xref: /freebsd/contrib/libpcap/gencode.c (revision b7d683e608ac894e75b2de7eac5eaa083650de54)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  *
22  * $FreeBSD$
23  */
24 #ifndef lint
25 static const char rcsid[] _U_ =
26     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
27 #endif
28 
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32 
33 #ifdef WIN32
34 #include <pcap-stdinc.h>
35 #else /* WIN32 */
36 #if HAVE_INTTYPES_H
37 #include <inttypes.h>
38 #elif HAVE_STDINT_H
39 #include <stdint.h>
40 #endif
41 #ifdef HAVE_SYS_BITYPES_H
42 #include <sys/bitypes.h>
43 #endif
44 #include <sys/types.h>
45 #include <sys/socket.h>
46 #endif /* WIN32 */
47 
48 /*
49  * XXX - why was this included even on UNIX?
50  */
51 #ifdef __MINGW32__
52 #include "ip6_misc.h"
53 #endif
54 
55 #ifndef WIN32
56 
57 #ifdef __NetBSD__
58 #include <sys/param.h>
59 #endif
60 
61 #include <netinet/in.h>
62 #include <arpa/inet.h>
63 
64 #endif /* WIN32 */
65 
66 #include <stdlib.h>
67 #include <string.h>
68 #include <memory.h>
69 #include <setjmp.h>
70 #include <stdarg.h>
71 
72 #ifdef MSDOS
73 #include "pcap-dos.h"
74 #endif
75 
76 #include "pcap-int.h"
77 
78 #include "ethertype.h"
79 #include "nlpid.h"
80 #include "llc.h"
81 #include "gencode.h"
82 #include "ieee80211.h"
83 #include "atmuni31.h"
84 #include "sunatmpos.h"
85 #include "ppp.h"
86 #include "pcap/sll.h"
87 #include "pcap/ipnet.h"
88 #include "arcnet.h"
89 #ifdef HAVE_NET_PFVAR_H
90 #include <sys/socket.h>
91 #include <net/if.h>
92 #include <net/pfvar.h>
93 #include <net/if_pflog.h>
94 #endif
95 #ifndef offsetof
96 #define offsetof(s, e) ((size_t)&((s *)0)->e)
97 #endif
98 #ifdef INET6
99 #ifndef WIN32
100 #include <netdb.h>	/* for "struct addrinfo" */
101 #endif /* WIN32 */
102 #endif /*INET6*/
103 #include <pcap/namedb.h>
104 
105 #define ETHERMTU	1500
106 
107 #ifndef IPPROTO_SCTP
108 #define IPPROTO_SCTP 132
109 #endif
110 
111 #ifdef HAVE_OS_PROTO_H
112 #include "os-proto.h"
113 #endif
114 
115 #define JMP(c) ((c)|BPF_JMP|BPF_K)
116 
117 /* Locals */
118 static jmp_buf top_ctx;
119 static pcap_t *bpf_pcap;
120 
121 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
122 #ifdef WIN32
123 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
124 #else
125 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
126 #endif
127 
128 /* XXX */
129 #ifdef PCAP_FDDIPAD
130 static int	pcap_fddipad;
131 #endif
132 
133 /* VARARGS */
134 void
135 bpf_error(const char *fmt, ...)
136 {
137 	va_list ap;
138 
139 	va_start(ap, fmt);
140 	if (bpf_pcap != NULL)
141 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
142 		    fmt, ap);
143 	va_end(ap);
144 	longjmp(top_ctx, 1);
145 	/* NOTREACHED */
146 }
147 
148 static void init_linktype(pcap_t *);
149 
150 static void init_regs(void);
151 static int alloc_reg(void);
152 static void free_reg(int);
153 
154 static struct block *root;
155 
156 /*
157  * Value passed to gen_load_a() to indicate what the offset argument
158  * is relative to.
159  */
160 enum e_offrel {
161 	OR_PACKET,	/* relative to the beginning of the packet */
162 	OR_LINK,	/* relative to the beginning of the link-layer header */
163 	OR_MACPL,	/* relative to the end of the MAC-layer header */
164 	OR_NET,		/* relative to the network-layer header */
165 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
166 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
167 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
168 };
169 
170 #ifdef INET6
171 /*
172  * As errors are handled by a longjmp, anything allocated must be freed
173  * in the longjmp handler, so it must be reachable from that handler.
174  * One thing that's allocated is the result of pcap_nametoaddrinfo();
175  * it must be freed with freeaddrinfo().  This variable points to any
176  * addrinfo structure that would need to be freed.
177  */
178 static struct addrinfo *ai;
179 #endif
180 
181 /*
182  * We divy out chunks of memory rather than call malloc each time so
183  * we don't have to worry about leaking memory.  It's probably
184  * not a big deal if all this memory was wasted but if this ever
185  * goes into a library that would probably not be a good idea.
186  *
187  * XXX - this *is* in a library....
188  */
189 #define NCHUNKS 16
190 #define CHUNK0SIZE 1024
191 struct chunk {
192 	u_int n_left;
193 	void *m;
194 };
195 
196 static struct chunk chunks[NCHUNKS];
197 static int cur_chunk;
198 
199 static void *newchunk(u_int);
200 static void freechunks(void);
201 static inline struct block *new_block(int);
202 static inline struct slist *new_stmt(int);
203 static struct block *gen_retblk(int);
204 static inline void syntax(void);
205 
206 static void backpatch(struct block *, struct block *);
207 static void merge(struct block *, struct block *);
208 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
209 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
210 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
211 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
212 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
213 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
214     bpf_u_int32);
215 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
216 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
217     bpf_u_int32, bpf_u_int32, int, bpf_int32);
218 static struct slist *gen_load_llrel(u_int, u_int);
219 static struct slist *gen_load_macplrel(u_int, u_int);
220 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
221 static struct slist *gen_loadx_iphdrlen(void);
222 static struct block *gen_uncond(int);
223 static inline struct block *gen_true(void);
224 static inline struct block *gen_false(void);
225 static struct block *gen_ether_linktype(int);
226 static struct block *gen_ipnet_linktype(int);
227 static struct block *gen_linux_sll_linktype(int);
228 static struct slist *gen_load_prism_llprefixlen(void);
229 static struct slist *gen_load_avs_llprefixlen(void);
230 static struct slist *gen_load_radiotap_llprefixlen(void);
231 static struct slist *gen_load_ppi_llprefixlen(void);
232 static void insert_compute_vloffsets(struct block *);
233 static struct slist *gen_llprefixlen(void);
234 static struct slist *gen_off_macpl(void);
235 static int ethertype_to_ppptype(int);
236 static struct block *gen_linktype(int);
237 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
238 static struct block *gen_llc_linktype(int);
239 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
240 #ifdef INET6
241 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
242 #endif
243 static struct block *gen_ahostop(const u_char *, int);
244 static struct block *gen_ehostop(const u_char *, int);
245 static struct block *gen_fhostop(const u_char *, int);
246 static struct block *gen_thostop(const u_char *, int);
247 static struct block *gen_wlanhostop(const u_char *, int);
248 static struct block *gen_ipfchostop(const u_char *, int);
249 static struct block *gen_dnhostop(bpf_u_int32, int);
250 static struct block *gen_mpls_linktype(int);
251 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
252 #ifdef INET6
253 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
254 #endif
255 #ifndef INET6
256 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
257 #endif
258 static struct block *gen_ipfrag(void);
259 static struct block *gen_portatom(int, bpf_int32);
260 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
261 #ifdef INET6
262 static struct block *gen_portatom6(int, bpf_int32);
263 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
264 #endif
265 struct block *gen_portop(int, int, int);
266 static struct block *gen_port(int, int, int);
267 struct block *gen_portrangeop(int, int, int, int);
268 static struct block *gen_portrange(int, int, int, int);
269 #ifdef INET6
270 struct block *gen_portop6(int, int, int);
271 static struct block *gen_port6(int, int, int);
272 struct block *gen_portrangeop6(int, int, int, int);
273 static struct block *gen_portrange6(int, int, int, int);
274 #endif
275 static int lookup_proto(const char *, int);
276 static struct block *gen_protochain(int, int, int);
277 static struct block *gen_proto(int, int, int);
278 static struct slist *xfer_to_x(struct arth *);
279 static struct slist *xfer_to_a(struct arth *);
280 static struct block *gen_mac_multicast(int);
281 static struct block *gen_len(int, int);
282 static struct block *gen_check_802_11_data_frame(void);
283 
284 static struct block *gen_ppi_dlt_check(void);
285 static struct block *gen_msg_abbrev(int type);
286 
287 static void *
288 newchunk(n)
289 	u_int n;
290 {
291 	struct chunk *cp;
292 	int k;
293 	size_t size;
294 
295 #ifndef __NetBSD__
296 	/* XXX Round up to nearest long. */
297 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
298 #else
299 	/* XXX Round up to structure boundary. */
300 	n = ALIGN(n);
301 #endif
302 
303 	cp = &chunks[cur_chunk];
304 	if (n > cp->n_left) {
305 		++cp, k = ++cur_chunk;
306 		if (k >= NCHUNKS)
307 			bpf_error("out of memory");
308 		size = CHUNK0SIZE << k;
309 		cp->m = (void *)malloc(size);
310 		if (cp->m == NULL)
311 			bpf_error("out of memory");
312 		memset((char *)cp->m, 0, size);
313 		cp->n_left = size;
314 		if (n > size)
315 			bpf_error("out of memory");
316 	}
317 	cp->n_left -= n;
318 	return (void *)((char *)cp->m + cp->n_left);
319 }
320 
321 static void
322 freechunks()
323 {
324 	int i;
325 
326 	cur_chunk = 0;
327 	for (i = 0; i < NCHUNKS; ++i)
328 		if (chunks[i].m != NULL) {
329 			free(chunks[i].m);
330 			chunks[i].m = NULL;
331 		}
332 }
333 
334 /*
335  * A strdup whose allocations are freed after code generation is over.
336  */
337 char *
338 sdup(s)
339 	register const char *s;
340 {
341 	int n = strlen(s) + 1;
342 	char *cp = newchunk(n);
343 
344 	strlcpy(cp, s, n);
345 	return (cp);
346 }
347 
348 static inline struct block *
349 new_block(code)
350 	int code;
351 {
352 	struct block *p;
353 
354 	p = (struct block *)newchunk(sizeof(*p));
355 	p->s.code = code;
356 	p->head = p;
357 
358 	return p;
359 }
360 
361 static inline struct slist *
362 new_stmt(code)
363 	int code;
364 {
365 	struct slist *p;
366 
367 	p = (struct slist *)newchunk(sizeof(*p));
368 	p->s.code = code;
369 
370 	return p;
371 }
372 
373 static struct block *
374 gen_retblk(v)
375 	int v;
376 {
377 	struct block *b = new_block(BPF_RET|BPF_K);
378 
379 	b->s.k = v;
380 	return b;
381 }
382 
383 static inline void
384 syntax()
385 {
386 	bpf_error("syntax error in filter expression");
387 }
388 
389 static bpf_u_int32 netmask;
390 static int snaplen;
391 int no_optimize;
392 #ifdef WIN32
393 static int
394 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
395 	     const char *buf, int optimize, bpf_u_int32 mask);
396 
397 int
398 pcap_compile(pcap_t *p, struct bpf_program *program,
399 	     const char *buf, int optimize, bpf_u_int32 mask)
400 {
401 	int result;
402 
403 	EnterCriticalSection(&g_PcapCompileCriticalSection);
404 
405 	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
406 
407 	LeaveCriticalSection(&g_PcapCompileCriticalSection);
408 
409 	return result;
410 }
411 
412 static int
413 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
414 	     const char *buf, int optimize, bpf_u_int32 mask)
415 #else /* WIN32 */
416 int
417 pcap_compile(pcap_t *p, struct bpf_program *program,
418 	     const char *buf, int optimize, bpf_u_int32 mask)
419 #endif /* WIN32 */
420 {
421 	extern int n_errors;
422 	const char * volatile xbuf = buf;
423 	int len;
424 
425 	no_optimize = 0;
426 	n_errors = 0;
427 	root = NULL;
428 	bpf_pcap = p;
429 	init_regs();
430 	if (setjmp(top_ctx)) {
431 #ifdef INET6
432 		if (ai != NULL) {
433 			freeaddrinfo(ai);
434 			ai = NULL;
435 		}
436 #endif
437 		lex_cleanup();
438 		freechunks();
439 		return (-1);
440 	}
441 
442 	netmask = mask;
443 
444 	snaplen = pcap_snapshot(p);
445 	if (snaplen == 0) {
446 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
447 			 "snaplen of 0 rejects all packets");
448 		return -1;
449 	}
450 
451 	lex_init(xbuf ? xbuf : "");
452 	init_linktype(p);
453 	(void)pcap_parse();
454 
455 	if (n_errors)
456 		syntax();
457 
458 	if (root == NULL)
459 		root = gen_retblk(snaplen);
460 
461 	if (optimize && !no_optimize) {
462 		bpf_optimize(&root);
463 		if (root == NULL ||
464 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
465 			bpf_error("expression rejects all packets");
466 	}
467 	program->bf_insns = icode_to_fcode(root, &len);
468 	program->bf_len = len;
469 
470 	lex_cleanup();
471 	freechunks();
472 	return (0);
473 }
474 
475 /*
476  * entry point for using the compiler with no pcap open
477  * pass in all the stuff that is needed explicitly instead.
478  */
479 int
480 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
481 		    struct bpf_program *program,
482 	     const char *buf, int optimize, bpf_u_int32 mask)
483 {
484 	pcap_t *p;
485 	int ret;
486 
487 	p = pcap_open_dead(linktype_arg, snaplen_arg);
488 	if (p == NULL)
489 		return (-1);
490 	ret = pcap_compile(p, program, buf, optimize, mask);
491 	pcap_close(p);
492 	return (ret);
493 }
494 
495 /*
496  * Clean up a "struct bpf_program" by freeing all the memory allocated
497  * in it.
498  */
499 void
500 pcap_freecode(struct bpf_program *program)
501 {
502 	program->bf_len = 0;
503 	if (program->bf_insns != NULL) {
504 		free((char *)program->bf_insns);
505 		program->bf_insns = NULL;
506 	}
507 }
508 
509 /*
510  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
511  * which of the jt and jf fields has been resolved and which is a pointer
512  * back to another unresolved block (or nil).  At least one of the fields
513  * in each block is already resolved.
514  */
515 static void
516 backpatch(list, target)
517 	struct block *list, *target;
518 {
519 	struct block *next;
520 
521 	while (list) {
522 		if (!list->sense) {
523 			next = JT(list);
524 			JT(list) = target;
525 		} else {
526 			next = JF(list);
527 			JF(list) = target;
528 		}
529 		list = next;
530 	}
531 }
532 
533 /*
534  * Merge the lists in b0 and b1, using the 'sense' field to indicate
535  * which of jt and jf is the link.
536  */
537 static void
538 merge(b0, b1)
539 	struct block *b0, *b1;
540 {
541 	register struct block **p = &b0;
542 
543 	/* Find end of list. */
544 	while (*p)
545 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
546 
547 	/* Concatenate the lists. */
548 	*p = b1;
549 }
550 
551 void
552 finish_parse(p)
553 	struct block *p;
554 {
555 	struct block *ppi_dlt_check;
556 
557 	/*
558 	 * Insert before the statements of the first (root) block any
559 	 * statements needed to load the lengths of any variable-length
560 	 * headers into registers.
561 	 *
562 	 * XXX - a fancier strategy would be to insert those before the
563 	 * statements of all blocks that use those lengths and that
564 	 * have no predecessors that use them, so that we only compute
565 	 * the lengths if we need them.  There might be even better
566 	 * approaches than that.
567 	 *
568 	 * However, those strategies would be more complicated, and
569 	 * as we don't generate code to compute a length if the
570 	 * program has no tests that use the length, and as most
571 	 * tests will probably use those lengths, we would just
572 	 * postpone computing the lengths so that it's not done
573 	 * for tests that fail early, and it's not clear that's
574 	 * worth the effort.
575 	 */
576 	insert_compute_vloffsets(p->head);
577 
578 	/*
579 	 * For DLT_PPI captures, generate a check of the per-packet
580 	 * DLT value to make sure it's DLT_IEEE802_11.
581 	 */
582 	ppi_dlt_check = gen_ppi_dlt_check();
583 	if (ppi_dlt_check != NULL)
584 		gen_and(ppi_dlt_check, p);
585 
586 	backpatch(p, gen_retblk(snaplen));
587 	p->sense = !p->sense;
588 	backpatch(p, gen_retblk(0));
589 	root = p->head;
590 }
591 
592 void
593 gen_and(b0, b1)
594 	struct block *b0, *b1;
595 {
596 	backpatch(b0, b1->head);
597 	b0->sense = !b0->sense;
598 	b1->sense = !b1->sense;
599 	merge(b1, b0);
600 	b1->sense = !b1->sense;
601 	b1->head = b0->head;
602 }
603 
604 void
605 gen_or(b0, b1)
606 	struct block *b0, *b1;
607 {
608 	b0->sense = !b0->sense;
609 	backpatch(b0, b1->head);
610 	b0->sense = !b0->sense;
611 	merge(b1, b0);
612 	b1->head = b0->head;
613 }
614 
615 void
616 gen_not(b)
617 	struct block *b;
618 {
619 	b->sense = !b->sense;
620 }
621 
622 static struct block *
623 gen_cmp(offrel, offset, size, v)
624 	enum e_offrel offrel;
625 	u_int offset, size;
626 	bpf_int32 v;
627 {
628 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
629 }
630 
631 static struct block *
632 gen_cmp_gt(offrel, offset, size, v)
633 	enum e_offrel offrel;
634 	u_int offset, size;
635 	bpf_int32 v;
636 {
637 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
638 }
639 
640 static struct block *
641 gen_cmp_ge(offrel, offset, size, v)
642 	enum e_offrel offrel;
643 	u_int offset, size;
644 	bpf_int32 v;
645 {
646 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
647 }
648 
649 static struct block *
650 gen_cmp_lt(offrel, offset, size, v)
651 	enum e_offrel offrel;
652 	u_int offset, size;
653 	bpf_int32 v;
654 {
655 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
656 }
657 
658 static struct block *
659 gen_cmp_le(offrel, offset, size, v)
660 	enum e_offrel offrel;
661 	u_int offset, size;
662 	bpf_int32 v;
663 {
664 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
665 }
666 
667 static struct block *
668 gen_mcmp(offrel, offset, size, v, mask)
669 	enum e_offrel offrel;
670 	u_int offset, size;
671 	bpf_int32 v;
672 	bpf_u_int32 mask;
673 {
674 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
675 }
676 
677 static struct block *
678 gen_bcmp(offrel, offset, size, v)
679 	enum e_offrel offrel;
680 	register u_int offset, size;
681 	register const u_char *v;
682 {
683 	register struct block *b, *tmp;
684 
685 	b = NULL;
686 	while (size >= 4) {
687 		register const u_char *p = &v[size - 4];
688 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
689 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
690 
691 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
692 		if (b != NULL)
693 			gen_and(b, tmp);
694 		b = tmp;
695 		size -= 4;
696 	}
697 	while (size >= 2) {
698 		register const u_char *p = &v[size - 2];
699 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
700 
701 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
702 		if (b != NULL)
703 			gen_and(b, tmp);
704 		b = tmp;
705 		size -= 2;
706 	}
707 	if (size > 0) {
708 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
709 		if (b != NULL)
710 			gen_and(b, tmp);
711 		b = tmp;
712 	}
713 	return b;
714 }
715 
716 /*
717  * AND the field of size "size" at offset "offset" relative to the header
718  * specified by "offrel" with "mask", and compare it with the value "v"
719  * with the test specified by "jtype"; if "reverse" is true, the test
720  * should test the opposite of "jtype".
721  */
722 static struct block *
723 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
724 	enum e_offrel offrel;
725 	bpf_int32 v;
726 	bpf_u_int32 offset, size, mask, jtype;
727 	int reverse;
728 {
729 	struct slist *s, *s2;
730 	struct block *b;
731 
732 	s = gen_load_a(offrel, offset, size);
733 
734 	if (mask != 0xffffffff) {
735 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
736 		s2->s.k = mask;
737 		sappend(s, s2);
738 	}
739 
740 	b = new_block(JMP(jtype));
741 	b->stmts = s;
742 	b->s.k = v;
743 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
744 		gen_not(b);
745 	return b;
746 }
747 
748 /*
749  * Various code constructs need to know the layout of the data link
750  * layer.  These variables give the necessary offsets from the beginning
751  * of the packet data.
752  */
753 
754 /*
755  * This is the offset of the beginning of the link-layer header from
756  * the beginning of the raw packet data.
757  *
758  * It's usually 0, except for 802.11 with a fixed-length radio header.
759  * (For 802.11 with a variable-length radio header, we have to generate
760  * code to compute that offset; off_ll is 0 in that case.)
761  */
762 static u_int off_ll;
763 
764 /*
765  * If there's a variable-length header preceding the link-layer header,
766  * "reg_off_ll" is the register number for a register containing the
767  * length of that header, and therefore the offset of the link-layer
768  * header from the beginning of the raw packet data.  Otherwise,
769  * "reg_off_ll" is -1.
770  */
771 static int reg_off_ll;
772 
773 /*
774  * This is the offset of the beginning of the MAC-layer header from
775  * the beginning of the link-layer header.
776  * It's usually 0, except for ATM LANE, where it's the offset, relative
777  * to the beginning of the raw packet data, of the Ethernet header, and
778  * for Ethernet with various additional information.
779  */
780 static u_int off_mac;
781 
782 /*
783  * This is the offset of the beginning of the MAC-layer payload,
784  * from the beginning of the raw packet data.
785  *
786  * I.e., it's the sum of the length of the link-layer header (without,
787  * for example, any 802.2 LLC header, so it's the MAC-layer
788  * portion of that header), plus any prefix preceding the
789  * link-layer header.
790  */
791 static u_int off_macpl;
792 
793 /*
794  * This is 1 if the offset of the beginning of the MAC-layer payload
795  * from the beginning of the link-layer header is variable-length.
796  */
797 static int off_macpl_is_variable;
798 
799 /*
800  * If the link layer has variable_length headers, "reg_off_macpl"
801  * is the register number for a register containing the length of the
802  * link-layer header plus the length of any variable-length header
803  * preceding the link-layer header.  Otherwise, "reg_off_macpl"
804  * is -1.
805  */
806 static int reg_off_macpl;
807 
808 /*
809  * "off_linktype" is the offset to information in the link-layer header
810  * giving the packet type.  This offset is relative to the beginning
811  * of the link-layer header (i.e., it doesn't include off_ll).
812  *
813  * For Ethernet, it's the offset of the Ethernet type field.
814  *
815  * For link-layer types that always use 802.2 headers, it's the
816  * offset of the LLC header.
817  *
818  * For PPP, it's the offset of the PPP type field.
819  *
820  * For Cisco HDLC, it's the offset of the CHDLC type field.
821  *
822  * For BSD loopback, it's the offset of the AF_ value.
823  *
824  * For Linux cooked sockets, it's the offset of the type field.
825  *
826  * It's set to -1 for no encapsulation, in which case, IP is assumed.
827  */
828 static u_int off_linktype;
829 
830 /*
831  * TRUE if "pppoes" appeared in the filter; it causes link-layer type
832  * checks to check the PPP header, assumed to follow a LAN-style link-
833  * layer header and a PPPoE session header.
834  */
835 static int is_pppoes = 0;
836 
837 /*
838  * TRUE if the link layer includes an ATM pseudo-header.
839  */
840 static int is_atm = 0;
841 
842 /*
843  * TRUE if "lane" appeared in the filter; it causes us to generate
844  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
845  */
846 static int is_lane = 0;
847 
848 /*
849  * These are offsets for the ATM pseudo-header.
850  */
851 static u_int off_vpi;
852 static u_int off_vci;
853 static u_int off_proto;
854 
855 /*
856  * These are offsets for the MTP2 fields.
857  */
858 static u_int off_li;
859 
860 /*
861  * These are offsets for the MTP3 fields.
862  */
863 static u_int off_sio;
864 static u_int off_opc;
865 static u_int off_dpc;
866 static u_int off_sls;
867 
868 /*
869  * This is the offset of the first byte after the ATM pseudo_header,
870  * or -1 if there is no ATM pseudo-header.
871  */
872 static u_int off_payload;
873 
874 /*
875  * These are offsets to the beginning of the network-layer header.
876  * They are relative to the beginning of the MAC-layer payload (i.e.,
877  * they don't include off_ll or off_macpl).
878  *
879  * If the link layer never uses 802.2 LLC:
880  *
881  *	"off_nl" and "off_nl_nosnap" are the same.
882  *
883  * If the link layer always uses 802.2 LLC:
884  *
885  *	"off_nl" is the offset if there's a SNAP header following
886  *	the 802.2 header;
887  *
888  *	"off_nl_nosnap" is the offset if there's no SNAP header.
889  *
890  * If the link layer is Ethernet:
891  *
892  *	"off_nl" is the offset if the packet is an Ethernet II packet
893  *	(we assume no 802.3+802.2+SNAP);
894  *
895  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
896  *	with an 802.2 header following it.
897  */
898 static u_int off_nl;
899 static u_int off_nl_nosnap;
900 
901 static int linktype;
902 
903 static void
904 init_linktype(p)
905 	pcap_t *p;
906 {
907 	linktype = pcap_datalink(p);
908 #ifdef PCAP_FDDIPAD
909 	pcap_fddipad = p->fddipad;
910 #endif
911 
912 	/*
913 	 * Assume it's not raw ATM with a pseudo-header, for now.
914 	 */
915 	off_mac = 0;
916 	is_atm = 0;
917 	is_lane = 0;
918 	off_vpi = -1;
919 	off_vci = -1;
920 	off_proto = -1;
921 	off_payload = -1;
922 
923 	/*
924 	 * And that we're not doing PPPoE.
925 	 */
926 	is_pppoes = 0;
927 
928 	/*
929 	 * And assume we're not doing SS7.
930 	 */
931 	off_li = -1;
932 	off_sio = -1;
933 	off_opc = -1;
934 	off_dpc = -1;
935 	off_sls = -1;
936 
937 	/*
938 	 * Also assume it's not 802.11.
939 	 */
940 	off_ll = 0;
941 	off_macpl = 0;
942 	off_macpl_is_variable = 0;
943 
944 	orig_linktype = -1;
945 	orig_nl = -1;
946         label_stack_depth = 0;
947 
948 	reg_off_ll = -1;
949 	reg_off_macpl = -1;
950 
951 	switch (linktype) {
952 
953 	case DLT_ARCNET:
954 		off_linktype = 2;
955 		off_macpl = 6;
956 		off_nl = 0;		/* XXX in reality, variable! */
957 		off_nl_nosnap = 0;	/* no 802.2 LLC */
958 		return;
959 
960 	case DLT_ARCNET_LINUX:
961 		off_linktype = 4;
962 		off_macpl = 8;
963 		off_nl = 0;		/* XXX in reality, variable! */
964 		off_nl_nosnap = 0;	/* no 802.2 LLC */
965 		return;
966 
967 	case DLT_EN10MB:
968 		off_linktype = 12;
969 		off_macpl = 14;		/* Ethernet header length */
970 		off_nl = 0;		/* Ethernet II */
971 		off_nl_nosnap = 3;	/* 802.3+802.2 */
972 		return;
973 
974 	case DLT_SLIP:
975 		/*
976 		 * SLIP doesn't have a link level type.  The 16 byte
977 		 * header is hacked into our SLIP driver.
978 		 */
979 		off_linktype = -1;
980 		off_macpl = 16;
981 		off_nl = 0;
982 		off_nl_nosnap = 0;	/* no 802.2 LLC */
983 		return;
984 
985 	case DLT_SLIP_BSDOS:
986 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
987 		off_linktype = -1;
988 		/* XXX end */
989 		off_macpl = 24;
990 		off_nl = 0;
991 		off_nl_nosnap = 0;	/* no 802.2 LLC */
992 		return;
993 
994 	case DLT_NULL:
995 	case DLT_LOOP:
996 		off_linktype = 0;
997 		off_macpl = 4;
998 		off_nl = 0;
999 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1000 		return;
1001 
1002 	case DLT_ENC:
1003 		off_linktype = 0;
1004 		off_macpl = 12;
1005 		off_nl = 0;
1006 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1007 		return;
1008 
1009 	case DLT_PPP:
1010 	case DLT_PPP_PPPD:
1011 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1012 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1013 		off_linktype = 2;
1014 		off_macpl = 4;
1015 		off_nl = 0;
1016 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1017 		return;
1018 
1019 	case DLT_PPP_ETHER:
1020 		/*
1021 		 * This does no include the Ethernet header, and
1022 		 * only covers session state.
1023 		 */
1024 		off_linktype = 6;
1025 		off_macpl = 8;
1026 		off_nl = 0;
1027 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1028 		return;
1029 
1030 	case DLT_PPP_BSDOS:
1031 		off_linktype = 5;
1032 		off_macpl = 24;
1033 		off_nl = 0;
1034 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1035 		return;
1036 
1037 	case DLT_FDDI:
1038 		/*
1039 		 * FDDI doesn't really have a link-level type field.
1040 		 * We set "off_linktype" to the offset of the LLC header.
1041 		 *
1042 		 * To check for Ethernet types, we assume that SSAP = SNAP
1043 		 * is being used and pick out the encapsulated Ethernet type.
1044 		 * XXX - should we generate code to check for SNAP?
1045 		 */
1046 		off_linktype = 13;
1047 #ifdef PCAP_FDDIPAD
1048 		off_linktype += pcap_fddipad;
1049 #endif
1050 		off_macpl = 13;		/* FDDI MAC header length */
1051 #ifdef PCAP_FDDIPAD
1052 		off_macpl += pcap_fddipad;
1053 #endif
1054 		off_nl = 8;		/* 802.2+SNAP */
1055 		off_nl_nosnap = 3;	/* 802.2 */
1056 		return;
1057 
1058 	case DLT_IEEE802:
1059 		/*
1060 		 * Token Ring doesn't really have a link-level type field.
1061 		 * We set "off_linktype" to the offset of the LLC header.
1062 		 *
1063 		 * To check for Ethernet types, we assume that SSAP = SNAP
1064 		 * is being used and pick out the encapsulated Ethernet type.
1065 		 * XXX - should we generate code to check for SNAP?
1066 		 *
1067 		 * XXX - the header is actually variable-length.
1068 		 * Some various Linux patched versions gave 38
1069 		 * as "off_linktype" and 40 as "off_nl"; however,
1070 		 * if a token ring packet has *no* routing
1071 		 * information, i.e. is not source-routed, the correct
1072 		 * values are 20 and 22, as they are in the vanilla code.
1073 		 *
1074 		 * A packet is source-routed iff the uppermost bit
1075 		 * of the first byte of the source address, at an
1076 		 * offset of 8, has the uppermost bit set.  If the
1077 		 * packet is source-routed, the total number of bytes
1078 		 * of routing information is 2 plus bits 0x1F00 of
1079 		 * the 16-bit value at an offset of 14 (shifted right
1080 		 * 8 - figure out which byte that is).
1081 		 */
1082 		off_linktype = 14;
1083 		off_macpl = 14;		/* Token Ring MAC header length */
1084 		off_nl = 8;		/* 802.2+SNAP */
1085 		off_nl_nosnap = 3;	/* 802.2 */
1086 		return;
1087 
1088 	case DLT_IEEE802_11:
1089 	case DLT_PRISM_HEADER:
1090 	case DLT_IEEE802_11_RADIO_AVS:
1091 	case DLT_IEEE802_11_RADIO:
1092 		/*
1093 		 * 802.11 doesn't really have a link-level type field.
1094 		 * We set "off_linktype" to the offset of the LLC header.
1095 		 *
1096 		 * To check for Ethernet types, we assume that SSAP = SNAP
1097 		 * is being used and pick out the encapsulated Ethernet type.
1098 		 * XXX - should we generate code to check for SNAP?
1099 		 *
1100 		 * We also handle variable-length radio headers here.
1101 		 * The Prism header is in theory variable-length, but in
1102 		 * practice it's always 144 bytes long.  However, some
1103 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1104 		 * sometimes or always supply an AVS header, so we
1105 		 * have to check whether the radio header is a Prism
1106 		 * header or an AVS header, so, in practice, it's
1107 		 * variable-length.
1108 		 */
1109 		off_linktype = 24;
1110 		off_macpl = 0;		/* link-layer header is variable-length */
1111 		off_macpl_is_variable = 1;
1112 		off_nl = 8;		/* 802.2+SNAP */
1113 		off_nl_nosnap = 3;	/* 802.2 */
1114 		return;
1115 
1116 	case DLT_PPI:
1117 		/*
1118 		 * At the moment we treat PPI the same way that we treat
1119 		 * normal Radiotap encoded packets. The difference is in
1120 		 * the function that generates the code at the beginning
1121 		 * to compute the header length.  Since this code generator
1122 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1123 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1124 		 * generate code to check for this too.
1125 		 */
1126 		off_linktype = 24;
1127 		off_macpl = 0;		/* link-layer header is variable-length */
1128 		off_macpl_is_variable = 1;
1129 		off_nl = 8;		/* 802.2+SNAP */
1130 		off_nl_nosnap = 3;	/* 802.2 */
1131 		return;
1132 
1133 	case DLT_ATM_RFC1483:
1134 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1135 		/*
1136 		 * assume routed, non-ISO PDUs
1137 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1138 		 *
1139 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1140 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1141 		 * latter would presumably be treated the way PPPoE
1142 		 * should be, so you can do "pppoe and udp port 2049"
1143 		 * or "pppoa and tcp port 80" and have it check for
1144 		 * PPPo{A,E} and a PPP protocol of IP and....
1145 		 */
1146 		off_linktype = 0;
1147 		off_macpl = 0;		/* packet begins with LLC header */
1148 		off_nl = 8;		/* 802.2+SNAP */
1149 		off_nl_nosnap = 3;	/* 802.2 */
1150 		return;
1151 
1152 	case DLT_SUNATM:
1153 		/*
1154 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1155 		 * pseudo-header.
1156 		 */
1157 		is_atm = 1;
1158 		off_vpi = SUNATM_VPI_POS;
1159 		off_vci = SUNATM_VCI_POS;
1160 		off_proto = PROTO_POS;
1161 		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1162 		off_payload = SUNATM_PKT_BEGIN_POS;
1163 		off_linktype = off_payload;
1164 		off_macpl = off_payload;	/* if LLC-encapsulated */
1165 		off_nl = 8;		/* 802.2+SNAP */
1166 		off_nl_nosnap = 3;	/* 802.2 */
1167 		return;
1168 
1169 	case DLT_RAW:
1170 	case DLT_IPV4:
1171 	case DLT_IPV6:
1172 		off_linktype = -1;
1173 		off_macpl = 0;
1174 		off_nl = 0;
1175 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1176 		return;
1177 
1178 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1179 		off_linktype = 14;
1180 		off_macpl = 16;
1181 		off_nl = 0;
1182 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1183 		return;
1184 
1185 	case DLT_LTALK:
1186 		/*
1187 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1188 		 * but really it just indicates whether there is a "short" or
1189 		 * "long" DDP packet following.
1190 		 */
1191 		off_linktype = -1;
1192 		off_macpl = 0;
1193 		off_nl = 0;
1194 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1195 		return;
1196 
1197 	case DLT_IP_OVER_FC:
1198 		/*
1199 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1200 		 * link-level type field.  We set "off_linktype" to the
1201 		 * offset of the LLC header.
1202 		 *
1203 		 * To check for Ethernet types, we assume that SSAP = SNAP
1204 		 * is being used and pick out the encapsulated Ethernet type.
1205 		 * XXX - should we generate code to check for SNAP? RFC
1206 		 * 2625 says SNAP should be used.
1207 		 */
1208 		off_linktype = 16;
1209 		off_macpl = 16;
1210 		off_nl = 8;		/* 802.2+SNAP */
1211 		off_nl_nosnap = 3;	/* 802.2 */
1212 		return;
1213 
1214 	case DLT_FRELAY:
1215 		/*
1216 		 * XXX - we should set this to handle SNAP-encapsulated
1217 		 * frames (NLPID of 0x80).
1218 		 */
1219 		off_linktype = -1;
1220 		off_macpl = 0;
1221 		off_nl = 0;
1222 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1223 		return;
1224 
1225                 /*
1226                  * the only BPF-interesting FRF.16 frames are non-control frames;
1227                  * Frame Relay has a variable length link-layer
1228                  * so lets start with offset 4 for now and increments later on (FIXME);
1229                  */
1230 	case DLT_MFR:
1231 		off_linktype = -1;
1232 		off_macpl = 0;
1233 		off_nl = 4;
1234 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1235 		return;
1236 
1237 	case DLT_APPLE_IP_OVER_IEEE1394:
1238 		off_linktype = 16;
1239 		off_macpl = 18;
1240 		off_nl = 0;
1241 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1242 		return;
1243 
1244 	case DLT_SYMANTEC_FIREWALL:
1245 		off_linktype = 6;
1246 		off_macpl = 44;
1247 		off_nl = 0;		/* Ethernet II */
1248 		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1249 		return;
1250 
1251 #ifdef HAVE_NET_PFVAR_H
1252 	case DLT_PFLOG:
1253 		off_linktype = 0;
1254 		off_macpl = PFLOG_HDRLEN;
1255 		off_nl = 0;
1256 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1257 		return;
1258 #endif
1259 
1260         case DLT_JUNIPER_MFR:
1261         case DLT_JUNIPER_MLFR:
1262         case DLT_JUNIPER_MLPPP:
1263         case DLT_JUNIPER_PPP:
1264         case DLT_JUNIPER_CHDLC:
1265         case DLT_JUNIPER_FRELAY:
1266                 off_linktype = 4;
1267 		off_macpl = 4;
1268 		off_nl = 0;
1269 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1270                 return;
1271 
1272 	case DLT_JUNIPER_ATM1:
1273 		off_linktype = 4;	/* in reality variable between 4-8 */
1274 		off_macpl = 4;	/* in reality variable between 4-8 */
1275 		off_nl = 0;
1276 		off_nl_nosnap = 10;
1277 		return;
1278 
1279 	case DLT_JUNIPER_ATM2:
1280 		off_linktype = 8;	/* in reality variable between 8-12 */
1281 		off_macpl = 8;	/* in reality variable between 8-12 */
1282 		off_nl = 0;
1283 		off_nl_nosnap = 10;
1284 		return;
1285 
1286 		/* frames captured on a Juniper PPPoE service PIC
1287 		 * contain raw ethernet frames */
1288 	case DLT_JUNIPER_PPPOE:
1289         case DLT_JUNIPER_ETHER:
1290         	off_macpl = 14;
1291 		off_linktype = 16;
1292 		off_nl = 18;		/* Ethernet II */
1293 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1294 		return;
1295 
1296 	case DLT_JUNIPER_PPPOE_ATM:
1297 		off_linktype = 4;
1298 		off_macpl = 6;
1299 		off_nl = 0;
1300 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1301 		return;
1302 
1303 	case DLT_JUNIPER_GGSN:
1304 		off_linktype = 6;
1305 		off_macpl = 12;
1306 		off_nl = 0;
1307 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1308 		return;
1309 
1310 	case DLT_JUNIPER_ES:
1311 		off_linktype = 6;
1312 		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1313 		off_nl = -1;		/* not really a network layer but raw IP addresses */
1314 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1315 		return;
1316 
1317 	case DLT_JUNIPER_MONITOR:
1318 		off_linktype = 12;
1319 		off_macpl = 12;
1320 		off_nl = 0;		/* raw IP/IP6 header */
1321 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1322 		return;
1323 
1324 	case DLT_JUNIPER_SERVICES:
1325 		off_linktype = 12;
1326 		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1327 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1328 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1329 		return;
1330 
1331 	case DLT_JUNIPER_VP:
1332 		off_linktype = 18;
1333 		off_macpl = -1;
1334 		off_nl = -1;
1335 		off_nl_nosnap = -1;
1336 		return;
1337 
1338 	case DLT_JUNIPER_ST:
1339 		off_linktype = 18;
1340 		off_macpl = -1;
1341 		off_nl = -1;
1342 		off_nl_nosnap = -1;
1343 		return;
1344 
1345 	case DLT_JUNIPER_ISM:
1346 		off_linktype = 8;
1347 		off_macpl = -1;
1348 		off_nl = -1;
1349 		off_nl_nosnap = -1;
1350 		return;
1351 
1352 	case DLT_JUNIPER_VS:
1353 	case DLT_JUNIPER_SRX_E2E:
1354 	case DLT_JUNIPER_FIBRECHANNEL:
1355 	case DLT_JUNIPER_ATM_CEMIC:
1356 		off_linktype = 8;
1357 		off_macpl = -1;
1358 		off_nl = -1;
1359 		off_nl_nosnap = -1;
1360 		return;
1361 
1362 	case DLT_MTP2:
1363 		off_li = 2;
1364 		off_sio = 3;
1365 		off_opc = 4;
1366 		off_dpc = 4;
1367 		off_sls = 7;
1368 		off_linktype = -1;
1369 		off_macpl = -1;
1370 		off_nl = -1;
1371 		off_nl_nosnap = -1;
1372 		return;
1373 
1374 	case DLT_MTP2_WITH_PHDR:
1375 		off_li = 6;
1376 		off_sio = 7;
1377 		off_opc = 8;
1378 		off_dpc = 8;
1379 		off_sls = 11;
1380 		off_linktype = -1;
1381 		off_macpl = -1;
1382 		off_nl = -1;
1383 		off_nl_nosnap = -1;
1384 		return;
1385 
1386 	case DLT_ERF:
1387 		off_li = 22;
1388 		off_sio = 23;
1389 		off_opc = 24;
1390 		off_dpc = 24;
1391 		off_sls = 27;
1392 		off_linktype = -1;
1393 		off_macpl = -1;
1394 		off_nl = -1;
1395 		off_nl_nosnap = -1;
1396 		return;
1397 
1398 #ifdef DLT_PFSYNC
1399 	case DLT_PFSYNC:
1400 		off_linktype = -1;
1401 		off_macpl = 4;
1402 		off_nl = 0;
1403 		off_nl_nosnap = 0;
1404 		return;
1405 #endif
1406 
1407 	case DLT_AX25_KISS:
1408 		/*
1409 		 * Currently, only raw "link[N:M]" filtering is supported.
1410 		 */
1411 		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1412 		off_macpl = -1;
1413 		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1414 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1415 		off_mac = 1;		/* step over the kiss length byte */
1416 		return;
1417 
1418 	case DLT_IPNET:
1419 		off_linktype = 1;
1420 		off_macpl = 24;		/* ipnet header length */
1421 		off_nl = 0;
1422 		off_nl_nosnap = -1;
1423 		return;
1424 
1425 	case DLT_NETANALYZER:
1426 		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1427 		off_linktype = 16;	/* includes 4-byte pseudo-header */
1428 		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1429 		off_nl = 0;		/* Ethernet II */
1430 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1431 		return;
1432 
1433 	case DLT_NETANALYZER_TRANSPARENT:
1434 		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1435 		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1436 		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1437 		off_nl = 0;		/* Ethernet II */
1438 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1439 		return;
1440 
1441 	default:
1442 		/*
1443 		 * For values in the range in which we've assigned new
1444 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1445 		 */
1446 		if (linktype >= DLT_MATCHING_MIN &&
1447 		    linktype <= DLT_MATCHING_MAX) {
1448 			off_linktype = -1;
1449 			off_macpl = -1;
1450 			off_nl = -1;
1451 			off_nl_nosnap = -1;
1452 			return;
1453 		}
1454 
1455 	}
1456 	bpf_error("unknown data link type %d", linktype);
1457 	/* NOTREACHED */
1458 }
1459 
1460 /*
1461  * Load a value relative to the beginning of the link-layer header.
1462  * The link-layer header doesn't necessarily begin at the beginning
1463  * of the packet data; there might be a variable-length prefix containing
1464  * radio information.
1465  */
1466 static struct slist *
1467 gen_load_llrel(offset, size)
1468 	u_int offset, size;
1469 {
1470 	struct slist *s, *s2;
1471 
1472 	s = gen_llprefixlen();
1473 
1474 	/*
1475 	 * If "s" is non-null, it has code to arrange that the X register
1476 	 * contains the length of the prefix preceding the link-layer
1477 	 * header.
1478 	 *
1479 	 * Otherwise, the length of the prefix preceding the link-layer
1480 	 * header is "off_ll".
1481 	 */
1482 	if (s != NULL) {
1483 		/*
1484 		 * There's a variable-length prefix preceding the
1485 		 * link-layer header.  "s" points to a list of statements
1486 		 * that put the length of that prefix into the X register.
1487 		 * do an indirect load, to use the X register as an offset.
1488 		 */
1489 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1490 		s2->s.k = offset;
1491 		sappend(s, s2);
1492 	} else {
1493 		/*
1494 		 * There is no variable-length header preceding the
1495 		 * link-layer header; add in off_ll, which, if there's
1496 		 * a fixed-length header preceding the link-layer header,
1497 		 * is the length of that header.
1498 		 */
1499 		s = new_stmt(BPF_LD|BPF_ABS|size);
1500 		s->s.k = offset + off_ll;
1501 	}
1502 	return s;
1503 }
1504 
1505 /*
1506  * Load a value relative to the beginning of the MAC-layer payload.
1507  */
1508 static struct slist *
1509 gen_load_macplrel(offset, size)
1510 	u_int offset, size;
1511 {
1512 	struct slist *s, *s2;
1513 
1514 	s = gen_off_macpl();
1515 
1516 	/*
1517 	 * If s is non-null, the offset of the MAC-layer payload is
1518 	 * variable, and s points to a list of instructions that
1519 	 * arrange that the X register contains that offset.
1520 	 *
1521 	 * Otherwise, the offset of the MAC-layer payload is constant,
1522 	 * and is in off_macpl.
1523 	 */
1524 	if (s != NULL) {
1525 		/*
1526 		 * The offset of the MAC-layer payload is in the X
1527 		 * register.  Do an indirect load, to use the X register
1528 		 * as an offset.
1529 		 */
1530 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1531 		s2->s.k = offset;
1532 		sappend(s, s2);
1533 	} else {
1534 		/*
1535 		 * The offset of the MAC-layer payload is constant,
1536 		 * and is in off_macpl; load the value at that offset
1537 		 * plus the specified offset.
1538 		 */
1539 		s = new_stmt(BPF_LD|BPF_ABS|size);
1540 		s->s.k = off_macpl + offset;
1541 	}
1542 	return s;
1543 }
1544 
1545 /*
1546  * Load a value relative to the beginning of the specified header.
1547  */
1548 static struct slist *
1549 gen_load_a(offrel, offset, size)
1550 	enum e_offrel offrel;
1551 	u_int offset, size;
1552 {
1553 	struct slist *s, *s2;
1554 
1555 	switch (offrel) {
1556 
1557 	case OR_PACKET:
1558                 s = new_stmt(BPF_LD|BPF_ABS|size);
1559                 s->s.k = offset;
1560 		break;
1561 
1562 	case OR_LINK:
1563 		s = gen_load_llrel(offset, size);
1564 		break;
1565 
1566 	case OR_MACPL:
1567 		s = gen_load_macplrel(offset, size);
1568 		break;
1569 
1570 	case OR_NET:
1571 		s = gen_load_macplrel(off_nl + offset, size);
1572 		break;
1573 
1574 	case OR_NET_NOSNAP:
1575 		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1576 		break;
1577 
1578 	case OR_TRAN_IPV4:
1579 		/*
1580 		 * Load the X register with the length of the IPv4 header
1581 		 * (plus the offset of the link-layer header, if it's
1582 		 * preceded by a variable-length header such as a radio
1583 		 * header), in bytes.
1584 		 */
1585 		s = gen_loadx_iphdrlen();
1586 
1587 		/*
1588 		 * Load the item at {offset of the MAC-layer payload} +
1589 		 * {offset, relative to the start of the MAC-layer
1590 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1591 		 * {specified offset}.
1592 		 *
1593 		 * (If the offset of the MAC-layer payload is variable,
1594 		 * it's included in the value in the X register, and
1595 		 * off_macpl is 0.)
1596 		 */
1597 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1598 		s2->s.k = off_macpl + off_nl + offset;
1599 		sappend(s, s2);
1600 		break;
1601 
1602 	case OR_TRAN_IPV6:
1603 		s = gen_load_macplrel(off_nl + 40 + offset, size);
1604 		break;
1605 
1606 	default:
1607 		abort();
1608 		return NULL;
1609 	}
1610 	return s;
1611 }
1612 
1613 /*
1614  * Generate code to load into the X register the sum of the length of
1615  * the IPv4 header and any variable-length header preceding the link-layer
1616  * header.
1617  */
1618 static struct slist *
1619 gen_loadx_iphdrlen()
1620 {
1621 	struct slist *s, *s2;
1622 
1623 	s = gen_off_macpl();
1624 	if (s != NULL) {
1625 		/*
1626 		 * There's a variable-length prefix preceding the
1627 		 * link-layer header, or the link-layer header is itself
1628 		 * variable-length.  "s" points to a list of statements
1629 		 * that put the offset of the MAC-layer payload into
1630 		 * the X register.
1631 		 *
1632 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1633 		 * don't have a constant offset, so we have to load the
1634 		 * value in question into the A register and add to it
1635 		 * the value from the X register.
1636 		 */
1637 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1638 		s2->s.k = off_nl;
1639 		sappend(s, s2);
1640 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1641 		s2->s.k = 0xf;
1642 		sappend(s, s2);
1643 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1644 		s2->s.k = 2;
1645 		sappend(s, s2);
1646 
1647 		/*
1648 		 * The A register now contains the length of the
1649 		 * IP header.  We need to add to it the offset of
1650 		 * the MAC-layer payload, which is still in the X
1651 		 * register, and move the result into the X register.
1652 		 */
1653 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1654 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1655 	} else {
1656 		/*
1657 		 * There is no variable-length header preceding the
1658 		 * link-layer header, and the link-layer header is
1659 		 * fixed-length; load the length of the IPv4 header,
1660 		 * which is at an offset of off_nl from the beginning
1661 		 * of the MAC-layer payload, and thus at an offset
1662 		 * of off_mac_pl + off_nl from the beginning of the
1663 		 * raw packet data.
1664 		 */
1665 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1666 		s->s.k = off_macpl + off_nl;
1667 	}
1668 	return s;
1669 }
1670 
1671 static struct block *
1672 gen_uncond(rsense)
1673 	int rsense;
1674 {
1675 	struct block *b;
1676 	struct slist *s;
1677 
1678 	s = new_stmt(BPF_LD|BPF_IMM);
1679 	s->s.k = !rsense;
1680 	b = new_block(JMP(BPF_JEQ));
1681 	b->stmts = s;
1682 
1683 	return b;
1684 }
1685 
1686 static inline struct block *
1687 gen_true()
1688 {
1689 	return gen_uncond(1);
1690 }
1691 
1692 static inline struct block *
1693 gen_false()
1694 {
1695 	return gen_uncond(0);
1696 }
1697 
1698 /*
1699  * Byte-swap a 32-bit number.
1700  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1701  * big-endian platforms.)
1702  */
1703 #define	SWAPLONG(y) \
1704 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1705 
1706 /*
1707  * Generate code to match a particular packet type.
1708  *
1709  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1710  * value, if <= ETHERMTU.  We use that to determine whether to
1711  * match the type/length field or to check the type/length field for
1712  * a value <= ETHERMTU to see whether it's a type field and then do
1713  * the appropriate test.
1714  */
1715 static struct block *
1716 gen_ether_linktype(proto)
1717 	register int proto;
1718 {
1719 	struct block *b0, *b1;
1720 
1721 	switch (proto) {
1722 
1723 	case LLCSAP_ISONS:
1724 	case LLCSAP_IP:
1725 	case LLCSAP_NETBEUI:
1726 		/*
1727 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1728 		 * so we check the DSAP and SSAP.
1729 		 *
1730 		 * LLCSAP_IP checks for IP-over-802.2, rather
1731 		 * than IP-over-Ethernet or IP-over-SNAP.
1732 		 *
1733 		 * XXX - should we check both the DSAP and the
1734 		 * SSAP, like this, or should we check just the
1735 		 * DSAP, as we do for other types <= ETHERMTU
1736 		 * (i.e., other SAP values)?
1737 		 */
1738 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1739 		gen_not(b0);
1740 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1741 			     ((proto << 8) | proto));
1742 		gen_and(b0, b1);
1743 		return b1;
1744 
1745 	case LLCSAP_IPX:
1746 		/*
1747 		 * Check for;
1748 		 *
1749 		 *	Ethernet_II frames, which are Ethernet
1750 		 *	frames with a frame type of ETHERTYPE_IPX;
1751 		 *
1752 		 *	Ethernet_802.3 frames, which are 802.3
1753 		 *	frames (i.e., the type/length field is
1754 		 *	a length field, <= ETHERMTU, rather than
1755 		 *	a type field) with the first two bytes
1756 		 *	after the Ethernet/802.3 header being
1757 		 *	0xFFFF;
1758 		 *
1759 		 *	Ethernet_802.2 frames, which are 802.3
1760 		 *	frames with an 802.2 LLC header and
1761 		 *	with the IPX LSAP as the DSAP in the LLC
1762 		 *	header;
1763 		 *
1764 		 *	Ethernet_SNAP frames, which are 802.3
1765 		 *	frames with an LLC header and a SNAP
1766 		 *	header and with an OUI of 0x000000
1767 		 *	(encapsulated Ethernet) and a protocol
1768 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1769 		 *
1770 		 * XXX - should we generate the same code both
1771 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1772 		 */
1773 
1774 		/*
1775 		 * This generates code to check both for the
1776 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1777 		 */
1778 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1779 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1780 		gen_or(b0, b1);
1781 
1782 		/*
1783 		 * Now we add code to check for SNAP frames with
1784 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1785 		 */
1786 		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1787 		gen_or(b0, b1);
1788 
1789 		/*
1790 		 * Now we generate code to check for 802.3
1791 		 * frames in general.
1792 		 */
1793 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1794 		gen_not(b0);
1795 
1796 		/*
1797 		 * Now add the check for 802.3 frames before the
1798 		 * check for Ethernet_802.2 and Ethernet_802.3,
1799 		 * as those checks should only be done on 802.3
1800 		 * frames, not on Ethernet frames.
1801 		 */
1802 		gen_and(b0, b1);
1803 
1804 		/*
1805 		 * Now add the check for Ethernet_II frames, and
1806 		 * do that before checking for the other frame
1807 		 * types.
1808 		 */
1809 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1810 		    (bpf_int32)ETHERTYPE_IPX);
1811 		gen_or(b0, b1);
1812 		return b1;
1813 
1814 	case ETHERTYPE_ATALK:
1815 	case ETHERTYPE_AARP:
1816 		/*
1817 		 * EtherTalk (AppleTalk protocols on Ethernet link
1818 		 * layer) may use 802.2 encapsulation.
1819 		 */
1820 
1821 		/*
1822 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1823 		 * we check for an Ethernet type field less than
1824 		 * 1500, which means it's an 802.3 length field.
1825 		 */
1826 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1827 		gen_not(b0);
1828 
1829 		/*
1830 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1831 		 * SNAP packets with an organization code of
1832 		 * 0x080007 (Apple, for Appletalk) and a protocol
1833 		 * type of ETHERTYPE_ATALK (Appletalk).
1834 		 *
1835 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1836 		 * SNAP packets with an organization code of
1837 		 * 0x000000 (encapsulated Ethernet) and a protocol
1838 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1839 		 */
1840 		if (proto == ETHERTYPE_ATALK)
1841 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1842 		else	/* proto == ETHERTYPE_AARP */
1843 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1844 		gen_and(b0, b1);
1845 
1846 		/*
1847 		 * Check for Ethernet encapsulation (Ethertalk
1848 		 * phase 1?); we just check for the Ethernet
1849 		 * protocol type.
1850 		 */
1851 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1852 
1853 		gen_or(b0, b1);
1854 		return b1;
1855 
1856 	default:
1857 		if (proto <= ETHERMTU) {
1858 			/*
1859 			 * This is an LLC SAP value, so the frames
1860 			 * that match would be 802.2 frames.
1861 			 * Check that the frame is an 802.2 frame
1862 			 * (i.e., that the length/type field is
1863 			 * a length field, <= ETHERMTU) and
1864 			 * then check the DSAP.
1865 			 */
1866 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1867 			gen_not(b0);
1868 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1869 			    (bpf_int32)proto);
1870 			gen_and(b0, b1);
1871 			return b1;
1872 		} else {
1873 			/*
1874 			 * This is an Ethernet type, so compare
1875 			 * the length/type field with it (if
1876 			 * the frame is an 802.2 frame, the length
1877 			 * field will be <= ETHERMTU, and, as
1878 			 * "proto" is > ETHERMTU, this test
1879 			 * will fail and the frame won't match,
1880 			 * which is what we want).
1881 			 */
1882 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1883 			    (bpf_int32)proto);
1884 		}
1885 	}
1886 }
1887 
1888 /*
1889  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1890  * or IPv6 then we have an error.
1891  */
1892 static struct block *
1893 gen_ipnet_linktype(proto)
1894 	register int proto;
1895 {
1896 	switch (proto) {
1897 
1898 	case ETHERTYPE_IP:
1899 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1900 		    (bpf_int32)IPH_AF_INET);
1901 		/* NOTREACHED */
1902 
1903 	case ETHERTYPE_IPV6:
1904 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1905 		    (bpf_int32)IPH_AF_INET6);
1906 		/* NOTREACHED */
1907 
1908 	default:
1909 		break;
1910 	}
1911 
1912 	return gen_false();
1913 }
1914 
1915 /*
1916  * Generate code to match a particular packet type.
1917  *
1918  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1919  * value, if <= ETHERMTU.  We use that to determine whether to
1920  * match the type field or to check the type field for the special
1921  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1922  */
1923 static struct block *
1924 gen_linux_sll_linktype(proto)
1925 	register int proto;
1926 {
1927 	struct block *b0, *b1;
1928 
1929 	switch (proto) {
1930 
1931 	case LLCSAP_ISONS:
1932 	case LLCSAP_IP:
1933 	case LLCSAP_NETBEUI:
1934 		/*
1935 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1936 		 * so we check the DSAP and SSAP.
1937 		 *
1938 		 * LLCSAP_IP checks for IP-over-802.2, rather
1939 		 * than IP-over-Ethernet or IP-over-SNAP.
1940 		 *
1941 		 * XXX - should we check both the DSAP and the
1942 		 * SSAP, like this, or should we check just the
1943 		 * DSAP, as we do for other types <= ETHERMTU
1944 		 * (i.e., other SAP values)?
1945 		 */
1946 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1947 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1948 			     ((proto << 8) | proto));
1949 		gen_and(b0, b1);
1950 		return b1;
1951 
1952 	case LLCSAP_IPX:
1953 		/*
1954 		 *	Ethernet_II frames, which are Ethernet
1955 		 *	frames with a frame type of ETHERTYPE_IPX;
1956 		 *
1957 		 *	Ethernet_802.3 frames, which have a frame
1958 		 *	type of LINUX_SLL_P_802_3;
1959 		 *
1960 		 *	Ethernet_802.2 frames, which are 802.3
1961 		 *	frames with an 802.2 LLC header (i.e, have
1962 		 *	a frame type of LINUX_SLL_P_802_2) and
1963 		 *	with the IPX LSAP as the DSAP in the LLC
1964 		 *	header;
1965 		 *
1966 		 *	Ethernet_SNAP frames, which are 802.3
1967 		 *	frames with an LLC header and a SNAP
1968 		 *	header and with an OUI of 0x000000
1969 		 *	(encapsulated Ethernet) and a protocol
1970 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1971 		 *
1972 		 * First, do the checks on LINUX_SLL_P_802_2
1973 		 * frames; generate the check for either
1974 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1975 		 * then put a check for LINUX_SLL_P_802_2 frames
1976 		 * before it.
1977 		 */
1978 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1979 		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
1980 		gen_or(b0, b1);
1981 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1982 		gen_and(b0, b1);
1983 
1984 		/*
1985 		 * Now check for 802.3 frames and OR that with
1986 		 * the previous test.
1987 		 */
1988 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
1989 		gen_or(b0, b1);
1990 
1991 		/*
1992 		 * Now add the check for Ethernet_II frames, and
1993 		 * do that before checking for the other frame
1994 		 * types.
1995 		 */
1996 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1997 		    (bpf_int32)ETHERTYPE_IPX);
1998 		gen_or(b0, b1);
1999 		return b1;
2000 
2001 	case ETHERTYPE_ATALK:
2002 	case ETHERTYPE_AARP:
2003 		/*
2004 		 * EtherTalk (AppleTalk protocols on Ethernet link
2005 		 * layer) may use 802.2 encapsulation.
2006 		 */
2007 
2008 		/*
2009 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2010 		 * we check for the 802.2 protocol type in the
2011 		 * "Ethernet type" field.
2012 		 */
2013 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2014 
2015 		/*
2016 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2017 		 * SNAP packets with an organization code of
2018 		 * 0x080007 (Apple, for Appletalk) and a protocol
2019 		 * type of ETHERTYPE_ATALK (Appletalk).
2020 		 *
2021 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2022 		 * SNAP packets with an organization code of
2023 		 * 0x000000 (encapsulated Ethernet) and a protocol
2024 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2025 		 */
2026 		if (proto == ETHERTYPE_ATALK)
2027 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2028 		else	/* proto == ETHERTYPE_AARP */
2029 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2030 		gen_and(b0, b1);
2031 
2032 		/*
2033 		 * Check for Ethernet encapsulation (Ethertalk
2034 		 * phase 1?); we just check for the Ethernet
2035 		 * protocol type.
2036 		 */
2037 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2038 
2039 		gen_or(b0, b1);
2040 		return b1;
2041 
2042 	default:
2043 		if (proto <= ETHERMTU) {
2044 			/*
2045 			 * This is an LLC SAP value, so the frames
2046 			 * that match would be 802.2 frames.
2047 			 * Check for the 802.2 protocol type
2048 			 * in the "Ethernet type" field, and
2049 			 * then check the DSAP.
2050 			 */
2051 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2052 			    LINUX_SLL_P_802_2);
2053 			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2054 			     (bpf_int32)proto);
2055 			gen_and(b0, b1);
2056 			return b1;
2057 		} else {
2058 			/*
2059 			 * This is an Ethernet type, so compare
2060 			 * the length/type field with it (if
2061 			 * the frame is an 802.2 frame, the length
2062 			 * field will be <= ETHERMTU, and, as
2063 			 * "proto" is > ETHERMTU, this test
2064 			 * will fail and the frame won't match,
2065 			 * which is what we want).
2066 			 */
2067 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2068 			    (bpf_int32)proto);
2069 		}
2070 	}
2071 }
2072 
2073 static struct slist *
2074 gen_load_prism_llprefixlen()
2075 {
2076 	struct slist *s1, *s2;
2077 	struct slist *sjeq_avs_cookie;
2078 	struct slist *sjcommon;
2079 
2080 	/*
2081 	 * This code is not compatible with the optimizer, as
2082 	 * we are generating jmp instructions within a normal
2083 	 * slist of instructions
2084 	 */
2085 	no_optimize = 1;
2086 
2087 	/*
2088 	 * Generate code to load the length of the radio header into
2089 	 * the register assigned to hold that length, if one has been
2090 	 * assigned.  (If one hasn't been assigned, no code we've
2091 	 * generated uses that prefix, so we don't need to generate any
2092 	 * code to load it.)
2093 	 *
2094 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2095 	 * or always use the AVS header rather than the Prism header.
2096 	 * We load a 4-byte big-endian value at the beginning of the
2097 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2098 	 * it's equal to 0x80211000.  If so, that indicates that it's
2099 	 * an AVS header (the masked-out bits are the version number).
2100 	 * Otherwise, it's a Prism header.
2101 	 *
2102 	 * XXX - the Prism header is also, in theory, variable-length,
2103 	 * but no known software generates headers that aren't 144
2104 	 * bytes long.
2105 	 */
2106 	if (reg_off_ll != -1) {
2107 		/*
2108 		 * Load the cookie.
2109 		 */
2110 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2111 		s1->s.k = 0;
2112 
2113 		/*
2114 		 * AND it with 0xFFFFF000.
2115 		 */
2116 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2117 		s2->s.k = 0xFFFFF000;
2118 		sappend(s1, s2);
2119 
2120 		/*
2121 		 * Compare with 0x80211000.
2122 		 */
2123 		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2124 		sjeq_avs_cookie->s.k = 0x80211000;
2125 		sappend(s1, sjeq_avs_cookie);
2126 
2127 		/*
2128 		 * If it's AVS:
2129 		 *
2130 		 * The 4 bytes at an offset of 4 from the beginning of
2131 		 * the AVS header are the length of the AVS header.
2132 		 * That field is big-endian.
2133 		 */
2134 		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2135 		s2->s.k = 4;
2136 		sappend(s1, s2);
2137 		sjeq_avs_cookie->s.jt = s2;
2138 
2139 		/*
2140 		 * Now jump to the code to allocate a register
2141 		 * into which to save the header length and
2142 		 * store the length there.  (The "jump always"
2143 		 * instruction needs to have the k field set;
2144 		 * it's added to the PC, so, as we're jumping
2145 		 * over a single instruction, it should be 1.)
2146 		 */
2147 		sjcommon = new_stmt(JMP(BPF_JA));
2148 		sjcommon->s.k = 1;
2149 		sappend(s1, sjcommon);
2150 
2151 		/*
2152 		 * Now for the code that handles the Prism header.
2153 		 * Just load the length of the Prism header (144)
2154 		 * into the A register.  Have the test for an AVS
2155 		 * header branch here if we don't have an AVS header.
2156 		 */
2157 		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2158 		s2->s.k = 144;
2159 		sappend(s1, s2);
2160 		sjeq_avs_cookie->s.jf = s2;
2161 
2162 		/*
2163 		 * Now allocate a register to hold that value and store
2164 		 * it.  The code for the AVS header will jump here after
2165 		 * loading the length of the AVS header.
2166 		 */
2167 		s2 = new_stmt(BPF_ST);
2168 		s2->s.k = reg_off_ll;
2169 		sappend(s1, s2);
2170 		sjcommon->s.jf = s2;
2171 
2172 		/*
2173 		 * Now move it into the X register.
2174 		 */
2175 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2176 		sappend(s1, s2);
2177 
2178 		return (s1);
2179 	} else
2180 		return (NULL);
2181 }
2182 
2183 static struct slist *
2184 gen_load_avs_llprefixlen()
2185 {
2186 	struct slist *s1, *s2;
2187 
2188 	/*
2189 	 * Generate code to load the length of the AVS header into
2190 	 * the register assigned to hold that length, if one has been
2191 	 * assigned.  (If one hasn't been assigned, no code we've
2192 	 * generated uses that prefix, so we don't need to generate any
2193 	 * code to load it.)
2194 	 */
2195 	if (reg_off_ll != -1) {
2196 		/*
2197 		 * The 4 bytes at an offset of 4 from the beginning of
2198 		 * the AVS header are the length of the AVS header.
2199 		 * That field is big-endian.
2200 		 */
2201 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2202 		s1->s.k = 4;
2203 
2204 		/*
2205 		 * Now allocate a register to hold that value and store
2206 		 * it.
2207 		 */
2208 		s2 = new_stmt(BPF_ST);
2209 		s2->s.k = reg_off_ll;
2210 		sappend(s1, s2);
2211 
2212 		/*
2213 		 * Now move it into the X register.
2214 		 */
2215 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2216 		sappend(s1, s2);
2217 
2218 		return (s1);
2219 	} else
2220 		return (NULL);
2221 }
2222 
2223 static struct slist *
2224 gen_load_radiotap_llprefixlen()
2225 {
2226 	struct slist *s1, *s2;
2227 
2228 	/*
2229 	 * Generate code to load the length of the radiotap header into
2230 	 * the register assigned to hold that length, if one has been
2231 	 * assigned.  (If one hasn't been assigned, no code we've
2232 	 * generated uses that prefix, so we don't need to generate any
2233 	 * code to load it.)
2234 	 */
2235 	if (reg_off_ll != -1) {
2236 		/*
2237 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2238 		 * of the radiotap header are the length of the radiotap
2239 		 * header; unfortunately, it's little-endian, so we have
2240 		 * to load it a byte at a time and construct the value.
2241 		 */
2242 
2243 		/*
2244 		 * Load the high-order byte, at an offset of 3, shift it
2245 		 * left a byte, and put the result in the X register.
2246 		 */
2247 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2248 		s1->s.k = 3;
2249 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2250 		sappend(s1, s2);
2251 		s2->s.k = 8;
2252 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2253 		sappend(s1, s2);
2254 
2255 		/*
2256 		 * Load the next byte, at an offset of 2, and OR the
2257 		 * value from the X register into it.
2258 		 */
2259 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2260 		sappend(s1, s2);
2261 		s2->s.k = 2;
2262 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2263 		sappend(s1, s2);
2264 
2265 		/*
2266 		 * Now allocate a register to hold that value and store
2267 		 * it.
2268 		 */
2269 		s2 = new_stmt(BPF_ST);
2270 		s2->s.k = reg_off_ll;
2271 		sappend(s1, s2);
2272 
2273 		/*
2274 		 * Now move it into the X register.
2275 		 */
2276 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2277 		sappend(s1, s2);
2278 
2279 		return (s1);
2280 	} else
2281 		return (NULL);
2282 }
2283 
2284 /*
2285  * At the moment we treat PPI as normal Radiotap encoded
2286  * packets. The difference is in the function that generates
2287  * the code at the beginning to compute the header length.
2288  * Since this code generator of PPI supports bare 802.11
2289  * encapsulation only (i.e. the encapsulated DLT should be
2290  * DLT_IEEE802_11) we generate code to check for this too;
2291  * that's done in finish_parse().
2292  */
2293 static struct slist *
2294 gen_load_ppi_llprefixlen()
2295 {
2296 	struct slist *s1, *s2;
2297 
2298 	/*
2299 	 * Generate code to load the length of the radiotap header
2300 	 * into the register assigned to hold that length, if one has
2301 	 * been assigned.
2302 	 */
2303 	if (reg_off_ll != -1) {
2304 		/*
2305 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2306 		 * of the radiotap header are the length of the radiotap
2307 		 * header; unfortunately, it's little-endian, so we have
2308 		 * to load it a byte at a time and construct the value.
2309 		 */
2310 
2311 		/*
2312 		 * Load the high-order byte, at an offset of 3, shift it
2313 		 * left a byte, and put the result in the X register.
2314 		 */
2315 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2316 		s1->s.k = 3;
2317 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2318 		sappend(s1, s2);
2319 		s2->s.k = 8;
2320 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2321 		sappend(s1, s2);
2322 
2323 		/*
2324 		 * Load the next byte, at an offset of 2, and OR the
2325 		 * value from the X register into it.
2326 		 */
2327 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2328 		sappend(s1, s2);
2329 		s2->s.k = 2;
2330 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2331 		sappend(s1, s2);
2332 
2333 		/*
2334 		 * Now allocate a register to hold that value and store
2335 		 * it.
2336 		 */
2337 		s2 = new_stmt(BPF_ST);
2338 		s2->s.k = reg_off_ll;
2339 		sappend(s1, s2);
2340 
2341 		/*
2342 		 * Now move it into the X register.
2343 		 */
2344 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2345 		sappend(s1, s2);
2346 
2347 		return (s1);
2348 	} else
2349 		return (NULL);
2350 }
2351 
2352 /*
2353  * Load a value relative to the beginning of the link-layer header after the 802.11
2354  * header, i.e. LLC_SNAP.
2355  * The link-layer header doesn't necessarily begin at the beginning
2356  * of the packet data; there might be a variable-length prefix containing
2357  * radio information.
2358  */
2359 static struct slist *
2360 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2361 {
2362 	struct slist *s2;
2363 	struct slist *sjset_data_frame_1;
2364 	struct slist *sjset_data_frame_2;
2365 	struct slist *sjset_qos;
2366 	struct slist *sjset_radiotap_flags;
2367 	struct slist *sjset_radiotap_tsft;
2368 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2369 	struct slist *s_roundup;
2370 
2371 	if (reg_off_macpl == -1) {
2372 		/*
2373 		 * No register has been assigned to the offset of
2374 		 * the MAC-layer payload, which means nobody needs
2375 		 * it; don't bother computing it - just return
2376 		 * what we already have.
2377 		 */
2378 		return (s);
2379 	}
2380 
2381 	/*
2382 	 * This code is not compatible with the optimizer, as
2383 	 * we are generating jmp instructions within a normal
2384 	 * slist of instructions
2385 	 */
2386 	no_optimize = 1;
2387 
2388 	/*
2389 	 * If "s" is non-null, it has code to arrange that the X register
2390 	 * contains the length of the prefix preceding the link-layer
2391 	 * header.
2392 	 *
2393 	 * Otherwise, the length of the prefix preceding the link-layer
2394 	 * header is "off_ll".
2395 	 */
2396 	if (s == NULL) {
2397 		/*
2398 		 * There is no variable-length header preceding the
2399 		 * link-layer header.
2400 		 *
2401 		 * Load the length of the fixed-length prefix preceding
2402 		 * the link-layer header (if any) into the X register,
2403 		 * and store it in the reg_off_macpl register.
2404 		 * That length is off_ll.
2405 		 */
2406 		s = new_stmt(BPF_LDX|BPF_IMM);
2407 		s->s.k = off_ll;
2408 	}
2409 
2410 	/*
2411 	 * The X register contains the offset of the beginning of the
2412 	 * link-layer header; add 24, which is the minimum length
2413 	 * of the MAC header for a data frame, to that, and store it
2414 	 * in reg_off_macpl, and then load the Frame Control field,
2415 	 * which is at the offset in the X register, with an indexed load.
2416 	 */
2417 	s2 = new_stmt(BPF_MISC|BPF_TXA);
2418 	sappend(s, s2);
2419 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2420 	s2->s.k = 24;
2421 	sappend(s, s2);
2422 	s2 = new_stmt(BPF_ST);
2423 	s2->s.k = reg_off_macpl;
2424 	sappend(s, s2);
2425 
2426 	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2427 	s2->s.k = 0;
2428 	sappend(s, s2);
2429 
2430 	/*
2431 	 * Check the Frame Control field to see if this is a data frame;
2432 	 * a data frame has the 0x08 bit (b3) in that field set and the
2433 	 * 0x04 bit (b2) clear.
2434 	 */
2435 	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2436 	sjset_data_frame_1->s.k = 0x08;
2437 	sappend(s, sjset_data_frame_1);
2438 
2439 	/*
2440 	 * If b3 is set, test b2, otherwise go to the first statement of
2441 	 * the rest of the program.
2442 	 */
2443 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2444 	sjset_data_frame_2->s.k = 0x04;
2445 	sappend(s, sjset_data_frame_2);
2446 	sjset_data_frame_1->s.jf = snext;
2447 
2448 	/*
2449 	 * If b2 is not set, this is a data frame; test the QoS bit.
2450 	 * Otherwise, go to the first statement of the rest of the
2451 	 * program.
2452 	 */
2453 	sjset_data_frame_2->s.jt = snext;
2454 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2455 	sjset_qos->s.k = 0x80;	/* QoS bit */
2456 	sappend(s, sjset_qos);
2457 
2458 	/*
2459 	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2460 	 * field.
2461 	 * Otherwise, go to the first statement of the rest of the
2462 	 * program.
2463 	 */
2464 	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2465 	s2->s.k = reg_off_macpl;
2466 	sappend(s, s2);
2467 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2468 	s2->s.k = 2;
2469 	sappend(s, s2);
2470 	s2 = new_stmt(BPF_ST);
2471 	s2->s.k = reg_off_macpl;
2472 	sappend(s, s2);
2473 
2474 	/*
2475 	 * If we have a radiotap header, look at it to see whether
2476 	 * there's Atheros padding between the MAC-layer header
2477 	 * and the payload.
2478 	 *
2479 	 * Note: all of the fields in the radiotap header are
2480 	 * little-endian, so we byte-swap all of the values
2481 	 * we test against, as they will be loaded as big-endian
2482 	 * values.
2483 	 */
2484 	if (linktype == DLT_IEEE802_11_RADIO) {
2485 		/*
2486 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2487 		 * in the presence flag?
2488 		 */
2489 		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2490 		s2->s.k = 4;
2491 		sappend(s, s2);
2492 
2493 		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2494 		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2495 		sappend(s, sjset_radiotap_flags);
2496 
2497 		/*
2498 		 * If not, skip all of this.
2499 		 */
2500 		sjset_radiotap_flags->s.jf = snext;
2501 
2502 		/*
2503 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2504 		 */
2505 		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2506 		    new_stmt(JMP(BPF_JSET));
2507 		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2508 		sappend(s, sjset_radiotap_tsft);
2509 
2510 		/*
2511 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2512 		 * at an offset of 16 from the beginning of the raw packet
2513 		 * data (8 bytes for the radiotap header and 8 bytes for
2514 		 * the TSFT field).
2515 		 *
2516 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2517 		 * is set.
2518 		 */
2519 		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2520 		s2->s.k = 16;
2521 		sappend(s, s2);
2522 
2523 		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2524 		sjset_tsft_datapad->s.k = 0x20;
2525 		sappend(s, sjset_tsft_datapad);
2526 
2527 		/*
2528 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2529 		 * at an offset of 8 from the beginning of the raw packet
2530 		 * data (8 bytes for the radiotap header).
2531 		 *
2532 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2533 		 * is set.
2534 		 */
2535 		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2536 		s2->s.k = 8;
2537 		sappend(s, s2);
2538 
2539 		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2540 		sjset_notsft_datapad->s.k = 0x20;
2541 		sappend(s, sjset_notsft_datapad);
2542 
2543 		/*
2544 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2545 		 * set, round the length of the 802.11 header to
2546 		 * a multiple of 4.  Do that by adding 3 and then
2547 		 * dividing by and multiplying by 4, which we do by
2548 		 * ANDing with ~3.
2549 		 */
2550 		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2551 		s_roundup->s.k = reg_off_macpl;
2552 		sappend(s, s_roundup);
2553 		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2554 		s2->s.k = 3;
2555 		sappend(s, s2);
2556 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2557 		s2->s.k = ~3;
2558 		sappend(s, s2);
2559 		s2 = new_stmt(BPF_ST);
2560 		s2->s.k = reg_off_macpl;
2561 		sappend(s, s2);
2562 
2563 		sjset_tsft_datapad->s.jt = s_roundup;
2564 		sjset_tsft_datapad->s.jf = snext;
2565 		sjset_notsft_datapad->s.jt = s_roundup;
2566 		sjset_notsft_datapad->s.jf = snext;
2567 	} else
2568 		sjset_qos->s.jf = snext;
2569 
2570 	return s;
2571 }
2572 
2573 static void
2574 insert_compute_vloffsets(b)
2575 	struct block *b;
2576 {
2577 	struct slist *s;
2578 
2579 	/*
2580 	 * For link-layer types that have a variable-length header
2581 	 * preceding the link-layer header, generate code to load
2582 	 * the offset of the link-layer header into the register
2583 	 * assigned to that offset, if any.
2584 	 */
2585 	switch (linktype) {
2586 
2587 	case DLT_PRISM_HEADER:
2588 		s = gen_load_prism_llprefixlen();
2589 		break;
2590 
2591 	case DLT_IEEE802_11_RADIO_AVS:
2592 		s = gen_load_avs_llprefixlen();
2593 		break;
2594 
2595 	case DLT_IEEE802_11_RADIO:
2596 		s = gen_load_radiotap_llprefixlen();
2597 		break;
2598 
2599 	case DLT_PPI:
2600 		s = gen_load_ppi_llprefixlen();
2601 		break;
2602 
2603 	default:
2604 		s = NULL;
2605 		break;
2606 	}
2607 
2608 	/*
2609 	 * For link-layer types that have a variable-length link-layer
2610 	 * header, generate code to load the offset of the MAC-layer
2611 	 * payload into the register assigned to that offset, if any.
2612 	 */
2613 	switch (linktype) {
2614 
2615 	case DLT_IEEE802_11:
2616 	case DLT_PRISM_HEADER:
2617 	case DLT_IEEE802_11_RADIO_AVS:
2618 	case DLT_IEEE802_11_RADIO:
2619 	case DLT_PPI:
2620 		s = gen_load_802_11_header_len(s, b->stmts);
2621 		break;
2622 	}
2623 
2624 	/*
2625 	 * If we have any offset-loading code, append all the
2626 	 * existing statements in the block to those statements,
2627 	 * and make the resulting list the list of statements
2628 	 * for the block.
2629 	 */
2630 	if (s != NULL) {
2631 		sappend(s, b->stmts);
2632 		b->stmts = s;
2633 	}
2634 }
2635 
2636 static struct block *
2637 gen_ppi_dlt_check(void)
2638 {
2639 	struct slist *s_load_dlt;
2640 	struct block *b;
2641 
2642 	if (linktype == DLT_PPI)
2643 	{
2644 		/* Create the statements that check for the DLT
2645 		 */
2646 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2647 		s_load_dlt->s.k = 4;
2648 
2649 		b = new_block(JMP(BPF_JEQ));
2650 
2651 		b->stmts = s_load_dlt;
2652 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2653 	}
2654 	else
2655 	{
2656 		b = NULL;
2657 	}
2658 
2659 	return b;
2660 }
2661 
2662 static struct slist *
2663 gen_prism_llprefixlen(void)
2664 {
2665 	struct slist *s;
2666 
2667 	if (reg_off_ll == -1) {
2668 		/*
2669 		 * We haven't yet assigned a register for the length
2670 		 * of the radio header; allocate one.
2671 		 */
2672 		reg_off_ll = alloc_reg();
2673 	}
2674 
2675 	/*
2676 	 * Load the register containing the radio length
2677 	 * into the X register.
2678 	 */
2679 	s = new_stmt(BPF_LDX|BPF_MEM);
2680 	s->s.k = reg_off_ll;
2681 	return s;
2682 }
2683 
2684 static struct slist *
2685 gen_avs_llprefixlen(void)
2686 {
2687 	struct slist *s;
2688 
2689 	if (reg_off_ll == -1) {
2690 		/*
2691 		 * We haven't yet assigned a register for the length
2692 		 * of the AVS header; allocate one.
2693 		 */
2694 		reg_off_ll = alloc_reg();
2695 	}
2696 
2697 	/*
2698 	 * Load the register containing the AVS length
2699 	 * into the X register.
2700 	 */
2701 	s = new_stmt(BPF_LDX|BPF_MEM);
2702 	s->s.k = reg_off_ll;
2703 	return s;
2704 }
2705 
2706 static struct slist *
2707 gen_radiotap_llprefixlen(void)
2708 {
2709 	struct slist *s;
2710 
2711 	if (reg_off_ll == -1) {
2712 		/*
2713 		 * We haven't yet assigned a register for the length
2714 		 * of the radiotap header; allocate one.
2715 		 */
2716 		reg_off_ll = alloc_reg();
2717 	}
2718 
2719 	/*
2720 	 * Load the register containing the radiotap length
2721 	 * into the X register.
2722 	 */
2723 	s = new_stmt(BPF_LDX|BPF_MEM);
2724 	s->s.k = reg_off_ll;
2725 	return s;
2726 }
2727 
2728 /*
2729  * At the moment we treat PPI as normal Radiotap encoded
2730  * packets. The difference is in the function that generates
2731  * the code at the beginning to compute the header length.
2732  * Since this code generator of PPI supports bare 802.11
2733  * encapsulation only (i.e. the encapsulated DLT should be
2734  * DLT_IEEE802_11) we generate code to check for this too.
2735  */
2736 static struct slist *
2737 gen_ppi_llprefixlen(void)
2738 {
2739 	struct slist *s;
2740 
2741 	if (reg_off_ll == -1) {
2742 		/*
2743 		 * We haven't yet assigned a register for the length
2744 		 * of the radiotap header; allocate one.
2745 		 */
2746 		reg_off_ll = alloc_reg();
2747 	}
2748 
2749 	/*
2750 	 * Load the register containing the PPI length
2751 	 * into the X register.
2752 	 */
2753 	s = new_stmt(BPF_LDX|BPF_MEM);
2754 	s->s.k = reg_off_ll;
2755 	return s;
2756 }
2757 
2758 /*
2759  * Generate code to compute the link-layer header length, if necessary,
2760  * putting it into the X register, and to return either a pointer to a
2761  * "struct slist" for the list of statements in that code, or NULL if
2762  * no code is necessary.
2763  */
2764 static struct slist *
2765 gen_llprefixlen(void)
2766 {
2767 	switch (linktype) {
2768 
2769 	case DLT_PRISM_HEADER:
2770 		return gen_prism_llprefixlen();
2771 
2772 	case DLT_IEEE802_11_RADIO_AVS:
2773 		return gen_avs_llprefixlen();
2774 
2775 	case DLT_IEEE802_11_RADIO:
2776 		return gen_radiotap_llprefixlen();
2777 
2778 	case DLT_PPI:
2779 		return gen_ppi_llprefixlen();
2780 
2781 	default:
2782 		return NULL;
2783 	}
2784 }
2785 
2786 /*
2787  * Generate code to load the register containing the offset of the
2788  * MAC-layer payload into the X register; if no register for that offset
2789  * has been allocated, allocate it first.
2790  */
2791 static struct slist *
2792 gen_off_macpl(void)
2793 {
2794 	struct slist *s;
2795 
2796 	if (off_macpl_is_variable) {
2797 		if (reg_off_macpl == -1) {
2798 			/*
2799 			 * We haven't yet assigned a register for the offset
2800 			 * of the MAC-layer payload; allocate one.
2801 			 */
2802 			reg_off_macpl = alloc_reg();
2803 		}
2804 
2805 		/*
2806 		 * Load the register containing the offset of the MAC-layer
2807 		 * payload into the X register.
2808 		 */
2809 		s = new_stmt(BPF_LDX|BPF_MEM);
2810 		s->s.k = reg_off_macpl;
2811 		return s;
2812 	} else {
2813 		/*
2814 		 * That offset isn't variable, so we don't need to
2815 		 * generate any code.
2816 		 */
2817 		return NULL;
2818 	}
2819 }
2820 
2821 /*
2822  * Map an Ethernet type to the equivalent PPP type.
2823  */
2824 static int
2825 ethertype_to_ppptype(proto)
2826 	int proto;
2827 {
2828 	switch (proto) {
2829 
2830 	case ETHERTYPE_IP:
2831 		proto = PPP_IP;
2832 		break;
2833 
2834 #ifdef INET6
2835 	case ETHERTYPE_IPV6:
2836 		proto = PPP_IPV6;
2837 		break;
2838 #endif
2839 
2840 	case ETHERTYPE_DN:
2841 		proto = PPP_DECNET;
2842 		break;
2843 
2844 	case ETHERTYPE_ATALK:
2845 		proto = PPP_APPLE;
2846 		break;
2847 
2848 	case ETHERTYPE_NS:
2849 		proto = PPP_NS;
2850 		break;
2851 
2852 	case LLCSAP_ISONS:
2853 		proto = PPP_OSI;
2854 		break;
2855 
2856 	case LLCSAP_8021D:
2857 		/*
2858 		 * I'm assuming the "Bridging PDU"s that go
2859 		 * over PPP are Spanning Tree Protocol
2860 		 * Bridging PDUs.
2861 		 */
2862 		proto = PPP_BRPDU;
2863 		break;
2864 
2865 	case LLCSAP_IPX:
2866 		proto = PPP_IPX;
2867 		break;
2868 	}
2869 	return (proto);
2870 }
2871 
2872 /*
2873  * Generate code to match a particular packet type by matching the
2874  * link-layer type field or fields in the 802.2 LLC header.
2875  *
2876  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2877  * value, if <= ETHERMTU.
2878  */
2879 static struct block *
2880 gen_linktype(proto)
2881 	register int proto;
2882 {
2883 	struct block *b0, *b1, *b2;
2884 
2885 	/* are we checking MPLS-encapsulated packets? */
2886 	if (label_stack_depth > 0) {
2887 		switch (proto) {
2888 		case ETHERTYPE_IP:
2889 		case PPP_IP:
2890 			/* FIXME add other L3 proto IDs */
2891 			return gen_mpls_linktype(Q_IP);
2892 
2893 		case ETHERTYPE_IPV6:
2894 		case PPP_IPV6:
2895 			/* FIXME add other L3 proto IDs */
2896 			return gen_mpls_linktype(Q_IPV6);
2897 
2898 		default:
2899 			bpf_error("unsupported protocol over mpls");
2900 			/* NOTREACHED */
2901 		}
2902 	}
2903 
2904 	/*
2905 	 * Are we testing PPPoE packets?
2906 	 */
2907 	if (is_pppoes) {
2908 		/*
2909 		 * The PPPoE session header is part of the
2910 		 * MAC-layer payload, so all references
2911 		 * should be relative to the beginning of
2912 		 * that payload.
2913 		 */
2914 
2915 		/*
2916 		 * We use Ethernet protocol types inside libpcap;
2917 		 * map them to the corresponding PPP protocol types.
2918 		 */
2919 		proto = ethertype_to_ppptype(proto);
2920 		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2921 	}
2922 
2923 	switch (linktype) {
2924 
2925 	case DLT_EN10MB:
2926 	case DLT_NETANALYZER:
2927 	case DLT_NETANALYZER_TRANSPARENT:
2928 		return gen_ether_linktype(proto);
2929 		/*NOTREACHED*/
2930 		break;
2931 
2932 	case DLT_C_HDLC:
2933 		switch (proto) {
2934 
2935 		case LLCSAP_ISONS:
2936 			proto = (proto << 8 | LLCSAP_ISONS);
2937 			/* fall through */
2938 
2939 		default:
2940 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2941 			    (bpf_int32)proto);
2942 			/*NOTREACHED*/
2943 			break;
2944 		}
2945 		break;
2946 
2947 	case DLT_IEEE802_11:
2948 	case DLT_PRISM_HEADER:
2949 	case DLT_IEEE802_11_RADIO_AVS:
2950 	case DLT_IEEE802_11_RADIO:
2951 	case DLT_PPI:
2952 		/*
2953 		 * Check that we have a data frame.
2954 		 */
2955 		b0 = gen_check_802_11_data_frame();
2956 
2957 		/*
2958 		 * Now check for the specified link-layer type.
2959 		 */
2960 		b1 = gen_llc_linktype(proto);
2961 		gen_and(b0, b1);
2962 		return b1;
2963 		/*NOTREACHED*/
2964 		break;
2965 
2966 	case DLT_FDDI:
2967 		/*
2968 		 * XXX - check for asynchronous frames, as per RFC 1103.
2969 		 */
2970 		return gen_llc_linktype(proto);
2971 		/*NOTREACHED*/
2972 		break;
2973 
2974 	case DLT_IEEE802:
2975 		/*
2976 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2977 		 */
2978 		return gen_llc_linktype(proto);
2979 		/*NOTREACHED*/
2980 		break;
2981 
2982 	case DLT_ATM_RFC1483:
2983 	case DLT_ATM_CLIP:
2984 	case DLT_IP_OVER_FC:
2985 		return gen_llc_linktype(proto);
2986 		/*NOTREACHED*/
2987 		break;
2988 
2989 	case DLT_SUNATM:
2990 		/*
2991 		 * If "is_lane" is set, check for a LANE-encapsulated
2992 		 * version of this protocol, otherwise check for an
2993 		 * LLC-encapsulated version of this protocol.
2994 		 *
2995 		 * We assume LANE means Ethernet, not Token Ring.
2996 		 */
2997 		if (is_lane) {
2998 			/*
2999 			 * Check that the packet doesn't begin with an
3000 			 * LE Control marker.  (We've already generated
3001 			 * a test for LANE.)
3002 			 */
3003 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3004 			    0xFF00);
3005 			gen_not(b0);
3006 
3007 			/*
3008 			 * Now generate an Ethernet test.
3009 			 */
3010 			b1 = gen_ether_linktype(proto);
3011 			gen_and(b0, b1);
3012 			return b1;
3013 		} else {
3014 			/*
3015 			 * Check for LLC encapsulation and then check the
3016 			 * protocol.
3017 			 */
3018 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3019 			b1 = gen_llc_linktype(proto);
3020 			gen_and(b0, b1);
3021 			return b1;
3022 		}
3023 		/*NOTREACHED*/
3024 		break;
3025 
3026 	case DLT_LINUX_SLL:
3027 		return gen_linux_sll_linktype(proto);
3028 		/*NOTREACHED*/
3029 		break;
3030 
3031 	case DLT_SLIP:
3032 	case DLT_SLIP_BSDOS:
3033 	case DLT_RAW:
3034 		/*
3035 		 * These types don't provide any type field; packets
3036 		 * are always IPv4 or IPv6.
3037 		 *
3038 		 * XXX - for IPv4, check for a version number of 4, and,
3039 		 * for IPv6, check for a version number of 6?
3040 		 */
3041 		switch (proto) {
3042 
3043 		case ETHERTYPE_IP:
3044 			/* Check for a version number of 4. */
3045 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3046 #ifdef INET6
3047 		case ETHERTYPE_IPV6:
3048 			/* Check for a version number of 6. */
3049 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3050 #endif
3051 
3052 		default:
3053 			return gen_false();		/* always false */
3054 		}
3055 		/*NOTREACHED*/
3056 		break;
3057 
3058 	case DLT_IPV4:
3059 		/*
3060 		 * Raw IPv4, so no type field.
3061 		 */
3062 		if (proto == ETHERTYPE_IP)
3063 			return gen_true();		/* always true */
3064 
3065 		/* Checking for something other than IPv4; always false */
3066 		return gen_false();
3067 		/*NOTREACHED*/
3068 		break;
3069 
3070 	case DLT_IPV6:
3071 		/*
3072 		 * Raw IPv6, so no type field.
3073 		 */
3074 #ifdef INET6
3075 		if (proto == ETHERTYPE_IPV6)
3076 			return gen_true();		/* always true */
3077 #endif
3078 
3079 		/* Checking for something other than IPv6; always false */
3080 		return gen_false();
3081 		/*NOTREACHED*/
3082 		break;
3083 
3084 	case DLT_PPP:
3085 	case DLT_PPP_PPPD:
3086 	case DLT_PPP_SERIAL:
3087 	case DLT_PPP_ETHER:
3088 		/*
3089 		 * We use Ethernet protocol types inside libpcap;
3090 		 * map them to the corresponding PPP protocol types.
3091 		 */
3092 		proto = ethertype_to_ppptype(proto);
3093 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3094 		/*NOTREACHED*/
3095 		break;
3096 
3097 	case DLT_PPP_BSDOS:
3098 		/*
3099 		 * We use Ethernet protocol types inside libpcap;
3100 		 * map them to the corresponding PPP protocol types.
3101 		 */
3102 		switch (proto) {
3103 
3104 		case ETHERTYPE_IP:
3105 			/*
3106 			 * Also check for Van Jacobson-compressed IP.
3107 			 * XXX - do this for other forms of PPP?
3108 			 */
3109 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3110 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3111 			gen_or(b0, b1);
3112 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3113 			gen_or(b1, b0);
3114 			return b0;
3115 
3116 		default:
3117 			proto = ethertype_to_ppptype(proto);
3118 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3119 				(bpf_int32)proto);
3120 		}
3121 		/*NOTREACHED*/
3122 		break;
3123 
3124 	case DLT_NULL:
3125 	case DLT_LOOP:
3126 	case DLT_ENC:
3127 		/*
3128 		 * For DLT_NULL, the link-layer header is a 32-bit
3129 		 * word containing an AF_ value in *host* byte order,
3130 		 * and for DLT_ENC, the link-layer header begins
3131 		 * with a 32-bit work containing an AF_ value in
3132 		 * host byte order.
3133 		 *
3134 		 * In addition, if we're reading a saved capture file,
3135 		 * the host byte order in the capture may not be the
3136 		 * same as the host byte order on this machine.
3137 		 *
3138 		 * For DLT_LOOP, the link-layer header is a 32-bit
3139 		 * word containing an AF_ value in *network* byte order.
3140 		 *
3141 		 * XXX - AF_ values may, unfortunately, be platform-
3142 		 * dependent; for example, FreeBSD's AF_INET6 is 24
3143 		 * whilst NetBSD's and OpenBSD's is 26.
3144 		 *
3145 		 * This means that, when reading a capture file, just
3146 		 * checking for our AF_INET6 value won't work if the
3147 		 * capture file came from another OS.
3148 		 */
3149 		switch (proto) {
3150 
3151 		case ETHERTYPE_IP:
3152 			proto = AF_INET;
3153 			break;
3154 
3155 #ifdef INET6
3156 		case ETHERTYPE_IPV6:
3157 			proto = AF_INET6;
3158 			break;
3159 #endif
3160 
3161 		default:
3162 			/*
3163 			 * Not a type on which we support filtering.
3164 			 * XXX - support those that have AF_ values
3165 			 * #defined on this platform, at least?
3166 			 */
3167 			return gen_false();
3168 		}
3169 
3170 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3171 			/*
3172 			 * The AF_ value is in host byte order, but
3173 			 * the BPF interpreter will convert it to
3174 			 * network byte order.
3175 			 *
3176 			 * If this is a save file, and it's from a
3177 			 * machine with the opposite byte order to
3178 			 * ours, we byte-swap the AF_ value.
3179 			 *
3180 			 * Then we run it through "htonl()", and
3181 			 * generate code to compare against the result.
3182 			 */
3183 			if (bpf_pcap->sf.rfile != NULL &&
3184 			    bpf_pcap->sf.swapped)
3185 				proto = SWAPLONG(proto);
3186 			proto = htonl(proto);
3187 		}
3188 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3189 
3190 #ifdef HAVE_NET_PFVAR_H
3191 	case DLT_PFLOG:
3192 		/*
3193 		 * af field is host byte order in contrast to the rest of
3194 		 * the packet.
3195 		 */
3196 		if (proto == ETHERTYPE_IP)
3197 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3198 			    BPF_B, (bpf_int32)AF_INET));
3199 #ifdef INET6
3200 		else if (proto == ETHERTYPE_IPV6)
3201 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3202 			    BPF_B, (bpf_int32)AF_INET6));
3203 #endif /* INET6 */
3204 		else
3205 			return gen_false();
3206 		/*NOTREACHED*/
3207 		break;
3208 #endif /* HAVE_NET_PFVAR_H */
3209 
3210 	case DLT_ARCNET:
3211 	case DLT_ARCNET_LINUX:
3212 		/*
3213 		 * XXX should we check for first fragment if the protocol
3214 		 * uses PHDS?
3215 		 */
3216 		switch (proto) {
3217 
3218 		default:
3219 			return gen_false();
3220 
3221 #ifdef INET6
3222 		case ETHERTYPE_IPV6:
3223 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3224 				(bpf_int32)ARCTYPE_INET6));
3225 #endif /* INET6 */
3226 
3227 		case ETHERTYPE_IP:
3228 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3229 				     (bpf_int32)ARCTYPE_IP);
3230 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3231 				     (bpf_int32)ARCTYPE_IP_OLD);
3232 			gen_or(b0, b1);
3233 			return (b1);
3234 
3235 		case ETHERTYPE_ARP:
3236 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3237 				     (bpf_int32)ARCTYPE_ARP);
3238 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3239 				     (bpf_int32)ARCTYPE_ARP_OLD);
3240 			gen_or(b0, b1);
3241 			return (b1);
3242 
3243 		case ETHERTYPE_REVARP:
3244 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3245 					(bpf_int32)ARCTYPE_REVARP));
3246 
3247 		case ETHERTYPE_ATALK:
3248 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3249 					(bpf_int32)ARCTYPE_ATALK));
3250 		}
3251 		/*NOTREACHED*/
3252 		break;
3253 
3254 	case DLT_LTALK:
3255 		switch (proto) {
3256 		case ETHERTYPE_ATALK:
3257 			return gen_true();
3258 		default:
3259 			return gen_false();
3260 		}
3261 		/*NOTREACHED*/
3262 		break;
3263 
3264 	case DLT_FRELAY:
3265 		/*
3266 		 * XXX - assumes a 2-byte Frame Relay header with
3267 		 * DLCI and flags.  What if the address is longer?
3268 		 */
3269 		switch (proto) {
3270 
3271 		case ETHERTYPE_IP:
3272 			/*
3273 			 * Check for the special NLPID for IP.
3274 			 */
3275 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3276 
3277 #ifdef INET6
3278 		case ETHERTYPE_IPV6:
3279 			/*
3280 			 * Check for the special NLPID for IPv6.
3281 			 */
3282 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3283 #endif
3284 
3285 		case LLCSAP_ISONS:
3286 			/*
3287 			 * Check for several OSI protocols.
3288 			 *
3289 			 * Frame Relay packets typically have an OSI
3290 			 * NLPID at the beginning; we check for each
3291 			 * of them.
3292 			 *
3293 			 * What we check for is the NLPID and a frame
3294 			 * control field of UI, i.e. 0x03 followed
3295 			 * by the NLPID.
3296 			 */
3297 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3298 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3299 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3300 			gen_or(b1, b2);
3301 			gen_or(b0, b2);
3302 			return b2;
3303 
3304 		default:
3305 			return gen_false();
3306 		}
3307 		/*NOTREACHED*/
3308 		break;
3309 
3310 	case DLT_MFR:
3311 		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3312 
3313         case DLT_JUNIPER_MFR:
3314         case DLT_JUNIPER_MLFR:
3315         case DLT_JUNIPER_MLPPP:
3316 	case DLT_JUNIPER_ATM1:
3317 	case DLT_JUNIPER_ATM2:
3318 	case DLT_JUNIPER_PPPOE:
3319 	case DLT_JUNIPER_PPPOE_ATM:
3320         case DLT_JUNIPER_GGSN:
3321         case DLT_JUNIPER_ES:
3322         case DLT_JUNIPER_MONITOR:
3323         case DLT_JUNIPER_SERVICES:
3324         case DLT_JUNIPER_ETHER:
3325         case DLT_JUNIPER_PPP:
3326         case DLT_JUNIPER_FRELAY:
3327         case DLT_JUNIPER_CHDLC:
3328         case DLT_JUNIPER_VP:
3329         case DLT_JUNIPER_ST:
3330         case DLT_JUNIPER_ISM:
3331         case DLT_JUNIPER_VS:
3332         case DLT_JUNIPER_SRX_E2E:
3333         case DLT_JUNIPER_FIBRECHANNEL:
3334 	case DLT_JUNIPER_ATM_CEMIC:
3335 
3336 		/* just lets verify the magic number for now -
3337 		 * on ATM we may have up to 6 different encapsulations on the wire
3338 		 * and need a lot of heuristics to figure out that the payload
3339 		 * might be;
3340 		 *
3341 		 * FIXME encapsulation specific BPF_ filters
3342 		 */
3343 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3344 
3345 	case DLT_IPNET:
3346 		return gen_ipnet_linktype(proto);
3347 
3348 	case DLT_LINUX_IRDA:
3349 		bpf_error("IrDA link-layer type filtering not implemented");
3350 
3351 	case DLT_DOCSIS:
3352 		bpf_error("DOCSIS link-layer type filtering not implemented");
3353 
3354 	case DLT_MTP2:
3355 	case DLT_MTP2_WITH_PHDR:
3356 		bpf_error("MTP2 link-layer type filtering not implemented");
3357 
3358 	case DLT_ERF:
3359 		bpf_error("ERF link-layer type filtering not implemented");
3360 
3361 #ifdef DLT_PFSYNC
3362 	case DLT_PFSYNC:
3363 		bpf_error("PFSYNC link-layer type filtering not implemented");
3364 #endif
3365 
3366 	case DLT_LINUX_LAPD:
3367 		bpf_error("LAPD link-layer type filtering not implemented");
3368 
3369 	case DLT_USB:
3370 	case DLT_USB_LINUX:
3371 	case DLT_USB_LINUX_MMAPPED:
3372 		bpf_error("USB link-layer type filtering not implemented");
3373 
3374 	case DLT_BLUETOOTH_HCI_H4:
3375 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3376 		bpf_error("Bluetooth link-layer type filtering not implemented");
3377 
3378 	case DLT_CAN20B:
3379 	case DLT_CAN_SOCKETCAN:
3380 		bpf_error("CAN link-layer type filtering not implemented");
3381 
3382 	case DLT_IEEE802_15_4:
3383 	case DLT_IEEE802_15_4_LINUX:
3384 	case DLT_IEEE802_15_4_NONASK_PHY:
3385 	case DLT_IEEE802_15_4_NOFCS:
3386 		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3387 
3388 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3389 		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3390 
3391 	case DLT_SITA:
3392 		bpf_error("SITA link-layer type filtering not implemented");
3393 
3394 	case DLT_RAIF1:
3395 		bpf_error("RAIF1 link-layer type filtering not implemented");
3396 
3397 	case DLT_IPMB:
3398 		bpf_error("IPMB link-layer type filtering not implemented");
3399 
3400 	case DLT_AX25_KISS:
3401 		bpf_error("AX.25 link-layer type filtering not implemented");
3402 	}
3403 
3404 	/*
3405 	 * All the types that have no encapsulation should either be
3406 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3407 	 * all packets are IP packets, or should be handled in some
3408 	 * special case, if none of them are (if some are and some
3409 	 * aren't, the lack of encapsulation is a problem, as we'd
3410 	 * have to find some other way of determining the packet type).
3411 	 *
3412 	 * Therefore, if "off_linktype" is -1, there's an error.
3413 	 */
3414 	if (off_linktype == (u_int)-1)
3415 		abort();
3416 
3417 	/*
3418 	 * Any type not handled above should always have an Ethernet
3419 	 * type at an offset of "off_linktype".
3420 	 */
3421 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3422 }
3423 
3424 /*
3425  * Check for an LLC SNAP packet with a given organization code and
3426  * protocol type; we check the entire contents of the 802.2 LLC and
3427  * snap headers, checking for DSAP and SSAP of SNAP and a control
3428  * field of 0x03 in the LLC header, and for the specified organization
3429  * code and protocol type in the SNAP header.
3430  */
3431 static struct block *
3432 gen_snap(orgcode, ptype)
3433 	bpf_u_int32 orgcode;
3434 	bpf_u_int32 ptype;
3435 {
3436 	u_char snapblock[8];
3437 
3438 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3439 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3440 	snapblock[2] = 0x03;		/* control = UI */
3441 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3442 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3443 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3444 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3445 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3446 	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3447 }
3448 
3449 /*
3450  * Generate code to match a particular packet type, for link-layer types
3451  * using 802.2 LLC headers.
3452  *
3453  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3454  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3455  *
3456  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3457  * value, if <= ETHERMTU.  We use that to determine whether to
3458  * match the DSAP or both DSAP and LSAP or to check the OUI and
3459  * protocol ID in a SNAP header.
3460  */
3461 static struct block *
3462 gen_llc_linktype(proto)
3463 	int proto;
3464 {
3465 	/*
3466 	 * XXX - handle token-ring variable-length header.
3467 	 */
3468 	switch (proto) {
3469 
3470 	case LLCSAP_IP:
3471 	case LLCSAP_ISONS:
3472 	case LLCSAP_NETBEUI:
3473 		/*
3474 		 * XXX - should we check both the DSAP and the
3475 		 * SSAP, like this, or should we check just the
3476 		 * DSAP, as we do for other types <= ETHERMTU
3477 		 * (i.e., other SAP values)?
3478 		 */
3479 		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3480 			     ((proto << 8) | proto));
3481 
3482 	case LLCSAP_IPX:
3483 		/*
3484 		 * XXX - are there ever SNAP frames for IPX on
3485 		 * non-Ethernet 802.x networks?
3486 		 */
3487 		return gen_cmp(OR_MACPL, 0, BPF_B,
3488 		    (bpf_int32)LLCSAP_IPX);
3489 
3490 	case ETHERTYPE_ATALK:
3491 		/*
3492 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3493 		 * SNAP packets with an organization code of
3494 		 * 0x080007 (Apple, for Appletalk) and a protocol
3495 		 * type of ETHERTYPE_ATALK (Appletalk).
3496 		 *
3497 		 * XXX - check for an organization code of
3498 		 * encapsulated Ethernet as well?
3499 		 */
3500 		return gen_snap(0x080007, ETHERTYPE_ATALK);
3501 
3502 	default:
3503 		/*
3504 		 * XXX - we don't have to check for IPX 802.3
3505 		 * here, but should we check for the IPX Ethertype?
3506 		 */
3507 		if (proto <= ETHERMTU) {
3508 			/*
3509 			 * This is an LLC SAP value, so check
3510 			 * the DSAP.
3511 			 */
3512 			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3513 		} else {
3514 			/*
3515 			 * This is an Ethernet type; we assume that it's
3516 			 * unlikely that it'll appear in the right place
3517 			 * at random, and therefore check only the
3518 			 * location that would hold the Ethernet type
3519 			 * in a SNAP frame with an organization code of
3520 			 * 0x000000 (encapsulated Ethernet).
3521 			 *
3522 			 * XXX - if we were to check for the SNAP DSAP and
3523 			 * LSAP, as per XXX, and were also to check for an
3524 			 * organization code of 0x000000 (encapsulated
3525 			 * Ethernet), we'd do
3526 			 *
3527 			 *	return gen_snap(0x000000, proto);
3528 			 *
3529 			 * here; for now, we don't, as per the above.
3530 			 * I don't know whether it's worth the extra CPU
3531 			 * time to do the right check or not.
3532 			 */
3533 			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3534 		}
3535 	}
3536 }
3537 
3538 static struct block *
3539 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3540 	bpf_u_int32 addr;
3541 	bpf_u_int32 mask;
3542 	int dir, proto;
3543 	u_int src_off, dst_off;
3544 {
3545 	struct block *b0, *b1;
3546 	u_int offset;
3547 
3548 	switch (dir) {
3549 
3550 	case Q_SRC:
3551 		offset = src_off;
3552 		break;
3553 
3554 	case Q_DST:
3555 		offset = dst_off;
3556 		break;
3557 
3558 	case Q_AND:
3559 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3560 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3561 		gen_and(b0, b1);
3562 		return b1;
3563 
3564 	case Q_OR:
3565 	case Q_DEFAULT:
3566 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3567 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3568 		gen_or(b0, b1);
3569 		return b1;
3570 
3571 	default:
3572 		abort();
3573 	}
3574 	b0 = gen_linktype(proto);
3575 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3576 	gen_and(b0, b1);
3577 	return b1;
3578 }
3579 
3580 #ifdef INET6
3581 static struct block *
3582 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3583 	struct in6_addr *addr;
3584 	struct in6_addr *mask;
3585 	int dir, proto;
3586 	u_int src_off, dst_off;
3587 {
3588 	struct block *b0, *b1;
3589 	u_int offset;
3590 	u_int32_t *a, *m;
3591 
3592 	switch (dir) {
3593 
3594 	case Q_SRC:
3595 		offset = src_off;
3596 		break;
3597 
3598 	case Q_DST:
3599 		offset = dst_off;
3600 		break;
3601 
3602 	case Q_AND:
3603 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3604 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3605 		gen_and(b0, b1);
3606 		return b1;
3607 
3608 	case Q_OR:
3609 	case Q_DEFAULT:
3610 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3611 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3612 		gen_or(b0, b1);
3613 		return b1;
3614 
3615 	default:
3616 		abort();
3617 	}
3618 	/* this order is important */
3619 	a = (u_int32_t *)addr;
3620 	m = (u_int32_t *)mask;
3621 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3622 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3623 	gen_and(b0, b1);
3624 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3625 	gen_and(b0, b1);
3626 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3627 	gen_and(b0, b1);
3628 	b0 = gen_linktype(proto);
3629 	gen_and(b0, b1);
3630 	return b1;
3631 }
3632 #endif /*INET6*/
3633 
3634 static struct block *
3635 gen_ehostop(eaddr, dir)
3636 	register const u_char *eaddr;
3637 	register int dir;
3638 {
3639 	register struct block *b0, *b1;
3640 
3641 	switch (dir) {
3642 	case Q_SRC:
3643 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3644 
3645 	case Q_DST:
3646 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3647 
3648 	case Q_AND:
3649 		b0 = gen_ehostop(eaddr, Q_SRC);
3650 		b1 = gen_ehostop(eaddr, Q_DST);
3651 		gen_and(b0, b1);
3652 		return b1;
3653 
3654 	case Q_DEFAULT:
3655 	case Q_OR:
3656 		b0 = gen_ehostop(eaddr, Q_SRC);
3657 		b1 = gen_ehostop(eaddr, Q_DST);
3658 		gen_or(b0, b1);
3659 		return b1;
3660 
3661 	case Q_ADDR1:
3662 		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3663 		break;
3664 
3665 	case Q_ADDR2:
3666 		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3667 		break;
3668 
3669 	case Q_ADDR3:
3670 		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3671 		break;
3672 
3673 	case Q_ADDR4:
3674 		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3675 		break;
3676 
3677 	case Q_RA:
3678 		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3679 		break;
3680 
3681 	case Q_TA:
3682 		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3683 		break;
3684 	}
3685 	abort();
3686 	/* NOTREACHED */
3687 }
3688 
3689 /*
3690  * Like gen_ehostop, but for DLT_FDDI
3691  */
3692 static struct block *
3693 gen_fhostop(eaddr, dir)
3694 	register const u_char *eaddr;
3695 	register int dir;
3696 {
3697 	struct block *b0, *b1;
3698 
3699 	switch (dir) {
3700 	case Q_SRC:
3701 #ifdef PCAP_FDDIPAD
3702 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3703 #else
3704 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3705 #endif
3706 
3707 	case Q_DST:
3708 #ifdef PCAP_FDDIPAD
3709 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3710 #else
3711 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3712 #endif
3713 
3714 	case Q_AND:
3715 		b0 = gen_fhostop(eaddr, Q_SRC);
3716 		b1 = gen_fhostop(eaddr, Q_DST);
3717 		gen_and(b0, b1);
3718 		return b1;
3719 
3720 	case Q_DEFAULT:
3721 	case Q_OR:
3722 		b0 = gen_fhostop(eaddr, Q_SRC);
3723 		b1 = gen_fhostop(eaddr, Q_DST);
3724 		gen_or(b0, b1);
3725 		return b1;
3726 
3727 	case Q_ADDR1:
3728 		bpf_error("'addr1' is only supported on 802.11");
3729 		break;
3730 
3731 	case Q_ADDR2:
3732 		bpf_error("'addr2' is only supported on 802.11");
3733 		break;
3734 
3735 	case Q_ADDR3:
3736 		bpf_error("'addr3' is only supported on 802.11");
3737 		break;
3738 
3739 	case Q_ADDR4:
3740 		bpf_error("'addr4' is only supported on 802.11");
3741 		break;
3742 
3743 	case Q_RA:
3744 		bpf_error("'ra' is only supported on 802.11");
3745 		break;
3746 
3747 	case Q_TA:
3748 		bpf_error("'ta' is only supported on 802.11");
3749 		break;
3750 	}
3751 	abort();
3752 	/* NOTREACHED */
3753 }
3754 
3755 /*
3756  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3757  */
3758 static struct block *
3759 gen_thostop(eaddr, dir)
3760 	register const u_char *eaddr;
3761 	register int dir;
3762 {
3763 	register struct block *b0, *b1;
3764 
3765 	switch (dir) {
3766 	case Q_SRC:
3767 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3768 
3769 	case Q_DST:
3770 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3771 
3772 	case Q_AND:
3773 		b0 = gen_thostop(eaddr, Q_SRC);
3774 		b1 = gen_thostop(eaddr, Q_DST);
3775 		gen_and(b0, b1);
3776 		return b1;
3777 
3778 	case Q_DEFAULT:
3779 	case Q_OR:
3780 		b0 = gen_thostop(eaddr, Q_SRC);
3781 		b1 = gen_thostop(eaddr, Q_DST);
3782 		gen_or(b0, b1);
3783 		return b1;
3784 
3785 	case Q_ADDR1:
3786 		bpf_error("'addr1' is only supported on 802.11");
3787 		break;
3788 
3789 	case Q_ADDR2:
3790 		bpf_error("'addr2' is only supported on 802.11");
3791 		break;
3792 
3793 	case Q_ADDR3:
3794 		bpf_error("'addr3' is only supported on 802.11");
3795 		break;
3796 
3797 	case Q_ADDR4:
3798 		bpf_error("'addr4' is only supported on 802.11");
3799 		break;
3800 
3801 	case Q_RA:
3802 		bpf_error("'ra' is only supported on 802.11");
3803 		break;
3804 
3805 	case Q_TA:
3806 		bpf_error("'ta' is only supported on 802.11");
3807 		break;
3808 	}
3809 	abort();
3810 	/* NOTREACHED */
3811 }
3812 
3813 /*
3814  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3815  * various 802.11 + radio headers.
3816  */
3817 static struct block *
3818 gen_wlanhostop(eaddr, dir)
3819 	register const u_char *eaddr;
3820 	register int dir;
3821 {
3822 	register struct block *b0, *b1, *b2;
3823 	register struct slist *s;
3824 
3825 #ifdef ENABLE_WLAN_FILTERING_PATCH
3826 	/*
3827 	 * TODO GV 20070613
3828 	 * We need to disable the optimizer because the optimizer is buggy
3829 	 * and wipes out some LD instructions generated by the below
3830 	 * code to validate the Frame Control bits
3831 	 */
3832 	no_optimize = 1;
3833 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3834 
3835 	switch (dir) {
3836 	case Q_SRC:
3837 		/*
3838 		 * Oh, yuk.
3839 		 *
3840 		 *	For control frames, there is no SA.
3841 		 *
3842 		 *	For management frames, SA is at an
3843 		 *	offset of 10 from the beginning of
3844 		 *	the packet.
3845 		 *
3846 		 *	For data frames, SA is at an offset
3847 		 *	of 10 from the beginning of the packet
3848 		 *	if From DS is clear, at an offset of
3849 		 *	16 from the beginning of the packet
3850 		 *	if From DS is set and To DS is clear,
3851 		 *	and an offset of 24 from the beginning
3852 		 *	of the packet if From DS is set and To DS
3853 		 *	is set.
3854 		 */
3855 
3856 		/*
3857 		 * Generate the tests to be done for data frames
3858 		 * with From DS set.
3859 		 *
3860 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3861 		 */
3862 		s = gen_load_a(OR_LINK, 1, BPF_B);
3863 		b1 = new_block(JMP(BPF_JSET));
3864 		b1->s.k = 0x01;	/* To DS */
3865 		b1->stmts = s;
3866 
3867 		/*
3868 		 * If To DS is set, the SA is at 24.
3869 		 */
3870 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3871 		gen_and(b1, b0);
3872 
3873 		/*
3874 		 * Now, check for To DS not set, i.e. check
3875 		 * "!(link[1] & 0x01)".
3876 		 */
3877 		s = gen_load_a(OR_LINK, 1, BPF_B);
3878 		b2 = new_block(JMP(BPF_JSET));
3879 		b2->s.k = 0x01;	/* To DS */
3880 		b2->stmts = s;
3881 		gen_not(b2);
3882 
3883 		/*
3884 		 * If To DS is not set, the SA is at 16.
3885 		 */
3886 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3887 		gen_and(b2, b1);
3888 
3889 		/*
3890 		 * Now OR together the last two checks.  That gives
3891 		 * the complete set of checks for data frames with
3892 		 * From DS set.
3893 		 */
3894 		gen_or(b1, b0);
3895 
3896 		/*
3897 		 * Now check for From DS being set, and AND that with
3898 		 * the ORed-together checks.
3899 		 */
3900 		s = gen_load_a(OR_LINK, 1, BPF_B);
3901 		b1 = new_block(JMP(BPF_JSET));
3902 		b1->s.k = 0x02;	/* From DS */
3903 		b1->stmts = s;
3904 		gen_and(b1, b0);
3905 
3906 		/*
3907 		 * Now check for data frames with From DS not set.
3908 		 */
3909 		s = gen_load_a(OR_LINK, 1, BPF_B);
3910 		b2 = new_block(JMP(BPF_JSET));
3911 		b2->s.k = 0x02;	/* From DS */
3912 		b2->stmts = s;
3913 		gen_not(b2);
3914 
3915 		/*
3916 		 * If From DS isn't set, the SA is at 10.
3917 		 */
3918 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3919 		gen_and(b2, b1);
3920 
3921 		/*
3922 		 * Now OR together the checks for data frames with
3923 		 * From DS not set and for data frames with From DS
3924 		 * set; that gives the checks done for data frames.
3925 		 */
3926 		gen_or(b1, b0);
3927 
3928 		/*
3929 		 * Now check for a data frame.
3930 		 * I.e, check "link[0] & 0x08".
3931 		 */
3932 		s = gen_load_a(OR_LINK, 0, BPF_B);
3933 		b1 = new_block(JMP(BPF_JSET));
3934 		b1->s.k = 0x08;
3935 		b1->stmts = s;
3936 
3937 		/*
3938 		 * AND that with the checks done for data frames.
3939 		 */
3940 		gen_and(b1, b0);
3941 
3942 		/*
3943 		 * If the high-order bit of the type value is 0, this
3944 		 * is a management frame.
3945 		 * I.e, check "!(link[0] & 0x08)".
3946 		 */
3947 		s = gen_load_a(OR_LINK, 0, BPF_B);
3948 		b2 = new_block(JMP(BPF_JSET));
3949 		b2->s.k = 0x08;
3950 		b2->stmts = s;
3951 		gen_not(b2);
3952 
3953 		/*
3954 		 * For management frames, the SA is at 10.
3955 		 */
3956 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3957 		gen_and(b2, b1);
3958 
3959 		/*
3960 		 * OR that with the checks done for data frames.
3961 		 * That gives the checks done for management and
3962 		 * data frames.
3963 		 */
3964 		gen_or(b1, b0);
3965 
3966 		/*
3967 		 * If the low-order bit of the type value is 1,
3968 		 * this is either a control frame or a frame
3969 		 * with a reserved type, and thus not a
3970 		 * frame with an SA.
3971 		 *
3972 		 * I.e., check "!(link[0] & 0x04)".
3973 		 */
3974 		s = gen_load_a(OR_LINK, 0, BPF_B);
3975 		b1 = new_block(JMP(BPF_JSET));
3976 		b1->s.k = 0x04;
3977 		b1->stmts = s;
3978 		gen_not(b1);
3979 
3980 		/*
3981 		 * AND that with the checks for data and management
3982 		 * frames.
3983 		 */
3984 		gen_and(b1, b0);
3985 		return b0;
3986 
3987 	case Q_DST:
3988 		/*
3989 		 * Oh, yuk.
3990 		 *
3991 		 *	For control frames, there is no DA.
3992 		 *
3993 		 *	For management frames, DA is at an
3994 		 *	offset of 4 from the beginning of
3995 		 *	the packet.
3996 		 *
3997 		 *	For data frames, DA is at an offset
3998 		 *	of 4 from the beginning of the packet
3999 		 *	if To DS is clear and at an offset of
4000 		 *	16 from the beginning of the packet
4001 		 *	if To DS is set.
4002 		 */
4003 
4004 		/*
4005 		 * Generate the tests to be done for data frames.
4006 		 *
4007 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4008 		 */
4009 		s = gen_load_a(OR_LINK, 1, BPF_B);
4010 		b1 = new_block(JMP(BPF_JSET));
4011 		b1->s.k = 0x01;	/* To DS */
4012 		b1->stmts = s;
4013 
4014 		/*
4015 		 * If To DS is set, the DA is at 16.
4016 		 */
4017 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4018 		gen_and(b1, b0);
4019 
4020 		/*
4021 		 * Now, check for To DS not set, i.e. check
4022 		 * "!(link[1] & 0x01)".
4023 		 */
4024 		s = gen_load_a(OR_LINK, 1, BPF_B);
4025 		b2 = new_block(JMP(BPF_JSET));
4026 		b2->s.k = 0x01;	/* To DS */
4027 		b2->stmts = s;
4028 		gen_not(b2);
4029 
4030 		/*
4031 		 * If To DS is not set, the DA is at 4.
4032 		 */
4033 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4034 		gen_and(b2, b1);
4035 
4036 		/*
4037 		 * Now OR together the last two checks.  That gives
4038 		 * the complete set of checks for data frames.
4039 		 */
4040 		gen_or(b1, b0);
4041 
4042 		/*
4043 		 * Now check for a data frame.
4044 		 * I.e, check "link[0] & 0x08".
4045 		 */
4046 		s = gen_load_a(OR_LINK, 0, BPF_B);
4047 		b1 = new_block(JMP(BPF_JSET));
4048 		b1->s.k = 0x08;
4049 		b1->stmts = s;
4050 
4051 		/*
4052 		 * AND that with the checks done for data frames.
4053 		 */
4054 		gen_and(b1, b0);
4055 
4056 		/*
4057 		 * If the high-order bit of the type value is 0, this
4058 		 * is a management frame.
4059 		 * I.e, check "!(link[0] & 0x08)".
4060 		 */
4061 		s = gen_load_a(OR_LINK, 0, BPF_B);
4062 		b2 = new_block(JMP(BPF_JSET));
4063 		b2->s.k = 0x08;
4064 		b2->stmts = s;
4065 		gen_not(b2);
4066 
4067 		/*
4068 		 * For management frames, the DA is at 4.
4069 		 */
4070 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4071 		gen_and(b2, b1);
4072 
4073 		/*
4074 		 * OR that with the checks done for data frames.
4075 		 * That gives the checks done for management and
4076 		 * data frames.
4077 		 */
4078 		gen_or(b1, b0);
4079 
4080 		/*
4081 		 * If the low-order bit of the type value is 1,
4082 		 * this is either a control frame or a frame
4083 		 * with a reserved type, and thus not a
4084 		 * frame with an SA.
4085 		 *
4086 		 * I.e., check "!(link[0] & 0x04)".
4087 		 */
4088 		s = gen_load_a(OR_LINK, 0, BPF_B);
4089 		b1 = new_block(JMP(BPF_JSET));
4090 		b1->s.k = 0x04;
4091 		b1->stmts = s;
4092 		gen_not(b1);
4093 
4094 		/*
4095 		 * AND that with the checks for data and management
4096 		 * frames.
4097 		 */
4098 		gen_and(b1, b0);
4099 		return b0;
4100 
4101 	case Q_RA:
4102 		/*
4103 		 * Not present in management frames; addr1 in other
4104 		 * frames.
4105 		 */
4106 
4107 		/*
4108 		 * If the high-order bit of the type value is 0, this
4109 		 * is a management frame.
4110 		 * I.e, check "(link[0] & 0x08)".
4111 		 */
4112 		s = gen_load_a(OR_LINK, 0, BPF_B);
4113 		b1 = new_block(JMP(BPF_JSET));
4114 		b1->s.k = 0x08;
4115 		b1->stmts = s;
4116 
4117 		/*
4118 		 * Check addr1.
4119 		 */
4120 		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4121 
4122 		/*
4123 		 * AND that with the check of addr1.
4124 		 */
4125 		gen_and(b1, b0);
4126 		return (b0);
4127 
4128 	case Q_TA:
4129 		/*
4130 		 * Not present in management frames; addr2, if present,
4131 		 * in other frames.
4132 		 */
4133 
4134 		/*
4135 		 * Not present in CTS or ACK control frames.
4136 		 */
4137 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4138 			IEEE80211_FC0_TYPE_MASK);
4139 		gen_not(b0);
4140 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4141 			IEEE80211_FC0_SUBTYPE_MASK);
4142 		gen_not(b1);
4143 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4144 			IEEE80211_FC0_SUBTYPE_MASK);
4145 		gen_not(b2);
4146 		gen_and(b1, b2);
4147 		gen_or(b0, b2);
4148 
4149 		/*
4150 		 * If the high-order bit of the type value is 0, this
4151 		 * is a management frame.
4152 		 * I.e, check "(link[0] & 0x08)".
4153 		 */
4154 		s = gen_load_a(OR_LINK, 0, BPF_B);
4155 		b1 = new_block(JMP(BPF_JSET));
4156 		b1->s.k = 0x08;
4157 		b1->stmts = s;
4158 
4159 		/*
4160 		 * AND that with the check for frames other than
4161 		 * CTS and ACK frames.
4162 		 */
4163 		gen_and(b1, b2);
4164 
4165 		/*
4166 		 * Check addr2.
4167 		 */
4168 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4169 		gen_and(b2, b1);
4170 		return b1;
4171 
4172 	/*
4173 	 * XXX - add BSSID keyword?
4174 	 */
4175 	case Q_ADDR1:
4176 		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4177 
4178 	case Q_ADDR2:
4179 		/*
4180 		 * Not present in CTS or ACK control frames.
4181 		 */
4182 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4183 			IEEE80211_FC0_TYPE_MASK);
4184 		gen_not(b0);
4185 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4186 			IEEE80211_FC0_SUBTYPE_MASK);
4187 		gen_not(b1);
4188 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4189 			IEEE80211_FC0_SUBTYPE_MASK);
4190 		gen_not(b2);
4191 		gen_and(b1, b2);
4192 		gen_or(b0, b2);
4193 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4194 		gen_and(b2, b1);
4195 		return b1;
4196 
4197 	case Q_ADDR3:
4198 		/*
4199 		 * Not present in control frames.
4200 		 */
4201 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4202 			IEEE80211_FC0_TYPE_MASK);
4203 		gen_not(b0);
4204 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4205 		gen_and(b0, b1);
4206 		return b1;
4207 
4208 	case Q_ADDR4:
4209 		/*
4210 		 * Present only if the direction mask has both "From DS"
4211 		 * and "To DS" set.  Neither control frames nor management
4212 		 * frames should have both of those set, so we don't
4213 		 * check the frame type.
4214 		 */
4215 		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4216 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4217 		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4218 		gen_and(b0, b1);
4219 		return b1;
4220 
4221 	case Q_AND:
4222 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4223 		b1 = gen_wlanhostop(eaddr, Q_DST);
4224 		gen_and(b0, b1);
4225 		return b1;
4226 
4227 	case Q_DEFAULT:
4228 	case Q_OR:
4229 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4230 		b1 = gen_wlanhostop(eaddr, Q_DST);
4231 		gen_or(b0, b1);
4232 		return b1;
4233 	}
4234 	abort();
4235 	/* NOTREACHED */
4236 }
4237 
4238 /*
4239  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4240  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4241  * as the RFC states.)
4242  */
4243 static struct block *
4244 gen_ipfchostop(eaddr, dir)
4245 	register const u_char *eaddr;
4246 	register int dir;
4247 {
4248 	register struct block *b0, *b1;
4249 
4250 	switch (dir) {
4251 	case Q_SRC:
4252 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4253 
4254 	case Q_DST:
4255 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4256 
4257 	case Q_AND:
4258 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4259 		b1 = gen_ipfchostop(eaddr, Q_DST);
4260 		gen_and(b0, b1);
4261 		return b1;
4262 
4263 	case Q_DEFAULT:
4264 	case Q_OR:
4265 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4266 		b1 = gen_ipfchostop(eaddr, Q_DST);
4267 		gen_or(b0, b1);
4268 		return b1;
4269 
4270 	case Q_ADDR1:
4271 		bpf_error("'addr1' is only supported on 802.11");
4272 		break;
4273 
4274 	case Q_ADDR2:
4275 		bpf_error("'addr2' is only supported on 802.11");
4276 		break;
4277 
4278 	case Q_ADDR3:
4279 		bpf_error("'addr3' is only supported on 802.11");
4280 		break;
4281 
4282 	case Q_ADDR4:
4283 		bpf_error("'addr4' is only supported on 802.11");
4284 		break;
4285 
4286 	case Q_RA:
4287 		bpf_error("'ra' is only supported on 802.11");
4288 		break;
4289 
4290 	case Q_TA:
4291 		bpf_error("'ta' is only supported on 802.11");
4292 		break;
4293 	}
4294 	abort();
4295 	/* NOTREACHED */
4296 }
4297 
4298 /*
4299  * This is quite tricky because there may be pad bytes in front of the
4300  * DECNET header, and then there are two possible data packet formats that
4301  * carry both src and dst addresses, plus 5 packet types in a format that
4302  * carries only the src node, plus 2 types that use a different format and
4303  * also carry just the src node.
4304  *
4305  * Yuck.
4306  *
4307  * Instead of doing those all right, we just look for data packets with
4308  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4309  * will require a lot more hacking.
4310  *
4311  * To add support for filtering on DECNET "areas" (network numbers)
4312  * one would want to add a "mask" argument to this routine.  That would
4313  * make the filter even more inefficient, although one could be clever
4314  * and not generate masking instructions if the mask is 0xFFFF.
4315  */
4316 static struct block *
4317 gen_dnhostop(addr, dir)
4318 	bpf_u_int32 addr;
4319 	int dir;
4320 {
4321 	struct block *b0, *b1, *b2, *tmp;
4322 	u_int offset_lh;	/* offset if long header is received */
4323 	u_int offset_sh;	/* offset if short header is received */
4324 
4325 	switch (dir) {
4326 
4327 	case Q_DST:
4328 		offset_sh = 1;	/* follows flags */
4329 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4330 		break;
4331 
4332 	case Q_SRC:
4333 		offset_sh = 3;	/* follows flags, dstnode */
4334 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4335 		break;
4336 
4337 	case Q_AND:
4338 		/* Inefficient because we do our Calvinball dance twice */
4339 		b0 = gen_dnhostop(addr, Q_SRC);
4340 		b1 = gen_dnhostop(addr, Q_DST);
4341 		gen_and(b0, b1);
4342 		return b1;
4343 
4344 	case Q_OR:
4345 	case Q_DEFAULT:
4346 		/* Inefficient because we do our Calvinball dance twice */
4347 		b0 = gen_dnhostop(addr, Q_SRC);
4348 		b1 = gen_dnhostop(addr, Q_DST);
4349 		gen_or(b0, b1);
4350 		return b1;
4351 
4352 	case Q_ISO:
4353 		bpf_error("ISO host filtering not implemented");
4354 
4355 	default:
4356 		abort();
4357 	}
4358 	b0 = gen_linktype(ETHERTYPE_DN);
4359 	/* Check for pad = 1, long header case */
4360 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4361 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4362 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4363 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4364 	gen_and(tmp, b1);
4365 	/* Check for pad = 0, long header case */
4366 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4367 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4368 	gen_and(tmp, b2);
4369 	gen_or(b2, b1);
4370 	/* Check for pad = 1, short header case */
4371 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4372 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4373 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4374 	gen_and(tmp, b2);
4375 	gen_or(b2, b1);
4376 	/* Check for pad = 0, short header case */
4377 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4378 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4379 	gen_and(tmp, b2);
4380 	gen_or(b2, b1);
4381 
4382 	/* Combine with test for linktype */
4383 	gen_and(b0, b1);
4384 	return b1;
4385 }
4386 
4387 /*
4388  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4389  * test the bottom-of-stack bit, and then check the version number
4390  * field in the IP header.
4391  */
4392 static struct block *
4393 gen_mpls_linktype(proto)
4394 	int proto;
4395 {
4396 	struct block *b0, *b1;
4397 
4398         switch (proto) {
4399 
4400         case Q_IP:
4401                 /* match the bottom-of-stack bit */
4402                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4403                 /* match the IPv4 version number */
4404                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4405                 gen_and(b0, b1);
4406                 return b1;
4407 
4408        case Q_IPV6:
4409                 /* match the bottom-of-stack bit */
4410                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4411                 /* match the IPv4 version number */
4412                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4413                 gen_and(b0, b1);
4414                 return b1;
4415 
4416        default:
4417                 abort();
4418         }
4419 }
4420 
4421 static struct block *
4422 gen_host(addr, mask, proto, dir, type)
4423 	bpf_u_int32 addr;
4424 	bpf_u_int32 mask;
4425 	int proto;
4426 	int dir;
4427 	int type;
4428 {
4429 	struct block *b0, *b1;
4430 	const char *typestr;
4431 
4432 	if (type == Q_NET)
4433 		typestr = "net";
4434 	else
4435 		typestr = "host";
4436 
4437 	switch (proto) {
4438 
4439 	case Q_DEFAULT:
4440 		b0 = gen_host(addr, mask, Q_IP, dir, type);
4441 		/*
4442 		 * Only check for non-IPv4 addresses if we're not
4443 		 * checking MPLS-encapsulated packets.
4444 		 */
4445 		if (label_stack_depth == 0) {
4446 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4447 			gen_or(b0, b1);
4448 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4449 			gen_or(b1, b0);
4450 		}
4451 		return b0;
4452 
4453 	case Q_IP:
4454 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4455 
4456 	case Q_RARP:
4457 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4458 
4459 	case Q_ARP:
4460 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4461 
4462 	case Q_TCP:
4463 		bpf_error("'tcp' modifier applied to %s", typestr);
4464 
4465 	case Q_SCTP:
4466 		bpf_error("'sctp' modifier applied to %s", typestr);
4467 
4468 	case Q_UDP:
4469 		bpf_error("'udp' modifier applied to %s", typestr);
4470 
4471 	case Q_ICMP:
4472 		bpf_error("'icmp' modifier applied to %s", typestr);
4473 
4474 	case Q_IGMP:
4475 		bpf_error("'igmp' modifier applied to %s", typestr);
4476 
4477 	case Q_IGRP:
4478 		bpf_error("'igrp' modifier applied to %s", typestr);
4479 
4480 	case Q_PIM:
4481 		bpf_error("'pim' modifier applied to %s", typestr);
4482 
4483 	case Q_VRRP:
4484 		bpf_error("'vrrp' modifier applied to %s", typestr);
4485 
4486 	case Q_CARP:
4487 		bpf_error("'carp' modifier applied to %s", typestr);
4488 
4489 	case Q_ATALK:
4490 		bpf_error("ATALK host filtering not implemented");
4491 
4492 	case Q_AARP:
4493 		bpf_error("AARP host filtering not implemented");
4494 
4495 	case Q_DECNET:
4496 		return gen_dnhostop(addr, dir);
4497 
4498 	case Q_SCA:
4499 		bpf_error("SCA host filtering not implemented");
4500 
4501 	case Q_LAT:
4502 		bpf_error("LAT host filtering not implemented");
4503 
4504 	case Q_MOPDL:
4505 		bpf_error("MOPDL host filtering not implemented");
4506 
4507 	case Q_MOPRC:
4508 		bpf_error("MOPRC host filtering not implemented");
4509 
4510 #ifdef INET6
4511 	case Q_IPV6:
4512 		bpf_error("'ip6' modifier applied to ip host");
4513 
4514 	case Q_ICMPV6:
4515 		bpf_error("'icmp6' modifier applied to %s", typestr);
4516 #endif /* INET6 */
4517 
4518 	case Q_AH:
4519 		bpf_error("'ah' modifier applied to %s", typestr);
4520 
4521 	case Q_ESP:
4522 		bpf_error("'esp' modifier applied to %s", typestr);
4523 
4524 	case Q_ISO:
4525 		bpf_error("ISO host filtering not implemented");
4526 
4527 	case Q_ESIS:
4528 		bpf_error("'esis' modifier applied to %s", typestr);
4529 
4530 	case Q_ISIS:
4531 		bpf_error("'isis' modifier applied to %s", typestr);
4532 
4533 	case Q_CLNP:
4534 		bpf_error("'clnp' modifier applied to %s", typestr);
4535 
4536 	case Q_STP:
4537 		bpf_error("'stp' modifier applied to %s", typestr);
4538 
4539 	case Q_IPX:
4540 		bpf_error("IPX host filtering not implemented");
4541 
4542 	case Q_NETBEUI:
4543 		bpf_error("'netbeui' modifier applied to %s", typestr);
4544 
4545 	case Q_RADIO:
4546 		bpf_error("'radio' modifier applied to %s", typestr);
4547 
4548 	default:
4549 		abort();
4550 	}
4551 	/* NOTREACHED */
4552 }
4553 
4554 #ifdef INET6
4555 static struct block *
4556 gen_host6(addr, mask, proto, dir, type)
4557 	struct in6_addr *addr;
4558 	struct in6_addr *mask;
4559 	int proto;
4560 	int dir;
4561 	int type;
4562 {
4563 	const char *typestr;
4564 
4565 	if (type == Q_NET)
4566 		typestr = "net";
4567 	else
4568 		typestr = "host";
4569 
4570 	switch (proto) {
4571 
4572 	case Q_DEFAULT:
4573 		return gen_host6(addr, mask, Q_IPV6, dir, type);
4574 
4575 	case Q_IP:
4576 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4577 
4578 	case Q_RARP:
4579 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4580 
4581 	case Q_ARP:
4582 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4583 
4584 	case Q_SCTP:
4585 		bpf_error("'sctp' modifier applied to %s", typestr);
4586 
4587 	case Q_TCP:
4588 		bpf_error("'tcp' modifier applied to %s", typestr);
4589 
4590 	case Q_UDP:
4591 		bpf_error("'udp' modifier applied to %s", typestr);
4592 
4593 	case Q_ICMP:
4594 		bpf_error("'icmp' modifier applied to %s", typestr);
4595 
4596 	case Q_IGMP:
4597 		bpf_error("'igmp' modifier applied to %s", typestr);
4598 
4599 	case Q_IGRP:
4600 		bpf_error("'igrp' modifier applied to %s", typestr);
4601 
4602 	case Q_PIM:
4603 		bpf_error("'pim' modifier applied to %s", typestr);
4604 
4605 	case Q_VRRP:
4606 		bpf_error("'vrrp' modifier applied to %s", typestr);
4607 
4608 	case Q_CARP:
4609 		bpf_error("'carp' modifier applied to %s", typestr);
4610 
4611 	case Q_ATALK:
4612 		bpf_error("ATALK host filtering not implemented");
4613 
4614 	case Q_AARP:
4615 		bpf_error("AARP host filtering not implemented");
4616 
4617 	case Q_DECNET:
4618 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4619 
4620 	case Q_SCA:
4621 		bpf_error("SCA host filtering not implemented");
4622 
4623 	case Q_LAT:
4624 		bpf_error("LAT host filtering not implemented");
4625 
4626 	case Q_MOPDL:
4627 		bpf_error("MOPDL host filtering not implemented");
4628 
4629 	case Q_MOPRC:
4630 		bpf_error("MOPRC host filtering not implemented");
4631 
4632 	case Q_IPV6:
4633 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4634 
4635 	case Q_ICMPV6:
4636 		bpf_error("'icmp6' modifier applied to %s", typestr);
4637 
4638 	case Q_AH:
4639 		bpf_error("'ah' modifier applied to %s", typestr);
4640 
4641 	case Q_ESP:
4642 		bpf_error("'esp' modifier applied to %s", typestr);
4643 
4644 	case Q_ISO:
4645 		bpf_error("ISO host filtering not implemented");
4646 
4647 	case Q_ESIS:
4648 		bpf_error("'esis' modifier applied to %s", typestr);
4649 
4650 	case Q_ISIS:
4651 		bpf_error("'isis' modifier applied to %s", typestr);
4652 
4653 	case Q_CLNP:
4654 		bpf_error("'clnp' modifier applied to %s", typestr);
4655 
4656 	case Q_STP:
4657 		bpf_error("'stp' modifier applied to %s", typestr);
4658 
4659 	case Q_IPX:
4660 		bpf_error("IPX host filtering not implemented");
4661 
4662 	case Q_NETBEUI:
4663 		bpf_error("'netbeui' modifier applied to %s", typestr);
4664 
4665 	case Q_RADIO:
4666 		bpf_error("'radio' modifier applied to %s", typestr);
4667 
4668 	default:
4669 		abort();
4670 	}
4671 	/* NOTREACHED */
4672 }
4673 #endif /*INET6*/
4674 
4675 #ifndef INET6
4676 static struct block *
4677 gen_gateway(eaddr, alist, proto, dir)
4678 	const u_char *eaddr;
4679 	bpf_u_int32 **alist;
4680 	int proto;
4681 	int dir;
4682 {
4683 	struct block *b0, *b1, *tmp;
4684 
4685 	if (dir != 0)
4686 		bpf_error("direction applied to 'gateway'");
4687 
4688 	switch (proto) {
4689 	case Q_DEFAULT:
4690 	case Q_IP:
4691 	case Q_ARP:
4692 	case Q_RARP:
4693 		switch (linktype) {
4694 		case DLT_EN10MB:
4695 		case DLT_NETANALYZER:
4696 		case DLT_NETANALYZER_TRANSPARENT:
4697 			b0 = gen_ehostop(eaddr, Q_OR);
4698 			break;
4699 		case DLT_FDDI:
4700 			b0 = gen_fhostop(eaddr, Q_OR);
4701 			break;
4702 		case DLT_IEEE802:
4703 			b0 = gen_thostop(eaddr, Q_OR);
4704 			break;
4705 		case DLT_IEEE802_11:
4706 		case DLT_PRISM_HEADER:
4707 		case DLT_IEEE802_11_RADIO_AVS:
4708 		case DLT_IEEE802_11_RADIO:
4709 		case DLT_PPI:
4710 			b0 = gen_wlanhostop(eaddr, Q_OR);
4711 			break;
4712 		case DLT_SUNATM:
4713 			if (!is_lane)
4714 				bpf_error(
4715 				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4716 			/*
4717 			 * Check that the packet doesn't begin with an
4718 			 * LE Control marker.  (We've already generated
4719 			 * a test for LANE.)
4720 			 */
4721 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4722 			    BPF_H, 0xFF00);
4723 			gen_not(b1);
4724 
4725 			/*
4726 			 * Now check the MAC address.
4727 			 */
4728 			b0 = gen_ehostop(eaddr, Q_OR);
4729 			gen_and(b1, b0);
4730 			break;
4731 		case DLT_IP_OVER_FC:
4732 			b0 = gen_ipfchostop(eaddr, Q_OR);
4733 			break;
4734 		default:
4735 			bpf_error(
4736 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4737 		}
4738 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4739 		while (*alist) {
4740 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4741 			    Q_HOST);
4742 			gen_or(b1, tmp);
4743 			b1 = tmp;
4744 		}
4745 		gen_not(b1);
4746 		gen_and(b0, b1);
4747 		return b1;
4748 	}
4749 	bpf_error("illegal modifier of 'gateway'");
4750 	/* NOTREACHED */
4751 }
4752 #endif
4753 
4754 struct block *
4755 gen_proto_abbrev(proto)
4756 	int proto;
4757 {
4758 	struct block *b0;
4759 	struct block *b1;
4760 
4761 	switch (proto) {
4762 
4763 	case Q_SCTP:
4764 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4765 #ifdef INET6
4766 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4767 		gen_or(b0, b1);
4768 #endif
4769 		break;
4770 
4771 	case Q_TCP:
4772 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4773 #ifdef INET6
4774 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4775 		gen_or(b0, b1);
4776 #endif
4777 		break;
4778 
4779 	case Q_UDP:
4780 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4781 #ifdef INET6
4782 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4783 		gen_or(b0, b1);
4784 #endif
4785 		break;
4786 
4787 	case Q_ICMP:
4788 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4789 		break;
4790 
4791 #ifndef	IPPROTO_IGMP
4792 #define	IPPROTO_IGMP	2
4793 #endif
4794 
4795 	case Q_IGMP:
4796 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4797 		break;
4798 
4799 #ifndef	IPPROTO_IGRP
4800 #define	IPPROTO_IGRP	9
4801 #endif
4802 	case Q_IGRP:
4803 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4804 		break;
4805 
4806 #ifndef IPPROTO_PIM
4807 #define IPPROTO_PIM	103
4808 #endif
4809 
4810 	case Q_PIM:
4811 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4812 #ifdef INET6
4813 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4814 		gen_or(b0, b1);
4815 #endif
4816 		break;
4817 
4818 #ifndef IPPROTO_VRRP
4819 #define IPPROTO_VRRP	112
4820 #endif
4821 
4822 	case Q_VRRP:
4823 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4824 		break;
4825 
4826 #ifndef IPPROTO_CARP
4827 #define IPPROTO_CARP	112
4828 #endif
4829 
4830 	case Q_CARP:
4831 		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4832 		break;
4833 
4834 	case Q_IP:
4835 		b1 =  gen_linktype(ETHERTYPE_IP);
4836 		break;
4837 
4838 	case Q_ARP:
4839 		b1 =  gen_linktype(ETHERTYPE_ARP);
4840 		break;
4841 
4842 	case Q_RARP:
4843 		b1 =  gen_linktype(ETHERTYPE_REVARP);
4844 		break;
4845 
4846 	case Q_LINK:
4847 		bpf_error("link layer applied in wrong context");
4848 
4849 	case Q_ATALK:
4850 		b1 =  gen_linktype(ETHERTYPE_ATALK);
4851 		break;
4852 
4853 	case Q_AARP:
4854 		b1 =  gen_linktype(ETHERTYPE_AARP);
4855 		break;
4856 
4857 	case Q_DECNET:
4858 		b1 =  gen_linktype(ETHERTYPE_DN);
4859 		break;
4860 
4861 	case Q_SCA:
4862 		b1 =  gen_linktype(ETHERTYPE_SCA);
4863 		break;
4864 
4865 	case Q_LAT:
4866 		b1 =  gen_linktype(ETHERTYPE_LAT);
4867 		break;
4868 
4869 	case Q_MOPDL:
4870 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4871 		break;
4872 
4873 	case Q_MOPRC:
4874 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4875 		break;
4876 
4877 #ifdef INET6
4878 	case Q_IPV6:
4879 		b1 = gen_linktype(ETHERTYPE_IPV6);
4880 		break;
4881 
4882 #ifndef IPPROTO_ICMPV6
4883 #define IPPROTO_ICMPV6	58
4884 #endif
4885 	case Q_ICMPV6:
4886 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4887 		break;
4888 #endif /* INET6 */
4889 
4890 #ifndef IPPROTO_AH
4891 #define IPPROTO_AH	51
4892 #endif
4893 	case Q_AH:
4894 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4895 #ifdef INET6
4896 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4897 		gen_or(b0, b1);
4898 #endif
4899 		break;
4900 
4901 #ifndef IPPROTO_ESP
4902 #define IPPROTO_ESP	50
4903 #endif
4904 	case Q_ESP:
4905 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4906 #ifdef INET6
4907 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4908 		gen_or(b0, b1);
4909 #endif
4910 		break;
4911 
4912 	case Q_ISO:
4913 		b1 = gen_linktype(LLCSAP_ISONS);
4914 		break;
4915 
4916 	case Q_ESIS:
4917 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4918 		break;
4919 
4920 	case Q_ISIS:
4921 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4922 		break;
4923 
4924 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4925 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4926 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4927 		gen_or(b0, b1);
4928 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4929 		gen_or(b0, b1);
4930 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4931 		gen_or(b0, b1);
4932 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4933 		gen_or(b0, b1);
4934 		break;
4935 
4936 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4937 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4938 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4939 		gen_or(b0, b1);
4940 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4941 		gen_or(b0, b1);
4942 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4943 		gen_or(b0, b1);
4944 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4945 		gen_or(b0, b1);
4946 		break;
4947 
4948 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4949 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4950 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4951 		gen_or(b0, b1);
4952 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4953 		gen_or(b0, b1);
4954 		break;
4955 
4956 	case Q_ISIS_LSP:
4957 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4958 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4959 		gen_or(b0, b1);
4960 		break;
4961 
4962 	case Q_ISIS_SNP:
4963 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4964 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4965 		gen_or(b0, b1);
4966 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4967 		gen_or(b0, b1);
4968 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4969 		gen_or(b0, b1);
4970 		break;
4971 
4972 	case Q_ISIS_CSNP:
4973 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4974 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4975 		gen_or(b0, b1);
4976 		break;
4977 
4978 	case Q_ISIS_PSNP:
4979 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4980 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4981 		gen_or(b0, b1);
4982 		break;
4983 
4984 	case Q_CLNP:
4985 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4986 		break;
4987 
4988 	case Q_STP:
4989 		b1 = gen_linktype(LLCSAP_8021D);
4990 		break;
4991 
4992 	case Q_IPX:
4993 		b1 = gen_linktype(LLCSAP_IPX);
4994 		break;
4995 
4996 	case Q_NETBEUI:
4997 		b1 = gen_linktype(LLCSAP_NETBEUI);
4998 		break;
4999 
5000 	case Q_RADIO:
5001 		bpf_error("'radio' is not a valid protocol type");
5002 
5003 	default:
5004 		abort();
5005 	}
5006 	return b1;
5007 }
5008 
5009 static struct block *
5010 gen_ipfrag()
5011 {
5012 	struct slist *s;
5013 	struct block *b;
5014 
5015 	/* not IPv4 frag other than the first frag */
5016 	s = gen_load_a(OR_NET, 6, BPF_H);
5017 	b = new_block(JMP(BPF_JSET));
5018 	b->s.k = 0x1fff;
5019 	b->stmts = s;
5020 	gen_not(b);
5021 
5022 	return b;
5023 }
5024 
5025 /*
5026  * Generate a comparison to a port value in the transport-layer header
5027  * at the specified offset from the beginning of that header.
5028  *
5029  * XXX - this handles a variable-length prefix preceding the link-layer
5030  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5031  * variable-length link-layer headers (such as Token Ring or 802.11
5032  * headers).
5033  */
5034 static struct block *
5035 gen_portatom(off, v)
5036 	int off;
5037 	bpf_int32 v;
5038 {
5039 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5040 }
5041 
5042 #ifdef INET6
5043 static struct block *
5044 gen_portatom6(off, v)
5045 	int off;
5046 	bpf_int32 v;
5047 {
5048 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5049 }
5050 #endif/*INET6*/
5051 
5052 struct block *
5053 gen_portop(port, proto, dir)
5054 	int port, proto, dir;
5055 {
5056 	struct block *b0, *b1, *tmp;
5057 
5058 	/* ip proto 'proto' and not a fragment other than the first fragment */
5059 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5060 	b0 = gen_ipfrag();
5061 	gen_and(tmp, b0);
5062 
5063 	switch (dir) {
5064 	case Q_SRC:
5065 		b1 = gen_portatom(0, (bpf_int32)port);
5066 		break;
5067 
5068 	case Q_DST:
5069 		b1 = gen_portatom(2, (bpf_int32)port);
5070 		break;
5071 
5072 	case Q_OR:
5073 	case Q_DEFAULT:
5074 		tmp = gen_portatom(0, (bpf_int32)port);
5075 		b1 = gen_portatom(2, (bpf_int32)port);
5076 		gen_or(tmp, b1);
5077 		break;
5078 
5079 	case Q_AND:
5080 		tmp = gen_portatom(0, (bpf_int32)port);
5081 		b1 = gen_portatom(2, (bpf_int32)port);
5082 		gen_and(tmp, b1);
5083 		break;
5084 
5085 	default:
5086 		abort();
5087 	}
5088 	gen_and(b0, b1);
5089 
5090 	return b1;
5091 }
5092 
5093 static struct block *
5094 gen_port(port, ip_proto, dir)
5095 	int port;
5096 	int ip_proto;
5097 	int dir;
5098 {
5099 	struct block *b0, *b1, *tmp;
5100 
5101 	/*
5102 	 * ether proto ip
5103 	 *
5104 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5105 	 * not LLC encapsulation with LLCSAP_IP.
5106 	 *
5107 	 * For IEEE 802 networks - which includes 802.5 token ring
5108 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5109 	 * says that SNAP encapsulation is used, not LLC encapsulation
5110 	 * with LLCSAP_IP.
5111 	 *
5112 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5113 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5114 	 * encapsulation with LLCSAP_IP.
5115 	 *
5116 	 * So we always check for ETHERTYPE_IP.
5117 	 */
5118 	b0 =  gen_linktype(ETHERTYPE_IP);
5119 
5120 	switch (ip_proto) {
5121 	case IPPROTO_UDP:
5122 	case IPPROTO_TCP:
5123 	case IPPROTO_SCTP:
5124 		b1 = gen_portop(port, ip_proto, dir);
5125 		break;
5126 
5127 	case PROTO_UNDEF:
5128 		tmp = gen_portop(port, IPPROTO_TCP, dir);
5129 		b1 = gen_portop(port, IPPROTO_UDP, dir);
5130 		gen_or(tmp, b1);
5131 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5132 		gen_or(tmp, b1);
5133 		break;
5134 
5135 	default:
5136 		abort();
5137 	}
5138 	gen_and(b0, b1);
5139 	return b1;
5140 }
5141 
5142 #ifdef INET6
5143 struct block *
5144 gen_portop6(port, proto, dir)
5145 	int port, proto, dir;
5146 {
5147 	struct block *b0, *b1, *tmp;
5148 
5149 	/* ip6 proto 'proto' */
5150 	/* XXX - catch the first fragment of a fragmented packet? */
5151 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5152 
5153 	switch (dir) {
5154 	case Q_SRC:
5155 		b1 = gen_portatom6(0, (bpf_int32)port);
5156 		break;
5157 
5158 	case Q_DST:
5159 		b1 = gen_portatom6(2, (bpf_int32)port);
5160 		break;
5161 
5162 	case Q_OR:
5163 	case Q_DEFAULT:
5164 		tmp = gen_portatom6(0, (bpf_int32)port);
5165 		b1 = gen_portatom6(2, (bpf_int32)port);
5166 		gen_or(tmp, b1);
5167 		break;
5168 
5169 	case Q_AND:
5170 		tmp = gen_portatom6(0, (bpf_int32)port);
5171 		b1 = gen_portatom6(2, (bpf_int32)port);
5172 		gen_and(tmp, b1);
5173 		break;
5174 
5175 	default:
5176 		abort();
5177 	}
5178 	gen_and(b0, b1);
5179 
5180 	return b1;
5181 }
5182 
5183 static struct block *
5184 gen_port6(port, ip_proto, dir)
5185 	int port;
5186 	int ip_proto;
5187 	int dir;
5188 {
5189 	struct block *b0, *b1, *tmp;
5190 
5191 	/* link proto ip6 */
5192 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5193 
5194 	switch (ip_proto) {
5195 	case IPPROTO_UDP:
5196 	case IPPROTO_TCP:
5197 	case IPPROTO_SCTP:
5198 		b1 = gen_portop6(port, ip_proto, dir);
5199 		break;
5200 
5201 	case PROTO_UNDEF:
5202 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5203 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5204 		gen_or(tmp, b1);
5205 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5206 		gen_or(tmp, b1);
5207 		break;
5208 
5209 	default:
5210 		abort();
5211 	}
5212 	gen_and(b0, b1);
5213 	return b1;
5214 }
5215 #endif /* INET6 */
5216 
5217 /* gen_portrange code */
5218 static struct block *
5219 gen_portrangeatom(off, v1, v2)
5220 	int off;
5221 	bpf_int32 v1, v2;
5222 {
5223 	struct block *b1, *b2;
5224 
5225 	if (v1 > v2) {
5226 		/*
5227 		 * Reverse the order of the ports, so v1 is the lower one.
5228 		 */
5229 		bpf_int32 vtemp;
5230 
5231 		vtemp = v1;
5232 		v1 = v2;
5233 		v2 = vtemp;
5234 	}
5235 
5236 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5237 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5238 
5239 	gen_and(b1, b2);
5240 
5241 	return b2;
5242 }
5243 
5244 struct block *
5245 gen_portrangeop(port1, port2, proto, dir)
5246 	int port1, port2;
5247 	int proto;
5248 	int dir;
5249 {
5250 	struct block *b0, *b1, *tmp;
5251 
5252 	/* ip proto 'proto' and not a fragment other than the first fragment */
5253 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5254 	b0 = gen_ipfrag();
5255 	gen_and(tmp, b0);
5256 
5257 	switch (dir) {
5258 	case Q_SRC:
5259 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5260 		break;
5261 
5262 	case Q_DST:
5263 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5264 		break;
5265 
5266 	case Q_OR:
5267 	case Q_DEFAULT:
5268 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5269 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5270 		gen_or(tmp, b1);
5271 		break;
5272 
5273 	case Q_AND:
5274 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5275 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5276 		gen_and(tmp, b1);
5277 		break;
5278 
5279 	default:
5280 		abort();
5281 	}
5282 	gen_and(b0, b1);
5283 
5284 	return b1;
5285 }
5286 
5287 static struct block *
5288 gen_portrange(port1, port2, ip_proto, dir)
5289 	int port1, port2;
5290 	int ip_proto;
5291 	int dir;
5292 {
5293 	struct block *b0, *b1, *tmp;
5294 
5295 	/* link proto ip */
5296 	b0 =  gen_linktype(ETHERTYPE_IP);
5297 
5298 	switch (ip_proto) {
5299 	case IPPROTO_UDP:
5300 	case IPPROTO_TCP:
5301 	case IPPROTO_SCTP:
5302 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5303 		break;
5304 
5305 	case PROTO_UNDEF:
5306 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5307 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5308 		gen_or(tmp, b1);
5309 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5310 		gen_or(tmp, b1);
5311 		break;
5312 
5313 	default:
5314 		abort();
5315 	}
5316 	gen_and(b0, b1);
5317 	return b1;
5318 }
5319 
5320 #ifdef INET6
5321 static struct block *
5322 gen_portrangeatom6(off, v1, v2)
5323 	int off;
5324 	bpf_int32 v1, v2;
5325 {
5326 	struct block *b1, *b2;
5327 
5328 	if (v1 > v2) {
5329 		/*
5330 		 * Reverse the order of the ports, so v1 is the lower one.
5331 		 */
5332 		bpf_int32 vtemp;
5333 
5334 		vtemp = v1;
5335 		v1 = v2;
5336 		v2 = vtemp;
5337 	}
5338 
5339 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5340 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5341 
5342 	gen_and(b1, b2);
5343 
5344 	return b2;
5345 }
5346 
5347 struct block *
5348 gen_portrangeop6(port1, port2, proto, dir)
5349 	int port1, port2;
5350 	int proto;
5351 	int dir;
5352 {
5353 	struct block *b0, *b1, *tmp;
5354 
5355 	/* ip6 proto 'proto' */
5356 	/* XXX - catch the first fragment of a fragmented packet? */
5357 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5358 
5359 	switch (dir) {
5360 	case Q_SRC:
5361 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5362 		break;
5363 
5364 	case Q_DST:
5365 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5366 		break;
5367 
5368 	case Q_OR:
5369 	case Q_DEFAULT:
5370 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5371 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5372 		gen_or(tmp, b1);
5373 		break;
5374 
5375 	case Q_AND:
5376 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5377 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5378 		gen_and(tmp, b1);
5379 		break;
5380 
5381 	default:
5382 		abort();
5383 	}
5384 	gen_and(b0, b1);
5385 
5386 	return b1;
5387 }
5388 
5389 static struct block *
5390 gen_portrange6(port1, port2, ip_proto, dir)
5391 	int port1, port2;
5392 	int ip_proto;
5393 	int dir;
5394 {
5395 	struct block *b0, *b1, *tmp;
5396 
5397 	/* link proto ip6 */
5398 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5399 
5400 	switch (ip_proto) {
5401 	case IPPROTO_UDP:
5402 	case IPPROTO_TCP:
5403 	case IPPROTO_SCTP:
5404 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5405 		break;
5406 
5407 	case PROTO_UNDEF:
5408 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5409 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5410 		gen_or(tmp, b1);
5411 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5412 		gen_or(tmp, b1);
5413 		break;
5414 
5415 	default:
5416 		abort();
5417 	}
5418 	gen_and(b0, b1);
5419 	return b1;
5420 }
5421 #endif /* INET6 */
5422 
5423 static int
5424 lookup_proto(name, proto)
5425 	register const char *name;
5426 	register int proto;
5427 {
5428 	register int v;
5429 
5430 	switch (proto) {
5431 
5432 	case Q_DEFAULT:
5433 	case Q_IP:
5434 	case Q_IPV6:
5435 		v = pcap_nametoproto(name);
5436 		if (v == PROTO_UNDEF)
5437 			bpf_error("unknown ip proto '%s'", name);
5438 		break;
5439 
5440 	case Q_LINK:
5441 		/* XXX should look up h/w protocol type based on linktype */
5442 		v = pcap_nametoeproto(name);
5443 		if (v == PROTO_UNDEF) {
5444 			v = pcap_nametollc(name);
5445 			if (v == PROTO_UNDEF)
5446 				bpf_error("unknown ether proto '%s'", name);
5447 		}
5448 		break;
5449 
5450 	case Q_ISO:
5451 		if (strcmp(name, "esis") == 0)
5452 			v = ISO9542_ESIS;
5453 		else if (strcmp(name, "isis") == 0)
5454 			v = ISO10589_ISIS;
5455 		else if (strcmp(name, "clnp") == 0)
5456 			v = ISO8473_CLNP;
5457 		else
5458 			bpf_error("unknown osi proto '%s'", name);
5459 		break;
5460 
5461 	default:
5462 		v = PROTO_UNDEF;
5463 		break;
5464 	}
5465 	return v;
5466 }
5467 
5468 #if 0
5469 struct stmt *
5470 gen_joinsp(s, n)
5471 	struct stmt **s;
5472 	int n;
5473 {
5474 	return NULL;
5475 }
5476 #endif
5477 
5478 static struct block *
5479 gen_protochain(v, proto, dir)
5480 	int v;
5481 	int proto;
5482 	int dir;
5483 {
5484 #ifdef NO_PROTOCHAIN
5485 	return gen_proto(v, proto, dir);
5486 #else
5487 	struct block *b0, *b;
5488 	struct slist *s[100];
5489 	int fix2, fix3, fix4, fix5;
5490 	int ahcheck, again, end;
5491 	int i, max;
5492 	int reg2 = alloc_reg();
5493 
5494 	memset(s, 0, sizeof(s));
5495 	fix2 = fix3 = fix4 = fix5 = 0;
5496 
5497 	switch (proto) {
5498 	case Q_IP:
5499 	case Q_IPV6:
5500 		break;
5501 	case Q_DEFAULT:
5502 		b0 = gen_protochain(v, Q_IP, dir);
5503 		b = gen_protochain(v, Q_IPV6, dir);
5504 		gen_or(b0, b);
5505 		return b;
5506 	default:
5507 		bpf_error("bad protocol applied for 'protochain'");
5508 		/*NOTREACHED*/
5509 	}
5510 
5511 	/*
5512 	 * We don't handle variable-length prefixes before the link-layer
5513 	 * header, or variable-length link-layer headers, here yet.
5514 	 * We might want to add BPF instructions to do the protochain
5515 	 * work, to simplify that and, on platforms that have a BPF
5516 	 * interpreter with the new instructions, let the filtering
5517 	 * be done in the kernel.  (We already require a modified BPF
5518 	 * engine to do the protochain stuff, to support backward
5519 	 * branches, and backward branch support is unlikely to appear
5520 	 * in kernel BPF engines.)
5521 	 */
5522 	switch (linktype) {
5523 
5524 	case DLT_IEEE802_11:
5525 	case DLT_PRISM_HEADER:
5526 	case DLT_IEEE802_11_RADIO_AVS:
5527 	case DLT_IEEE802_11_RADIO:
5528 	case DLT_PPI:
5529 		bpf_error("'protochain' not supported with 802.11");
5530 	}
5531 
5532 	no_optimize = 1; /*this code is not compatible with optimzer yet */
5533 
5534 	/*
5535 	 * s[0] is a dummy entry to protect other BPF insn from damage
5536 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5537 	 * hard to find interdependency made by jump table fixup.
5538 	 */
5539 	i = 0;
5540 	s[i] = new_stmt(0);	/*dummy*/
5541 	i++;
5542 
5543 	switch (proto) {
5544 	case Q_IP:
5545 		b0 = gen_linktype(ETHERTYPE_IP);
5546 
5547 		/* A = ip->ip_p */
5548 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5549 		s[i]->s.k = off_macpl + off_nl + 9;
5550 		i++;
5551 		/* X = ip->ip_hl << 2 */
5552 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5553 		s[i]->s.k = off_macpl + off_nl;
5554 		i++;
5555 		break;
5556 #ifdef INET6
5557 	case Q_IPV6:
5558 		b0 = gen_linktype(ETHERTYPE_IPV6);
5559 
5560 		/* A = ip6->ip_nxt */
5561 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5562 		s[i]->s.k = off_macpl + off_nl + 6;
5563 		i++;
5564 		/* X = sizeof(struct ip6_hdr) */
5565 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5566 		s[i]->s.k = 40;
5567 		i++;
5568 		break;
5569 #endif
5570 	default:
5571 		bpf_error("unsupported proto to gen_protochain");
5572 		/*NOTREACHED*/
5573 	}
5574 
5575 	/* again: if (A == v) goto end; else fall through; */
5576 	again = i;
5577 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5578 	s[i]->s.k = v;
5579 	s[i]->s.jt = NULL;		/*later*/
5580 	s[i]->s.jf = NULL;		/*update in next stmt*/
5581 	fix5 = i;
5582 	i++;
5583 
5584 #ifndef IPPROTO_NONE
5585 #define IPPROTO_NONE	59
5586 #endif
5587 	/* if (A == IPPROTO_NONE) goto end */
5588 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5589 	s[i]->s.jt = NULL;	/*later*/
5590 	s[i]->s.jf = NULL;	/*update in next stmt*/
5591 	s[i]->s.k = IPPROTO_NONE;
5592 	s[fix5]->s.jf = s[i];
5593 	fix2 = i;
5594 	i++;
5595 
5596 #ifdef INET6
5597 	if (proto == Q_IPV6) {
5598 		int v6start, v6end, v6advance, j;
5599 
5600 		v6start = i;
5601 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5602 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5603 		s[i]->s.jt = NULL;	/*later*/
5604 		s[i]->s.jf = NULL;	/*update in next stmt*/
5605 		s[i]->s.k = IPPROTO_HOPOPTS;
5606 		s[fix2]->s.jf = s[i];
5607 		i++;
5608 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5609 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5610 		s[i]->s.jt = NULL;	/*later*/
5611 		s[i]->s.jf = NULL;	/*update in next stmt*/
5612 		s[i]->s.k = IPPROTO_DSTOPTS;
5613 		i++;
5614 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5615 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5616 		s[i]->s.jt = NULL;	/*later*/
5617 		s[i]->s.jf = NULL;	/*update in next stmt*/
5618 		s[i]->s.k = IPPROTO_ROUTING;
5619 		i++;
5620 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5621 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5622 		s[i]->s.jt = NULL;	/*later*/
5623 		s[i]->s.jf = NULL;	/*later*/
5624 		s[i]->s.k = IPPROTO_FRAGMENT;
5625 		fix3 = i;
5626 		v6end = i;
5627 		i++;
5628 
5629 		/* v6advance: */
5630 		v6advance = i;
5631 
5632 		/*
5633 		 * in short,
5634 		 * A = P[X + packet head];
5635 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5636 		 */
5637 		/* A = P[X + packet head] */
5638 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5639 		s[i]->s.k = off_macpl + off_nl;
5640 		i++;
5641 		/* MEM[reg2] = A */
5642 		s[i] = new_stmt(BPF_ST);
5643 		s[i]->s.k = reg2;
5644 		i++;
5645 		/* A = P[X + packet head + 1]; */
5646 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5647 		s[i]->s.k = off_macpl + off_nl + 1;
5648 		i++;
5649 		/* A += 1 */
5650 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5651 		s[i]->s.k = 1;
5652 		i++;
5653 		/* A *= 8 */
5654 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5655 		s[i]->s.k = 8;
5656 		i++;
5657 		/* A += X */
5658 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5659 		s[i]->s.k = 0;
5660 		i++;
5661 		/* X = A; */
5662 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5663 		i++;
5664 		/* A = MEM[reg2] */
5665 		s[i] = new_stmt(BPF_LD|BPF_MEM);
5666 		s[i]->s.k = reg2;
5667 		i++;
5668 
5669 		/* goto again; (must use BPF_JA for backward jump) */
5670 		s[i] = new_stmt(BPF_JMP|BPF_JA);
5671 		s[i]->s.k = again - i - 1;
5672 		s[i - 1]->s.jf = s[i];
5673 		i++;
5674 
5675 		/* fixup */
5676 		for (j = v6start; j <= v6end; j++)
5677 			s[j]->s.jt = s[v6advance];
5678 	} else
5679 #endif
5680 	{
5681 		/* nop */
5682 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5683 		s[i]->s.k = 0;
5684 		s[fix2]->s.jf = s[i];
5685 		i++;
5686 	}
5687 
5688 	/* ahcheck: */
5689 	ahcheck = i;
5690 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5691 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5692 	s[i]->s.jt = NULL;	/*later*/
5693 	s[i]->s.jf = NULL;	/*later*/
5694 	s[i]->s.k = IPPROTO_AH;
5695 	if (fix3)
5696 		s[fix3]->s.jf = s[ahcheck];
5697 	fix4 = i;
5698 	i++;
5699 
5700 	/*
5701 	 * in short,
5702 	 * A = P[X];
5703 	 * X = X + (P[X + 1] + 2) * 4;
5704 	 */
5705 	/* A = X */
5706 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5707 	i++;
5708 	/* A = P[X + packet head]; */
5709 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5710 	s[i]->s.k = off_macpl + off_nl;
5711 	i++;
5712 	/* MEM[reg2] = A */
5713 	s[i] = new_stmt(BPF_ST);
5714 	s[i]->s.k = reg2;
5715 	i++;
5716 	/* A = X */
5717 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5718 	i++;
5719 	/* A += 1 */
5720 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5721 	s[i]->s.k = 1;
5722 	i++;
5723 	/* X = A */
5724 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5725 	i++;
5726 	/* A = P[X + packet head] */
5727 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5728 	s[i]->s.k = off_macpl + off_nl;
5729 	i++;
5730 	/* A += 2 */
5731 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5732 	s[i]->s.k = 2;
5733 	i++;
5734 	/* A *= 4 */
5735 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5736 	s[i]->s.k = 4;
5737 	i++;
5738 	/* X = A; */
5739 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5740 	i++;
5741 	/* A = MEM[reg2] */
5742 	s[i] = new_stmt(BPF_LD|BPF_MEM);
5743 	s[i]->s.k = reg2;
5744 	i++;
5745 
5746 	/* goto again; (must use BPF_JA for backward jump) */
5747 	s[i] = new_stmt(BPF_JMP|BPF_JA);
5748 	s[i]->s.k = again - i - 1;
5749 	i++;
5750 
5751 	/* end: nop */
5752 	end = i;
5753 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5754 	s[i]->s.k = 0;
5755 	s[fix2]->s.jt = s[end];
5756 	s[fix4]->s.jf = s[end];
5757 	s[fix5]->s.jt = s[end];
5758 	i++;
5759 
5760 	/*
5761 	 * make slist chain
5762 	 */
5763 	max = i;
5764 	for (i = 0; i < max - 1; i++)
5765 		s[i]->next = s[i + 1];
5766 	s[max - 1]->next = NULL;
5767 
5768 	/*
5769 	 * emit final check
5770 	 */
5771 	b = new_block(JMP(BPF_JEQ));
5772 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5773 	b->s.k = v;
5774 
5775 	free_reg(reg2);
5776 
5777 	gen_and(b0, b);
5778 	return b;
5779 #endif
5780 }
5781 
5782 static struct block *
5783 gen_check_802_11_data_frame()
5784 {
5785 	struct slist *s;
5786 	struct block *b0, *b1;
5787 
5788 	/*
5789 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5790 	 * and the 0x04 bit (b2) clear.
5791 	 */
5792 	s = gen_load_a(OR_LINK, 0, BPF_B);
5793 	b0 = new_block(JMP(BPF_JSET));
5794 	b0->s.k = 0x08;
5795 	b0->stmts = s;
5796 
5797 	s = gen_load_a(OR_LINK, 0, BPF_B);
5798 	b1 = new_block(JMP(BPF_JSET));
5799 	b1->s.k = 0x04;
5800 	b1->stmts = s;
5801 	gen_not(b1);
5802 
5803 	gen_and(b1, b0);
5804 
5805 	return b0;
5806 }
5807 
5808 /*
5809  * Generate code that checks whether the packet is a packet for protocol
5810  * <proto> and whether the type field in that protocol's header has
5811  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5812  * IP packet and checks the protocol number in the IP header against <v>.
5813  *
5814  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5815  * against Q_IP and Q_IPV6.
5816  */
5817 static struct block *
5818 gen_proto(v, proto, dir)
5819 	int v;
5820 	int proto;
5821 	int dir;
5822 {
5823 	struct block *b0, *b1;
5824 
5825 	if (dir != Q_DEFAULT)
5826 		bpf_error("direction applied to 'proto'");
5827 
5828 	switch (proto) {
5829 	case Q_DEFAULT:
5830 #ifdef INET6
5831 		b0 = gen_proto(v, Q_IP, dir);
5832 		b1 = gen_proto(v, Q_IPV6, dir);
5833 		gen_or(b0, b1);
5834 		return b1;
5835 #else
5836 		/*FALLTHROUGH*/
5837 #endif
5838 	case Q_IP:
5839 		/*
5840 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5841 		 * not LLC encapsulation with LLCSAP_IP.
5842 		 *
5843 		 * For IEEE 802 networks - which includes 802.5 token ring
5844 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5845 		 * says that SNAP encapsulation is used, not LLC encapsulation
5846 		 * with LLCSAP_IP.
5847 		 *
5848 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5849 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5850 		 * encapsulation with LLCSAP_IP.
5851 		 *
5852 		 * So we always check for ETHERTYPE_IP.
5853 		 */
5854 		b0 = gen_linktype(ETHERTYPE_IP);
5855 #ifndef CHASE_CHAIN
5856 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5857 #else
5858 		b1 = gen_protochain(v, Q_IP);
5859 #endif
5860 		gen_and(b0, b1);
5861 		return b1;
5862 
5863 	case Q_ISO:
5864 		switch (linktype) {
5865 
5866 		case DLT_FRELAY:
5867 			/*
5868 			 * Frame Relay packets typically have an OSI
5869 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5870 			 * generates code to check for all the OSI
5871 			 * NLPIDs, so calling it and then adding a check
5872 			 * for the particular NLPID for which we're
5873 			 * looking is bogus, as we can just check for
5874 			 * the NLPID.
5875 			 *
5876 			 * What we check for is the NLPID and a frame
5877 			 * control field value of UI, i.e. 0x03 followed
5878 			 * by the NLPID.
5879 			 *
5880 			 * XXX - assumes a 2-byte Frame Relay header with
5881 			 * DLCI and flags.  What if the address is longer?
5882 			 *
5883 			 * XXX - what about SNAP-encapsulated frames?
5884 			 */
5885 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5886 			/*NOTREACHED*/
5887 			break;
5888 
5889 		case DLT_C_HDLC:
5890 			/*
5891 			 * Cisco uses an Ethertype lookalike - for OSI,
5892 			 * it's 0xfefe.
5893 			 */
5894 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5895 			/* OSI in C-HDLC is stuffed with a fudge byte */
5896 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5897 			gen_and(b0, b1);
5898 			return b1;
5899 
5900 		default:
5901 			b0 = gen_linktype(LLCSAP_ISONS);
5902 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5903 			gen_and(b0, b1);
5904 			return b1;
5905 		}
5906 
5907 	case Q_ISIS:
5908 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5909 		/*
5910 		 * 4 is the offset of the PDU type relative to the IS-IS
5911 		 * header.
5912 		 */
5913 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5914 		gen_and(b0, b1);
5915 		return b1;
5916 
5917 	case Q_ARP:
5918 		bpf_error("arp does not encapsulate another protocol");
5919 		/* NOTREACHED */
5920 
5921 	case Q_RARP:
5922 		bpf_error("rarp does not encapsulate another protocol");
5923 		/* NOTREACHED */
5924 
5925 	case Q_ATALK:
5926 		bpf_error("atalk encapsulation is not specifiable");
5927 		/* NOTREACHED */
5928 
5929 	case Q_DECNET:
5930 		bpf_error("decnet encapsulation is not specifiable");
5931 		/* NOTREACHED */
5932 
5933 	case Q_SCA:
5934 		bpf_error("sca does not encapsulate another protocol");
5935 		/* NOTREACHED */
5936 
5937 	case Q_LAT:
5938 		bpf_error("lat does not encapsulate another protocol");
5939 		/* NOTREACHED */
5940 
5941 	case Q_MOPRC:
5942 		bpf_error("moprc does not encapsulate another protocol");
5943 		/* NOTREACHED */
5944 
5945 	case Q_MOPDL:
5946 		bpf_error("mopdl does not encapsulate another protocol");
5947 		/* NOTREACHED */
5948 
5949 	case Q_LINK:
5950 		return gen_linktype(v);
5951 
5952 	case Q_UDP:
5953 		bpf_error("'udp proto' is bogus");
5954 		/* NOTREACHED */
5955 
5956 	case Q_TCP:
5957 		bpf_error("'tcp proto' is bogus");
5958 		/* NOTREACHED */
5959 
5960 	case Q_SCTP:
5961 		bpf_error("'sctp proto' is bogus");
5962 		/* NOTREACHED */
5963 
5964 	case Q_ICMP:
5965 		bpf_error("'icmp proto' is bogus");
5966 		/* NOTREACHED */
5967 
5968 	case Q_IGMP:
5969 		bpf_error("'igmp proto' is bogus");
5970 		/* NOTREACHED */
5971 
5972 	case Q_IGRP:
5973 		bpf_error("'igrp proto' is bogus");
5974 		/* NOTREACHED */
5975 
5976 	case Q_PIM:
5977 		bpf_error("'pim proto' is bogus");
5978 		/* NOTREACHED */
5979 
5980 	case Q_VRRP:
5981 		bpf_error("'vrrp proto' is bogus");
5982 		/* NOTREACHED */
5983 
5984 	case Q_CARP:
5985 		bpf_error("'carp proto' is bogus");
5986 		/* NOTREACHED */
5987 
5988 #ifdef INET6
5989 	case Q_IPV6:
5990 		b0 = gen_linktype(ETHERTYPE_IPV6);
5991 #ifndef CHASE_CHAIN
5992 		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5993 #else
5994 		b1 = gen_protochain(v, Q_IPV6);
5995 #endif
5996 		gen_and(b0, b1);
5997 		return b1;
5998 
5999 	case Q_ICMPV6:
6000 		bpf_error("'icmp6 proto' is bogus");
6001 #endif /* INET6 */
6002 
6003 	case Q_AH:
6004 		bpf_error("'ah proto' is bogus");
6005 
6006 	case Q_ESP:
6007 		bpf_error("'ah proto' is bogus");
6008 
6009 	case Q_STP:
6010 		bpf_error("'stp proto' is bogus");
6011 
6012 	case Q_IPX:
6013 		bpf_error("'ipx proto' is bogus");
6014 
6015 	case Q_NETBEUI:
6016 		bpf_error("'netbeui proto' is bogus");
6017 
6018 	case Q_RADIO:
6019 		bpf_error("'radio proto' is bogus");
6020 
6021 	default:
6022 		abort();
6023 		/* NOTREACHED */
6024 	}
6025 	/* NOTREACHED */
6026 }
6027 
6028 struct block *
6029 gen_scode(name, q)
6030 	register const char *name;
6031 	struct qual q;
6032 {
6033 	int proto = q.proto;
6034 	int dir = q.dir;
6035 	int tproto;
6036 	u_char *eaddr;
6037 	bpf_u_int32 mask, addr;
6038 #ifndef INET6
6039 	bpf_u_int32 **alist;
6040 #else
6041 	int tproto6;
6042 	struct sockaddr_in *sin4;
6043 	struct sockaddr_in6 *sin6;
6044 	struct addrinfo *res, *res0;
6045 	struct in6_addr mask128;
6046 #endif /*INET6*/
6047 	struct block *b, *tmp;
6048 	int port, real_proto;
6049 	int port1, port2;
6050 
6051 	switch (q.addr) {
6052 
6053 	case Q_NET:
6054 		addr = pcap_nametonetaddr(name);
6055 		if (addr == 0)
6056 			bpf_error("unknown network '%s'", name);
6057 		/* Left justify network addr and calculate its network mask */
6058 		mask = 0xffffffff;
6059 		while (addr && (addr & 0xff000000) == 0) {
6060 			addr <<= 8;
6061 			mask <<= 8;
6062 		}
6063 		return gen_host(addr, mask, proto, dir, q.addr);
6064 
6065 	case Q_DEFAULT:
6066 	case Q_HOST:
6067 		if (proto == Q_LINK) {
6068 			switch (linktype) {
6069 
6070 			case DLT_EN10MB:
6071 			case DLT_NETANALYZER:
6072 			case DLT_NETANALYZER_TRANSPARENT:
6073 				eaddr = pcap_ether_hostton(name);
6074 				if (eaddr == NULL)
6075 					bpf_error(
6076 					    "unknown ether host '%s'", name);
6077 				b = gen_ehostop(eaddr, dir);
6078 				free(eaddr);
6079 				return b;
6080 
6081 			case DLT_FDDI:
6082 				eaddr = pcap_ether_hostton(name);
6083 				if (eaddr == NULL)
6084 					bpf_error(
6085 					    "unknown FDDI host '%s'", name);
6086 				b = gen_fhostop(eaddr, dir);
6087 				free(eaddr);
6088 				return b;
6089 
6090 			case DLT_IEEE802:
6091 				eaddr = pcap_ether_hostton(name);
6092 				if (eaddr == NULL)
6093 					bpf_error(
6094 					    "unknown token ring host '%s'", name);
6095 				b = gen_thostop(eaddr, dir);
6096 				free(eaddr);
6097 				return b;
6098 
6099 			case DLT_IEEE802_11:
6100 			case DLT_PRISM_HEADER:
6101 			case DLT_IEEE802_11_RADIO_AVS:
6102 			case DLT_IEEE802_11_RADIO:
6103 			case DLT_PPI:
6104 				eaddr = pcap_ether_hostton(name);
6105 				if (eaddr == NULL)
6106 					bpf_error(
6107 					    "unknown 802.11 host '%s'", name);
6108 				b = gen_wlanhostop(eaddr, dir);
6109 				free(eaddr);
6110 				return b;
6111 
6112 			case DLT_IP_OVER_FC:
6113 				eaddr = pcap_ether_hostton(name);
6114 				if (eaddr == NULL)
6115 					bpf_error(
6116 					    "unknown Fibre Channel host '%s'", name);
6117 				b = gen_ipfchostop(eaddr, dir);
6118 				free(eaddr);
6119 				return b;
6120 
6121 			case DLT_SUNATM:
6122 				if (!is_lane)
6123 					break;
6124 
6125 				/*
6126 				 * Check that the packet doesn't begin
6127 				 * with an LE Control marker.  (We've
6128 				 * already generated a test for LANE.)
6129 				 */
6130 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6131 				    BPF_H, 0xFF00);
6132 				gen_not(tmp);
6133 
6134 				eaddr = pcap_ether_hostton(name);
6135 				if (eaddr == NULL)
6136 					bpf_error(
6137 					    "unknown ether host '%s'", name);
6138 				b = gen_ehostop(eaddr, dir);
6139 				gen_and(tmp, b);
6140 				free(eaddr);
6141 				return b;
6142 			}
6143 
6144 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6145 		} else if (proto == Q_DECNET) {
6146 			unsigned short dn_addr = __pcap_nametodnaddr(name);
6147 			/*
6148 			 * I don't think DECNET hosts can be multihomed, so
6149 			 * there is no need to build up a list of addresses
6150 			 */
6151 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6152 		} else {
6153 #ifndef INET6
6154 			alist = pcap_nametoaddr(name);
6155 			if (alist == NULL || *alist == NULL)
6156 				bpf_error("unknown host '%s'", name);
6157 			tproto = proto;
6158 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6159 				tproto = Q_IP;
6160 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6161 			while (*alist) {
6162 				tmp = gen_host(**alist++, 0xffffffff,
6163 					       tproto, dir, q.addr);
6164 				gen_or(b, tmp);
6165 				b = tmp;
6166 			}
6167 			return b;
6168 #else
6169 			memset(&mask128, 0xff, sizeof(mask128));
6170 			res0 = res = pcap_nametoaddrinfo(name);
6171 			if (res == NULL)
6172 				bpf_error("unknown host '%s'", name);
6173 			ai = res;
6174 			b = tmp = NULL;
6175 			tproto = tproto6 = proto;
6176 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6177 				tproto = Q_IP;
6178 				tproto6 = Q_IPV6;
6179 			}
6180 			for (res = res0; res; res = res->ai_next) {
6181 				switch (res->ai_family) {
6182 				case AF_INET:
6183 					if (tproto == Q_IPV6)
6184 						continue;
6185 
6186 					sin4 = (struct sockaddr_in *)
6187 						res->ai_addr;
6188 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6189 						0xffffffff, tproto, dir, q.addr);
6190 					break;
6191 				case AF_INET6:
6192 					if (tproto6 == Q_IP)
6193 						continue;
6194 
6195 					sin6 = (struct sockaddr_in6 *)
6196 						res->ai_addr;
6197 					tmp = gen_host6(&sin6->sin6_addr,
6198 						&mask128, tproto6, dir, q.addr);
6199 					break;
6200 				default:
6201 					continue;
6202 				}
6203 				if (b)
6204 					gen_or(b, tmp);
6205 				b = tmp;
6206 			}
6207 			ai = NULL;
6208 			freeaddrinfo(res0);
6209 			if (b == NULL) {
6210 				bpf_error("unknown host '%s'%s", name,
6211 				    (proto == Q_DEFAULT)
6212 					? ""
6213 					: " for specified address family");
6214 			}
6215 			return b;
6216 #endif /*INET6*/
6217 		}
6218 
6219 	case Q_PORT:
6220 		if (proto != Q_DEFAULT &&
6221 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6222 			bpf_error("illegal qualifier of 'port'");
6223 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6224 			bpf_error("unknown port '%s'", name);
6225 		if (proto == Q_UDP) {
6226 			if (real_proto == IPPROTO_TCP)
6227 				bpf_error("port '%s' is tcp", name);
6228 			else if (real_proto == IPPROTO_SCTP)
6229 				bpf_error("port '%s' is sctp", name);
6230 			else
6231 				/* override PROTO_UNDEF */
6232 				real_proto = IPPROTO_UDP;
6233 		}
6234 		if (proto == Q_TCP) {
6235 			if (real_proto == IPPROTO_UDP)
6236 				bpf_error("port '%s' is udp", name);
6237 
6238 			else if (real_proto == IPPROTO_SCTP)
6239 				bpf_error("port '%s' is sctp", name);
6240 			else
6241 				/* override PROTO_UNDEF */
6242 				real_proto = IPPROTO_TCP;
6243 		}
6244 		if (proto == Q_SCTP) {
6245 			if (real_proto == IPPROTO_UDP)
6246 				bpf_error("port '%s' is udp", name);
6247 
6248 			else if (real_proto == IPPROTO_TCP)
6249 				bpf_error("port '%s' is tcp", name);
6250 			else
6251 				/* override PROTO_UNDEF */
6252 				real_proto = IPPROTO_SCTP;
6253 		}
6254 		if (port < 0)
6255 			bpf_error("illegal port number %d < 0", port);
6256 		if (port > 65535)
6257 			bpf_error("illegal port number %d > 65535", port);
6258 #ifndef INET6
6259 		return gen_port(port, real_proto, dir);
6260 #else
6261 		b = gen_port(port, real_proto, dir);
6262 		gen_or(gen_port6(port, real_proto, dir), b);
6263 		return b;
6264 #endif /* INET6 */
6265 
6266 	case Q_PORTRANGE:
6267 		if (proto != Q_DEFAULT &&
6268 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6269 			bpf_error("illegal qualifier of 'portrange'");
6270 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6271 			bpf_error("unknown port in range '%s'", name);
6272 		if (proto == Q_UDP) {
6273 			if (real_proto == IPPROTO_TCP)
6274 				bpf_error("port in range '%s' is tcp", name);
6275 			else if (real_proto == IPPROTO_SCTP)
6276 				bpf_error("port in range '%s' is sctp", name);
6277 			else
6278 				/* override PROTO_UNDEF */
6279 				real_proto = IPPROTO_UDP;
6280 		}
6281 		if (proto == Q_TCP) {
6282 			if (real_proto == IPPROTO_UDP)
6283 				bpf_error("port in range '%s' is udp", name);
6284 			else if (real_proto == IPPROTO_SCTP)
6285 				bpf_error("port in range '%s' is sctp", name);
6286 			else
6287 				/* override PROTO_UNDEF */
6288 				real_proto = IPPROTO_TCP;
6289 		}
6290 		if (proto == Q_SCTP) {
6291 			if (real_proto == IPPROTO_UDP)
6292 				bpf_error("port in range '%s' is udp", name);
6293 			else if (real_proto == IPPROTO_TCP)
6294 				bpf_error("port in range '%s' is tcp", name);
6295 			else
6296 				/* override PROTO_UNDEF */
6297 				real_proto = IPPROTO_SCTP;
6298 		}
6299 		if (port1 < 0)
6300 			bpf_error("illegal port number %d < 0", port1);
6301 		if (port1 > 65535)
6302 			bpf_error("illegal port number %d > 65535", port1);
6303 		if (port2 < 0)
6304 			bpf_error("illegal port number %d < 0", port2);
6305 		if (port2 > 65535)
6306 			bpf_error("illegal port number %d > 65535", port2);
6307 
6308 #ifndef INET6
6309 		return gen_portrange(port1, port2, real_proto, dir);
6310 #else
6311 		b = gen_portrange(port1, port2, real_proto, dir);
6312 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6313 		return b;
6314 #endif /* INET6 */
6315 
6316 	case Q_GATEWAY:
6317 #ifndef INET6
6318 		eaddr = pcap_ether_hostton(name);
6319 		if (eaddr == NULL)
6320 			bpf_error("unknown ether host: %s", name);
6321 
6322 		alist = pcap_nametoaddr(name);
6323 		if (alist == NULL || *alist == NULL)
6324 			bpf_error("unknown host '%s'", name);
6325 		b = gen_gateway(eaddr, alist, proto, dir);
6326 		free(eaddr);
6327 		return b;
6328 #else
6329 		bpf_error("'gateway' not supported in this configuration");
6330 #endif /*INET6*/
6331 
6332 	case Q_PROTO:
6333 		real_proto = lookup_proto(name, proto);
6334 		if (real_proto >= 0)
6335 			return gen_proto(real_proto, proto, dir);
6336 		else
6337 			bpf_error("unknown protocol: %s", name);
6338 
6339 	case Q_PROTOCHAIN:
6340 		real_proto = lookup_proto(name, proto);
6341 		if (real_proto >= 0)
6342 			return gen_protochain(real_proto, proto, dir);
6343 		else
6344 			bpf_error("unknown protocol: %s", name);
6345 
6346 	case Q_UNDEF:
6347 		syntax();
6348 		/* NOTREACHED */
6349 	}
6350 	abort();
6351 	/* NOTREACHED */
6352 }
6353 
6354 struct block *
6355 gen_mcode(s1, s2, masklen, q)
6356 	register const char *s1, *s2;
6357 	register int masklen;
6358 	struct qual q;
6359 {
6360 	register int nlen, mlen;
6361 	bpf_u_int32 n, m;
6362 
6363 	nlen = __pcap_atoin(s1, &n);
6364 	/* Promote short ipaddr */
6365 	n <<= 32 - nlen;
6366 
6367 	if (s2 != NULL) {
6368 		mlen = __pcap_atoin(s2, &m);
6369 		/* Promote short ipaddr */
6370 		m <<= 32 - mlen;
6371 		if ((n & ~m) != 0)
6372 			bpf_error("non-network bits set in \"%s mask %s\"",
6373 			    s1, s2);
6374 	} else {
6375 		/* Convert mask len to mask */
6376 		if (masklen > 32)
6377 			bpf_error("mask length must be <= 32");
6378 		if (masklen == 0) {
6379 			/*
6380 			 * X << 32 is not guaranteed by C to be 0; it's
6381 			 * undefined.
6382 			 */
6383 			m = 0;
6384 		} else
6385 			m = 0xffffffff << (32 - masklen);
6386 		if ((n & ~m) != 0)
6387 			bpf_error("non-network bits set in \"%s/%d\"",
6388 			    s1, masklen);
6389 	}
6390 
6391 	switch (q.addr) {
6392 
6393 	case Q_NET:
6394 		return gen_host(n, m, q.proto, q.dir, q.addr);
6395 
6396 	default:
6397 		bpf_error("Mask syntax for networks only");
6398 		/* NOTREACHED */
6399 	}
6400 	/* NOTREACHED */
6401 	return NULL;
6402 }
6403 
6404 struct block *
6405 gen_ncode(s, v, q)
6406 	register const char *s;
6407 	bpf_u_int32 v;
6408 	struct qual q;
6409 {
6410 	bpf_u_int32 mask;
6411 	int proto = q.proto;
6412 	int dir = q.dir;
6413 	register int vlen;
6414 
6415 	if (s == NULL)
6416 		vlen = 32;
6417 	else if (q.proto == Q_DECNET)
6418 		vlen = __pcap_atodn(s, &v);
6419 	else
6420 		vlen = __pcap_atoin(s, &v);
6421 
6422 	switch (q.addr) {
6423 
6424 	case Q_DEFAULT:
6425 	case Q_HOST:
6426 	case Q_NET:
6427 		if (proto == Q_DECNET)
6428 			return gen_host(v, 0, proto, dir, q.addr);
6429 		else if (proto == Q_LINK) {
6430 			bpf_error("illegal link layer address");
6431 		} else {
6432 			mask = 0xffffffff;
6433 			if (s == NULL && q.addr == Q_NET) {
6434 				/* Promote short net number */
6435 				while (v && (v & 0xff000000) == 0) {
6436 					v <<= 8;
6437 					mask <<= 8;
6438 				}
6439 			} else {
6440 				/* Promote short ipaddr */
6441 				v <<= 32 - vlen;
6442 				mask <<= 32 - vlen;
6443 			}
6444 			return gen_host(v, mask, proto, dir, q.addr);
6445 		}
6446 
6447 	case Q_PORT:
6448 		if (proto == Q_UDP)
6449 			proto = IPPROTO_UDP;
6450 		else if (proto == Q_TCP)
6451 			proto = IPPROTO_TCP;
6452 		else if (proto == Q_SCTP)
6453 			proto = IPPROTO_SCTP;
6454 		else if (proto == Q_DEFAULT)
6455 			proto = PROTO_UNDEF;
6456 		else
6457 			bpf_error("illegal qualifier of 'port'");
6458 
6459 		if (v > 65535)
6460 			bpf_error("illegal port number %u > 65535", v);
6461 
6462 #ifndef INET6
6463 		return gen_port((int)v, proto, dir);
6464 #else
6465 	    {
6466 		struct block *b;
6467 		b = gen_port((int)v, proto, dir);
6468 		gen_or(gen_port6((int)v, proto, dir), b);
6469 		return b;
6470 	    }
6471 #endif /* INET6 */
6472 
6473 	case Q_PORTRANGE:
6474 		if (proto == Q_UDP)
6475 			proto = IPPROTO_UDP;
6476 		else if (proto == Q_TCP)
6477 			proto = IPPROTO_TCP;
6478 		else if (proto == Q_SCTP)
6479 			proto = IPPROTO_SCTP;
6480 		else if (proto == Q_DEFAULT)
6481 			proto = PROTO_UNDEF;
6482 		else
6483 			bpf_error("illegal qualifier of 'portrange'");
6484 
6485 		if (v > 65535)
6486 			bpf_error("illegal port number %u > 65535", v);
6487 
6488 #ifndef INET6
6489 		return gen_portrange((int)v, (int)v, proto, dir);
6490 #else
6491 	    {
6492 		struct block *b;
6493 		b = gen_portrange((int)v, (int)v, proto, dir);
6494 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6495 		return b;
6496 	    }
6497 #endif /* INET6 */
6498 
6499 	case Q_GATEWAY:
6500 		bpf_error("'gateway' requires a name");
6501 		/* NOTREACHED */
6502 
6503 	case Q_PROTO:
6504 		return gen_proto((int)v, proto, dir);
6505 
6506 	case Q_PROTOCHAIN:
6507 		return gen_protochain((int)v, proto, dir);
6508 
6509 	case Q_UNDEF:
6510 		syntax();
6511 		/* NOTREACHED */
6512 
6513 	default:
6514 		abort();
6515 		/* NOTREACHED */
6516 	}
6517 	/* NOTREACHED */
6518 }
6519 
6520 #ifdef INET6
6521 struct block *
6522 gen_mcode6(s1, s2, masklen, q)
6523 	register const char *s1, *s2;
6524 	register int masklen;
6525 	struct qual q;
6526 {
6527 	struct addrinfo *res;
6528 	struct in6_addr *addr;
6529 	struct in6_addr mask;
6530 	struct block *b;
6531 	u_int32_t *a, *m;
6532 
6533 	if (s2)
6534 		bpf_error("no mask %s supported", s2);
6535 
6536 	res = pcap_nametoaddrinfo(s1);
6537 	if (!res)
6538 		bpf_error("invalid ip6 address %s", s1);
6539 	ai = res;
6540 	if (res->ai_next)
6541 		bpf_error("%s resolved to multiple address", s1);
6542 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6543 
6544 	if (sizeof(mask) * 8 < masklen)
6545 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6546 	memset(&mask, 0, sizeof(mask));
6547 	memset(&mask, 0xff, masklen / 8);
6548 	if (masklen % 8) {
6549 		mask.s6_addr[masklen / 8] =
6550 			(0xff << (8 - masklen % 8)) & 0xff;
6551 	}
6552 
6553 	a = (u_int32_t *)addr;
6554 	m = (u_int32_t *)&mask;
6555 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6556 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6557 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6558 	}
6559 
6560 	switch (q.addr) {
6561 
6562 	case Q_DEFAULT:
6563 	case Q_HOST:
6564 		if (masklen != 128)
6565 			bpf_error("Mask syntax for networks only");
6566 		/* FALLTHROUGH */
6567 
6568 	case Q_NET:
6569 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6570 		ai = NULL;
6571 		freeaddrinfo(res);
6572 		return b;
6573 
6574 	default:
6575 		bpf_error("invalid qualifier against IPv6 address");
6576 		/* NOTREACHED */
6577 	}
6578 	return NULL;
6579 }
6580 #endif /*INET6*/
6581 
6582 struct block *
6583 gen_ecode(eaddr, q)
6584 	register const u_char *eaddr;
6585 	struct qual q;
6586 {
6587 	struct block *b, *tmp;
6588 
6589 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6590 		switch (linktype) {
6591 		case DLT_EN10MB:
6592 		case DLT_NETANALYZER:
6593 		case DLT_NETANALYZER_TRANSPARENT:
6594 			return gen_ehostop(eaddr, (int)q.dir);
6595 		case DLT_FDDI:
6596 			return gen_fhostop(eaddr, (int)q.dir);
6597 		case DLT_IEEE802:
6598 			return gen_thostop(eaddr, (int)q.dir);
6599 		case DLT_IEEE802_11:
6600 		case DLT_PRISM_HEADER:
6601 		case DLT_IEEE802_11_RADIO_AVS:
6602 		case DLT_IEEE802_11_RADIO:
6603 		case DLT_PPI:
6604 			return gen_wlanhostop(eaddr, (int)q.dir);
6605 		case DLT_SUNATM:
6606 			if (is_lane) {
6607 				/*
6608 				 * Check that the packet doesn't begin with an
6609 				 * LE Control marker.  (We've already generated
6610 				 * a test for LANE.)
6611 				 */
6612 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6613 					0xFF00);
6614 				gen_not(tmp);
6615 
6616 				/*
6617 				 * Now check the MAC address.
6618 				 */
6619 				b = gen_ehostop(eaddr, (int)q.dir);
6620 				gen_and(tmp, b);
6621 				return b;
6622 			}
6623 			break;
6624 		case DLT_IP_OVER_FC:
6625 			return gen_ipfchostop(eaddr, (int)q.dir);
6626 		default:
6627 			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6628 			break;
6629 		}
6630 	}
6631 	bpf_error("ethernet address used in non-ether expression");
6632 	/* NOTREACHED */
6633 	return NULL;
6634 }
6635 
6636 void
6637 sappend(s0, s1)
6638 	struct slist *s0, *s1;
6639 {
6640 	/*
6641 	 * This is definitely not the best way to do this, but the
6642 	 * lists will rarely get long.
6643 	 */
6644 	while (s0->next)
6645 		s0 = s0->next;
6646 	s0->next = s1;
6647 }
6648 
6649 static struct slist *
6650 xfer_to_x(a)
6651 	struct arth *a;
6652 {
6653 	struct slist *s;
6654 
6655 	s = new_stmt(BPF_LDX|BPF_MEM);
6656 	s->s.k = a->regno;
6657 	return s;
6658 }
6659 
6660 static struct slist *
6661 xfer_to_a(a)
6662 	struct arth *a;
6663 {
6664 	struct slist *s;
6665 
6666 	s = new_stmt(BPF_LD|BPF_MEM);
6667 	s->s.k = a->regno;
6668 	return s;
6669 }
6670 
6671 /*
6672  * Modify "index" to use the value stored into its register as an
6673  * offset relative to the beginning of the header for the protocol
6674  * "proto", and allocate a register and put an item "size" bytes long
6675  * (1, 2, or 4) at that offset into that register, making it the register
6676  * for "index".
6677  */
6678 struct arth *
6679 gen_load(proto, inst, size)
6680 	int proto;
6681 	struct arth *inst;
6682 	int size;
6683 {
6684 	struct slist *s, *tmp;
6685 	struct block *b;
6686 	int regno = alloc_reg();
6687 
6688 	free_reg(inst->regno);
6689 	switch (size) {
6690 
6691 	default:
6692 		bpf_error("data size must be 1, 2, or 4");
6693 
6694 	case 1:
6695 		size = BPF_B;
6696 		break;
6697 
6698 	case 2:
6699 		size = BPF_H;
6700 		break;
6701 
6702 	case 4:
6703 		size = BPF_W;
6704 		break;
6705 	}
6706 	switch (proto) {
6707 	default:
6708 		bpf_error("unsupported index operation");
6709 
6710 	case Q_RADIO:
6711 		/*
6712 		 * The offset is relative to the beginning of the packet
6713 		 * data, if we have a radio header.  (If we don't, this
6714 		 * is an error.)
6715 		 */
6716 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6717 		    linktype != DLT_IEEE802_11_RADIO &&
6718 		    linktype != DLT_PRISM_HEADER)
6719 			bpf_error("radio information not present in capture");
6720 
6721 		/*
6722 		 * Load into the X register the offset computed into the
6723 		 * register specified by "index".
6724 		 */
6725 		s = xfer_to_x(inst);
6726 
6727 		/*
6728 		 * Load the item at that offset.
6729 		 */
6730 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6731 		sappend(s, tmp);
6732 		sappend(inst->s, s);
6733 		break;
6734 
6735 	case Q_LINK:
6736 		/*
6737 		 * The offset is relative to the beginning of
6738 		 * the link-layer header.
6739 		 *
6740 		 * XXX - what about ATM LANE?  Should the index be
6741 		 * relative to the beginning of the AAL5 frame, so
6742 		 * that 0 refers to the beginning of the LE Control
6743 		 * field, or relative to the beginning of the LAN
6744 		 * frame, so that 0 refers, for Ethernet LANE, to
6745 		 * the beginning of the destination address?
6746 		 */
6747 		s = gen_llprefixlen();
6748 
6749 		/*
6750 		 * If "s" is non-null, it has code to arrange that the
6751 		 * X register contains the length of the prefix preceding
6752 		 * the link-layer header.  Add to it the offset computed
6753 		 * into the register specified by "index", and move that
6754 		 * into the X register.  Otherwise, just load into the X
6755 		 * register the offset computed into the register specified
6756 		 * by "index".
6757 		 */
6758 		if (s != NULL) {
6759 			sappend(s, xfer_to_a(inst));
6760 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6761 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6762 		} else
6763 			s = xfer_to_x(inst);
6764 
6765 		/*
6766 		 * Load the item at the sum of the offset we've put in the
6767 		 * X register and the offset of the start of the link
6768 		 * layer header (which is 0 if the radio header is
6769 		 * variable-length; that header length is what we put
6770 		 * into the X register and then added to the index).
6771 		 */
6772 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6773 		tmp->s.k = off_ll;
6774 		sappend(s, tmp);
6775 		sappend(inst->s, s);
6776 		break;
6777 
6778 	case Q_IP:
6779 	case Q_ARP:
6780 	case Q_RARP:
6781 	case Q_ATALK:
6782 	case Q_DECNET:
6783 	case Q_SCA:
6784 	case Q_LAT:
6785 	case Q_MOPRC:
6786 	case Q_MOPDL:
6787 #ifdef INET6
6788 	case Q_IPV6:
6789 #endif
6790 		/*
6791 		 * The offset is relative to the beginning of
6792 		 * the network-layer header.
6793 		 * XXX - are there any cases where we want
6794 		 * off_nl_nosnap?
6795 		 */
6796 		s = gen_off_macpl();
6797 
6798 		/*
6799 		 * If "s" is non-null, it has code to arrange that the
6800 		 * X register contains the offset of the MAC-layer
6801 		 * payload.  Add to it the offset computed into the
6802 		 * register specified by "index", and move that into
6803 		 * the X register.  Otherwise, just load into the X
6804 		 * register the offset computed into the register specified
6805 		 * by "index".
6806 		 */
6807 		if (s != NULL) {
6808 			sappend(s, xfer_to_a(inst));
6809 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6810 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6811 		} else
6812 			s = xfer_to_x(inst);
6813 
6814 		/*
6815 		 * Load the item at the sum of the offset we've put in the
6816 		 * X register, the offset of the start of the network
6817 		 * layer header from the beginning of the MAC-layer
6818 		 * payload, and the purported offset of the start of the
6819 		 * MAC-layer payload (which might be 0 if there's a
6820 		 * variable-length prefix before the link-layer header
6821 		 * or the link-layer header itself is variable-length;
6822 		 * the variable-length offset of the start of the
6823 		 * MAC-layer payload is what we put into the X register
6824 		 * and then added to the index).
6825 		 */
6826 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6827 		tmp->s.k = off_macpl + off_nl;
6828 		sappend(s, tmp);
6829 		sappend(inst->s, s);
6830 
6831 		/*
6832 		 * Do the computation only if the packet contains
6833 		 * the protocol in question.
6834 		 */
6835 		b = gen_proto_abbrev(proto);
6836 		if (inst->b)
6837 			gen_and(inst->b, b);
6838 		inst->b = b;
6839 		break;
6840 
6841 	case Q_SCTP:
6842 	case Q_TCP:
6843 	case Q_UDP:
6844 	case Q_ICMP:
6845 	case Q_IGMP:
6846 	case Q_IGRP:
6847 	case Q_PIM:
6848 	case Q_VRRP:
6849 	case Q_CARP:
6850 		/*
6851 		 * The offset is relative to the beginning of
6852 		 * the transport-layer header.
6853 		 *
6854 		 * Load the X register with the length of the IPv4 header
6855 		 * (plus the offset of the link-layer header, if it's
6856 		 * a variable-length header), in bytes.
6857 		 *
6858 		 * XXX - are there any cases where we want
6859 		 * off_nl_nosnap?
6860 		 * XXX - we should, if we're built with
6861 		 * IPv6 support, generate code to load either
6862 		 * IPv4, IPv6, or both, as appropriate.
6863 		 */
6864 		s = gen_loadx_iphdrlen();
6865 
6866 		/*
6867 		 * The X register now contains the sum of the length
6868 		 * of any variable-length header preceding the link-layer
6869 		 * header, any variable-length link-layer header, and the
6870 		 * length of the network-layer header.
6871 		 *
6872 		 * Load into the A register the offset relative to
6873 		 * the beginning of the transport layer header,
6874 		 * add the X register to that, move that to the
6875 		 * X register, and load with an offset from the
6876 		 * X register equal to the offset of the network
6877 		 * layer header relative to the beginning of
6878 		 * the MAC-layer payload plus the fixed-length
6879 		 * portion of the offset of the MAC-layer payload
6880 		 * from the beginning of the raw packet data.
6881 		 */
6882 		sappend(s, xfer_to_a(inst));
6883 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6884 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6885 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6886 		tmp->s.k = off_macpl + off_nl;
6887 		sappend(inst->s, s);
6888 
6889 		/*
6890 		 * Do the computation only if the packet contains
6891 		 * the protocol in question - which is true only
6892 		 * if this is an IP datagram and is the first or
6893 		 * only fragment of that datagram.
6894 		 */
6895 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6896 		if (inst->b)
6897 			gen_and(inst->b, b);
6898 #ifdef INET6
6899 		gen_and(gen_proto_abbrev(Q_IP), b);
6900 #endif
6901 		inst->b = b;
6902 		break;
6903 #ifdef INET6
6904 	case Q_ICMPV6:
6905 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6906 		/*NOTREACHED*/
6907 #endif
6908 	}
6909 	inst->regno = regno;
6910 	s = new_stmt(BPF_ST);
6911 	s->s.k = regno;
6912 	sappend(inst->s, s);
6913 
6914 	return inst;
6915 }
6916 
6917 struct block *
6918 gen_relation(code, a0, a1, reversed)
6919 	int code;
6920 	struct arth *a0, *a1;
6921 	int reversed;
6922 {
6923 	struct slist *s0, *s1, *s2;
6924 	struct block *b, *tmp;
6925 
6926 	s0 = xfer_to_x(a1);
6927 	s1 = xfer_to_a(a0);
6928 	if (code == BPF_JEQ) {
6929 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6930 		b = new_block(JMP(code));
6931 		sappend(s1, s2);
6932 	}
6933 	else
6934 		b = new_block(BPF_JMP|code|BPF_X);
6935 	if (reversed)
6936 		gen_not(b);
6937 
6938 	sappend(s0, s1);
6939 	sappend(a1->s, s0);
6940 	sappend(a0->s, a1->s);
6941 
6942 	b->stmts = a0->s;
6943 
6944 	free_reg(a0->regno);
6945 	free_reg(a1->regno);
6946 
6947 	/* 'and' together protocol checks */
6948 	if (a0->b) {
6949 		if (a1->b) {
6950 			gen_and(a0->b, tmp = a1->b);
6951 		}
6952 		else
6953 			tmp = a0->b;
6954 	} else
6955 		tmp = a1->b;
6956 
6957 	if (tmp)
6958 		gen_and(tmp, b);
6959 
6960 	return b;
6961 }
6962 
6963 struct arth *
6964 gen_loadlen()
6965 {
6966 	int regno = alloc_reg();
6967 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6968 	struct slist *s;
6969 
6970 	s = new_stmt(BPF_LD|BPF_LEN);
6971 	s->next = new_stmt(BPF_ST);
6972 	s->next->s.k = regno;
6973 	a->s = s;
6974 	a->regno = regno;
6975 
6976 	return a;
6977 }
6978 
6979 struct arth *
6980 gen_loadi(val)
6981 	int val;
6982 {
6983 	struct arth *a;
6984 	struct slist *s;
6985 	int reg;
6986 
6987 	a = (struct arth *)newchunk(sizeof(*a));
6988 
6989 	reg = alloc_reg();
6990 
6991 	s = new_stmt(BPF_LD|BPF_IMM);
6992 	s->s.k = val;
6993 	s->next = new_stmt(BPF_ST);
6994 	s->next->s.k = reg;
6995 	a->s = s;
6996 	a->regno = reg;
6997 
6998 	return a;
6999 }
7000 
7001 struct arth *
7002 gen_neg(a)
7003 	struct arth *a;
7004 {
7005 	struct slist *s;
7006 
7007 	s = xfer_to_a(a);
7008 	sappend(a->s, s);
7009 	s = new_stmt(BPF_ALU|BPF_NEG);
7010 	s->s.k = 0;
7011 	sappend(a->s, s);
7012 	s = new_stmt(BPF_ST);
7013 	s->s.k = a->regno;
7014 	sappend(a->s, s);
7015 
7016 	return a;
7017 }
7018 
7019 struct arth *
7020 gen_arth(code, a0, a1)
7021 	int code;
7022 	struct arth *a0, *a1;
7023 {
7024 	struct slist *s0, *s1, *s2;
7025 
7026 	s0 = xfer_to_x(a1);
7027 	s1 = xfer_to_a(a0);
7028 	s2 = new_stmt(BPF_ALU|BPF_X|code);
7029 
7030 	sappend(s1, s2);
7031 	sappend(s0, s1);
7032 	sappend(a1->s, s0);
7033 	sappend(a0->s, a1->s);
7034 
7035 	free_reg(a0->regno);
7036 	free_reg(a1->regno);
7037 
7038 	s0 = new_stmt(BPF_ST);
7039 	a0->regno = s0->s.k = alloc_reg();
7040 	sappend(a0->s, s0);
7041 
7042 	return a0;
7043 }
7044 
7045 /*
7046  * Here we handle simple allocation of the scratch registers.
7047  * If too many registers are alloc'd, the allocator punts.
7048  */
7049 static int regused[BPF_MEMWORDS];
7050 static int curreg;
7051 
7052 /*
7053  * Initialize the table of used registers and the current register.
7054  */
7055 static void
7056 init_regs()
7057 {
7058 	curreg = 0;
7059 	memset(regused, 0, sizeof regused);
7060 }
7061 
7062 /*
7063  * Return the next free register.
7064  */
7065 static int
7066 alloc_reg()
7067 {
7068 	int n = BPF_MEMWORDS;
7069 
7070 	while (--n >= 0) {
7071 		if (regused[curreg])
7072 			curreg = (curreg + 1) % BPF_MEMWORDS;
7073 		else {
7074 			regused[curreg] = 1;
7075 			return curreg;
7076 		}
7077 	}
7078 	bpf_error("too many registers needed to evaluate expression");
7079 	/* NOTREACHED */
7080 	return 0;
7081 }
7082 
7083 /*
7084  * Return a register to the table so it can
7085  * be used later.
7086  */
7087 static void
7088 free_reg(n)
7089 	int n;
7090 {
7091 	regused[n] = 0;
7092 }
7093 
7094 static struct block *
7095 gen_len(jmp, n)
7096 	int jmp, n;
7097 {
7098 	struct slist *s;
7099 	struct block *b;
7100 
7101 	s = new_stmt(BPF_LD|BPF_LEN);
7102 	b = new_block(JMP(jmp));
7103 	b->stmts = s;
7104 	b->s.k = n;
7105 
7106 	return b;
7107 }
7108 
7109 struct block *
7110 gen_greater(n)
7111 	int n;
7112 {
7113 	return gen_len(BPF_JGE, n);
7114 }
7115 
7116 /*
7117  * Actually, this is less than or equal.
7118  */
7119 struct block *
7120 gen_less(n)
7121 	int n;
7122 {
7123 	struct block *b;
7124 
7125 	b = gen_len(BPF_JGT, n);
7126 	gen_not(b);
7127 
7128 	return b;
7129 }
7130 
7131 /*
7132  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7133  * the beginning of the link-layer header.
7134  * XXX - that means you can't test values in the radiotap header, but
7135  * as that header is difficult if not impossible to parse generally
7136  * without a loop, that might not be a severe problem.  A new keyword
7137  * "radio" could be added for that, although what you'd really want
7138  * would be a way of testing particular radio header values, which
7139  * would generate code appropriate to the radio header in question.
7140  */
7141 struct block *
7142 gen_byteop(op, idx, val)
7143 	int op, idx, val;
7144 {
7145 	struct block *b;
7146 	struct slist *s;
7147 
7148 	switch (op) {
7149 	default:
7150 		abort();
7151 
7152 	case '=':
7153 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7154 
7155 	case '<':
7156 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7157 		return b;
7158 
7159 	case '>':
7160 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7161 		return b;
7162 
7163 	case '|':
7164 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7165 		break;
7166 
7167 	case '&':
7168 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7169 		break;
7170 	}
7171 	s->s.k = val;
7172 	b = new_block(JMP(BPF_JEQ));
7173 	b->stmts = s;
7174 	gen_not(b);
7175 
7176 	return b;
7177 }
7178 
7179 static u_char abroadcast[] = { 0x0 };
7180 
7181 struct block *
7182 gen_broadcast(proto)
7183 	int proto;
7184 {
7185 	bpf_u_int32 hostmask;
7186 	struct block *b0, *b1, *b2;
7187 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7188 
7189 	switch (proto) {
7190 
7191 	case Q_DEFAULT:
7192 	case Q_LINK:
7193 		switch (linktype) {
7194 		case DLT_ARCNET:
7195 		case DLT_ARCNET_LINUX:
7196 			return gen_ahostop(abroadcast, Q_DST);
7197 		case DLT_EN10MB:
7198 		case DLT_NETANALYZER:
7199 		case DLT_NETANALYZER_TRANSPARENT:
7200 			return gen_ehostop(ebroadcast, Q_DST);
7201 		case DLT_FDDI:
7202 			return gen_fhostop(ebroadcast, Q_DST);
7203 		case DLT_IEEE802:
7204 			return gen_thostop(ebroadcast, Q_DST);
7205 		case DLT_IEEE802_11:
7206 		case DLT_PRISM_HEADER:
7207 		case DLT_IEEE802_11_RADIO_AVS:
7208 		case DLT_IEEE802_11_RADIO:
7209 		case DLT_PPI:
7210 			return gen_wlanhostop(ebroadcast, Q_DST);
7211 		case DLT_IP_OVER_FC:
7212 			return gen_ipfchostop(ebroadcast, Q_DST);
7213 		case DLT_SUNATM:
7214 			if (is_lane) {
7215 				/*
7216 				 * Check that the packet doesn't begin with an
7217 				 * LE Control marker.  (We've already generated
7218 				 * a test for LANE.)
7219 				 */
7220 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7221 				    BPF_H, 0xFF00);
7222 				gen_not(b1);
7223 
7224 				/*
7225 				 * Now check the MAC address.
7226 				 */
7227 				b0 = gen_ehostop(ebroadcast, Q_DST);
7228 				gen_and(b1, b0);
7229 				return b0;
7230 			}
7231 			break;
7232 		default:
7233 			bpf_error("not a broadcast link");
7234 		}
7235 		break;
7236 
7237 	case Q_IP:
7238 		/*
7239 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7240 		 * as an indication that we don't know the netmask, and fail
7241 		 * in that case.
7242 		 */
7243 		if (netmask == PCAP_NETMASK_UNKNOWN)
7244 			bpf_error("netmask not known, so 'ip broadcast' not supported");
7245 		b0 = gen_linktype(ETHERTYPE_IP);
7246 		hostmask = ~netmask;
7247 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7248 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7249 			      (bpf_int32)(~0 & hostmask), hostmask);
7250 		gen_or(b1, b2);
7251 		gen_and(b0, b2);
7252 		return b2;
7253 	}
7254 	bpf_error("only link-layer/IP broadcast filters supported");
7255 	/* NOTREACHED */
7256 	return NULL;
7257 }
7258 
7259 /*
7260  * Generate code to test the low-order bit of a MAC address (that's
7261  * the bottom bit of the *first* byte).
7262  */
7263 static struct block *
7264 gen_mac_multicast(offset)
7265 	int offset;
7266 {
7267 	register struct block *b0;
7268 	register struct slist *s;
7269 
7270 	/* link[offset] & 1 != 0 */
7271 	s = gen_load_a(OR_LINK, offset, BPF_B);
7272 	b0 = new_block(JMP(BPF_JSET));
7273 	b0->s.k = 1;
7274 	b0->stmts = s;
7275 	return b0;
7276 }
7277 
7278 struct block *
7279 gen_multicast(proto)
7280 	int proto;
7281 {
7282 	register struct block *b0, *b1, *b2;
7283 	register struct slist *s;
7284 
7285 	switch (proto) {
7286 
7287 	case Q_DEFAULT:
7288 	case Q_LINK:
7289 		switch (linktype) {
7290 		case DLT_ARCNET:
7291 		case DLT_ARCNET_LINUX:
7292 			/* all ARCnet multicasts use the same address */
7293 			return gen_ahostop(abroadcast, Q_DST);
7294 		case DLT_EN10MB:
7295 		case DLT_NETANALYZER:
7296 		case DLT_NETANALYZER_TRANSPARENT:
7297 			/* ether[0] & 1 != 0 */
7298 			return gen_mac_multicast(0);
7299 		case DLT_FDDI:
7300 			/*
7301 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7302 			 *
7303 			 * XXX - was that referring to bit-order issues?
7304 			 */
7305 			/* fddi[1] & 1 != 0 */
7306 			return gen_mac_multicast(1);
7307 		case DLT_IEEE802:
7308 			/* tr[2] & 1 != 0 */
7309 			return gen_mac_multicast(2);
7310 		case DLT_IEEE802_11:
7311 		case DLT_PRISM_HEADER:
7312 		case DLT_IEEE802_11_RADIO_AVS:
7313 		case DLT_IEEE802_11_RADIO:
7314 		case DLT_PPI:
7315 			/*
7316 			 * Oh, yuk.
7317 			 *
7318 			 *	For control frames, there is no DA.
7319 			 *
7320 			 *	For management frames, DA is at an
7321 			 *	offset of 4 from the beginning of
7322 			 *	the packet.
7323 			 *
7324 			 *	For data frames, DA is at an offset
7325 			 *	of 4 from the beginning of the packet
7326 			 *	if To DS is clear and at an offset of
7327 			 *	16 from the beginning of the packet
7328 			 *	if To DS is set.
7329 			 */
7330 
7331 			/*
7332 			 * Generate the tests to be done for data frames.
7333 			 *
7334 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7335 			 */
7336 			s = gen_load_a(OR_LINK, 1, BPF_B);
7337 			b1 = new_block(JMP(BPF_JSET));
7338 			b1->s.k = 0x01;	/* To DS */
7339 			b1->stmts = s;
7340 
7341 			/*
7342 			 * If To DS is set, the DA is at 16.
7343 			 */
7344 			b0 = gen_mac_multicast(16);
7345 			gen_and(b1, b0);
7346 
7347 			/*
7348 			 * Now, check for To DS not set, i.e. check
7349 			 * "!(link[1] & 0x01)".
7350 			 */
7351 			s = gen_load_a(OR_LINK, 1, BPF_B);
7352 			b2 = new_block(JMP(BPF_JSET));
7353 			b2->s.k = 0x01;	/* To DS */
7354 			b2->stmts = s;
7355 			gen_not(b2);
7356 
7357 			/*
7358 			 * If To DS is not set, the DA is at 4.
7359 			 */
7360 			b1 = gen_mac_multicast(4);
7361 			gen_and(b2, b1);
7362 
7363 			/*
7364 			 * Now OR together the last two checks.  That gives
7365 			 * the complete set of checks for data frames.
7366 			 */
7367 			gen_or(b1, b0);
7368 
7369 			/*
7370 			 * Now check for a data frame.
7371 			 * I.e, check "link[0] & 0x08".
7372 			 */
7373 			s = gen_load_a(OR_LINK, 0, BPF_B);
7374 			b1 = new_block(JMP(BPF_JSET));
7375 			b1->s.k = 0x08;
7376 			b1->stmts = s;
7377 
7378 			/*
7379 			 * AND that with the checks done for data frames.
7380 			 */
7381 			gen_and(b1, b0);
7382 
7383 			/*
7384 			 * If the high-order bit of the type value is 0, this
7385 			 * is a management frame.
7386 			 * I.e, check "!(link[0] & 0x08)".
7387 			 */
7388 			s = gen_load_a(OR_LINK, 0, BPF_B);
7389 			b2 = new_block(JMP(BPF_JSET));
7390 			b2->s.k = 0x08;
7391 			b2->stmts = s;
7392 			gen_not(b2);
7393 
7394 			/*
7395 			 * For management frames, the DA is at 4.
7396 			 */
7397 			b1 = gen_mac_multicast(4);
7398 			gen_and(b2, b1);
7399 
7400 			/*
7401 			 * OR that with the checks done for data frames.
7402 			 * That gives the checks done for management and
7403 			 * data frames.
7404 			 */
7405 			gen_or(b1, b0);
7406 
7407 			/*
7408 			 * If the low-order bit of the type value is 1,
7409 			 * this is either a control frame or a frame
7410 			 * with a reserved type, and thus not a
7411 			 * frame with an SA.
7412 			 *
7413 			 * I.e., check "!(link[0] & 0x04)".
7414 			 */
7415 			s = gen_load_a(OR_LINK, 0, BPF_B);
7416 			b1 = new_block(JMP(BPF_JSET));
7417 			b1->s.k = 0x04;
7418 			b1->stmts = s;
7419 			gen_not(b1);
7420 
7421 			/*
7422 			 * AND that with the checks for data and management
7423 			 * frames.
7424 			 */
7425 			gen_and(b1, b0);
7426 			return b0;
7427 		case DLT_IP_OVER_FC:
7428 			b0 = gen_mac_multicast(2);
7429 			return b0;
7430 		case DLT_SUNATM:
7431 			if (is_lane) {
7432 				/*
7433 				 * Check that the packet doesn't begin with an
7434 				 * LE Control marker.  (We've already generated
7435 				 * a test for LANE.)
7436 				 */
7437 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7438 				    BPF_H, 0xFF00);
7439 				gen_not(b1);
7440 
7441 				/* ether[off_mac] & 1 != 0 */
7442 				b0 = gen_mac_multicast(off_mac);
7443 				gen_and(b1, b0);
7444 				return b0;
7445 			}
7446 			break;
7447 		default:
7448 			break;
7449 		}
7450 		/* Link not known to support multicasts */
7451 		break;
7452 
7453 	case Q_IP:
7454 		b0 = gen_linktype(ETHERTYPE_IP);
7455 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7456 		gen_and(b0, b1);
7457 		return b1;
7458 
7459 #ifdef INET6
7460 	case Q_IPV6:
7461 		b0 = gen_linktype(ETHERTYPE_IPV6);
7462 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7463 		gen_and(b0, b1);
7464 		return b1;
7465 #endif /* INET6 */
7466 	}
7467 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7468 	/* NOTREACHED */
7469 	return NULL;
7470 }
7471 
7472 /*
7473  * generate command for inbound/outbound.  It's here so we can
7474  * make it link-type specific.  'dir' = 0 implies "inbound",
7475  * = 1 implies "outbound".
7476  */
7477 struct block *
7478 gen_inbound(dir)
7479 	int dir;
7480 {
7481 	register struct block *b0;
7482 
7483 	/*
7484 	 * Only some data link types support inbound/outbound qualifiers.
7485 	 */
7486 	switch (linktype) {
7487 	case DLT_SLIP:
7488 		b0 = gen_relation(BPF_JEQ,
7489 			  gen_load(Q_LINK, gen_loadi(0), 1),
7490 			  gen_loadi(0),
7491 			  dir);
7492 		break;
7493 
7494 	case DLT_IPNET:
7495 		if (dir) {
7496 			/* match outgoing packets */
7497 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7498 		} else {
7499 			/* match incoming packets */
7500 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7501 		}
7502 		break;
7503 
7504 	case DLT_LINUX_SLL:
7505 		if (dir) {
7506 			/*
7507 			 * Match packets sent by this machine.
7508 			 */
7509 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7510 		} else {
7511 			/*
7512 			 * Match packets sent to this machine.
7513 			 * (No broadcast or multicast packets, or
7514 			 * packets sent to some other machine and
7515 			 * received promiscuously.)
7516 			 *
7517 			 * XXX - packets sent to other machines probably
7518 			 * shouldn't be matched, but what about broadcast
7519 			 * or multicast packets we received?
7520 			 */
7521 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
7522 		}
7523 		break;
7524 
7525 #ifdef HAVE_NET_PFVAR_H
7526 	case DLT_PFLOG:
7527 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7528 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7529 		break;
7530 #endif
7531 
7532 	case DLT_PPP_PPPD:
7533 		if (dir) {
7534 			/* match outgoing packets */
7535 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7536 		} else {
7537 			/* match incoming packets */
7538 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7539 		}
7540 		break;
7541 
7542         case DLT_JUNIPER_MFR:
7543         case DLT_JUNIPER_MLFR:
7544         case DLT_JUNIPER_MLPPP:
7545 	case DLT_JUNIPER_ATM1:
7546 	case DLT_JUNIPER_ATM2:
7547 	case DLT_JUNIPER_PPPOE:
7548 	case DLT_JUNIPER_PPPOE_ATM:
7549         case DLT_JUNIPER_GGSN:
7550         case DLT_JUNIPER_ES:
7551         case DLT_JUNIPER_MONITOR:
7552         case DLT_JUNIPER_SERVICES:
7553         case DLT_JUNIPER_ETHER:
7554         case DLT_JUNIPER_PPP:
7555         case DLT_JUNIPER_FRELAY:
7556         case DLT_JUNIPER_CHDLC:
7557         case DLT_JUNIPER_VP:
7558         case DLT_JUNIPER_ST:
7559         case DLT_JUNIPER_ISM:
7560         case DLT_JUNIPER_VS:
7561         case DLT_JUNIPER_SRX_E2E:
7562         case DLT_JUNIPER_FIBRECHANNEL:
7563 	case DLT_JUNIPER_ATM_CEMIC:
7564 
7565 		/* juniper flags (including direction) are stored
7566 		 * the byte after the 3-byte magic number */
7567 		if (dir) {
7568 			/* match outgoing packets */
7569 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7570 		} else {
7571 			/* match incoming packets */
7572 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7573 		}
7574 		break;
7575 
7576 	default:
7577 		bpf_error("inbound/outbound not supported on linktype %d",
7578 		    linktype);
7579 		b0 = NULL;
7580 		/* NOTREACHED */
7581 	}
7582 	return (b0);
7583 }
7584 
7585 #ifdef HAVE_NET_PFVAR_H
7586 /* PF firewall log matched interface */
7587 struct block *
7588 gen_pf_ifname(const char *ifname)
7589 {
7590 	struct block *b0;
7591 	u_int len, off;
7592 
7593 	if (linktype != DLT_PFLOG) {
7594 		bpf_error("ifname supported only on PF linktype");
7595 		/* NOTREACHED */
7596 	}
7597 	len = sizeof(((struct pfloghdr *)0)->ifname);
7598 	off = offsetof(struct pfloghdr, ifname);
7599 	if (strlen(ifname) >= len) {
7600 		bpf_error("ifname interface names can only be %d characters",
7601 		    len-1);
7602 		/* NOTREACHED */
7603 	}
7604 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7605 	return (b0);
7606 }
7607 
7608 /* PF firewall log ruleset name */
7609 struct block *
7610 gen_pf_ruleset(char *ruleset)
7611 {
7612 	struct block *b0;
7613 
7614 	if (linktype != DLT_PFLOG) {
7615 		bpf_error("ruleset supported only on PF linktype");
7616 		/* NOTREACHED */
7617 	}
7618 
7619 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7620 		bpf_error("ruleset names can only be %ld characters",
7621 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7622 		/* NOTREACHED */
7623 	}
7624 
7625 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7626 	    strlen(ruleset), (const u_char *)ruleset);
7627 	return (b0);
7628 }
7629 
7630 /* PF firewall log rule number */
7631 struct block *
7632 gen_pf_rnr(int rnr)
7633 {
7634 	struct block *b0;
7635 
7636 	if (linktype != DLT_PFLOG) {
7637 		bpf_error("rnr supported only on PF linktype");
7638 		/* NOTREACHED */
7639 	}
7640 
7641 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7642 		 (bpf_int32)rnr);
7643 	return (b0);
7644 }
7645 
7646 /* PF firewall log sub-rule number */
7647 struct block *
7648 gen_pf_srnr(int srnr)
7649 {
7650 	struct block *b0;
7651 
7652 	if (linktype != DLT_PFLOG) {
7653 		bpf_error("srnr supported only on PF linktype");
7654 		/* NOTREACHED */
7655 	}
7656 
7657 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7658 	    (bpf_int32)srnr);
7659 	return (b0);
7660 }
7661 
7662 /* PF firewall log reason code */
7663 struct block *
7664 gen_pf_reason(int reason)
7665 {
7666 	struct block *b0;
7667 
7668 	if (linktype != DLT_PFLOG) {
7669 		bpf_error("reason supported only on PF linktype");
7670 		/* NOTREACHED */
7671 	}
7672 
7673 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7674 	    (bpf_int32)reason);
7675 	return (b0);
7676 }
7677 
7678 /* PF firewall log action */
7679 struct block *
7680 gen_pf_action(int action)
7681 {
7682 	struct block *b0;
7683 
7684 	if (linktype != DLT_PFLOG) {
7685 		bpf_error("action supported only on PF linktype");
7686 		/* NOTREACHED */
7687 	}
7688 
7689 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7690 	    (bpf_int32)action);
7691 	return (b0);
7692 }
7693 #else /* !HAVE_NET_PFVAR_H */
7694 struct block *
7695 gen_pf_ifname(const char *ifname)
7696 {
7697 	bpf_error("libpcap was compiled without pf support");
7698 	/* NOTREACHED */
7699 	return (NULL);
7700 }
7701 
7702 struct block *
7703 gen_pf_ruleset(char *ruleset)
7704 {
7705 	bpf_error("libpcap was compiled on a machine without pf support");
7706 	/* NOTREACHED */
7707 	return (NULL);
7708 }
7709 
7710 struct block *
7711 gen_pf_rnr(int rnr)
7712 {
7713 	bpf_error("libpcap was compiled on a machine without pf support");
7714 	/* NOTREACHED */
7715 	return (NULL);
7716 }
7717 
7718 struct block *
7719 gen_pf_srnr(int srnr)
7720 {
7721 	bpf_error("libpcap was compiled on a machine without pf support");
7722 	/* NOTREACHED */
7723 	return (NULL);
7724 }
7725 
7726 struct block *
7727 gen_pf_reason(int reason)
7728 {
7729 	bpf_error("libpcap was compiled on a machine without pf support");
7730 	/* NOTREACHED */
7731 	return (NULL);
7732 }
7733 
7734 struct block *
7735 gen_pf_action(int action)
7736 {
7737 	bpf_error("libpcap was compiled on a machine without pf support");
7738 	/* NOTREACHED */
7739 	return (NULL);
7740 }
7741 #endif /* HAVE_NET_PFVAR_H */
7742 
7743 /* IEEE 802.11 wireless header */
7744 struct block *
7745 gen_p80211_type(int type, int mask)
7746 {
7747 	struct block *b0;
7748 
7749 	switch (linktype) {
7750 
7751 	case DLT_IEEE802_11:
7752 	case DLT_PRISM_HEADER:
7753 	case DLT_IEEE802_11_RADIO_AVS:
7754 	case DLT_IEEE802_11_RADIO:
7755 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7756 		    (bpf_int32)mask);
7757 		break;
7758 
7759 	default:
7760 		bpf_error("802.11 link-layer types supported only on 802.11");
7761 		/* NOTREACHED */
7762 	}
7763 
7764 	return (b0);
7765 }
7766 
7767 struct block *
7768 gen_p80211_fcdir(int fcdir)
7769 {
7770 	struct block *b0;
7771 
7772 	switch (linktype) {
7773 
7774 	case DLT_IEEE802_11:
7775 	case DLT_PRISM_HEADER:
7776 	case DLT_IEEE802_11_RADIO_AVS:
7777 	case DLT_IEEE802_11_RADIO:
7778 		break;
7779 
7780 	default:
7781 		bpf_error("frame direction supported only with 802.11 headers");
7782 		/* NOTREACHED */
7783 	}
7784 
7785 	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7786 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7787 
7788 	return (b0);
7789 }
7790 
7791 struct block *
7792 gen_acode(eaddr, q)
7793 	register const u_char *eaddr;
7794 	struct qual q;
7795 {
7796 	switch (linktype) {
7797 
7798 	case DLT_ARCNET:
7799 	case DLT_ARCNET_LINUX:
7800 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7801 		    q.proto == Q_LINK)
7802 			return (gen_ahostop(eaddr, (int)q.dir));
7803 		else {
7804 			bpf_error("ARCnet address used in non-arc expression");
7805 			/* NOTREACHED */
7806 		}
7807 		break;
7808 
7809 	default:
7810 		bpf_error("aid supported only on ARCnet");
7811 		/* NOTREACHED */
7812 	}
7813 	bpf_error("ARCnet address used in non-arc expression");
7814 	/* NOTREACHED */
7815 	return NULL;
7816 }
7817 
7818 static struct block *
7819 gen_ahostop(eaddr, dir)
7820 	register const u_char *eaddr;
7821 	register int dir;
7822 {
7823 	register struct block *b0, *b1;
7824 
7825 	switch (dir) {
7826 	/* src comes first, different from Ethernet */
7827 	case Q_SRC:
7828 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7829 
7830 	case Q_DST:
7831 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7832 
7833 	case Q_AND:
7834 		b0 = gen_ahostop(eaddr, Q_SRC);
7835 		b1 = gen_ahostop(eaddr, Q_DST);
7836 		gen_and(b0, b1);
7837 		return b1;
7838 
7839 	case Q_DEFAULT:
7840 	case Q_OR:
7841 		b0 = gen_ahostop(eaddr, Q_SRC);
7842 		b1 = gen_ahostop(eaddr, Q_DST);
7843 		gen_or(b0, b1);
7844 		return b1;
7845 
7846 	case Q_ADDR1:
7847 		bpf_error("'addr1' is only supported on 802.11");
7848 		break;
7849 
7850 	case Q_ADDR2:
7851 		bpf_error("'addr2' is only supported on 802.11");
7852 		break;
7853 
7854 	case Q_ADDR3:
7855 		bpf_error("'addr3' is only supported on 802.11");
7856 		break;
7857 
7858 	case Q_ADDR4:
7859 		bpf_error("'addr4' is only supported on 802.11");
7860 		break;
7861 
7862 	case Q_RA:
7863 		bpf_error("'ra' is only supported on 802.11");
7864 		break;
7865 
7866 	case Q_TA:
7867 		bpf_error("'ta' is only supported on 802.11");
7868 		break;
7869 	}
7870 	abort();
7871 	/* NOTREACHED */
7872 }
7873 
7874 /*
7875  * support IEEE 802.1Q VLAN trunk over ethernet
7876  */
7877 struct block *
7878 gen_vlan(vlan_num)
7879 	int vlan_num;
7880 {
7881 	struct	block	*b0, *b1;
7882 
7883 	/* can't check for VLAN-encapsulated packets inside MPLS */
7884 	if (label_stack_depth > 0)
7885 		bpf_error("no VLAN match after MPLS");
7886 
7887 	/*
7888 	 * Check for a VLAN packet, and then change the offsets to point
7889 	 * to the type and data fields within the VLAN packet.  Just
7890 	 * increment the offsets, so that we can support a hierarchy, e.g.
7891 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7892 	 * VLAN 100.
7893 	 *
7894 	 * XXX - this is a bit of a kludge.  If we were to split the
7895 	 * compiler into a parser that parses an expression and
7896 	 * generates an expression tree, and a code generator that
7897 	 * takes an expression tree (which could come from our
7898 	 * parser or from some other parser) and generates BPF code,
7899 	 * we could perhaps make the offsets parameters of routines
7900 	 * and, in the handler for an "AND" node, pass to subnodes
7901 	 * other than the VLAN node the adjusted offsets.
7902 	 *
7903 	 * This would mean that "vlan" would, instead of changing the
7904 	 * behavior of *all* tests after it, change only the behavior
7905 	 * of tests ANDed with it.  That would change the documented
7906 	 * semantics of "vlan", which might break some expressions.
7907 	 * However, it would mean that "(vlan and ip) or ip" would check
7908 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7909 	 * checking only for VLAN-encapsulated IP, so that could still
7910 	 * be considered worth doing; it wouldn't break expressions
7911 	 * that are of the form "vlan and ..." or "vlan N and ...",
7912 	 * which I suspect are the most common expressions involving
7913 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7914 	 * would really want, now, as all the "or ..." tests would
7915 	 * be done assuming a VLAN, even though the "or" could be viewed
7916 	 * as meaning "or, if this isn't a VLAN packet...".
7917 	 */
7918 	orig_nl = off_nl;
7919 
7920 	switch (linktype) {
7921 
7922 	case DLT_EN10MB:
7923 	case DLT_NETANALYZER:
7924 	case DLT_NETANALYZER_TRANSPARENT:
7925 		/* check for VLAN, including QinQ */
7926 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7927 		    (bpf_int32)ETHERTYPE_8021Q);
7928 		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7929 		    (bpf_int32)ETHERTYPE_8021QINQ);
7930 		gen_or(b0,b1);
7931 		b0 = b1;
7932 
7933 		/* If a specific VLAN is requested, check VLAN id */
7934 		if (vlan_num >= 0) {
7935 			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7936 			    (bpf_int32)vlan_num, 0x0fff);
7937 			gen_and(b0, b1);
7938 			b0 = b1;
7939 		}
7940 
7941 		off_macpl += 4;
7942 		off_linktype += 4;
7943 #if 0
7944 		off_nl_nosnap += 4;
7945 		off_nl += 4;
7946 #endif
7947 		break;
7948 
7949 	default:
7950 		bpf_error("no VLAN support for data link type %d",
7951 		      linktype);
7952 		/*NOTREACHED*/
7953 	}
7954 
7955 	return (b0);
7956 }
7957 
7958 /*
7959  * support for MPLS
7960  */
7961 struct block *
7962 gen_mpls(label_num)
7963 	int label_num;
7964 {
7965 	struct	block	*b0,*b1;
7966 
7967 	/*
7968 	 * Change the offsets to point to the type and data fields within
7969 	 * the MPLS packet.  Just increment the offsets, so that we
7970 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7971 	 * capture packets with an outer label of 100000 and an inner
7972 	 * label of 1024.
7973 	 *
7974 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7975 	 */
7976         orig_nl = off_nl;
7977 
7978         if (label_stack_depth > 0) {
7979             /* just match the bottom-of-stack bit clear */
7980             b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7981         } else {
7982             /*
7983              * Indicate that we're checking MPLS-encapsulated headers,
7984              * to make sure higher level code generators don't try to
7985              * match against IP-related protocols such as Q_ARP, Q_RARP
7986              * etc.
7987              */
7988             switch (linktype) {
7989 
7990             case DLT_C_HDLC: /* fall through */
7991             case DLT_EN10MB:
7992             case DLT_NETANALYZER:
7993             case DLT_NETANALYZER_TRANSPARENT:
7994                     b0 = gen_linktype(ETHERTYPE_MPLS);
7995                     break;
7996 
7997             case DLT_PPP:
7998                     b0 = gen_linktype(PPP_MPLS_UCAST);
7999                     break;
8000 
8001                     /* FIXME add other DLT_s ...
8002                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
8003                      * leave it for now */
8004 
8005             default:
8006                     bpf_error("no MPLS support for data link type %d",
8007                           linktype);
8008                     b0 = NULL;
8009                     /*NOTREACHED*/
8010                     break;
8011             }
8012         }
8013 
8014 	/* If a specific MPLS label is requested, check it */
8015 	if (label_num >= 0) {
8016 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8017 		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8018 		    0xfffff000); /* only compare the first 20 bits */
8019 		gen_and(b0, b1);
8020 		b0 = b1;
8021 	}
8022 
8023         off_nl_nosnap += 4;
8024         off_nl += 4;
8025         label_stack_depth++;
8026 	return (b0);
8027 }
8028 
8029 /*
8030  * Support PPPOE discovery and session.
8031  */
8032 struct block *
8033 gen_pppoed()
8034 {
8035 	/* check for PPPoE discovery */
8036 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8037 }
8038 
8039 struct block *
8040 gen_pppoes()
8041 {
8042 	struct block *b0;
8043 
8044 	/*
8045 	 * Test against the PPPoE session link-layer type.
8046 	 */
8047 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8048 
8049 	/*
8050 	 * Change the offsets to point to the type and data fields within
8051 	 * the PPP packet, and note that this is PPPoE rather than
8052 	 * raw PPP.
8053 	 *
8054 	 * XXX - this is a bit of a kludge.  If we were to split the
8055 	 * compiler into a parser that parses an expression and
8056 	 * generates an expression tree, and a code generator that
8057 	 * takes an expression tree (which could come from our
8058 	 * parser or from some other parser) and generates BPF code,
8059 	 * we could perhaps make the offsets parameters of routines
8060 	 * and, in the handler for an "AND" node, pass to subnodes
8061 	 * other than the PPPoE node the adjusted offsets.
8062 	 *
8063 	 * This would mean that "pppoes" would, instead of changing the
8064 	 * behavior of *all* tests after it, change only the behavior
8065 	 * of tests ANDed with it.  That would change the documented
8066 	 * semantics of "pppoes", which might break some expressions.
8067 	 * However, it would mean that "(pppoes and ip) or ip" would check
8068 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8069 	 * checking only for VLAN-encapsulated IP, so that could still
8070 	 * be considered worth doing; it wouldn't break expressions
8071 	 * that are of the form "pppoes and ..." which I suspect are the
8072 	 * most common expressions involving "pppoes".  "pppoes or ..."
8073 	 * doesn't necessarily do what the user would really want, now,
8074 	 * as all the "or ..." tests would be done assuming PPPoE, even
8075 	 * though the "or" could be viewed as meaning "or, if this isn't
8076 	 * a PPPoE packet...".
8077 	 */
8078 	orig_linktype = off_linktype;	/* save original values */
8079 	orig_nl = off_nl;
8080 	is_pppoes = 1;
8081 
8082 	/*
8083 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8084 	 * PPPoE header, followed by a PPP packet.
8085 	 *
8086 	 * There is no HDLC encapsulation for the PPP packet (it's
8087 	 * encapsulated in PPPoES instead), so the link-layer type
8088 	 * starts at the first byte of the PPP packet.  For PPPoE,
8089 	 * that offset is relative to the beginning of the total
8090 	 * link-layer payload, including any 802.2 LLC header, so
8091 	 * it's 6 bytes past off_nl.
8092 	 */
8093 	off_linktype = off_nl + 6;
8094 
8095 	/*
8096 	 * The network-layer offsets are relative to the beginning
8097 	 * of the MAC-layer payload; that's past the 6-byte
8098 	 * PPPoE header and the 2-byte PPP header.
8099 	 */
8100 	off_nl = 6+2;
8101 	off_nl_nosnap = 6+2;
8102 
8103 	return b0;
8104 }
8105 
8106 struct block *
8107 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8108 	int atmfield;
8109 	bpf_int32 jvalue;
8110 	bpf_u_int32 jtype;
8111 	int reverse;
8112 {
8113 	struct block *b0;
8114 
8115 	switch (atmfield) {
8116 
8117 	case A_VPI:
8118 		if (!is_atm)
8119 			bpf_error("'vpi' supported only on raw ATM");
8120 		if (off_vpi == (u_int)-1)
8121 			abort();
8122 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8123 		    reverse, jvalue);
8124 		break;
8125 
8126 	case A_VCI:
8127 		if (!is_atm)
8128 			bpf_error("'vci' supported only on raw ATM");
8129 		if (off_vci == (u_int)-1)
8130 			abort();
8131 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8132 		    reverse, jvalue);
8133 		break;
8134 
8135 	case A_PROTOTYPE:
8136 		if (off_proto == (u_int)-1)
8137 			abort();	/* XXX - this isn't on FreeBSD */
8138 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8139 		    reverse, jvalue);
8140 		break;
8141 
8142 	case A_MSGTYPE:
8143 		if (off_payload == (u_int)-1)
8144 			abort();
8145 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8146 		    0xffffffff, jtype, reverse, jvalue);
8147 		break;
8148 
8149 	case A_CALLREFTYPE:
8150 		if (!is_atm)
8151 			bpf_error("'callref' supported only on raw ATM");
8152 		if (off_proto == (u_int)-1)
8153 			abort();
8154 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8155 		    jtype, reverse, jvalue);
8156 		break;
8157 
8158 	default:
8159 		abort();
8160 	}
8161 	return b0;
8162 }
8163 
8164 struct block *
8165 gen_atmtype_abbrev(type)
8166 	int type;
8167 {
8168 	struct block *b0, *b1;
8169 
8170 	switch (type) {
8171 
8172 	case A_METAC:
8173 		/* Get all packets in Meta signalling Circuit */
8174 		if (!is_atm)
8175 			bpf_error("'metac' supported only on raw ATM");
8176 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8177 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8178 		gen_and(b0, b1);
8179 		break;
8180 
8181 	case A_BCC:
8182 		/* Get all packets in Broadcast Circuit*/
8183 		if (!is_atm)
8184 			bpf_error("'bcc' supported only on raw ATM");
8185 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8186 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8187 		gen_and(b0, b1);
8188 		break;
8189 
8190 	case A_OAMF4SC:
8191 		/* Get all cells in Segment OAM F4 circuit*/
8192 		if (!is_atm)
8193 			bpf_error("'oam4sc' supported only on raw ATM");
8194 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8195 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8196 		gen_and(b0, b1);
8197 		break;
8198 
8199 	case A_OAMF4EC:
8200 		/* Get all cells in End-to-End OAM F4 Circuit*/
8201 		if (!is_atm)
8202 			bpf_error("'oam4ec' supported only on raw ATM");
8203 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8204 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8205 		gen_and(b0, b1);
8206 		break;
8207 
8208 	case A_SC:
8209 		/*  Get all packets in connection Signalling Circuit */
8210 		if (!is_atm)
8211 			bpf_error("'sc' supported only on raw ATM");
8212 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8213 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8214 		gen_and(b0, b1);
8215 		break;
8216 
8217 	case A_ILMIC:
8218 		/* Get all packets in ILMI Circuit */
8219 		if (!is_atm)
8220 			bpf_error("'ilmic' supported only on raw ATM");
8221 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8222 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8223 		gen_and(b0, b1);
8224 		break;
8225 
8226 	case A_LANE:
8227 		/* Get all LANE packets */
8228 		if (!is_atm)
8229 			bpf_error("'lane' supported only on raw ATM");
8230 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8231 
8232 		/*
8233 		 * Arrange that all subsequent tests assume LANE
8234 		 * rather than LLC-encapsulated packets, and set
8235 		 * the offsets appropriately for LANE-encapsulated
8236 		 * Ethernet.
8237 		 *
8238 		 * "off_mac" is the offset of the Ethernet header,
8239 		 * which is 2 bytes past the ATM pseudo-header
8240 		 * (skipping the pseudo-header and 2-byte LE Client
8241 		 * field).  The other offsets are Ethernet offsets
8242 		 * relative to "off_mac".
8243 		 */
8244 		is_lane = 1;
8245 		off_mac = off_payload + 2;	/* MAC header */
8246 		off_linktype = off_mac + 12;
8247 		off_macpl = off_mac + 14;	/* Ethernet */
8248 		off_nl = 0;			/* Ethernet II */
8249 		off_nl_nosnap = 3;		/* 802.3+802.2 */
8250 		break;
8251 
8252 	case A_LLC:
8253 		/* Get all LLC-encapsulated packets */
8254 		if (!is_atm)
8255 			bpf_error("'llc' supported only on raw ATM");
8256 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8257 		is_lane = 0;
8258 		break;
8259 
8260 	default:
8261 		abort();
8262 	}
8263 	return b1;
8264 }
8265 
8266 /*
8267  * Filtering for MTP2 messages based on li value
8268  * FISU, length is null
8269  * LSSU, length is 1 or 2
8270  * MSU, length is 3 or more
8271  */
8272 struct block *
8273 gen_mtp2type_abbrev(type)
8274 	int type;
8275 {
8276 	struct block *b0, *b1;
8277 
8278 	switch (type) {
8279 
8280 	case M_FISU:
8281 		if ( (linktype != DLT_MTP2) &&
8282 		     (linktype != DLT_ERF) &&
8283 		     (linktype != DLT_MTP2_WITH_PHDR) )
8284 			bpf_error("'fisu' supported only on MTP2");
8285 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8286 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8287 		break;
8288 
8289 	case M_LSSU:
8290 		if ( (linktype != DLT_MTP2) &&
8291 		     (linktype != DLT_ERF) &&
8292 		     (linktype != DLT_MTP2_WITH_PHDR) )
8293 			bpf_error("'lssu' supported only on MTP2");
8294 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8295 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8296 		gen_and(b1, b0);
8297 		break;
8298 
8299 	case M_MSU:
8300 		if ( (linktype != DLT_MTP2) &&
8301 		     (linktype != DLT_ERF) &&
8302 		     (linktype != DLT_MTP2_WITH_PHDR) )
8303 			bpf_error("'msu' supported only on MTP2");
8304 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8305 		break;
8306 
8307 	default:
8308 		abort();
8309 	}
8310 	return b0;
8311 }
8312 
8313 struct block *
8314 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8315 	int mtp3field;
8316 	bpf_u_int32 jvalue;
8317 	bpf_u_int32 jtype;
8318 	int reverse;
8319 {
8320 	struct block *b0;
8321 	bpf_u_int32 val1 , val2 , val3;
8322 
8323 	switch (mtp3field) {
8324 
8325 	case M_SIO:
8326 		if (off_sio == (u_int)-1)
8327 			bpf_error("'sio' supported only on SS7");
8328 		/* sio coded on 1 byte so max value 255 */
8329 		if(jvalue > 255)
8330 		        bpf_error("sio value %u too big; max value = 255",
8331 		            jvalue);
8332 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8333 		    (u_int)jtype, reverse, (u_int)jvalue);
8334 		break;
8335 
8336         case M_OPC:
8337 	        if (off_opc == (u_int)-1)
8338 			bpf_error("'opc' supported only on SS7");
8339 		/* opc coded on 14 bits so max value 16383 */
8340 		if (jvalue > 16383)
8341 		        bpf_error("opc value %u too big; max value = 16383",
8342 		            jvalue);
8343 		/* the following instructions are made to convert jvalue
8344 		 * to the form used to write opc in an ss7 message*/
8345 		val1 = jvalue & 0x00003c00;
8346 		val1 = val1 >>10;
8347 		val2 = jvalue & 0x000003fc;
8348 		val2 = val2 <<6;
8349 		val3 = jvalue & 0x00000003;
8350 		val3 = val3 <<22;
8351 		jvalue = val1 + val2 + val3;
8352 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8353 		    (u_int)jtype, reverse, (u_int)jvalue);
8354 		break;
8355 
8356 	case M_DPC:
8357 	        if (off_dpc == (u_int)-1)
8358 			bpf_error("'dpc' supported only on SS7");
8359 		/* dpc coded on 14 bits so max value 16383 */
8360 		if (jvalue > 16383)
8361 		        bpf_error("dpc value %u too big; max value = 16383",
8362 		            jvalue);
8363 		/* the following instructions are made to convert jvalue
8364 		 * to the forme used to write dpc in an ss7 message*/
8365 		val1 = jvalue & 0x000000ff;
8366 		val1 = val1 << 24;
8367 		val2 = jvalue & 0x00003f00;
8368 		val2 = val2 << 8;
8369 		jvalue = val1 + val2;
8370 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8371 		    (u_int)jtype, reverse, (u_int)jvalue);
8372 		break;
8373 
8374 	case M_SLS:
8375 	        if (off_sls == (u_int)-1)
8376 			bpf_error("'sls' supported only on SS7");
8377 		/* sls coded on 4 bits so max value 15 */
8378 		if (jvalue > 15)
8379 		         bpf_error("sls value %u too big; max value = 15",
8380 		             jvalue);
8381 		/* the following instruction is made to convert jvalue
8382 		 * to the forme used to write sls in an ss7 message*/
8383 		jvalue = jvalue << 4;
8384 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8385 		    (u_int)jtype,reverse, (u_int)jvalue);
8386 		break;
8387 
8388 	default:
8389 		abort();
8390 	}
8391 	return b0;
8392 }
8393 
8394 static struct block *
8395 gen_msg_abbrev(type)
8396 	int type;
8397 {
8398 	struct block *b1;
8399 
8400 	/*
8401 	 * Q.2931 signalling protocol messages for handling virtual circuits
8402 	 * establishment and teardown
8403 	 */
8404 	switch (type) {
8405 
8406 	case A_SETUP:
8407 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8408 		break;
8409 
8410 	case A_CALLPROCEED:
8411 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8412 		break;
8413 
8414 	case A_CONNECT:
8415 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8416 		break;
8417 
8418 	case A_CONNECTACK:
8419 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8420 		break;
8421 
8422 	case A_RELEASE:
8423 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8424 		break;
8425 
8426 	case A_RELEASE_DONE:
8427 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8428 		break;
8429 
8430 	default:
8431 		abort();
8432 	}
8433 	return b1;
8434 }
8435 
8436 struct block *
8437 gen_atmmulti_abbrev(type)
8438 	int type;
8439 {
8440 	struct block *b0, *b1;
8441 
8442 	switch (type) {
8443 
8444 	case A_OAM:
8445 		if (!is_atm)
8446 			bpf_error("'oam' supported only on raw ATM");
8447 		b1 = gen_atmmulti_abbrev(A_OAMF4);
8448 		break;
8449 
8450 	case A_OAMF4:
8451 		if (!is_atm)
8452 			bpf_error("'oamf4' supported only on raw ATM");
8453 		/* OAM F4 type */
8454 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8455 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8456 		gen_or(b0, b1);
8457 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8458 		gen_and(b0, b1);
8459 		break;
8460 
8461 	case A_CONNECTMSG:
8462 		/*
8463 		 * Get Q.2931 signalling messages for switched
8464 		 * virtual connection
8465 		 */
8466 		if (!is_atm)
8467 			bpf_error("'connectmsg' supported only on raw ATM");
8468 		b0 = gen_msg_abbrev(A_SETUP);
8469 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8470 		gen_or(b0, b1);
8471 		b0 = gen_msg_abbrev(A_CONNECT);
8472 		gen_or(b0, b1);
8473 		b0 = gen_msg_abbrev(A_CONNECTACK);
8474 		gen_or(b0, b1);
8475 		b0 = gen_msg_abbrev(A_RELEASE);
8476 		gen_or(b0, b1);
8477 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8478 		gen_or(b0, b1);
8479 		b0 = gen_atmtype_abbrev(A_SC);
8480 		gen_and(b0, b1);
8481 		break;
8482 
8483 	case A_METACONNECT:
8484 		if (!is_atm)
8485 			bpf_error("'metaconnect' supported only on raw ATM");
8486 		b0 = gen_msg_abbrev(A_SETUP);
8487 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8488 		gen_or(b0, b1);
8489 		b0 = gen_msg_abbrev(A_CONNECT);
8490 		gen_or(b0, b1);
8491 		b0 = gen_msg_abbrev(A_RELEASE);
8492 		gen_or(b0, b1);
8493 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8494 		gen_or(b0, b1);
8495 		b0 = gen_atmtype_abbrev(A_METAC);
8496 		gen_and(b0, b1);
8497 		break;
8498 
8499 	default:
8500 		abort();
8501 	}
8502 	return b1;
8503 }
8504