xref: /freebsd/contrib/libpcap/gencode.c (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  *
22  * $FreeBSD$
23  */
24 #ifndef lint
25 static const char rcsid[] _U_ =
26     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.221.2.24 2005/06/20 21:52:53 guy Exp $ (LBL)";
27 #endif
28 
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32 
33 #ifdef WIN32
34 #include <pcap-stdinc.h>
35 #else /* WIN32 */
36 #include <sys/types.h>
37 #include <sys/socket.h>
38 #endif /* WIN32 */
39 
40 /*
41  * XXX - why was this included even on UNIX?
42  */
43 #ifdef __MINGW32__
44 #include "IP6_misc.h"
45 #endif
46 
47 #ifndef WIN32
48 
49 #ifdef __NetBSD__
50 #include <sys/param.h>
51 #endif
52 
53 #include <netinet/in.h>
54 
55 #endif /* WIN32 */
56 
57 #include <stdlib.h>
58 #include <string.h>
59 #include <memory.h>
60 #include <setjmp.h>
61 #include <stdarg.h>
62 
63 #ifdef MSDOS
64 #include "pcap-dos.h"
65 #endif
66 
67 #include "pcap-int.h"
68 
69 #include "ethertype.h"
70 #include "nlpid.h"
71 #include "llc.h"
72 #include "gencode.h"
73 #include "atmuni31.h"
74 #include "sunatmpos.h"
75 #include "ppp.h"
76 #include "sll.h"
77 #include "arcnet.h"
78 #include "pf.h"
79 #ifndef offsetof
80 #define offsetof(s, e) ((size_t)&((s *)0)->e)
81 #endif
82 #ifdef INET6
83 #ifndef WIN32
84 #include <netdb.h>	/* for "struct addrinfo" */
85 #endif /* WIN32 */
86 #endif /*INET6*/
87 #include <pcap-namedb.h>
88 
89 #undef ETHERMTU
90 #define ETHERMTU	1500
91 
92 #ifndef IPPROTO_SCTP
93 #define IPPROTO_SCTP 132
94 #endif
95 
96 #ifdef HAVE_OS_PROTO_H
97 #include "os-proto.h"
98 #endif
99 
100 #define JMP(c) ((c)|BPF_JMP|BPF_K)
101 
102 /* Locals */
103 static jmp_buf top_ctx;
104 static pcap_t *bpf_pcap;
105 
106 /* Hack for updating VLAN, MPLS offsets. */
107 static u_int	orig_linktype = -1U, orig_nl = -1U;
108 
109 /* XXX */
110 #ifdef PCAP_FDDIPAD
111 static int	pcap_fddipad;
112 #endif
113 
114 /* VARARGS */
115 void
116 bpf_error(const char *fmt, ...)
117 {
118 	va_list ap;
119 
120 	va_start(ap, fmt);
121 	if (bpf_pcap != NULL)
122 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
123 		    fmt, ap);
124 	va_end(ap);
125 	longjmp(top_ctx, 1);
126 	/* NOTREACHED */
127 }
128 
129 static void init_linktype(pcap_t *);
130 
131 static int alloc_reg(void);
132 static void free_reg(int);
133 
134 static struct block *root;
135 
136 /*
137  * Value passed to gen_load_a() to indicate what the offset argument
138  * is relative to.
139  */
140 enum e_offrel {
141 	OR_PACKET,	/* relative to the beginning of the packet */
142 	OR_LINK,	/* relative to the link-layer header */
143 	OR_NET,		/* relative to the network-layer header */
144 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
145 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
146 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
147 };
148 
149 /*
150  * We divy out chunks of memory rather than call malloc each time so
151  * we don't have to worry about leaking memory.  It's probably
152  * not a big deal if all this memory was wasted but if this ever
153  * goes into a library that would probably not be a good idea.
154  *
155  * XXX - this *is* in a library....
156  */
157 #define NCHUNKS 16
158 #define CHUNK0SIZE 1024
159 struct chunk {
160 	u_int n_left;
161 	void *m;
162 };
163 
164 static struct chunk chunks[NCHUNKS];
165 static int cur_chunk;
166 
167 static void *newchunk(u_int);
168 static void freechunks(void);
169 static inline struct block *new_block(int);
170 static inline struct slist *new_stmt(int);
171 static struct block *gen_retblk(int);
172 static inline void syntax(void);
173 
174 static void backpatch(struct block *, struct block *);
175 static void merge(struct block *, struct block *);
176 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
177 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
178 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
179 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
180 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
181 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
182     bpf_u_int32);
183 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
184 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
185     bpf_u_int32, bpf_u_int32, int, bpf_int32);
186 static struct slist *gen_load_llrel(u_int, u_int);
187 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
188 static struct slist *gen_loadx_iphdrlen(void);
189 static struct block *gen_uncond(int);
190 static inline struct block *gen_true(void);
191 static inline struct block *gen_false(void);
192 static struct block *gen_ether_linktype(int);
193 static struct block *gen_linux_sll_linktype(int);
194 static void insert_radiotap_load_llprefixlen(struct block *);
195 static void insert_load_llprefixlen(struct block *);
196 static struct slist *gen_llprefixlen(void);
197 static struct block *gen_linktype(int);
198 static struct block *gen_snap(bpf_u_int32, bpf_u_int32, u_int);
199 static struct block *gen_llc_linktype(int);
200 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
201 #ifdef INET6
202 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
203 #endif
204 static struct block *gen_ahostop(const u_char *, int);
205 static struct block *gen_ehostop(const u_char *, int);
206 static struct block *gen_fhostop(const u_char *, int);
207 static struct block *gen_thostop(const u_char *, int);
208 static struct block *gen_wlanhostop(const u_char *, int);
209 static struct block *gen_ipfchostop(const u_char *, int);
210 static struct block *gen_dnhostop(bpf_u_int32, int);
211 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int);
212 #ifdef INET6
213 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int);
214 #endif
215 #ifndef INET6
216 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
217 #endif
218 static struct block *gen_ipfrag(void);
219 static struct block *gen_portatom(int, bpf_int32);
220 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
221 #ifdef INET6
222 static struct block *gen_portatom6(int, bpf_int32);
223 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
224 #endif
225 struct block *gen_portop(int, int, int);
226 static struct block *gen_port(int, int, int);
227 struct block *gen_portrangeop(int, int, int, int);
228 static struct block *gen_portrange(int, int, int, int);
229 #ifdef INET6
230 struct block *gen_portop6(int, int, int);
231 static struct block *gen_port6(int, int, int);
232 struct block *gen_portrangeop6(int, int, int, int);
233 static struct block *gen_portrange6(int, int, int, int);
234 #endif
235 static int lookup_proto(const char *, int);
236 static struct block *gen_protochain(int, int, int);
237 static struct block *gen_proto(int, int, int);
238 static struct slist *xfer_to_x(struct arth *);
239 static struct slist *xfer_to_a(struct arth *);
240 static struct block *gen_mac_multicast(int);
241 static struct block *gen_len(int, int);
242 
243 static struct block *gen_msg_abbrev(int type);
244 
245 static void *
246 newchunk(n)
247 	u_int n;
248 {
249 	struct chunk *cp;
250 	int k;
251 	size_t size;
252 
253 #ifndef __NetBSD__
254 	/* XXX Round up to nearest long. */
255 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
256 #else
257 	/* XXX Round up to structure boundary. */
258 	n = ALIGN(n);
259 #endif
260 
261 	cp = &chunks[cur_chunk];
262 	if (n > cp->n_left) {
263 		++cp, k = ++cur_chunk;
264 		if (k >= NCHUNKS)
265 			bpf_error("out of memory");
266 		size = CHUNK0SIZE << k;
267 		cp->m = (void *)malloc(size);
268 		if (cp->m == NULL)
269 			bpf_error("out of memory");
270 		memset((char *)cp->m, 0, size);
271 		cp->n_left = size;
272 		if (n > size)
273 			bpf_error("out of memory");
274 	}
275 	cp->n_left -= n;
276 	return (void *)((char *)cp->m + cp->n_left);
277 }
278 
279 static void
280 freechunks()
281 {
282 	int i;
283 
284 	cur_chunk = 0;
285 	for (i = 0; i < NCHUNKS; ++i)
286 		if (chunks[i].m != NULL) {
287 			free(chunks[i].m);
288 			chunks[i].m = NULL;
289 		}
290 }
291 
292 /*
293  * A strdup whose allocations are freed after code generation is over.
294  */
295 char *
296 sdup(s)
297 	register const char *s;
298 {
299 	int n = strlen(s) + 1;
300 	char *cp = newchunk(n);
301 
302 	strlcpy(cp, s, n);
303 	return (cp);
304 }
305 
306 static inline struct block *
307 new_block(code)
308 	int code;
309 {
310 	struct block *p;
311 
312 	p = (struct block *)newchunk(sizeof(*p));
313 	p->s.code = code;
314 	p->head = p;
315 
316 	return p;
317 }
318 
319 static inline struct slist *
320 new_stmt(code)
321 	int code;
322 {
323 	struct slist *p;
324 
325 	p = (struct slist *)newchunk(sizeof(*p));
326 	p->s.code = code;
327 
328 	return p;
329 }
330 
331 static struct block *
332 gen_retblk(v)
333 	int v;
334 {
335 	struct block *b = new_block(BPF_RET|BPF_K);
336 
337 	b->s.k = v;
338 	return b;
339 }
340 
341 static inline void
342 syntax()
343 {
344 	bpf_error("syntax error in filter expression");
345 }
346 
347 static bpf_u_int32 netmask;
348 static int snaplen;
349 int no_optimize;
350 
351 int
352 pcap_compile(pcap_t *p, struct bpf_program *program,
353 	     char *buf, int optimize, bpf_u_int32 mask)
354 {
355 	extern int n_errors;
356 	int len;
357 
358 	no_optimize = 0;
359 	n_errors = 0;
360 	root = NULL;
361 	bpf_pcap = p;
362 	if (setjmp(top_ctx)) {
363 		lex_cleanup();
364 		freechunks();
365 		return (-1);
366 	}
367 
368 	netmask = mask;
369 
370 	snaplen = pcap_snapshot(p);
371 	if (snaplen == 0) {
372 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
373 			 "snaplen of 0 rejects all packets");
374 		return -1;
375 	}
376 
377 	lex_init(buf ? buf : "");
378 	init_linktype(p);
379 	(void)pcap_parse();
380 
381 	if (n_errors)
382 		syntax();
383 
384 	if (root == NULL)
385 		root = gen_retblk(snaplen);
386 
387 	if (optimize && !no_optimize) {
388 		bpf_optimize(&root);
389 		if (root == NULL ||
390 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
391 			bpf_error("expression rejects all packets");
392 	}
393 	program->bf_insns = icode_to_fcode(root, &len);
394 	program->bf_len = len;
395 
396 	lex_cleanup();
397 	freechunks();
398 	return (0);
399 }
400 
401 /*
402  * entry point for using the compiler with no pcap open
403  * pass in all the stuff that is needed explicitly instead.
404  */
405 int
406 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
407 		    struct bpf_program *program,
408 	     char *buf, int optimize, bpf_u_int32 mask)
409 {
410 	pcap_t *p;
411 	int ret;
412 
413 	p = pcap_open_dead(linktype_arg, snaplen_arg);
414 	if (p == NULL)
415 		return (-1);
416 	ret = pcap_compile(p, program, buf, optimize, mask);
417 	pcap_close(p);
418 	return (ret);
419 }
420 
421 /*
422  * Clean up a "struct bpf_program" by freeing all the memory allocated
423  * in it.
424  */
425 void
426 pcap_freecode(struct bpf_program *program)
427 {
428 	program->bf_len = 0;
429 	if (program->bf_insns != NULL) {
430 		free((char *)program->bf_insns);
431 		program->bf_insns = NULL;
432 	}
433 }
434 
435 /*
436  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
437  * which of the jt and jf fields has been resolved and which is a pointer
438  * back to another unresolved block (or nil).  At least one of the fields
439  * in each block is already resolved.
440  */
441 static void
442 backpatch(list, target)
443 	struct block *list, *target;
444 {
445 	struct block *next;
446 
447 	while (list) {
448 		if (!list->sense) {
449 			next = JT(list);
450 			JT(list) = target;
451 		} else {
452 			next = JF(list);
453 			JF(list) = target;
454 		}
455 		list = next;
456 	}
457 }
458 
459 /*
460  * Merge the lists in b0 and b1, using the 'sense' field to indicate
461  * which of jt and jf is the link.
462  */
463 static void
464 merge(b0, b1)
465 	struct block *b0, *b1;
466 {
467 	register struct block **p = &b0;
468 
469 	/* Find end of list. */
470 	while (*p)
471 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
472 
473 	/* Concatenate the lists. */
474 	*p = b1;
475 }
476 
477 void
478 finish_parse(p)
479 	struct block *p;
480 {
481 	backpatch(p, gen_retblk(snaplen));
482 	p->sense = !p->sense;
483 	backpatch(p, gen_retblk(0));
484 	root = p->head;
485 
486 	/*
487 	 * Insert before the statements of the first (root) block any
488 	 * statements needed to load the lengths of any variable-length
489 	 * headers into registers.
490 	 *
491 	 * XXX - a fancier strategy would be to insert those before the
492 	 * statements of all blocks that use those lengths and that
493 	 * have no predecessors that use them, so that we only compute
494 	 * the lengths if we need them.  There might be even better
495 	 * approaches than that.  However, as we're currently only
496 	 * handling variable-length radiotap headers, and as all
497 	 * filtering expressions other than raw link[M:N] tests
498 	 * require the length of that header, doing more for that
499 	 * header length isn't really worth the effort.
500 	 */
501 	insert_load_llprefixlen(root);
502 }
503 
504 void
505 gen_and(b0, b1)
506 	struct block *b0, *b1;
507 {
508 	backpatch(b0, b1->head);
509 	b0->sense = !b0->sense;
510 	b1->sense = !b1->sense;
511 	merge(b1, b0);
512 	b1->sense = !b1->sense;
513 	b1->head = b0->head;
514 }
515 
516 void
517 gen_or(b0, b1)
518 	struct block *b0, *b1;
519 {
520 	b0->sense = !b0->sense;
521 	backpatch(b0, b1->head);
522 	b0->sense = !b0->sense;
523 	merge(b1, b0);
524 	b1->head = b0->head;
525 }
526 
527 void
528 gen_not(b)
529 	struct block *b;
530 {
531 	b->sense = !b->sense;
532 }
533 
534 static struct block *
535 gen_cmp(offrel, offset, size, v)
536 	enum e_offrel offrel;
537 	u_int offset, size;
538 	bpf_int32 v;
539 {
540 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
541 }
542 
543 static struct block *
544 gen_cmp_gt(offrel, offset, size, v)
545 	enum e_offrel offrel;
546 	u_int offset, size;
547 	bpf_int32 v;
548 {
549 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
550 }
551 
552 static struct block *
553 gen_cmp_ge(offrel, offset, size, v)
554 	enum e_offrel offrel;
555 	u_int offset, size;
556 	bpf_int32 v;
557 {
558 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
559 }
560 
561 static struct block *
562 gen_cmp_lt(offrel, offset, size, v)
563 	enum e_offrel offrel;
564 	u_int offset, size;
565 	bpf_int32 v;
566 {
567 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
568 }
569 
570 static struct block *
571 gen_cmp_le(offrel, offset, size, v)
572 	enum e_offrel offrel;
573 	u_int offset, size;
574 	bpf_int32 v;
575 {
576 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
577 }
578 
579 static struct block *
580 gen_mcmp(offrel, offset, size, v, mask)
581 	enum e_offrel offrel;
582 	u_int offset, size;
583 	bpf_int32 v;
584 	bpf_u_int32 mask;
585 {
586 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
587 }
588 
589 static struct block *
590 gen_bcmp(offrel, offset, size, v)
591 	enum e_offrel offrel;
592 	register u_int offset, size;
593 	register const u_char *v;
594 {
595 	register struct block *b, *tmp;
596 
597 	b = NULL;
598 	while (size >= 4) {
599 		register const u_char *p = &v[size - 4];
600 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
601 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
602 
603 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
604 		if (b != NULL)
605 			gen_and(b, tmp);
606 		b = tmp;
607 		size -= 4;
608 	}
609 	while (size >= 2) {
610 		register const u_char *p = &v[size - 2];
611 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
612 
613 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
614 		if (b != NULL)
615 			gen_and(b, tmp);
616 		b = tmp;
617 		size -= 2;
618 	}
619 	if (size > 0) {
620 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
621 		if (b != NULL)
622 			gen_and(b, tmp);
623 		b = tmp;
624 	}
625 	return b;
626 }
627 
628 /*
629  * AND the field of size "size" at offset "offset" relative to the header
630  * specified by "offrel" with "mask", and compare it with the value "v"
631  * with the test specified by "jtype"; if "reverse" is true, the test
632  * should test the opposite of "jtype".
633  */
634 static struct block *
635 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
636 	enum e_offrel offrel;
637 	bpf_int32 v;
638 	bpf_u_int32 offset, size, mask, jtype;
639 	int reverse;
640 {
641 	struct slist *s, *s2;
642 	struct block *b;
643 
644 	s = gen_load_a(offrel, offset, size);
645 
646 	if (mask != 0xffffffff) {
647 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
648 		s2->s.k = mask;
649 		sappend(s, s2);
650 	}
651 
652 	b = new_block(JMP(jtype));
653 	b->stmts = s;
654 	b->s.k = v;
655 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
656 		gen_not(b);
657 	return b;
658 }
659 
660 /*
661  * Various code constructs need to know the layout of the data link
662  * layer.  These variables give the necessary offsets from the beginning
663  * of the packet data.
664  *
665  * If the link layer has variable_length headers, the offsets are offsets
666  * from the end of the link-link-layer header, and "reg_ll_size" is
667  * the register number for a register containing the length of the
668  * link-layer header.  Otherwise, "reg_ll_size" is -1.
669  */
670 static int reg_ll_size;
671 
672 /*
673  * This is the offset of the beginning of the link-layer header.
674  * It's usually 0, except for 802.11 with a fixed-length radio header.
675  */
676 static u_int off_ll;
677 
678 /*
679  * This is the offset of the beginning of the MAC-layer header.
680  * It's usually 0, except for ATM LANE.
681  */
682 static u_int off_mac;
683 
684 /*
685  * "off_linktype" is the offset to information in the link-layer header
686  * giving the packet type.
687  *
688  * For Ethernet, it's the offset of the Ethernet type field.
689  *
690  * For link-layer types that always use 802.2 headers, it's the
691  * offset of the LLC header.
692  *
693  * For PPP, it's the offset of the PPP type field.
694  *
695  * For Cisco HDLC, it's the offset of the CHDLC type field.
696  *
697  * For BSD loopback, it's the offset of the AF_ value.
698  *
699  * For Linux cooked sockets, it's the offset of the type field.
700  *
701  * It's set to -1 for no encapsulation, in which case, IP is assumed.
702  */
703 static u_int off_linktype;
704 
705 /*
706  * TRUE if the link layer includes an ATM pseudo-header.
707  */
708 static int is_atm = 0;
709 
710 /*
711  * TRUE if "lane" appeared in the filter; it causes us to generate
712  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
713  */
714 static int is_lane = 0;
715 
716 /*
717  * These are offsets for the ATM pseudo-header.
718  */
719 static u_int off_vpi;
720 static u_int off_vci;
721 static u_int off_proto;
722 
723 /*
724  * These are offsets for the MTP3 fields.
725  */
726 static u_int off_sio;
727 static u_int off_opc;
728 static u_int off_dpc;
729 static u_int off_sls;
730 
731 /*
732  * This is the offset of the first byte after the ATM pseudo_header,
733  * or -1 if there is no ATM pseudo-header.
734  */
735 static u_int off_payload;
736 
737 /*
738  * These are offsets to the beginning of the network-layer header.
739  *
740  * If the link layer never uses 802.2 LLC:
741  *
742  *	"off_nl" and "off_nl_nosnap" are the same.
743  *
744  * If the link layer always uses 802.2 LLC:
745  *
746  *	"off_nl" is the offset if there's a SNAP header following
747  *	the 802.2 header;
748  *
749  *	"off_nl_nosnap" is the offset if there's no SNAP header.
750  *
751  * If the link layer is Ethernet:
752  *
753  *	"off_nl" is the offset if the packet is an Ethernet II packet
754  *	(we assume no 802.3+802.2+SNAP);
755  *
756  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
757  *	with an 802.2 header following it.
758  */
759 static u_int off_nl;
760 static u_int off_nl_nosnap;
761 
762 static int linktype;
763 
764 static void
765 init_linktype(p)
766 	pcap_t *p;
767 {
768 	linktype = pcap_datalink(p);
769 #ifdef PCAP_FDDIPAD
770 	pcap_fddipad = p->fddipad;
771 #endif
772 
773 	/*
774 	 * Assume it's not raw ATM with a pseudo-header, for now.
775 	 */
776 	off_mac = 0;
777 	is_atm = 0;
778 	is_lane = 0;
779 	off_vpi = -1;
780 	off_vci = -1;
781 	off_proto = -1;
782 	off_payload = -1;
783 
784 	off_sio = -1;
785 	off_opc = -1;
786 	off_dpc = -1;
787 	off_sls = -1;
788 
789 	/*
790 	 * Also assume it's not 802.11 with a fixed-length radio header.
791 	 */
792 	off_ll = 0;
793 
794 	orig_linktype = -1;
795 	orig_nl = -1;
796 
797 	reg_ll_size = -1;
798 
799 	switch (linktype) {
800 
801 	case DLT_ARCNET:
802 		off_linktype = 2;
803 		off_nl = 6;		/* XXX in reality, variable! */
804 		off_nl_nosnap = 6;	/* no 802.2 LLC */
805 		return;
806 
807 	case DLT_ARCNET_LINUX:
808 		off_linktype = 4;
809 		off_nl = 8;		/* XXX in reality, variable! */
810 		off_nl_nosnap = 8;	/* no 802.2 LLC */
811 		return;
812 
813 	case DLT_EN10MB:
814 		off_linktype = 12;
815 		off_nl = 14;		/* Ethernet II */
816 		off_nl_nosnap = 17;	/* 802.3+802.2 */
817 		return;
818 
819 	case DLT_SLIP:
820 		/*
821 		 * SLIP doesn't have a link level type.  The 16 byte
822 		 * header is hacked into our SLIP driver.
823 		 */
824 		off_linktype = -1;
825 		off_nl = 16;
826 		off_nl_nosnap = 16;	/* no 802.2 LLC */
827 		return;
828 
829 	case DLT_SLIP_BSDOS:
830 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
831 		off_linktype = -1;
832 		/* XXX end */
833 		off_nl = 24;
834 		off_nl_nosnap = 24;	/* no 802.2 LLC */
835 		return;
836 
837 	case DLT_NULL:
838 	case DLT_LOOP:
839 		off_linktype = 0;
840 		off_nl = 4;
841 		off_nl_nosnap = 4;	/* no 802.2 LLC */
842 		return;
843 
844 	case DLT_ENC:
845 		off_linktype = 0;
846 		off_nl = 12;
847 		off_nl_nosnap = 12;	/* no 802.2 LLC */
848 		return;
849 
850 	case DLT_PPP:
851 	case DLT_PPP_PPPD:
852 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
853 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
854 		off_linktype = 2;
855 		off_nl = 4;
856 		off_nl_nosnap = 4;	/* no 802.2 LLC */
857 		return;
858 
859 	case DLT_PPP_ETHER:
860 		/*
861 		 * This does no include the Ethernet header, and
862 		 * only covers session state.
863 		 */
864 		off_linktype = 6;
865 		off_nl = 8;
866 		off_nl_nosnap = 8;	/* no 802.2 LLC */
867 		return;
868 
869 	case DLT_PPP_BSDOS:
870 		off_linktype = 5;
871 		off_nl = 24;
872 		off_nl_nosnap = 24;	/* no 802.2 LLC */
873 		return;
874 
875 	case DLT_FDDI:
876 		/*
877 		 * FDDI doesn't really have a link-level type field.
878 		 * We set "off_linktype" to the offset of the LLC header.
879 		 *
880 		 * To check for Ethernet types, we assume that SSAP = SNAP
881 		 * is being used and pick out the encapsulated Ethernet type.
882 		 * XXX - should we generate code to check for SNAP?
883 		 */
884 		off_linktype = 13;
885 #ifdef PCAP_FDDIPAD
886 		off_linktype += pcap_fddipad;
887 #endif
888 		off_nl = 21;		/* FDDI+802.2+SNAP */
889 		off_nl_nosnap = 16;	/* FDDI+802.2 */
890 #ifdef PCAP_FDDIPAD
891 		off_nl += pcap_fddipad;
892 		off_nl_nosnap += pcap_fddipad;
893 #endif
894 		return;
895 
896 	case DLT_IEEE802:
897 		/*
898 		 * Token Ring doesn't really have a link-level type field.
899 		 * We set "off_linktype" to the offset of the LLC header.
900 		 *
901 		 * To check for Ethernet types, we assume that SSAP = SNAP
902 		 * is being used and pick out the encapsulated Ethernet type.
903 		 * XXX - should we generate code to check for SNAP?
904 		 *
905 		 * XXX - the header is actually variable-length.
906 		 * Some various Linux patched versions gave 38
907 		 * as "off_linktype" and 40 as "off_nl"; however,
908 		 * if a token ring packet has *no* routing
909 		 * information, i.e. is not source-routed, the correct
910 		 * values are 20 and 22, as they are in the vanilla code.
911 		 *
912 		 * A packet is source-routed iff the uppermost bit
913 		 * of the first byte of the source address, at an
914 		 * offset of 8, has the uppermost bit set.  If the
915 		 * packet is source-routed, the total number of bytes
916 		 * of routing information is 2 plus bits 0x1F00 of
917 		 * the 16-bit value at an offset of 14 (shifted right
918 		 * 8 - figure out which byte that is).
919 		 */
920 		off_linktype = 14;
921 		off_nl = 22;		/* Token Ring+802.2+SNAP */
922 		off_nl_nosnap = 17;	/* Token Ring+802.2 */
923 		return;
924 
925 	case DLT_IEEE802_11:
926 		/*
927 		 * 802.11 doesn't really have a link-level type field.
928 		 * We set "off_linktype" to the offset of the LLC header.
929 		 *
930 		 * To check for Ethernet types, we assume that SSAP = SNAP
931 		 * is being used and pick out the encapsulated Ethernet type.
932 		 * XXX - should we generate code to check for SNAP?
933 		 *
934 		 * XXX - the header is actually variable-length.  We
935 		 * assume a 24-byte link-layer header, as appears in
936 		 * data frames in networks with no bridges.  If the
937 		 * fromds and tods 802.11 header bits are both set,
938 		 * it's actually supposed to be 30 bytes.
939 		 */
940 		off_linktype = 24;
941 		off_nl = 32;		/* 802.11+802.2+SNAP */
942 		off_nl_nosnap = 27;	/* 802.11+802.2 */
943 		return;
944 
945 	case DLT_PRISM_HEADER:
946 		/*
947 		 * Same as 802.11, but with an additional header before
948 		 * the 802.11 header, containing a bunch of additional
949 		 * information including radio-level information.
950 		 *
951 		 * The header is 144 bytes long.
952 		 *
953 		 * XXX - same variable-length header problem; at least
954 		 * the Prism header is fixed-length.
955 		 */
956 		off_ll = 144;
957 		off_linktype = 144+24;
958 		off_nl = 144+32;	/* Prism+802.11+802.2+SNAP */
959 		off_nl_nosnap = 144+27;	/* Prism+802.11+802.2 */
960 		return;
961 
962 	case DLT_IEEE802_11_RADIO_AVS:
963 		/*
964 		 * Same as 802.11, but with an additional header before
965 		 * the 802.11 header, containing a bunch of additional
966 		 * information including radio-level information.
967 		 *
968 		 * The header is 64 bytes long, at least in its
969 		 * current incarnation.
970 		 *
971 		 * XXX - same variable-length header problem, only
972 		 * more so; this header is also variable-length,
973 		 * with the length being the 32-bit big-endian
974 		 * number at an offset of 4 from the beginning
975 		 * of the radio header.
976 		 */
977 		off_ll = 64;
978 		off_linktype = 64+24;
979 		off_nl = 64+32;		/* Radio+802.11+802.2+SNAP */
980 		off_nl_nosnap = 64+27;	/* Radio+802.11+802.2 */
981 		return;
982 
983 	case DLT_IEEE802_11_RADIO:
984 		/*
985 		 * Same as 802.11, but with an additional header before
986 		 * the 802.11 header, containing a bunch of additional
987 		 * information including radio-level information.
988 		 *
989 		 * The radiotap header is variable length, and we
990 		 * generate code to compute its length and store it
991 		 * in a register.  These offsets are relative to the
992 		 * beginning of the 802.11 header.
993 		 */
994 		off_linktype = 24;
995 		off_nl = 32;		/* 802.11+802.2+SNAP */
996 		off_nl_nosnap = 27;	/* 802.11+802.2 */
997 		return;
998 
999 	case DLT_ATM_RFC1483:
1000 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1001 		/*
1002 		 * assume routed, non-ISO PDUs
1003 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1004 		 *
1005 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1006 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1007 		 * latter would presumably be treated the way PPPoE
1008 		 * should be, so you can do "pppoe and udp port 2049"
1009 		 * or "pppoa and tcp port 80" and have it check for
1010 		 * PPPo{A,E} and a PPP protocol of IP and....
1011 		 */
1012 		off_linktype = 0;
1013 		off_nl = 8;		/* 802.2+SNAP */
1014 		off_nl_nosnap = 3;	/* 802.2 */
1015 		return;
1016 
1017 	case DLT_SUNATM:
1018 		/*
1019 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1020 		 * pseudo-header.
1021 		 */
1022 		is_atm = 1;
1023 		off_vpi = SUNATM_VPI_POS;
1024 		off_vci = SUNATM_VCI_POS;
1025 		off_proto = PROTO_POS;
1026 		off_mac = -1;	/* LLC-encapsulated, so no MAC-layer header */
1027 		off_payload = SUNATM_PKT_BEGIN_POS;
1028 		off_linktype = off_payload;
1029 		off_nl = off_payload+8;		/* 802.2+SNAP */
1030 		off_nl_nosnap = off_payload+3;	/* 802.2 */
1031 		return;
1032 
1033 	case DLT_RAW:
1034 		off_linktype = -1;
1035 		off_nl = 0;
1036 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1037 		return;
1038 
1039 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1040 		off_linktype = 14;
1041 		off_nl = 16;
1042 		off_nl_nosnap = 16;	/* no 802.2 LLC */
1043 		return;
1044 
1045 	case DLT_LTALK:
1046 		/*
1047 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1048 		 * but really it just indicates whether there is a "short" or
1049 		 * "long" DDP packet following.
1050 		 */
1051 		off_linktype = -1;
1052 		off_nl = 0;
1053 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1054 		return;
1055 
1056 	case DLT_IP_OVER_FC:
1057 		/*
1058 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1059 		 * link-level type field.  We set "off_linktype" to the
1060 		 * offset of the LLC header.
1061 		 *
1062 		 * To check for Ethernet types, we assume that SSAP = SNAP
1063 		 * is being used and pick out the encapsulated Ethernet type.
1064 		 * XXX - should we generate code to check for SNAP? RFC
1065 		 * 2625 says SNAP should be used.
1066 		 */
1067 		off_linktype = 16;
1068 		off_nl = 24;		/* IPFC+802.2+SNAP */
1069 		off_nl_nosnap = 19;	/* IPFC+802.2 */
1070 		return;
1071 
1072 	case DLT_FRELAY:
1073 		/*
1074 		 * XXX - we should set this to handle SNAP-encapsulated
1075 		 * frames (NLPID of 0x80).
1076 		 */
1077 		off_linktype = -1;
1078 		off_nl = 0;
1079 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1080 		return;
1081 
1082 	case DLT_APPLE_IP_OVER_IEEE1394:
1083 		off_linktype = 16;
1084 		off_nl = 18;
1085 		off_nl_nosnap = 18;	/* no 802.2 LLC */
1086 		return;
1087 
1088 	case DLT_LINUX_IRDA:
1089 		/*
1090 		 * Currently, only raw "link[N:M]" filtering is supported.
1091 		 */
1092 		off_linktype = -1;
1093 		off_nl = -1;
1094 		off_nl_nosnap = -1;
1095 		return;
1096 
1097 	case DLT_DOCSIS:
1098 		/*
1099 		 * Currently, only raw "link[N:M]" filtering is supported.
1100 		 */
1101 		off_linktype = -1;
1102 		off_nl = -1;
1103 		off_nl_nosnap = -1;
1104 		return;
1105 
1106 	case DLT_SYMANTEC_FIREWALL:
1107 		off_linktype = 6;
1108 		off_nl = 44;		/* Ethernet II */
1109 		off_nl_nosnap = 44;	/* XXX - what does it do with 802.3 packets? */
1110 		return;
1111 
1112 	case DLT_PFLOG:
1113 		off_linktype = 0;
1114 		/* XXX read this from pf.h? */
1115 		off_nl = PFLOG_HDRLEN;
1116 		off_nl_nosnap = PFLOG_HDRLEN;	/* no 802.2 LLC */
1117 		return;
1118 
1119         case DLT_JUNIPER_MLFR:
1120         case DLT_JUNIPER_MLPPP:
1121                 off_linktype = 4;
1122 		off_nl = 4;
1123 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1124                 return;
1125 
1126 	case DLT_JUNIPER_ATM1:
1127 		off_linktype = 4; /* in reality variable between 4-8 */
1128 		off_nl = 4;
1129 		off_nl_nosnap = 14;
1130 		return;
1131 
1132 	case DLT_JUNIPER_ATM2:
1133 		off_linktype = 8; /* in reality variable between 8-12 */
1134 		off_nl = 8;
1135 		off_nl_nosnap = 18;
1136 		return;
1137 
1138 		/* frames captured on a Juniper PPPoE service PIC
1139 		 * contain raw ethernet frames */
1140 	case DLT_JUNIPER_PPPOE:
1141 		off_linktype = 16;
1142 		off_nl = 18;		/* Ethernet II */
1143 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1144 		return;
1145 
1146 	case DLT_JUNIPER_PPPOE_ATM:
1147 		off_linktype = 4;
1148 		off_nl = 6;
1149 		off_nl_nosnap = -1;	 /* no 802.2 LLC */
1150 		return;
1151 
1152 	case DLT_JUNIPER_GGSN:
1153 		off_linktype = 6;
1154 		off_nl = 12;
1155 		off_nl_nosnap = -1;	 /* no 802.2 LLC */
1156 		return;
1157 
1158 	case DLT_JUNIPER_ES:
1159 		off_linktype = 6;
1160 		off_nl = -1;		/* not really a network layer but raw IP adresses */
1161 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1162 		return;
1163 
1164 	case DLT_JUNIPER_MONITOR:
1165 		off_linktype = 12;
1166 		off_nl = 12;		/* raw IP/IP6 header */
1167 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1168 		return;
1169 
1170 	case DLT_JUNIPER_SERVICES:
1171 		off_linktype = 12;
1172 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1173 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1174 		return;
1175 
1176 	case DLT_MTP2:
1177 		off_sio = 3;
1178 		off_opc = 4;
1179 		off_dpc = 4;
1180 		off_sls = 7;
1181 		off_linktype = -1;
1182 		off_nl = -1;
1183 		off_nl_nosnap = -1;
1184 		return;
1185 
1186 #ifdef DLT_PFSYNC
1187 	case DLT_PFSYNC:
1188 		off_linktype = -1;
1189 		off_nl = 4;
1190 		off_nl_nosnap = 4;
1191 		return;
1192 #endif
1193 
1194 	case DLT_LINUX_LAPD:
1195 		/*
1196 		 * Currently, only raw "link[N:M]" filtering is supported.
1197 		 */
1198 		off_linktype = -1;
1199 		off_nl = -1;
1200 		off_nl_nosnap = -1;
1201 		return;
1202 	}
1203 	bpf_error("unknown data link type %d", linktype);
1204 	/* NOTREACHED */
1205 }
1206 
1207 /*
1208  * Load a value relative to the beginning of the link-layer header.
1209  * The link-layer header doesn't necessarily begin at the beginning
1210  * of the packet data; there might be a variable-length prefix containing
1211  * radio information.
1212  */
1213 static struct slist *
1214 gen_load_llrel(offset, size)
1215 	u_int offset, size;
1216 {
1217 	struct slist *s, *s2;
1218 
1219 	s = gen_llprefixlen();
1220 
1221 	/*
1222 	 * If "s" is non-null, it has code to arrange that the X register
1223 	 * contains the length of the prefix preceding the link-layer
1224 	 * header.
1225 	 */
1226 	if (s != NULL) {
1227 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1228 		s2->s.k = offset;
1229 		sappend(s, s2);
1230 	} else {
1231 		s = new_stmt(BPF_LD|BPF_ABS|size);
1232 		s->s.k = offset;
1233 	}
1234 	return s;
1235 }
1236 
1237 /*
1238  * Load a value relative to the beginning of the specified header.
1239  */
1240 static struct slist *
1241 gen_load_a(offrel, offset, size)
1242 	enum e_offrel offrel;
1243 	u_int offset, size;
1244 {
1245 	struct slist *s, *s2;
1246 
1247 	switch (offrel) {
1248 
1249 	case OR_PACKET:
1250 		s = gen_load_llrel(offset, size);
1251 		break;
1252 
1253 	case OR_LINK:
1254 		s = gen_load_llrel(off_ll + offset, size);
1255 		break;
1256 
1257 	case OR_NET:
1258 		s = gen_load_llrel(off_nl + offset, size);
1259 		break;
1260 
1261 	case OR_NET_NOSNAP:
1262 		s = gen_load_llrel(off_nl_nosnap + offset, size);
1263 		break;
1264 
1265 	case OR_TRAN_IPV4:
1266 		/*
1267 		 * Load the X register with the length of the IPv4 header,
1268 		 * in bytes.
1269 		 */
1270 		s = gen_loadx_iphdrlen();
1271 
1272 		/*
1273 		 * Load the item at {length of the link-layer header} +
1274 		 * {length of the IPv4 header} + {specified offset}.
1275 		 */
1276 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1277 		s2->s.k = off_nl + offset;
1278 		sappend(s, s2);
1279 		break;
1280 
1281 	case OR_TRAN_IPV6:
1282 		s = gen_load_llrel(off_nl + 40 + offset, size);
1283 		break;
1284 
1285 	default:
1286 		abort();
1287 		return NULL;
1288 	}
1289 	return s;
1290 }
1291 
1292 /*
1293  * Generate code to load into the X register the sum of the length of
1294  * the IPv4 header and any variable-length header preceding the link-layer
1295  * header.
1296  */
1297 static struct slist *
1298 gen_loadx_iphdrlen()
1299 {
1300 	struct slist *s, *s2;
1301 
1302 	s = gen_llprefixlen();
1303 	if (s != NULL) {
1304 		/*
1305 		 * There's a variable-length prefix preceding the
1306 		 * link-layer header.  "s" points to a list of statements
1307 		 * that put the length of that prefix into the X register.
1308 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1309 		 * don't have a constant offset, so we have to load the
1310 		 * value in question into the A register and add to it
1311 		 * the value from the X register.
1312 		 */
1313 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1314 		s2->s.k = off_nl;
1315 		sappend(s, s2);
1316 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1317 		s2->s.k = 0xf;
1318 		sappend(s, s2);
1319 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1320 		s2->s.k = 2;
1321 		sappend(s, s2);
1322 
1323 		/*
1324 		 * The A register now contains the length of the
1325 		 * IP header.  We need to add to it the length
1326 		 * of the prefix preceding the link-layer
1327 		 * header, which is still in the X register, and
1328 		 * move the result into the X register.
1329 		 */
1330 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1331 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1332 	} else {
1333 		/*
1334 		 * There is no variable-length header preceding the
1335 		 * link-layer header; if there's a fixed-length
1336 		 * header preceding it, its length is included in
1337 		 * the off_ variables, so it doesn't need to be added.
1338 		 */
1339 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1340 		s->s.k = off_nl;
1341 	}
1342 	return s;
1343 }
1344 
1345 static struct block *
1346 gen_uncond(rsense)
1347 	int rsense;
1348 {
1349 	struct block *b;
1350 	struct slist *s;
1351 
1352 	s = new_stmt(BPF_LD|BPF_IMM);
1353 	s->s.k = !rsense;
1354 	b = new_block(JMP(BPF_JEQ));
1355 	b->stmts = s;
1356 
1357 	return b;
1358 }
1359 
1360 static inline struct block *
1361 gen_true()
1362 {
1363 	return gen_uncond(1);
1364 }
1365 
1366 static inline struct block *
1367 gen_false()
1368 {
1369 	return gen_uncond(0);
1370 }
1371 
1372 /*
1373  * Byte-swap a 32-bit number.
1374  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1375  * big-endian platforms.)
1376  */
1377 #define	SWAPLONG(y) \
1378 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1379 
1380 /*
1381  * Generate code to match a particular packet type.
1382  *
1383  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1384  * value, if <= ETHERMTU.  We use that to determine whether to
1385  * match the type/length field or to check the type/length field for
1386  * a value <= ETHERMTU to see whether it's a type field and then do
1387  * the appropriate test.
1388  */
1389 static struct block *
1390 gen_ether_linktype(proto)
1391 	register int proto;
1392 {
1393 	struct block *b0, *b1;
1394 
1395 	switch (proto) {
1396 
1397 	case LLCSAP_ISONS:
1398 	case LLCSAP_IP:
1399 	case LLCSAP_NETBEUI:
1400 		/*
1401 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1402 		 * so we check the DSAP and SSAP.
1403 		 *
1404 		 * LLCSAP_IP checks for IP-over-802.2, rather
1405 		 * than IP-over-Ethernet or IP-over-SNAP.
1406 		 *
1407 		 * XXX - should we check both the DSAP and the
1408 		 * SSAP, like this, or should we check just the
1409 		 * DSAP, as we do for other types <= ETHERMTU
1410 		 * (i.e., other SAP values)?
1411 		 */
1412 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1413 		gen_not(b0);
1414 		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1415 			     ((proto << 8) | proto));
1416 		gen_and(b0, b1);
1417 		return b1;
1418 
1419 	case LLCSAP_IPX:
1420 		/*
1421 		 * Check for;
1422 		 *
1423 		 *	Ethernet_II frames, which are Ethernet
1424 		 *	frames with a frame type of ETHERTYPE_IPX;
1425 		 *
1426 		 *	Ethernet_802.3 frames, which are 802.3
1427 		 *	frames (i.e., the type/length field is
1428 		 *	a length field, <= ETHERMTU, rather than
1429 		 *	a type field) with the first two bytes
1430 		 *	after the Ethernet/802.3 header being
1431 		 *	0xFFFF;
1432 		 *
1433 		 *	Ethernet_802.2 frames, which are 802.3
1434 		 *	frames with an 802.2 LLC header and
1435 		 *	with the IPX LSAP as the DSAP in the LLC
1436 		 *	header;
1437 		 *
1438 		 *	Ethernet_SNAP frames, which are 802.3
1439 		 *	frames with an LLC header and a SNAP
1440 		 *	header and with an OUI of 0x000000
1441 		 *	(encapsulated Ethernet) and a protocol
1442 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1443 		 *
1444 		 * XXX - should we generate the same code both
1445 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1446 		 */
1447 
1448 		/*
1449 		 * This generates code to check both for the
1450 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1451 		 */
1452 		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1453 		    (bpf_int32)LLCSAP_IPX);
1454 		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H,
1455 		    (bpf_int32)0xFFFF);
1456 		gen_or(b0, b1);
1457 
1458 		/*
1459 		 * Now we add code to check for SNAP frames with
1460 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1461 		 */
1462 		b0 = gen_snap(0x000000, ETHERTYPE_IPX, 14);
1463 		gen_or(b0, b1);
1464 
1465 		/*
1466 		 * Now we generate code to check for 802.3
1467 		 * frames in general.
1468 		 */
1469 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1470 		gen_not(b0);
1471 
1472 		/*
1473 		 * Now add the check for 802.3 frames before the
1474 		 * check for Ethernet_802.2 and Ethernet_802.3,
1475 		 * as those checks should only be done on 802.3
1476 		 * frames, not on Ethernet frames.
1477 		 */
1478 		gen_and(b0, b1);
1479 
1480 		/*
1481 		 * Now add the check for Ethernet_II frames, and
1482 		 * do that before checking for the other frame
1483 		 * types.
1484 		 */
1485 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1486 		    (bpf_int32)ETHERTYPE_IPX);
1487 		gen_or(b0, b1);
1488 		return b1;
1489 
1490 	case ETHERTYPE_ATALK:
1491 	case ETHERTYPE_AARP:
1492 		/*
1493 		 * EtherTalk (AppleTalk protocols on Ethernet link
1494 		 * layer) may use 802.2 encapsulation.
1495 		 */
1496 
1497 		/*
1498 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1499 		 * we check for an Ethernet type field less than
1500 		 * 1500, which means it's an 802.3 length field.
1501 		 */
1502 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1503 		gen_not(b0);
1504 
1505 		/*
1506 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1507 		 * SNAP packets with an organization code of
1508 		 * 0x080007 (Apple, for Appletalk) and a protocol
1509 		 * type of ETHERTYPE_ATALK (Appletalk).
1510 		 *
1511 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1512 		 * SNAP packets with an organization code of
1513 		 * 0x000000 (encapsulated Ethernet) and a protocol
1514 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1515 		 */
1516 		if (proto == ETHERTYPE_ATALK)
1517 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK, 14);
1518 		else	/* proto == ETHERTYPE_AARP */
1519 			b1 = gen_snap(0x000000, ETHERTYPE_AARP, 14);
1520 		gen_and(b0, b1);
1521 
1522 		/*
1523 		 * Check for Ethernet encapsulation (Ethertalk
1524 		 * phase 1?); we just check for the Ethernet
1525 		 * protocol type.
1526 		 */
1527 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1528 
1529 		gen_or(b0, b1);
1530 		return b1;
1531 
1532 	default:
1533 		if (proto <= ETHERMTU) {
1534 			/*
1535 			 * This is an LLC SAP value, so the frames
1536 			 * that match would be 802.2 frames.
1537 			 * Check that the frame is an 802.2 frame
1538 			 * (i.e., that the length/type field is
1539 			 * a length field, <= ETHERMTU) and
1540 			 * then check the DSAP.
1541 			 */
1542 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1543 			gen_not(b0);
1544 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1545 			    (bpf_int32)proto);
1546 			gen_and(b0, b1);
1547 			return b1;
1548 		} else {
1549 			/*
1550 			 * This is an Ethernet type, so compare
1551 			 * the length/type field with it (if
1552 			 * the frame is an 802.2 frame, the length
1553 			 * field will be <= ETHERMTU, and, as
1554 			 * "proto" is > ETHERMTU, this test
1555 			 * will fail and the frame won't match,
1556 			 * which is what we want).
1557 			 */
1558 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1559 			    (bpf_int32)proto);
1560 		}
1561 	}
1562 }
1563 
1564 /*
1565  * Generate code to match a particular packet type.
1566  *
1567  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1568  * value, if <= ETHERMTU.  We use that to determine whether to
1569  * match the type field or to check the type field for the special
1570  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1571  */
1572 static struct block *
1573 gen_linux_sll_linktype(proto)
1574 	register int proto;
1575 {
1576 	struct block *b0, *b1;
1577 
1578 	switch (proto) {
1579 
1580 	case LLCSAP_ISONS:
1581 	case LLCSAP_IP:
1582 	case LLCSAP_NETBEUI:
1583 		/*
1584 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1585 		 * so we check the DSAP and SSAP.
1586 		 *
1587 		 * LLCSAP_IP checks for IP-over-802.2, rather
1588 		 * than IP-over-Ethernet or IP-over-SNAP.
1589 		 *
1590 		 * XXX - should we check both the DSAP and the
1591 		 * SSAP, like this, or should we check just the
1592 		 * DSAP, as we do for other types <= ETHERMTU
1593 		 * (i.e., other SAP values)?
1594 		 */
1595 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1596 		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1597 			     ((proto << 8) | proto));
1598 		gen_and(b0, b1);
1599 		return b1;
1600 
1601 	case LLCSAP_IPX:
1602 		/*
1603 		 *	Ethernet_II frames, which are Ethernet
1604 		 *	frames with a frame type of ETHERTYPE_IPX;
1605 		 *
1606 		 *	Ethernet_802.3 frames, which have a frame
1607 		 *	type of LINUX_SLL_P_802_3;
1608 		 *
1609 		 *	Ethernet_802.2 frames, which are 802.3
1610 		 *	frames with an 802.2 LLC header (i.e, have
1611 		 *	a frame type of LINUX_SLL_P_802_2) and
1612 		 *	with the IPX LSAP as the DSAP in the LLC
1613 		 *	header;
1614 		 *
1615 		 *	Ethernet_SNAP frames, which are 802.3
1616 		 *	frames with an LLC header and a SNAP
1617 		 *	header and with an OUI of 0x000000
1618 		 *	(encapsulated Ethernet) and a protocol
1619 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1620 		 *
1621 		 * First, do the checks on LINUX_SLL_P_802_2
1622 		 * frames; generate the check for either
1623 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1624 		 * then put a check for LINUX_SLL_P_802_2 frames
1625 		 * before it.
1626 		 */
1627 		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1628 		    (bpf_int32)LLCSAP_IPX);
1629 		b1 = gen_snap(0x000000, ETHERTYPE_IPX,
1630 		    off_linktype + 2);
1631 		gen_or(b0, b1);
1632 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1633 		gen_and(b0, b1);
1634 
1635 		/*
1636 		 * Now check for 802.3 frames and OR that with
1637 		 * the previous test.
1638 		 */
1639 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
1640 		gen_or(b0, b1);
1641 
1642 		/*
1643 		 * Now add the check for Ethernet_II frames, and
1644 		 * do that before checking for the other frame
1645 		 * types.
1646 		 */
1647 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1648 		    (bpf_int32)ETHERTYPE_IPX);
1649 		gen_or(b0, b1);
1650 		return b1;
1651 
1652 	case ETHERTYPE_ATALK:
1653 	case ETHERTYPE_AARP:
1654 		/*
1655 		 * EtherTalk (AppleTalk protocols on Ethernet link
1656 		 * layer) may use 802.2 encapsulation.
1657 		 */
1658 
1659 		/*
1660 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1661 		 * we check for the 802.2 protocol type in the
1662 		 * "Ethernet type" field.
1663 		 */
1664 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1665 
1666 		/*
1667 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1668 		 * SNAP packets with an organization code of
1669 		 * 0x080007 (Apple, for Appletalk) and a protocol
1670 		 * type of ETHERTYPE_ATALK (Appletalk).
1671 		 *
1672 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1673 		 * SNAP packets with an organization code of
1674 		 * 0x000000 (encapsulated Ethernet) and a protocol
1675 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1676 		 */
1677 		if (proto == ETHERTYPE_ATALK)
1678 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK,
1679 			    off_linktype + 2);
1680 		else	/* proto == ETHERTYPE_AARP */
1681 			b1 = gen_snap(0x000000, ETHERTYPE_AARP,
1682 			    off_linktype + 2);
1683 		gen_and(b0, b1);
1684 
1685 		/*
1686 		 * Check for Ethernet encapsulation (Ethertalk
1687 		 * phase 1?); we just check for the Ethernet
1688 		 * protocol type.
1689 		 */
1690 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1691 
1692 		gen_or(b0, b1);
1693 		return b1;
1694 
1695 	default:
1696 		if (proto <= ETHERMTU) {
1697 			/*
1698 			 * This is an LLC SAP value, so the frames
1699 			 * that match would be 802.2 frames.
1700 			 * Check for the 802.2 protocol type
1701 			 * in the "Ethernet type" field, and
1702 			 * then check the DSAP.
1703 			 */
1704 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1705 			    LINUX_SLL_P_802_2);
1706 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1707 			     (bpf_int32)proto);
1708 			gen_and(b0, b1);
1709 			return b1;
1710 		} else {
1711 			/*
1712 			 * This is an Ethernet type, so compare
1713 			 * the length/type field with it (if
1714 			 * the frame is an 802.2 frame, the length
1715 			 * field will be <= ETHERMTU, and, as
1716 			 * "proto" is > ETHERMTU, this test
1717 			 * will fail and the frame won't match,
1718 			 * which is what we want).
1719 			 */
1720 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1721 			    (bpf_int32)proto);
1722 		}
1723 	}
1724 }
1725 
1726 static void
1727 insert_radiotap_load_llprefixlen(b)
1728 	struct block *b;
1729 {
1730 	struct slist *s1, *s2;
1731 
1732 	/*
1733 	 * Prepend to the statements in this block code to load the
1734 	 * length of the radiotap header into the register assigned
1735 	 * to hold that length, if one has been assigned.
1736 	 */
1737 	if (reg_ll_size != -1) {
1738 		/*
1739 		 * The 2 bytes at offsets of 2 and 3 from the beginning
1740 		 * of the radiotap header are the length of the radiotap
1741 		 * header; unfortunately, it's little-endian, so we have
1742 		 * to load it a byte at a time and construct the value.
1743 		 */
1744 
1745 		/*
1746 		 * Load the high-order byte, at an offset of 3, shift it
1747 		 * left a byte, and put the result in the X register.
1748 		 */
1749 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1750 		s1->s.k = 3;
1751 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1752 		sappend(s1, s2);
1753 		s2->s.k = 8;
1754 		s2 = new_stmt(BPF_MISC|BPF_TAX);
1755 		sappend(s1, s2);
1756 
1757 		/*
1758 		 * Load the next byte, at an offset of 2, and OR the
1759 		 * value from the X register into it.
1760 		 */
1761 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1762 		sappend(s1, s2);
1763 		s2->s.k = 2;
1764 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
1765 		sappend(s1, s2);
1766 
1767 		/*
1768 		 * Now allocate a register to hold that value and store
1769 		 * it.
1770 		 */
1771 		s2 = new_stmt(BPF_ST);
1772 		s2->s.k = reg_ll_size;
1773 		sappend(s1, s2);
1774 
1775 		/*
1776 		 * Now move it into the X register.
1777 		 */
1778 		s2 = new_stmt(BPF_MISC|BPF_TAX);
1779 		sappend(s1, s2);
1780 
1781 		/*
1782 		 * Now append all the existing statements in this
1783 		 * block to these statements.
1784 		 */
1785 		sappend(s1, b->stmts);
1786 		b->stmts = s1;
1787 	}
1788 }
1789 
1790 
1791 static void
1792 insert_load_llprefixlen(b)
1793 	struct block *b;
1794 {
1795 	switch (linktype) {
1796 
1797 	case DLT_IEEE802_11_RADIO:
1798 		insert_radiotap_load_llprefixlen(b);
1799 	}
1800 }
1801 
1802 
1803 static struct slist *
1804 gen_radiotap_llprefixlen(void)
1805 {
1806 	struct slist *s;
1807 
1808 	if (reg_ll_size == -1) {
1809 		/*
1810 		 * We haven't yet assigned a register for the length
1811 		 * of the radiotap header; allocate one.
1812 		 */
1813 		reg_ll_size = alloc_reg();
1814 	}
1815 
1816 	/*
1817 	 * Load the register containing the radiotap length
1818 	 * into the X register.
1819 	 */
1820 	s = new_stmt(BPF_LDX|BPF_MEM);
1821 	s->s.k = reg_ll_size;
1822 	return s;
1823 }
1824 
1825 /*
1826  * Generate code to compute the link-layer header length, if necessary,
1827  * putting it into the X register, and to return either a pointer to a
1828  * "struct slist" for the list of statements in that code, or NULL if
1829  * no code is necessary.
1830  */
1831 static struct slist *
1832 gen_llprefixlen(void)
1833 {
1834 	switch (linktype) {
1835 
1836 	case DLT_IEEE802_11_RADIO:
1837 		return gen_radiotap_llprefixlen();
1838 
1839 	default:
1840 		return NULL;
1841 	}
1842 }
1843 
1844 /*
1845  * Generate code to match a particular packet type by matching the
1846  * link-layer type field or fields in the 802.2 LLC header.
1847  *
1848  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1849  * value, if <= ETHERMTU.
1850  */
1851 static struct block *
1852 gen_linktype(proto)
1853 	register int proto;
1854 {
1855 	struct block *b0, *b1, *b2;
1856 
1857 	switch (linktype) {
1858 
1859 	case DLT_EN10MB:
1860 		return gen_ether_linktype(proto);
1861 		/*NOTREACHED*/
1862 		break;
1863 
1864 	case DLT_C_HDLC:
1865 		switch (proto) {
1866 
1867 		case LLCSAP_ISONS:
1868 			proto = (proto << 8 | LLCSAP_ISONS);
1869 			/* fall through */
1870 
1871 		default:
1872 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1873 			    (bpf_int32)proto);
1874 			/*NOTREACHED*/
1875 			break;
1876 		}
1877 		break;
1878 
1879 	case DLT_FDDI:
1880 	case DLT_IEEE802:
1881 	case DLT_IEEE802_11:
1882 	case DLT_IEEE802_11_RADIO_AVS:
1883 	case DLT_IEEE802_11_RADIO:
1884 	case DLT_PRISM_HEADER:
1885 	case DLT_ATM_RFC1483:
1886 	case DLT_ATM_CLIP:
1887 	case DLT_IP_OVER_FC:
1888 		return gen_llc_linktype(proto);
1889 		/*NOTREACHED*/
1890 		break;
1891 
1892 	case DLT_SUNATM:
1893 		/*
1894 		 * If "is_lane" is set, check for a LANE-encapsulated
1895 		 * version of this protocol, otherwise check for an
1896 		 * LLC-encapsulated version of this protocol.
1897 		 *
1898 		 * We assume LANE means Ethernet, not Token Ring.
1899 		 */
1900 		if (is_lane) {
1901 			/*
1902 			 * Check that the packet doesn't begin with an
1903 			 * LE Control marker.  (We've already generated
1904 			 * a test for LANE.)
1905 			 */
1906 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
1907 			    0xFF00);
1908 			gen_not(b0);
1909 
1910 			/*
1911 			 * Now generate an Ethernet test.
1912 			 */
1913 			b1 = gen_ether_linktype(proto);
1914 			gen_and(b0, b1);
1915 			return b1;
1916 		} else {
1917 			/*
1918 			 * Check for LLC encapsulation and then check the
1919 			 * protocol.
1920 			 */
1921 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
1922 			b1 = gen_llc_linktype(proto);
1923 			gen_and(b0, b1);
1924 			return b1;
1925 		}
1926 		/*NOTREACHED*/
1927 		break;
1928 
1929 	case DLT_LINUX_SLL:
1930 		return gen_linux_sll_linktype(proto);
1931 		/*NOTREACHED*/
1932 		break;
1933 
1934 	case DLT_SLIP:
1935 	case DLT_SLIP_BSDOS:
1936 	case DLT_RAW:
1937 		/*
1938 		 * These types don't provide any type field; packets
1939 		 * are always IP.
1940 		 *
1941 		 * XXX - for IPv4, check for a version number of 4, and,
1942 		 * for IPv6, check for a version number of 6?
1943 		 */
1944 		switch (proto) {
1945 
1946 		case ETHERTYPE_IP:
1947 #ifdef INET6
1948 		case ETHERTYPE_IPV6:
1949 #endif
1950 			return gen_true();		/* always true */
1951 
1952 		default:
1953 			return gen_false();		/* always false */
1954 		}
1955 		/*NOTREACHED*/
1956 		break;
1957 
1958 	case DLT_PPP:
1959 	case DLT_PPP_PPPD:
1960 	case DLT_PPP_SERIAL:
1961 	case DLT_PPP_ETHER:
1962 		/*
1963 		 * We use Ethernet protocol types inside libpcap;
1964 		 * map them to the corresponding PPP protocol types.
1965 		 */
1966 		switch (proto) {
1967 
1968 		case ETHERTYPE_IP:
1969 			proto = PPP_IP;
1970 			break;
1971 
1972 #ifdef INET6
1973 		case ETHERTYPE_IPV6:
1974 			proto = PPP_IPV6;
1975 			break;
1976 #endif
1977 
1978 		case ETHERTYPE_DN:
1979 			proto = PPP_DECNET;
1980 			break;
1981 
1982 		case ETHERTYPE_ATALK:
1983 			proto = PPP_APPLE;
1984 			break;
1985 
1986 		case ETHERTYPE_NS:
1987 			proto = PPP_NS;
1988 			break;
1989 
1990 		case LLCSAP_ISONS:
1991 			proto = PPP_OSI;
1992 			break;
1993 
1994 		case LLCSAP_8021D:
1995 			/*
1996 			 * I'm assuming the "Bridging PDU"s that go
1997 			 * over PPP are Spanning Tree Protocol
1998 			 * Bridging PDUs.
1999 			 */
2000 			proto = PPP_BRPDU;
2001 			break;
2002 
2003 		case LLCSAP_IPX:
2004 			proto = PPP_IPX;
2005 			break;
2006 		}
2007 		break;
2008 
2009 	case DLT_PPP_BSDOS:
2010 		/*
2011 		 * We use Ethernet protocol types inside libpcap;
2012 		 * map them to the corresponding PPP protocol types.
2013 		 */
2014 		switch (proto) {
2015 
2016 		case ETHERTYPE_IP:
2017 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
2018 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
2019 			gen_or(b0, b1);
2020 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
2021 			gen_or(b1, b0);
2022 			return b0;
2023 
2024 #ifdef INET6
2025 		case ETHERTYPE_IPV6:
2026 			proto = PPP_IPV6;
2027 			/* more to go? */
2028 			break;
2029 #endif
2030 
2031 		case ETHERTYPE_DN:
2032 			proto = PPP_DECNET;
2033 			break;
2034 
2035 		case ETHERTYPE_ATALK:
2036 			proto = PPP_APPLE;
2037 			break;
2038 
2039 		case ETHERTYPE_NS:
2040 			proto = PPP_NS;
2041 			break;
2042 
2043 		case LLCSAP_ISONS:
2044 			proto = PPP_OSI;
2045 			break;
2046 
2047 		case LLCSAP_8021D:
2048 			/*
2049 			 * I'm assuming the "Bridging PDU"s that go
2050 			 * over PPP are Spanning Tree Protocol
2051 			 * Bridging PDUs.
2052 			 */
2053 			proto = PPP_BRPDU;
2054 			break;
2055 
2056 		case LLCSAP_IPX:
2057 			proto = PPP_IPX;
2058 			break;
2059 		}
2060 		break;
2061 
2062 	case DLT_NULL:
2063 	case DLT_LOOP:
2064 	case DLT_ENC:
2065 		/*
2066 		 * For DLT_NULL, the link-layer header is a 32-bit
2067 		 * word containing an AF_ value in *host* byte order,
2068 		 * and for DLT_ENC, the link-layer header begins
2069 		 * with a 32-bit work containing an AF_ value in
2070 		 * host byte order.
2071 		 *
2072 		 * In addition, if we're reading a saved capture file,
2073 		 * the host byte order in the capture may not be the
2074 		 * same as the host byte order on this machine.
2075 		 *
2076 		 * For DLT_LOOP, the link-layer header is a 32-bit
2077 		 * word containing an AF_ value in *network* byte order.
2078 		 *
2079 		 * XXX - AF_ values may, unfortunately, be platform-
2080 		 * dependent; for example, FreeBSD's AF_INET6 is 24
2081 		 * whilst NetBSD's and OpenBSD's is 26.
2082 		 *
2083 		 * This means that, when reading a capture file, just
2084 		 * checking for our AF_INET6 value won't work if the
2085 		 * capture file came from another OS.
2086 		 */
2087 		switch (proto) {
2088 
2089 		case ETHERTYPE_IP:
2090 			proto = AF_INET;
2091 			break;
2092 
2093 #ifdef INET6
2094 		case ETHERTYPE_IPV6:
2095 			proto = AF_INET6;
2096 			break;
2097 #endif
2098 
2099 		default:
2100 			/*
2101 			 * Not a type on which we support filtering.
2102 			 * XXX - support those that have AF_ values
2103 			 * #defined on this platform, at least?
2104 			 */
2105 			return gen_false();
2106 		}
2107 
2108 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
2109 			/*
2110 			 * The AF_ value is in host byte order, but
2111 			 * the BPF interpreter will convert it to
2112 			 * network byte order.
2113 			 *
2114 			 * If this is a save file, and it's from a
2115 			 * machine with the opposite byte order to
2116 			 * ours, we byte-swap the AF_ value.
2117 			 *
2118 			 * Then we run it through "htonl()", and
2119 			 * generate code to compare against the result.
2120 			 */
2121 			if (bpf_pcap->sf.rfile != NULL &&
2122 			    bpf_pcap->sf.swapped)
2123 				proto = SWAPLONG(proto);
2124 			proto = htonl(proto);
2125 		}
2126 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
2127 
2128 	case DLT_PFLOG:
2129 		/*
2130 		 * af field is host byte order in contrast to the rest of
2131 		 * the packet.
2132 		 */
2133 		if (proto == ETHERTYPE_IP)
2134 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2135 			    BPF_B, (bpf_int32)AF_INET));
2136 #ifdef INET6
2137 		else if (proto == ETHERTYPE_IPV6)
2138 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2139 			    BPF_B, (bpf_int32)AF_INET6));
2140 #endif /* INET6 */
2141 		else
2142 			return gen_false();
2143 		/*NOTREACHED*/
2144 		break;
2145 
2146 	case DLT_ARCNET:
2147 	case DLT_ARCNET_LINUX:
2148 		/*
2149 		 * XXX should we check for first fragment if the protocol
2150 		 * uses PHDS?
2151 		 */
2152 		switch (proto) {
2153 
2154 		default:
2155 			return gen_false();
2156 
2157 #ifdef INET6
2158 		case ETHERTYPE_IPV6:
2159 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2160 				(bpf_int32)ARCTYPE_INET6));
2161 #endif /* INET6 */
2162 
2163 		case ETHERTYPE_IP:
2164 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2165 				     (bpf_int32)ARCTYPE_IP);
2166 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2167 				     (bpf_int32)ARCTYPE_IP_OLD);
2168 			gen_or(b0, b1);
2169 			return (b1);
2170 
2171 		case ETHERTYPE_ARP:
2172 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2173 				     (bpf_int32)ARCTYPE_ARP);
2174 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2175 				     (bpf_int32)ARCTYPE_ARP_OLD);
2176 			gen_or(b0, b1);
2177 			return (b1);
2178 
2179 		case ETHERTYPE_REVARP:
2180 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2181 					(bpf_int32)ARCTYPE_REVARP));
2182 
2183 		case ETHERTYPE_ATALK:
2184 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2185 					(bpf_int32)ARCTYPE_ATALK));
2186 		}
2187 		/*NOTREACHED*/
2188 		break;
2189 
2190 	case DLT_LTALK:
2191 		switch (proto) {
2192 		case ETHERTYPE_ATALK:
2193 			return gen_true();
2194 		default:
2195 			return gen_false();
2196 		}
2197 		/*NOTREACHED*/
2198 		break;
2199 
2200 	case DLT_FRELAY:
2201 		/*
2202 		 * XXX - assumes a 2-byte Frame Relay header with
2203 		 * DLCI and flags.  What if the address is longer?
2204 		 */
2205 		switch (proto) {
2206 
2207 		case ETHERTYPE_IP:
2208 			/*
2209 			 * Check for the special NLPID for IP.
2210 			 */
2211 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
2212 
2213 #ifdef INET6
2214 		case ETHERTYPE_IPV6:
2215 			/*
2216 			 * Check for the special NLPID for IPv6.
2217 			 */
2218 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
2219 #endif
2220 
2221 		case LLCSAP_ISONS:
2222 			/*
2223 			 * Check for several OSI protocols.
2224 			 *
2225 			 * Frame Relay packets typically have an OSI
2226 			 * NLPID at the beginning; we check for each
2227 			 * of them.
2228 			 *
2229 			 * What we check for is the NLPID and a frame
2230 			 * control field of UI, i.e. 0x03 followed
2231 			 * by the NLPID.
2232 			 */
2233 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
2234 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
2235 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
2236 			gen_or(b1, b2);
2237 			gen_or(b0, b2);
2238 			return b2;
2239 
2240 		default:
2241 			return gen_false();
2242 		}
2243 		/*NOTREACHED*/
2244 		break;
2245 
2246         case DLT_JUNIPER_MLFR:
2247         case DLT_JUNIPER_MLPPP:
2248 	case DLT_JUNIPER_ATM1:
2249 	case DLT_JUNIPER_ATM2:
2250 	case DLT_JUNIPER_PPPOE:
2251 	case DLT_JUNIPER_PPPOE_ATM:
2252         case DLT_JUNIPER_GGSN:
2253         case DLT_JUNIPER_ES:
2254         case DLT_JUNIPER_MONITOR:
2255         case DLT_JUNIPER_SERVICES:
2256 		/* just lets verify the magic number for now -
2257 		 * on ATM we may have up to 6 different encapsulations on the wire
2258 		 * and need a lot of heuristics to figure out that the payload
2259 		 * might be;
2260 		 *
2261 		 * FIXME encapsulation specific BPF_ filters
2262 		 */
2263 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
2264 
2265 	case DLT_LINUX_IRDA:
2266 		bpf_error("IrDA link-layer type filtering not implemented");
2267 
2268 	case DLT_DOCSIS:
2269 		bpf_error("DOCSIS link-layer type filtering not implemented");
2270 
2271 	case DLT_LINUX_LAPD:
2272 		bpf_error("LAPD link-layer type filtering not implemented");
2273 	}
2274 
2275 	/*
2276 	 * All the types that have no encapsulation should either be
2277 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
2278 	 * all packets are IP packets, or should be handled in some
2279 	 * special case, if none of them are (if some are and some
2280 	 * aren't, the lack of encapsulation is a problem, as we'd
2281 	 * have to find some other way of determining the packet type).
2282 	 *
2283 	 * Therefore, if "off_linktype" is -1, there's an error.
2284 	 */
2285 	if (off_linktype == (u_int)-1)
2286 		abort();
2287 
2288 	/*
2289 	 * Any type not handled above should always have an Ethernet
2290 	 * type at an offset of "off_linktype".  (PPP is partially
2291 	 * handled above - the protocol type is mapped from the
2292 	 * Ethernet and LLC types we use internally to the corresponding
2293 	 * PPP type - but the PPP type is always specified by a value
2294 	 * at "off_linktype", so we don't have to do the code generation
2295 	 * above.)
2296 	 */
2297 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2298 }
2299 
2300 /*
2301  * Check for an LLC SNAP packet with a given organization code and
2302  * protocol type; we check the entire contents of the 802.2 LLC and
2303  * snap headers, checking for DSAP and SSAP of SNAP and a control
2304  * field of 0x03 in the LLC header, and for the specified organization
2305  * code and protocol type in the SNAP header.
2306  */
2307 static struct block *
2308 gen_snap(orgcode, ptype, offset)
2309 	bpf_u_int32 orgcode;
2310 	bpf_u_int32 ptype;
2311 	u_int offset;
2312 {
2313 	u_char snapblock[8];
2314 
2315 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
2316 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
2317 	snapblock[2] = 0x03;		/* control = UI */
2318 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
2319 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
2320 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
2321 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
2322 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
2323 	return gen_bcmp(OR_LINK, offset, 8, snapblock);
2324 }
2325 
2326 /*
2327  * Generate code to match a particular packet type, for link-layer types
2328  * using 802.2 LLC headers.
2329  *
2330  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
2331  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
2332  *
2333  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2334  * value, if <= ETHERMTU.  We use that to determine whether to
2335  * match the DSAP or both DSAP and LSAP or to check the OUI and
2336  * protocol ID in a SNAP header.
2337  */
2338 static struct block *
2339 gen_llc_linktype(proto)
2340 	int proto;
2341 {
2342 	/*
2343 	 * XXX - handle token-ring variable-length header.
2344 	 */
2345 	switch (proto) {
2346 
2347 	case LLCSAP_IP:
2348 	case LLCSAP_ISONS:
2349 	case LLCSAP_NETBEUI:
2350 		/*
2351 		 * XXX - should we check both the DSAP and the
2352 		 * SSAP, like this, or should we check just the
2353 		 * DSAP, as we do for other types <= ETHERMTU
2354 		 * (i.e., other SAP values)?
2355 		 */
2356 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_u_int32)
2357 			     ((proto << 8) | proto));
2358 
2359 	case LLCSAP_IPX:
2360 		/*
2361 		 * XXX - are there ever SNAP frames for IPX on
2362 		 * non-Ethernet 802.x networks?
2363 		 */
2364 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
2365 		    (bpf_int32)LLCSAP_IPX);
2366 
2367 	case ETHERTYPE_ATALK:
2368 		/*
2369 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2370 		 * SNAP packets with an organization code of
2371 		 * 0x080007 (Apple, for Appletalk) and a protocol
2372 		 * type of ETHERTYPE_ATALK (Appletalk).
2373 		 *
2374 		 * XXX - check for an organization code of
2375 		 * encapsulated Ethernet as well?
2376 		 */
2377 		return gen_snap(0x080007, ETHERTYPE_ATALK, off_linktype);
2378 
2379 	default:
2380 		/*
2381 		 * XXX - we don't have to check for IPX 802.3
2382 		 * here, but should we check for the IPX Ethertype?
2383 		 */
2384 		if (proto <= ETHERMTU) {
2385 			/*
2386 			 * This is an LLC SAP value, so check
2387 			 * the DSAP.
2388 			 */
2389 			return gen_cmp(OR_LINK, off_linktype, BPF_B,
2390 			    (bpf_int32)proto);
2391 		} else {
2392 			/*
2393 			 * This is an Ethernet type; we assume that it's
2394 			 * unlikely that it'll appear in the right place
2395 			 * at random, and therefore check only the
2396 			 * location that would hold the Ethernet type
2397 			 * in a SNAP frame with an organization code of
2398 			 * 0x000000 (encapsulated Ethernet).
2399 			 *
2400 			 * XXX - if we were to check for the SNAP DSAP and
2401 			 * LSAP, as per XXX, and were also to check for an
2402 			 * organization code of 0x000000 (encapsulated
2403 			 * Ethernet), we'd do
2404 			 *
2405 			 *	return gen_snap(0x000000, proto,
2406 			 *	    off_linktype);
2407 			 *
2408 			 * here; for now, we don't, as per the above.
2409 			 * I don't know whether it's worth the extra CPU
2410 			 * time to do the right check or not.
2411 			 */
2412 			return gen_cmp(OR_LINK, off_linktype+6, BPF_H,
2413 			    (bpf_int32)proto);
2414 		}
2415 	}
2416 }
2417 
2418 static struct block *
2419 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
2420 	bpf_u_int32 addr;
2421 	bpf_u_int32 mask;
2422 	int dir, proto;
2423 	u_int src_off, dst_off;
2424 {
2425 	struct block *b0, *b1;
2426 	u_int offset;
2427 
2428 	switch (dir) {
2429 
2430 	case Q_SRC:
2431 		offset = src_off;
2432 		break;
2433 
2434 	case Q_DST:
2435 		offset = dst_off;
2436 		break;
2437 
2438 	case Q_AND:
2439 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2440 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2441 		gen_and(b0, b1);
2442 		return b1;
2443 
2444 	case Q_OR:
2445 	case Q_DEFAULT:
2446 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2447 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2448 		gen_or(b0, b1);
2449 		return b1;
2450 
2451 	default:
2452 		abort();
2453 	}
2454 	b0 = gen_linktype(proto);
2455 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
2456 	gen_and(b0, b1);
2457 	return b1;
2458 }
2459 
2460 #ifdef INET6
2461 static struct block *
2462 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
2463 	struct in6_addr *addr;
2464 	struct in6_addr *mask;
2465 	int dir, proto;
2466 	u_int src_off, dst_off;
2467 {
2468 	struct block *b0, *b1;
2469 	u_int offset;
2470 	u_int32_t *a, *m;
2471 
2472 	switch (dir) {
2473 
2474 	case Q_SRC:
2475 		offset = src_off;
2476 		break;
2477 
2478 	case Q_DST:
2479 		offset = dst_off;
2480 		break;
2481 
2482 	case Q_AND:
2483 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2484 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2485 		gen_and(b0, b1);
2486 		return b1;
2487 
2488 	case Q_OR:
2489 	case Q_DEFAULT:
2490 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2491 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2492 		gen_or(b0, b1);
2493 		return b1;
2494 
2495 	default:
2496 		abort();
2497 	}
2498 	/* this order is important */
2499 	a = (u_int32_t *)addr;
2500 	m = (u_int32_t *)mask;
2501 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
2502 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
2503 	gen_and(b0, b1);
2504 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
2505 	gen_and(b0, b1);
2506 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
2507 	gen_and(b0, b1);
2508 	b0 = gen_linktype(proto);
2509 	gen_and(b0, b1);
2510 	return b1;
2511 }
2512 #endif /*INET6*/
2513 
2514 static struct block *
2515 gen_ehostop(eaddr, dir)
2516 	register const u_char *eaddr;
2517 	register int dir;
2518 {
2519 	register struct block *b0, *b1;
2520 
2521 	switch (dir) {
2522 	case Q_SRC:
2523 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
2524 
2525 	case Q_DST:
2526 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
2527 
2528 	case Q_AND:
2529 		b0 = gen_ehostop(eaddr, Q_SRC);
2530 		b1 = gen_ehostop(eaddr, Q_DST);
2531 		gen_and(b0, b1);
2532 		return b1;
2533 
2534 	case Q_DEFAULT:
2535 	case Q_OR:
2536 		b0 = gen_ehostop(eaddr, Q_SRC);
2537 		b1 = gen_ehostop(eaddr, Q_DST);
2538 		gen_or(b0, b1);
2539 		return b1;
2540 	}
2541 	abort();
2542 	/* NOTREACHED */
2543 }
2544 
2545 /*
2546  * Like gen_ehostop, but for DLT_FDDI
2547  */
2548 static struct block *
2549 gen_fhostop(eaddr, dir)
2550 	register const u_char *eaddr;
2551 	register int dir;
2552 {
2553 	struct block *b0, *b1;
2554 
2555 	switch (dir) {
2556 	case Q_SRC:
2557 #ifdef PCAP_FDDIPAD
2558 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
2559 #else
2560 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
2561 #endif
2562 
2563 	case Q_DST:
2564 #ifdef PCAP_FDDIPAD
2565 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
2566 #else
2567 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
2568 #endif
2569 
2570 	case Q_AND:
2571 		b0 = gen_fhostop(eaddr, Q_SRC);
2572 		b1 = gen_fhostop(eaddr, Q_DST);
2573 		gen_and(b0, b1);
2574 		return b1;
2575 
2576 	case Q_DEFAULT:
2577 	case Q_OR:
2578 		b0 = gen_fhostop(eaddr, Q_SRC);
2579 		b1 = gen_fhostop(eaddr, Q_DST);
2580 		gen_or(b0, b1);
2581 		return b1;
2582 	}
2583 	abort();
2584 	/* NOTREACHED */
2585 }
2586 
2587 /*
2588  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
2589  */
2590 static struct block *
2591 gen_thostop(eaddr, dir)
2592 	register const u_char *eaddr;
2593 	register int dir;
2594 {
2595 	register struct block *b0, *b1;
2596 
2597 	switch (dir) {
2598 	case Q_SRC:
2599 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
2600 
2601 	case Q_DST:
2602 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
2603 
2604 	case Q_AND:
2605 		b0 = gen_thostop(eaddr, Q_SRC);
2606 		b1 = gen_thostop(eaddr, Q_DST);
2607 		gen_and(b0, b1);
2608 		return b1;
2609 
2610 	case Q_DEFAULT:
2611 	case Q_OR:
2612 		b0 = gen_thostop(eaddr, Q_SRC);
2613 		b1 = gen_thostop(eaddr, Q_DST);
2614 		gen_or(b0, b1);
2615 		return b1;
2616 	}
2617 	abort();
2618 	/* NOTREACHED */
2619 }
2620 
2621 /*
2622  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
2623  */
2624 static struct block *
2625 gen_wlanhostop(eaddr, dir)
2626 	register const u_char *eaddr;
2627 	register int dir;
2628 {
2629 	register struct block *b0, *b1, *b2;
2630 	register struct slist *s;
2631 
2632 	switch (dir) {
2633 	case Q_SRC:
2634 		/*
2635 		 * Oh, yuk.
2636 		 *
2637 		 *	For control frames, there is no SA.
2638 		 *
2639 		 *	For management frames, SA is at an
2640 		 *	offset of 10 from the beginning of
2641 		 *	the packet.
2642 		 *
2643 		 *	For data frames, SA is at an offset
2644 		 *	of 10 from the beginning of the packet
2645 		 *	if From DS is clear, at an offset of
2646 		 *	16 from the beginning of the packet
2647 		 *	if From DS is set and To DS is clear,
2648 		 *	and an offset of 24 from the beginning
2649 		 *	of the packet if From DS is set and To DS
2650 		 *	is set.
2651 		 */
2652 
2653 		/*
2654 		 * Generate the tests to be done for data frames
2655 		 * with From DS set.
2656 		 *
2657 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
2658 		 */
2659 		s = gen_load_a(OR_LINK, 1, BPF_B);
2660 		b1 = new_block(JMP(BPF_JSET));
2661 		b1->s.k = 0x01;	/* To DS */
2662 		b1->stmts = s;
2663 
2664 		/*
2665 		 * If To DS is set, the SA is at 24.
2666 		 */
2667 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
2668 		gen_and(b1, b0);
2669 
2670 		/*
2671 		 * Now, check for To DS not set, i.e. check
2672 		 * "!(link[1] & 0x01)".
2673 		 */
2674 		s = gen_load_a(OR_LINK, 1, BPF_B);
2675 		b2 = new_block(JMP(BPF_JSET));
2676 		b2->s.k = 0x01;	/* To DS */
2677 		b2->stmts = s;
2678 		gen_not(b2);
2679 
2680 		/*
2681 		 * If To DS is not set, the SA is at 16.
2682 		 */
2683 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
2684 		gen_and(b2, b1);
2685 
2686 		/*
2687 		 * Now OR together the last two checks.  That gives
2688 		 * the complete set of checks for data frames with
2689 		 * From DS set.
2690 		 */
2691 		gen_or(b1, b0);
2692 
2693 		/*
2694 		 * Now check for From DS being set, and AND that with
2695 		 * the ORed-together checks.
2696 		 */
2697 		s = gen_load_a(OR_LINK, 1, BPF_B);
2698 		b1 = new_block(JMP(BPF_JSET));
2699 		b1->s.k = 0x02;	/* From DS */
2700 		b1->stmts = s;
2701 		gen_and(b1, b0);
2702 
2703 		/*
2704 		 * Now check for data frames with From DS not set.
2705 		 */
2706 		s = gen_load_a(OR_LINK, 1, BPF_B);
2707 		b2 = new_block(JMP(BPF_JSET));
2708 		b2->s.k = 0x02;	/* From DS */
2709 		b2->stmts = s;
2710 		gen_not(b2);
2711 
2712 		/*
2713 		 * If From DS isn't set, the SA is at 10.
2714 		 */
2715 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
2716 		gen_and(b2, b1);
2717 
2718 		/*
2719 		 * Now OR together the checks for data frames with
2720 		 * From DS not set and for data frames with From DS
2721 		 * set; that gives the checks done for data frames.
2722 		 */
2723 		gen_or(b1, b0);
2724 
2725 		/*
2726 		 * Now check for a data frame.
2727 		 * I.e, check "link[0] & 0x08".
2728 		 */
2729 		gen_load_a(OR_LINK, 0, BPF_B);
2730 		b1 = new_block(JMP(BPF_JSET));
2731 		b1->s.k = 0x08;
2732 		b1->stmts = s;
2733 
2734 		/*
2735 		 * AND that with the checks done for data frames.
2736 		 */
2737 		gen_and(b1, b0);
2738 
2739 		/*
2740 		 * If the high-order bit of the type value is 0, this
2741 		 * is a management frame.
2742 		 * I.e, check "!(link[0] & 0x08)".
2743 		 */
2744 		s = gen_load_a(OR_LINK, 0, BPF_B);
2745 		b2 = new_block(JMP(BPF_JSET));
2746 		b2->s.k = 0x08;
2747 		b2->stmts = s;
2748 		gen_not(b2);
2749 
2750 		/*
2751 		 * For management frames, the SA is at 10.
2752 		 */
2753 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
2754 		gen_and(b2, b1);
2755 
2756 		/*
2757 		 * OR that with the checks done for data frames.
2758 		 * That gives the checks done for management and
2759 		 * data frames.
2760 		 */
2761 		gen_or(b1, b0);
2762 
2763 		/*
2764 		 * If the low-order bit of the type value is 1,
2765 		 * this is either a control frame or a frame
2766 		 * with a reserved type, and thus not a
2767 		 * frame with an SA.
2768 		 *
2769 		 * I.e., check "!(link[0] & 0x04)".
2770 		 */
2771 		s = gen_load_a(OR_LINK, 0, BPF_B);
2772 		b1 = new_block(JMP(BPF_JSET));
2773 		b1->s.k = 0x04;
2774 		b1->stmts = s;
2775 		gen_not(b1);
2776 
2777 		/*
2778 		 * AND that with the checks for data and management
2779 		 * frames.
2780 		 */
2781 		gen_and(b1, b0);
2782 		return b0;
2783 
2784 	case Q_DST:
2785 		/*
2786 		 * Oh, yuk.
2787 		 *
2788 		 *	For control frames, there is no DA.
2789 		 *
2790 		 *	For management frames, DA is at an
2791 		 *	offset of 4 from the beginning of
2792 		 *	the packet.
2793 		 *
2794 		 *	For data frames, DA is at an offset
2795 		 *	of 4 from the beginning of the packet
2796 		 *	if To DS is clear and at an offset of
2797 		 *	16 from the beginning of the packet
2798 		 *	if To DS is set.
2799 		 */
2800 
2801 		/*
2802 		 * Generate the tests to be done for data frames.
2803 		 *
2804 		 * First, check for To DS set, i.e. "link[1] & 0x01".
2805 		 */
2806 		s = gen_load_a(OR_LINK, 1, BPF_B);
2807 		b1 = new_block(JMP(BPF_JSET));
2808 		b1->s.k = 0x01;	/* To DS */
2809 		b1->stmts = s;
2810 
2811 		/*
2812 		 * If To DS is set, the DA is at 16.
2813 		 */
2814 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
2815 		gen_and(b1, b0);
2816 
2817 		/*
2818 		 * Now, check for To DS not set, i.e. check
2819 		 * "!(link[1] & 0x01)".
2820 		 */
2821 		s = gen_load_a(OR_LINK, 1, BPF_B);
2822 		b2 = new_block(JMP(BPF_JSET));
2823 		b2->s.k = 0x01;	/* To DS */
2824 		b2->stmts = s;
2825 		gen_not(b2);
2826 
2827 		/*
2828 		 * If To DS is not set, the DA is at 4.
2829 		 */
2830 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
2831 		gen_and(b2, b1);
2832 
2833 		/*
2834 		 * Now OR together the last two checks.  That gives
2835 		 * the complete set of checks for data frames.
2836 		 */
2837 		gen_or(b1, b0);
2838 
2839 		/*
2840 		 * Now check for a data frame.
2841 		 * I.e, check "link[0] & 0x08".
2842 		 */
2843 		s = gen_load_a(OR_LINK, 0, BPF_B);
2844 		b1 = new_block(JMP(BPF_JSET));
2845 		b1->s.k = 0x08;
2846 		b1->stmts = s;
2847 
2848 		/*
2849 		 * AND that with the checks done for data frames.
2850 		 */
2851 		gen_and(b1, b0);
2852 
2853 		/*
2854 		 * If the high-order bit of the type value is 0, this
2855 		 * is a management frame.
2856 		 * I.e, check "!(link[0] & 0x08)".
2857 		 */
2858 		s = gen_load_a(OR_LINK, 0, BPF_B);
2859 		b2 = new_block(JMP(BPF_JSET));
2860 		b2->s.k = 0x08;
2861 		b2->stmts = s;
2862 		gen_not(b2);
2863 
2864 		/*
2865 		 * For management frames, the DA is at 4.
2866 		 */
2867 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
2868 		gen_and(b2, b1);
2869 
2870 		/*
2871 		 * OR that with the checks done for data frames.
2872 		 * That gives the checks done for management and
2873 		 * data frames.
2874 		 */
2875 		gen_or(b1, b0);
2876 
2877 		/*
2878 		 * If the low-order bit of the type value is 1,
2879 		 * this is either a control frame or a frame
2880 		 * with a reserved type, and thus not a
2881 		 * frame with an SA.
2882 		 *
2883 		 * I.e., check "!(link[0] & 0x04)".
2884 		 */
2885 		s = gen_load_a(OR_LINK, 0, BPF_B);
2886 		b1 = new_block(JMP(BPF_JSET));
2887 		b1->s.k = 0x04;
2888 		b1->stmts = s;
2889 		gen_not(b1);
2890 
2891 		/*
2892 		 * AND that with the checks for data and management
2893 		 * frames.
2894 		 */
2895 		gen_and(b1, b0);
2896 		return b0;
2897 
2898 	case Q_AND:
2899 		b0 = gen_wlanhostop(eaddr, Q_SRC);
2900 		b1 = gen_wlanhostop(eaddr, Q_DST);
2901 		gen_and(b0, b1);
2902 		return b1;
2903 
2904 	case Q_DEFAULT:
2905 	case Q_OR:
2906 		b0 = gen_wlanhostop(eaddr, Q_SRC);
2907 		b1 = gen_wlanhostop(eaddr, Q_DST);
2908 		gen_or(b0, b1);
2909 		return b1;
2910 	}
2911 	abort();
2912 	/* NOTREACHED */
2913 }
2914 
2915 /*
2916  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
2917  * (We assume that the addresses are IEEE 48-bit MAC addresses,
2918  * as the RFC states.)
2919  */
2920 static struct block *
2921 gen_ipfchostop(eaddr, dir)
2922 	register const u_char *eaddr;
2923 	register int dir;
2924 {
2925 	register struct block *b0, *b1;
2926 
2927 	switch (dir) {
2928 	case Q_SRC:
2929 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
2930 
2931 	case Q_DST:
2932 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
2933 
2934 	case Q_AND:
2935 		b0 = gen_ipfchostop(eaddr, Q_SRC);
2936 		b1 = gen_ipfchostop(eaddr, Q_DST);
2937 		gen_and(b0, b1);
2938 		return b1;
2939 
2940 	case Q_DEFAULT:
2941 	case Q_OR:
2942 		b0 = gen_ipfchostop(eaddr, Q_SRC);
2943 		b1 = gen_ipfchostop(eaddr, Q_DST);
2944 		gen_or(b0, b1);
2945 		return b1;
2946 	}
2947 	abort();
2948 	/* NOTREACHED */
2949 }
2950 
2951 /*
2952  * This is quite tricky because there may be pad bytes in front of the
2953  * DECNET header, and then there are two possible data packet formats that
2954  * carry both src and dst addresses, plus 5 packet types in a format that
2955  * carries only the src node, plus 2 types that use a different format and
2956  * also carry just the src node.
2957  *
2958  * Yuck.
2959  *
2960  * Instead of doing those all right, we just look for data packets with
2961  * 0 or 1 bytes of padding.  If you want to look at other packets, that
2962  * will require a lot more hacking.
2963  *
2964  * To add support for filtering on DECNET "areas" (network numbers)
2965  * one would want to add a "mask" argument to this routine.  That would
2966  * make the filter even more inefficient, although one could be clever
2967  * and not generate masking instructions if the mask is 0xFFFF.
2968  */
2969 static struct block *
2970 gen_dnhostop(addr, dir)
2971 	bpf_u_int32 addr;
2972 	int dir;
2973 {
2974 	struct block *b0, *b1, *b2, *tmp;
2975 	u_int offset_lh;	/* offset if long header is received */
2976 	u_int offset_sh;	/* offset if short header is received */
2977 
2978 	switch (dir) {
2979 
2980 	case Q_DST:
2981 		offset_sh = 1;	/* follows flags */
2982 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
2983 		break;
2984 
2985 	case Q_SRC:
2986 		offset_sh = 3;	/* follows flags, dstnode */
2987 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
2988 		break;
2989 
2990 	case Q_AND:
2991 		/* Inefficient because we do our Calvinball dance twice */
2992 		b0 = gen_dnhostop(addr, Q_SRC);
2993 		b1 = gen_dnhostop(addr, Q_DST);
2994 		gen_and(b0, b1);
2995 		return b1;
2996 
2997 	case Q_OR:
2998 	case Q_DEFAULT:
2999 		/* Inefficient because we do our Calvinball dance twice */
3000 		b0 = gen_dnhostop(addr, Q_SRC);
3001 		b1 = gen_dnhostop(addr, Q_DST);
3002 		gen_or(b0, b1);
3003 		return b1;
3004 
3005 	case Q_ISO:
3006 		bpf_error("ISO host filtering not implemented");
3007 
3008 	default:
3009 		abort();
3010 	}
3011 	b0 = gen_linktype(ETHERTYPE_DN);
3012 	/* Check for pad = 1, long header case */
3013 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
3014 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
3015 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
3016 	    BPF_H, (bpf_int32)ntohs(addr));
3017 	gen_and(tmp, b1);
3018 	/* Check for pad = 0, long header case */
3019 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
3020 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs(addr));
3021 	gen_and(tmp, b2);
3022 	gen_or(b2, b1);
3023 	/* Check for pad = 1, short header case */
3024 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
3025 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
3026 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs(addr));
3027 	gen_and(tmp, b2);
3028 	gen_or(b2, b1);
3029 	/* Check for pad = 0, short header case */
3030 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
3031 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs(addr));
3032 	gen_and(tmp, b2);
3033 	gen_or(b2, b1);
3034 
3035 	/* Combine with test for linktype */
3036 	gen_and(b0, b1);
3037 	return b1;
3038 }
3039 
3040 static struct block *
3041 gen_host(addr, mask, proto, dir)
3042 	bpf_u_int32 addr;
3043 	bpf_u_int32 mask;
3044 	int proto;
3045 	int dir;
3046 {
3047 	struct block *b0, *b1;
3048 
3049 	switch (proto) {
3050 
3051 	case Q_DEFAULT:
3052 		b0 = gen_host(addr, mask, Q_IP, dir);
3053 		if (off_linktype != (u_int)-1) {
3054 		    b1 = gen_host(addr, mask, Q_ARP, dir);
3055 		    gen_or(b0, b1);
3056 		    b0 = gen_host(addr, mask, Q_RARP, dir);
3057 		    gen_or(b1, b0);
3058 		}
3059 		return b0;
3060 
3061 	case Q_IP:
3062 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
3063 
3064 	case Q_RARP:
3065 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
3066 
3067 	case Q_ARP:
3068 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
3069 
3070 	case Q_TCP:
3071 		bpf_error("'tcp' modifier applied to host");
3072 
3073 	case Q_SCTP:
3074 		bpf_error("'sctp' modifier applied to host");
3075 
3076 	case Q_UDP:
3077 		bpf_error("'udp' modifier applied to host");
3078 
3079 	case Q_ICMP:
3080 		bpf_error("'icmp' modifier applied to host");
3081 
3082 	case Q_IGMP:
3083 		bpf_error("'igmp' modifier applied to host");
3084 
3085 	case Q_IGRP:
3086 		bpf_error("'igrp' modifier applied to host");
3087 
3088 	case Q_PIM:
3089 		bpf_error("'pim' modifier applied to host");
3090 
3091 	case Q_VRRP:
3092 		bpf_error("'vrrp' modifier applied to host");
3093 
3094 	case Q_ATALK:
3095 		bpf_error("ATALK host filtering not implemented");
3096 
3097 	case Q_AARP:
3098 		bpf_error("AARP host filtering not implemented");
3099 
3100 	case Q_DECNET:
3101 		return gen_dnhostop(addr, dir);
3102 
3103 	case Q_SCA:
3104 		bpf_error("SCA host filtering not implemented");
3105 
3106 	case Q_LAT:
3107 		bpf_error("LAT host filtering not implemented");
3108 
3109 	case Q_MOPDL:
3110 		bpf_error("MOPDL host filtering not implemented");
3111 
3112 	case Q_MOPRC:
3113 		bpf_error("MOPRC host filtering not implemented");
3114 
3115 #ifdef INET6
3116 	case Q_IPV6:
3117 		bpf_error("'ip6' modifier applied to ip host");
3118 
3119 	case Q_ICMPV6:
3120 		bpf_error("'icmp6' modifier applied to host");
3121 #endif /* INET6 */
3122 
3123 	case Q_AH:
3124 		bpf_error("'ah' modifier applied to host");
3125 
3126 	case Q_ESP:
3127 		bpf_error("'esp' modifier applied to host");
3128 
3129 	case Q_ISO:
3130 		bpf_error("ISO host filtering not implemented");
3131 
3132 	case Q_ESIS:
3133 		bpf_error("'esis' modifier applied to host");
3134 
3135 	case Q_ISIS:
3136 		bpf_error("'isis' modifier applied to host");
3137 
3138 	case Q_CLNP:
3139 		bpf_error("'clnp' modifier applied to host");
3140 
3141 	case Q_STP:
3142 		bpf_error("'stp' modifier applied to host");
3143 
3144 	case Q_IPX:
3145 		bpf_error("IPX host filtering not implemented");
3146 
3147 	case Q_NETBEUI:
3148 		bpf_error("'netbeui' modifier applied to host");
3149 
3150 	case Q_RADIO:
3151 		bpf_error("'radio' modifier applied to host");
3152 
3153 	default:
3154 		abort();
3155 	}
3156 	/* NOTREACHED */
3157 }
3158 
3159 #ifdef INET6
3160 static struct block *
3161 gen_host6(addr, mask, proto, dir)
3162 	struct in6_addr *addr;
3163 	struct in6_addr *mask;
3164 	int proto;
3165 	int dir;
3166 {
3167 	switch (proto) {
3168 
3169 	case Q_DEFAULT:
3170 		return gen_host6(addr, mask, Q_IPV6, dir);
3171 
3172 	case Q_IP:
3173 		bpf_error("'ip' modifier applied to ip6 host");
3174 
3175 	case Q_RARP:
3176 		bpf_error("'rarp' modifier applied to ip6 host");
3177 
3178 	case Q_ARP:
3179 		bpf_error("'arp' modifier applied to ip6 host");
3180 
3181 	case Q_SCTP:
3182 		bpf_error("'sctp' modifier applied to host");
3183 
3184 	case Q_TCP:
3185 		bpf_error("'tcp' modifier applied to host");
3186 
3187 	case Q_UDP:
3188 		bpf_error("'udp' modifier applied to host");
3189 
3190 	case Q_ICMP:
3191 		bpf_error("'icmp' modifier applied to host");
3192 
3193 	case Q_IGMP:
3194 		bpf_error("'igmp' modifier applied to host");
3195 
3196 	case Q_IGRP:
3197 		bpf_error("'igrp' modifier applied to host");
3198 
3199 	case Q_PIM:
3200 		bpf_error("'pim' modifier applied to host");
3201 
3202 	case Q_VRRP:
3203 		bpf_error("'vrrp' modifier applied to host");
3204 
3205 	case Q_ATALK:
3206 		bpf_error("ATALK host filtering not implemented");
3207 
3208 	case Q_AARP:
3209 		bpf_error("AARP host filtering not implemented");
3210 
3211 	case Q_DECNET:
3212 		bpf_error("'decnet' modifier applied to ip6 host");
3213 
3214 	case Q_SCA:
3215 		bpf_error("SCA host filtering not implemented");
3216 
3217 	case Q_LAT:
3218 		bpf_error("LAT host filtering not implemented");
3219 
3220 	case Q_MOPDL:
3221 		bpf_error("MOPDL host filtering not implemented");
3222 
3223 	case Q_MOPRC:
3224 		bpf_error("MOPRC host filtering not implemented");
3225 
3226 	case Q_IPV6:
3227 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
3228 
3229 	case Q_ICMPV6:
3230 		bpf_error("'icmp6' modifier applied to host");
3231 
3232 	case Q_AH:
3233 		bpf_error("'ah' modifier applied to host");
3234 
3235 	case Q_ESP:
3236 		bpf_error("'esp' modifier applied to host");
3237 
3238 	case Q_ISO:
3239 		bpf_error("ISO host filtering not implemented");
3240 
3241 	case Q_ESIS:
3242 		bpf_error("'esis' modifier applied to host");
3243 
3244 	case Q_ISIS:
3245 		bpf_error("'isis' modifier applied to host");
3246 
3247 	case Q_CLNP:
3248 		bpf_error("'clnp' modifier applied to host");
3249 
3250 	case Q_STP:
3251 		bpf_error("'stp' modifier applied to host");
3252 
3253 	case Q_IPX:
3254 		bpf_error("IPX host filtering not implemented");
3255 
3256 	case Q_NETBEUI:
3257 		bpf_error("'netbeui' modifier applied to host");
3258 
3259 	case Q_RADIO:
3260 		bpf_error("'radio' modifier applied to host");
3261 
3262 	default:
3263 		abort();
3264 	}
3265 	/* NOTREACHED */
3266 }
3267 #endif /*INET6*/
3268 
3269 #ifndef INET6
3270 static struct block *
3271 gen_gateway(eaddr, alist, proto, dir)
3272 	const u_char *eaddr;
3273 	bpf_u_int32 **alist;
3274 	int proto;
3275 	int dir;
3276 {
3277 	struct block *b0, *b1, *tmp;
3278 
3279 	if (dir != 0)
3280 		bpf_error("direction applied to 'gateway'");
3281 
3282 	switch (proto) {
3283 	case Q_DEFAULT:
3284 	case Q_IP:
3285 	case Q_ARP:
3286 	case Q_RARP:
3287 		if (linktype == DLT_EN10MB)
3288 			b0 = gen_ehostop(eaddr, Q_OR);
3289 		else if (linktype == DLT_FDDI)
3290 			b0 = gen_fhostop(eaddr, Q_OR);
3291 		else if (linktype == DLT_IEEE802)
3292 			b0 = gen_thostop(eaddr, Q_OR);
3293 		else if (linktype == DLT_IEEE802_11 ||
3294 		    linktype == DLT_IEEE802_11_RADIO_AVS ||
3295 		    linktype == DLT_IEEE802_11_RADIO ||
3296 		    linktype == DLT_PRISM_HEADER)
3297 			b0 = gen_wlanhostop(eaddr, Q_OR);
3298 		else if (linktype == DLT_SUNATM && is_lane) {
3299 			/*
3300 			 * Check that the packet doesn't begin with an
3301 			 * LE Control marker.  (We've already generated
3302 			 * a test for LANE.)
3303 			 */
3304 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3305 			    0xFF00);
3306 			gen_not(b1);
3307 
3308 			/*
3309 			 * Now check the MAC address.
3310 			 */
3311 			b0 = gen_ehostop(eaddr, Q_OR);
3312 			gen_and(b1, b0);
3313 		} else if (linktype == DLT_IP_OVER_FC)
3314 			b0 = gen_ipfchostop(eaddr, Q_OR);
3315 		else
3316 			bpf_error(
3317 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
3318 
3319 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR);
3320 		while (*alist) {
3321 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR);
3322 			gen_or(b1, tmp);
3323 			b1 = tmp;
3324 		}
3325 		gen_not(b1);
3326 		gen_and(b0, b1);
3327 		return b1;
3328 	}
3329 	bpf_error("illegal modifier of 'gateway'");
3330 	/* NOTREACHED */
3331 }
3332 #endif
3333 
3334 struct block *
3335 gen_proto_abbrev(proto)
3336 	int proto;
3337 {
3338 	struct block *b0;
3339 	struct block *b1;
3340 
3341 	switch (proto) {
3342 
3343 	case Q_SCTP:
3344 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
3345 #ifdef INET6
3346 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
3347 		gen_or(b0, b1);
3348 #endif
3349 		break;
3350 
3351 	case Q_TCP:
3352 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
3353 #ifdef INET6
3354 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
3355 		gen_or(b0, b1);
3356 #endif
3357 		break;
3358 
3359 	case Q_UDP:
3360 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
3361 #ifdef INET6
3362 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
3363 		gen_or(b0, b1);
3364 #endif
3365 		break;
3366 
3367 	case Q_ICMP:
3368 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
3369 		break;
3370 
3371 #ifndef	IPPROTO_IGMP
3372 #define	IPPROTO_IGMP	2
3373 #endif
3374 
3375 	case Q_IGMP:
3376 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
3377 		break;
3378 
3379 #ifndef	IPPROTO_IGRP
3380 #define	IPPROTO_IGRP	9
3381 #endif
3382 	case Q_IGRP:
3383 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
3384 		break;
3385 
3386 #ifndef IPPROTO_PIM
3387 #define IPPROTO_PIM	103
3388 #endif
3389 
3390 	case Q_PIM:
3391 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
3392 #ifdef INET6
3393 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
3394 		gen_or(b0, b1);
3395 #endif
3396 		break;
3397 
3398 #ifndef IPPROTO_VRRP
3399 #define IPPROTO_VRRP	112
3400 #endif
3401 
3402 	case Q_VRRP:
3403 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
3404 		break;
3405 
3406 	case Q_IP:
3407 		b1 =  gen_linktype(ETHERTYPE_IP);
3408 		break;
3409 
3410 	case Q_ARP:
3411 		b1 =  gen_linktype(ETHERTYPE_ARP);
3412 		break;
3413 
3414 	case Q_RARP:
3415 		b1 =  gen_linktype(ETHERTYPE_REVARP);
3416 		break;
3417 
3418 	case Q_LINK:
3419 		bpf_error("link layer applied in wrong context");
3420 
3421 	case Q_ATALK:
3422 		b1 =  gen_linktype(ETHERTYPE_ATALK);
3423 		break;
3424 
3425 	case Q_AARP:
3426 		b1 =  gen_linktype(ETHERTYPE_AARP);
3427 		break;
3428 
3429 	case Q_DECNET:
3430 		b1 =  gen_linktype(ETHERTYPE_DN);
3431 		break;
3432 
3433 	case Q_SCA:
3434 		b1 =  gen_linktype(ETHERTYPE_SCA);
3435 		break;
3436 
3437 	case Q_LAT:
3438 		b1 =  gen_linktype(ETHERTYPE_LAT);
3439 		break;
3440 
3441 	case Q_MOPDL:
3442 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
3443 		break;
3444 
3445 	case Q_MOPRC:
3446 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
3447 		break;
3448 
3449 #ifdef INET6
3450 	case Q_IPV6:
3451 		b1 = gen_linktype(ETHERTYPE_IPV6);
3452 		break;
3453 
3454 #ifndef IPPROTO_ICMPV6
3455 #define IPPROTO_ICMPV6	58
3456 #endif
3457 	case Q_ICMPV6:
3458 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
3459 		break;
3460 #endif /* INET6 */
3461 
3462 #ifndef IPPROTO_AH
3463 #define IPPROTO_AH	51
3464 #endif
3465 	case Q_AH:
3466 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
3467 #ifdef INET6
3468 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
3469 		gen_or(b0, b1);
3470 #endif
3471 		break;
3472 
3473 #ifndef IPPROTO_ESP
3474 #define IPPROTO_ESP	50
3475 #endif
3476 	case Q_ESP:
3477 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
3478 #ifdef INET6
3479 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
3480 		gen_or(b0, b1);
3481 #endif
3482 		break;
3483 
3484 	case Q_ISO:
3485 		b1 = gen_linktype(LLCSAP_ISONS);
3486 		break;
3487 
3488 	case Q_ESIS:
3489 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
3490 		break;
3491 
3492 	case Q_ISIS:
3493 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
3494 		break;
3495 
3496 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
3497 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3498 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3499 		gen_or(b0, b1);
3500 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3501 		gen_or(b0, b1);
3502 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3503 		gen_or(b0, b1);
3504 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3505 		gen_or(b0, b1);
3506 		break;
3507 
3508 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
3509 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3510 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3511 		gen_or(b0, b1);
3512 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3513 		gen_or(b0, b1);
3514 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3515 		gen_or(b0, b1);
3516 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3517 		gen_or(b0, b1);
3518 		break;
3519 
3520 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
3521 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3522 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3523 		gen_or(b0, b1);
3524 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
3525 		gen_or(b0, b1);
3526 		break;
3527 
3528 	case Q_ISIS_LSP:
3529 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3530 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3531 		gen_or(b0, b1);
3532 		break;
3533 
3534 	case Q_ISIS_SNP:
3535 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3536 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3537 		gen_or(b0, b1);
3538 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3539 		gen_or(b0, b1);
3540 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3541 		gen_or(b0, b1);
3542 		break;
3543 
3544 	case Q_ISIS_CSNP:
3545 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3546 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3547 		gen_or(b0, b1);
3548 		break;
3549 
3550 	case Q_ISIS_PSNP:
3551 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3552 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3553 		gen_or(b0, b1);
3554 		break;
3555 
3556 	case Q_CLNP:
3557 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
3558 		break;
3559 
3560 	case Q_STP:
3561 		b1 = gen_linktype(LLCSAP_8021D);
3562 		break;
3563 
3564 	case Q_IPX:
3565 		b1 = gen_linktype(LLCSAP_IPX);
3566 		break;
3567 
3568 	case Q_NETBEUI:
3569 		b1 = gen_linktype(LLCSAP_NETBEUI);
3570 		break;
3571 
3572 	case Q_RADIO:
3573 		bpf_error("'radio' is not a valid protocol type");
3574 
3575 	default:
3576 		abort();
3577 	}
3578 	return b1;
3579 }
3580 
3581 static struct block *
3582 gen_ipfrag()
3583 {
3584 	struct slist *s;
3585 	struct block *b;
3586 
3587 	/* not ip frag */
3588 	s = gen_load_a(OR_NET, 6, BPF_H);
3589 	b = new_block(JMP(BPF_JSET));
3590 	b->s.k = 0x1fff;
3591 	b->stmts = s;
3592 	gen_not(b);
3593 
3594 	return b;
3595 }
3596 
3597 /*
3598  * Generate a comparison to a port value in the transport-layer header
3599  * at the specified offset from the beginning of that header.
3600  *
3601  * XXX - this handles a variable-length prefix preceding the link-layer
3602  * header, such as the radiotap or AVS radio prefix, but doesn't handle
3603  * variable-length link-layer headers (such as Token Ring or 802.11
3604  * headers).
3605  */
3606 static struct block *
3607 gen_portatom(off, v)
3608 	int off;
3609 	bpf_int32 v;
3610 {
3611 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
3612 }
3613 
3614 #ifdef INET6
3615 static struct block *
3616 gen_portatom6(off, v)
3617 	int off;
3618 	bpf_int32 v;
3619 {
3620 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
3621 }
3622 #endif/*INET6*/
3623 
3624 struct block *
3625 gen_portop(port, proto, dir)
3626 	int port, proto, dir;
3627 {
3628 	struct block *b0, *b1, *tmp;
3629 
3630 	/* ip proto 'proto' */
3631 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
3632 	b0 = gen_ipfrag();
3633 	gen_and(tmp, b0);
3634 
3635 	switch (dir) {
3636 	case Q_SRC:
3637 		b1 = gen_portatom(0, (bpf_int32)port);
3638 		break;
3639 
3640 	case Q_DST:
3641 		b1 = gen_portatom(2, (bpf_int32)port);
3642 		break;
3643 
3644 	case Q_OR:
3645 	case Q_DEFAULT:
3646 		tmp = gen_portatom(0, (bpf_int32)port);
3647 		b1 = gen_portatom(2, (bpf_int32)port);
3648 		gen_or(tmp, b1);
3649 		break;
3650 
3651 	case Q_AND:
3652 		tmp = gen_portatom(0, (bpf_int32)port);
3653 		b1 = gen_portatom(2, (bpf_int32)port);
3654 		gen_and(tmp, b1);
3655 		break;
3656 
3657 	default:
3658 		abort();
3659 	}
3660 	gen_and(b0, b1);
3661 
3662 	return b1;
3663 }
3664 
3665 static struct block *
3666 gen_port(port, ip_proto, dir)
3667 	int port;
3668 	int ip_proto;
3669 	int dir;
3670 {
3671 	struct block *b0, *b1, *tmp;
3672 
3673 	/*
3674 	 * ether proto ip
3675 	 *
3676 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3677 	 * not LLC encapsulation with LLCSAP_IP.
3678 	 *
3679 	 * For IEEE 802 networks - which includes 802.5 token ring
3680 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3681 	 * says that SNAP encapsulation is used, not LLC encapsulation
3682 	 * with LLCSAP_IP.
3683 	 *
3684 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3685 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
3686 	 * encapsulation with LLCSAP_IP.
3687 	 *
3688 	 * So we always check for ETHERTYPE_IP.
3689 	 */
3690 	b0 =  gen_linktype(ETHERTYPE_IP);
3691 
3692 	switch (ip_proto) {
3693 	case IPPROTO_UDP:
3694 	case IPPROTO_TCP:
3695 	case IPPROTO_SCTP:
3696 		b1 = gen_portop(port, ip_proto, dir);
3697 		break;
3698 
3699 	case PROTO_UNDEF:
3700 		tmp = gen_portop(port, IPPROTO_TCP, dir);
3701 		b1 = gen_portop(port, IPPROTO_UDP, dir);
3702 		gen_or(tmp, b1);
3703 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
3704 		gen_or(tmp, b1);
3705 		break;
3706 
3707 	default:
3708 		abort();
3709 	}
3710 	gen_and(b0, b1);
3711 	return b1;
3712 }
3713 
3714 #ifdef INET6
3715 struct block *
3716 gen_portop6(port, proto, dir)
3717 	int port, proto, dir;
3718 {
3719 	struct block *b0, *b1, *tmp;
3720 
3721 	/* ip6 proto 'proto' */
3722 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
3723 
3724 	switch (dir) {
3725 	case Q_SRC:
3726 		b1 = gen_portatom6(0, (bpf_int32)port);
3727 		break;
3728 
3729 	case Q_DST:
3730 		b1 = gen_portatom6(2, (bpf_int32)port);
3731 		break;
3732 
3733 	case Q_OR:
3734 	case Q_DEFAULT:
3735 		tmp = gen_portatom6(0, (bpf_int32)port);
3736 		b1 = gen_portatom6(2, (bpf_int32)port);
3737 		gen_or(tmp, b1);
3738 		break;
3739 
3740 	case Q_AND:
3741 		tmp = gen_portatom6(0, (bpf_int32)port);
3742 		b1 = gen_portatom6(2, (bpf_int32)port);
3743 		gen_and(tmp, b1);
3744 		break;
3745 
3746 	default:
3747 		abort();
3748 	}
3749 	gen_and(b0, b1);
3750 
3751 	return b1;
3752 }
3753 
3754 static struct block *
3755 gen_port6(port, ip_proto, dir)
3756 	int port;
3757 	int ip_proto;
3758 	int dir;
3759 {
3760 	struct block *b0, *b1, *tmp;
3761 
3762 	/* link proto ip6 */
3763 	b0 =  gen_linktype(ETHERTYPE_IPV6);
3764 
3765 	switch (ip_proto) {
3766 	case IPPROTO_UDP:
3767 	case IPPROTO_TCP:
3768 	case IPPROTO_SCTP:
3769 		b1 = gen_portop6(port, ip_proto, dir);
3770 		break;
3771 
3772 	case PROTO_UNDEF:
3773 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
3774 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
3775 		gen_or(tmp, b1);
3776 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
3777 		gen_or(tmp, b1);
3778 		break;
3779 
3780 	default:
3781 		abort();
3782 	}
3783 	gen_and(b0, b1);
3784 	return b1;
3785 }
3786 #endif /* INET6 */
3787 
3788 /* gen_portrange code */
3789 static struct block *
3790 gen_portrangeatom(off, v1, v2)
3791 	int off;
3792 	bpf_int32 v1, v2;
3793 {
3794 	struct block *b1, *b2;
3795 
3796 	if (v1 > v2) {
3797 		/*
3798 		 * Reverse the order of the ports, so v1 is the lower one.
3799 		 */
3800 		bpf_int32 vtemp;
3801 
3802 		vtemp = v1;
3803 		v1 = v2;
3804 		v2 = vtemp;
3805 	}
3806 
3807 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
3808 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
3809 
3810 	gen_and(b1, b2);
3811 
3812 	return b2;
3813 }
3814 
3815 struct block *
3816 gen_portrangeop(port1, port2, proto, dir)
3817 	int port1, port2;
3818 	int proto;
3819 	int dir;
3820 {
3821 	struct block *b0, *b1, *tmp;
3822 
3823 	/* ip proto 'proto' */
3824 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
3825 	b0 = gen_ipfrag();
3826 	gen_and(tmp, b0);
3827 
3828 	switch (dir) {
3829 	case Q_SRC:
3830 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
3831 		break;
3832 
3833 	case Q_DST:
3834 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
3835 		break;
3836 
3837 	case Q_OR:
3838 	case Q_DEFAULT:
3839 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
3840 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
3841 		gen_or(tmp, b1);
3842 		break;
3843 
3844 	case Q_AND:
3845 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
3846 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
3847 		gen_and(tmp, b1);
3848 		break;
3849 
3850 	default:
3851 		abort();
3852 	}
3853 	gen_and(b0, b1);
3854 
3855 	return b1;
3856 }
3857 
3858 static struct block *
3859 gen_portrange(port1, port2, ip_proto, dir)
3860 	int port1, port2;
3861 	int ip_proto;
3862 	int dir;
3863 {
3864 	struct block *b0, *b1, *tmp;
3865 
3866 	/* link proto ip */
3867 	b0 =  gen_linktype(ETHERTYPE_IP);
3868 
3869 	switch (ip_proto) {
3870 	case IPPROTO_UDP:
3871 	case IPPROTO_TCP:
3872 	case IPPROTO_SCTP:
3873 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
3874 		break;
3875 
3876 	case PROTO_UNDEF:
3877 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
3878 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
3879 		gen_or(tmp, b1);
3880 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
3881 		gen_or(tmp, b1);
3882 		break;
3883 
3884 	default:
3885 		abort();
3886 	}
3887 	gen_and(b0, b1);
3888 	return b1;
3889 }
3890 
3891 #ifdef INET6
3892 static struct block *
3893 gen_portrangeatom6(off, v1, v2)
3894 	int off;
3895 	bpf_int32 v1, v2;
3896 {
3897 	struct block *b1, *b2;
3898 
3899 	if (v1 > v2) {
3900 		/*
3901 		 * Reverse the order of the ports, so v1 is the lower one.
3902 		 */
3903 		bpf_int32 vtemp;
3904 
3905 		vtemp = v1;
3906 		v1 = v2;
3907 		v2 = vtemp;
3908 	}
3909 
3910 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
3911 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
3912 
3913 	gen_and(b1, b2);
3914 
3915 	return b2;
3916 }
3917 
3918 struct block *
3919 gen_portrangeop6(port1, port2, proto, dir)
3920 	int port1, port2;
3921 	int proto;
3922 	int dir;
3923 {
3924 	struct block *b0, *b1, *tmp;
3925 
3926 	/* ip6 proto 'proto' */
3927 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
3928 
3929 	switch (dir) {
3930 	case Q_SRC:
3931 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
3932 		break;
3933 
3934 	case Q_DST:
3935 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
3936 		break;
3937 
3938 	case Q_OR:
3939 	case Q_DEFAULT:
3940 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
3941 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
3942 		gen_or(tmp, b1);
3943 		break;
3944 
3945 	case Q_AND:
3946 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
3947 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
3948 		gen_and(tmp, b1);
3949 		break;
3950 
3951 	default:
3952 		abort();
3953 	}
3954 	gen_and(b0, b1);
3955 
3956 	return b1;
3957 }
3958 
3959 static struct block *
3960 gen_portrange6(port1, port2, ip_proto, dir)
3961 	int port1, port2;
3962 	int ip_proto;
3963 	int dir;
3964 {
3965 	struct block *b0, *b1, *tmp;
3966 
3967 	/* link proto ip6 */
3968 	b0 =  gen_linktype(ETHERTYPE_IPV6);
3969 
3970 	switch (ip_proto) {
3971 	case IPPROTO_UDP:
3972 	case IPPROTO_TCP:
3973 	case IPPROTO_SCTP:
3974 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
3975 		break;
3976 
3977 	case PROTO_UNDEF:
3978 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
3979 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
3980 		gen_or(tmp, b1);
3981 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
3982 		gen_or(tmp, b1);
3983 		break;
3984 
3985 	default:
3986 		abort();
3987 	}
3988 	gen_and(b0, b1);
3989 	return b1;
3990 }
3991 #endif /* INET6 */
3992 
3993 static int
3994 lookup_proto(name, proto)
3995 	register const char *name;
3996 	register int proto;
3997 {
3998 	register int v;
3999 
4000 	switch (proto) {
4001 
4002 	case Q_DEFAULT:
4003 	case Q_IP:
4004 	case Q_IPV6:
4005 		v = pcap_nametoproto(name);
4006 		if (v == PROTO_UNDEF)
4007 			bpf_error("unknown ip proto '%s'", name);
4008 		break;
4009 
4010 	case Q_LINK:
4011 		/* XXX should look up h/w protocol type based on linktype */
4012 		v = pcap_nametoeproto(name);
4013 		if (v == PROTO_UNDEF) {
4014 			v = pcap_nametollc(name);
4015 			if (v == PROTO_UNDEF)
4016 				bpf_error("unknown ether proto '%s'", name);
4017 		}
4018 		break;
4019 
4020 	case Q_ISO:
4021 		if (strcmp(name, "esis") == 0)
4022 			v = ISO9542_ESIS;
4023 		else if (strcmp(name, "isis") == 0)
4024 			v = ISO10589_ISIS;
4025 		else if (strcmp(name, "clnp") == 0)
4026 			v = ISO8473_CLNP;
4027 		else
4028 			bpf_error("unknown osi proto '%s'", name);
4029 		break;
4030 
4031 	default:
4032 		v = PROTO_UNDEF;
4033 		break;
4034 	}
4035 	return v;
4036 }
4037 
4038 #if 0
4039 struct stmt *
4040 gen_joinsp(s, n)
4041 	struct stmt **s;
4042 	int n;
4043 {
4044 	return NULL;
4045 }
4046 #endif
4047 
4048 static struct block *
4049 gen_protochain(v, proto, dir)
4050 	int v;
4051 	int proto;
4052 	int dir;
4053 {
4054 #ifdef NO_PROTOCHAIN
4055 	return gen_proto(v, proto, dir);
4056 #else
4057 	struct block *b0, *b;
4058 	struct slist *s[100];
4059 	int fix2, fix3, fix4, fix5;
4060 	int ahcheck, again, end;
4061 	int i, max;
4062 	int reg2 = alloc_reg();
4063 
4064 	memset(s, 0, sizeof(s));
4065 	fix2 = fix3 = fix4 = fix5 = 0;
4066 
4067 	switch (proto) {
4068 	case Q_IP:
4069 	case Q_IPV6:
4070 		break;
4071 	case Q_DEFAULT:
4072 		b0 = gen_protochain(v, Q_IP, dir);
4073 		b = gen_protochain(v, Q_IPV6, dir);
4074 		gen_or(b0, b);
4075 		return b;
4076 	default:
4077 		bpf_error("bad protocol applied for 'protochain'");
4078 		/*NOTREACHED*/
4079 	}
4080 
4081 	/*
4082 	 * We don't handle variable-length radiotap here headers yet.
4083 	 * We might want to add BPF instructions to do the protochain
4084 	 * work, to simplify that and, on platforms that have a BPF
4085 	 * interpreter with the new instructions, let the filtering
4086 	 * be done in the kernel.  (We already require a modified BPF
4087 	 * engine to do the protochain stuff, to support backward
4088 	 * branches, and backward branch support is unlikely to appear
4089 	 * in kernel BPF engines.)
4090 	 */
4091 	if (linktype == DLT_IEEE802_11_RADIO)
4092 		bpf_error("'protochain' not supported with radiotap headers");
4093 
4094 	no_optimize = 1; /*this code is not compatible with optimzer yet */
4095 
4096 	/*
4097 	 * s[0] is a dummy entry to protect other BPF insn from damage
4098 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
4099 	 * hard to find interdependency made by jump table fixup.
4100 	 */
4101 	i = 0;
4102 	s[i] = new_stmt(0);	/*dummy*/
4103 	i++;
4104 
4105 	switch (proto) {
4106 	case Q_IP:
4107 		b0 = gen_linktype(ETHERTYPE_IP);
4108 
4109 		/* A = ip->ip_p */
4110 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4111 		s[i]->s.k = off_nl + 9;
4112 		i++;
4113 		/* X = ip->ip_hl << 2 */
4114 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
4115 		s[i]->s.k = off_nl;
4116 		i++;
4117 		break;
4118 #ifdef INET6
4119 	case Q_IPV6:
4120 		b0 = gen_linktype(ETHERTYPE_IPV6);
4121 
4122 		/* A = ip6->ip_nxt */
4123 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4124 		s[i]->s.k = off_nl + 6;
4125 		i++;
4126 		/* X = sizeof(struct ip6_hdr) */
4127 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
4128 		s[i]->s.k = 40;
4129 		i++;
4130 		break;
4131 #endif
4132 	default:
4133 		bpf_error("unsupported proto to gen_protochain");
4134 		/*NOTREACHED*/
4135 	}
4136 
4137 	/* again: if (A == v) goto end; else fall through; */
4138 	again = i;
4139 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4140 	s[i]->s.k = v;
4141 	s[i]->s.jt = NULL;		/*later*/
4142 	s[i]->s.jf = NULL;		/*update in next stmt*/
4143 	fix5 = i;
4144 	i++;
4145 
4146 #ifndef IPPROTO_NONE
4147 #define IPPROTO_NONE	59
4148 #endif
4149 	/* if (A == IPPROTO_NONE) goto end */
4150 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4151 	s[i]->s.jt = NULL;	/*later*/
4152 	s[i]->s.jf = NULL;	/*update in next stmt*/
4153 	s[i]->s.k = IPPROTO_NONE;
4154 	s[fix5]->s.jf = s[i];
4155 	fix2 = i;
4156 	i++;
4157 
4158 #ifdef INET6
4159 	if (proto == Q_IPV6) {
4160 		int v6start, v6end, v6advance, j;
4161 
4162 		v6start = i;
4163 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
4164 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4165 		s[i]->s.jt = NULL;	/*later*/
4166 		s[i]->s.jf = NULL;	/*update in next stmt*/
4167 		s[i]->s.k = IPPROTO_HOPOPTS;
4168 		s[fix2]->s.jf = s[i];
4169 		i++;
4170 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
4171 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4172 		s[i]->s.jt = NULL;	/*later*/
4173 		s[i]->s.jf = NULL;	/*update in next stmt*/
4174 		s[i]->s.k = IPPROTO_DSTOPTS;
4175 		i++;
4176 		/* if (A == IPPROTO_ROUTING) goto v6advance */
4177 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4178 		s[i]->s.jt = NULL;	/*later*/
4179 		s[i]->s.jf = NULL;	/*update in next stmt*/
4180 		s[i]->s.k = IPPROTO_ROUTING;
4181 		i++;
4182 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
4183 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4184 		s[i]->s.jt = NULL;	/*later*/
4185 		s[i]->s.jf = NULL;	/*later*/
4186 		s[i]->s.k = IPPROTO_FRAGMENT;
4187 		fix3 = i;
4188 		v6end = i;
4189 		i++;
4190 
4191 		/* v6advance: */
4192 		v6advance = i;
4193 
4194 		/*
4195 		 * in short,
4196 		 * A = P[X];
4197 		 * X = X + (P[X + 1] + 1) * 8;
4198 		 */
4199 		/* A = X */
4200 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
4201 		i++;
4202 		/* A = P[X + packet head] */
4203 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4204 		s[i]->s.k = off_nl;
4205 		i++;
4206 		/* MEM[reg2] = A */
4207 		s[i] = new_stmt(BPF_ST);
4208 		s[i]->s.k = reg2;
4209 		i++;
4210 		/* A = X */
4211 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
4212 		i++;
4213 		/* A += 1 */
4214 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4215 		s[i]->s.k = 1;
4216 		i++;
4217 		/* X = A */
4218 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
4219 		i++;
4220 		/* A = P[X + packet head]; */
4221 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4222 		s[i]->s.k = off_nl;
4223 		i++;
4224 		/* A += 1 */
4225 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4226 		s[i]->s.k = 1;
4227 		i++;
4228 		/* A *= 8 */
4229 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4230 		s[i]->s.k = 8;
4231 		i++;
4232 		/* X = A; */
4233 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
4234 		i++;
4235 		/* A = MEM[reg2] */
4236 		s[i] = new_stmt(BPF_LD|BPF_MEM);
4237 		s[i]->s.k = reg2;
4238 		i++;
4239 
4240 		/* goto again; (must use BPF_JA for backward jump) */
4241 		s[i] = new_stmt(BPF_JMP|BPF_JA);
4242 		s[i]->s.k = again - i - 1;
4243 		s[i - 1]->s.jf = s[i];
4244 		i++;
4245 
4246 		/* fixup */
4247 		for (j = v6start; j <= v6end; j++)
4248 			s[j]->s.jt = s[v6advance];
4249 	} else
4250 #endif
4251 	{
4252 		/* nop */
4253 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4254 		s[i]->s.k = 0;
4255 		s[fix2]->s.jf = s[i];
4256 		i++;
4257 	}
4258 
4259 	/* ahcheck: */
4260 	ahcheck = i;
4261 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
4262 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4263 	s[i]->s.jt = NULL;	/*later*/
4264 	s[i]->s.jf = NULL;	/*later*/
4265 	s[i]->s.k = IPPROTO_AH;
4266 	if (fix3)
4267 		s[fix3]->s.jf = s[ahcheck];
4268 	fix4 = i;
4269 	i++;
4270 
4271 	/*
4272 	 * in short,
4273 	 * A = P[X];
4274 	 * X = X + (P[X + 1] + 2) * 4;
4275 	 */
4276 	/* A = X */
4277 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4278 	i++;
4279 	/* A = P[X + packet head]; */
4280 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4281 	s[i]->s.k = off_nl;
4282 	i++;
4283 	/* MEM[reg2] = A */
4284 	s[i] = new_stmt(BPF_ST);
4285 	s[i]->s.k = reg2;
4286 	i++;
4287 	/* A = X */
4288 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4289 	i++;
4290 	/* A += 1 */
4291 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4292 	s[i]->s.k = 1;
4293 	i++;
4294 	/* X = A */
4295 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
4296 	i++;
4297 	/* A = P[X + packet head] */
4298 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4299 	s[i]->s.k = off_nl;
4300 	i++;
4301 	/* A += 2 */
4302 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4303 	s[i]->s.k = 2;
4304 	i++;
4305 	/* A *= 4 */
4306 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4307 	s[i]->s.k = 4;
4308 	i++;
4309 	/* X = A; */
4310 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
4311 	i++;
4312 	/* A = MEM[reg2] */
4313 	s[i] = new_stmt(BPF_LD|BPF_MEM);
4314 	s[i]->s.k = reg2;
4315 	i++;
4316 
4317 	/* goto again; (must use BPF_JA for backward jump) */
4318 	s[i] = new_stmt(BPF_JMP|BPF_JA);
4319 	s[i]->s.k = again - i - 1;
4320 	i++;
4321 
4322 	/* end: nop */
4323 	end = i;
4324 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4325 	s[i]->s.k = 0;
4326 	s[fix2]->s.jt = s[end];
4327 	s[fix4]->s.jf = s[end];
4328 	s[fix5]->s.jt = s[end];
4329 	i++;
4330 
4331 	/*
4332 	 * make slist chain
4333 	 */
4334 	max = i;
4335 	for (i = 0; i < max - 1; i++)
4336 		s[i]->next = s[i + 1];
4337 	s[max - 1]->next = NULL;
4338 
4339 	/*
4340 	 * emit final check
4341 	 */
4342 	b = new_block(JMP(BPF_JEQ));
4343 	b->stmts = s[1];	/*remember, s[0] is dummy*/
4344 	b->s.k = v;
4345 
4346 	free_reg(reg2);
4347 
4348 	gen_and(b0, b);
4349 	return b;
4350 #endif
4351 }
4352 
4353 /*
4354  * Generate code that checks whether the packet is a packet for protocol
4355  * <proto> and whether the type field in that protocol's header has
4356  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
4357  * IP packet and checks the protocol number in the IP header against <v>.
4358  *
4359  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
4360  * against Q_IP and Q_IPV6.
4361  */
4362 static struct block *
4363 gen_proto(v, proto, dir)
4364 	int v;
4365 	int proto;
4366 	int dir;
4367 {
4368 	struct block *b0, *b1;
4369 
4370 	if (dir != Q_DEFAULT)
4371 		bpf_error("direction applied to 'proto'");
4372 
4373 	switch (proto) {
4374 	case Q_DEFAULT:
4375 #ifdef INET6
4376 		b0 = gen_proto(v, Q_IP, dir);
4377 		b1 = gen_proto(v, Q_IPV6, dir);
4378 		gen_or(b0, b1);
4379 		return b1;
4380 #else
4381 		/*FALLTHROUGH*/
4382 #endif
4383 	case Q_IP:
4384 		/*
4385 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4386 		 * not LLC encapsulation with LLCSAP_IP.
4387 		 *
4388 		 * For IEEE 802 networks - which includes 802.5 token ring
4389 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4390 		 * says that SNAP encapsulation is used, not LLC encapsulation
4391 		 * with LLCSAP_IP.
4392 		 *
4393 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4394 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
4395 		 * encapsulation with LLCSAP_IP.
4396 		 *
4397 		 * So we always check for ETHERTYPE_IP.
4398 		 */
4399 		b0 = gen_linktype(ETHERTYPE_IP);
4400 #ifndef CHASE_CHAIN
4401 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
4402 #else
4403 		b1 = gen_protochain(v, Q_IP);
4404 #endif
4405 		gen_and(b0, b1);
4406 		return b1;
4407 
4408 	case Q_ISO:
4409 		switch (linktype) {
4410 
4411 		case DLT_FRELAY:
4412 			/*
4413 			 * Frame Relay packets typically have an OSI
4414 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
4415 			 * generates code to check for all the OSI
4416 			 * NLPIDs, so calling it and then adding a check
4417 			 * for the particular NLPID for which we're
4418 			 * looking is bogus, as we can just check for
4419 			 * the NLPID.
4420 			 *
4421 			 * What we check for is the NLPID and a frame
4422 			 * control field value of UI, i.e. 0x03 followed
4423 			 * by the NLPID.
4424 			 *
4425 			 * XXX - assumes a 2-byte Frame Relay header with
4426 			 * DLCI and flags.  What if the address is longer?
4427 			 *
4428 			 * XXX - what about SNAP-encapsulated frames?
4429 			 */
4430 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
4431 			/*NOTREACHED*/
4432 			break;
4433 
4434 		case DLT_C_HDLC:
4435 			/*
4436 			 * Cisco uses an Ethertype lookalike - for OSI,
4437 			 * it's 0xfefe.
4438 			 */
4439 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
4440 			/* OSI in C-HDLC is stuffed with a fudge byte */
4441 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
4442 			gen_and(b0, b1);
4443 			return b1;
4444 
4445 		default:
4446 			b0 = gen_linktype(LLCSAP_ISONS);
4447 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
4448 			gen_and(b0, b1);
4449 			return b1;
4450 		}
4451 
4452 	case Q_ISIS:
4453 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4454 		/*
4455 		 * 4 is the offset of the PDU type relative to the IS-IS
4456 		 * header.
4457 		 */
4458 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
4459 		gen_and(b0, b1);
4460 		return b1;
4461 
4462 	case Q_ARP:
4463 		bpf_error("arp does not encapsulate another protocol");
4464 		/* NOTREACHED */
4465 
4466 	case Q_RARP:
4467 		bpf_error("rarp does not encapsulate another protocol");
4468 		/* NOTREACHED */
4469 
4470 	case Q_ATALK:
4471 		bpf_error("atalk encapsulation is not specifiable");
4472 		/* NOTREACHED */
4473 
4474 	case Q_DECNET:
4475 		bpf_error("decnet encapsulation is not specifiable");
4476 		/* NOTREACHED */
4477 
4478 	case Q_SCA:
4479 		bpf_error("sca does not encapsulate another protocol");
4480 		/* NOTREACHED */
4481 
4482 	case Q_LAT:
4483 		bpf_error("lat does not encapsulate another protocol");
4484 		/* NOTREACHED */
4485 
4486 	case Q_MOPRC:
4487 		bpf_error("moprc does not encapsulate another protocol");
4488 		/* NOTREACHED */
4489 
4490 	case Q_MOPDL:
4491 		bpf_error("mopdl does not encapsulate another protocol");
4492 		/* NOTREACHED */
4493 
4494 	case Q_LINK:
4495 		return gen_linktype(v);
4496 
4497 	case Q_UDP:
4498 		bpf_error("'udp proto' is bogus");
4499 		/* NOTREACHED */
4500 
4501 	case Q_TCP:
4502 		bpf_error("'tcp proto' is bogus");
4503 		/* NOTREACHED */
4504 
4505 	case Q_SCTP:
4506 		bpf_error("'sctp proto' is bogus");
4507 		/* NOTREACHED */
4508 
4509 	case Q_ICMP:
4510 		bpf_error("'icmp proto' is bogus");
4511 		/* NOTREACHED */
4512 
4513 	case Q_IGMP:
4514 		bpf_error("'igmp proto' is bogus");
4515 		/* NOTREACHED */
4516 
4517 	case Q_IGRP:
4518 		bpf_error("'igrp proto' is bogus");
4519 		/* NOTREACHED */
4520 
4521 	case Q_PIM:
4522 		bpf_error("'pim proto' is bogus");
4523 		/* NOTREACHED */
4524 
4525 	case Q_VRRP:
4526 		bpf_error("'vrrp proto' is bogus");
4527 		/* NOTREACHED */
4528 
4529 #ifdef INET6
4530 	case Q_IPV6:
4531 		b0 = gen_linktype(ETHERTYPE_IPV6);
4532 #ifndef CHASE_CHAIN
4533 		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
4534 #else
4535 		b1 = gen_protochain(v, Q_IPV6);
4536 #endif
4537 		gen_and(b0, b1);
4538 		return b1;
4539 
4540 	case Q_ICMPV6:
4541 		bpf_error("'icmp6 proto' is bogus");
4542 #endif /* INET6 */
4543 
4544 	case Q_AH:
4545 		bpf_error("'ah proto' is bogus");
4546 
4547 	case Q_ESP:
4548 		bpf_error("'ah proto' is bogus");
4549 
4550 	case Q_STP:
4551 		bpf_error("'stp proto' is bogus");
4552 
4553 	case Q_IPX:
4554 		bpf_error("'ipx proto' is bogus");
4555 
4556 	case Q_NETBEUI:
4557 		bpf_error("'netbeui proto' is bogus");
4558 
4559 	case Q_RADIO:
4560 		bpf_error("'radio proto' is bogus");
4561 
4562 	default:
4563 		abort();
4564 		/* NOTREACHED */
4565 	}
4566 	/* NOTREACHED */
4567 }
4568 
4569 struct block *
4570 gen_scode(name, q)
4571 	register const char *name;
4572 	struct qual q;
4573 {
4574 	int proto = q.proto;
4575 	int dir = q.dir;
4576 	int tproto;
4577 	u_char *eaddr;
4578 	bpf_u_int32 mask, addr;
4579 #ifndef INET6
4580 	bpf_u_int32 **alist;
4581 #else
4582 	int tproto6;
4583 	struct sockaddr_in *sin;
4584 	struct sockaddr_in6 *sin6;
4585 	struct addrinfo *res, *res0;
4586 	struct in6_addr mask128;
4587 #endif /*INET6*/
4588 	struct block *b, *tmp;
4589 	int port, real_proto;
4590 	int port1, port2;
4591 
4592 	switch (q.addr) {
4593 
4594 	case Q_NET:
4595 		addr = pcap_nametonetaddr(name);
4596 		if (addr == 0)
4597 			bpf_error("unknown network '%s'", name);
4598 		/* Left justify network addr and calculate its network mask */
4599 		mask = 0xffffffff;
4600 		while (addr && (addr & 0xff000000) == 0) {
4601 			addr <<= 8;
4602 			mask <<= 8;
4603 		}
4604 		return gen_host(addr, mask, proto, dir);
4605 
4606 	case Q_DEFAULT:
4607 	case Q_HOST:
4608 		if (proto == Q_LINK) {
4609 			switch (linktype) {
4610 
4611 			case DLT_EN10MB:
4612 				eaddr = pcap_ether_hostton(name);
4613 				if (eaddr == NULL)
4614 					bpf_error(
4615 					    "unknown ether host '%s'", name);
4616 				b = gen_ehostop(eaddr, dir);
4617 				free(eaddr);
4618 				return b;
4619 
4620 			case DLT_FDDI:
4621 				eaddr = pcap_ether_hostton(name);
4622 				if (eaddr == NULL)
4623 					bpf_error(
4624 					    "unknown FDDI host '%s'", name);
4625 				b = gen_fhostop(eaddr, dir);
4626 				free(eaddr);
4627 				return b;
4628 
4629 			case DLT_IEEE802:
4630 				eaddr = pcap_ether_hostton(name);
4631 				if (eaddr == NULL)
4632 					bpf_error(
4633 					    "unknown token ring host '%s'", name);
4634 				b = gen_thostop(eaddr, dir);
4635 				free(eaddr);
4636 				return b;
4637 
4638 			case DLT_IEEE802_11:
4639 			case DLT_IEEE802_11_RADIO_AVS:
4640 			case DLT_IEEE802_11_RADIO:
4641 			case DLT_PRISM_HEADER:
4642 				eaddr = pcap_ether_hostton(name);
4643 				if (eaddr == NULL)
4644 					bpf_error(
4645 					    "unknown 802.11 host '%s'", name);
4646 				b = gen_wlanhostop(eaddr, dir);
4647 				free(eaddr);
4648 				return b;
4649 
4650 			case DLT_IP_OVER_FC:
4651 				eaddr = pcap_ether_hostton(name);
4652 				if (eaddr == NULL)
4653 					bpf_error(
4654 					    "unknown Fibre Channel host '%s'", name);
4655 				b = gen_ipfchostop(eaddr, dir);
4656 				free(eaddr);
4657 				return b;
4658 
4659 			case DLT_SUNATM:
4660 				if (!is_lane)
4661 					break;
4662 
4663 				/*
4664 				 * Check that the packet doesn't begin
4665 				 * with an LE Control marker.  (We've
4666 				 * already generated a test for LANE.)
4667 				 */
4668 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4669 				    BPF_H, 0xFF00);
4670 				gen_not(tmp);
4671 
4672 				eaddr = pcap_ether_hostton(name);
4673 				if (eaddr == NULL)
4674 					bpf_error(
4675 					    "unknown ether host '%s'", name);
4676 				b = gen_ehostop(eaddr, dir);
4677 				gen_and(tmp, b);
4678 				free(eaddr);
4679 				return b;
4680 			}
4681 
4682 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
4683 		} else if (proto == Q_DECNET) {
4684 			unsigned short dn_addr = __pcap_nametodnaddr(name);
4685 			/*
4686 			 * I don't think DECNET hosts can be multihomed, so
4687 			 * there is no need to build up a list of addresses
4688 			 */
4689 			return (gen_host(dn_addr, 0, proto, dir));
4690 		} else {
4691 #ifndef INET6
4692 			alist = pcap_nametoaddr(name);
4693 			if (alist == NULL || *alist == NULL)
4694 				bpf_error("unknown host '%s'", name);
4695 			tproto = proto;
4696 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
4697 				tproto = Q_IP;
4698 			b = gen_host(**alist++, 0xffffffff, tproto, dir);
4699 			while (*alist) {
4700 				tmp = gen_host(**alist++, 0xffffffff,
4701 					       tproto, dir);
4702 				gen_or(b, tmp);
4703 				b = tmp;
4704 			}
4705 			return b;
4706 #else
4707 			memset(&mask128, 0xff, sizeof(mask128));
4708 			res0 = res = pcap_nametoaddrinfo(name);
4709 			if (res == NULL)
4710 				bpf_error("unknown host '%s'", name);
4711 			b = tmp = NULL;
4712 			tproto = tproto6 = proto;
4713 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
4714 				tproto = Q_IP;
4715 				tproto6 = Q_IPV6;
4716 			}
4717 			for (res = res0; res; res = res->ai_next) {
4718 				switch (res->ai_family) {
4719 				case AF_INET:
4720 					if (tproto == Q_IPV6)
4721 						continue;
4722 
4723 					sin = (struct sockaddr_in *)
4724 						res->ai_addr;
4725 					tmp = gen_host(ntohl(sin->sin_addr.s_addr),
4726 						0xffffffff, tproto, dir);
4727 					break;
4728 				case AF_INET6:
4729 					if (tproto6 == Q_IP)
4730 						continue;
4731 
4732 					sin6 = (struct sockaddr_in6 *)
4733 						res->ai_addr;
4734 					tmp = gen_host6(&sin6->sin6_addr,
4735 						&mask128, tproto6, dir);
4736 					break;
4737 				default:
4738 					continue;
4739 				}
4740 				if (b)
4741 					gen_or(b, tmp);
4742 				b = tmp;
4743 			}
4744 			freeaddrinfo(res0);
4745 			if (b == NULL) {
4746 				bpf_error("unknown host '%s'%s", name,
4747 				    (proto == Q_DEFAULT)
4748 					? ""
4749 					: " for specified address family");
4750 			}
4751 			return b;
4752 #endif /*INET6*/
4753 		}
4754 
4755 	case Q_PORT:
4756 		if (proto != Q_DEFAULT &&
4757 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
4758 			bpf_error("illegal qualifier of 'port'");
4759 		if (pcap_nametoport(name, &port, &real_proto) == 0)
4760 			bpf_error("unknown port '%s'", name);
4761 		if (proto == Q_UDP) {
4762 			if (real_proto == IPPROTO_TCP)
4763 				bpf_error("port '%s' is tcp", name);
4764 			else if (real_proto == IPPROTO_SCTP)
4765 				bpf_error("port '%s' is sctp", name);
4766 			else
4767 				/* override PROTO_UNDEF */
4768 				real_proto = IPPROTO_UDP;
4769 		}
4770 		if (proto == Q_TCP) {
4771 			if (real_proto == IPPROTO_UDP)
4772 				bpf_error("port '%s' is udp", name);
4773 
4774 			else if (real_proto == IPPROTO_SCTP)
4775 				bpf_error("port '%s' is sctp", name);
4776 			else
4777 				/* override PROTO_UNDEF */
4778 				real_proto = IPPROTO_TCP;
4779 		}
4780 		if (proto == Q_SCTP) {
4781 			if (real_proto == IPPROTO_UDP)
4782 				bpf_error("port '%s' is udp", name);
4783 
4784 			else if (real_proto == IPPROTO_TCP)
4785 				bpf_error("port '%s' is tcp", name);
4786 			else
4787 				/* override PROTO_UNDEF */
4788 				real_proto = IPPROTO_SCTP;
4789 		}
4790 #ifndef INET6
4791 		return gen_port(port, real_proto, dir);
4792 #else
4793 	    {
4794 		struct block *b;
4795 		b = gen_port(port, real_proto, dir);
4796 		gen_or(gen_port6(port, real_proto, dir), b);
4797 		return b;
4798 	    }
4799 #endif /* INET6 */
4800 
4801 	case Q_PORTRANGE:
4802 		if (proto != Q_DEFAULT &&
4803 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
4804 			bpf_error("illegal qualifier of 'portrange'");
4805 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
4806 			bpf_error("unknown port in range '%s'", name);
4807 		if (proto == Q_UDP) {
4808 			if (real_proto == IPPROTO_TCP)
4809 				bpf_error("port in range '%s' is tcp", name);
4810 			else if (real_proto == IPPROTO_SCTP)
4811 				bpf_error("port in range '%s' is sctp", name);
4812 			else
4813 				/* override PROTO_UNDEF */
4814 				real_proto = IPPROTO_UDP;
4815 		}
4816 		if (proto == Q_TCP) {
4817 			if (real_proto == IPPROTO_UDP)
4818 				bpf_error("port in range '%s' is udp", name);
4819 			else if (real_proto == IPPROTO_SCTP)
4820 				bpf_error("port in range '%s' is sctp", name);
4821 			else
4822 				/* override PROTO_UNDEF */
4823 				real_proto = IPPROTO_TCP;
4824 		}
4825 		if (proto == Q_SCTP) {
4826 			if (real_proto == IPPROTO_UDP)
4827 				bpf_error("port in range '%s' is udp", name);
4828 			else if (real_proto == IPPROTO_TCP)
4829 				bpf_error("port in range '%s' is tcp", name);
4830 			else
4831 				/* override PROTO_UNDEF */
4832 				real_proto = IPPROTO_SCTP;
4833 		}
4834 #ifndef INET6
4835 		return gen_portrange(port1, port2, real_proto, dir);
4836 #else
4837 	    {
4838 		struct block *b;
4839 		b = gen_portrange(port1, port2, real_proto, dir);
4840 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
4841 		return b;
4842 	    }
4843 #endif /* INET6 */
4844 
4845 	case Q_GATEWAY:
4846 #ifndef INET6
4847 		eaddr = pcap_ether_hostton(name);
4848 		if (eaddr == NULL)
4849 			bpf_error("unknown ether host: %s", name);
4850 
4851 		alist = pcap_nametoaddr(name);
4852 		if (alist == NULL || *alist == NULL)
4853 			bpf_error("unknown host '%s'", name);
4854 		b = gen_gateway(eaddr, alist, proto, dir);
4855 		free(eaddr);
4856 		return b;
4857 #else
4858 		bpf_error("'gateway' not supported in this configuration");
4859 #endif /*INET6*/
4860 
4861 	case Q_PROTO:
4862 		real_proto = lookup_proto(name, proto);
4863 		if (real_proto >= 0)
4864 			return gen_proto(real_proto, proto, dir);
4865 		else
4866 			bpf_error("unknown protocol: %s", name);
4867 
4868 	case Q_PROTOCHAIN:
4869 		real_proto = lookup_proto(name, proto);
4870 		if (real_proto >= 0)
4871 			return gen_protochain(real_proto, proto, dir);
4872 		else
4873 			bpf_error("unknown protocol: %s", name);
4874 
4875 
4876 	case Q_UNDEF:
4877 		syntax();
4878 		/* NOTREACHED */
4879 	}
4880 	abort();
4881 	/* NOTREACHED */
4882 }
4883 
4884 struct block *
4885 gen_mcode(s1, s2, masklen, q)
4886 	register const char *s1, *s2;
4887 	register int masklen;
4888 	struct qual q;
4889 {
4890 	register int nlen, mlen;
4891 	bpf_u_int32 n, m;
4892 
4893 	nlen = __pcap_atoin(s1, &n);
4894 	/* Promote short ipaddr */
4895 	n <<= 32 - nlen;
4896 
4897 	if (s2 != NULL) {
4898 		mlen = __pcap_atoin(s2, &m);
4899 		/* Promote short ipaddr */
4900 		m <<= 32 - mlen;
4901 		if ((n & ~m) != 0)
4902 			bpf_error("non-network bits set in \"%s mask %s\"",
4903 			    s1, s2);
4904 	} else {
4905 		/* Convert mask len to mask */
4906 		if (masklen > 32)
4907 			bpf_error("mask length must be <= 32");
4908 		m = 0xffffffff << (32 - masklen);
4909 		if ((n & ~m) != 0)
4910 			bpf_error("non-network bits set in \"%s/%d\"",
4911 			    s1, masklen);
4912 	}
4913 
4914 	switch (q.addr) {
4915 
4916 	case Q_NET:
4917 		return gen_host(n, m, q.proto, q.dir);
4918 
4919 	default:
4920 		bpf_error("Mask syntax for networks only");
4921 		/* NOTREACHED */
4922 	}
4923 	/* NOTREACHED */
4924 }
4925 
4926 struct block *
4927 gen_ncode(s, v, q)
4928 	register const char *s;
4929 	bpf_u_int32 v;
4930 	struct qual q;
4931 {
4932 	bpf_u_int32 mask;
4933 	int proto = q.proto;
4934 	int dir = q.dir;
4935 	register int vlen;
4936 
4937 	if (s == NULL)
4938 		vlen = 32;
4939 	else if (q.proto == Q_DECNET)
4940 		vlen = __pcap_atodn(s, &v);
4941 	else
4942 		vlen = __pcap_atoin(s, &v);
4943 
4944 	switch (q.addr) {
4945 
4946 	case Q_DEFAULT:
4947 	case Q_HOST:
4948 	case Q_NET:
4949 		if (proto == Q_DECNET)
4950 			return gen_host(v, 0, proto, dir);
4951 		else if (proto == Q_LINK) {
4952 			bpf_error("illegal link layer address");
4953 		} else {
4954 			mask = 0xffffffff;
4955 			if (s == NULL && q.addr == Q_NET) {
4956 				/* Promote short net number */
4957 				while (v && (v & 0xff000000) == 0) {
4958 					v <<= 8;
4959 					mask <<= 8;
4960 				}
4961 			} else {
4962 				/* Promote short ipaddr */
4963 				v <<= 32 - vlen;
4964 				mask <<= 32 - vlen;
4965 			}
4966 			return gen_host(v, mask, proto, dir);
4967 		}
4968 
4969 	case Q_PORT:
4970 		if (proto == Q_UDP)
4971 			proto = IPPROTO_UDP;
4972 		else if (proto == Q_TCP)
4973 			proto = IPPROTO_TCP;
4974 		else if (proto == Q_SCTP)
4975 			proto = IPPROTO_SCTP;
4976 		else if (proto == Q_DEFAULT)
4977 			proto = PROTO_UNDEF;
4978 		else
4979 			bpf_error("illegal qualifier of 'port'");
4980 
4981 #ifndef INET6
4982 		return gen_port((int)v, proto, dir);
4983 #else
4984 	    {
4985 		struct block *b;
4986 		b = gen_port((int)v, proto, dir);
4987 		gen_or(gen_port6((int)v, proto, dir), b);
4988 		return b;
4989 	    }
4990 #endif /* INET6 */
4991 
4992 	case Q_PORTRANGE:
4993 		if (proto == Q_UDP)
4994 			proto = IPPROTO_UDP;
4995 		else if (proto == Q_TCP)
4996 			proto = IPPROTO_TCP;
4997 		else if (proto == Q_SCTP)
4998 			proto = IPPROTO_SCTP;
4999 		else if (proto == Q_DEFAULT)
5000 			proto = PROTO_UNDEF;
5001 		else
5002 			bpf_error("illegal qualifier of 'portrange'");
5003 
5004 #ifndef INET6
5005 		return gen_portrange((int)v, (int)v, proto, dir);
5006 #else
5007 	    {
5008 		struct block *b;
5009 		b = gen_portrange((int)v, (int)v, proto, dir);
5010 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
5011 		return b;
5012 	    }
5013 #endif /* INET6 */
5014 
5015 	case Q_GATEWAY:
5016 		bpf_error("'gateway' requires a name");
5017 		/* NOTREACHED */
5018 
5019 	case Q_PROTO:
5020 		return gen_proto((int)v, proto, dir);
5021 
5022 	case Q_PROTOCHAIN:
5023 		return gen_protochain((int)v, proto, dir);
5024 
5025 	case Q_UNDEF:
5026 		syntax();
5027 		/* NOTREACHED */
5028 
5029 	default:
5030 		abort();
5031 		/* NOTREACHED */
5032 	}
5033 	/* NOTREACHED */
5034 }
5035 
5036 #ifdef INET6
5037 struct block *
5038 gen_mcode6(s1, s2, masklen, q)
5039 	register const char *s1, *s2;
5040 	register int masklen;
5041 	struct qual q;
5042 {
5043 	struct addrinfo *res;
5044 	struct in6_addr *addr;
5045 	struct in6_addr mask;
5046 	struct block *b;
5047 	u_int32_t *a, *m;
5048 
5049 	if (s2)
5050 		bpf_error("no mask %s supported", s2);
5051 
5052 	res = pcap_nametoaddrinfo(s1);
5053 	if (!res)
5054 		bpf_error("invalid ip6 address %s", s1);
5055 	if (res->ai_next)
5056 		bpf_error("%s resolved to multiple address", s1);
5057 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
5058 
5059 	if (sizeof(mask) * 8 < masklen)
5060 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
5061 	memset(&mask, 0, sizeof(mask));
5062 	memset(&mask, 0xff, masklen / 8);
5063 	if (masklen % 8) {
5064 		mask.s6_addr[masklen / 8] =
5065 			(0xff << (8 - masklen % 8)) & 0xff;
5066 	}
5067 
5068 	a = (u_int32_t *)addr;
5069 	m = (u_int32_t *)&mask;
5070 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
5071 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
5072 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
5073 	}
5074 
5075 	switch (q.addr) {
5076 
5077 	case Q_DEFAULT:
5078 	case Q_HOST:
5079 		if (masklen != 128)
5080 			bpf_error("Mask syntax for networks only");
5081 		/* FALLTHROUGH */
5082 
5083 	case Q_NET:
5084 		b = gen_host6(addr, &mask, q.proto, q.dir);
5085 		freeaddrinfo(res);
5086 		return b;
5087 
5088 	default:
5089 		bpf_error("invalid qualifier against IPv6 address");
5090 		/* NOTREACHED */
5091 	}
5092 }
5093 #endif /*INET6*/
5094 
5095 struct block *
5096 gen_ecode(eaddr, q)
5097 	register const u_char *eaddr;
5098 	struct qual q;
5099 {
5100 	struct block *b, *tmp;
5101 
5102 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
5103 		if (linktype == DLT_EN10MB)
5104 			return gen_ehostop(eaddr, (int)q.dir);
5105 		if (linktype == DLT_FDDI)
5106 			return gen_fhostop(eaddr, (int)q.dir);
5107 		if (linktype == DLT_IEEE802)
5108 			return gen_thostop(eaddr, (int)q.dir);
5109 		if (linktype == DLT_IEEE802_11 ||
5110 		    linktype == DLT_IEEE802_11_RADIO_AVS ||
5111 		    linktype == DLT_IEEE802_11_RADIO ||
5112 		    linktype == DLT_PRISM_HEADER)
5113 			return gen_wlanhostop(eaddr, (int)q.dir);
5114 		if (linktype == DLT_SUNATM && is_lane) {
5115 			/*
5116 			 * Check that the packet doesn't begin with an
5117 			 * LE Control marker.  (We've already generated
5118 			 * a test for LANE.)
5119 			 */
5120 			tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5121 			    0xFF00);
5122 			gen_not(tmp);
5123 
5124 			/*
5125 			 * Now check the MAC address.
5126 			 */
5127 			b = gen_ehostop(eaddr, (int)q.dir);
5128 			gen_and(tmp, b);
5129 			return b;
5130 		}
5131 		if (linktype == DLT_IP_OVER_FC)
5132 			return gen_ipfchostop(eaddr, (int)q.dir);
5133 		bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5134 	}
5135 	bpf_error("ethernet address used in non-ether expression");
5136 	/* NOTREACHED */
5137 }
5138 
5139 void
5140 sappend(s0, s1)
5141 	struct slist *s0, *s1;
5142 {
5143 	/*
5144 	 * This is definitely not the best way to do this, but the
5145 	 * lists will rarely get long.
5146 	 */
5147 	while (s0->next)
5148 		s0 = s0->next;
5149 	s0->next = s1;
5150 }
5151 
5152 static struct slist *
5153 xfer_to_x(a)
5154 	struct arth *a;
5155 {
5156 	struct slist *s;
5157 
5158 	s = new_stmt(BPF_LDX|BPF_MEM);
5159 	s->s.k = a->regno;
5160 	return s;
5161 }
5162 
5163 static struct slist *
5164 xfer_to_a(a)
5165 	struct arth *a;
5166 {
5167 	struct slist *s;
5168 
5169 	s = new_stmt(BPF_LD|BPF_MEM);
5170 	s->s.k = a->regno;
5171 	return s;
5172 }
5173 
5174 /*
5175  * Modify "index" to use the value stored into its register as an
5176  * offset relative to the beginning of the header for the protocol
5177  * "proto", and allocate a register and put an item "size" bytes long
5178  * (1, 2, or 4) at that offset into that register, making it the register
5179  * for "index".
5180  */
5181 struct arth *
5182 gen_load(proto, index, size)
5183 	int proto;
5184 	struct arth *index;
5185 	int size;
5186 {
5187 	struct slist *s, *tmp;
5188 	struct block *b;
5189 	int regno = alloc_reg();
5190 
5191 	free_reg(index->regno);
5192 	switch (size) {
5193 
5194 	default:
5195 		bpf_error("data size must be 1, 2, or 4");
5196 
5197 	case 1:
5198 		size = BPF_B;
5199 		break;
5200 
5201 	case 2:
5202 		size = BPF_H;
5203 		break;
5204 
5205 	case 4:
5206 		size = BPF_W;
5207 		break;
5208 	}
5209 	switch (proto) {
5210 	default:
5211 		bpf_error("unsupported index operation");
5212 
5213 	case Q_RADIO:
5214 		/*
5215 		 * The offset is relative to the beginning of the packet
5216 		 * data, if we have a radio header.  (If we don't, this
5217 		 * is an error.)
5218 		 */
5219 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
5220 		    linktype != DLT_IEEE802_11_RADIO &&
5221 		    linktype != DLT_PRISM_HEADER)
5222 			bpf_error("radio information not present in capture");
5223 
5224 		/*
5225 		 * Load into the X register the offset computed into the
5226 		 * register specifed by "index".
5227 		 */
5228 		s = xfer_to_x(index);
5229 
5230 		/*
5231 		 * Load the item at that offset.
5232 		 */
5233 		tmp = new_stmt(BPF_LD|BPF_IND|size);
5234 		sappend(s, tmp);
5235 		sappend(index->s, s);
5236 		break;
5237 
5238 	case Q_LINK:
5239 		/*
5240 		 * The offset is relative to the beginning of
5241 		 * the link-layer header.
5242 		 *
5243 		 * XXX - what about ATM LANE?  Should the index be
5244 		 * relative to the beginning of the AAL5 frame, so
5245 		 * that 0 refers to the beginning of the LE Control
5246 		 * field, or relative to the beginning of the LAN
5247 		 * frame, so that 0 refers, for Ethernet LANE, to
5248 		 * the beginning of the destination address?
5249 		 */
5250 		s = gen_llprefixlen();
5251 
5252 		/*
5253 		 * If "s" is non-null, it has code to arrange that the
5254 		 * X register contains the length of the prefix preceding
5255 		 * the link-layer header.  Add to it the offset computed
5256 		 * into the register specified by "index", and move that
5257 		 * into the X register.  Otherwise, just load into the X
5258 		 * register the offset computed into the register specifed
5259 		 * by "index".
5260 		 */
5261 		if (s != NULL) {
5262 			sappend(s, xfer_to_a(index));
5263 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5264 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5265 		} else
5266 			s = xfer_to_x(index);
5267 
5268 		/*
5269 		 * Load the item at the sum of the offset we've put in the
5270 		 * X register and the offset of the start of the link
5271 		 * layer header (which is 0 if the radio header is
5272 		 * variable-length; that header length is what we put
5273 		 * into the X register and then added to the index).
5274 		 */
5275 		tmp = new_stmt(BPF_LD|BPF_IND|size);
5276 		tmp->s.k = off_ll;
5277 		sappend(s, tmp);
5278 		sappend(index->s, s);
5279 		break;
5280 
5281 	case Q_IP:
5282 	case Q_ARP:
5283 	case Q_RARP:
5284 	case Q_ATALK:
5285 	case Q_DECNET:
5286 	case Q_SCA:
5287 	case Q_LAT:
5288 	case Q_MOPRC:
5289 	case Q_MOPDL:
5290 #ifdef INET6
5291 	case Q_IPV6:
5292 #endif
5293 		/*
5294 		 * The offset is relative to the beginning of
5295 		 * the network-layer header.
5296 		 * XXX - are there any cases where we want
5297 		 * off_nl_nosnap?
5298 		 */
5299 		s = gen_llprefixlen();
5300 
5301 		/*
5302 		 * If "s" is non-null, it has code to arrange that the
5303 		 * X register contains the length of the prefix preceding
5304 		 * the link-layer header.  Add to it the offset computed
5305 		 * into the register specified by "index", and move that
5306 		 * into the X register.  Otherwise, just load into the X
5307 		 * register the offset computed into the register specifed
5308 		 * by "index".
5309 		 */
5310 		if (s != NULL) {
5311 			sappend(s, xfer_to_a(index));
5312 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5313 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5314 		} else
5315 			s = xfer_to_x(index);
5316 
5317 		/*
5318 		 * Load the item at the sum of the offset we've put in the
5319 		 * X register and the offset of the start of the network
5320 		 * layer header.
5321 		 */
5322 		tmp = new_stmt(BPF_LD|BPF_IND|size);
5323 		tmp->s.k = off_nl;
5324 		sappend(s, tmp);
5325 		sappend(index->s, s);
5326 
5327 		/*
5328 		 * Do the computation only if the packet contains
5329 		 * the protocol in question.
5330 		 */
5331 		b = gen_proto_abbrev(proto);
5332 		if (index->b)
5333 			gen_and(index->b, b);
5334 		index->b = b;
5335 		break;
5336 
5337 	case Q_SCTP:
5338 	case Q_TCP:
5339 	case Q_UDP:
5340 	case Q_ICMP:
5341 	case Q_IGMP:
5342 	case Q_IGRP:
5343 	case Q_PIM:
5344 	case Q_VRRP:
5345 		/*
5346 		 * The offset is relative to the beginning of
5347 		 * the transport-layer header.
5348 		 * XXX - are there any cases where we want
5349 		 * off_nl_nosnap?
5350 		 * XXX - we should, if we're built with
5351 		 * IPv6 support, generate code to load either
5352 		 * IPv4, IPv6, or both, as appropriate.
5353 		 */
5354 		s = gen_loadx_iphdrlen();
5355 
5356 		/*
5357 		 * The X register now contains the sum of the offset
5358 		 * of the beginning of the link-layer header and
5359 		 * the length of the network-layer header.  Load
5360 		 * into the A register the offset relative to
5361 		 * the beginning of the transport layer header,
5362 		 * add the X register to that, move that to the
5363 		 * X register, and load with an offset from the
5364 		 * X register equal to the offset of the network
5365 		 * layer header relative to the beginning of
5366 		 * the link-layer header.
5367 		 */
5368 		sappend(s, xfer_to_a(index));
5369 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5370 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5371 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
5372 		tmp->s.k = off_nl;
5373 		sappend(index->s, s);
5374 
5375 		/*
5376 		 * Do the computation only if the packet contains
5377 		 * the protocol in question - which is true only
5378 		 * if this is an IP datagram and is the first or
5379 		 * only fragment of that datagram.
5380 		 */
5381 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
5382 		if (index->b)
5383 			gen_and(index->b, b);
5384 #ifdef INET6
5385 		gen_and(gen_proto_abbrev(Q_IP), b);
5386 #endif
5387 		index->b = b;
5388 		break;
5389 #ifdef INET6
5390 	case Q_ICMPV6:
5391 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
5392 		/*NOTREACHED*/
5393 #endif
5394 	}
5395 	index->regno = regno;
5396 	s = new_stmt(BPF_ST);
5397 	s->s.k = regno;
5398 	sappend(index->s, s);
5399 
5400 	return index;
5401 }
5402 
5403 struct block *
5404 gen_relation(code, a0, a1, reversed)
5405 	int code;
5406 	struct arth *a0, *a1;
5407 	int reversed;
5408 {
5409 	struct slist *s0, *s1, *s2;
5410 	struct block *b, *tmp;
5411 
5412 	s0 = xfer_to_x(a1);
5413 	s1 = xfer_to_a(a0);
5414 	if (code == BPF_JEQ) {
5415 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
5416 		b = new_block(JMP(code));
5417 		sappend(s1, s2);
5418 	}
5419 	else
5420 		b = new_block(BPF_JMP|code|BPF_X);
5421 	if (reversed)
5422 		gen_not(b);
5423 
5424 	sappend(s0, s1);
5425 	sappend(a1->s, s0);
5426 	sappend(a0->s, a1->s);
5427 
5428 	b->stmts = a0->s;
5429 
5430 	free_reg(a0->regno);
5431 	free_reg(a1->regno);
5432 
5433 	/* 'and' together protocol checks */
5434 	if (a0->b) {
5435 		if (a1->b) {
5436 			gen_and(a0->b, tmp = a1->b);
5437 		}
5438 		else
5439 			tmp = a0->b;
5440 	} else
5441 		tmp = a1->b;
5442 
5443 	if (tmp)
5444 		gen_and(tmp, b);
5445 
5446 	return b;
5447 }
5448 
5449 struct arth *
5450 gen_loadlen()
5451 {
5452 	int regno = alloc_reg();
5453 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
5454 	struct slist *s;
5455 
5456 	s = new_stmt(BPF_LD|BPF_LEN);
5457 	s->next = new_stmt(BPF_ST);
5458 	s->next->s.k = regno;
5459 	a->s = s;
5460 	a->regno = regno;
5461 
5462 	return a;
5463 }
5464 
5465 struct arth *
5466 gen_loadi(val)
5467 	int val;
5468 {
5469 	struct arth *a;
5470 	struct slist *s;
5471 	int reg;
5472 
5473 	a = (struct arth *)newchunk(sizeof(*a));
5474 
5475 	reg = alloc_reg();
5476 
5477 	s = new_stmt(BPF_LD|BPF_IMM);
5478 	s->s.k = val;
5479 	s->next = new_stmt(BPF_ST);
5480 	s->next->s.k = reg;
5481 	a->s = s;
5482 	a->regno = reg;
5483 
5484 	return a;
5485 }
5486 
5487 struct arth *
5488 gen_neg(a)
5489 	struct arth *a;
5490 {
5491 	struct slist *s;
5492 
5493 	s = xfer_to_a(a);
5494 	sappend(a->s, s);
5495 	s = new_stmt(BPF_ALU|BPF_NEG);
5496 	s->s.k = 0;
5497 	sappend(a->s, s);
5498 	s = new_stmt(BPF_ST);
5499 	s->s.k = a->regno;
5500 	sappend(a->s, s);
5501 
5502 	return a;
5503 }
5504 
5505 struct arth *
5506 gen_arth(code, a0, a1)
5507 	int code;
5508 	struct arth *a0, *a1;
5509 {
5510 	struct slist *s0, *s1, *s2;
5511 
5512 	s0 = xfer_to_x(a1);
5513 	s1 = xfer_to_a(a0);
5514 	s2 = new_stmt(BPF_ALU|BPF_X|code);
5515 
5516 	sappend(s1, s2);
5517 	sappend(s0, s1);
5518 	sappend(a1->s, s0);
5519 	sappend(a0->s, a1->s);
5520 
5521 	free_reg(a0->regno);
5522 	free_reg(a1->regno);
5523 
5524 	s0 = new_stmt(BPF_ST);
5525 	a0->regno = s0->s.k = alloc_reg();
5526 	sappend(a0->s, s0);
5527 
5528 	return a0;
5529 }
5530 
5531 /*
5532  * Here we handle simple allocation of the scratch registers.
5533  * If too many registers are alloc'd, the allocator punts.
5534  */
5535 static int regused[BPF_MEMWORDS];
5536 static int curreg;
5537 
5538 /*
5539  * Return the next free register.
5540  */
5541 static int
5542 alloc_reg()
5543 {
5544 	int n = BPF_MEMWORDS;
5545 
5546 	while (--n >= 0) {
5547 		if (regused[curreg])
5548 			curreg = (curreg + 1) % BPF_MEMWORDS;
5549 		else {
5550 			regused[curreg] = 1;
5551 			return curreg;
5552 		}
5553 	}
5554 	bpf_error("too many registers needed to evaluate expression");
5555 	/* NOTREACHED */
5556 }
5557 
5558 /*
5559  * Return a register to the table so it can
5560  * be used later.
5561  */
5562 static void
5563 free_reg(n)
5564 	int n;
5565 {
5566 	regused[n] = 0;
5567 }
5568 
5569 static struct block *
5570 gen_len(jmp, n)
5571 	int jmp, n;
5572 {
5573 	struct slist *s;
5574 	struct block *b;
5575 
5576 	s = new_stmt(BPF_LD|BPF_LEN);
5577 	b = new_block(JMP(jmp));
5578 	b->stmts = s;
5579 	b->s.k = n;
5580 
5581 	return b;
5582 }
5583 
5584 struct block *
5585 gen_greater(n)
5586 	int n;
5587 {
5588 	return gen_len(BPF_JGE, n);
5589 }
5590 
5591 /*
5592  * Actually, this is less than or equal.
5593  */
5594 struct block *
5595 gen_less(n)
5596 	int n;
5597 {
5598 	struct block *b;
5599 
5600 	b = gen_len(BPF_JGT, n);
5601 	gen_not(b);
5602 
5603 	return b;
5604 }
5605 
5606 /*
5607  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
5608  * the beginning of the link-layer header.
5609  * XXX - that means you can't test values in the radiotap header, but
5610  * as that header is difficult if not impossible to parse generally
5611  * without a loop, that might not be a severe problem.  A new keyword
5612  * "radio" could be added for that, although what you'd really want
5613  * would be a way of testing particular radio header values, which
5614  * would generate code appropriate to the radio header in question.
5615  */
5616 struct block *
5617 gen_byteop(op, idx, val)
5618 	int op, idx, val;
5619 {
5620 	struct block *b;
5621 	struct slist *s;
5622 
5623 	switch (op) {
5624 	default:
5625 		abort();
5626 
5627 	case '=':
5628 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
5629 
5630 	case '<':
5631 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
5632 		return b;
5633 
5634 	case '>':
5635 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
5636 		return b;
5637 
5638 	case '|':
5639 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
5640 		break;
5641 
5642 	case '&':
5643 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
5644 		break;
5645 	}
5646 	s->s.k = val;
5647 	b = new_block(JMP(BPF_JEQ));
5648 	b->stmts = s;
5649 	gen_not(b);
5650 
5651 	return b;
5652 }
5653 
5654 static u_char abroadcast[] = { 0x0 };
5655 
5656 struct block *
5657 gen_broadcast(proto)
5658 	int proto;
5659 {
5660 	bpf_u_int32 hostmask;
5661 	struct block *b0, *b1, *b2;
5662 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5663 
5664 	switch (proto) {
5665 
5666 	case Q_DEFAULT:
5667 	case Q_LINK:
5668 		if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
5669 			return gen_ahostop(abroadcast, Q_DST);
5670 		if (linktype == DLT_EN10MB)
5671 			return gen_ehostop(ebroadcast, Q_DST);
5672 		if (linktype == DLT_FDDI)
5673 			return gen_fhostop(ebroadcast, Q_DST);
5674 		if (linktype == DLT_IEEE802)
5675 			return gen_thostop(ebroadcast, Q_DST);
5676 		if (linktype == DLT_IEEE802_11 ||
5677 		    linktype == DLT_IEEE802_11_RADIO_AVS ||
5678 		    linktype == DLT_IEEE802_11_RADIO ||
5679 		    linktype == DLT_PRISM_HEADER)
5680 			return gen_wlanhostop(ebroadcast, Q_DST);
5681 		if (linktype == DLT_IP_OVER_FC)
5682 			return gen_ipfchostop(ebroadcast, Q_DST);
5683 		if (linktype == DLT_SUNATM && is_lane) {
5684 			/*
5685 			 * Check that the packet doesn't begin with an
5686 			 * LE Control marker.  (We've already generated
5687 			 * a test for LANE.)
5688 			 */
5689 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5690 			    0xFF00);
5691 			gen_not(b1);
5692 
5693 			/*
5694 			 * Now check the MAC address.
5695 			 */
5696 			b0 = gen_ehostop(ebroadcast, Q_DST);
5697 			gen_and(b1, b0);
5698 			return b0;
5699 		}
5700 		bpf_error("not a broadcast link");
5701 		break;
5702 
5703 	case Q_IP:
5704 		b0 = gen_linktype(ETHERTYPE_IP);
5705 		hostmask = ~netmask;
5706 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
5707 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
5708 			      (bpf_int32)(~0 & hostmask), hostmask);
5709 		gen_or(b1, b2);
5710 		gen_and(b0, b2);
5711 		return b2;
5712 	}
5713 	bpf_error("only link-layer/IP broadcast filters supported");
5714 	/* NOTREACHED */
5715 }
5716 
5717 /*
5718  * Generate code to test the low-order bit of a MAC address (that's
5719  * the bottom bit of the *first* byte).
5720  */
5721 static struct block *
5722 gen_mac_multicast(offset)
5723 	int offset;
5724 {
5725 	register struct block *b0;
5726 	register struct slist *s;
5727 
5728 	/* link[offset] & 1 != 0 */
5729 	s = gen_load_a(OR_LINK, offset, BPF_B);
5730 	b0 = new_block(JMP(BPF_JSET));
5731 	b0->s.k = 1;
5732 	b0->stmts = s;
5733 	return b0;
5734 }
5735 
5736 struct block *
5737 gen_multicast(proto)
5738 	int proto;
5739 {
5740 	register struct block *b0, *b1, *b2;
5741 	register struct slist *s;
5742 
5743 	switch (proto) {
5744 
5745 	case Q_DEFAULT:
5746 	case Q_LINK:
5747 		if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
5748 			/* all ARCnet multicasts use the same address */
5749 			return gen_ahostop(abroadcast, Q_DST);
5750 
5751 		if (linktype == DLT_EN10MB) {
5752 			/* ether[0] & 1 != 0 */
5753 			return gen_mac_multicast(0);
5754 		}
5755 
5756 		if (linktype == DLT_FDDI) {
5757 			/*
5758 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
5759 			 *
5760 			 * XXX - was that referring to bit-order issues?
5761 			 */
5762 			/* fddi[1] & 1 != 0 */
5763 			return gen_mac_multicast(1);
5764 		}
5765 
5766 		if (linktype == DLT_IEEE802) {
5767 			/* tr[2] & 1 != 0 */
5768 			return gen_mac_multicast(2);
5769 		}
5770 
5771 		if (linktype == DLT_IEEE802_11 ||
5772 		    linktype == DLT_IEEE802_11_RADIO_AVS ||
5773 		    linktype == DLT_IEEE802_11_RADIO ||
5774 		    linktype == DLT_PRISM_HEADER) {
5775 			/*
5776 			 * Oh, yuk.
5777 			 *
5778 			 *	For control frames, there is no DA.
5779 			 *
5780 			 *	For management frames, DA is at an
5781 			 *	offset of 4 from the beginning of
5782 			 *	the packet.
5783 			 *
5784 			 *	For data frames, DA is at an offset
5785 			 *	of 4 from the beginning of the packet
5786 			 *	if To DS is clear and at an offset of
5787 			 *	16 from the beginning of the packet
5788 			 *	if To DS is set.
5789 			 */
5790 
5791 			/*
5792 			 * Generate the tests to be done for data frames.
5793 			 *
5794 			 * First, check for To DS set, i.e. "link[1] & 0x01".
5795 			 */
5796 			s = gen_load_a(OR_LINK, 1, BPF_B);
5797 			b1 = new_block(JMP(BPF_JSET));
5798 			b1->s.k = 0x01;	/* To DS */
5799 			b1->stmts = s;
5800 
5801 			/*
5802 			 * If To DS is set, the DA is at 16.
5803 			 */
5804 			b0 = gen_mac_multicast(16);
5805 			gen_and(b1, b0);
5806 
5807 			/*
5808 			 * Now, check for To DS not set, i.e. check
5809 			 * "!(link[1] & 0x01)".
5810 			 */
5811 			s = gen_load_a(OR_LINK, 1, BPF_B);
5812 			b2 = new_block(JMP(BPF_JSET));
5813 			b2->s.k = 0x01;	/* To DS */
5814 			b2->stmts = s;
5815 			gen_not(b2);
5816 
5817 			/*
5818 			 * If To DS is not set, the DA is at 4.
5819 			 */
5820 			b1 = gen_mac_multicast(4);
5821 			gen_and(b2, b1);
5822 
5823 			/*
5824 			 * Now OR together the last two checks.  That gives
5825 			 * the complete set of checks for data frames.
5826 			 */
5827 			gen_or(b1, b0);
5828 
5829 			/*
5830 			 * Now check for a data frame.
5831 			 * I.e, check "link[0] & 0x08".
5832 			 */
5833 			s = gen_load_a(OR_LINK, 0, BPF_B);
5834 			b1 = new_block(JMP(BPF_JSET));
5835 			b1->s.k = 0x08;
5836 			b1->stmts = s;
5837 
5838 			/*
5839 			 * AND that with the checks done for data frames.
5840 			 */
5841 			gen_and(b1, b0);
5842 
5843 			/*
5844 			 * If the high-order bit of the type value is 0, this
5845 			 * is a management frame.
5846 			 * I.e, check "!(link[0] & 0x08)".
5847 			 */
5848 			s = gen_load_a(OR_LINK, 0, BPF_B);
5849 			b2 = new_block(JMP(BPF_JSET));
5850 			b2->s.k = 0x08;
5851 			b2->stmts = s;
5852 			gen_not(b2);
5853 
5854 			/*
5855 			 * For management frames, the DA is at 4.
5856 			 */
5857 			b1 = gen_mac_multicast(4);
5858 			gen_and(b2, b1);
5859 
5860 			/*
5861 			 * OR that with the checks done for data frames.
5862 			 * That gives the checks done for management and
5863 			 * data frames.
5864 			 */
5865 			gen_or(b1, b0);
5866 
5867 			/*
5868 			 * If the low-order bit of the type value is 1,
5869 			 * this is either a control frame or a frame
5870 			 * with a reserved type, and thus not a
5871 			 * frame with an SA.
5872 			 *
5873 			 * I.e., check "!(link[0] & 0x04)".
5874 			 */
5875 			s = gen_load_a(OR_LINK, 0, BPF_B);
5876 			b1 = new_block(JMP(BPF_JSET));
5877 			b1->s.k = 0x04;
5878 			b1->stmts = s;
5879 			gen_not(b1);
5880 
5881 			/*
5882 			 * AND that with the checks for data and management
5883 			 * frames.
5884 			 */
5885 			gen_and(b1, b0);
5886 			return b0;
5887 		}
5888 
5889 		if (linktype == DLT_IP_OVER_FC) {
5890 			b0 = gen_mac_multicast(2);
5891 			return b0;
5892 		}
5893 
5894 		if (linktype == DLT_SUNATM && is_lane) {
5895 			/*
5896 			 * Check that the packet doesn't begin with an
5897 			 * LE Control marker.  (We've already generated
5898 			 * a test for LANE.)
5899 			 */
5900 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5901 			    0xFF00);
5902 			gen_not(b1);
5903 
5904 			/* ether[off_mac] & 1 != 0 */
5905 			b0 = gen_mac_multicast(off_mac);
5906 			gen_and(b1, b0);
5907 			return b0;
5908 		}
5909 
5910 		/* Link not known to support multicasts */
5911 		break;
5912 
5913 	case Q_IP:
5914 		b0 = gen_linktype(ETHERTYPE_IP);
5915 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
5916 		gen_and(b0, b1);
5917 		return b1;
5918 
5919 #ifdef INET6
5920 	case Q_IPV6:
5921 		b0 = gen_linktype(ETHERTYPE_IPV6);
5922 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
5923 		gen_and(b0, b1);
5924 		return b1;
5925 #endif /* INET6 */
5926 	}
5927 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
5928 	/* NOTREACHED */
5929 }
5930 
5931 /*
5932  * generate command for inbound/outbound.  It's here so we can
5933  * make it link-type specific.  'dir' = 0 implies "inbound",
5934  * = 1 implies "outbound".
5935  */
5936 struct block *
5937 gen_inbound(dir)
5938 	int dir;
5939 {
5940 	register struct block *b0;
5941 
5942 	/*
5943 	 * Only some data link types support inbound/outbound qualifiers.
5944 	 */
5945 	switch (linktype) {
5946 	case DLT_SLIP:
5947 		b0 = gen_relation(BPF_JEQ,
5948 			  gen_load(Q_LINK, gen_loadi(0), 1),
5949 			  gen_loadi(0),
5950 			  dir);
5951 		break;
5952 
5953 	case DLT_LINUX_SLL:
5954 		if (dir) {
5955 			/*
5956 			 * Match packets sent by this machine.
5957 			 */
5958 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
5959 		} else {
5960 			/*
5961 			 * Match packets sent to this machine.
5962 			 * (No broadcast or multicast packets, or
5963 			 * packets sent to some other machine and
5964 			 * received promiscuously.)
5965 			 *
5966 			 * XXX - packets sent to other machines probably
5967 			 * shouldn't be matched, but what about broadcast
5968 			 * or multicast packets we received?
5969 			 */
5970 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
5971 		}
5972 		break;
5973 
5974 	case DLT_PFLOG:
5975 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
5976 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
5977 		break;
5978 
5979 	case DLT_PPP_PPPD:
5980 		if (dir) {
5981 			/* match outgoing packets */
5982 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
5983 		} else {
5984 			/* match incoming packets */
5985 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
5986 		}
5987 		break;
5988 
5989         case DLT_JUNIPER_MLFR:
5990         case DLT_JUNIPER_MLPPP:
5991 	case DLT_JUNIPER_ATM1:
5992 	case DLT_JUNIPER_ATM2:
5993 	case DLT_JUNIPER_PPPOE:
5994 	case DLT_JUNIPER_PPPOE_ATM:
5995         case DLT_JUNIPER_GGSN:
5996         case DLT_JUNIPER_ES:
5997         case DLT_JUNIPER_MONITOR:
5998         case DLT_JUNIPER_SERVICES:
5999 		/* juniper flags (including direction) are stored
6000 		 * the byte after the 3-byte magic number */
6001 		if (dir) {
6002 			/* match outgoing packets */
6003 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
6004 		} else {
6005 			/* match incoming packets */
6006 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
6007 		}
6008 	    break;
6009 
6010 	default:
6011 		bpf_error("inbound/outbound not supported on linktype %d",
6012 		    linktype);
6013 		b0 = NULL;
6014 		/* NOTREACHED */
6015 	}
6016 	return (b0);
6017 }
6018 
6019 /* PF firewall log matched interface */
6020 struct block *
6021 gen_pf_ifname(const char *ifname)
6022 {
6023 	struct block *b0;
6024 	u_int len, off;
6025 
6026 	if (linktype == DLT_PFLOG) {
6027 		len = sizeof(((struct pfloghdr *)0)->ifname);
6028 		off = offsetof(struct pfloghdr, ifname);
6029 	} else {
6030 		bpf_error("ifname not supported on linktype 0x%x", linktype);
6031 		/* NOTREACHED */
6032 	}
6033 	if (strlen(ifname) >= len) {
6034 		bpf_error("ifname interface names can only be %d characters",
6035 		    len-1);
6036 		/* NOTREACHED */
6037 	}
6038 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
6039 	return (b0);
6040 }
6041 
6042 /* PF firewall log matched interface */
6043 struct block *
6044 gen_pf_ruleset(char *ruleset)
6045 {
6046 	struct block *b0;
6047 
6048 	if (linktype != DLT_PFLOG) {
6049 		bpf_error("ruleset not supported on linktype 0x%x", linktype);
6050 		/* NOTREACHED */
6051 	}
6052 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
6053 		bpf_error("ruleset names can only be %ld characters",
6054 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
6055 		/* NOTREACHED */
6056 	}
6057 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
6058 	    strlen(ruleset), (const u_char *)ruleset);
6059 	return (b0);
6060 }
6061 
6062 /* PF firewall log rule number */
6063 struct block *
6064 gen_pf_rnr(int rnr)
6065 {
6066 	struct block *b0;
6067 
6068 	if (linktype == DLT_PFLOG) {
6069 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
6070 			 (bpf_int32)rnr);
6071 	} else {
6072 		bpf_error("rnr not supported on linktype 0x%x", linktype);
6073 		/* NOTREACHED */
6074 	}
6075 
6076 	return (b0);
6077 }
6078 
6079 /* PF firewall log sub-rule number */
6080 struct block *
6081 gen_pf_srnr(int srnr)
6082 {
6083 	struct block *b0;
6084 
6085 	if (linktype != DLT_PFLOG) {
6086 		bpf_error("srnr not supported on linktype 0x%x", linktype);
6087 		/* NOTREACHED */
6088 	}
6089 
6090 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
6091 	    (bpf_int32)srnr);
6092 	return (b0);
6093 }
6094 
6095 /* PF firewall log reason code */
6096 struct block *
6097 gen_pf_reason(int reason)
6098 {
6099 	struct block *b0;
6100 
6101 	if (linktype == DLT_PFLOG) {
6102 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
6103 		    (bpf_int32)reason);
6104 	} else {
6105 		bpf_error("reason not supported on linktype 0x%x", linktype);
6106 		/* NOTREACHED */
6107 	}
6108 
6109 	return (b0);
6110 }
6111 
6112 /* PF firewall log action */
6113 struct block *
6114 gen_pf_action(int action)
6115 {
6116 	struct block *b0;
6117 
6118 	if (linktype == DLT_PFLOG) {
6119 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
6120 		    (bpf_int32)action);
6121 	} else {
6122 		bpf_error("action not supported on linktype 0x%x", linktype);
6123 		/* NOTREACHED */
6124 	}
6125 
6126 	return (b0);
6127 }
6128 
6129 struct block *
6130 gen_acode(eaddr, q)
6131 	register const u_char *eaddr;
6132 	struct qual q;
6133 {
6134 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6135 		if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
6136 			return gen_ahostop(eaddr, (int)q.dir);
6137 	}
6138 	bpf_error("ARCnet address used in non-arc expression");
6139 	/* NOTREACHED */
6140 }
6141 
6142 static struct block *
6143 gen_ahostop(eaddr, dir)
6144 	register const u_char *eaddr;
6145 	register int dir;
6146 {
6147 	register struct block *b0, *b1;
6148 
6149 	switch (dir) {
6150 	/* src comes first, different from Ethernet */
6151 	case Q_SRC:
6152 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
6153 
6154 	case Q_DST:
6155 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
6156 
6157 	case Q_AND:
6158 		b0 = gen_ahostop(eaddr, Q_SRC);
6159 		b1 = gen_ahostop(eaddr, Q_DST);
6160 		gen_and(b0, b1);
6161 		return b1;
6162 
6163 	case Q_DEFAULT:
6164 	case Q_OR:
6165 		b0 = gen_ahostop(eaddr, Q_SRC);
6166 		b1 = gen_ahostop(eaddr, Q_DST);
6167 		gen_or(b0, b1);
6168 		return b1;
6169 	}
6170 	abort();
6171 	/* NOTREACHED */
6172 }
6173 
6174 /*
6175  * support IEEE 802.1Q VLAN trunk over ethernet
6176  */
6177 struct block *
6178 gen_vlan(vlan_num)
6179 	int vlan_num;
6180 {
6181 	struct	block	*b0;
6182 
6183 	/*
6184 	 * Change the offsets to point to the type and data fields within
6185 	 * the VLAN packet.  Just increment the offsets, so that we
6186 	 * can support a hierarchy, e.g. "vlan 300 && vlan 200" to
6187 	 * capture VLAN 200 encapsulated within VLAN 100.
6188 	 *
6189 	 * XXX - this is a bit of a kludge.  If we were to split the
6190 	 * compiler into a parser that parses an expression and
6191 	 * generates an expression tree, and a code generator that
6192 	 * takes an expression tree (which could come from our
6193 	 * parser or from some other parser) and generates BPF code,
6194 	 * we could perhaps make the offsets parameters of routines
6195 	 * and, in the handler for an "AND" node, pass to subnodes
6196 	 * other than the VLAN node the adjusted offsets.
6197 	 *
6198 	 * This would mean that "vlan" would, instead of changing the
6199 	 * behavior of *all* tests after it, change only the behavior
6200 	 * of tests ANDed with it.  That would change the documented
6201 	 * semantics of "vlan", which might break some expressions.
6202 	 * However, it would mean that "(vlan and ip) or ip" would check
6203 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
6204 	 * checking only for VLAN-encapsulated IP, so that could still
6205 	 * be considered worth doing; it wouldn't break expressions
6206 	 * that are of the form "vlan and ..." or "vlan N and ...",
6207 	 * which I suspect are the most common expressions involving
6208 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
6209 	 * would really want, now, as all the "or ..." tests would
6210 	 * be done assuming a VLAN, even though the "or" could be viewed
6211 	 * as meaning "or, if this isn't a VLAN packet...".
6212 	 */
6213         orig_linktype = off_linktype;	/* save original values */
6214         orig_nl = off_nl;
6215 
6216         switch (linktype) {
6217 
6218         case DLT_EN10MB:
6219                 off_linktype += 4;
6220                 off_nl_nosnap += 4;
6221                 off_nl += 4;
6222                 break;
6223 
6224         default:
6225                 bpf_error("no VLAN support for data link type %d",
6226                       linktype);
6227             /*NOTREACHED*/
6228         }
6229 
6230 	/* check for VLAN */
6231 	b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H, (bpf_int32)ETHERTYPE_8021Q);
6232 
6233 	/* If a specific VLAN is requested, check VLAN id */
6234 	if (vlan_num >= 0) {
6235 		struct block *b1;
6236 
6237 		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_H, (bpf_int32)vlan_num,
6238 		    0x0fff);
6239 		gen_and(b0, b1);
6240 		b0 = b1;
6241 	}
6242 
6243 	return (b0);
6244 }
6245 
6246 /*
6247  * support for MPLS
6248  */
6249 struct block *
6250 gen_mpls(label_num)
6251 	int label_num;
6252 {
6253 	struct	block	*b0;
6254 
6255 	/*
6256 	 * Change the offsets to point to the type and data fields within
6257 	 * the MPLS packet.  Just increment the offsets, so that we
6258 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
6259 	 * capture packets with an outer label of 100000 and an inner
6260 	 * label of 1024.
6261 	 *
6262 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
6263 	 */
6264         orig_linktype = off_linktype;	/* save original values */
6265         orig_nl = off_nl;
6266 
6267         switch (linktype) {
6268 
6269         case DLT_C_HDLC: /* fall through */
6270         case DLT_EN10MB:
6271                 off_nl_nosnap += 4;
6272                 off_nl += 4;
6273 
6274                 b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H,
6275                     (bpf_int32)ETHERTYPE_MPLS);
6276                 break;
6277 
6278         case DLT_PPP:
6279                 off_nl_nosnap += 4;
6280                 off_nl += 4;
6281 
6282                 b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H,
6283                     (bpf_int32)PPP_MPLS_UCAST);
6284                 break;
6285 
6286                 /* FIXME add other DLT_s ...
6287                  * for Frame-Relay/and ATM this may get messy due to SNAP headers
6288                  * leave it for now */
6289 
6290         default:
6291                 bpf_error("no MPLS support for data link type %d",
6292                           linktype);
6293                 b0 = NULL;
6294                 /*NOTREACHED*/
6295                 break;
6296         }
6297 
6298 	/* If a specific MPLS label is requested, check it */
6299 	if (label_num >= 0) {
6300 		struct block *b1;
6301 
6302 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
6303 		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_W, (bpf_int32)label_num,
6304 		    0xfffff000); /* only compare the first 20 bits */
6305 		gen_and(b0, b1);
6306 		b0 = b1;
6307 	}
6308 
6309 	return (b0);
6310 }
6311 
6312 struct block *
6313 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
6314 	int atmfield;
6315 	bpf_int32 jvalue;
6316 	bpf_u_int32 jtype;
6317 	int reverse;
6318 {
6319 	struct block *b0;
6320 
6321 	switch (atmfield) {
6322 
6323 	case A_VPI:
6324 		if (!is_atm)
6325 			bpf_error("'vpi' supported only on raw ATM");
6326 		if (off_vpi == (u_int)-1)
6327 			abort();
6328 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
6329 		    reverse, jvalue);
6330 		break;
6331 
6332 	case A_VCI:
6333 		if (!is_atm)
6334 			bpf_error("'vci' supported only on raw ATM");
6335 		if (off_vci == (u_int)-1)
6336 			abort();
6337 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
6338 		    reverse, jvalue);
6339 		break;
6340 
6341 	case A_PROTOTYPE:
6342 		if (off_proto == (u_int)-1)
6343 			abort();	/* XXX - this isn't on FreeBSD */
6344 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
6345 		    reverse, jvalue);
6346 		break;
6347 
6348 	case A_MSGTYPE:
6349 		if (off_payload == (u_int)-1)
6350 			abort();
6351 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
6352 		    0xffffffff, jtype, reverse, jvalue);
6353 		break;
6354 
6355 	case A_CALLREFTYPE:
6356 		if (!is_atm)
6357 			bpf_error("'callref' supported only on raw ATM");
6358 		if (off_proto == (u_int)-1)
6359 			abort();
6360 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
6361 		    jtype, reverse, jvalue);
6362 		break;
6363 
6364 	default:
6365 		abort();
6366 	}
6367 	return b0;
6368 }
6369 
6370 struct block *
6371 gen_atmtype_abbrev(type)
6372 	int type;
6373 {
6374 	struct block *b0, *b1;
6375 
6376 	switch (type) {
6377 
6378 	case A_METAC:
6379 		/* Get all packets in Meta signalling Circuit */
6380 		if (!is_atm)
6381 			bpf_error("'metac' supported only on raw ATM");
6382 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6383 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
6384 		gen_and(b0, b1);
6385 		break;
6386 
6387 	case A_BCC:
6388 		/* Get all packets in Broadcast Circuit*/
6389 		if (!is_atm)
6390 			bpf_error("'bcc' supported only on raw ATM");
6391 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6392 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
6393 		gen_and(b0, b1);
6394 		break;
6395 
6396 	case A_OAMF4SC:
6397 		/* Get all cells in Segment OAM F4 circuit*/
6398 		if (!is_atm)
6399 			bpf_error("'oam4sc' supported only on raw ATM");
6400 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6401 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
6402 		gen_and(b0, b1);
6403 		break;
6404 
6405 	case A_OAMF4EC:
6406 		/* Get all cells in End-to-End OAM F4 Circuit*/
6407 		if (!is_atm)
6408 			bpf_error("'oam4ec' supported only on raw ATM");
6409 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6410 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
6411 		gen_and(b0, b1);
6412 		break;
6413 
6414 	case A_SC:
6415 		/*  Get all packets in connection Signalling Circuit */
6416 		if (!is_atm)
6417 			bpf_error("'sc' supported only on raw ATM");
6418 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6419 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
6420 		gen_and(b0, b1);
6421 		break;
6422 
6423 	case A_ILMIC:
6424 		/* Get all packets in ILMI Circuit */
6425 		if (!is_atm)
6426 			bpf_error("'ilmic' supported only on raw ATM");
6427 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6428 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
6429 		gen_and(b0, b1);
6430 		break;
6431 
6432 	case A_LANE:
6433 		/* Get all LANE packets */
6434 		if (!is_atm)
6435 			bpf_error("'lane' supported only on raw ATM");
6436 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
6437 
6438 		/*
6439 		 * Arrange that all subsequent tests assume LANE
6440 		 * rather than LLC-encapsulated packets, and set
6441 		 * the offsets appropriately for LANE-encapsulated
6442 		 * Ethernet.
6443 		 *
6444 		 * "off_mac" is the offset of the Ethernet header,
6445 		 * which is 2 bytes past the ATM pseudo-header
6446 		 * (skipping the pseudo-header and 2-byte LE Client
6447 		 * field).  The other offsets are Ethernet offsets
6448 		 * relative to "off_mac".
6449 		 */
6450 		is_lane = 1;
6451 		off_mac = off_payload + 2;	/* MAC header */
6452 		off_linktype = off_mac + 12;
6453 		off_nl = off_mac + 14;		/* Ethernet II */
6454 		off_nl_nosnap = off_mac + 17;	/* 802.3+802.2 */
6455 		break;
6456 
6457 	case A_LLC:
6458 		/* Get all LLC-encapsulated packets */
6459 		if (!is_atm)
6460 			bpf_error("'llc' supported only on raw ATM");
6461 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
6462 		is_lane = 0;
6463 		break;
6464 
6465 	default:
6466 		abort();
6467 	}
6468 	return b1;
6469 }
6470 
6471 struct block *
6472 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
6473 	int mtp3field;
6474 	bpf_u_int32 jvalue;
6475 	bpf_u_int32 jtype;
6476 	int reverse;
6477 {
6478 	struct block *b0;
6479 	bpf_u_int32 val1 , val2 , val3;
6480 
6481 	switch (mtp3field) {
6482 
6483 	case M_SIO:
6484 		if (off_sio == (u_int)-1)
6485 			bpf_error("'sio' supported only on SS7");
6486 		/* sio coded on 1 byte so max value 255 */
6487 		if(jvalue > 255)
6488 		        bpf_error("sio value %u too big; max value = 255",
6489 		            jvalue);
6490 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
6491 		    (u_int)jtype, reverse, (u_int)jvalue);
6492 		break;
6493 
6494         case M_OPC:
6495 	        if (off_opc == (u_int)-1)
6496 			bpf_error("'opc' supported only on SS7");
6497 		/* opc coded on 14 bits so max value 16383 */
6498 		if (jvalue > 16383)
6499 		        bpf_error("opc value %u too big; max value = 16383",
6500 		            jvalue);
6501 		/* the following instructions are made to convert jvalue
6502 		 * to the form used to write opc in an ss7 message*/
6503 		val1 = jvalue & 0x00003c00;
6504 		val1 = val1 >>10;
6505 		val2 = jvalue & 0x000003fc;
6506 		val2 = val2 <<6;
6507 		val3 = jvalue & 0x00000003;
6508 		val3 = val3 <<22;
6509 		jvalue = val1 + val2 + val3;
6510 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
6511 		    (u_int)jtype, reverse, (u_int)jvalue);
6512 		break;
6513 
6514 	case M_DPC:
6515 	        if (off_dpc == (u_int)-1)
6516 			bpf_error("'dpc' supported only on SS7");
6517 		/* dpc coded on 14 bits so max value 16383 */
6518 		if (jvalue > 16383)
6519 		        bpf_error("dpc value %u too big; max value = 16383",
6520 		            jvalue);
6521 		/* the following instructions are made to convert jvalue
6522 		 * to the forme used to write dpc in an ss7 message*/
6523 		val1 = jvalue & 0x000000ff;
6524 		val1 = val1 << 24;
6525 		val2 = jvalue & 0x00003f00;
6526 		val2 = val2 << 8;
6527 		jvalue = val1 + val2;
6528 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
6529 		    (u_int)jtype, reverse, (u_int)jvalue);
6530 		break;
6531 
6532 	case M_SLS:
6533 	        if (off_sls == (u_int)-1)
6534 			bpf_error("'sls' supported only on SS7");
6535 		/* sls coded on 4 bits so max value 15 */
6536 		if (jvalue > 15)
6537 		         bpf_error("sls value %u too big; max value = 15",
6538 		             jvalue);
6539 		/* the following instruction is made to convert jvalue
6540 		 * to the forme used to write sls in an ss7 message*/
6541 		jvalue = jvalue << 4;
6542 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
6543 		    (u_int)jtype,reverse, (u_int)jvalue);
6544 		break;
6545 
6546 	default:
6547 		abort();
6548 	}
6549 	return b0;
6550 }
6551 
6552 static struct block *
6553 gen_msg_abbrev(type)
6554 	int type;
6555 {
6556 	struct block *b1;
6557 
6558 	/*
6559 	 * Q.2931 signalling protocol messages for handling virtual circuits
6560 	 * establishment and teardown
6561 	 */
6562 	switch (type) {
6563 
6564 	case A_SETUP:
6565 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
6566 		break;
6567 
6568 	case A_CALLPROCEED:
6569 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
6570 		break;
6571 
6572 	case A_CONNECT:
6573 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
6574 		break;
6575 
6576 	case A_CONNECTACK:
6577 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
6578 		break;
6579 
6580 	case A_RELEASE:
6581 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
6582 		break;
6583 
6584 	case A_RELEASE_DONE:
6585 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
6586 		break;
6587 
6588 	default:
6589 		abort();
6590 	}
6591 	return b1;
6592 }
6593 
6594 struct block *
6595 gen_atmmulti_abbrev(type)
6596 	int type;
6597 {
6598 	struct block *b0, *b1;
6599 
6600 	switch (type) {
6601 
6602 	case A_OAM:
6603 		if (!is_atm)
6604 			bpf_error("'oam' supported only on raw ATM");
6605 		b1 = gen_atmmulti_abbrev(A_OAMF4);
6606 		break;
6607 
6608 	case A_OAMF4:
6609 		if (!is_atm)
6610 			bpf_error("'oamf4' supported only on raw ATM");
6611 		/* OAM F4 type */
6612 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
6613 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
6614 		gen_or(b0, b1);
6615 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6616 		gen_and(b0, b1);
6617 		break;
6618 
6619 	case A_CONNECTMSG:
6620 		/*
6621 		 * Get Q.2931 signalling messages for switched
6622 		 * virtual connection
6623 		 */
6624 		if (!is_atm)
6625 			bpf_error("'connectmsg' supported only on raw ATM");
6626 		b0 = gen_msg_abbrev(A_SETUP);
6627 		b1 = gen_msg_abbrev(A_CALLPROCEED);
6628 		gen_or(b0, b1);
6629 		b0 = gen_msg_abbrev(A_CONNECT);
6630 		gen_or(b0, b1);
6631 		b0 = gen_msg_abbrev(A_CONNECTACK);
6632 		gen_or(b0, b1);
6633 		b0 = gen_msg_abbrev(A_RELEASE);
6634 		gen_or(b0, b1);
6635 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
6636 		gen_or(b0, b1);
6637 		b0 = gen_atmtype_abbrev(A_SC);
6638 		gen_and(b0, b1);
6639 		break;
6640 
6641 	case A_METACONNECT:
6642 		if (!is_atm)
6643 			bpf_error("'metaconnect' supported only on raw ATM");
6644 		b0 = gen_msg_abbrev(A_SETUP);
6645 		b1 = gen_msg_abbrev(A_CALLPROCEED);
6646 		gen_or(b0, b1);
6647 		b0 = gen_msg_abbrev(A_CONNECT);
6648 		gen_or(b0, b1);
6649 		b0 = gen_msg_abbrev(A_RELEASE);
6650 		gen_or(b0, b1);
6651 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
6652 		gen_or(b0, b1);
6653 		b0 = gen_atmtype_abbrev(A_METAC);
6654 		gen_and(b0, b1);
6655 		break;
6656 
6657 	default:
6658 		abort();
6659 	}
6660 	return b1;
6661 }
6662