.k;
1061 			break;
1062 
1063 		case BPF_JGT:
1064 			v = (unsigned)v > (unsigned)b->s.k;
1065 			break;
1066 
1067 		case BPF_JGE:
1068 			v = (unsigned)v >= (unsigned)b->s.k;
1069 			break;
1070 
1071 		case BPF_JSET:
1072 			v &= b->s.k;
1073 			break;
1074 
1075 		default:
1076 			abort();
1077 		}
1078 		if (JF(b) != JT(b))
1079 			opt_state->done = 0;
1080 		if (v)
1081 			JF(b) = JT(b);
1082 		else
1083 			JT(b) = JF(b);
1084 	}
1085 }
1086 
1087 /*
1088  * Compute the symbolic value of expression of 's', and update
1089  * anything it defines in the value table 'val'.  If 'alter' is true,
1090  * do various optimizations.  This code would be cleaner if symbolic
1091  * evaluation and code transformations weren't folded together.
1092  */
1093 static void
1094 opt_stmt(opt_state_t *opt_state, struct stmt *s, int val[], int alter)
1095 {
1096 	int op;
1097 	int v;
1098 
1099 	switch (s->code) {
1100 
1101 	case BPF_LD|BPF_ABS|BPF_W:
1102 	case BPF_LD|BPF_ABS|BPF_H:
1103 	case BPF_LD|BPF_ABS|BPF_B:
1104 		v = F(opt_state, s->code, s->k, 0L);
1105 		vstore(s, &val[A_ATOM], v, alter);
1106 		break;
1107 
1108 	case BPF_LD|BPF_IND|BPF_W:
1109 	case BPF_LD|BPF_IND|BPF_H:
1110 	case BPF_LD|BPF_IND|BPF_B:
1111 		v = val[X_ATOM];
1112 		if (alter && opt_state->vmap[v].is_const) {
1113 			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1114 			s->k += opt_state->vmap[v].const_val;
1115 			v = F(opt_state, s->code, s->k, 0L);
1116 			opt_state->done = 0;
1117 		}
1118 		else
1119 			v = F(opt_state, s->code, s->k, v);
1120 		vstore(s, &val[A_ATOM], v, alter);
1121 		break;
1122 
1123 	case BPF_LD|BPF_LEN:
1124 		v = F(opt_state, s->code, 0L, 0L);
1125 		vstore(s, &val[A_ATOM], v, alter);
1126 		break;
1127 
1128 	case BPF_LD|BPF_IMM:
1129 		v = K(s->k);
1130 		vstore(s, &val[A_ATOM], v, alter);
1131 		break;
1132 
1133 	case BPF_LDX|BPF_IMM:
1134 		v = K(s->k);
1135 		vstore(s, &val[X_ATOM], v, alter);
1136 		break;
1137 
1138 	case BPF_LDX|BPF_MSH|BPF_B:
1139 		v = F(opt_state, s->code, s->k, 0L);
1140 		vstore(s, &val[X_ATOM], v, alter);
1141 		break;
1142 
1143 	case BPF_ALU|BPF_NEG:
1144 		if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1145 			s->code = BPF_LD|BPF_IMM;
1146 			/*
1147 			 * Do this negation as unsigned arithmetic; that's
1148 			 * what modern BPF engines do, and it guarantees
1149 			 * that all possible values can be negated.  (Yeah,
1150 			 * negating 0x80000000, the minimum signed 32-bit
1151 			 * two's-complement value, results in 0x80000000,
1152 			 * so it's still negative, but we *should* be doing
1153 			 * all unsigned arithmetic here, to match what
1154 			 * modern BPF engines do.)
1155 			 *
1156 			 * Express it as 0U - (unsigned value) so that we
1157 			 * don't get compiler warnings about negating an
1158 			 * unsigned value and don't get UBSan warnings
1159 			 * about the result of negating 0x80000000 being
1160 			 * undefined.
1161 			 */
1162 			s->k = 0U - (bpf_u_int32)(opt_state->vmap[val[A_ATOM]].const_val);
1163 			val[A_ATOM] = K(s->k);
1164 		}
1165 		else
1166 			val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1167 		break;
1168 
1169 	case BPF_ALU|BPF_ADD|BPF_K:
1170 	case BPF_ALU|BPF_SUB|BPF_K:
1171 	case BPF_ALU|BPF_MUL|BPF_K:
1172 	case BPF_ALU|BPF_DIV|BPF_K:
1173 	case BPF_ALU|BPF_MOD|BPF_K:
1174 	case BPF_ALU|BPF_AND|BPF_K:
1175 	case BPF_ALU|BPF_OR|BPF_K:
1176 	case BPF_ALU|BPF_XOR|BPF_K:
1177 	case BPF_ALU|BPF_LSH|BPF_K:
1178 	case BPF_ALU|BPF_RSH|BPF_K:
1179 		op = BPF_OP(s->code);
1180 		if (alter) {
1181 			if (s->k == 0) {
1182 				/*
1183 				 * Optimize operations where the constant
1184 				 * is zero.
1185 				 *
1186 				 * Don't optimize away "sub #0"
1187 				 * as it may be needed later to
1188 				 * fixup the generated math code.
1189 				 *
1190 				 * Fail if we're dividing by zero or taking
1191 				 * a modulus by zero.
1192 				 */
1193 				if (op == BPF_ADD ||
1194 				    op == BPF_LSH || op == BPF_RSH ||
1195 				    op == BPF_OR || op == BPF_XOR) {
1196 					s->code = NOP;
1197 					break;
1198 				}
1199 				if (op == BPF_MUL || op == BPF_AND) {
1200 					s->code = BPF_LD|BPF_IMM;
1201 					val[A_ATOM] = K(s->k);
1202 					break;
1203 				}
1204 				if (op == BPF_DIV)
1205 					opt_error(opt_state,
1206 					    "division by zero");
1207 				if (op == BPF_MOD)
1208 					opt_error(opt_state,
1209 					    "modulus by zero");
1210 			}
1211 			if (opt_state->vmap[val[A_ATOM]].is_const) {
1212 				fold_op(opt_state, s, val[A_ATOM], K(s->k));
1213 				val[A_ATOM] = K(s->k);
1214 				break;
1215 			}
1216 		}
1217 		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1218 		break;
1219 
1220 	case BPF_ALU|BPF_ADD|BPF_X:
1221 	case BPF_ALU|BPF_SUB|BPF_X:
1222 	case BPF_ALU|BPF_MUL|BPF_X:
1223 	case BPF_ALU|BPF_DIV|BPF_X:
1224 	case BPF_ALU|BPF_MOD|BPF_X:
1225 	case BPF_ALU|BPF_AND|BPF_X:
1226 	case BPF_ALU|BPF_OR|BPF_X:
1227 	case BPF_ALU|BPF_XOR|BPF_X:
1228 	case BPF_ALU|BPF_LSH|BPF_X:
1229 	case BPF_ALU|BPF_RSH|BPF_X:
1230 		op = BPF_OP(s->code);
1231 		if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1232 			if (opt_state->vmap[val[A_ATOM]].is_const) {
1233 				fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1234 				val[A_ATOM] = K(s->k);
1235 			}
1236 			else {
1237 				s->code = BPF_ALU|BPF_K|op;
1238 				s->k = opt_state->vmap[val[X_ATOM]].const_val;
1239 				/*
1240 				 * XXX - we need to make up our minds
1241 				 * as to what integers are signed and
1242 				 * what integers are unsigned in BPF
1243 				 * programs and in our IR.
1244 				 */
1245 				if ((op == BPF_LSH || op == BPF_RSH) &&
1246 				    (s->k < 0 || s->k > 31))
1247 					opt_error(opt_state,
1248 					    "shift by more than 31 bits");
1249 				opt_state->done = 0;
1250 				val[A_ATOM] =
1251 					F(opt_state, s->code, val[A_ATOM], K(s->k));
1252 			}
1253 			break;
1254 		}
1255 		/*
1256 		 * Check if we're doing something to an accumulator
1257 		 * that is 0, and simplify.  This may not seem like
1258 		 * much of a simplification but it could open up further
1259 		 * optimizations.
1260 		 * XXX We could also check for mul by 1, etc.
1261 		 */
1262 		if (alter && opt_state->vmap[val[A_ATOM]].is_const
1263 		    && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1264 			if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1265 				s->code = BPF_MISC|BPF_TXA;
1266 				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1267 				break;
1268 			}
1269 			else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1270 				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1271 				s->code = BPF_LD|BPF_IMM;
1272 				s->k = 0;
1273 				vstore(s, &val[A_ATOM], K(s->k), alter);
1274 				break;
1275 			}
1276 			else if (op == BPF_NEG) {
1277 				s->code = NOP;
1278 				break;
1279 			}
1280 		}
1281 		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1282 		break;
1283 
1284 	case BPF_MISC|BPF_TXA:
1285 		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1286 		break;
1287 
1288 	case BPF_LD|BPF_MEM:
1289 		v = val[s->k];
1290 		if (alter && opt_state->vmap[v].is_const) {
1291 			s->code = BPF_LD|BPF_IMM;
1292 			s->k = opt_state->vmap[v].const_val;
1293 			opt_state->done = 0;
1294 		}
1295 		vstore(s, &val[A_ATOM], v, alter);
1296 		break;
1297 
1298 	case BPF_MISC|BPF_TAX:
1299 		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1300 		break;
1301 
1302 	case BPF_LDX|BPF_MEM:
1303 		v = val[s->k];
1304 		if (alter && opt_state->vmap[v].is_const) {
1305 			s->code = BPF_LDX|BPF_IMM;
1306 			s->k = opt_state->vmap[v].const_val;
1307 			opt_state->done = 0;
1308 		}
1309 		vstore(s, &val[X_ATOM], v, alter);
1310 		break;
1311 
1312 	case BPF_ST:
1313 		vstore(s, &val[s->k], val[A_ATOM], alter);
1314 		break;
1315 
1316 	case BPF_STX:
1317 		vstore(s, &val[s->k], val[X_ATOM], alter);
1318 		break;
1319 	}
1320 }
1321 
1322 static void
1323 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1324 {
1325 	register int atom;
1326 
1327 	atom = atomuse(s);
1328 	if (atom >= 0) {
1329 		if (atom == AX_ATOM) {
1330 			last[X_ATOM] = 0;
1331 			last[A_ATOM] = 0;
1332 		}
1333 		else
1334 			last[atom] = 0;
1335 	}
1336 	atom = atomdef(s);
1337 	if (atom >= 0) {
1338 		if (last[atom]) {
1339 			opt_state->done = 0;
1340 			last[atom]->code = NOP;
1341 		}
1342 		last[atom] = s;
1343 	}
1344 }
1345 
1346 static void
1347 opt_deadstores(opt_state_t *opt_state, register struct block *b)
1348 {
1349 	register struct slist *s;
1350 	register int atom;
1351 	struct stmt *last[N_ATOMS];
1352 
1353 	memset((char *)last, 0, sizeof last);
1354 
1355 	for (s = b->stmts; s != 0; s = s->next)
1356 		deadstmt(opt_state, &s->s, last);
1357 	deadstmt(opt_state, &b->s, last);
1358 
1359 	for (atom = 0; atom < N_ATOMS; ++atom)
1360 		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1361 			last[atom]->code = NOP;
1362 			opt_state->done = 0;
1363 		}
1364 }
1365 
1366 static void
1367 opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1368 {
1369 	struct slist *s;
1370 	struct edge *p;
1371 	int i;
1372 	bpf_int32 aval, xval;
1373 
1374 #if 0
1375 	for (s = b->stmts; s && s->next; s = s->next)
1376 		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1377 			do_stmts = 0;
1378 			break;
1379 		}
1380 #endif
1381 
1382 	/*
1383 	 * Initialize the atom values.
1384 	 */
1385 	p = b->in_edges;
1386 	if (p == 0) {
1387 		/*
1388 		 * We have no predecessors, so everything is undefined
1389 		 * upon entry to this block.
1390 		 */
1391 		memset((char *)b->val, 0, sizeof(b->val));
1392 	} else {
1393 		/*
1394 		 * Inherit values from our predecessors.
1395 		 *
1396 		 * First, get the values from the predecessor along the
1397 		 * first edge leading to this node.
1398 		 */
1399 		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1400 		/*
1401 		 * Now look at all the other nodes leading to this node.
1402 		 * If, for the predecessor along that edge, a register
1403 		 * has a different value from the one we have (i.e.,
1404 		 * control paths are merging, and the merging paths
1405 		 * assign different values to that register), give the
1406 		 * register the undefined value of 0.
1407 		 */
1408 		while ((p = p->next) != NULL) {
1409 			for (i = 0; i < N_ATOMS; ++i)
1410 				if (b->val[i] != p->pred->val[i])
1411 					b->val[i] = 0;
1412 		}
1413 	}
1414 	aval = b->val[A_ATOM];
1415 	xval = b->val[X_ATOM];
1416 	for (s = b->stmts; s; s = s->next)
1417 		opt_stmt(opt_state, &s->s, b->val, do_stmts);
1418 
1419 	/*
1420 	 * This is a special case: if we don't use anything from this
1421 	 * block, and we load the accumulator or index register with a
1422 	 * value that is already there, or if this block is a return,
1423 	 * eliminate all the statements.
1424 	 *
1425 	 * XXX - what if it does a store?
1426 	 *
1427 	 * XXX - why does it matter whether we use anything from this
1428 	 * block?  If the accumulator or index register doesn't change
1429 	 * its value, isn't that OK even if we use that value?
1430 	 *
1431 	 * XXX - if we load the accumulator with a different value,
1432 	 * and the block ends with a conditional branch, we obviously
1433 	 * can't eliminate it, as the branch depends on that value.
1434 	 * For the index register, the conditional branch only depends
1435 	 * on the index register value if the test is against the index
1436 	 * register value rather than a constant; if nothing uses the
1437 	 * value we put into the index register, and we're not testing
1438 	 * against the index register's value, and there aren't any
1439 	 * other problems that would keep us from eliminating this
1440 	 * block, can we eliminate it?
1441 	 */
1442 	if (do_stmts &&
1443 	    ((b->out_use == 0 &&
1444 	      aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1445 	      xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1446 	     BPF_CLASS(b->s.code) == BPF_RET)) {
1447 		if (b->stmts != 0) {
1448 			b->stmts = 0;
1449 			opt_state->done = 0;
1450 		}
1451 	} else {
1452 		opt_peep(opt_state, b);
1453 		opt_deadstores(opt_state, b);
1454 	}
1455 	/*
1456 	 * Set up values for branch optimizer.
1457 	 */
1458 	if (BPF_SRC(b->s.code) == BPF_K)
1459 		b->oval = K(b->s.k);
1460 	else
1461 		b->oval = b->val[X_ATOM];
1462 	b->et.code = b->s.code;
1463 	b->ef.code = -b->s.code;
1464 }
1465 
1466 /*
1467  * Return true if any register that is used on exit from 'succ', has
1468  * an exit value that is different from the corresponding exit value
1469  * from 'b'.
1470  */
1471 static int
1472 use_conflict(struct block *b, struct block *succ)
1473 {
1474 	int atom;
1475 	atomset use = succ->out_use;
1476 
1477 	if (use == 0)
1478 		return 0;
1479 
1480 	for (atom = 0; atom < N_ATOMS; ++atom)
1481 		if (ATOMELEM(use, atom))
1482 			if (b->val[atom] != succ->val[atom])
1483 				return 1;
1484 	return 0;
1485 }
1486 
1487 static struct block *
1488 fold_edge(struct block *child, struct edge *ep)
1489 {
1490 	int sense;
1491 	int aval0, aval1, oval0, oval1;
1492 	int code = ep->code;
1493 
1494 	if (code < 0) {
1495 		code = -code;
1496 		sense = 0;
1497 	} else
1498 		sense = 1;
1499 
1500 	if (child->s.code != code)
1501 		return 0;
1502 
1503 	aval0 = child->val[A_ATOM];
1504 	oval0 = child->oval;
1505 	aval1 = ep->pred->val[A_ATOM];
1506 	oval1 = ep->pred->oval;
1507 
1508 	if (aval0 != aval1)
1509 		return 0;
1510 
1511 	if (oval0 == oval1)
1512 		/*
1513 		 * The operands of the branch instructions are
1514 		 * identical, so the result is true if a true
1515 		 * branch was taken to get here, otherwise false.
1516 		 */
1517 		return sense ? JT(child) : JF(child);
1518 
1519 	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1520 		/*
1521 		 * At this point, we only know the comparison if we
1522 		 * came down the true branch, and it was an equality
1523 		 * comparison with a constant.
1524 		 *
1525 		 * I.e., if we came down the true branch, and the branch
1526 		 * was an equality comparison with a constant, we know the
1527 		 * accumulator contains that constant.  If we came down
1528 		 * the false branch, or the comparison wasn't with a
1529 		 * constant, we don't know what was in the accumulator.
1530 		 *
1531 		 * We rely on the fact that distinct constants have distinct
1532 		 * value numbers.
1533 		 */
1534 		return JF(child);
1535 
1536 	return 0;
1537 }
1538 
1539 static void
1540 opt_j(opt_state_t *opt_state, struct edge *ep)
1541 {
1542 	register int i, k;
1543 	register struct block *target;
1544 
1545 	if (JT(ep->succ) == 0)
1546 		return;
1547 
1548 	if (JT(ep->succ) == JF(ep->succ)) {
1549 		/*
1550 		 * Common branch targets can be eliminated, provided
1551 		 * there is no data dependency.
1552 		 */
1553 		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1554 			opt_state->done = 0;
1555 			ep->succ = JT(ep->succ);
1556 		}
1557 	}
1558 	/*
1559 	 * For each edge dominator that matches the successor of this
1560 	 * edge, promote the edge successor to the its grandchild.
1561 	 *
1562 	 * XXX We violate the set abstraction here in favor a reasonably
1563 	 * efficient loop.
1564 	 */
1565  top:
1566 	for (i = 0; i < opt_state->edgewords; ++i) {
1567 		register bpf_u_int32 x = ep->edom[i];
1568 
1569 		while (x != 0) {
1570 			k = lowest_set_bit(x);
1571 			x &=~ ((bpf_u_int32)1 << k);
1572 			k += i * BITS_PER_WORD;
1573 
1574 			target = fold_edge(ep->succ, opt_state->edges[k]);
1575 			/*
1576 			 * Check that there is no data dependency between
1577 			 * nodes that will be violated if we move the edge.
1578 			 */
1579 			if (target != 0 && !use_conflict(ep->pred, target)) {
1580 				opt_state->done = 0;
1581 				ep->succ = target;
1582 				if (JT(target) != 0)
1583 					/*
1584 					 * Start over unless we hit a leaf.
1585 					 */
1586 					goto top;
1587 				return;
1588 			}
1589 		}
1590 	}
1591 }
1592 
1593 
1594 static void
1595 or_pullup(opt_state_t *opt_state, struct block *b)
1596 {
1597 	int val, at_top;
1598 	struct block *pull;
1599 	struct block **diffp, **samep;
1600 	struct edge *ep;
1601 
1602 	ep = b->in_edges;
1603 	if (ep == 0)
1604 		return;
1605 
1606 	/*
1607 	 * Make sure each predecessor loads the same value.
1608 	 * XXX why?
1609 	 */
1610 	val = ep->pred->val[A_ATOM];
1611 	for (ep = ep->next; ep != 0; ep = ep->next)
1612 		if (val != ep->pred->val[A_ATOM])
1613 			return;
1614 
1615 	if (JT(b->in_edges->pred) == b)
1616 		diffp = &JT(b->in_edges->pred);
1617 	else
1618 		diffp = &JF(b->in_edges->pred);
1619 
1620 	at_top = 1;
1621 	for (;;) {
1622 		if (*diffp == 0)
1623 			return;
1624 
1625 		if (JT(*diffp) != JT(b))
1626 			return;
1627 
1628 		if (!SET_MEMBER((*diffp)->dom, b->id))
1629 			return;
1630 
1631 		if ((*diffp)->val[A_ATOM] != val)
1632 			break;
1633 
1634 		diffp = &JF(*diffp);
1635 		at_top = 0;
1636 	}
1637 	samep = &JF(*diffp);
1638 	for (;;) {
1639 		if (*samep == 0)
1640 			return;
1641 
1642 		if (JT(*samep) != JT(b))
1643 			return;
1644 
1645 		if (!SET_MEMBER((*samep)->dom, b->id))
1646 			return;
1647 
1648 		if ((*samep)->val[A_ATOM] == val)
1649 			break;
1650 
1651 		/* XXX Need to check that there are no data dependencies
1652 		   between dp0 and dp1.  Currently, the code generator
1653 		   will not produce such dependencies. */
1654 		samep = &JF(*samep);
1655 	}
1656 #ifdef notdef
1657 	/* XXX This doesn't cover everything. */
1658 	for (i = 0; i < N_ATOMS; ++i)
1659 		if ((*samep)->val[i] != pred->val[i])
1660 			return;
1661 #endif
1662 	/* Pull up the node. */
1663 	pull = *samep;
1664 	*samep = JF(pull);
1665 	JF(pull) = *diffp;
1666 
1667 	/*
1668 	 * At the top of the chain, each predecessor needs to point at the
1669 	 * pulled up node.  Inside the chain, there is only one predecessor
1670 	 * to worry about.
1671 	 */
1672 	if (at_top) {
1673 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1674 			if (JT(ep->pred) == b)
1675 				JT(ep->pred) = pull;
1676 			else
1677 				JF(ep->pred) = pull;
1678 		}
1679 	}
1680 	else
1681 		*diffp = pull;
1682 
1683 	opt_state->done = 0;
1684 }
1685 
1686 static void
1687 and_pullup(opt_state_t *opt_state, struct block *b)
1688 {
1689 	int val, at_top;
1690 	struct block *pull;
1691 	struct block **diffp, **samep;
1692 	struct edge *ep;
1693 
1694 	ep = b->in_edges;
1695 	if (ep == 0)
1696 		return;
1697 
1698 	/*
1699 	 * Make sure each predecessor loads the same value.
1700 	 */
1701 	val = ep->pred->val[A_ATOM];
1702 	for (ep = ep->next; ep != 0; ep = ep->next)
1703 		if (val != ep->pred->val[A_ATOM])
1704 			return;
1705 
1706 	if (JT(b->in_edges->pred) == b)
1707 		diffp = &JT(b->in_edges->pred);
1708 	else
1709 		diffp = &JF(b->in_edges->pred);
1710 
1711 	at_top = 1;
1712 	for (;;) {
1713 		if (*diffp == 0)
1714 			return;
1715 
1716 		if (JF(*diffp) != JF(b))
1717 			return;
1718 
1719 		if (!SET_MEMBER((*diffp)->dom, b->id))
1720 			return;
1721 
1722 		if ((*diffp)->val[A_ATOM] != val)
1723 			break;
1724 
1725 		diffp = &JT(*diffp);
1726 		at_top = 0;
1727 	}
1728 	samep = &JT(*diffp);
1729 	for (;;) {
1730 		if (*samep == 0)
1731 			return;
1732 
1733 		if (JF(*samep) != JF(b))
1734 			return;
1735 
1736 		if (!SET_MEMBER((*samep)->dom, b->id))
1737 			return;
1738 
1739 		if ((*samep)->val[A_ATOM] == val)
1740 			break;
1741 
1742 		/* XXX Need to check that there are no data dependencies
1743 		   between diffp and samep.  Currently, the code generator
1744 		   will not produce such dependencies. */
1745 		samep = &JT(*samep);
1746 	}
1747 #ifdef notdef
1748 	/* XXX This doesn't cover everything. */
1749 	for (i = 0; i < N_ATOMS; ++i)
1750 		if ((*samep)->val[i] != pred->val[i])
1751 			return;
1752 #endif
1753 	/* Pull up the node. */
1754 	pull = *samep;
1755 	*samep = JT(pull);
1756 	JT(pull) = *diffp;
1757 
1758 	/*
1759 	 * At the top of the chain, each predecessor needs to point at the
1760 	 * pulled up node.  Inside the chain, there is only one predecessor
1761 	 * to worry about.
1762 	 */
1763 	if (at_top) {
1764 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1765 			if (JT(ep->pred) == b)
1766 				JT(ep->pred) = pull;
1767 			else
1768 				JF(ep->pred) = pull;
1769 		}
1770 	}
1771 	else
1772 		*diffp = pull;
1773 
1774 	opt_state->done = 0;
1775 }
1776 
1777 static void
1778 opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
1779 {
1780 	int i, maxlevel;
1781 	struct block *p;
1782 
1783 	init_val(opt_state);
1784 	maxlevel = ic->root->level;
1785 
1786 	find_inedges(opt_state, ic->root);
1787 	for (i = maxlevel; i >= 0; --i)
1788 		for (p = opt_state->levels[i]; p; p = p->link)
1789 			opt_blk(opt_state, p, do_stmts);
1790 
1791 	if (do_stmts)
1792 		/*
1793 		 * No point trying to move branches; it can't possibly
1794 		 * make a difference at this point.
1795 		 */
1796 		return;
1797 
1798 	for (i = 1; i <= maxlevel; ++i) {
1799 		for (p = opt_state->levels[i]; p; p = p->link) {
1800 			opt_j(opt_state, &p->et);
1801 			opt_j(opt_state, &p->ef);
1802 		}
1803 	}
1804 
1805 	find_inedges(opt_state, ic->root);
1806 	for (i = 1; i <= maxlevel; ++i) {
1807 		for (p = opt_state->levels[i]; p; p = p->link) {
1808 			or_pullup(opt_state, p);
1809 			and_pullup(opt_state, p);
1810 		}
1811 	}
1812 }
1813 
1814 static inline void
1815 link_inedge(struct edge *parent, struct block *child)
1816 {
1817 	parent->next = child->in_edges;
1818 	child->in_edges = parent;
1819 }
1820 
1821 static void
1822 find_inedges(opt_state_t *opt_state, struct block *root)
1823 {
1824 	int i;
1825 	struct block *b;
1826 
1827 	for (i = 0; i < opt_state->n_blocks; ++i)
1828 		opt_state->blocks[i]->in_edges = 0;
1829 
1830 	/*
1831 	 * Traverse the graph, adding each edge to the predecessor
1832 	 * list of its successors.  Skip the leaves (i.e. level 0).
1833 	 */
1834 	for (i = root->level; i > 0; --i) {
1835 		for (b = opt_state->levels[i]; b != 0; b = b->link) {
1836 			link_inedge(&b->et, JT(b));
1837 			link_inedge(&b->ef, JF(b));
1838 		}
1839 	}
1840 }
1841 
1842 static void
1843 opt_root(struct block **b)
1844 {
1845 	struct slist *tmp, *s;
1846 
1847 	s = (*b)->stmts;
1848 	(*b)->stmts = 0;
1849 	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1850 		*b = JT(*b);
1851 
1852 	tmp = (*b)->stmts;
1853 	if (tmp != 0)
1854 		sappend(s, tmp);
1855 	(*b)->stmts = s;
1856 
1857 	/*
1858 	 * If the root node is a return, then there is no
1859 	 * point executing any statements (since the bpf machine
1860 	 * has no side effects).
1861 	 */
1862 	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1863 		(*b)->stmts = 0;
1864 }
1865 
1866 static void
1867 opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
1868 {
1869 
1870 #ifdef BDEBUG
1871 	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1872 		printf("opt_loop(root, %d) begin\n", do_stmts);
1873 		opt_dump(opt_state, ic);
1874 	}
1875 #endif
1876 	do {
1877 		opt_state->done = 1;
1878 		find_levels(opt_state, ic);
1879 		find_dom(opt_state, ic->root);
1880 		find_closure(opt_state, ic->root);
1881 		find_ud(opt_state, ic->root);
1882 		find_edom(opt_state, ic->root);
1883 		opt_blks(opt_state, ic, do_stmts);
1884 #ifdef BDEBUG
1885 		if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1886 			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
1887 			opt_dump(opt_state, ic);
1888 		}
1889 #endif
1890 	} while (!opt_state->done);
1891 }
1892 
1893 /*
1894  * Optimize the filter code in its dag representation.
1895  * Return 0 on success, -1 on error.
1896  */
1897 int
1898 bpf_optimize(struct icode *ic, char *errbuf)
1899 {
1900 	opt_state_t opt_state;
1901 
1902 	memset(&opt_state, 0, sizeof(opt_state));
1903 	opt_state.errbuf = errbuf;
1904 	if (setjmp(opt_state.top_ctx)) {
1905 		opt_cleanup(&opt_state);
1906 		return -1;
1907 	}
1908 	opt_init(&opt_state, ic);
1909 	opt_loop(&opt_state, ic, 0);
1910 	opt_loop(&opt_state, ic, 1);
1911 	intern_blocks(&opt_state, ic);
1912 #ifdef BDEBUG
1913 	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1914 		printf("after intern_blocks()\n");
1915 		opt_dump(&opt_state, ic);
1916 	}
1917 #endif
1918 	opt_root(&ic->root);
1919 #ifdef BDEBUG
1920 	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1921 		printf("after opt_root()\n");
1922 		opt_dump(&opt_state, ic);
1923 	}
1924 #endif
1925 	opt_cleanup(&opt_state);
1926 	return 0;
1927 }
1928 
1929 static void
1930 make_marks(struct icode *ic, struct block *p)
1931 {
1932 	if (!isMarked(ic, p)) {
1933 		Mark(ic, p);
1934 		if (BPF_CLASS(p->s.code) != BPF_RET) {
1935 			make_marks(ic, JT(p));
1936 			make_marks(ic, JF(p));
1937 		}
1938 	}
1939 }
1940 
1941 /*
1942  * Mark code array such that isMarked(ic->cur_mark, i) is true
1943  * only for nodes that are alive.
1944  */
1945 static void
1946 mark_code(struct icode *ic)
1947 {
1948 	ic->cur_mark += 1;
1949 	make_marks(ic, ic->root);
1950 }
1951 
1952 /*
1953  * True iff the two stmt lists load the same value from the packet into
1954  * the accumulator.
1955  */
1956 static int
1957 eq_slist(struct slist *x, struct slist *y)
1958 {
1959 	for (;;) {
1960 		while (x && x->s.code == NOP)
1961 			x = x->next;
1962 		while (y && y->s.code == NOP)
1963 			y = y->next;
1964 		if (x == 0)
1965 			return y == 0;
1966 		if (y == 0)
1967 			return x == 0;
1968 		if (x->s.code != y->s.code || x->s.k != y->s.k)
1969 			return 0;
1970 		x = x->next;
1971 		y = y->next;
1972 	}
1973 }
1974 
1975 static inline int
1976 eq_blk(struct block *b0, struct block *b1)
1977 {
1978 	if (b0->s.code == b1->s.code &&
1979 	    b0->s.k == b1->s.k &&
1980 	    b0->et.succ == b1->et.succ &&
1981 	    b0->ef.succ == b1->ef.succ)
1982 		return eq_slist(b0->stmts, b1->stmts);
1983 	return 0;
1984 }
1985 
1986 static void
1987 intern_blocks(opt_state_t *opt_state, struct icode *ic)
1988 {
1989 	struct block *p;
1990 	int i, j;
1991 	int done1; /* don't shadow global */
1992  top:
1993 	done1 = 1;
1994 	for (i = 0; i < opt_state->n_blocks; ++i)
1995 		opt_state->blocks[i]->link = 0;
1996 
1997 	mark_code(ic);
1998 
1999 	for (i = opt_state->n_blocks - 1; --i >= 0; ) {
2000 		if (!isMarked(ic, opt_state->blocks[i]))
2001 			continue;
2002 		for (j = i + 1; j < opt_state->n_blocks; ++j) {
2003 			if (!isMarked(ic, opt_state->blocks[j]))
2004 				continue;
2005 			if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2006 				opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2007 					opt_state->blocks[j]->link : opt_state->blocks[j];
2008 				break;
2009 			}
2010 		}
2011 	}
2012 	for (i = 0; i < opt_state->n_blocks; ++i) {
2013 		p = opt_state->blocks[i];
2014 		if (JT(p) == 0)
2015 			continue;
2016 		if (JT(p)->link) {
2017 			done1 = 0;
2018 			JT(p) = JT(p)->link;
2019 		}
2020 		if (JF(p)->link) {
2021 			done1 = 0;
2022 			JF(p) = JF(p)->link;
2023 		}
2024 	}
2025 	if (!done1)
2026 		goto top;
2027 }
2028 
2029 static void
2030 opt_cleanup(opt_state_t *opt_state)
2031 {
2032 	free((void *)opt_state->vnode_base);
2033 	free((void *)opt_state->vmap);
2034 	free((void *)opt_state->edges);
2035 	free((void *)opt_state->space);
2036 	free((void *)opt_state->levels);
2037 	free((void *)opt_state->blocks);
2038 }
2039 
2040 /*
2041  * For optimizer errors.
2042  */
2043 static void PCAP_NORETURN
2044 opt_error(opt_state_t *opt_state, const char *fmt, ...)
2045 {
2046 	va_list ap;
2047 
2048 	if (opt_state->errbuf != NULL) {
2049 		va_start(ap, fmt);
2050 		(void)pcap_vsnprintf(opt_state->errbuf,
2051 		    PCAP_ERRBUF_SIZE, fmt, ap);
2052 		va_end(ap);
2053 	}
2054 	longjmp(opt_state->top_ctx, 1);
2055 	/* NOTREACHED */
2056 }
2057 
2058 /*
2059  * Return the number of stmts in 's'.
2060  */
2061 static u_int
2062 slength(struct slist *s)
2063 {
2064 	u_int n = 0;
2065 
2066 	for (; s; s = s->next)
2067 		if (s->s.code != NOP)
2068 			++n;
2069 	return n;
2070 }
2071 
2072 /*
2073  * Return the number of nodes reachable by 'p'.
2074  * All nodes should be initially unmarked.
2075  */
2076 static int
2077 count_blocks(struct icode *ic, struct block *p)
2078 {
2079 	if (p == 0 || isMarked(ic, p))
2080 		return 0;
2081 	Mark(ic, p);
2082 	return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2083 }
2084 
2085 /*
2086  * Do a depth first search on the flow graph, numbering the
2087  * the basic blocks, and entering them into the 'blocks' array.`
2088  */
2089 static void
2090 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2091 {
2092 	int n;
2093 
2094 	if (p == 0 || isMarked(ic, p))
2095 		return;
2096 
2097 	Mark(ic, p);
2098 	n = opt_state->n_blocks++;
2099 	p->id = n;
2100 	opt_state->blocks[n] = p;
2101 
2102 	number_blks_r(opt_state, ic, JT(p));
2103 	number_blks_r(opt_state, ic, JF(p));
2104 }
2105 
2106 /*
2107  * Return the number of stmts in the flowgraph reachable by 'p'.
2108  * The nodes should be unmarked before calling.
2109  *
2110  * Note that "stmts" means "instructions", and that this includes
2111  *
2112  *	side-effect statements in 'p' (slength(p->stmts));
2113  *
2114  *	statements in the true branch from 'p' (count_stmts(JT(p)));
2115  *
2116  *	statements in the false branch from 'p' (count_stmts(JF(p)));
2117  *
2118  *	the conditional jump itself (1);
2119  *
2120  *	an extra long jump if the true branch requires it (p->longjt);
2121  *
2122  *	an extra long jump if the false branch requires it (p->longjf).
2123  */
2124 static u_int
2125 count_stmts(struct icode *ic, struct block *p)
2126 {
2127 	u_int n;
2128 
2129 	if (p == 0 || isMarked(ic, p))
2130 		return 0;
2131 	Mark(ic, p);
2132 	n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2133 	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2134 }
2135 
2136 /*
2137  * Allocate memory.  All allocation is done before optimization
2138  * is begun.  A linear bound on the size of all data structures is computed
2139  * from the total number of blocks and/or statements.
2140  */
2141 static void
2142 opt_init(opt_state_t *opt_state, struct icode *ic)
2143 {
2144 	bpf_u_int32 *p;
2145 	int i, n, max_stmts;
2146 
2147 	/*
2148 	 * First, count the blocks, so we can malloc an array to map
2149 	 * block number to block.  Then, put the blocks into the array.
2150 	 */
2151 	unMarkAll(ic);
2152 	n = count_blocks(ic, ic->root);
2153 	opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2154 	if (opt_state->blocks == NULL)
2155 		opt_error(opt_state, "malloc");
2156 	unMarkAll(ic);
2157 	opt_state->n_blocks = 0;
2158 	number_blks_r(opt_state, ic, ic->root);
2159 
2160 	opt_state->n_edges = 2 * opt_state->n_blocks;
2161 	opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2162 	if (opt_state->edges == NULL) {
2163 		opt_error(opt_state, "malloc");
2164 	}
2165 
2166 	/*
2167 	 * The number of levels is bounded by the number of nodes.
2168 	 */
2169 	opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2170 	if (opt_state->levels == NULL) {
2171 		opt_error(opt_state, "malloc");
2172 	}
2173 
2174 	opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1;
2175 	opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
2176 
2177 	/* XXX */
2178 	opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space)
2179 				 + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space));
2180 	if (opt_state->space == NULL) {
2181 		opt_error(opt_state, "malloc");
2182 	}
2183 	p = opt_state->space;
2184 	opt_state->all_dom_sets = p;
2185 	for (i = 0; i < n; ++i) {
2186 		opt_state->blocks[i]->dom = p;
2187 		p += opt_state->nodewords;
2188 	}
2189 	opt_state->all_closure_sets = p;
2190 	for (i = 0; i < n; ++i) {
2191 		opt_state->blocks[i]->closure = p;
2192 		p += opt_state->nodewords;
2193 	}
2194 	opt_state->all_edge_sets = p;
2195 	for (i = 0; i < n; ++i) {
2196 		register struct block *b = opt_state->blocks[i];
2197 
2198 		b->et.edom = p;
2199 		p += opt_state->edgewords;
2200 		b->ef.edom = p;
2201 		p += opt_state->edgewords;
2202 		b->et.id = i;
2203 		opt_state->edges[i] = &b->et;
2204 		b->ef.id = opt_state->n_blocks + i;
2205 		opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2206 		b->et.pred = b;
2207 		b->ef.pred = b;
2208 	}
2209 	max_stmts = 0;
2210 	for (i = 0; i < n; ++i)
2211 		max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2212 	/*
2213 	 * We allocate at most 3 value numbers per statement,
2214 	 * so this is an upper bound on the number of valnodes
2215 	 * we'll need.
2216 	 */
2217 	opt_state->maxval = 3 * max_stmts;
2218 	opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2219 	if (opt_state->vmap == NULL) {
2220 		opt_error(opt_state, "malloc");
2221 	}
2222 	opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2223 	if (opt_state->vnode_base == NULL) {
2224 		opt_error(opt_state, "malloc");
2225 	}
2226 }
2227 
2228 /*
2229  * This is only used when supporting optimizer debugging.  It is
2230  * global state, so do *not* do more than one compile in parallel
2231  * and expect it to provide meaningful information.
2232  */
2233 #ifdef BDEBUG
2234 int bids[NBIDS];
2235 #endif
2236 
2237 static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2238     PCAP_PRINTFLIKE(2, 3);
2239 
2240 /*
2241  * Returns true if successful.  Returns false if a branch has
2242  * an offset that is too large.  If so, we have marked that
2243  * branch so that on a subsequent iteration, it will be treated
2244  * properly.
2245  */
2246 static int
2247 convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2248 {
2249 	struct bpf_insn *dst;
2250 	struct slist *src;
2251 	u_int slen;
2252 	u_int off;
2253 	u_int extrajmps;	/* number of extra jumps inserted */
2254 	struct slist **offset = NULL;
2255 
2256 	if (p == 0 || isMarked(ic, p))
2257 		return (1);
2258 	Mark(ic, p);
2259 
2260 	if (convert_code_r(conv_state, ic, JF(p)) == 0)
2261 		return (0);
2262 	if (convert_code_r(conv_state, ic, JT(p)) == 0)
2263 		return (0);
2264 
2265 	slen = slength(p->stmts);
2266 	dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2267 		/* inflate length by any extra jumps */
2268 
2269 	p->offset = (int)(dst - conv_state->fstart);
2270 
2271 	/* generate offset[] for convenience  */
2272 	if (slen) {
2273 		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2274 		if (!offset) {
2275 			conv_error(conv_state, "not enough core");
2276 			/*NOTREACHED*/
2277 		}
2278 	}
2279 	src = p->stmts;
2280 	for (off = 0; off < slen && src; off++) {
2281 #if 0
2282 		printf("off=%d src=%x\n", off, src);
2283 #endif
2284 		offset[off] = src;
2285 		src = src->next;
2286 	}
2287 
2288 	off = 0;
2289 	for (src = p->stmts; src; src = src->next) {
2290 		if (src->s.code == NOP)
2291 			continue;
2292 		dst->code = (u_short)src->s.code;
2293 		dst->k = src->s.k;
2294 
2295 		/* fill block-local relative jump */
2296 		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2297 #if 0
2298 			if (src->s.jt || src->s.jf) {
2299 				free(offset);
2300 				conv_error(conv_state, "illegal jmp destination");
2301 				/*NOTREACHED*/
2302 			}
2303 #endif
2304 			goto filled;
2305 		}
2306 		if (off == slen - 2)	/*???*/
2307 			goto filled;
2308 
2309 	    {
2310 		u_int i;
2311 		int jt, jf;
2312 		const char ljerr[] = "%s for block-local relative jump: off=%d";
2313 
2314 #if 0
2315 		printf("code=%x off=%d %x %x\n", src->s.code,
2316 			off, src->s.jt, src->s.jf);
2317 #endif
2318 
2319 		if (!src->s.jt || !src->s.jf) {
2320 			free(offset);
2321 			conv_error(conv_state, ljerr, "no jmp destination", off);
2322 			/*NOTREACHED*/
2323 		}
2324 
2325 		jt = jf = 0;
2326 		for (i = 0; i < slen; i++) {
2327 			if (offset[i] == src->s.jt) {
2328 				if (jt) {
2329 					free(offset);
2330 					conv_error(conv_state, ljerr, "multiple matches", off);
2331 					/*NOTREACHED*/
2332 				}
2333 
2334 				if (i - off - 1 >= 256) {
2335 					free(offset);
2336 					conv_error(conv_state, ljerr, "out-of-range jump", off);
2337 					/*NOTREACHED*/
2338 				}
2339 				dst->jt = (u_char)(i - off - 1);
2340 				jt++;
2341 			}
2342 			if (offset[i] == src->s.jf) {
2343 				if (jf) {
2344 					free(offset);
2345 					conv_error(conv_state, ljerr, "multiple matches", off);
2346 					/*NOTREACHED*/
2347 				}
2348 				if (i - off - 1 >= 256) {
2349 					free(offset);
2350 					conv_error(conv_state, ljerr, "out-of-range jump", off);
2351 					/*NOTREACHED*/
2352 				}
2353 				dst->jf = (u_char)(i - off - 1);
2354 				jf++;
2355 			}
2356 		}
2357 		if (!jt || !jf) {
2358 			free(offset);
2359 			conv_error(conv_state, ljerr, "no destination found", off);
2360 			/*NOTREACHED*/
2361 		}
2362 	    }
2363 filled:
2364 		++dst;
2365 		++off;
2366 	}
2367 	if (offset)
2368 		free(offset);
2369 
2370 #ifdef BDEBUG
2371 	if (dst - conv_state->fstart < NBIDS)
2372 		bids[dst - conv_state->fstart] = p->id + 1;
2373 #endif
2374 	dst->code = (u_short)p->s.code;
2375 	dst->k = p->s.k;
2376 	if (JT(p)) {
2377 		extrajmps = 0;
2378 		off = JT(p)->offset - (p->offset + slen) - 1;
2379 		if (off >= 256) {
2380 		    /* offset too large for branch, must add a jump */
2381 		    if (p->longjt == 0) {
2382 		    	/* mark this instruction and retry */
2383 			p->longjt++;
2384 			return(0);
2385 		    }
2386 		    /* branch if T to following jump */
2387 		    if (extrajmps >= 256) {
2388 			conv_error(conv_state, "too many extra jumps");
2389 			/*NOTREACHED*/
2390 		    }
2391 		    dst->jt = (u_char)extrajmps;
2392 		    extrajmps++;
2393 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2394 		    dst[extrajmps].k = off - extrajmps;
2395 		}
2396 		else
2397 		    dst->jt = (u_char)off;
2398 		off = JF(p)->offset - (p->offset + slen) - 1;
2399 		if (off >= 256) {
2400 		    /* offset too large for branch, must add a jump */
2401 		    if (p->longjf == 0) {
2402 		    	/* mark this instruction and retry */
2403 			p->longjf++;
2404 			return(0);
2405 		    }
2406 		    /* branch if F to following jump */
2407 		    /* if two jumps are inserted, F goes to second one */
2408 		    if (extrajmps >= 256) {
2409 			conv_error(conv_state, "too many extra jumps");
2410 			/*NOTREACHED*/
2411 		    }
2412 		    dst->jf = (u_char)extrajmps;
2413 		    extrajmps++;
2414 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2415 		    dst[extrajmps].k = off - extrajmps;
2416 		}
2417 		else
2418 		    dst->jf = (u_char)off;
2419 	}
2420 	return (1);
2421 }
2422 
2423 
2424 /*
2425  * Convert flowgraph intermediate representation to the
2426  * BPF array representation.  Set *lenp to the number of instructions.
2427  *
2428  * This routine does *NOT* leak the memory pointed to by fp.  It *must
2429  * not* do free(fp) before returning fp; doing so would make no sense,
2430  * as the BPF array pointed to by the return value of icode_to_fcode()
2431  * must be valid - it's being returned for use in a bpf_program structure.
2432  *
2433  * If it appears that icode_to_fcode() is leaking, the problem is that
2434  * the program using pcap_compile() is failing to free the memory in
2435  * the BPF program when it's done - the leak is in the program, not in
2436  * the routine that happens to be allocating the memory.  (By analogy, if
2437  * a program calls fopen() without ever calling fclose() on the FILE *,
2438  * it will leak the FILE structure; the leak is not in fopen(), it's in
2439  * the program.)  Change the program to use pcap_freecode() when it's
2440  * done with the filter program.  See the pcap man page.
2441  */
2442 struct bpf_insn *
2443 icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2444     char *errbuf)
2445 {
2446 	u_int n;
2447 	struct bpf_insn *fp;
2448 	conv_state_t conv_state;
2449 
2450 	conv_state.fstart = NULL;
2451 	conv_state.errbuf = errbuf;
2452 	if (setjmp(conv_state.top_ctx) != 0) {
2453 		free(conv_state.fstart);
2454 		return NULL;
2455 	}
2456 
2457 	/*
2458 	 * Loop doing convert_code_r() until no branches remain
2459 	 * with too-large offsets.
2460 	 */
2461 	for (;;) {
2462 	    unMarkAll(ic);
2463 	    n = *lenp = count_stmts(ic, root);
2464 
2465 	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2466 	    if (fp == NULL) {
2467 		(void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE,
2468 		    "malloc");
2469 		free(fp);
2470 		return NULL;
2471 	    }
2472 	    memset((char *)fp, 0, sizeof(*fp) * n);
2473 	    conv_state.fstart = fp;
2474 	    conv_state.ftail = fp + n;
2475 
2476 	    unMarkAll(ic);
2477 	    if (convert_code_r(&conv_state, ic, root))
2478 		break;
2479 	    free(fp);
2480 	}
2481 
2482 	return fp;
2483 }
2484 
2485 /*
2486  * For iconv_to_fconv() errors.
2487  */
2488 static void PCAP_NORETURN
2489 conv_error(conv_state_t *conv_state, const char *fmt, ...)
2490 {
2491 	va_list ap;
2492 
2493 	va_start(ap, fmt);
2494 	(void)pcap_vsnprintf(conv_state->errbuf,
2495 	    PCAP_ERRBUF_SIZE, fmt, ap);
2496 	va_end(ap);
2497 	longjmp(conv_state->top_ctx, 1);
2498 	/* NOTREACHED */
2499 }
2500 
2501 /*
2502  * Make a copy of a BPF program and put it in the "fcode" member of
2503  * a "pcap_t".
2504  *
2505  * If we fail to allocate memory for the copy, fill in the "errbuf"
2506  * member of the "pcap_t" with an error message, and return -1;
2507  * otherwise, return 0.
2508  */
2509 int
2510 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2511 {
2512 	size_t prog_size;
2513 
2514 	/*
2515 	 * Validate the program.
2516 	 */
2517 	if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2518 		pcap_snprintf(p->errbuf, sizeof(p->errbuf),
2519 			"BPF program is not valid");
2520 		return (-1);
2521 	}
2522 
2523 	/*
2524 	 * Free up any already installed program.
2525 	 */
2526 	pcap_freecode(&p->fcode);
2527 
2528 	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2529 	p->fcode.bf_len = fp->bf_len;
2530 	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2531 	if (p->fcode.bf_insns == NULL) {
2532 		pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2533 		    errno, "malloc");
2534 		return (-1);
2535 	}
2536 	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2537 	return (0);
2538 }
2539 
2540 #ifdef BDEBUG
2541 static void
2542 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2543     FILE *out)
2544 {
2545 	int icount, noffset;
2546 	int i;
2547 
2548 	if (block == NULL || isMarked(ic, block))
2549 		return;
2550 	Mark(ic, block);
2551 
2552 	icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2553 	noffset = min(block->offset + icount, (int)prog->bf_len);
2554 
2555 	fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
2556 	for (i = block->offset; i < noffset; i++) {
2557 		fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2558 	}
2559 	fprintf(out, "\" tooltip=\"");
2560 	for (i = 0; i < BPF_MEMWORDS; i++)
2561 		if (block->val[i] != VAL_UNKNOWN)
2562 			fprintf(out, "val[%d]=%d ", i, block->val[i]);
2563 	fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2564 	fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2565 	fprintf(out, "\"");
2566 	if (JT(block) == NULL)
2567 		fprintf(out, ", peripheries=2");
2568 	fprintf(out, "];\n");
2569 
2570 	dot_dump_node(ic, JT(block), prog, out);
2571 	dot_dump_node(ic, JF(block), prog, out);
2572 }
2573 
2574 static void
2575 dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
2576 {
2577 	if (block == NULL || isMarked(ic, block))
2578 		return;
2579 	Mark(ic, block);
2580 
2581 	if (JT(block)) {
2582 		fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2583 				block->id, JT(block)->id);
2584 		fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2585 			   block->id, JF(block)->id);
2586 	}
2587 	dot_dump_edge(ic, JT(block), out);
2588 	dot_dump_edge(ic, JF(block), out);
2589 }
2590 
2591 /* Output the block CFG using graphviz/DOT language
2592  * In the CFG, block's code, value index for each registers at EXIT,
2593  * and the jump relationship is show.
2594  *
2595  * example DOT for BPF `ip src host 1.1.1.1' is:
2596     digraph BPF {
2597     	block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2	jf 5" tooltip="val[A]=0 val[X]=0"];
2598     	block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4	jf 5" tooltip="val[A]=0 val[X]=0"];
2599     	block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2600     	block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2601     	"block0":se -> "block1":n [label="T"];
2602     	"block0":sw -> "block3":n [label="F"];
2603     	"block1":se -> "block2":n [label="T"];
2604     	"block1":sw -> "block3":n [label="F"];
2605     }
2606  *
2607  *  After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2608  *  and run `dot -Tpng -O bpf.dot' to draw the graph.
2609  */
2610 static int
2611 dot_dump(struct icode *ic, char *errbuf)
2612 {
2613 	struct bpf_program f;
2614 	FILE *out = stdout;
2615 
2616 	memset(bids, 0, sizeof bids);
2617 	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
2618 	if (f.bf_insns == NULL)
2619 		return -1;
2620 
2621 	fprintf(out, "digraph BPF {\n");
2622 	unMarkAll(ic);
2623 	dot_dump_node(ic, ic->root, &f, out);
2624 	unMarkAll(ic);
2625 	dot_dump_edge(ic, ic->root, out);
2626 	fprintf(out, "}\n");
2627 
2628 	free((char *)f.bf_insns);
2629 	return 0;
2630 }
2631 
2632 static int
2633 plain_dump(struct icode *ic, char *errbuf)
2634 {
2635 	struct bpf_program f;
2636 
2637 	memset(bids, 0, sizeof bids);
2638 	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
2639 	if (f.bf_insns == NULL)
2640 		return -1;
2641 	bpf_dump(&f, 1);
2642 	putchar('\n');
2643 	free((char *)f.bf_insns);
2644 	return 0;
2645 }
2646 
2647 static void
2648 opt_dump(opt_state_t *opt_state, struct icode *ic)
2649 {
2650 	int status;
2651 	char errbuf[PCAP_ERRBUF_SIZE];
2652 
2653 	/*
2654 	 * If the CFG, in DOT format, is requested, output it rather than
2655 	 * the code that would be generated from that graph.
2656 	 */
2657 	if (pcap_print_dot_graph)
2658 		status = dot_dump(ic, errbuf);
2659 	else
2660 		status = plain_dump(ic, errbuf);
2661 	if (status == -1)
2662 		opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
2663 }
2664 #endif
2665