1 /* 2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that: (1) source code distributions 7 * retain the above copyright notice and this paragraph in its entirety, (2) 8 * distributions including binary code include the above copyright notice and 9 * this paragraph in its entirety in the documentation or other materials 10 * provided with the distribution, and (3) all advertising materials mentioning 11 * features or use of this software display the following acknowledgement: 12 * ``This product includes software developed by the University of California, 13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 14 * the University nor the names of its contributors may be used to endorse 15 * or promote products derived from this software without specific prior 16 * written permission. 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 20 * 21 * Optimization module for BPF code intermediate representation. 22 */ 23 24 #ifdef HAVE_CONFIG_H 25 #include <config.h> 26 #endif 27 28 #include <pcap-types.h> 29 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <memory.h> 33 #include <string.h> 34 35 #include <errno.h> 36 37 #include "pcap-int.h" 38 39 #include "gencode.h" 40 #include "optimize.h" 41 42 #ifdef HAVE_OS_PROTO_H 43 #include "os-proto.h" 44 #endif 45 46 #ifdef BDEBUG 47 /* 48 * The internal "debug printout" flag for the filter expression optimizer. 49 * The code to print that stuff is present only if BDEBUG is defined, so 50 * the flag, and the routine to set it, are defined only if BDEBUG is 51 * defined. 52 */ 53 static int pcap_optimizer_debug; 54 55 /* 56 * Routine to set that flag. 57 * 58 * This is intended for libpcap developers, not for general use. 59 * If you want to set these in a program, you'll have to declare this 60 * routine yourself, with the appropriate DLL import attribute on Windows; 61 * it's not declared in any header file, and won't be declared in any 62 * header file provided by libpcap. 63 */ 64 PCAP_API void pcap_set_optimizer_debug(int value); 65 66 PCAP_API_DEF void 67 pcap_set_optimizer_debug(int value) 68 { 69 pcap_optimizer_debug = value; 70 } 71 72 /* 73 * The internal "print dot graph" flag for the filter expression optimizer. 74 * The code to print that stuff is present only if BDEBUG is defined, so 75 * the flag, and the routine to set it, are defined only if BDEBUG is 76 * defined. 77 */ 78 static int pcap_print_dot_graph; 79 80 /* 81 * Routine to set that flag. 82 * 83 * This is intended for libpcap developers, not for general use. 84 * If you want to set these in a program, you'll have to declare this 85 * routine yourself, with the appropriate DLL import attribute on Windows; 86 * it's not declared in any header file, and won't be declared in any 87 * header file provided by libpcap. 88 */ 89 PCAP_API void pcap_set_print_dot_graph(int value); 90 91 PCAP_API_DEF void 92 pcap_set_print_dot_graph(int value) 93 { 94 pcap_print_dot_graph = value; 95 } 96 97 #endif 98 99 /* 100 * lowest_set_bit(). 101 * 102 * Takes a 32-bit integer as an argument. 103 * 104 * If handed a non-zero value, returns the index of the lowest set bit, 105 * counting upwards fro zero. 106 * 107 * If handed zero, the results are platform- and compiler-dependent. 108 * Keep it out of the light, don't give it any water, don't feed it 109 * after midnight, and don't pass zero to it. 110 * 111 * This is the same as the count of trailing zeroes in the word. 112 */ 113 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4) 114 /* 115 * GCC 3.4 and later; we have __builtin_ctz(). 116 */ 117 #define lowest_set_bit(mask) __builtin_ctz(mask) 118 #elif defined(_MSC_VER) 119 /* 120 * Visual Studio; we support only 2005 and later, so use 121 * _BitScanForward(). 122 */ 123 #include <intrin.h> 124 125 #ifndef __clang__ 126 #pragma intrinsic(_BitScanForward) 127 #endif 128 129 static __forceinline int 130 lowest_set_bit(int mask) 131 { 132 unsigned long bit; 133 134 /* 135 * Don't sign-extend mask if long is longer than int. 136 * (It's currently not, in MSVC, even on 64-bit platforms, but....) 137 */ 138 if (_BitScanForward(&bit, (unsigned int)mask) == 0) 139 return -1; /* mask is zero */ 140 return (int)bit; 141 } 142 #elif defined(MSDOS) && defined(__DJGPP__) 143 /* 144 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which 145 * we've already included. 146 */ 147 #define lowest_set_bit(mask) (ffs((mask)) - 1) 148 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS) 149 /* 150 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there, 151 * or some other platform (UN*X conforming to a sufficient recent version 152 * of the Single UNIX Specification). 153 */ 154 #include <strings.h> 155 #define lowest_set_bit(mask) (ffs((mask)) - 1) 156 #else 157 /* 158 * None of the above. 159 * Use a perfect-hash-function-based function. 160 */ 161 static int 162 lowest_set_bit(int mask) 163 { 164 unsigned int v = (unsigned int)mask; 165 166 static const int MultiplyDeBruijnBitPosition[32] = { 167 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 168 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 169 }; 170 171 /* 172 * We strip off all but the lowermost set bit (v & ~v), 173 * and perform a minimal perfect hash on it to look up the 174 * number of low-order zero bits in a table. 175 * 176 * See: 177 * 178 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf 179 * 180 * http://supertech.csail.mit.edu/papers/debruijn.pdf 181 */ 182 return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]); 183 } 184 #endif 185 186 /* 187 * Represents a deleted instruction. 188 */ 189 #define NOP -1 190 191 /* 192 * Register numbers for use-def values. 193 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory 194 * location. A_ATOM is the accumulator and X_ATOM is the index 195 * register. 196 */ 197 #define A_ATOM BPF_MEMWORDS 198 #define X_ATOM (BPF_MEMWORDS+1) 199 200 /* 201 * This define is used to represent *both* the accumulator and 202 * x register in use-def computations. 203 * Currently, the use-def code assumes only one definition per instruction. 204 */ 205 #define AX_ATOM N_ATOMS 206 207 /* 208 * These data structures are used in a Cocke and Shwarz style 209 * value numbering scheme. Since the flowgraph is acyclic, 210 * exit values can be propagated from a node's predecessors 211 * provided it is uniquely defined. 212 */ 213 struct valnode { 214 int code; 215 int v0, v1; 216 int val; 217 struct valnode *next; 218 }; 219 220 /* Integer constants mapped with the load immediate opcode. */ 221 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L) 222 223 struct vmapinfo { 224 int is_const; 225 bpf_int32 const_val; 226 }; 227 228 typedef struct { 229 /* 230 * A flag to indicate that further optimization is needed. 231 * Iterative passes are continued until a given pass yields no 232 * branch movement. 233 */ 234 int done; 235 236 int n_blocks; 237 struct block **blocks; 238 int n_edges; 239 struct edge **edges; 240 241 /* 242 * A bit vector set representation of the dominators. 243 * We round up the set size to the next power of two. 244 */ 245 int nodewords; 246 int edgewords; 247 struct block **levels; 248 bpf_u_int32 *space; 249 250 #define BITS_PER_WORD (8*sizeof(bpf_u_int32)) 251 /* 252 * True if a is in uset {p} 253 */ 254 #define SET_MEMBER(p, a) \ 255 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD))) 256 257 /* 258 * Add 'a' to uset p. 259 */ 260 #define SET_INSERT(p, a) \ 261 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD)) 262 263 /* 264 * Delete 'a' from uset p. 265 */ 266 #define SET_DELETE(p, a) \ 267 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD)) 268 269 /* 270 * a := a intersect b 271 */ 272 #define SET_INTERSECT(a, b, n)\ 273 {\ 274 register bpf_u_int32 *_x = a, *_y = b;\ 275 register int _n = n;\ 276 while (--_n >= 0) *_x++ &= *_y++;\ 277 } 278 279 /* 280 * a := a - b 281 */ 282 #define SET_SUBTRACT(a, b, n)\ 283 {\ 284 register bpf_u_int32 *_x = a, *_y = b;\ 285 register int _n = n;\ 286 while (--_n >= 0) *_x++ &=~ *_y++;\ 287 } 288 289 /* 290 * a := a union b 291 */ 292 #define SET_UNION(a, b, n)\ 293 {\ 294 register bpf_u_int32 *_x = a, *_y = b;\ 295 register int _n = n;\ 296 while (--_n >= 0) *_x++ |= *_y++;\ 297 } 298 299 uset all_dom_sets; 300 uset all_closure_sets; 301 uset all_edge_sets; 302 303 #define MODULUS 213 304 struct valnode *hashtbl[MODULUS]; 305 int curval; 306 int maxval; 307 308 struct vmapinfo *vmap; 309 struct valnode *vnode_base; 310 struct valnode *next_vnode; 311 } opt_state_t; 312 313 typedef struct { 314 /* 315 * Some pointers used to convert the basic block form of the code, 316 * into the array form that BPF requires. 'fstart' will point to 317 * the malloc'd array while 'ftail' is used during the recursive 318 * traversal. 319 */ 320 struct bpf_insn *fstart; 321 struct bpf_insn *ftail; 322 } conv_state_t; 323 324 static void opt_init(compiler_state_t *, opt_state_t *, struct icode *); 325 static void opt_cleanup(opt_state_t *); 326 327 static void intern_blocks(opt_state_t *, struct icode *); 328 329 static void find_inedges(opt_state_t *, struct block *); 330 #ifdef BDEBUG 331 static void opt_dump(compiler_state_t *, struct icode *); 332 #endif 333 334 #ifndef MAX 335 #define MAX(a,b) ((a)>(b)?(a):(b)) 336 #endif 337 338 static void 339 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b) 340 { 341 int level; 342 343 if (isMarked(ic, b)) 344 return; 345 346 Mark(ic, b); 347 b->link = 0; 348 349 if (JT(b)) { 350 find_levels_r(opt_state, ic, JT(b)); 351 find_levels_r(opt_state, ic, JF(b)); 352 level = MAX(JT(b)->level, JF(b)->level) + 1; 353 } else 354 level = 0; 355 b->level = level; 356 b->link = opt_state->levels[level]; 357 opt_state->levels[level] = b; 358 } 359 360 /* 361 * Level graph. The levels go from 0 at the leaves to 362 * N_LEVELS at the root. The opt_state->levels[] array points to the 363 * first node of the level list, whose elements are linked 364 * with the 'link' field of the struct block. 365 */ 366 static void 367 find_levels(opt_state_t *opt_state, struct icode *ic) 368 { 369 memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels)); 370 unMarkAll(ic); 371 find_levels_r(opt_state, ic, ic->root); 372 } 373 374 /* 375 * Find dominator relationships. 376 * Assumes graph has been leveled. 377 */ 378 static void 379 find_dom(opt_state_t *opt_state, struct block *root) 380 { 381 int i; 382 struct block *b; 383 bpf_u_int32 *x; 384 385 /* 386 * Initialize sets to contain all nodes. 387 */ 388 x = opt_state->all_dom_sets; 389 i = opt_state->n_blocks * opt_state->nodewords; 390 while (--i >= 0) 391 *x++ = 0xFFFFFFFFU; 392 /* Root starts off empty. */ 393 for (i = opt_state->nodewords; --i >= 0;) 394 root->dom[i] = 0; 395 396 /* root->level is the highest level no found. */ 397 for (i = root->level; i >= 0; --i) { 398 for (b = opt_state->levels[i]; b; b = b->link) { 399 SET_INSERT(b->dom, b->id); 400 if (JT(b) == 0) 401 continue; 402 SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords); 403 SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords); 404 } 405 } 406 } 407 408 static void 409 propedom(opt_state_t *opt_state, struct edge *ep) 410 { 411 SET_INSERT(ep->edom, ep->id); 412 if (ep->succ) { 413 SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords); 414 SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords); 415 } 416 } 417 418 /* 419 * Compute edge dominators. 420 * Assumes graph has been leveled and predecessors established. 421 */ 422 static void 423 find_edom(opt_state_t *opt_state, struct block *root) 424 { 425 int i; 426 uset x; 427 struct block *b; 428 429 x = opt_state->all_edge_sets; 430 for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; ) 431 x[i] = 0xFFFFFFFFU; 432 433 /* root->level is the highest level no found. */ 434 memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); 435 memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); 436 for (i = root->level; i >= 0; --i) { 437 for (b = opt_state->levels[i]; b != 0; b = b->link) { 438 propedom(opt_state, &b->et); 439 propedom(opt_state, &b->ef); 440 } 441 } 442 } 443 444 /* 445 * Find the backwards transitive closure of the flow graph. These sets 446 * are backwards in the sense that we find the set of nodes that reach 447 * a given node, not the set of nodes that can be reached by a node. 448 * 449 * Assumes graph has been leveled. 450 */ 451 static void 452 find_closure(opt_state_t *opt_state, struct block *root) 453 { 454 int i; 455 struct block *b; 456 457 /* 458 * Initialize sets to contain no nodes. 459 */ 460 memset((char *)opt_state->all_closure_sets, 0, 461 opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets)); 462 463 /* root->level is the highest level no found. */ 464 for (i = root->level; i >= 0; --i) { 465 for (b = opt_state->levels[i]; b; b = b->link) { 466 SET_INSERT(b->closure, b->id); 467 if (JT(b) == 0) 468 continue; 469 SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords); 470 SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords); 471 } 472 } 473 } 474 475 /* 476 * Return the register number that is used by s. If A and X are both 477 * used, return AX_ATOM. If no register is used, return -1. 478 * 479 * The implementation should probably change to an array access. 480 */ 481 static int 482 atomuse(struct stmt *s) 483 { 484 register int c = s->code; 485 486 if (c == NOP) 487 return -1; 488 489 switch (BPF_CLASS(c)) { 490 491 case BPF_RET: 492 return (BPF_RVAL(c) == BPF_A) ? A_ATOM : 493 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; 494 495 case BPF_LD: 496 case BPF_LDX: 497 return (BPF_MODE(c) == BPF_IND) ? X_ATOM : 498 (BPF_MODE(c) == BPF_MEM) ? s->k : -1; 499 500 case BPF_ST: 501 return A_ATOM; 502 503 case BPF_STX: 504 return X_ATOM; 505 506 case BPF_JMP: 507 case BPF_ALU: 508 if (BPF_SRC(c) == BPF_X) 509 return AX_ATOM; 510 return A_ATOM; 511 512 case BPF_MISC: 513 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; 514 } 515 abort(); 516 /* NOTREACHED */ 517 } 518 519 /* 520 * Return the register number that is defined by 's'. We assume that 521 * a single stmt cannot define more than one register. If no register 522 * is defined, return -1. 523 * 524 * The implementation should probably change to an array access. 525 */ 526 static int 527 atomdef(struct stmt *s) 528 { 529 if (s->code == NOP) 530 return -1; 531 532 switch (BPF_CLASS(s->code)) { 533 534 case BPF_LD: 535 case BPF_ALU: 536 return A_ATOM; 537 538 case BPF_LDX: 539 return X_ATOM; 540 541 case BPF_ST: 542 case BPF_STX: 543 return s->k; 544 545 case BPF_MISC: 546 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; 547 } 548 return -1; 549 } 550 551 /* 552 * Compute the sets of registers used, defined, and killed by 'b'. 553 * 554 * "Used" means that a statement in 'b' uses the register before any 555 * statement in 'b' defines it, i.e. it uses the value left in 556 * that register by a predecessor block of this block. 557 * "Defined" means that a statement in 'b' defines it. 558 * "Killed" means that a statement in 'b' defines it before any 559 * statement in 'b' uses it, i.e. it kills the value left in that 560 * register by a predecessor block of this block. 561 */ 562 static void 563 compute_local_ud(struct block *b) 564 { 565 struct slist *s; 566 atomset def = 0, use = 0, killed = 0; 567 int atom; 568 569 for (s = b->stmts; s; s = s->next) { 570 if (s->s.code == NOP) 571 continue; 572 atom = atomuse(&s->s); 573 if (atom >= 0) { 574 if (atom == AX_ATOM) { 575 if (!ATOMELEM(def, X_ATOM)) 576 use |= ATOMMASK(X_ATOM); 577 if (!ATOMELEM(def, A_ATOM)) 578 use |= ATOMMASK(A_ATOM); 579 } 580 else if (atom < N_ATOMS) { 581 if (!ATOMELEM(def, atom)) 582 use |= ATOMMASK(atom); 583 } 584 else 585 abort(); 586 } 587 atom = atomdef(&s->s); 588 if (atom >= 0) { 589 if (!ATOMELEM(use, atom)) 590 killed |= ATOMMASK(atom); 591 def |= ATOMMASK(atom); 592 } 593 } 594 if (BPF_CLASS(b->s.code) == BPF_JMP) { 595 /* 596 * XXX - what about RET? 597 */ 598 atom = atomuse(&b->s); 599 if (atom >= 0) { 600 if (atom == AX_ATOM) { 601 if (!ATOMELEM(def, X_ATOM)) 602 use |= ATOMMASK(X_ATOM); 603 if (!ATOMELEM(def, A_ATOM)) 604 use |= ATOMMASK(A_ATOM); 605 } 606 else if (atom < N_ATOMS) { 607 if (!ATOMELEM(def, atom)) 608 use |= ATOMMASK(atom); 609 } 610 else 611 abort(); 612 } 613 } 614 615 b->def = def; 616 b->kill = killed; 617 b->in_use = use; 618 } 619 620 /* 621 * Assume graph is already leveled. 622 */ 623 static void 624 find_ud(opt_state_t *opt_state, struct block *root) 625 { 626 int i, maxlevel; 627 struct block *p; 628 629 /* 630 * root->level is the highest level no found; 631 * count down from there. 632 */ 633 maxlevel = root->level; 634 for (i = maxlevel; i >= 0; --i) 635 for (p = opt_state->levels[i]; p; p = p->link) { 636 compute_local_ud(p); 637 p->out_use = 0; 638 } 639 640 for (i = 1; i <= maxlevel; ++i) { 641 for (p = opt_state->levels[i]; p; p = p->link) { 642 p->out_use |= JT(p)->in_use | JF(p)->in_use; 643 p->in_use |= p->out_use &~ p->kill; 644 } 645 } 646 } 647 static void 648 init_val(opt_state_t *opt_state) 649 { 650 opt_state->curval = 0; 651 opt_state->next_vnode = opt_state->vnode_base; 652 memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap)); 653 memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl); 654 } 655 656 /* Because we really don't have an IR, this stuff is a little messy. */ 657 static int 658 F(opt_state_t *opt_state, int code, int v0, int v1) 659 { 660 u_int hash; 661 int val; 662 struct valnode *p; 663 664 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8); 665 hash %= MODULUS; 666 667 for (p = opt_state->hashtbl[hash]; p; p = p->next) 668 if (p->code == code && p->v0 == v0 && p->v1 == v1) 669 return p->val; 670 671 val = ++opt_state->curval; 672 if (BPF_MODE(code) == BPF_IMM && 673 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { 674 opt_state->vmap[val].const_val = v0; 675 opt_state->vmap[val].is_const = 1; 676 } 677 p = opt_state->next_vnode++; 678 p->val = val; 679 p->code = code; 680 p->v0 = v0; 681 p->v1 = v1; 682 p->next = opt_state->hashtbl[hash]; 683 opt_state->hashtbl[hash] = p; 684 685 return val; 686 } 687 688 static inline void 689 vstore(struct stmt *s, int *valp, int newval, int alter) 690 { 691 if (alter && newval != VAL_UNKNOWN && *valp == newval) 692 s->code = NOP; 693 else 694 *valp = newval; 695 } 696 697 /* 698 * Do constant-folding on binary operators. 699 * (Unary operators are handled elsewhere.) 700 */ 701 static void 702 fold_op(compiler_state_t *cstate, opt_state_t *opt_state, 703 struct stmt *s, int v0, int v1) 704 { 705 bpf_u_int32 a, b; 706 707 a = opt_state->vmap[v0].const_val; 708 b = opt_state->vmap[v1].const_val; 709 710 switch (BPF_OP(s->code)) { 711 case BPF_ADD: 712 a += b; 713 break; 714 715 case BPF_SUB: 716 a -= b; 717 break; 718 719 case BPF_MUL: 720 a *= b; 721 break; 722 723 case BPF_DIV: 724 if (b == 0) 725 bpf_error(cstate, "division by zero"); 726 a /= b; 727 break; 728 729 case BPF_MOD: 730 if (b == 0) 731 bpf_error(cstate, "modulus by zero"); 732 a %= b; 733 break; 734 735 case BPF_AND: 736 a &= b; 737 break; 738 739 case BPF_OR: 740 a |= b; 741 break; 742 743 case BPF_XOR: 744 a ^= b; 745 break; 746 747 case BPF_LSH: 748 a <<= b; 749 break; 750 751 case BPF_RSH: 752 a >>= b; 753 break; 754 755 default: 756 abort(); 757 } 758 s->k = a; 759 s->code = BPF_LD|BPF_IMM; 760 opt_state->done = 0; 761 } 762 763 static inline struct slist * 764 this_op(struct slist *s) 765 { 766 while (s != 0 && s->s.code == NOP) 767 s = s->next; 768 return s; 769 } 770 771 static void 772 opt_not(struct block *b) 773 { 774 struct block *tmp = JT(b); 775 776 JT(b) = JF(b); 777 JF(b) = tmp; 778 } 779 780 static void 781 opt_peep(opt_state_t *opt_state, struct block *b) 782 { 783 struct slist *s; 784 struct slist *next, *last; 785 int val; 786 787 s = b->stmts; 788 if (s == 0) 789 return; 790 791 last = s; 792 for (/*empty*/; /*empty*/; s = next) { 793 /* 794 * Skip over nops. 795 */ 796 s = this_op(s); 797 if (s == 0) 798 break; /* nothing left in the block */ 799 800 /* 801 * Find the next real instruction after that one 802 * (skipping nops). 803 */ 804 next = this_op(s->next); 805 if (next == 0) 806 break; /* no next instruction */ 807 last = next; 808 809 /* 810 * st M[k] --> st M[k] 811 * ldx M[k] tax 812 */ 813 if (s->s.code == BPF_ST && 814 next->s.code == (BPF_LDX|BPF_MEM) && 815 s->s.k == next->s.k) { 816 opt_state->done = 0; 817 next->s.code = BPF_MISC|BPF_TAX; 818 } 819 /* 820 * ld #k --> ldx #k 821 * tax txa 822 */ 823 if (s->s.code == (BPF_LD|BPF_IMM) && 824 next->s.code == (BPF_MISC|BPF_TAX)) { 825 s->s.code = BPF_LDX|BPF_IMM; 826 next->s.code = BPF_MISC|BPF_TXA; 827 opt_state->done = 0; 828 } 829 /* 830 * This is an ugly special case, but it happens 831 * when you say tcp[k] or udp[k] where k is a constant. 832 */ 833 if (s->s.code == (BPF_LD|BPF_IMM)) { 834 struct slist *add, *tax, *ild; 835 836 /* 837 * Check that X isn't used on exit from this 838 * block (which the optimizer might cause). 839 * We know the code generator won't generate 840 * any local dependencies. 841 */ 842 if (ATOMELEM(b->out_use, X_ATOM)) 843 continue; 844 845 /* 846 * Check that the instruction following the ldi 847 * is an addx, or it's an ldxms with an addx 848 * following it (with 0 or more nops between the 849 * ldxms and addx). 850 */ 851 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) 852 add = next; 853 else 854 add = this_op(next->next); 855 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) 856 continue; 857 858 /* 859 * Check that a tax follows that (with 0 or more 860 * nops between them). 861 */ 862 tax = this_op(add->next); 863 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) 864 continue; 865 866 /* 867 * Check that an ild follows that (with 0 or more 868 * nops between them). 869 */ 870 ild = this_op(tax->next); 871 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || 872 BPF_MODE(ild->s.code) != BPF_IND) 873 continue; 874 /* 875 * We want to turn this sequence: 876 * 877 * (004) ldi #0x2 {s} 878 * (005) ldxms [14] {next} -- optional 879 * (006) addx {add} 880 * (007) tax {tax} 881 * (008) ild [x+0] {ild} 882 * 883 * into this sequence: 884 * 885 * (004) nop 886 * (005) ldxms [14] 887 * (006) nop 888 * (007) nop 889 * (008) ild [x+2] 890 * 891 * XXX We need to check that X is not 892 * subsequently used, because we want to change 893 * what'll be in it after this sequence. 894 * 895 * We know we can eliminate the accumulator 896 * modifications earlier in the sequence since 897 * it is defined by the last stmt of this sequence 898 * (i.e., the last statement of the sequence loads 899 * a value into the accumulator, so we can eliminate 900 * earlier operations on the accumulator). 901 */ 902 ild->s.k += s->s.k; 903 s->s.code = NOP; 904 add->s.code = NOP; 905 tax->s.code = NOP; 906 opt_state->done = 0; 907 } 908 } 909 /* 910 * If the comparison at the end of a block is an equality 911 * comparison against a constant, and nobody uses the value 912 * we leave in the A register at the end of a block, and 913 * the operation preceding the comparison is an arithmetic 914 * operation, we can sometime optimize it away. 915 */ 916 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) && 917 !ATOMELEM(b->out_use, A_ATOM)) { 918 /* 919 * We can optimize away certain subtractions of the 920 * X register. 921 */ 922 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) { 923 val = b->val[X_ATOM]; 924 if (opt_state->vmap[val].is_const) { 925 /* 926 * If we have a subtract to do a comparison, 927 * and the X register is a known constant, 928 * we can merge this value into the 929 * comparison: 930 * 931 * sub x -> nop 932 * jeq #y jeq #(x+y) 933 */ 934 b->s.k += opt_state->vmap[val].const_val; 935 last->s.code = NOP; 936 opt_state->done = 0; 937 } else if (b->s.k == 0) { 938 /* 939 * If the X register isn't a constant, 940 * and the comparison in the test is 941 * against 0, we can compare with the 942 * X register, instead: 943 * 944 * sub x -> nop 945 * jeq #0 jeq x 946 */ 947 last->s.code = NOP; 948 b->s.code = BPF_JMP|BPF_JEQ|BPF_X; 949 opt_state->done = 0; 950 } 951 } 952 /* 953 * Likewise, a constant subtract can be simplified: 954 * 955 * sub #x -> nop 956 * jeq #y -> jeq #(x+y) 957 */ 958 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) { 959 last->s.code = NOP; 960 b->s.k += last->s.k; 961 opt_state->done = 0; 962 } 963 /* 964 * And, similarly, a constant AND can be simplified 965 * if we're testing against 0, i.e.: 966 * 967 * and #k nop 968 * jeq #0 -> jset #k 969 */ 970 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && 971 b->s.k == 0) { 972 b->s.k = last->s.k; 973 b->s.code = BPF_JMP|BPF_K|BPF_JSET; 974 last->s.code = NOP; 975 opt_state->done = 0; 976 opt_not(b); 977 } 978 } 979 /* 980 * jset #0 -> never 981 * jset #ffffffff -> always 982 */ 983 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) { 984 if (b->s.k == 0) 985 JT(b) = JF(b); 986 if ((u_int)b->s.k == 0xffffffffU) 987 JF(b) = JT(b); 988 } 989 /* 990 * If we're comparing against the index register, and the index 991 * register is a known constant, we can just compare against that 992 * constant. 993 */ 994 val = b->val[X_ATOM]; 995 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) { 996 bpf_int32 v = opt_state->vmap[val].const_val; 997 b->s.code &= ~BPF_X; 998 b->s.k = v; 999 } 1000 /* 1001 * If the accumulator is a known constant, we can compute the 1002 * comparison result. 1003 */ 1004 val = b->val[A_ATOM]; 1005 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { 1006 bpf_int32 v = opt_state->vmap[val].const_val; 1007 switch (BPF_OP(b->s.code)) { 1008 1009 case BPF_JEQ: 1010 v = v == b->s.k; 1011 break; 1012 1013 case BPF_JGT: 1014 v = (unsigned)v > (unsigned)b->s.k; 1015 break; 1016 1017 case BPF_JGE: 1018 v = (unsigned)v >= (unsigned)b->s.k; 1019 break; 1020 1021 case BPF_JSET: 1022 v &= b->s.k; 1023 break; 1024 1025 default: 1026 abort(); 1027 } 1028 if (JF(b) != JT(b)) 1029 opt_state->done = 0; 1030 if (v) 1031 JF(b) = JT(b); 1032 else 1033 JT(b) = JF(b); 1034 } 1035 } 1036 1037 /* 1038 * Compute the symbolic value of expression of 's', and update 1039 * anything it defines in the value table 'val'. If 'alter' is true, 1040 * do various optimizations. This code would be cleaner if symbolic 1041 * evaluation and code transformations weren't folded together. 1042 */ 1043 static void 1044 opt_stmt(compiler_state_t *cstate, opt_state_t *opt_state, 1045 struct stmt *s, int val[], int alter) 1046 { 1047 int op; 1048 int v; 1049 1050 switch (s->code) { 1051 1052 case BPF_LD|BPF_ABS|BPF_W: 1053 case BPF_LD|BPF_ABS|BPF_H: 1054 case BPF_LD|BPF_ABS|BPF_B: 1055 v = F(opt_state, s->code, s->k, 0L); 1056 vstore(s, &val[A_ATOM], v, alter); 1057 break; 1058 1059 case BPF_LD|BPF_IND|BPF_W: 1060 case BPF_LD|BPF_IND|BPF_H: 1061 case BPF_LD|BPF_IND|BPF_B: 1062 v = val[X_ATOM]; 1063 if (alter && opt_state->vmap[v].is_const) { 1064 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); 1065 s->k += opt_state->vmap[v].const_val; 1066 v = F(opt_state, s->code, s->k, 0L); 1067 opt_state->done = 0; 1068 } 1069 else 1070 v = F(opt_state, s->code, s->k, v); 1071 vstore(s, &val[A_ATOM], v, alter); 1072 break; 1073 1074 case BPF_LD|BPF_LEN: 1075 v = F(opt_state, s->code, 0L, 0L); 1076 vstore(s, &val[A_ATOM], v, alter); 1077 break; 1078 1079 case BPF_LD|BPF_IMM: 1080 v = K(s->k); 1081 vstore(s, &val[A_ATOM], v, alter); 1082 break; 1083 1084 case BPF_LDX|BPF_IMM: 1085 v = K(s->k); 1086 vstore(s, &val[X_ATOM], v, alter); 1087 break; 1088 1089 case BPF_LDX|BPF_MSH|BPF_B: 1090 v = F(opt_state, s->code, s->k, 0L); 1091 vstore(s, &val[X_ATOM], v, alter); 1092 break; 1093 1094 case BPF_ALU|BPF_NEG: 1095 if (alter && opt_state->vmap[val[A_ATOM]].is_const) { 1096 s->code = BPF_LD|BPF_IMM; 1097 s->k = -opt_state->vmap[val[A_ATOM]].const_val; 1098 val[A_ATOM] = K(s->k); 1099 } 1100 else 1101 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L); 1102 break; 1103 1104 case BPF_ALU|BPF_ADD|BPF_K: 1105 case BPF_ALU|BPF_SUB|BPF_K: 1106 case BPF_ALU|BPF_MUL|BPF_K: 1107 case BPF_ALU|BPF_DIV|BPF_K: 1108 case BPF_ALU|BPF_MOD|BPF_K: 1109 case BPF_ALU|BPF_AND|BPF_K: 1110 case BPF_ALU|BPF_OR|BPF_K: 1111 case BPF_ALU|BPF_XOR|BPF_K: 1112 case BPF_ALU|BPF_LSH|BPF_K: 1113 case BPF_ALU|BPF_RSH|BPF_K: 1114 op = BPF_OP(s->code); 1115 if (alter) { 1116 if (s->k == 0) { 1117 /* don't optimize away "sub #0" 1118 * as it may be needed later to 1119 * fixup the generated math code */ 1120 if (op == BPF_ADD || 1121 op == BPF_LSH || op == BPF_RSH || 1122 op == BPF_OR || op == BPF_XOR) { 1123 s->code = NOP; 1124 break; 1125 } 1126 if (op == BPF_MUL || op == BPF_AND) { 1127 s->code = BPF_LD|BPF_IMM; 1128 val[A_ATOM] = K(s->k); 1129 break; 1130 } 1131 } 1132 if (opt_state->vmap[val[A_ATOM]].is_const) { 1133 fold_op(cstate, opt_state, s, val[A_ATOM], K(s->k)); 1134 val[A_ATOM] = K(s->k); 1135 break; 1136 } 1137 } 1138 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k)); 1139 break; 1140 1141 case BPF_ALU|BPF_ADD|BPF_X: 1142 case BPF_ALU|BPF_SUB|BPF_X: 1143 case BPF_ALU|BPF_MUL|BPF_X: 1144 case BPF_ALU|BPF_DIV|BPF_X: 1145 case BPF_ALU|BPF_MOD|BPF_X: 1146 case BPF_ALU|BPF_AND|BPF_X: 1147 case BPF_ALU|BPF_OR|BPF_X: 1148 case BPF_ALU|BPF_XOR|BPF_X: 1149 case BPF_ALU|BPF_LSH|BPF_X: 1150 case BPF_ALU|BPF_RSH|BPF_X: 1151 op = BPF_OP(s->code); 1152 if (alter && opt_state->vmap[val[X_ATOM]].is_const) { 1153 if (opt_state->vmap[val[A_ATOM]].is_const) { 1154 fold_op(cstate, opt_state, s, val[A_ATOM], val[X_ATOM]); 1155 val[A_ATOM] = K(s->k); 1156 } 1157 else { 1158 s->code = BPF_ALU|BPF_K|op; 1159 s->k = opt_state->vmap[val[X_ATOM]].const_val; 1160 opt_state->done = 0; 1161 val[A_ATOM] = 1162 F(opt_state, s->code, val[A_ATOM], K(s->k)); 1163 } 1164 break; 1165 } 1166 /* 1167 * Check if we're doing something to an accumulator 1168 * that is 0, and simplify. This may not seem like 1169 * much of a simplification but it could open up further 1170 * optimizations. 1171 * XXX We could also check for mul by 1, etc. 1172 */ 1173 if (alter && opt_state->vmap[val[A_ATOM]].is_const 1174 && opt_state->vmap[val[A_ATOM]].const_val == 0) { 1175 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) { 1176 s->code = BPF_MISC|BPF_TXA; 1177 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1178 break; 1179 } 1180 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD || 1181 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) { 1182 s->code = BPF_LD|BPF_IMM; 1183 s->k = 0; 1184 vstore(s, &val[A_ATOM], K(s->k), alter); 1185 break; 1186 } 1187 else if (op == BPF_NEG) { 1188 s->code = NOP; 1189 break; 1190 } 1191 } 1192 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]); 1193 break; 1194 1195 case BPF_MISC|BPF_TXA: 1196 vstore(s, &val[A_ATOM], val[X_ATOM], alter); 1197 break; 1198 1199 case BPF_LD|BPF_MEM: 1200 v = val[s->k]; 1201 if (alter && opt_state->vmap[v].is_const) { 1202 s->code = BPF_LD|BPF_IMM; 1203 s->k = opt_state->vmap[v].const_val; 1204 opt_state->done = 0; 1205 } 1206 vstore(s, &val[A_ATOM], v, alter); 1207 break; 1208 1209 case BPF_MISC|BPF_TAX: 1210 vstore(s, &val[X_ATOM], val[A_ATOM], alter); 1211 break; 1212 1213 case BPF_LDX|BPF_MEM: 1214 v = val[s->k]; 1215 if (alter && opt_state->vmap[v].is_const) { 1216 s->code = BPF_LDX|BPF_IMM; 1217 s->k = opt_state->vmap[v].const_val; 1218 opt_state->done = 0; 1219 } 1220 vstore(s, &val[X_ATOM], v, alter); 1221 break; 1222 1223 case BPF_ST: 1224 vstore(s, &val[s->k], val[A_ATOM], alter); 1225 break; 1226 1227 case BPF_STX: 1228 vstore(s, &val[s->k], val[X_ATOM], alter); 1229 break; 1230 } 1231 } 1232 1233 static void 1234 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[]) 1235 { 1236 register int atom; 1237 1238 atom = atomuse(s); 1239 if (atom >= 0) { 1240 if (atom == AX_ATOM) { 1241 last[X_ATOM] = 0; 1242 last[A_ATOM] = 0; 1243 } 1244 else 1245 last[atom] = 0; 1246 } 1247 atom = atomdef(s); 1248 if (atom >= 0) { 1249 if (last[atom]) { 1250 opt_state->done = 0; 1251 last[atom]->code = NOP; 1252 } 1253 last[atom] = s; 1254 } 1255 } 1256 1257 static void 1258 opt_deadstores(opt_state_t *opt_state, register struct block *b) 1259 { 1260 register struct slist *s; 1261 register int atom; 1262 struct stmt *last[N_ATOMS]; 1263 1264 memset((char *)last, 0, sizeof last); 1265 1266 for (s = b->stmts; s != 0; s = s->next) 1267 deadstmt(opt_state, &s->s, last); 1268 deadstmt(opt_state, &b->s, last); 1269 1270 for (atom = 0; atom < N_ATOMS; ++atom) 1271 if (last[atom] && !ATOMELEM(b->out_use, atom)) { 1272 last[atom]->code = NOP; 1273 opt_state->done = 0; 1274 } 1275 } 1276 1277 static void 1278 opt_blk(compiler_state_t *cstate, opt_state_t *opt_state, 1279 struct block *b, int do_stmts) 1280 { 1281 struct slist *s; 1282 struct edge *p; 1283 int i; 1284 bpf_int32 aval, xval; 1285 1286 #if 0 1287 for (s = b->stmts; s && s->next; s = s->next) 1288 if (BPF_CLASS(s->s.code) == BPF_JMP) { 1289 do_stmts = 0; 1290 break; 1291 } 1292 #endif 1293 1294 /* 1295 * Initialize the atom values. 1296 */ 1297 p = b->in_edges; 1298 if (p == 0) { 1299 /* 1300 * We have no predecessors, so everything is undefined 1301 * upon entry to this block. 1302 */ 1303 memset((char *)b->val, 0, sizeof(b->val)); 1304 } else { 1305 /* 1306 * Inherit values from our predecessors. 1307 * 1308 * First, get the values from the predecessor along the 1309 * first edge leading to this node. 1310 */ 1311 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); 1312 /* 1313 * Now look at all the other nodes leading to this node. 1314 * If, for the predecessor along that edge, a register 1315 * has a different value from the one we have (i.e., 1316 * control paths are merging, and the merging paths 1317 * assign different values to that register), give the 1318 * register the undefined value of 0. 1319 */ 1320 while ((p = p->next) != NULL) { 1321 for (i = 0; i < N_ATOMS; ++i) 1322 if (b->val[i] != p->pred->val[i]) 1323 b->val[i] = 0; 1324 } 1325 } 1326 aval = b->val[A_ATOM]; 1327 xval = b->val[X_ATOM]; 1328 for (s = b->stmts; s; s = s->next) 1329 opt_stmt(cstate, opt_state, &s->s, b->val, do_stmts); 1330 1331 /* 1332 * This is a special case: if we don't use anything from this 1333 * block, and we load the accumulator or index register with a 1334 * value that is already there, or if this block is a return, 1335 * eliminate all the statements. 1336 * 1337 * XXX - what if it does a store? 1338 * 1339 * XXX - why does it matter whether we use anything from this 1340 * block? If the accumulator or index register doesn't change 1341 * its value, isn't that OK even if we use that value? 1342 * 1343 * XXX - if we load the accumulator with a different value, 1344 * and the block ends with a conditional branch, we obviously 1345 * can't eliminate it, as the branch depends on that value. 1346 * For the index register, the conditional branch only depends 1347 * on the index register value if the test is against the index 1348 * register value rather than a constant; if nothing uses the 1349 * value we put into the index register, and we're not testing 1350 * against the index register's value, and there aren't any 1351 * other problems that would keep us from eliminating this 1352 * block, can we eliminate it? 1353 */ 1354 if (do_stmts && 1355 ((b->out_use == 0 && 1356 aval != VAL_UNKNOWN && b->val[A_ATOM] == aval && 1357 xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) || 1358 BPF_CLASS(b->s.code) == BPF_RET)) { 1359 if (b->stmts != 0) { 1360 b->stmts = 0; 1361 opt_state->done = 0; 1362 } 1363 } else { 1364 opt_peep(opt_state, b); 1365 opt_deadstores(opt_state, b); 1366 } 1367 /* 1368 * Set up values for branch optimizer. 1369 */ 1370 if (BPF_SRC(b->s.code) == BPF_K) 1371 b->oval = K(b->s.k); 1372 else 1373 b->oval = b->val[X_ATOM]; 1374 b->et.code = b->s.code; 1375 b->ef.code = -b->s.code; 1376 } 1377 1378 /* 1379 * Return true if any register that is used on exit from 'succ', has 1380 * an exit value that is different from the corresponding exit value 1381 * from 'b'. 1382 */ 1383 static int 1384 use_conflict(struct block *b, struct block *succ) 1385 { 1386 int atom; 1387 atomset use = succ->out_use; 1388 1389 if (use == 0) 1390 return 0; 1391 1392 for (atom = 0; atom < N_ATOMS; ++atom) 1393 if (ATOMELEM(use, atom)) 1394 if (b->val[atom] != succ->val[atom]) 1395 return 1; 1396 return 0; 1397 } 1398 1399 static struct block * 1400 fold_edge(struct block *child, struct edge *ep) 1401 { 1402 int sense; 1403 int aval0, aval1, oval0, oval1; 1404 int code = ep->code; 1405 1406 if (code < 0) { 1407 code = -code; 1408 sense = 0; 1409 } else 1410 sense = 1; 1411 1412 if (child->s.code != code) 1413 return 0; 1414 1415 aval0 = child->val[A_ATOM]; 1416 oval0 = child->oval; 1417 aval1 = ep->pred->val[A_ATOM]; 1418 oval1 = ep->pred->oval; 1419 1420 if (aval0 != aval1) 1421 return 0; 1422 1423 if (oval0 == oval1) 1424 /* 1425 * The operands of the branch instructions are 1426 * identical, so the result is true if a true 1427 * branch was taken to get here, otherwise false. 1428 */ 1429 return sense ? JT(child) : JF(child); 1430 1431 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) 1432 /* 1433 * At this point, we only know the comparison if we 1434 * came down the true branch, and it was an equality 1435 * comparison with a constant. 1436 * 1437 * I.e., if we came down the true branch, and the branch 1438 * was an equality comparison with a constant, we know the 1439 * accumulator contains that constant. If we came down 1440 * the false branch, or the comparison wasn't with a 1441 * constant, we don't know what was in the accumulator. 1442 * 1443 * We rely on the fact that distinct constants have distinct 1444 * value numbers. 1445 */ 1446 return JF(child); 1447 1448 return 0; 1449 } 1450 1451 static void 1452 opt_j(opt_state_t *opt_state, struct edge *ep) 1453 { 1454 register int i, k; 1455 register struct block *target; 1456 1457 if (JT(ep->succ) == 0) 1458 return; 1459 1460 if (JT(ep->succ) == JF(ep->succ)) { 1461 /* 1462 * Common branch targets can be eliminated, provided 1463 * there is no data dependency. 1464 */ 1465 if (!use_conflict(ep->pred, ep->succ->et.succ)) { 1466 opt_state->done = 0; 1467 ep->succ = JT(ep->succ); 1468 } 1469 } 1470 /* 1471 * For each edge dominator that matches the successor of this 1472 * edge, promote the edge successor to the its grandchild. 1473 * 1474 * XXX We violate the set abstraction here in favor a reasonably 1475 * efficient loop. 1476 */ 1477 top: 1478 for (i = 0; i < opt_state->edgewords; ++i) { 1479 register bpf_u_int32 x = ep->edom[i]; 1480 1481 while (x != 0) { 1482 k = lowest_set_bit(x); 1483 x &=~ (1 << k); 1484 k += i * BITS_PER_WORD; 1485 1486 target = fold_edge(ep->succ, opt_state->edges[k]); 1487 /* 1488 * Check that there is no data dependency between 1489 * nodes that will be violated if we move the edge. 1490 */ 1491 if (target != 0 && !use_conflict(ep->pred, target)) { 1492 opt_state->done = 0; 1493 ep->succ = target; 1494 if (JT(target) != 0) 1495 /* 1496 * Start over unless we hit a leaf. 1497 */ 1498 goto top; 1499 return; 1500 } 1501 } 1502 } 1503 } 1504 1505 1506 static void 1507 or_pullup(opt_state_t *opt_state, struct block *b) 1508 { 1509 int val, at_top; 1510 struct block *pull; 1511 struct block **diffp, **samep; 1512 struct edge *ep; 1513 1514 ep = b->in_edges; 1515 if (ep == 0) 1516 return; 1517 1518 /* 1519 * Make sure each predecessor loads the same value. 1520 * XXX why? 1521 */ 1522 val = ep->pred->val[A_ATOM]; 1523 for (ep = ep->next; ep != 0; ep = ep->next) 1524 if (val != ep->pred->val[A_ATOM]) 1525 return; 1526 1527 if (JT(b->in_edges->pred) == b) 1528 diffp = &JT(b->in_edges->pred); 1529 else 1530 diffp = &JF(b->in_edges->pred); 1531 1532 at_top = 1; 1533 for (;;) { 1534 if (*diffp == 0) 1535 return; 1536 1537 if (JT(*diffp) != JT(b)) 1538 return; 1539 1540 if (!SET_MEMBER((*diffp)->dom, b->id)) 1541 return; 1542 1543 if ((*diffp)->val[A_ATOM] != val) 1544 break; 1545 1546 diffp = &JF(*diffp); 1547 at_top = 0; 1548 } 1549 samep = &JF(*diffp); 1550 for (;;) { 1551 if (*samep == 0) 1552 return; 1553 1554 if (JT(*samep) != JT(b)) 1555 return; 1556 1557 if (!SET_MEMBER((*samep)->dom, b->id)) 1558 return; 1559 1560 if ((*samep)->val[A_ATOM] == val) 1561 break; 1562 1563 /* XXX Need to check that there are no data dependencies 1564 between dp0 and dp1. Currently, the code generator 1565 will not produce such dependencies. */ 1566 samep = &JF(*samep); 1567 } 1568 #ifdef notdef 1569 /* XXX This doesn't cover everything. */ 1570 for (i = 0; i < N_ATOMS; ++i) 1571 if ((*samep)->val[i] != pred->val[i]) 1572 return; 1573 #endif 1574 /* Pull up the node. */ 1575 pull = *samep; 1576 *samep = JF(pull); 1577 JF(pull) = *diffp; 1578 1579 /* 1580 * At the top of the chain, each predecessor needs to point at the 1581 * pulled up node. Inside the chain, there is only one predecessor 1582 * to worry about. 1583 */ 1584 if (at_top) { 1585 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1586 if (JT(ep->pred) == b) 1587 JT(ep->pred) = pull; 1588 else 1589 JF(ep->pred) = pull; 1590 } 1591 } 1592 else 1593 *diffp = pull; 1594 1595 opt_state->done = 0; 1596 } 1597 1598 static void 1599 and_pullup(opt_state_t *opt_state, struct block *b) 1600 { 1601 int val, at_top; 1602 struct block *pull; 1603 struct block **diffp, **samep; 1604 struct edge *ep; 1605 1606 ep = b->in_edges; 1607 if (ep == 0) 1608 return; 1609 1610 /* 1611 * Make sure each predecessor loads the same value. 1612 */ 1613 val = ep->pred->val[A_ATOM]; 1614 for (ep = ep->next; ep != 0; ep = ep->next) 1615 if (val != ep->pred->val[A_ATOM]) 1616 return; 1617 1618 if (JT(b->in_edges->pred) == b) 1619 diffp = &JT(b->in_edges->pred); 1620 else 1621 diffp = &JF(b->in_edges->pred); 1622 1623 at_top = 1; 1624 for (;;) { 1625 if (*diffp == 0) 1626 return; 1627 1628 if (JF(*diffp) != JF(b)) 1629 return; 1630 1631 if (!SET_MEMBER((*diffp)->dom, b->id)) 1632 return; 1633 1634 if ((*diffp)->val[A_ATOM] != val) 1635 break; 1636 1637 diffp = &JT(*diffp); 1638 at_top = 0; 1639 } 1640 samep = &JT(*diffp); 1641 for (;;) { 1642 if (*samep == 0) 1643 return; 1644 1645 if (JF(*samep) != JF(b)) 1646 return; 1647 1648 if (!SET_MEMBER((*samep)->dom, b->id)) 1649 return; 1650 1651 if ((*samep)->val[A_ATOM] == val) 1652 break; 1653 1654 /* XXX Need to check that there are no data dependencies 1655 between diffp and samep. Currently, the code generator 1656 will not produce such dependencies. */ 1657 samep = &JT(*samep); 1658 } 1659 #ifdef notdef 1660 /* XXX This doesn't cover everything. */ 1661 for (i = 0; i < N_ATOMS; ++i) 1662 if ((*samep)->val[i] != pred->val[i]) 1663 return; 1664 #endif 1665 /* Pull up the node. */ 1666 pull = *samep; 1667 *samep = JT(pull); 1668 JT(pull) = *diffp; 1669 1670 /* 1671 * At the top of the chain, each predecessor needs to point at the 1672 * pulled up node. Inside the chain, there is only one predecessor 1673 * to worry about. 1674 */ 1675 if (at_top) { 1676 for (ep = b->in_edges; ep != 0; ep = ep->next) { 1677 if (JT(ep->pred) == b) 1678 JT(ep->pred) = pull; 1679 else 1680 JF(ep->pred) = pull; 1681 } 1682 } 1683 else 1684 *diffp = pull; 1685 1686 opt_state->done = 0; 1687 } 1688 1689 static void 1690 opt_blks(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic, 1691 int do_stmts) 1692 { 1693 int i, maxlevel; 1694 struct block *p; 1695 1696 init_val(opt_state); 1697 maxlevel = ic->root->level; 1698 1699 find_inedges(opt_state, ic->root); 1700 for (i = maxlevel; i >= 0; --i) 1701 for (p = opt_state->levels[i]; p; p = p->link) 1702 opt_blk(cstate, opt_state, p, do_stmts); 1703 1704 if (do_stmts) 1705 /* 1706 * No point trying to move branches; it can't possibly 1707 * make a difference at this point. 1708 */ 1709 return; 1710 1711 for (i = 1; i <= maxlevel; ++i) { 1712 for (p = opt_state->levels[i]; p; p = p->link) { 1713 opt_j(opt_state, &p->et); 1714 opt_j(opt_state, &p->ef); 1715 } 1716 } 1717 1718 find_inedges(opt_state, ic->root); 1719 for (i = 1; i <= maxlevel; ++i) { 1720 for (p = opt_state->levels[i]; p; p = p->link) { 1721 or_pullup(opt_state, p); 1722 and_pullup(opt_state, p); 1723 } 1724 } 1725 } 1726 1727 static inline void 1728 link_inedge(struct edge *parent, struct block *child) 1729 { 1730 parent->next = child->in_edges; 1731 child->in_edges = parent; 1732 } 1733 1734 static void 1735 find_inedges(opt_state_t *opt_state, struct block *root) 1736 { 1737 int i; 1738 struct block *b; 1739 1740 for (i = 0; i < opt_state->n_blocks; ++i) 1741 opt_state->blocks[i]->in_edges = 0; 1742 1743 /* 1744 * Traverse the graph, adding each edge to the predecessor 1745 * list of its successors. Skip the leaves (i.e. level 0). 1746 */ 1747 for (i = root->level; i > 0; --i) { 1748 for (b = opt_state->levels[i]; b != 0; b = b->link) { 1749 link_inedge(&b->et, JT(b)); 1750 link_inedge(&b->ef, JF(b)); 1751 } 1752 } 1753 } 1754 1755 static void 1756 opt_root(struct block **b) 1757 { 1758 struct slist *tmp, *s; 1759 1760 s = (*b)->stmts; 1761 (*b)->stmts = 0; 1762 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) 1763 *b = JT(*b); 1764 1765 tmp = (*b)->stmts; 1766 if (tmp != 0) 1767 sappend(s, tmp); 1768 (*b)->stmts = s; 1769 1770 /* 1771 * If the root node is a return, then there is no 1772 * point executing any statements (since the bpf machine 1773 * has no side effects). 1774 */ 1775 if (BPF_CLASS((*b)->s.code) == BPF_RET) 1776 (*b)->stmts = 0; 1777 } 1778 1779 static void 1780 opt_loop(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic, 1781 int do_stmts) 1782 { 1783 1784 #ifdef BDEBUG 1785 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 1786 printf("opt_loop(root, %d) begin\n", do_stmts); 1787 opt_dump(cstate, ic); 1788 } 1789 #endif 1790 do { 1791 opt_state->done = 1; 1792 find_levels(opt_state, ic); 1793 find_dom(opt_state, ic->root); 1794 find_closure(opt_state, ic->root); 1795 find_ud(opt_state, ic->root); 1796 find_edom(opt_state, ic->root); 1797 opt_blks(cstate, opt_state, ic, do_stmts); 1798 #ifdef BDEBUG 1799 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 1800 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done); 1801 opt_dump(cstate, ic); 1802 } 1803 #endif 1804 } while (!opt_state->done); 1805 } 1806 1807 /* 1808 * Optimize the filter code in its dag representation. 1809 */ 1810 void 1811 bpf_optimize(compiler_state_t *cstate, struct icode *ic) 1812 { 1813 opt_state_t opt_state; 1814 1815 opt_init(cstate, &opt_state, ic); 1816 opt_loop(cstate, &opt_state, ic, 0); 1817 opt_loop(cstate, &opt_state, ic, 1); 1818 intern_blocks(&opt_state, ic); 1819 #ifdef BDEBUG 1820 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 1821 printf("after intern_blocks()\n"); 1822 opt_dump(cstate, ic); 1823 } 1824 #endif 1825 opt_root(&ic->root); 1826 #ifdef BDEBUG 1827 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { 1828 printf("after opt_root()\n"); 1829 opt_dump(cstate, ic); 1830 } 1831 #endif 1832 opt_cleanup(&opt_state); 1833 } 1834 1835 static void 1836 make_marks(struct icode *ic, struct block *p) 1837 { 1838 if (!isMarked(ic, p)) { 1839 Mark(ic, p); 1840 if (BPF_CLASS(p->s.code) != BPF_RET) { 1841 make_marks(ic, JT(p)); 1842 make_marks(ic, JF(p)); 1843 } 1844 } 1845 } 1846 1847 /* 1848 * Mark code array such that isMarked(ic->cur_mark, i) is true 1849 * only for nodes that are alive. 1850 */ 1851 static void 1852 mark_code(struct icode *ic) 1853 { 1854 ic->cur_mark += 1; 1855 make_marks(ic, ic->root); 1856 } 1857 1858 /* 1859 * True iff the two stmt lists load the same value from the packet into 1860 * the accumulator. 1861 */ 1862 static int 1863 eq_slist(struct slist *x, struct slist *y) 1864 { 1865 for (;;) { 1866 while (x && x->s.code == NOP) 1867 x = x->next; 1868 while (y && y->s.code == NOP) 1869 y = y->next; 1870 if (x == 0) 1871 return y == 0; 1872 if (y == 0) 1873 return x == 0; 1874 if (x->s.code != y->s.code || x->s.k != y->s.k) 1875 return 0; 1876 x = x->next; 1877 y = y->next; 1878 } 1879 } 1880 1881 static inline int 1882 eq_blk(struct block *b0, struct block *b1) 1883 { 1884 if (b0->s.code == b1->s.code && 1885 b0->s.k == b1->s.k && 1886 b0->et.succ == b1->et.succ && 1887 b0->ef.succ == b1->ef.succ) 1888 return eq_slist(b0->stmts, b1->stmts); 1889 return 0; 1890 } 1891 1892 static void 1893 intern_blocks(opt_state_t *opt_state, struct icode *ic) 1894 { 1895 struct block *p; 1896 int i, j; 1897 int done1; /* don't shadow global */ 1898 top: 1899 done1 = 1; 1900 for (i = 0; i < opt_state->n_blocks; ++i) 1901 opt_state->blocks[i]->link = 0; 1902 1903 mark_code(ic); 1904 1905 for (i = opt_state->n_blocks - 1; --i >= 0; ) { 1906 if (!isMarked(ic, opt_state->blocks[i])) 1907 continue; 1908 for (j = i + 1; j < opt_state->n_blocks; ++j) { 1909 if (!isMarked(ic, opt_state->blocks[j])) 1910 continue; 1911 if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) { 1912 opt_state->blocks[i]->link = opt_state->blocks[j]->link ? 1913 opt_state->blocks[j]->link : opt_state->blocks[j]; 1914 break; 1915 } 1916 } 1917 } 1918 for (i = 0; i < opt_state->n_blocks; ++i) { 1919 p = opt_state->blocks[i]; 1920 if (JT(p) == 0) 1921 continue; 1922 if (JT(p)->link) { 1923 done1 = 0; 1924 JT(p) = JT(p)->link; 1925 } 1926 if (JF(p)->link) { 1927 done1 = 0; 1928 JF(p) = JF(p)->link; 1929 } 1930 } 1931 if (!done1) 1932 goto top; 1933 } 1934 1935 static void 1936 opt_cleanup(opt_state_t *opt_state) 1937 { 1938 free((void *)opt_state->vnode_base); 1939 free((void *)opt_state->vmap); 1940 free((void *)opt_state->edges); 1941 free((void *)opt_state->space); 1942 free((void *)opt_state->levels); 1943 free((void *)opt_state->blocks); 1944 } 1945 1946 /* 1947 * Return the number of stmts in 's'. 1948 */ 1949 static u_int 1950 slength(struct slist *s) 1951 { 1952 u_int n = 0; 1953 1954 for (; s; s = s->next) 1955 if (s->s.code != NOP) 1956 ++n; 1957 return n; 1958 } 1959 1960 /* 1961 * Return the number of nodes reachable by 'p'. 1962 * All nodes should be initially unmarked. 1963 */ 1964 static int 1965 count_blocks(struct icode *ic, struct block *p) 1966 { 1967 if (p == 0 || isMarked(ic, p)) 1968 return 0; 1969 Mark(ic, p); 1970 return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1; 1971 } 1972 1973 /* 1974 * Do a depth first search on the flow graph, numbering the 1975 * the basic blocks, and entering them into the 'blocks' array.` 1976 */ 1977 static void 1978 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p) 1979 { 1980 int n; 1981 1982 if (p == 0 || isMarked(ic, p)) 1983 return; 1984 1985 Mark(ic, p); 1986 n = opt_state->n_blocks++; 1987 p->id = n; 1988 opt_state->blocks[n] = p; 1989 1990 number_blks_r(opt_state, ic, JT(p)); 1991 number_blks_r(opt_state, ic, JF(p)); 1992 } 1993 1994 /* 1995 * Return the number of stmts in the flowgraph reachable by 'p'. 1996 * The nodes should be unmarked before calling. 1997 * 1998 * Note that "stmts" means "instructions", and that this includes 1999 * 2000 * side-effect statements in 'p' (slength(p->stmts)); 2001 * 2002 * statements in the true branch from 'p' (count_stmts(JT(p))); 2003 * 2004 * statements in the false branch from 'p' (count_stmts(JF(p))); 2005 * 2006 * the conditional jump itself (1); 2007 * 2008 * an extra long jump if the true branch requires it (p->longjt); 2009 * 2010 * an extra long jump if the false branch requires it (p->longjf). 2011 */ 2012 static u_int 2013 count_stmts(struct icode *ic, struct block *p) 2014 { 2015 u_int n; 2016 2017 if (p == 0 || isMarked(ic, p)) 2018 return 0; 2019 Mark(ic, p); 2020 n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p)); 2021 return slength(p->stmts) + n + 1 + p->longjt + p->longjf; 2022 } 2023 2024 /* 2025 * Allocate memory. All allocation is done before optimization 2026 * is begun. A linear bound on the size of all data structures is computed 2027 * from the total number of blocks and/or statements. 2028 */ 2029 static void 2030 opt_init(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic) 2031 { 2032 bpf_u_int32 *p; 2033 int i, n, max_stmts; 2034 2035 /* 2036 * First, count the blocks, so we can malloc an array to map 2037 * block number to block. Then, put the blocks into the array. 2038 */ 2039 unMarkAll(ic); 2040 n = count_blocks(ic, ic->root); 2041 opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks)); 2042 if (opt_state->blocks == NULL) 2043 bpf_error(cstate, "malloc"); 2044 unMarkAll(ic); 2045 opt_state->n_blocks = 0; 2046 number_blks_r(opt_state, ic, ic->root); 2047 2048 opt_state->n_edges = 2 * opt_state->n_blocks; 2049 opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges)); 2050 if (opt_state->edges == NULL) 2051 bpf_error(cstate, "malloc"); 2052 2053 /* 2054 * The number of levels is bounded by the number of nodes. 2055 */ 2056 opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels)); 2057 if (opt_state->levels == NULL) 2058 bpf_error(cstate, "malloc"); 2059 2060 opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1; 2061 opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1; 2062 2063 /* XXX */ 2064 opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space) 2065 + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space)); 2066 if (opt_state->space == NULL) 2067 bpf_error(cstate, "malloc"); 2068 p = opt_state->space; 2069 opt_state->all_dom_sets = p; 2070 for (i = 0; i < n; ++i) { 2071 opt_state->blocks[i]->dom = p; 2072 p += opt_state->nodewords; 2073 } 2074 opt_state->all_closure_sets = p; 2075 for (i = 0; i < n; ++i) { 2076 opt_state->blocks[i]->closure = p; 2077 p += opt_state->nodewords; 2078 } 2079 opt_state->all_edge_sets = p; 2080 for (i = 0; i < n; ++i) { 2081 register struct block *b = opt_state->blocks[i]; 2082 2083 b->et.edom = p; 2084 p += opt_state->edgewords; 2085 b->ef.edom = p; 2086 p += opt_state->edgewords; 2087 b->et.id = i; 2088 opt_state->edges[i] = &b->et; 2089 b->ef.id = opt_state->n_blocks + i; 2090 opt_state->edges[opt_state->n_blocks + i] = &b->ef; 2091 b->et.pred = b; 2092 b->ef.pred = b; 2093 } 2094 max_stmts = 0; 2095 for (i = 0; i < n; ++i) 2096 max_stmts += slength(opt_state->blocks[i]->stmts) + 1; 2097 /* 2098 * We allocate at most 3 value numbers per statement, 2099 * so this is an upper bound on the number of valnodes 2100 * we'll need. 2101 */ 2102 opt_state->maxval = 3 * max_stmts; 2103 opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap)); 2104 opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base)); 2105 if (opt_state->vmap == NULL || opt_state->vnode_base == NULL) 2106 bpf_error(cstate, "malloc"); 2107 } 2108 2109 /* 2110 * This is only used when supporting optimizer debugging. It is 2111 * global state, so do *not* do more than one compile in parallel 2112 * and expect it to provide meaningful information. 2113 */ 2114 #ifdef BDEBUG 2115 int bids[NBIDS]; 2116 #endif 2117 2118 /* 2119 * Returns true if successful. Returns false if a branch has 2120 * an offset that is too large. If so, we have marked that 2121 * branch so that on a subsequent iteration, it will be treated 2122 * properly. 2123 */ 2124 static int 2125 convert_code_r(compiler_state_t *cstate, conv_state_t *conv_state, 2126 struct icode *ic, struct block *p) 2127 { 2128 struct bpf_insn *dst; 2129 struct slist *src; 2130 u_int slen; 2131 u_int off; 2132 u_int extrajmps; /* number of extra jumps inserted */ 2133 struct slist **offset = NULL; 2134 2135 if (p == 0 || isMarked(ic, p)) 2136 return (1); 2137 Mark(ic, p); 2138 2139 if (convert_code_r(cstate, conv_state, ic, JF(p)) == 0) 2140 return (0); 2141 if (convert_code_r(cstate, conv_state, ic, JT(p)) == 0) 2142 return (0); 2143 2144 slen = slength(p->stmts); 2145 dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf); 2146 /* inflate length by any extra jumps */ 2147 2148 p->offset = (int)(dst - conv_state->fstart); 2149 2150 /* generate offset[] for convenience */ 2151 if (slen) { 2152 offset = (struct slist **)calloc(slen, sizeof(struct slist *)); 2153 if (!offset) { 2154 bpf_error(cstate, "not enough core"); 2155 /*NOTREACHED*/ 2156 } 2157 } 2158 src = p->stmts; 2159 for (off = 0; off < slen && src; off++) { 2160 #if 0 2161 printf("off=%d src=%x\n", off, src); 2162 #endif 2163 offset[off] = src; 2164 src = src->next; 2165 } 2166 2167 off = 0; 2168 for (src = p->stmts; src; src = src->next) { 2169 if (src->s.code == NOP) 2170 continue; 2171 dst->code = (u_short)src->s.code; 2172 dst->k = src->s.k; 2173 2174 /* fill block-local relative jump */ 2175 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) { 2176 #if 0 2177 if (src->s.jt || src->s.jf) { 2178 bpf_error(cstate, "illegal jmp destination"); 2179 /*NOTREACHED*/ 2180 } 2181 #endif 2182 goto filled; 2183 } 2184 if (off == slen - 2) /*???*/ 2185 goto filled; 2186 2187 { 2188 u_int i; 2189 int jt, jf; 2190 const char ljerr[] = "%s for block-local relative jump: off=%d"; 2191 2192 #if 0 2193 printf("code=%x off=%d %x %x\n", src->s.code, 2194 off, src->s.jt, src->s.jf); 2195 #endif 2196 2197 if (!src->s.jt || !src->s.jf) { 2198 bpf_error(cstate, ljerr, "no jmp destination", off); 2199 /*NOTREACHED*/ 2200 } 2201 2202 jt = jf = 0; 2203 for (i = 0; i < slen; i++) { 2204 if (offset[i] == src->s.jt) { 2205 if (jt) { 2206 bpf_error(cstate, ljerr, "multiple matches", off); 2207 /*NOTREACHED*/ 2208 } 2209 2210 if (i - off - 1 >= 256) { 2211 bpf_error(cstate, ljerr, "out-of-range jump", off); 2212 /*NOTREACHED*/ 2213 } 2214 dst->jt = (u_char)(i - off - 1); 2215 jt++; 2216 } 2217 if (offset[i] == src->s.jf) { 2218 if (jf) { 2219 bpf_error(cstate, ljerr, "multiple matches", off); 2220 /*NOTREACHED*/ 2221 } 2222 if (i - off - 1 >= 256) { 2223 bpf_error(cstate, ljerr, "out-of-range jump", off); 2224 /*NOTREACHED*/ 2225 } 2226 dst->jf = (u_char)(i - off - 1); 2227 jf++; 2228 } 2229 } 2230 if (!jt || !jf) { 2231 bpf_error(cstate, ljerr, "no destination found", off); 2232 /*NOTREACHED*/ 2233 } 2234 } 2235 filled: 2236 ++dst; 2237 ++off; 2238 } 2239 if (offset) 2240 free(offset); 2241 2242 #ifdef BDEBUG 2243 if (dst - conv_state->fstart < NBIDS) 2244 bids[dst - conv_state->fstart] = p->id + 1; 2245 #endif 2246 dst->code = (u_short)p->s.code; 2247 dst->k = p->s.k; 2248 if (JT(p)) { 2249 extrajmps = 0; 2250 off = JT(p)->offset - (p->offset + slen) - 1; 2251 if (off >= 256) { 2252 /* offset too large for branch, must add a jump */ 2253 if (p->longjt == 0) { 2254 /* mark this instruction and retry */ 2255 p->longjt++; 2256 return(0); 2257 } 2258 /* branch if T to following jump */ 2259 if (extrajmps >= 256) { 2260 bpf_error(cstate, "too many extra jumps"); 2261 /*NOTREACHED*/ 2262 } 2263 dst->jt = (u_char)extrajmps; 2264 extrajmps++; 2265 dst[extrajmps].code = BPF_JMP|BPF_JA; 2266 dst[extrajmps].k = off - extrajmps; 2267 } 2268 else 2269 dst->jt = (u_char)off; 2270 off = JF(p)->offset - (p->offset + slen) - 1; 2271 if (off >= 256) { 2272 /* offset too large for branch, must add a jump */ 2273 if (p->longjf == 0) { 2274 /* mark this instruction and retry */ 2275 p->longjf++; 2276 return(0); 2277 } 2278 /* branch if F to following jump */ 2279 /* if two jumps are inserted, F goes to second one */ 2280 if (extrajmps >= 256) { 2281 bpf_error(cstate, "too many extra jumps"); 2282 /*NOTREACHED*/ 2283 } 2284 dst->jf = (u_char)extrajmps; 2285 extrajmps++; 2286 dst[extrajmps].code = BPF_JMP|BPF_JA; 2287 dst[extrajmps].k = off - extrajmps; 2288 } 2289 else 2290 dst->jf = (u_char)off; 2291 } 2292 return (1); 2293 } 2294 2295 2296 /* 2297 * Convert flowgraph intermediate representation to the 2298 * BPF array representation. Set *lenp to the number of instructions. 2299 * 2300 * This routine does *NOT* leak the memory pointed to by fp. It *must 2301 * not* do free(fp) before returning fp; doing so would make no sense, 2302 * as the BPF array pointed to by the return value of icode_to_fcode() 2303 * must be valid - it's being returned for use in a bpf_program structure. 2304 * 2305 * If it appears that icode_to_fcode() is leaking, the problem is that 2306 * the program using pcap_compile() is failing to free the memory in 2307 * the BPF program when it's done - the leak is in the program, not in 2308 * the routine that happens to be allocating the memory. (By analogy, if 2309 * a program calls fopen() without ever calling fclose() on the FILE *, 2310 * it will leak the FILE structure; the leak is not in fopen(), it's in 2311 * the program.) Change the program to use pcap_freecode() when it's 2312 * done with the filter program. See the pcap man page. 2313 */ 2314 struct bpf_insn * 2315 icode_to_fcode(compiler_state_t *cstate, struct icode *ic, 2316 struct block *root, u_int *lenp) 2317 { 2318 u_int n; 2319 struct bpf_insn *fp; 2320 conv_state_t conv_state; 2321 2322 /* 2323 * Loop doing convert_code_r() until no branches remain 2324 * with too-large offsets. 2325 */ 2326 for (;;) { 2327 unMarkAll(ic); 2328 n = *lenp = count_stmts(ic, root); 2329 2330 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n); 2331 if (fp == NULL) 2332 bpf_error(cstate, "malloc"); 2333 memset((char *)fp, 0, sizeof(*fp) * n); 2334 conv_state.fstart = fp; 2335 conv_state.ftail = fp + n; 2336 2337 unMarkAll(ic); 2338 if (convert_code_r(cstate, &conv_state, ic, root)) 2339 break; 2340 free(fp); 2341 } 2342 2343 return fp; 2344 } 2345 2346 /* 2347 * Make a copy of a BPF program and put it in the "fcode" member of 2348 * a "pcap_t". 2349 * 2350 * If we fail to allocate memory for the copy, fill in the "errbuf" 2351 * member of the "pcap_t" with an error message, and return -1; 2352 * otherwise, return 0. 2353 */ 2354 int 2355 install_bpf_program(pcap_t *p, struct bpf_program *fp) 2356 { 2357 size_t prog_size; 2358 2359 /* 2360 * Validate the program. 2361 */ 2362 if (!bpf_validate(fp->bf_insns, fp->bf_len)) { 2363 pcap_snprintf(p->errbuf, sizeof(p->errbuf), 2364 "BPF program is not valid"); 2365 return (-1); 2366 } 2367 2368 /* 2369 * Free up any already installed program. 2370 */ 2371 pcap_freecode(&p->fcode); 2372 2373 prog_size = sizeof(*fp->bf_insns) * fp->bf_len; 2374 p->fcode.bf_len = fp->bf_len; 2375 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size); 2376 if (p->fcode.bf_insns == NULL) { 2377 pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf), 2378 errno, "malloc"); 2379 return (-1); 2380 } 2381 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size); 2382 return (0); 2383 } 2384 2385 #ifdef BDEBUG 2386 static void 2387 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog, 2388 FILE *out) 2389 { 2390 int icount, noffset; 2391 int i; 2392 2393 if (block == NULL || isMarked(ic, block)) 2394 return; 2395 Mark(ic, block); 2396 2397 icount = slength(block->stmts) + 1 + block->longjt + block->longjf; 2398 noffset = min(block->offset + icount, (int)prog->bf_len); 2399 2400 fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id); 2401 for (i = block->offset; i < noffset; i++) { 2402 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i)); 2403 } 2404 fprintf(out, "\" tooltip=\""); 2405 for (i = 0; i < BPF_MEMWORDS; i++) 2406 if (block->val[i] != VAL_UNKNOWN) 2407 fprintf(out, "val[%d]=%d ", i, block->val[i]); 2408 fprintf(out, "val[A]=%d ", block->val[A_ATOM]); 2409 fprintf(out, "val[X]=%d", block->val[X_ATOM]); 2410 fprintf(out, "\""); 2411 if (JT(block) == NULL) 2412 fprintf(out, ", peripheries=2"); 2413 fprintf(out, "];\n"); 2414 2415 dot_dump_node(ic, JT(block), prog, out); 2416 dot_dump_node(ic, JF(block), prog, out); 2417 } 2418 2419 static void 2420 dot_dump_edge(struct icode *ic, struct block *block, FILE *out) 2421 { 2422 if (block == NULL || isMarked(ic, block)) 2423 return; 2424 Mark(ic, block); 2425 2426 if (JT(block)) { 2427 fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n", 2428 block->id, JT(block)->id); 2429 fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n", 2430 block->id, JF(block)->id); 2431 } 2432 dot_dump_edge(ic, JT(block), out); 2433 dot_dump_edge(ic, JF(block), out); 2434 } 2435 2436 /* Output the block CFG using graphviz/DOT language 2437 * In the CFG, block's code, value index for each registers at EXIT, 2438 * and the jump relationship is show. 2439 * 2440 * example DOT for BPF `ip src host 1.1.1.1' is: 2441 digraph BPF { 2442 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"]; 2443 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"]; 2444 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2]; 2445 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2]; 2446 "block0":se -> "block1":n [label="T"]; 2447 "block0":sw -> "block3":n [label="F"]; 2448 "block1":se -> "block2":n [label="T"]; 2449 "block1":sw -> "block3":n [label="F"]; 2450 } 2451 * 2452 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot 2453 * and run `dot -Tpng -O bpf.dot' to draw the graph. 2454 */ 2455 static void 2456 dot_dump(compiler_state_t *cstate, struct icode *ic) 2457 { 2458 struct bpf_program f; 2459 FILE *out = stdout; 2460 2461 memset(bids, 0, sizeof bids); 2462 f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len); 2463 2464 fprintf(out, "digraph BPF {\n"); 2465 unMarkAll(ic); 2466 dot_dump_node(ic, ic->root, &f, out); 2467 unMarkAll(ic); 2468 dot_dump_edge(ic, ic->root, out); 2469 fprintf(out, "}\n"); 2470 2471 free((char *)f.bf_insns); 2472 } 2473 2474 static void 2475 plain_dump(compiler_state_t *cstate, struct icode *ic) 2476 { 2477 struct bpf_program f; 2478 2479 memset(bids, 0, sizeof bids); 2480 f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len); 2481 bpf_dump(&f, 1); 2482 putchar('\n'); 2483 free((char *)f.bf_insns); 2484 } 2485 2486 static void 2487 opt_dump(compiler_state_t *cstate, struct icode *ic) 2488 { 2489 /* 2490 * If the CFG, in DOT format, is requested, output it rather than 2491 * the code that would be generated from that graph. 2492 */ 2493 if (pcap_print_dot_graph) 2494 dot_dump(cstate, ic); 2495 else 2496 plain_dump(cstate, ic); 2497 } 2498 #endif 2499