xref: /freebsd/contrib/libpcap/gencode.c (revision a2aef24aa3c8458e4036735dd6928b4ef77294e5)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  *
22  * $FreeBSD$
23  */
24 
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28 
29 #ifdef _WIN32
30 #include <pcap-stdinc.h>
31 #else /* _WIN32 */
32 #if HAVE_INTTYPES_H
33 #include <inttypes.h>
34 #elif HAVE_STDINT_H
35 #include <stdint.h>
36 #endif
37 #ifdef HAVE_SYS_BITYPES_H
38 #include <sys/bitypes.h>
39 #endif
40 #include <sys/types.h>
41 #include <sys/socket.h>
42 #endif /* _WIN32 */
43 
44 #ifndef _WIN32
45 
46 #ifdef __NetBSD__
47 #include <sys/param.h>
48 #endif
49 
50 #include <netinet/in.h>
51 #include <arpa/inet.h>
52 
53 #endif /* _WIN32 */
54 
55 #include <stdlib.h>
56 #include <string.h>
57 #include <memory.h>
58 #include <setjmp.h>
59 #include <stdarg.h>
60 
61 #ifdef MSDOS
62 #include "pcap-dos.h"
63 #endif
64 
65 #include "pcap-int.h"
66 
67 #include "ethertype.h"
68 #include "nlpid.h"
69 #include "llc.h"
70 #include "gencode.h"
71 #include "ieee80211.h"
72 #include "atmuni31.h"
73 #include "sunatmpos.h"
74 #include "ppp.h"
75 #include "pcap/sll.h"
76 #include "pcap/ipnet.h"
77 #include "arcnet.h"
78 
79 #include "grammar.h"
80 #include "scanner.h"
81 
82 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
83 #include <linux/types.h>
84 #include <linux/if_packet.h>
85 #include <linux/filter.h>
86 #endif
87 
88 #ifdef HAVE_NET_PFVAR_H
89 #include <sys/socket.h>
90 #include <net/if.h>
91 #include <net/pfvar.h>
92 #include <net/if_pflog.h>
93 #endif
94 
95 #ifndef offsetof
96 #define offsetof(s, e) ((size_t)&((s *)0)->e)
97 #endif
98 
99 #ifdef INET6
100 #ifdef _WIN32
101 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
102 /* IPv6 address */
103 struct in6_addr
104   {
105     union
106       {
107 	u_int8_t		u6_addr8[16];
108 	u_int16_t	u6_addr16[8];
109 	u_int32_t	u6_addr32[4];
110       } in6_u;
111 #define s6_addr			in6_u.u6_addr8
112 #define s6_addr16		in6_u.u6_addr16
113 #define s6_addr32		in6_u.u6_addr32
114 #define s6_addr64		in6_u.u6_addr64
115   };
116 
117 typedef unsigned short	sa_family_t;
118 
119 #define	__SOCKADDR_COMMON(sa_prefix) \
120   sa_family_t sa_prefix##family
121 
122 /* Ditto, for IPv6.  */
123 struct sockaddr_in6
124   {
125     __SOCKADDR_COMMON (sin6_);
126     u_int16_t sin6_port;		/* Transport layer port # */
127     u_int32_t sin6_flowinfo;	/* IPv6 flow information */
128     struct in6_addr sin6_addr;	/* IPv6 address */
129   };
130 
131 #ifndef EAI_ADDRFAMILY
132 struct addrinfo {
133 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */
134 	int	ai_family;	/* PF_xxx */
135 	int	ai_socktype;	/* SOCK_xxx */
136 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */
137 	size_t	ai_addrlen;	/* length of ai_addr */
138 	char	*ai_canonname;	/* canonical name for hostname */
139 	struct sockaddr *ai_addr;	/* binary address */
140 	struct addrinfo *ai_next;	/* next structure in linked list */
141 };
142 #endif /* EAI_ADDRFAMILY */
143 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
144 #else /* _WIN32 */
145 #include <netdb.h>	/* for "struct addrinfo" */
146 #endif /* _WIN32 */
147 #endif /* INET6 */
148 #include <pcap/namedb.h>
149 
150 #include "nametoaddr.h"
151 
152 #define ETHERMTU	1500
153 
154 #ifndef ETHERTYPE_TEB
155 #define ETHERTYPE_TEB 0x6558
156 #endif
157 
158 #ifndef IPPROTO_HOPOPTS
159 #define IPPROTO_HOPOPTS 0
160 #endif
161 #ifndef IPPROTO_ROUTING
162 #define IPPROTO_ROUTING 43
163 #endif
164 #ifndef IPPROTO_FRAGMENT
165 #define IPPROTO_FRAGMENT 44
166 #endif
167 #ifndef IPPROTO_DSTOPTS
168 #define IPPROTO_DSTOPTS 60
169 #endif
170 #ifndef IPPROTO_SCTP
171 #define IPPROTO_SCTP 132
172 #endif
173 
174 #define GENEVE_PORT 6081
175 
176 #ifdef HAVE_OS_PROTO_H
177 #include "os-proto.h"
178 #endif
179 
180 #define JMP(c) ((c)|BPF_JMP|BPF_K)
181 
182 /*
183  * "Push" the current value of the link-layer header type and link-layer
184  * header offset onto a "stack", and set a new value.  (It's not a
185  * full-blown stack; we keep only the top two items.)
186  */
187 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
188 { \
189 	(cs)->prevlinktype = (cs)->linktype; \
190 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
191 	(cs)->linktype = (new_linktype); \
192 	(cs)->off_linkhdr.is_variable = (new_is_variable); \
193 	(cs)->off_linkhdr.constant_part = (new_constant_part); \
194 	(cs)->off_linkhdr.reg = (new_reg); \
195 	(cs)->is_geneve = 0; \
196 }
197 
198 /*
199  * Offset "not set" value.
200  */
201 #define OFFSET_NOT_SET	0xffffffffU
202 
203 /*
204  * Absolute offsets, which are offsets from the beginning of the raw
205  * packet data, are, in the general case, the sum of a variable value
206  * and a constant value; the variable value may be absent, in which
207  * case the offset is only the constant value, and the constant value
208  * may be zero, in which case the offset is only the variable value.
209  *
210  * bpf_abs_offset is a structure containing all that information:
211  *
212  *   is_variable is 1 if there's a variable part.
213  *
214  *   constant_part is the constant part of the value, possibly zero;
215  *
216  *   if is_variable is 1, reg is the register number for a register
217  *   containing the variable value if the register has been assigned,
218  *   and -1 otherwise.
219  */
220 typedef struct {
221 	int	is_variable;
222 	u_int	constant_part;
223 	int	reg;
224 } bpf_abs_offset;
225 
226 /*
227  * Value passed to gen_load_a() to indicate what the offset argument
228  * is relative to the beginning of.
229  */
230 enum e_offrel {
231 	OR_PACKET,		/* full packet data */
232 	OR_LINKHDR,		/* link-layer header */
233 	OR_PREVLINKHDR,		/* previous link-layer header */
234 	OR_LLC,			/* 802.2 LLC header */
235 	OR_PREVMPLSHDR,		/* previous MPLS header */
236 	OR_LINKTYPE,		/* link-layer type */
237 	OR_LINKPL,		/* link-layer payload */
238 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
239 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
240 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
241 };
242 
243 /*
244  * We divy out chunks of memory rather than call malloc each time so
245  * we don't have to worry about leaking memory.  It's probably
246  * not a big deal if all this memory was wasted but if this ever
247  * goes into a library that would probably not be a good idea.
248  *
249  * XXX - this *is* in a library....
250  */
251 #define NCHUNKS 16
252 #define CHUNK0SIZE 1024
253 struct chunk {
254 	size_t n_left;
255 	void *m;
256 };
257 
258 /* Code generator state */
259 
260 struct _compiler_state {
261 	jmp_buf top_ctx;
262 	pcap_t *bpf_pcap;
263 
264 	struct icode ic;
265 
266 	int snaplen;
267 
268 	int linktype;
269 	int prevlinktype;
270 	int outermostlinktype;
271 
272 	bpf_u_int32 netmask;
273 	int no_optimize;
274 
275 	/* Hack for handling VLAN and MPLS stacks. */
276 	u_int label_stack_depth;
277 	u_int vlan_stack_depth;
278 
279 	/* XXX */
280 	u_int pcap_fddipad;
281 
282 #ifdef INET6
283 	/*
284 	 * As errors are handled by a longjmp, anything allocated must
285 	 * be freed in the longjmp handler, so it must be reachable
286 	 * from that handler.
287 	 *
288 	 * One thing that's allocated is the result of pcap_nametoaddrinfo();
289 	 * it must be freed with freeaddrinfo().  This variable points to
290 	 * any addrinfo structure that would need to be freed.
291 	 */
292 	struct addrinfo *ai;
293 #endif
294 
295 	/*
296 	 * Various code constructs need to know the layout of the packet.
297 	 * These values give the necessary offsets from the beginning
298 	 * of the packet data.
299 	 */
300 
301 	/*
302 	 * Absolute offset of the beginning of the link-layer header.
303 	 */
304 	bpf_abs_offset off_linkhdr;
305 
306 	/*
307 	 * If we're checking a link-layer header for a packet encapsulated
308 	 * in another protocol layer, this is the equivalent information
309 	 * for the previous layers' link-layer header from the beginning
310 	 * of the raw packet data.
311 	 */
312 	bpf_abs_offset off_prevlinkhdr;
313 
314 	/*
315 	 * This is the equivalent information for the outermost layers'
316 	 * link-layer header.
317 	 */
318 	bpf_abs_offset off_outermostlinkhdr;
319 
320 	/*
321 	 * Absolute offset of the beginning of the link-layer payload.
322 	 */
323 	bpf_abs_offset off_linkpl;
324 
325 	/*
326 	 * "off_linktype" is the offset to information in the link-layer
327 	 * header giving the packet type. This is an absolute offset
328 	 * from the beginning of the packet.
329 	 *
330 	 * For Ethernet, it's the offset of the Ethernet type field; this
331 	 * means that it must have a value that skips VLAN tags.
332 	 *
333 	 * For link-layer types that always use 802.2 headers, it's the
334 	 * offset of the LLC header; this means that it must have a value
335 	 * that skips VLAN tags.
336 	 *
337 	 * For PPP, it's the offset of the PPP type field.
338 	 *
339 	 * For Cisco HDLC, it's the offset of the CHDLC type field.
340 	 *
341 	 * For BSD loopback, it's the offset of the AF_ value.
342 	 *
343 	 * For Linux cooked sockets, it's the offset of the type field.
344 	 *
345 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
346 	 * encapsulation, in which case, IP is assumed.
347 	 */
348 	bpf_abs_offset off_linktype;
349 
350 	/*
351 	 * TRUE if the link layer includes an ATM pseudo-header.
352 	 */
353 	int is_atm;
354 
355 	/*
356 	 * TRUE if "geneve" appeared in the filter; it causes us to
357 	 * generate code that checks for a Geneve header and assume
358 	 * that later filters apply to the encapsulated payload.
359 	 */
360 	int is_geneve;
361 
362 	/*
363 	 * These are offsets for the ATM pseudo-header.
364 	 */
365 	u_int off_vpi;
366 	u_int off_vci;
367 	u_int off_proto;
368 
369 	/*
370 	 * These are offsets for the MTP2 fields.
371 	 */
372 	u_int off_li;
373 	u_int off_li_hsl;
374 
375 	/*
376 	 * These are offsets for the MTP3 fields.
377 	 */
378 	u_int off_sio;
379 	u_int off_opc;
380 	u_int off_dpc;
381 	u_int off_sls;
382 
383 	/*
384 	 * This is the offset of the first byte after the ATM pseudo_header,
385 	 * or -1 if there is no ATM pseudo-header.
386 	 */
387 	u_int off_payload;
388 
389 	/*
390 	 * These are offsets to the beginning of the network-layer header.
391 	 * They are relative to the beginning of the link-layer payload
392 	 * (i.e., they don't include off_linkhdr.constant_part or
393 	 * off_linkpl.constant_part).
394 	 *
395 	 * If the link layer never uses 802.2 LLC:
396 	 *
397 	 *	"off_nl" and "off_nl_nosnap" are the same.
398 	 *
399 	 * If the link layer always uses 802.2 LLC:
400 	 *
401 	 *	"off_nl" is the offset if there's a SNAP header following
402 	 *	the 802.2 header;
403 	 *
404 	 *	"off_nl_nosnap" is the offset if there's no SNAP header.
405 	 *
406 	 * If the link layer is Ethernet:
407 	 *
408 	 *	"off_nl" is the offset if the packet is an Ethernet II packet
409 	 *	(we assume no 802.3+802.2+SNAP);
410 	 *
411 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
412 	 *	with an 802.2 header following it.
413 	 */
414 	u_int off_nl;
415 	u_int off_nl_nosnap;
416 
417 	/*
418 	 * Here we handle simple allocation of the scratch registers.
419 	 * If too many registers are alloc'd, the allocator punts.
420 	 */
421 	int regused[BPF_MEMWORDS];
422 	int curreg;
423 
424 	/*
425 	 * Memory chunks.
426 	 */
427 	struct chunk chunks[NCHUNKS];
428 	int cur_chunk;
429 };
430 
431 void
432 bpf_syntax_error(compiler_state_t *cstate, const char *msg)
433 {
434 	bpf_error(cstate, "syntax error in filter expression: %s", msg);
435 	/* NOTREACHED */
436 }
437 
438 /* VARARGS */
439 void
440 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
441 {
442 	va_list ap;
443 
444 	va_start(ap, fmt);
445 	if (cstate->bpf_pcap != NULL)
446 		(void)pcap_vsnprintf(pcap_geterr(cstate->bpf_pcap),
447 		    PCAP_ERRBUF_SIZE, fmt, ap);
448 	va_end(ap);
449 	longjmp(cstate->top_ctx, 1);
450 	/* NOTREACHED */
451 }
452 
453 static void init_linktype(compiler_state_t *, pcap_t *);
454 
455 static void init_regs(compiler_state_t *);
456 static int alloc_reg(compiler_state_t *);
457 static void free_reg(compiler_state_t *, int);
458 
459 static void initchunks(compiler_state_t *cstate);
460 static void *newchunk(compiler_state_t *cstate, size_t);
461 static void freechunks(compiler_state_t *cstate);
462 static inline struct block *new_block(compiler_state_t *cstate, int);
463 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
464 static struct block *gen_retblk(compiler_state_t *cstate, int);
465 static inline void syntax(compiler_state_t *cstate);
466 
467 static void backpatch(struct block *, struct block *);
468 static void merge(struct block *, struct block *);
469 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
470     u_int, bpf_int32);
471 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
472     u_int, bpf_int32);
473 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
474     u_int, bpf_int32);
475 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
476     u_int, bpf_int32);
477 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
478     u_int, bpf_int32);
479 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
480     u_int, bpf_int32, bpf_u_int32);
481 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
482     u_int, const u_char *);
483 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, bpf_u_int32,
484     bpf_u_int32, bpf_u_int32, bpf_u_int32, int, bpf_int32);
485 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
486     u_int, u_int);
487 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
488     u_int);
489 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
490 static struct block *gen_uncond(compiler_state_t *, int);
491 static inline struct block *gen_true(compiler_state_t *);
492 static inline struct block *gen_false(compiler_state_t *);
493 static struct block *gen_ether_linktype(compiler_state_t *, int);
494 static struct block *gen_ipnet_linktype(compiler_state_t *, int);
495 static struct block *gen_linux_sll_linktype(compiler_state_t *, int);
496 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
497 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
498 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
499 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
500 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
501 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
502     bpf_abs_offset *);
503 static int ethertype_to_ppptype(int);
504 static struct block *gen_linktype(compiler_state_t *, int);
505 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
506 static struct block *gen_llc_linktype(compiler_state_t *, int);
507 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
508     int, int, u_int, u_int);
509 #ifdef INET6
510 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
511     struct in6_addr *, int, int, u_int, u_int);
512 #endif
513 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
514 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
515 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
516 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
517 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
518 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
519 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
520 static struct block *gen_mpls_linktype(compiler_state_t *, int);
521 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
522     int, int, int);
523 #ifdef INET6
524 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
525     struct in6_addr *, int, int, int);
526 #endif
527 #ifndef INET6
528 static struct block *gen_gateway(compiler_state_t *, const u_char *,
529     bpf_u_int32 **, int, int);
530 #endif
531 static struct block *gen_ipfrag(compiler_state_t *);
532 static struct block *gen_portatom(compiler_state_t *, int, bpf_int32);
533 static struct block *gen_portrangeatom(compiler_state_t *, int, bpf_int32,
534     bpf_int32);
535 static struct block *gen_portatom6(compiler_state_t *, int, bpf_int32);
536 static struct block *gen_portrangeatom6(compiler_state_t *, int, bpf_int32,
537     bpf_int32);
538 struct block *gen_portop(compiler_state_t *, int, int, int);
539 static struct block *gen_port(compiler_state_t *, int, int, int);
540 struct block *gen_portrangeop(compiler_state_t *, int, int, int, int);
541 static struct block *gen_portrange(compiler_state_t *, int, int, int, int);
542 struct block *gen_portop6(compiler_state_t *, int, int, int);
543 static struct block *gen_port6(compiler_state_t *, int, int, int);
544 struct block *gen_portrangeop6(compiler_state_t *, int, int, int, int);
545 static struct block *gen_portrange6(compiler_state_t *, int, int, int, int);
546 static int lookup_proto(compiler_state_t *, const char *, int);
547 static struct block *gen_protochain(compiler_state_t *, int, int, int);
548 static struct block *gen_proto(compiler_state_t *, int, int, int);
549 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
550 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
551 static struct block *gen_mac_multicast(compiler_state_t *, int);
552 static struct block *gen_len(compiler_state_t *, int, int);
553 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
554 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
555 
556 static struct block *gen_ppi_dlt_check(compiler_state_t *);
557 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
558 
559 static void
560 initchunks(compiler_state_t *cstate)
561 {
562 	int i;
563 
564 	for (i = 0; i < NCHUNKS; i++) {
565 		cstate->chunks[i].n_left = 0;
566 		cstate->chunks[i].m = NULL;
567 	}
568 	cstate->cur_chunk = 0;
569 }
570 
571 static void *
572 newchunk(compiler_state_t *cstate, size_t n)
573 {
574 	struct chunk *cp;
575 	int k;
576 	size_t size;
577 
578 #ifndef __NetBSD__
579 	/* XXX Round up to nearest long. */
580 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
581 #else
582 	/* XXX Round up to structure boundary. */
583 	n = ALIGN(n);
584 #endif
585 
586 	cp = &cstate->chunks[cstate->cur_chunk];
587 	if (n > cp->n_left) {
588 		++cp, k = ++cstate->cur_chunk;
589 		if (k >= NCHUNKS)
590 			bpf_error(cstate, "out of memory");
591 		size = CHUNK0SIZE << k;
592 		cp->m = (void *)malloc(size);
593 		if (cp->m == NULL)
594 			bpf_error(cstate, "out of memory");
595 		memset((char *)cp->m, 0, size);
596 		cp->n_left = size;
597 		if (n > size)
598 			bpf_error(cstate, "out of memory");
599 	}
600 	cp->n_left -= n;
601 	return (void *)((char *)cp->m + cp->n_left);
602 }
603 
604 static void
605 freechunks(compiler_state_t *cstate)
606 {
607 	int i;
608 
609 	for (i = 0; i < NCHUNKS; ++i)
610 		if (cstate->chunks[i].m != NULL)
611 			free(cstate->chunks[i].m);
612 }
613 
614 /*
615  * A strdup whose allocations are freed after code generation is over.
616  */
617 char *
618 sdup(compiler_state_t *cstate, const char *s)
619 {
620 	size_t n = strlen(s) + 1;
621 	char *cp = newchunk(cstate, n);
622 
623 	strlcpy(cp, s, n);
624 	return (cp);
625 }
626 
627 static inline struct block *
628 new_block(compiler_state_t *cstate, int code)
629 {
630 	struct block *p;
631 
632 	p = (struct block *)newchunk(cstate, sizeof(*p));
633 	p->s.code = code;
634 	p->head = p;
635 
636 	return p;
637 }
638 
639 static inline struct slist *
640 new_stmt(compiler_state_t *cstate, int code)
641 {
642 	struct slist *p;
643 
644 	p = (struct slist *)newchunk(cstate, sizeof(*p));
645 	p->s.code = code;
646 
647 	return p;
648 }
649 
650 static struct block *
651 gen_retblk(compiler_state_t *cstate, int v)
652 {
653 	struct block *b = new_block(cstate, BPF_RET|BPF_K);
654 
655 	b->s.k = v;
656 	return b;
657 }
658 
659 static inline void
660 syntax(compiler_state_t *cstate)
661 {
662 	bpf_error(cstate, "syntax error in filter expression");
663 }
664 
665 int
666 pcap_compile(pcap_t *p, struct bpf_program *program,
667 	     const char *buf, int optimize, bpf_u_int32 mask)
668 {
669 	compiler_state_t cstate;
670 	const char * volatile xbuf = buf;
671 	yyscan_t scanner = NULL;
672 	YY_BUFFER_STATE in_buffer = NULL;
673 	u_int len;
674 	int  rc;
675 
676 #ifdef _WIN32
677 	static int done = 0;
678 
679 	if (!done)
680 		pcap_wsockinit();
681 	done = 1;
682 #endif
683 
684 	/*
685 	 * If this pcap_t hasn't been activated, it doesn't have a
686 	 * link-layer type, so we can't use it.
687 	 */
688 	if (!p->activated) {
689 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
690 		    "not-yet-activated pcap_t passed to pcap_compile");
691 		rc = -1;
692 		goto quit;
693 	}
694 	initchunks(&cstate);
695 	cstate.no_optimize = 0;
696 #ifdef INET6
697 	cstate.ai = NULL;
698 #endif
699 	cstate.ic.root = NULL;
700 	cstate.ic.cur_mark = 0;
701 	cstate.bpf_pcap = p;
702 	init_regs(&cstate);
703 
704 	if (setjmp(cstate.top_ctx)) {
705 #ifdef INET6
706 		if (cstate.ai != NULL)
707 			freeaddrinfo(cstate.ai);
708 #endif
709 		rc = -1;
710 		goto quit;
711 	}
712 
713 	cstate.netmask = mask;
714 
715 	cstate.snaplen = pcap_snapshot(p);
716 	if (cstate.snaplen == 0) {
717 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
718 			 "snaplen of 0 rejects all packets");
719 		rc = -1;
720 		goto quit;
721 	}
722 
723 	if (pcap_lex_init(&scanner) != 0)
724 		bpf_error(&cstate, "can't initialize scanner: %s", pcap_strerror(errno));
725 	in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
726 
727 	/*
728 	 * Associate the compiler state with the lexical analyzer
729 	 * state.
730 	 */
731 	pcap_set_extra(&cstate, scanner);
732 
733 	init_linktype(&cstate, p);
734 	(void)pcap_parse(scanner, &cstate);
735 
736 	if (cstate.ic.root == NULL)
737 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
738 
739 	if (optimize && !cstate.no_optimize) {
740 		bpf_optimize(&cstate, &cstate.ic);
741 		if (cstate.ic.root == NULL ||
742 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0))
743 			bpf_error(&cstate, "expression rejects all packets");
744 	}
745 	program->bf_insns = icode_to_fcode(&cstate, &cstate.ic, cstate.ic.root, &len);
746 	program->bf_len = len;
747 
748 	rc = 0;  /* We're all okay */
749 
750 quit:
751 	/*
752 	 * Clean up everything for the lexical analyzer.
753 	 */
754 	if (in_buffer != NULL)
755 		pcap__delete_buffer(in_buffer, scanner);
756 	if (scanner != NULL)
757 		pcap_lex_destroy(scanner);
758 
759 	/*
760 	 * Clean up our own allocated memory.
761 	 */
762 	freechunks(&cstate);
763 
764 	return (rc);
765 }
766 
767 /*
768  * entry point for using the compiler with no pcap open
769  * pass in all the stuff that is needed explicitly instead.
770  */
771 int
772 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
773 		    struct bpf_program *program,
774 	     const char *buf, int optimize, bpf_u_int32 mask)
775 {
776 	pcap_t *p;
777 	int ret;
778 
779 	p = pcap_open_dead(linktype_arg, snaplen_arg);
780 	if (p == NULL)
781 		return (-1);
782 	ret = pcap_compile(p, program, buf, optimize, mask);
783 	pcap_close(p);
784 	return (ret);
785 }
786 
787 /*
788  * Clean up a "struct bpf_program" by freeing all the memory allocated
789  * in it.
790  */
791 void
792 pcap_freecode(struct bpf_program *program)
793 {
794 	program->bf_len = 0;
795 	if (program->bf_insns != NULL) {
796 		free((char *)program->bf_insns);
797 		program->bf_insns = NULL;
798 	}
799 }
800 
801 /*
802  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
803  * which of the jt and jf fields has been resolved and which is a pointer
804  * back to another unresolved block (or nil).  At least one of the fields
805  * in each block is already resolved.
806  */
807 static void
808 backpatch(list, target)
809 	struct block *list, *target;
810 {
811 	struct block *next;
812 
813 	while (list) {
814 		if (!list->sense) {
815 			next = JT(list);
816 			JT(list) = target;
817 		} else {
818 			next = JF(list);
819 			JF(list) = target;
820 		}
821 		list = next;
822 	}
823 }
824 
825 /*
826  * Merge the lists in b0 and b1, using the 'sense' field to indicate
827  * which of jt and jf is the link.
828  */
829 static void
830 merge(b0, b1)
831 	struct block *b0, *b1;
832 {
833 	register struct block **p = &b0;
834 
835 	/* Find end of list. */
836 	while (*p)
837 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
838 
839 	/* Concatenate the lists. */
840 	*p = b1;
841 }
842 
843 void
844 finish_parse(compiler_state_t *cstate, struct block *p)
845 {
846 	struct block *ppi_dlt_check;
847 
848 	/*
849 	 * Insert before the statements of the first (root) block any
850 	 * statements needed to load the lengths of any variable-length
851 	 * headers into registers.
852 	 *
853 	 * XXX - a fancier strategy would be to insert those before the
854 	 * statements of all blocks that use those lengths and that
855 	 * have no predecessors that use them, so that we only compute
856 	 * the lengths if we need them.  There might be even better
857 	 * approaches than that.
858 	 *
859 	 * However, those strategies would be more complicated, and
860 	 * as we don't generate code to compute a length if the
861 	 * program has no tests that use the length, and as most
862 	 * tests will probably use those lengths, we would just
863 	 * postpone computing the lengths so that it's not done
864 	 * for tests that fail early, and it's not clear that's
865 	 * worth the effort.
866 	 */
867 	insert_compute_vloffsets(cstate, p->head);
868 
869 	/*
870 	 * For DLT_PPI captures, generate a check of the per-packet
871 	 * DLT value to make sure it's DLT_IEEE802_11.
872 	 *
873 	 * XXX - TurboCap cards use DLT_PPI for Ethernet.
874 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
875 	 * with appropriate Ethernet information and use that rather
876 	 * than using something such as DLT_PPI where you don't know
877 	 * the link-layer header type until runtime, which, in the
878 	 * general case, would force us to generate both Ethernet *and*
879 	 * 802.11 code (*and* anything else for which PPI is used)
880 	 * and choose between them early in the BPF program?
881 	 */
882 	ppi_dlt_check = gen_ppi_dlt_check(cstate);
883 	if (ppi_dlt_check != NULL)
884 		gen_and(ppi_dlt_check, p);
885 
886 	backpatch(p, gen_retblk(cstate, cstate->snaplen));
887 	p->sense = !p->sense;
888 	backpatch(p, gen_retblk(cstate, 0));
889 	cstate->ic.root = p->head;
890 }
891 
892 void
893 gen_and(b0, b1)
894 	struct block *b0, *b1;
895 {
896 	backpatch(b0, b1->head);
897 	b0->sense = !b0->sense;
898 	b1->sense = !b1->sense;
899 	merge(b1, b0);
900 	b1->sense = !b1->sense;
901 	b1->head = b0->head;
902 }
903 
904 void
905 gen_or(b0, b1)
906 	struct block *b0, *b1;
907 {
908 	b0->sense = !b0->sense;
909 	backpatch(b0, b1->head);
910 	b0->sense = !b0->sense;
911 	merge(b1, b0);
912 	b1->head = b0->head;
913 }
914 
915 void
916 gen_not(b)
917 	struct block *b;
918 {
919 	b->sense = !b->sense;
920 }
921 
922 static struct block *
923 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
924     u_int size, bpf_int32 v)
925 {
926 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
927 }
928 
929 static struct block *
930 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
931     u_int size, bpf_int32 v)
932 {
933 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
934 }
935 
936 static struct block *
937 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
938     u_int size, bpf_int32 v)
939 {
940 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
941 }
942 
943 static struct block *
944 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
945     u_int size, bpf_int32 v)
946 {
947 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
948 }
949 
950 static struct block *
951 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
952     u_int size, bpf_int32 v)
953 {
954 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
955 }
956 
957 static struct block *
958 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
959     u_int size, bpf_int32 v, bpf_u_int32 mask)
960 {
961 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
962 }
963 
964 static struct block *
965 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
966     u_int size, const u_char *v)
967 {
968 	register struct block *b, *tmp;
969 
970 	b = NULL;
971 	while (size >= 4) {
972 		register const u_char *p = &v[size - 4];
973 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
974 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
975 
976 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W, w);
977 		if (b != NULL)
978 			gen_and(b, tmp);
979 		b = tmp;
980 		size -= 4;
981 	}
982 	while (size >= 2) {
983 		register const u_char *p = &v[size - 2];
984 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
985 
986 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H, w);
987 		if (b != NULL)
988 			gen_and(b, tmp);
989 		b = tmp;
990 		size -= 2;
991 	}
992 	if (size > 0) {
993 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, (bpf_int32)v[0]);
994 		if (b != NULL)
995 			gen_and(b, tmp);
996 		b = tmp;
997 	}
998 	return b;
999 }
1000 
1001 /*
1002  * AND the field of size "size" at offset "offset" relative to the header
1003  * specified by "offrel" with "mask", and compare it with the value "v"
1004  * with the test specified by "jtype"; if "reverse" is true, the test
1005  * should test the opposite of "jtype".
1006  */
1007 static struct block *
1008 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, bpf_u_int32 offset,
1009     bpf_u_int32 size, bpf_u_int32 mask, bpf_u_int32 jtype, int reverse,
1010     bpf_int32 v)
1011 {
1012 	struct slist *s, *s2;
1013 	struct block *b;
1014 
1015 	s = gen_load_a(cstate, offrel, offset, size);
1016 
1017 	if (mask != 0xffffffff) {
1018 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1019 		s2->s.k = mask;
1020 		sappend(s, s2);
1021 	}
1022 
1023 	b = new_block(cstate, JMP(jtype));
1024 	b->stmts = s;
1025 	b->s.k = v;
1026 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1027 		gen_not(b);
1028 	return b;
1029 }
1030 
1031 static void
1032 init_linktype(compiler_state_t *cstate, pcap_t *p)
1033 {
1034 	cstate->pcap_fddipad = p->fddipad;
1035 
1036 	/*
1037 	 * We start out with only one link-layer header.
1038 	 */
1039 	cstate->outermostlinktype = pcap_datalink(p);
1040 	cstate->off_outermostlinkhdr.constant_part = 0;
1041 	cstate->off_outermostlinkhdr.is_variable = 0;
1042 	cstate->off_outermostlinkhdr.reg = -1;
1043 
1044 	cstate->prevlinktype = cstate->outermostlinktype;
1045 	cstate->off_prevlinkhdr.constant_part = 0;
1046 	cstate->off_prevlinkhdr.is_variable = 0;
1047 	cstate->off_prevlinkhdr.reg = -1;
1048 
1049 	cstate->linktype = cstate->outermostlinktype;
1050 	cstate->off_linkhdr.constant_part = 0;
1051 	cstate->off_linkhdr.is_variable = 0;
1052 	cstate->off_linkhdr.reg = -1;
1053 
1054 	/*
1055 	 * XXX
1056 	 */
1057 	cstate->off_linkpl.constant_part = 0;
1058 	cstate->off_linkpl.is_variable = 0;
1059 	cstate->off_linkpl.reg = -1;
1060 
1061 	cstate->off_linktype.constant_part = 0;
1062 	cstate->off_linktype.is_variable = 0;
1063 	cstate->off_linktype.reg = -1;
1064 
1065 	/*
1066 	 * Assume it's not raw ATM with a pseudo-header, for now.
1067 	 */
1068 	cstate->is_atm = 0;
1069 	cstate->off_vpi = -1;
1070 	cstate->off_vci = -1;
1071 	cstate->off_proto = -1;
1072 	cstate->off_payload = -1;
1073 
1074 	/*
1075 	 * And not Geneve.
1076 	 */
1077 	cstate->is_geneve = 0;
1078 
1079 	/*
1080 	 * And assume we're not doing SS7.
1081 	 */
1082 	cstate->off_li = -1;
1083 	cstate->off_li_hsl = -1;
1084 	cstate->off_sio = -1;
1085 	cstate->off_opc = -1;
1086 	cstate->off_dpc = -1;
1087 	cstate->off_sls = -1;
1088 
1089 	cstate->label_stack_depth = 0;
1090 	cstate->vlan_stack_depth = 0;
1091 
1092 	switch (cstate->linktype) {
1093 
1094 	case DLT_ARCNET:
1095 		cstate->off_linktype.constant_part = 2;
1096 		cstate->off_linkpl.constant_part = 6;
1097 		cstate->off_nl = 0;	/* XXX in reality, variable! */
1098 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1099 		break;
1100 
1101 	case DLT_ARCNET_LINUX:
1102 		cstate->off_linktype.constant_part = 4;
1103 		cstate->off_linkpl.constant_part = 8;
1104 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1105 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1106 		break;
1107 
1108 	case DLT_EN10MB:
1109 		cstate->off_linktype.constant_part = 12;
1110 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */
1111 		cstate->off_nl = 0;		/* Ethernet II */
1112 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1113 		break;
1114 
1115 	case DLT_SLIP:
1116 		/*
1117 		 * SLIP doesn't have a link level type.  The 16 byte
1118 		 * header is hacked into our SLIP driver.
1119 		 */
1120 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1121 		cstate->off_linkpl.constant_part = 16;
1122 		cstate->off_nl = 0;
1123 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1124 		break;
1125 
1126 	case DLT_SLIP_BSDOS:
1127 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1128 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1129 		/* XXX end */
1130 		cstate->off_linkpl.constant_part = 24;
1131 		cstate->off_nl = 0;
1132 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1133 		break;
1134 
1135 	case DLT_NULL:
1136 	case DLT_LOOP:
1137 		cstate->off_linktype.constant_part = 0;
1138 		cstate->off_linkpl.constant_part = 4;
1139 		cstate->off_nl = 0;
1140 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1141 		break;
1142 
1143 	case DLT_ENC:
1144 		cstate->off_linktype.constant_part = 0;
1145 		cstate->off_linkpl.constant_part = 12;
1146 		cstate->off_nl = 0;
1147 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1148 		break;
1149 
1150 	case DLT_PPP:
1151 	case DLT_PPP_PPPD:
1152 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1153 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1154 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1155 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1156 		cstate->off_nl = 0;
1157 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1158 		break;
1159 
1160 	case DLT_PPP_ETHER:
1161 		/*
1162 		 * This does no include the Ethernet header, and
1163 		 * only covers session state.
1164 		 */
1165 		cstate->off_linktype.constant_part = 6;
1166 		cstate->off_linkpl.constant_part = 8;
1167 		cstate->off_nl = 0;
1168 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1169 		break;
1170 
1171 	case DLT_PPP_BSDOS:
1172 		cstate->off_linktype.constant_part = 5;
1173 		cstate->off_linkpl.constant_part = 24;
1174 		cstate->off_nl = 0;
1175 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1176 		break;
1177 
1178 	case DLT_FDDI:
1179 		/*
1180 		 * FDDI doesn't really have a link-level type field.
1181 		 * We set "off_linktype" to the offset of the LLC header.
1182 		 *
1183 		 * To check for Ethernet types, we assume that SSAP = SNAP
1184 		 * is being used and pick out the encapsulated Ethernet type.
1185 		 * XXX - should we generate code to check for SNAP?
1186 		 */
1187 		cstate->off_linktype.constant_part = 13;
1188 		cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1189 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1190 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1191 		cstate->off_nl = 8;		/* 802.2+SNAP */
1192 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1193 		break;
1194 
1195 	case DLT_IEEE802:
1196 		/*
1197 		 * Token Ring doesn't really have a link-level type field.
1198 		 * We set "off_linktype" to the offset of the LLC header.
1199 		 *
1200 		 * To check for Ethernet types, we assume that SSAP = SNAP
1201 		 * is being used and pick out the encapsulated Ethernet type.
1202 		 * XXX - should we generate code to check for SNAP?
1203 		 *
1204 		 * XXX - the header is actually variable-length.
1205 		 * Some various Linux patched versions gave 38
1206 		 * as "off_linktype" and 40 as "off_nl"; however,
1207 		 * if a token ring packet has *no* routing
1208 		 * information, i.e. is not source-routed, the correct
1209 		 * values are 20 and 22, as they are in the vanilla code.
1210 		 *
1211 		 * A packet is source-routed iff the uppermost bit
1212 		 * of the first byte of the source address, at an
1213 		 * offset of 8, has the uppermost bit set.  If the
1214 		 * packet is source-routed, the total number of bytes
1215 		 * of routing information is 2 plus bits 0x1F00 of
1216 		 * the 16-bit value at an offset of 14 (shifted right
1217 		 * 8 - figure out which byte that is).
1218 		 */
1219 		cstate->off_linktype.constant_part = 14;
1220 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1221 		cstate->off_nl = 8;		/* 802.2+SNAP */
1222 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1223 		break;
1224 
1225 	case DLT_PRISM_HEADER:
1226 	case DLT_IEEE802_11_RADIO_AVS:
1227 	case DLT_IEEE802_11_RADIO:
1228 		cstate->off_linkhdr.is_variable = 1;
1229 		/* Fall through, 802.11 doesn't have a variable link
1230 		 * prefix but is otherwise the same. */
1231 
1232 	case DLT_IEEE802_11:
1233 		/*
1234 		 * 802.11 doesn't really have a link-level type field.
1235 		 * We set "off_linktype.constant_part" to the offset of
1236 		 * the LLC header.
1237 		 *
1238 		 * To check for Ethernet types, we assume that SSAP = SNAP
1239 		 * is being used and pick out the encapsulated Ethernet type.
1240 		 * XXX - should we generate code to check for SNAP?
1241 		 *
1242 		 * We also handle variable-length radio headers here.
1243 		 * The Prism header is in theory variable-length, but in
1244 		 * practice it's always 144 bytes long.  However, some
1245 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1246 		 * sometimes or always supply an AVS header, so we
1247 		 * have to check whether the radio header is a Prism
1248 		 * header or an AVS header, so, in practice, it's
1249 		 * variable-length.
1250 		 */
1251 		cstate->off_linktype.constant_part = 24;
1252 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1253 		cstate->off_linkpl.is_variable = 1;
1254 		cstate->off_nl = 8;		/* 802.2+SNAP */
1255 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1256 		break;
1257 
1258 	case DLT_PPI:
1259 		/*
1260 		 * At the moment we treat PPI the same way that we treat
1261 		 * normal Radiotap encoded packets. The difference is in
1262 		 * the function that generates the code at the beginning
1263 		 * to compute the header length.  Since this code generator
1264 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1265 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1266 		 * generate code to check for this too.
1267 		 */
1268 		cstate->off_linktype.constant_part = 24;
1269 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1270 		cstate->off_linkpl.is_variable = 1;
1271 		cstate->off_linkhdr.is_variable = 1;
1272 		cstate->off_nl = 8;		/* 802.2+SNAP */
1273 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1274 		break;
1275 
1276 	case DLT_ATM_RFC1483:
1277 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1278 		/*
1279 		 * assume routed, non-ISO PDUs
1280 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1281 		 *
1282 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1283 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1284 		 * latter would presumably be treated the way PPPoE
1285 		 * should be, so you can do "pppoe and udp port 2049"
1286 		 * or "pppoa and tcp port 80" and have it check for
1287 		 * PPPo{A,E} and a PPP protocol of IP and....
1288 		 */
1289 		cstate->off_linktype.constant_part = 0;
1290 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1291 		cstate->off_nl = 8;		/* 802.2+SNAP */
1292 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1293 		break;
1294 
1295 	case DLT_SUNATM:
1296 		/*
1297 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1298 		 * pseudo-header.
1299 		 */
1300 		cstate->is_atm = 1;
1301 		cstate->off_vpi = SUNATM_VPI_POS;
1302 		cstate->off_vci = SUNATM_VCI_POS;
1303 		cstate->off_proto = PROTO_POS;
1304 		cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1305 		cstate->off_linktype.constant_part = cstate->off_payload;
1306 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */
1307 		cstate->off_nl = 8;		/* 802.2+SNAP */
1308 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1309 		break;
1310 
1311 	case DLT_RAW:
1312 	case DLT_IPV4:
1313 	case DLT_IPV6:
1314 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1315 		cstate->off_linkpl.constant_part = 0;
1316 		cstate->off_nl = 0;
1317 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1318 		break;
1319 
1320 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1321 		cstate->off_linktype.constant_part = 14;
1322 		cstate->off_linkpl.constant_part = 16;
1323 		cstate->off_nl = 0;
1324 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1325 		break;
1326 
1327 	case DLT_LTALK:
1328 		/*
1329 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1330 		 * but really it just indicates whether there is a "short" or
1331 		 * "long" DDP packet following.
1332 		 */
1333 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1334 		cstate->off_linkpl.constant_part = 0;
1335 		cstate->off_nl = 0;
1336 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1337 		break;
1338 
1339 	case DLT_IP_OVER_FC:
1340 		/*
1341 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1342 		 * link-level type field.  We set "off_linktype" to the
1343 		 * offset of the LLC header.
1344 		 *
1345 		 * To check for Ethernet types, we assume that SSAP = SNAP
1346 		 * is being used and pick out the encapsulated Ethernet type.
1347 		 * XXX - should we generate code to check for SNAP? RFC
1348 		 * 2625 says SNAP should be used.
1349 		 */
1350 		cstate->off_linktype.constant_part = 16;
1351 		cstate->off_linkpl.constant_part = 16;
1352 		cstate->off_nl = 8;		/* 802.2+SNAP */
1353 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1354 		break;
1355 
1356 	case DLT_FRELAY:
1357 		/*
1358 		 * XXX - we should set this to handle SNAP-encapsulated
1359 		 * frames (NLPID of 0x80).
1360 		 */
1361 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1362 		cstate->off_linkpl.constant_part = 0;
1363 		cstate->off_nl = 0;
1364 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1365 		break;
1366 
1367                 /*
1368                  * the only BPF-interesting FRF.16 frames are non-control frames;
1369                  * Frame Relay has a variable length link-layer
1370                  * so lets start with offset 4 for now and increments later on (FIXME);
1371                  */
1372 	case DLT_MFR:
1373 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1374 		cstate->off_linkpl.constant_part = 0;
1375 		cstate->off_nl = 4;
1376 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1377 		break;
1378 
1379 	case DLT_APPLE_IP_OVER_IEEE1394:
1380 		cstate->off_linktype.constant_part = 16;
1381 		cstate->off_linkpl.constant_part = 18;
1382 		cstate->off_nl = 0;
1383 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1384 		break;
1385 
1386 	case DLT_SYMANTEC_FIREWALL:
1387 		cstate->off_linktype.constant_part = 6;
1388 		cstate->off_linkpl.constant_part = 44;
1389 		cstate->off_nl = 0;		/* Ethernet II */
1390 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1391 		break;
1392 
1393 #ifdef HAVE_NET_PFVAR_H
1394 	case DLT_PFLOG:
1395 		cstate->off_linktype.constant_part = 0;
1396 		cstate->off_linkpl.constant_part = PFLOG_HDRLEN;
1397 		cstate->off_nl = 0;
1398 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1399 		break;
1400 #endif
1401 
1402         case DLT_JUNIPER_MFR:
1403         case DLT_JUNIPER_MLFR:
1404         case DLT_JUNIPER_MLPPP:
1405         case DLT_JUNIPER_PPP:
1406         case DLT_JUNIPER_CHDLC:
1407         case DLT_JUNIPER_FRELAY:
1408 		cstate->off_linktype.constant_part = 4;
1409 		cstate->off_linkpl.constant_part = 4;
1410 		cstate->off_nl = 0;
1411 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1412                 break;
1413 
1414 	case DLT_JUNIPER_ATM1:
1415 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1416 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1417 		cstate->off_nl = 0;
1418 		cstate->off_nl_nosnap = 10;
1419 		break;
1420 
1421 	case DLT_JUNIPER_ATM2:
1422 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1423 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1424 		cstate->off_nl = 0;
1425 		cstate->off_nl_nosnap = 10;
1426 		break;
1427 
1428 		/* frames captured on a Juniper PPPoE service PIC
1429 		 * contain raw ethernet frames */
1430 	case DLT_JUNIPER_PPPOE:
1431         case DLT_JUNIPER_ETHER:
1432 		cstate->off_linkpl.constant_part = 14;
1433 		cstate->off_linktype.constant_part = 16;
1434 		cstate->off_nl = 18;		/* Ethernet II */
1435 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */
1436 		break;
1437 
1438 	case DLT_JUNIPER_PPPOE_ATM:
1439 		cstate->off_linktype.constant_part = 4;
1440 		cstate->off_linkpl.constant_part = 6;
1441 		cstate->off_nl = 0;
1442 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1443 		break;
1444 
1445 	case DLT_JUNIPER_GGSN:
1446 		cstate->off_linktype.constant_part = 6;
1447 		cstate->off_linkpl.constant_part = 12;
1448 		cstate->off_nl = 0;
1449 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1450 		break;
1451 
1452 	case DLT_JUNIPER_ES:
1453 		cstate->off_linktype.constant_part = 6;
1454 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1455 		cstate->off_nl = -1;		/* not really a network layer but raw IP addresses */
1456 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1457 		break;
1458 
1459 	case DLT_JUNIPER_MONITOR:
1460 		cstate->off_linktype.constant_part = 12;
1461 		cstate->off_linkpl.constant_part = 12;
1462 		cstate->off_nl = 0;		/* raw IP/IP6 header */
1463 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1464 		break;
1465 
1466 	case DLT_BACNET_MS_TP:
1467 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1468 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1469 		cstate->off_nl = -1;
1470 		cstate->off_nl_nosnap = -1;
1471 		break;
1472 
1473 	case DLT_JUNIPER_SERVICES:
1474 		cstate->off_linktype.constant_part = 12;
1475 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1476 		cstate->off_nl = -1;		/* L3 proto location dep. on cookie type */
1477 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1478 		break;
1479 
1480 	case DLT_JUNIPER_VP:
1481 		cstate->off_linktype.constant_part = 18;
1482 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1483 		cstate->off_nl = -1;
1484 		cstate->off_nl_nosnap = -1;
1485 		break;
1486 
1487 	case DLT_JUNIPER_ST:
1488 		cstate->off_linktype.constant_part = 18;
1489 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1490 		cstate->off_nl = -1;
1491 		cstate->off_nl_nosnap = -1;
1492 		break;
1493 
1494 	case DLT_JUNIPER_ISM:
1495 		cstate->off_linktype.constant_part = 8;
1496 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1497 		cstate->off_nl = -1;
1498 		cstate->off_nl_nosnap = -1;
1499 		break;
1500 
1501 	case DLT_JUNIPER_VS:
1502 	case DLT_JUNIPER_SRX_E2E:
1503 	case DLT_JUNIPER_FIBRECHANNEL:
1504 	case DLT_JUNIPER_ATM_CEMIC:
1505 		cstate->off_linktype.constant_part = 8;
1506 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1507 		cstate->off_nl = -1;
1508 		cstate->off_nl_nosnap = -1;
1509 		break;
1510 
1511 	case DLT_MTP2:
1512 		cstate->off_li = 2;
1513 		cstate->off_li_hsl = 4;
1514 		cstate->off_sio = 3;
1515 		cstate->off_opc = 4;
1516 		cstate->off_dpc = 4;
1517 		cstate->off_sls = 7;
1518 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1519 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1520 		cstate->off_nl = -1;
1521 		cstate->off_nl_nosnap = -1;
1522 		break;
1523 
1524 	case DLT_MTP2_WITH_PHDR:
1525 		cstate->off_li = 6;
1526 		cstate->off_li_hsl = 8;
1527 		cstate->off_sio = 7;
1528 		cstate->off_opc = 8;
1529 		cstate->off_dpc = 8;
1530 		cstate->off_sls = 11;
1531 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1532 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1533 		cstate->off_nl = -1;
1534 		cstate->off_nl_nosnap = -1;
1535 		break;
1536 
1537 	case DLT_ERF:
1538 		cstate->off_li = 22;
1539 		cstate->off_li_hsl = 24;
1540 		cstate->off_sio = 23;
1541 		cstate->off_opc = 24;
1542 		cstate->off_dpc = 24;
1543 		cstate->off_sls = 27;
1544 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1545 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1546 		cstate->off_nl = -1;
1547 		cstate->off_nl_nosnap = -1;
1548 		break;
1549 
1550 	case DLT_PFSYNC:
1551 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1552 		cstate->off_linkpl.constant_part = 4;
1553 		cstate->off_nl = 0;
1554 		cstate->off_nl_nosnap = 0;
1555 		break;
1556 
1557 	case DLT_AX25_KISS:
1558 		/*
1559 		 * Currently, only raw "link[N:M]" filtering is supported.
1560 		 */
1561 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */
1562 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1563 		cstate->off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1564 		cstate->off_nl_nosnap = -1;	/* no 802.2 LLC */
1565 		break;
1566 
1567 	case DLT_IPNET:
1568 		cstate->off_linktype.constant_part = 1;
1569 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */
1570 		cstate->off_nl = 0;
1571 		cstate->off_nl_nosnap = -1;
1572 		break;
1573 
1574 	case DLT_NETANALYZER:
1575 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1576 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1577 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1578 		cstate->off_nl = 0;		/* Ethernet II */
1579 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1580 		break;
1581 
1582 	case DLT_NETANALYZER_TRANSPARENT:
1583 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1584 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1585 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1586 		cstate->off_nl = 0;		/* Ethernet II */
1587 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1588 		break;
1589 
1590 	default:
1591 		/*
1592 		 * For values in the range in which we've assigned new
1593 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1594 		 */
1595 		if (cstate->linktype >= DLT_MATCHING_MIN &&
1596 		    cstate->linktype <= DLT_MATCHING_MAX) {
1597 			cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1598 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1599 			cstate->off_nl = -1;
1600 			cstate->off_nl_nosnap = -1;
1601 		} else {
1602 			bpf_error(cstate, "unknown data link type %d", cstate->linktype);
1603 		}
1604 		break;
1605 	}
1606 
1607 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1608 }
1609 
1610 /*
1611  * Load a value relative to the specified absolute offset.
1612  */
1613 static struct slist *
1614 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1615     u_int offset, u_int size)
1616 {
1617 	struct slist *s, *s2;
1618 
1619 	s = gen_abs_offset_varpart(cstate, abs_offset);
1620 
1621 	/*
1622 	 * If "s" is non-null, it has code to arrange that the X register
1623 	 * contains the variable part of the absolute offset, so we
1624 	 * generate a load relative to that, with an offset of
1625 	 * abs_offset->constant_part + offset.
1626 	 *
1627 	 * Otherwise, we can do an absolute load with an offset of
1628 	 * abs_offset->constant_part + offset.
1629 	 */
1630 	if (s != NULL) {
1631 		/*
1632 		 * "s" points to a list of statements that puts the
1633 		 * variable part of the absolute offset into the X register.
1634 		 * Do an indirect load, to use the X register as an offset.
1635 		 */
1636 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1637 		s2->s.k = abs_offset->constant_part + offset;
1638 		sappend(s, s2);
1639 	} else {
1640 		/*
1641 		 * There is no variable part of the absolute offset, so
1642 		 * just do an absolute load.
1643 		 */
1644 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1645 		s->s.k = abs_offset->constant_part + offset;
1646 	}
1647 	return s;
1648 }
1649 
1650 /*
1651  * Load a value relative to the beginning of the specified header.
1652  */
1653 static struct slist *
1654 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1655     u_int size)
1656 {
1657 	struct slist *s, *s2;
1658 
1659 	switch (offrel) {
1660 
1661 	case OR_PACKET:
1662                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1663                 s->s.k = offset;
1664 		break;
1665 
1666 	case OR_LINKHDR:
1667 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1668 		break;
1669 
1670 	case OR_PREVLINKHDR:
1671 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1672 		break;
1673 
1674 	case OR_LLC:
1675 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1676 		break;
1677 
1678 	case OR_PREVMPLSHDR:
1679 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1680 		break;
1681 
1682 	case OR_LINKPL:
1683 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1684 		break;
1685 
1686 	case OR_LINKPL_NOSNAP:
1687 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1688 		break;
1689 
1690 	case OR_LINKTYPE:
1691 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1692 		break;
1693 
1694 	case OR_TRAN_IPV4:
1695 		/*
1696 		 * Load the X register with the length of the IPv4 header
1697 		 * (plus the offset of the link-layer header, if it's
1698 		 * preceded by a variable-length header such as a radio
1699 		 * header), in bytes.
1700 		 */
1701 		s = gen_loadx_iphdrlen(cstate);
1702 
1703 		/*
1704 		 * Load the item at {offset of the link-layer payload} +
1705 		 * {offset, relative to the start of the link-layer
1706 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1707 		 * {specified offset}.
1708 		 *
1709 		 * If the offset of the link-layer payload is variable,
1710 		 * the variable part of that offset is included in the
1711 		 * value in the X register, and we include the constant
1712 		 * part in the offset of the load.
1713 		 */
1714 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1715 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1716 		sappend(s, s2);
1717 		break;
1718 
1719 	case OR_TRAN_IPV6:
1720 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1721 		break;
1722 
1723 	default:
1724 		abort();
1725 		return NULL;
1726 	}
1727 	return s;
1728 }
1729 
1730 /*
1731  * Generate code to load into the X register the sum of the length of
1732  * the IPv4 header and the variable part of the offset of the link-layer
1733  * payload.
1734  */
1735 static struct slist *
1736 gen_loadx_iphdrlen(compiler_state_t *cstate)
1737 {
1738 	struct slist *s, *s2;
1739 
1740 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1741 	if (s != NULL) {
1742 		/*
1743 		 * The offset of the link-layer payload has a variable
1744 		 * part.  "s" points to a list of statements that put
1745 		 * the variable part of that offset into the X register.
1746 		 *
1747 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1748 		 * don't have a constant offset, so we have to load the
1749 		 * value in question into the A register and add to it
1750 		 * the value from the X register.
1751 		 */
1752 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1753 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1754 		sappend(s, s2);
1755 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1756 		s2->s.k = 0xf;
1757 		sappend(s, s2);
1758 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1759 		s2->s.k = 2;
1760 		sappend(s, s2);
1761 
1762 		/*
1763 		 * The A register now contains the length of the IP header.
1764 		 * We need to add to it the variable part of the offset of
1765 		 * the link-layer payload, which is still in the X
1766 		 * register, and move the result into the X register.
1767 		 */
1768 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1769 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1770 	} else {
1771 		/*
1772 		 * The offset of the link-layer payload is a constant,
1773 		 * so no code was generated to load the (non-existent)
1774 		 * variable part of that offset.
1775 		 *
1776 		 * This means we can use the 4*([k]&0xf) addressing
1777 		 * mode.  Load the length of the IPv4 header, which
1778 		 * is at an offset of cstate->off_nl from the beginning of
1779 		 * the link-layer payload, and thus at an offset of
1780 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1781 		 * of the raw packet data, using that addressing mode.
1782 		 */
1783 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1784 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1785 	}
1786 	return s;
1787 }
1788 
1789 static struct block *
1790 gen_uncond(compiler_state_t *cstate, int rsense)
1791 {
1792 	struct block *b;
1793 	struct slist *s;
1794 
1795 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
1796 	s->s.k = !rsense;
1797 	b = new_block(cstate, JMP(BPF_JEQ));
1798 	b->stmts = s;
1799 
1800 	return b;
1801 }
1802 
1803 static inline struct block *
1804 gen_true(compiler_state_t *cstate)
1805 {
1806 	return gen_uncond(cstate, 1);
1807 }
1808 
1809 static inline struct block *
1810 gen_false(compiler_state_t *cstate)
1811 {
1812 	return gen_uncond(cstate, 0);
1813 }
1814 
1815 /*
1816  * Byte-swap a 32-bit number.
1817  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1818  * big-endian platforms.)
1819  */
1820 #define	SWAPLONG(y) \
1821 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1822 
1823 /*
1824  * Generate code to match a particular packet type.
1825  *
1826  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1827  * value, if <= ETHERMTU.  We use that to determine whether to
1828  * match the type/length field or to check the type/length field for
1829  * a value <= ETHERMTU to see whether it's a type field and then do
1830  * the appropriate test.
1831  */
1832 static struct block *
1833 gen_ether_linktype(compiler_state_t *cstate, int proto)
1834 {
1835 	struct block *b0, *b1;
1836 
1837 	switch (proto) {
1838 
1839 	case LLCSAP_ISONS:
1840 	case LLCSAP_IP:
1841 	case LLCSAP_NETBEUI:
1842 		/*
1843 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1844 		 * so we check the DSAP and SSAP.
1845 		 *
1846 		 * LLCSAP_IP checks for IP-over-802.2, rather
1847 		 * than IP-over-Ethernet or IP-over-SNAP.
1848 		 *
1849 		 * XXX - should we check both the DSAP and the
1850 		 * SSAP, like this, or should we check just the
1851 		 * DSAP, as we do for other types <= ETHERMTU
1852 		 * (i.e., other SAP values)?
1853 		 */
1854 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1855 		gen_not(b0);
1856 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
1857 			     ((proto << 8) | proto));
1858 		gen_and(b0, b1);
1859 		return b1;
1860 
1861 	case LLCSAP_IPX:
1862 		/*
1863 		 * Check for;
1864 		 *
1865 		 *	Ethernet_II frames, which are Ethernet
1866 		 *	frames with a frame type of ETHERTYPE_IPX;
1867 		 *
1868 		 *	Ethernet_802.3 frames, which are 802.3
1869 		 *	frames (i.e., the type/length field is
1870 		 *	a length field, <= ETHERMTU, rather than
1871 		 *	a type field) with the first two bytes
1872 		 *	after the Ethernet/802.3 header being
1873 		 *	0xFFFF;
1874 		 *
1875 		 *	Ethernet_802.2 frames, which are 802.3
1876 		 *	frames with an 802.2 LLC header and
1877 		 *	with the IPX LSAP as the DSAP in the LLC
1878 		 *	header;
1879 		 *
1880 		 *	Ethernet_SNAP frames, which are 802.3
1881 		 *	frames with an LLC header and a SNAP
1882 		 *	header and with an OUI of 0x000000
1883 		 *	(encapsulated Ethernet) and a protocol
1884 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1885 		 *
1886 		 * XXX - should we generate the same code both
1887 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1888 		 */
1889 
1890 		/*
1891 		 * This generates code to check both for the
1892 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1893 		 */
1894 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1895 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
1896 		gen_or(b0, b1);
1897 
1898 		/*
1899 		 * Now we add code to check for SNAP frames with
1900 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1901 		 */
1902 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
1903 		gen_or(b0, b1);
1904 
1905 		/*
1906 		 * Now we generate code to check for 802.3
1907 		 * frames in general.
1908 		 */
1909 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1910 		gen_not(b0);
1911 
1912 		/*
1913 		 * Now add the check for 802.3 frames before the
1914 		 * check for Ethernet_802.2 and Ethernet_802.3,
1915 		 * as those checks should only be done on 802.3
1916 		 * frames, not on Ethernet frames.
1917 		 */
1918 		gen_and(b0, b1);
1919 
1920 		/*
1921 		 * Now add the check for Ethernet_II frames, and
1922 		 * do that before checking for the other frame
1923 		 * types.
1924 		 */
1925 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
1926 		gen_or(b0, b1);
1927 		return b1;
1928 
1929 	case ETHERTYPE_ATALK:
1930 	case ETHERTYPE_AARP:
1931 		/*
1932 		 * EtherTalk (AppleTalk protocols on Ethernet link
1933 		 * layer) may use 802.2 encapsulation.
1934 		 */
1935 
1936 		/*
1937 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1938 		 * we check for an Ethernet type field less than
1939 		 * 1500, which means it's an 802.3 length field.
1940 		 */
1941 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1942 		gen_not(b0);
1943 
1944 		/*
1945 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1946 		 * SNAP packets with an organization code of
1947 		 * 0x080007 (Apple, for Appletalk) and a protocol
1948 		 * type of ETHERTYPE_ATALK (Appletalk).
1949 		 *
1950 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1951 		 * SNAP packets with an organization code of
1952 		 * 0x000000 (encapsulated Ethernet) and a protocol
1953 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1954 		 */
1955 		if (proto == ETHERTYPE_ATALK)
1956 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
1957 		else	/* proto == ETHERTYPE_AARP */
1958 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
1959 		gen_and(b0, b1);
1960 
1961 		/*
1962 		 * Check for Ethernet encapsulation (Ethertalk
1963 		 * phase 1?); we just check for the Ethernet
1964 		 * protocol type.
1965 		 */
1966 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
1967 
1968 		gen_or(b0, b1);
1969 		return b1;
1970 
1971 	default:
1972 		if (proto <= ETHERMTU) {
1973 			/*
1974 			 * This is an LLC SAP value, so the frames
1975 			 * that match would be 802.2 frames.
1976 			 * Check that the frame is an 802.2 frame
1977 			 * (i.e., that the length/type field is
1978 			 * a length field, <= ETHERMTU) and
1979 			 * then check the DSAP.
1980 			 */
1981 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1982 			gen_not(b0);
1983 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
1984 			gen_and(b0, b1);
1985 			return b1;
1986 		} else {
1987 			/*
1988 			 * This is an Ethernet type, so compare
1989 			 * the length/type field with it (if
1990 			 * the frame is an 802.2 frame, the length
1991 			 * field will be <= ETHERMTU, and, as
1992 			 * "proto" is > ETHERMTU, this test
1993 			 * will fail and the frame won't match,
1994 			 * which is what we want).
1995 			 */
1996 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
1997 			    (bpf_int32)proto);
1998 		}
1999 	}
2000 }
2001 
2002 static struct block *
2003 gen_loopback_linktype(compiler_state_t *cstate, int proto)
2004 {
2005 	/*
2006 	 * For DLT_NULL, the link-layer header is a 32-bit word
2007 	 * containing an AF_ value in *host* byte order, and for
2008 	 * DLT_ENC, the link-layer header begins with a 32-bit
2009 	 * word containing an AF_ value in host byte order.
2010 	 *
2011 	 * In addition, if we're reading a saved capture file,
2012 	 * the host byte order in the capture may not be the
2013 	 * same as the host byte order on this machine.
2014 	 *
2015 	 * For DLT_LOOP, the link-layer header is a 32-bit
2016 	 * word containing an AF_ value in *network* byte order.
2017 	 */
2018 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2019 		/*
2020 		 * The AF_ value is in host byte order, but the BPF
2021 		 * interpreter will convert it to network byte order.
2022 		 *
2023 		 * If this is a save file, and it's from a machine
2024 		 * with the opposite byte order to ours, we byte-swap
2025 		 * the AF_ value.
2026 		 *
2027 		 * Then we run it through "htonl()", and generate
2028 		 * code to compare against the result.
2029 		 */
2030 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2031 			proto = SWAPLONG(proto);
2032 		proto = htonl(proto);
2033 	}
2034 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
2035 }
2036 
2037 /*
2038  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2039  * or IPv6 then we have an error.
2040  */
2041 static struct block *
2042 gen_ipnet_linktype(compiler_state_t *cstate, int proto)
2043 {
2044 	switch (proto) {
2045 
2046 	case ETHERTYPE_IP:
2047 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
2048 		/* NOTREACHED */
2049 
2050 	case ETHERTYPE_IPV6:
2051 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
2052 		    (bpf_int32)IPH_AF_INET6);
2053 		/* NOTREACHED */
2054 
2055 	default:
2056 		break;
2057 	}
2058 
2059 	return gen_false(cstate);
2060 }
2061 
2062 /*
2063  * Generate code to match a particular packet type.
2064  *
2065  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2066  * value, if <= ETHERMTU.  We use that to determine whether to
2067  * match the type field or to check the type field for the special
2068  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2069  */
2070 static struct block *
2071 gen_linux_sll_linktype(compiler_state_t *cstate, int proto)
2072 {
2073 	struct block *b0, *b1;
2074 
2075 	switch (proto) {
2076 
2077 	case LLCSAP_ISONS:
2078 	case LLCSAP_IP:
2079 	case LLCSAP_NETBEUI:
2080 		/*
2081 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2082 		 * so we check the DSAP and SSAP.
2083 		 *
2084 		 * LLCSAP_IP checks for IP-over-802.2, rather
2085 		 * than IP-over-Ethernet or IP-over-SNAP.
2086 		 *
2087 		 * XXX - should we check both the DSAP and the
2088 		 * SSAP, like this, or should we check just the
2089 		 * DSAP, as we do for other types <= ETHERMTU
2090 		 * (i.e., other SAP values)?
2091 		 */
2092 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2093 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
2094 			     ((proto << 8) | proto));
2095 		gen_and(b0, b1);
2096 		return b1;
2097 
2098 	case LLCSAP_IPX:
2099 		/*
2100 		 *	Ethernet_II frames, which are Ethernet
2101 		 *	frames with a frame type of ETHERTYPE_IPX;
2102 		 *
2103 		 *	Ethernet_802.3 frames, which have a frame
2104 		 *	type of LINUX_SLL_P_802_3;
2105 		 *
2106 		 *	Ethernet_802.2 frames, which are 802.3
2107 		 *	frames with an 802.2 LLC header (i.e, have
2108 		 *	a frame type of LINUX_SLL_P_802_2) and
2109 		 *	with the IPX LSAP as the DSAP in the LLC
2110 		 *	header;
2111 		 *
2112 		 *	Ethernet_SNAP frames, which are 802.3
2113 		 *	frames with an LLC header and a SNAP
2114 		 *	header and with an OUI of 0x000000
2115 		 *	(encapsulated Ethernet) and a protocol
2116 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2117 		 *
2118 		 * First, do the checks on LINUX_SLL_P_802_2
2119 		 * frames; generate the check for either
2120 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2121 		 * then put a check for LINUX_SLL_P_802_2 frames
2122 		 * before it.
2123 		 */
2124 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2125 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2126 		gen_or(b0, b1);
2127 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2128 		gen_and(b0, b1);
2129 
2130 		/*
2131 		 * Now check for 802.3 frames and OR that with
2132 		 * the previous test.
2133 		 */
2134 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2135 		gen_or(b0, b1);
2136 
2137 		/*
2138 		 * Now add the check for Ethernet_II frames, and
2139 		 * do that before checking for the other frame
2140 		 * types.
2141 		 */
2142 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2143 		gen_or(b0, b1);
2144 		return b1;
2145 
2146 	case ETHERTYPE_ATALK:
2147 	case ETHERTYPE_AARP:
2148 		/*
2149 		 * EtherTalk (AppleTalk protocols on Ethernet link
2150 		 * layer) may use 802.2 encapsulation.
2151 		 */
2152 
2153 		/*
2154 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2155 		 * we check for the 802.2 protocol type in the
2156 		 * "Ethernet type" field.
2157 		 */
2158 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2159 
2160 		/*
2161 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2162 		 * SNAP packets with an organization code of
2163 		 * 0x080007 (Apple, for Appletalk) and a protocol
2164 		 * type of ETHERTYPE_ATALK (Appletalk).
2165 		 *
2166 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2167 		 * SNAP packets with an organization code of
2168 		 * 0x000000 (encapsulated Ethernet) and a protocol
2169 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2170 		 */
2171 		if (proto == ETHERTYPE_ATALK)
2172 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2173 		else	/* proto == ETHERTYPE_AARP */
2174 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2175 		gen_and(b0, b1);
2176 
2177 		/*
2178 		 * Check for Ethernet encapsulation (Ethertalk
2179 		 * phase 1?); we just check for the Ethernet
2180 		 * protocol type.
2181 		 */
2182 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2183 
2184 		gen_or(b0, b1);
2185 		return b1;
2186 
2187 	default:
2188 		if (proto <= ETHERMTU) {
2189 			/*
2190 			 * This is an LLC SAP value, so the frames
2191 			 * that match would be 802.2 frames.
2192 			 * Check for the 802.2 protocol type
2193 			 * in the "Ethernet type" field, and
2194 			 * then check the DSAP.
2195 			 */
2196 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2197 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2198 			     (bpf_int32)proto);
2199 			gen_and(b0, b1);
2200 			return b1;
2201 		} else {
2202 			/*
2203 			 * This is an Ethernet type, so compare
2204 			 * the length/type field with it (if
2205 			 * the frame is an 802.2 frame, the length
2206 			 * field will be <= ETHERMTU, and, as
2207 			 * "proto" is > ETHERMTU, this test
2208 			 * will fail and the frame won't match,
2209 			 * which is what we want).
2210 			 */
2211 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2212 		}
2213 	}
2214 }
2215 
2216 static struct slist *
2217 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2218 {
2219 	struct slist *s1, *s2;
2220 	struct slist *sjeq_avs_cookie;
2221 	struct slist *sjcommon;
2222 
2223 	/*
2224 	 * This code is not compatible with the optimizer, as
2225 	 * we are generating jmp instructions within a normal
2226 	 * slist of instructions
2227 	 */
2228 	cstate->no_optimize = 1;
2229 
2230 	/*
2231 	 * Generate code to load the length of the radio header into
2232 	 * the register assigned to hold that length, if one has been
2233 	 * assigned.  (If one hasn't been assigned, no code we've
2234 	 * generated uses that prefix, so we don't need to generate any
2235 	 * code to load it.)
2236 	 *
2237 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2238 	 * or always use the AVS header rather than the Prism header.
2239 	 * We load a 4-byte big-endian value at the beginning of the
2240 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2241 	 * it's equal to 0x80211000.  If so, that indicates that it's
2242 	 * an AVS header (the masked-out bits are the version number).
2243 	 * Otherwise, it's a Prism header.
2244 	 *
2245 	 * XXX - the Prism header is also, in theory, variable-length,
2246 	 * but no known software generates headers that aren't 144
2247 	 * bytes long.
2248 	 */
2249 	if (cstate->off_linkhdr.reg != -1) {
2250 		/*
2251 		 * Load the cookie.
2252 		 */
2253 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2254 		s1->s.k = 0;
2255 
2256 		/*
2257 		 * AND it with 0xFFFFF000.
2258 		 */
2259 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2260 		s2->s.k = 0xFFFFF000;
2261 		sappend(s1, s2);
2262 
2263 		/*
2264 		 * Compare with 0x80211000.
2265 		 */
2266 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2267 		sjeq_avs_cookie->s.k = 0x80211000;
2268 		sappend(s1, sjeq_avs_cookie);
2269 
2270 		/*
2271 		 * If it's AVS:
2272 		 *
2273 		 * The 4 bytes at an offset of 4 from the beginning of
2274 		 * the AVS header are the length of the AVS header.
2275 		 * That field is big-endian.
2276 		 */
2277 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2278 		s2->s.k = 4;
2279 		sappend(s1, s2);
2280 		sjeq_avs_cookie->s.jt = s2;
2281 
2282 		/*
2283 		 * Now jump to the code to allocate a register
2284 		 * into which to save the header length and
2285 		 * store the length there.  (The "jump always"
2286 		 * instruction needs to have the k field set;
2287 		 * it's added to the PC, so, as we're jumping
2288 		 * over a single instruction, it should be 1.)
2289 		 */
2290 		sjcommon = new_stmt(cstate, JMP(BPF_JA));
2291 		sjcommon->s.k = 1;
2292 		sappend(s1, sjcommon);
2293 
2294 		/*
2295 		 * Now for the code that handles the Prism header.
2296 		 * Just load the length of the Prism header (144)
2297 		 * into the A register.  Have the test for an AVS
2298 		 * header branch here if we don't have an AVS header.
2299 		 */
2300 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2301 		s2->s.k = 144;
2302 		sappend(s1, s2);
2303 		sjeq_avs_cookie->s.jf = s2;
2304 
2305 		/*
2306 		 * Now allocate a register to hold that value and store
2307 		 * it.  The code for the AVS header will jump here after
2308 		 * loading the length of the AVS header.
2309 		 */
2310 		s2 = new_stmt(cstate, BPF_ST);
2311 		s2->s.k = cstate->off_linkhdr.reg;
2312 		sappend(s1, s2);
2313 		sjcommon->s.jf = s2;
2314 
2315 		/*
2316 		 * Now move it into the X register.
2317 		 */
2318 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2319 		sappend(s1, s2);
2320 
2321 		return (s1);
2322 	} else
2323 		return (NULL);
2324 }
2325 
2326 static struct slist *
2327 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2328 {
2329 	struct slist *s1, *s2;
2330 
2331 	/*
2332 	 * Generate code to load the length of the AVS header into
2333 	 * the register assigned to hold that length, if one has been
2334 	 * assigned.  (If one hasn't been assigned, no code we've
2335 	 * generated uses that prefix, so we don't need to generate any
2336 	 * code to load it.)
2337 	 */
2338 	if (cstate->off_linkhdr.reg != -1) {
2339 		/*
2340 		 * The 4 bytes at an offset of 4 from the beginning of
2341 		 * the AVS header are the length of the AVS header.
2342 		 * That field is big-endian.
2343 		 */
2344 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2345 		s1->s.k = 4;
2346 
2347 		/*
2348 		 * Now allocate a register to hold that value and store
2349 		 * it.
2350 		 */
2351 		s2 = new_stmt(cstate, BPF_ST);
2352 		s2->s.k = cstate->off_linkhdr.reg;
2353 		sappend(s1, s2);
2354 
2355 		/*
2356 		 * Now move it into the X register.
2357 		 */
2358 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2359 		sappend(s1, s2);
2360 
2361 		return (s1);
2362 	} else
2363 		return (NULL);
2364 }
2365 
2366 static struct slist *
2367 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2368 {
2369 	struct slist *s1, *s2;
2370 
2371 	/*
2372 	 * Generate code to load the length of the radiotap header into
2373 	 * the register assigned to hold that length, if one has been
2374 	 * assigned.  (If one hasn't been assigned, no code we've
2375 	 * generated uses that prefix, so we don't need to generate any
2376 	 * code to load it.)
2377 	 */
2378 	if (cstate->off_linkhdr.reg != -1) {
2379 		/*
2380 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2381 		 * of the radiotap header are the length of the radiotap
2382 		 * header; unfortunately, it's little-endian, so we have
2383 		 * to load it a byte at a time and construct the value.
2384 		 */
2385 
2386 		/*
2387 		 * Load the high-order byte, at an offset of 3, shift it
2388 		 * left a byte, and put the result in the X register.
2389 		 */
2390 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2391 		s1->s.k = 3;
2392 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2393 		sappend(s1, s2);
2394 		s2->s.k = 8;
2395 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2396 		sappend(s1, s2);
2397 
2398 		/*
2399 		 * Load the next byte, at an offset of 2, and OR the
2400 		 * value from the X register into it.
2401 		 */
2402 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2403 		sappend(s1, s2);
2404 		s2->s.k = 2;
2405 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2406 		sappend(s1, s2);
2407 
2408 		/*
2409 		 * Now allocate a register to hold that value and store
2410 		 * it.
2411 		 */
2412 		s2 = new_stmt(cstate, BPF_ST);
2413 		s2->s.k = cstate->off_linkhdr.reg;
2414 		sappend(s1, s2);
2415 
2416 		/*
2417 		 * Now move it into the X register.
2418 		 */
2419 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2420 		sappend(s1, s2);
2421 
2422 		return (s1);
2423 	} else
2424 		return (NULL);
2425 }
2426 
2427 /*
2428  * At the moment we treat PPI as normal Radiotap encoded
2429  * packets. The difference is in the function that generates
2430  * the code at the beginning to compute the header length.
2431  * Since this code generator of PPI supports bare 802.11
2432  * encapsulation only (i.e. the encapsulated DLT should be
2433  * DLT_IEEE802_11) we generate code to check for this too;
2434  * that's done in finish_parse().
2435  */
2436 static struct slist *
2437 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2438 {
2439 	struct slist *s1, *s2;
2440 
2441 	/*
2442 	 * Generate code to load the length of the radiotap header
2443 	 * into the register assigned to hold that length, if one has
2444 	 * been assigned.
2445 	 */
2446 	if (cstate->off_linkhdr.reg != -1) {
2447 		/*
2448 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2449 		 * of the radiotap header are the length of the radiotap
2450 		 * header; unfortunately, it's little-endian, so we have
2451 		 * to load it a byte at a time and construct the value.
2452 		 */
2453 
2454 		/*
2455 		 * Load the high-order byte, at an offset of 3, shift it
2456 		 * left a byte, and put the result in the X register.
2457 		 */
2458 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2459 		s1->s.k = 3;
2460 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2461 		sappend(s1, s2);
2462 		s2->s.k = 8;
2463 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2464 		sappend(s1, s2);
2465 
2466 		/*
2467 		 * Load the next byte, at an offset of 2, and OR the
2468 		 * value from the X register into it.
2469 		 */
2470 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2471 		sappend(s1, s2);
2472 		s2->s.k = 2;
2473 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2474 		sappend(s1, s2);
2475 
2476 		/*
2477 		 * Now allocate a register to hold that value and store
2478 		 * it.
2479 		 */
2480 		s2 = new_stmt(cstate, BPF_ST);
2481 		s2->s.k = cstate->off_linkhdr.reg;
2482 		sappend(s1, s2);
2483 
2484 		/*
2485 		 * Now move it into the X register.
2486 		 */
2487 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2488 		sappend(s1, s2);
2489 
2490 		return (s1);
2491 	} else
2492 		return (NULL);
2493 }
2494 
2495 /*
2496  * Load a value relative to the beginning of the link-layer header after the 802.11
2497  * header, i.e. LLC_SNAP.
2498  * The link-layer header doesn't necessarily begin at the beginning
2499  * of the packet data; there might be a variable-length prefix containing
2500  * radio information.
2501  */
2502 static struct slist *
2503 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2504 {
2505 	struct slist *s2;
2506 	struct slist *sjset_data_frame_1;
2507 	struct slist *sjset_data_frame_2;
2508 	struct slist *sjset_qos;
2509 	struct slist *sjset_radiotap_flags_present;
2510 	struct slist *sjset_radiotap_ext_present;
2511 	struct slist *sjset_radiotap_tsft_present;
2512 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2513 	struct slist *s_roundup;
2514 
2515 	if (cstate->off_linkpl.reg == -1) {
2516 		/*
2517 		 * No register has been assigned to the offset of
2518 		 * the link-layer payload, which means nobody needs
2519 		 * it; don't bother computing it - just return
2520 		 * what we already have.
2521 		 */
2522 		return (s);
2523 	}
2524 
2525 	/*
2526 	 * This code is not compatible with the optimizer, as
2527 	 * we are generating jmp instructions within a normal
2528 	 * slist of instructions
2529 	 */
2530 	cstate->no_optimize = 1;
2531 
2532 	/*
2533 	 * If "s" is non-null, it has code to arrange that the X register
2534 	 * contains the length of the prefix preceding the link-layer
2535 	 * header.
2536 	 *
2537 	 * Otherwise, the length of the prefix preceding the link-layer
2538 	 * header is "off_outermostlinkhdr.constant_part".
2539 	 */
2540 	if (s == NULL) {
2541 		/*
2542 		 * There is no variable-length header preceding the
2543 		 * link-layer header.
2544 		 *
2545 		 * Load the length of the fixed-length prefix preceding
2546 		 * the link-layer header (if any) into the X register,
2547 		 * and store it in the cstate->off_linkpl.reg register.
2548 		 * That length is off_outermostlinkhdr.constant_part.
2549 		 */
2550 		s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2551 		s->s.k = cstate->off_outermostlinkhdr.constant_part;
2552 	}
2553 
2554 	/*
2555 	 * The X register contains the offset of the beginning of the
2556 	 * link-layer header; add 24, which is the minimum length
2557 	 * of the MAC header for a data frame, to that, and store it
2558 	 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2559 	 * which is at the offset in the X register, with an indexed load.
2560 	 */
2561 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2562 	sappend(s, s2);
2563 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2564 	s2->s.k = 24;
2565 	sappend(s, s2);
2566 	s2 = new_stmt(cstate, BPF_ST);
2567 	s2->s.k = cstate->off_linkpl.reg;
2568 	sappend(s, s2);
2569 
2570 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2571 	s2->s.k = 0;
2572 	sappend(s, s2);
2573 
2574 	/*
2575 	 * Check the Frame Control field to see if this is a data frame;
2576 	 * a data frame has the 0x08 bit (b3) in that field set and the
2577 	 * 0x04 bit (b2) clear.
2578 	 */
2579 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2580 	sjset_data_frame_1->s.k = 0x08;
2581 	sappend(s, sjset_data_frame_1);
2582 
2583 	/*
2584 	 * If b3 is set, test b2, otherwise go to the first statement of
2585 	 * the rest of the program.
2586 	 */
2587 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2588 	sjset_data_frame_2->s.k = 0x04;
2589 	sappend(s, sjset_data_frame_2);
2590 	sjset_data_frame_1->s.jf = snext;
2591 
2592 	/*
2593 	 * If b2 is not set, this is a data frame; test the QoS bit.
2594 	 * Otherwise, go to the first statement of the rest of the
2595 	 * program.
2596 	 */
2597 	sjset_data_frame_2->s.jt = snext;
2598 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2599 	sjset_qos->s.k = 0x80;	/* QoS bit */
2600 	sappend(s, sjset_qos);
2601 
2602 	/*
2603 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2604 	 * field.
2605 	 * Otherwise, go to the first statement of the rest of the
2606 	 * program.
2607 	 */
2608 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2609 	s2->s.k = cstate->off_linkpl.reg;
2610 	sappend(s, s2);
2611 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2612 	s2->s.k = 2;
2613 	sappend(s, s2);
2614 	s2 = new_stmt(cstate, BPF_ST);
2615 	s2->s.k = cstate->off_linkpl.reg;
2616 	sappend(s, s2);
2617 
2618 	/*
2619 	 * If we have a radiotap header, look at it to see whether
2620 	 * there's Atheros padding between the MAC-layer header
2621 	 * and the payload.
2622 	 *
2623 	 * Note: all of the fields in the radiotap header are
2624 	 * little-endian, so we byte-swap all of the values
2625 	 * we test against, as they will be loaded as big-endian
2626 	 * values.
2627 	 *
2628 	 * XXX - in the general case, we would have to scan through
2629 	 * *all* the presence bits, if there's more than one word of
2630 	 * presence bits.  That would require a loop, meaning that
2631 	 * we wouldn't be able to run the filter in the kernel.
2632 	 *
2633 	 * We assume here that the Atheros adapters that insert the
2634 	 * annoying padding don't have multiple antennae and therefore
2635 	 * do not generate radiotap headers with multiple presence words.
2636 	 */
2637 	if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2638 		/*
2639 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2640 		 * in the first presence flag word?
2641 		 */
2642 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2643 		s2->s.k = 4;
2644 		sappend(s, s2);
2645 
2646 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2647 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2648 		sappend(s, sjset_radiotap_flags_present);
2649 
2650 		/*
2651 		 * If not, skip all of this.
2652 		 */
2653 		sjset_radiotap_flags_present->s.jf = snext;
2654 
2655 		/*
2656 		 * Otherwise, is the "extension" bit set in that word?
2657 		 */
2658 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2659 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2660 		sappend(s, sjset_radiotap_ext_present);
2661 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2662 
2663 		/*
2664 		 * If so, skip all of this.
2665 		 */
2666 		sjset_radiotap_ext_present->s.jt = snext;
2667 
2668 		/*
2669 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2670 		 */
2671 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2672 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2673 		sappend(s, sjset_radiotap_tsft_present);
2674 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2675 
2676 		/*
2677 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2678 		 * at an offset of 16 from the beginning of the raw packet
2679 		 * data (8 bytes for the radiotap header and 8 bytes for
2680 		 * the TSFT field).
2681 		 *
2682 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2683 		 * is set.
2684 		 */
2685 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2686 		s2->s.k = 16;
2687 		sappend(s, s2);
2688 		sjset_radiotap_tsft_present->s.jt = s2;
2689 
2690 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2691 		sjset_tsft_datapad->s.k = 0x20;
2692 		sappend(s, sjset_tsft_datapad);
2693 
2694 		/*
2695 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2696 		 * at an offset of 8 from the beginning of the raw packet
2697 		 * data (8 bytes for the radiotap header).
2698 		 *
2699 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2700 		 * is set.
2701 		 */
2702 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2703 		s2->s.k = 8;
2704 		sappend(s, s2);
2705 		sjset_radiotap_tsft_present->s.jf = s2;
2706 
2707 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2708 		sjset_notsft_datapad->s.k = 0x20;
2709 		sappend(s, sjset_notsft_datapad);
2710 
2711 		/*
2712 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2713 		 * set, round the length of the 802.11 header to
2714 		 * a multiple of 4.  Do that by adding 3 and then
2715 		 * dividing by and multiplying by 4, which we do by
2716 		 * ANDing with ~3.
2717 		 */
2718 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2719 		s_roundup->s.k = cstate->off_linkpl.reg;
2720 		sappend(s, s_roundup);
2721 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2722 		s2->s.k = 3;
2723 		sappend(s, s2);
2724 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2725 		s2->s.k = ~3;
2726 		sappend(s, s2);
2727 		s2 = new_stmt(cstate, BPF_ST);
2728 		s2->s.k = cstate->off_linkpl.reg;
2729 		sappend(s, s2);
2730 
2731 		sjset_tsft_datapad->s.jt = s_roundup;
2732 		sjset_tsft_datapad->s.jf = snext;
2733 		sjset_notsft_datapad->s.jt = s_roundup;
2734 		sjset_notsft_datapad->s.jf = snext;
2735 	} else
2736 		sjset_qos->s.jf = snext;
2737 
2738 	return s;
2739 }
2740 
2741 static void
2742 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2743 {
2744 	struct slist *s;
2745 
2746 	/* There is an implicit dependency between the link
2747 	 * payload and link header since the payload computation
2748 	 * includes the variable part of the header. Therefore,
2749 	 * if nobody else has allocated a register for the link
2750 	 * header and we need it, do it now. */
2751 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2752 	    cstate->off_linkhdr.reg == -1)
2753 		cstate->off_linkhdr.reg = alloc_reg(cstate);
2754 
2755 	/*
2756 	 * For link-layer types that have a variable-length header
2757 	 * preceding the link-layer header, generate code to load
2758 	 * the offset of the link-layer header into the register
2759 	 * assigned to that offset, if any.
2760 	 *
2761 	 * XXX - this, and the next switch statement, won't handle
2762 	 * encapsulation of 802.11 or 802.11+radio information in
2763 	 * some other protocol stack.  That's significantly more
2764 	 * complicated.
2765 	 */
2766 	switch (cstate->outermostlinktype) {
2767 
2768 	case DLT_PRISM_HEADER:
2769 		s = gen_load_prism_llprefixlen(cstate);
2770 		break;
2771 
2772 	case DLT_IEEE802_11_RADIO_AVS:
2773 		s = gen_load_avs_llprefixlen(cstate);
2774 		break;
2775 
2776 	case DLT_IEEE802_11_RADIO:
2777 		s = gen_load_radiotap_llprefixlen(cstate);
2778 		break;
2779 
2780 	case DLT_PPI:
2781 		s = gen_load_ppi_llprefixlen(cstate);
2782 		break;
2783 
2784 	default:
2785 		s = NULL;
2786 		break;
2787 	}
2788 
2789 	/*
2790 	 * For link-layer types that have a variable-length link-layer
2791 	 * header, generate code to load the offset of the link-layer
2792 	 * payload into the register assigned to that offset, if any.
2793 	 */
2794 	switch (cstate->outermostlinktype) {
2795 
2796 	case DLT_IEEE802_11:
2797 	case DLT_PRISM_HEADER:
2798 	case DLT_IEEE802_11_RADIO_AVS:
2799 	case DLT_IEEE802_11_RADIO:
2800 	case DLT_PPI:
2801 		s = gen_load_802_11_header_len(cstate, s, b->stmts);
2802 		break;
2803 	}
2804 
2805 	/*
2806 	 * If we have any offset-loading code, append all the
2807 	 * existing statements in the block to those statements,
2808 	 * and make the resulting list the list of statements
2809 	 * for the block.
2810 	 */
2811 	if (s != NULL) {
2812 		sappend(s, b->stmts);
2813 		b->stmts = s;
2814 	}
2815 }
2816 
2817 static struct block *
2818 gen_ppi_dlt_check(compiler_state_t *cstate)
2819 {
2820 	struct slist *s_load_dlt;
2821 	struct block *b;
2822 
2823 	if (cstate->linktype == DLT_PPI)
2824 	{
2825 		/* Create the statements that check for the DLT
2826 		 */
2827 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2828 		s_load_dlt->s.k = 4;
2829 
2830 		b = new_block(cstate, JMP(BPF_JEQ));
2831 
2832 		b->stmts = s_load_dlt;
2833 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2834 	}
2835 	else
2836 	{
2837 		b = NULL;
2838 	}
2839 
2840 	return b;
2841 }
2842 
2843 /*
2844  * Take an absolute offset, and:
2845  *
2846  *    if it has no variable part, return NULL;
2847  *
2848  *    if it has a variable part, generate code to load the register
2849  *    containing that variable part into the X register, returning
2850  *    a pointer to that code - if no register for that offset has
2851  *    been allocated, allocate it first.
2852  *
2853  * (The code to set that register will be generated later, but will
2854  * be placed earlier in the code sequence.)
2855  */
2856 static struct slist *
2857 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
2858 {
2859 	struct slist *s;
2860 
2861 	if (off->is_variable) {
2862 		if (off->reg == -1) {
2863 			/*
2864 			 * We haven't yet assigned a register for the
2865 			 * variable part of the offset of the link-layer
2866 			 * header; allocate one.
2867 			 */
2868 			off->reg = alloc_reg(cstate);
2869 		}
2870 
2871 		/*
2872 		 * Load the register containing the variable part of the
2873 		 * offset of the link-layer header into the X register.
2874 		 */
2875 		s = new_stmt(cstate, BPF_LDX|BPF_MEM);
2876 		s->s.k = off->reg;
2877 		return s;
2878 	} else {
2879 		/*
2880 		 * That offset isn't variable, there's no variable part,
2881 		 * so we don't need to generate any code.
2882 		 */
2883 		return NULL;
2884 	}
2885 }
2886 
2887 /*
2888  * Map an Ethernet type to the equivalent PPP type.
2889  */
2890 static int
2891 ethertype_to_ppptype(proto)
2892 	int proto;
2893 {
2894 	switch (proto) {
2895 
2896 	case ETHERTYPE_IP:
2897 		proto = PPP_IP;
2898 		break;
2899 
2900 	case ETHERTYPE_IPV6:
2901 		proto = PPP_IPV6;
2902 		break;
2903 
2904 	case ETHERTYPE_DN:
2905 		proto = PPP_DECNET;
2906 		break;
2907 
2908 	case ETHERTYPE_ATALK:
2909 		proto = PPP_APPLE;
2910 		break;
2911 
2912 	case ETHERTYPE_NS:
2913 		proto = PPP_NS;
2914 		break;
2915 
2916 	case LLCSAP_ISONS:
2917 		proto = PPP_OSI;
2918 		break;
2919 
2920 	case LLCSAP_8021D:
2921 		/*
2922 		 * I'm assuming the "Bridging PDU"s that go
2923 		 * over PPP are Spanning Tree Protocol
2924 		 * Bridging PDUs.
2925 		 */
2926 		proto = PPP_BRPDU;
2927 		break;
2928 
2929 	case LLCSAP_IPX:
2930 		proto = PPP_IPX;
2931 		break;
2932 	}
2933 	return (proto);
2934 }
2935 
2936 /*
2937  * Generate any tests that, for encapsulation of a link-layer packet
2938  * inside another protocol stack, need to be done to check for those
2939  * link-layer packets (and that haven't already been done by a check
2940  * for that encapsulation).
2941  */
2942 static struct block *
2943 gen_prevlinkhdr_check(compiler_state_t *cstate)
2944 {
2945 	struct block *b0;
2946 
2947 	if (cstate->is_geneve)
2948 		return gen_geneve_ll_check(cstate);
2949 
2950 	switch (cstate->prevlinktype) {
2951 
2952 	case DLT_SUNATM:
2953 		/*
2954 		 * This is LANE-encapsulated Ethernet; check that the LANE
2955 		 * packet doesn't begin with an LE Control marker, i.e.
2956 		 * that it's data, not a control message.
2957 		 *
2958 		 * (We've already generated a test for LANE.)
2959 		 */
2960 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
2961 		gen_not(b0);
2962 		return b0;
2963 
2964 	default:
2965 		/*
2966 		 * No such tests are necessary.
2967 		 */
2968 		return NULL;
2969 	}
2970 	/*NOTREACHED*/
2971 }
2972 
2973 /*
2974  * The three different values we should check for when checking for an
2975  * IPv6 packet with DLT_NULL.
2976  */
2977 #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */
2978 #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */
2979 #define BSD_AFNUM_INET6_DARWIN	30	/* OS X, iOS, other Darwin-based OSes */
2980 
2981 /*
2982  * Generate code to match a particular packet type by matching the
2983  * link-layer type field or fields in the 802.2 LLC header.
2984  *
2985  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2986  * value, if <= ETHERMTU.
2987  */
2988 static struct block *
2989 gen_linktype(compiler_state_t *cstate, int proto)
2990 {
2991 	struct block *b0, *b1, *b2;
2992 	const char *description;
2993 
2994 	/* are we checking MPLS-encapsulated packets? */
2995 	if (cstate->label_stack_depth > 0) {
2996 		switch (proto) {
2997 		case ETHERTYPE_IP:
2998 		case PPP_IP:
2999 			/* FIXME add other L3 proto IDs */
3000 			return gen_mpls_linktype(cstate, Q_IP);
3001 
3002 		case ETHERTYPE_IPV6:
3003 		case PPP_IPV6:
3004 			/* FIXME add other L3 proto IDs */
3005 			return gen_mpls_linktype(cstate, Q_IPV6);
3006 
3007 		default:
3008 			bpf_error(cstate, "unsupported protocol over mpls");
3009 			/* NOTREACHED */
3010 		}
3011 	}
3012 
3013 	switch (cstate->linktype) {
3014 
3015 	case DLT_EN10MB:
3016 	case DLT_NETANALYZER:
3017 	case DLT_NETANALYZER_TRANSPARENT:
3018 		/* Geneve has an EtherType regardless of whether there is an
3019 		 * L2 header. */
3020 		if (!cstate->is_geneve)
3021 			b0 = gen_prevlinkhdr_check(cstate);
3022 		else
3023 			b0 = NULL;
3024 
3025 		b1 = gen_ether_linktype(cstate, proto);
3026 		if (b0 != NULL)
3027 			gen_and(b0, b1);
3028 		return b1;
3029 		/*NOTREACHED*/
3030 		break;
3031 
3032 	case DLT_C_HDLC:
3033 		switch (proto) {
3034 
3035 		case LLCSAP_ISONS:
3036 			proto = (proto << 8 | LLCSAP_ISONS);
3037 			/* fall through */
3038 
3039 		default:
3040 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3041 			/*NOTREACHED*/
3042 			break;
3043 		}
3044 		break;
3045 
3046 	case DLT_IEEE802_11:
3047 	case DLT_PRISM_HEADER:
3048 	case DLT_IEEE802_11_RADIO_AVS:
3049 	case DLT_IEEE802_11_RADIO:
3050 	case DLT_PPI:
3051 		/*
3052 		 * Check that we have a data frame.
3053 		 */
3054 		b0 = gen_check_802_11_data_frame(cstate);
3055 
3056 		/*
3057 		 * Now check for the specified link-layer type.
3058 		 */
3059 		b1 = gen_llc_linktype(cstate, proto);
3060 		gen_and(b0, b1);
3061 		return b1;
3062 		/*NOTREACHED*/
3063 		break;
3064 
3065 	case DLT_FDDI:
3066 		/*
3067 		 * XXX - check for LLC frames.
3068 		 */
3069 		return gen_llc_linktype(cstate, proto);
3070 		/*NOTREACHED*/
3071 		break;
3072 
3073 	case DLT_IEEE802:
3074 		/*
3075 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3076 		 */
3077 		return gen_llc_linktype(cstate, proto);
3078 		/*NOTREACHED*/
3079 		break;
3080 
3081 	case DLT_ATM_RFC1483:
3082 	case DLT_ATM_CLIP:
3083 	case DLT_IP_OVER_FC:
3084 		return gen_llc_linktype(cstate, proto);
3085 		/*NOTREACHED*/
3086 		break;
3087 
3088 	case DLT_SUNATM:
3089 		/*
3090 		 * Check for an LLC-encapsulated version of this protocol;
3091 		 * if we were checking for LANE, linktype would no longer
3092 		 * be DLT_SUNATM.
3093 		 *
3094 		 * Check for LLC encapsulation and then check the protocol.
3095 		 */
3096 		b0 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3097 		b1 = gen_llc_linktype(cstate, proto);
3098 		gen_and(b0, b1);
3099 		return b1;
3100 		/*NOTREACHED*/
3101 		break;
3102 
3103 	case DLT_LINUX_SLL:
3104 		return gen_linux_sll_linktype(cstate, proto);
3105 		/*NOTREACHED*/
3106 		break;
3107 
3108 	case DLT_SLIP:
3109 	case DLT_SLIP_BSDOS:
3110 	case DLT_RAW:
3111 		/*
3112 		 * These types don't provide any type field; packets
3113 		 * are always IPv4 or IPv6.
3114 		 *
3115 		 * XXX - for IPv4, check for a version number of 4, and,
3116 		 * for IPv6, check for a version number of 6?
3117 		 */
3118 		switch (proto) {
3119 
3120 		case ETHERTYPE_IP:
3121 			/* Check for a version number of 4. */
3122 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3123 
3124 		case ETHERTYPE_IPV6:
3125 			/* Check for a version number of 6. */
3126 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3127 
3128 		default:
3129 			return gen_false(cstate);	/* always false */
3130 		}
3131 		/*NOTREACHED*/
3132 		break;
3133 
3134 	case DLT_IPV4:
3135 		/*
3136 		 * Raw IPv4, so no type field.
3137 		 */
3138 		if (proto == ETHERTYPE_IP)
3139 			return gen_true(cstate);	/* always true */
3140 
3141 		/* Checking for something other than IPv4; always false */
3142 		return gen_false(cstate);
3143 		/*NOTREACHED*/
3144 		break;
3145 
3146 	case DLT_IPV6:
3147 		/*
3148 		 * Raw IPv6, so no type field.
3149 		 */
3150 		if (proto == ETHERTYPE_IPV6)
3151 			return gen_true(cstate);	/* always true */
3152 
3153 		/* Checking for something other than IPv6; always false */
3154 		return gen_false(cstate);
3155 		/*NOTREACHED*/
3156 		break;
3157 
3158 	case DLT_PPP:
3159 	case DLT_PPP_PPPD:
3160 	case DLT_PPP_SERIAL:
3161 	case DLT_PPP_ETHER:
3162 		/*
3163 		 * We use Ethernet protocol types inside libpcap;
3164 		 * map them to the corresponding PPP protocol types.
3165 		 */
3166 		proto = ethertype_to_ppptype(proto);
3167 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3168 		/*NOTREACHED*/
3169 		break;
3170 
3171 	case DLT_PPP_BSDOS:
3172 		/*
3173 		 * We use Ethernet protocol types inside libpcap;
3174 		 * map them to the corresponding PPP protocol types.
3175 		 */
3176 		switch (proto) {
3177 
3178 		case ETHERTYPE_IP:
3179 			/*
3180 			 * Also check for Van Jacobson-compressed IP.
3181 			 * XXX - do this for other forms of PPP?
3182 			 */
3183 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3184 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3185 			gen_or(b0, b1);
3186 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3187 			gen_or(b1, b0);
3188 			return b0;
3189 
3190 		default:
3191 			proto = ethertype_to_ppptype(proto);
3192 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3193 				(bpf_int32)proto);
3194 		}
3195 		/*NOTREACHED*/
3196 		break;
3197 
3198 	case DLT_NULL:
3199 	case DLT_LOOP:
3200 	case DLT_ENC:
3201 		switch (proto) {
3202 
3203 		case ETHERTYPE_IP:
3204 			return (gen_loopback_linktype(cstate, AF_INET));
3205 
3206 		case ETHERTYPE_IPV6:
3207 			/*
3208 			 * AF_ values may, unfortunately, be platform-
3209 			 * dependent; AF_INET isn't, because everybody
3210 			 * used 4.2BSD's value, but AF_INET6 is, because
3211 			 * 4.2BSD didn't have a value for it (given that
3212 			 * IPv6 didn't exist back in the early 1980's),
3213 			 * and they all picked their own values.
3214 			 *
3215 			 * This means that, if we're reading from a
3216 			 * savefile, we need to check for all the
3217 			 * possible values.
3218 			 *
3219 			 * If we're doing a live capture, we only need
3220 			 * to check for this platform's value; however,
3221 			 * Npcap uses 24, which isn't Windows's AF_INET6
3222 			 * value.  (Given the multiple different values,
3223 			 * programs that read pcap files shouldn't be
3224 			 * checking for their platform's AF_INET6 value
3225 			 * anyway, they should check for all of the
3226 			 * possible values. and they might as well do
3227 			 * that even for live captures.)
3228 			 */
3229 			if (cstate->bpf_pcap->rfile != NULL) {
3230 				/*
3231 				 * Savefile - check for all three
3232 				 * possible IPv6 values.
3233 				 */
3234 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3235 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3236 				gen_or(b0, b1);
3237 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3238 				gen_or(b0, b1);
3239 				return (b1);
3240 			} else {
3241 				/*
3242 				 * Live capture, so we only need to
3243 				 * check for the value used on this
3244 				 * platform.
3245 				 */
3246 #ifdef _WIN32
3247 				/*
3248 				 * Npcap doesn't use Windows's AF_INET6,
3249 				 * as that collides with AF_IPX on
3250 				 * some BSDs (both have the value 23).
3251 				 * Instead, it uses 24.
3252 				 */
3253 				return (gen_loopback_linktype(cstate, 24));
3254 #else /* _WIN32 */
3255 #ifdef AF_INET6
3256 				return (gen_loopback_linktype(cstate, AF_INET6));
3257 #else /* AF_INET6 */
3258 				/*
3259 				 * I guess this platform doesn't support
3260 				 * IPv6, so we just reject all packets.
3261 				 */
3262 				return gen_false(cstate);
3263 #endif /* AF_INET6 */
3264 #endif /* _WIN32 */
3265 			}
3266 
3267 		default:
3268 			/*
3269 			 * Not a type on which we support filtering.
3270 			 * XXX - support those that have AF_ values
3271 			 * #defined on this platform, at least?
3272 			 */
3273 			return gen_false(cstate);
3274 		}
3275 
3276 #ifdef HAVE_NET_PFVAR_H
3277 	case DLT_PFLOG:
3278 		/*
3279 		 * af field is host byte order in contrast to the rest of
3280 		 * the packet.
3281 		 */
3282 		if (proto == ETHERTYPE_IP)
3283 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3284 			    BPF_B, (bpf_int32)AF_INET));
3285 		else if (proto == ETHERTYPE_IPV6)
3286 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3287 			    BPF_B, (bpf_int32)AF_INET6));
3288 		else
3289 			return gen_false(cstate);
3290 		/*NOTREACHED*/
3291 		break;
3292 #endif /* HAVE_NET_PFVAR_H */
3293 
3294 	case DLT_ARCNET:
3295 	case DLT_ARCNET_LINUX:
3296 		/*
3297 		 * XXX should we check for first fragment if the protocol
3298 		 * uses PHDS?
3299 		 */
3300 		switch (proto) {
3301 
3302 		default:
3303 			return gen_false(cstate);
3304 
3305 		case ETHERTYPE_IPV6:
3306 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3307 				(bpf_int32)ARCTYPE_INET6));
3308 
3309 		case ETHERTYPE_IP:
3310 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3311 				     (bpf_int32)ARCTYPE_IP);
3312 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3313 				     (bpf_int32)ARCTYPE_IP_OLD);
3314 			gen_or(b0, b1);
3315 			return (b1);
3316 
3317 		case ETHERTYPE_ARP:
3318 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3319 				     (bpf_int32)ARCTYPE_ARP);
3320 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3321 				     (bpf_int32)ARCTYPE_ARP_OLD);
3322 			gen_or(b0, b1);
3323 			return (b1);
3324 
3325 		case ETHERTYPE_REVARP:
3326 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3327 					(bpf_int32)ARCTYPE_REVARP));
3328 
3329 		case ETHERTYPE_ATALK:
3330 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3331 					(bpf_int32)ARCTYPE_ATALK));
3332 		}
3333 		/*NOTREACHED*/
3334 		break;
3335 
3336 	case DLT_LTALK:
3337 		switch (proto) {
3338 		case ETHERTYPE_ATALK:
3339 			return gen_true(cstate);
3340 		default:
3341 			return gen_false(cstate);
3342 		}
3343 		/*NOTREACHED*/
3344 		break;
3345 
3346 	case DLT_FRELAY:
3347 		/*
3348 		 * XXX - assumes a 2-byte Frame Relay header with
3349 		 * DLCI and flags.  What if the address is longer?
3350 		 */
3351 		switch (proto) {
3352 
3353 		case ETHERTYPE_IP:
3354 			/*
3355 			 * Check for the special NLPID for IP.
3356 			 */
3357 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3358 
3359 		case ETHERTYPE_IPV6:
3360 			/*
3361 			 * Check for the special NLPID for IPv6.
3362 			 */
3363 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3364 
3365 		case LLCSAP_ISONS:
3366 			/*
3367 			 * Check for several OSI protocols.
3368 			 *
3369 			 * Frame Relay packets typically have an OSI
3370 			 * NLPID at the beginning; we check for each
3371 			 * of them.
3372 			 *
3373 			 * What we check for is the NLPID and a frame
3374 			 * control field of UI, i.e. 0x03 followed
3375 			 * by the NLPID.
3376 			 */
3377 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3378 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3379 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3380 			gen_or(b1, b2);
3381 			gen_or(b0, b2);
3382 			return b2;
3383 
3384 		default:
3385 			return gen_false(cstate);
3386 		}
3387 		/*NOTREACHED*/
3388 		break;
3389 
3390 	case DLT_MFR:
3391 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3392 
3393         case DLT_JUNIPER_MFR:
3394         case DLT_JUNIPER_MLFR:
3395         case DLT_JUNIPER_MLPPP:
3396 	case DLT_JUNIPER_ATM1:
3397 	case DLT_JUNIPER_ATM2:
3398 	case DLT_JUNIPER_PPPOE:
3399 	case DLT_JUNIPER_PPPOE_ATM:
3400         case DLT_JUNIPER_GGSN:
3401         case DLT_JUNIPER_ES:
3402         case DLT_JUNIPER_MONITOR:
3403         case DLT_JUNIPER_SERVICES:
3404         case DLT_JUNIPER_ETHER:
3405         case DLT_JUNIPER_PPP:
3406         case DLT_JUNIPER_FRELAY:
3407         case DLT_JUNIPER_CHDLC:
3408         case DLT_JUNIPER_VP:
3409         case DLT_JUNIPER_ST:
3410         case DLT_JUNIPER_ISM:
3411         case DLT_JUNIPER_VS:
3412         case DLT_JUNIPER_SRX_E2E:
3413         case DLT_JUNIPER_FIBRECHANNEL:
3414 	case DLT_JUNIPER_ATM_CEMIC:
3415 
3416 		/* just lets verify the magic number for now -
3417 		 * on ATM we may have up to 6 different encapsulations on the wire
3418 		 * and need a lot of heuristics to figure out that the payload
3419 		 * might be;
3420 		 *
3421 		 * FIXME encapsulation specific BPF_ filters
3422 		 */
3423 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3424 
3425 	case DLT_BACNET_MS_TP:
3426 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3427 
3428 	case DLT_IPNET:
3429 		return gen_ipnet_linktype(cstate, proto);
3430 
3431 	case DLT_LINUX_IRDA:
3432 		bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3433 
3434 	case DLT_DOCSIS:
3435 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3436 
3437 	case DLT_MTP2:
3438 	case DLT_MTP2_WITH_PHDR:
3439 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3440 
3441 	case DLT_ERF:
3442 		bpf_error(cstate, "ERF link-layer type filtering not implemented");
3443 
3444 	case DLT_PFSYNC:
3445 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3446 
3447 	case DLT_LINUX_LAPD:
3448 		bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3449 
3450 	case DLT_USB_FREEBSD:
3451 	case DLT_USB_LINUX:
3452 	case DLT_USB_LINUX_MMAPPED:
3453 	case DLT_USBPCAP:
3454 		bpf_error(cstate, "USB link-layer type filtering not implemented");
3455 
3456 	case DLT_BLUETOOTH_HCI_H4:
3457 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3458 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3459 
3460 	case DLT_CAN20B:
3461 	case DLT_CAN_SOCKETCAN:
3462 		bpf_error(cstate, "CAN link-layer type filtering not implemented");
3463 
3464 	case DLT_IEEE802_15_4:
3465 	case DLT_IEEE802_15_4_LINUX:
3466 	case DLT_IEEE802_15_4_NONASK_PHY:
3467 	case DLT_IEEE802_15_4_NOFCS:
3468 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3469 
3470 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3471 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3472 
3473 	case DLT_SITA:
3474 		bpf_error(cstate, "SITA link-layer type filtering not implemented");
3475 
3476 	case DLT_RAIF1:
3477 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3478 
3479 	case DLT_IPMB:
3480 		bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3481 
3482 	case DLT_AX25_KISS:
3483 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3484 
3485 	case DLT_NFLOG:
3486 		/* Using the fixed-size NFLOG header it is possible to tell only
3487 		 * the address family of the packet, other meaningful data is
3488 		 * either missing or behind TLVs.
3489 		 */
3490 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3491 
3492 	default:
3493 		/*
3494 		 * Does this link-layer header type have a field
3495 		 * indicating the type of the next protocol?  If
3496 		 * so, off_linktype.constant_part will be the offset of that
3497 		 * field in the packet; if not, it will be OFFSET_NOT_SET.
3498 		 */
3499 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3500 			/*
3501 			 * Yes; assume it's an Ethernet type.  (If
3502 			 * it's not, it needs to be handled specially
3503 			 * above.)
3504 			 */
3505 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3506 		} else {
3507 			/*
3508 			 * No; report an error.
3509 			 */
3510 			description = pcap_datalink_val_to_description(cstate->linktype);
3511 			if (description != NULL) {
3512 				bpf_error(cstate, "%s link-layer type filtering not implemented",
3513 				    description);
3514 			} else {
3515 				bpf_error(cstate, "DLT %u link-layer type filtering not implemented",
3516 				    cstate->linktype);
3517 			}
3518 		}
3519 		break;
3520 	}
3521 }
3522 
3523 /*
3524  * Check for an LLC SNAP packet with a given organization code and
3525  * protocol type; we check the entire contents of the 802.2 LLC and
3526  * snap headers, checking for DSAP and SSAP of SNAP and a control
3527  * field of 0x03 in the LLC header, and for the specified organization
3528  * code and protocol type in the SNAP header.
3529  */
3530 static struct block *
3531 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3532 {
3533 	u_char snapblock[8];
3534 
3535 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3536 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3537 	snapblock[2] = 0x03;		/* control = UI */
3538 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3539 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3540 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3541 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3542 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3543 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3544 }
3545 
3546 /*
3547  * Generate code to match frames with an LLC header.
3548  */
3549 struct block *
3550 gen_llc(compiler_state_t *cstate)
3551 {
3552 	struct block *b0, *b1;
3553 
3554 	switch (cstate->linktype) {
3555 
3556 	case DLT_EN10MB:
3557 		/*
3558 		 * We check for an Ethernet type field less than
3559 		 * 1500, which means it's an 802.3 length field.
3560 		 */
3561 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3562 		gen_not(b0);
3563 
3564 		/*
3565 		 * Now check for the purported DSAP and SSAP not being
3566 		 * 0xFF, to rule out NetWare-over-802.3.
3567 		 */
3568 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
3569 		gen_not(b1);
3570 		gen_and(b0, b1);
3571 		return b1;
3572 
3573 	case DLT_SUNATM:
3574 		/*
3575 		 * We check for LLC traffic.
3576 		 */
3577 		b0 = gen_atmtype_abbrev(cstate, A_LLC);
3578 		return b0;
3579 
3580 	case DLT_IEEE802:	/* Token Ring */
3581 		/*
3582 		 * XXX - check for LLC frames.
3583 		 */
3584 		return gen_true(cstate);
3585 
3586 	case DLT_FDDI:
3587 		/*
3588 		 * XXX - check for LLC frames.
3589 		 */
3590 		return gen_true(cstate);
3591 
3592 	case DLT_ATM_RFC1483:
3593 		/*
3594 		 * For LLC encapsulation, these are defined to have an
3595 		 * 802.2 LLC header.
3596 		 *
3597 		 * For VC encapsulation, they don't, but there's no
3598 		 * way to check for that; the protocol used on the VC
3599 		 * is negotiated out of band.
3600 		 */
3601 		return gen_true(cstate);
3602 
3603 	case DLT_IEEE802_11:
3604 	case DLT_PRISM_HEADER:
3605 	case DLT_IEEE802_11_RADIO:
3606 	case DLT_IEEE802_11_RADIO_AVS:
3607 	case DLT_PPI:
3608 		/*
3609 		 * Check that we have a data frame.
3610 		 */
3611 		b0 = gen_check_802_11_data_frame(cstate);
3612 		return b0;
3613 
3614 	default:
3615 		bpf_error(cstate, "'llc' not supported for linktype %d", cstate->linktype);
3616 		/* NOTREACHED */
3617 	}
3618 }
3619 
3620 struct block *
3621 gen_llc_i(compiler_state_t *cstate)
3622 {
3623 	struct block *b0, *b1;
3624 	struct slist *s;
3625 
3626 	/*
3627 	 * Check whether this is an LLC frame.
3628 	 */
3629 	b0 = gen_llc(cstate);
3630 
3631 	/*
3632 	 * Load the control byte and test the low-order bit; it must
3633 	 * be clear for I frames.
3634 	 */
3635 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3636 	b1 = new_block(cstate, JMP(BPF_JSET));
3637 	b1->s.k = 0x01;
3638 	b1->stmts = s;
3639 	gen_not(b1);
3640 	gen_and(b0, b1);
3641 	return b1;
3642 }
3643 
3644 struct block *
3645 gen_llc_s(compiler_state_t *cstate)
3646 {
3647 	struct block *b0, *b1;
3648 
3649 	/*
3650 	 * Check whether this is an LLC frame.
3651 	 */
3652 	b0 = gen_llc(cstate);
3653 
3654 	/*
3655 	 * Now compare the low-order 2 bit of the control byte against
3656 	 * the appropriate value for S frames.
3657 	 */
3658 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3659 	gen_and(b0, b1);
3660 	return b1;
3661 }
3662 
3663 struct block *
3664 gen_llc_u(compiler_state_t *cstate)
3665 {
3666 	struct block *b0, *b1;
3667 
3668 	/*
3669 	 * Check whether this is an LLC frame.
3670 	 */
3671 	b0 = gen_llc(cstate);
3672 
3673 	/*
3674 	 * Now compare the low-order 2 bit of the control byte against
3675 	 * the appropriate value for U frames.
3676 	 */
3677 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3678 	gen_and(b0, b1);
3679 	return b1;
3680 }
3681 
3682 struct block *
3683 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3684 {
3685 	struct block *b0, *b1;
3686 
3687 	/*
3688 	 * Check whether this is an LLC frame.
3689 	 */
3690 	b0 = gen_llc(cstate);
3691 
3692 	/*
3693 	 * Now check for an S frame with the appropriate type.
3694 	 */
3695 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3696 	gen_and(b0, b1);
3697 	return b1;
3698 }
3699 
3700 struct block *
3701 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3702 {
3703 	struct block *b0, *b1;
3704 
3705 	/*
3706 	 * Check whether this is an LLC frame.
3707 	 */
3708 	b0 = gen_llc(cstate);
3709 
3710 	/*
3711 	 * Now check for a U frame with the appropriate type.
3712 	 */
3713 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3714 	gen_and(b0, b1);
3715 	return b1;
3716 }
3717 
3718 /*
3719  * Generate code to match a particular packet type, for link-layer types
3720  * using 802.2 LLC headers.
3721  *
3722  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3723  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3724  *
3725  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3726  * value, if <= ETHERMTU.  We use that to determine whether to
3727  * match the DSAP or both DSAP and LSAP or to check the OUI and
3728  * protocol ID in a SNAP header.
3729  */
3730 static struct block *
3731 gen_llc_linktype(compiler_state_t *cstate, int proto)
3732 {
3733 	/*
3734 	 * XXX - handle token-ring variable-length header.
3735 	 */
3736 	switch (proto) {
3737 
3738 	case LLCSAP_IP:
3739 	case LLCSAP_ISONS:
3740 	case LLCSAP_NETBEUI:
3741 		/*
3742 		 * XXX - should we check both the DSAP and the
3743 		 * SSAP, like this, or should we check just the
3744 		 * DSAP, as we do for other SAP values?
3745 		 */
3746 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3747 			     ((proto << 8) | proto));
3748 
3749 	case LLCSAP_IPX:
3750 		/*
3751 		 * XXX - are there ever SNAP frames for IPX on
3752 		 * non-Ethernet 802.x networks?
3753 		 */
3754 		return gen_cmp(cstate, OR_LLC, 0, BPF_B,
3755 		    (bpf_int32)LLCSAP_IPX);
3756 
3757 	case ETHERTYPE_ATALK:
3758 		/*
3759 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3760 		 * SNAP packets with an organization code of
3761 		 * 0x080007 (Apple, for Appletalk) and a protocol
3762 		 * type of ETHERTYPE_ATALK (Appletalk).
3763 		 *
3764 		 * XXX - check for an organization code of
3765 		 * encapsulated Ethernet as well?
3766 		 */
3767 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3768 
3769 	default:
3770 		/*
3771 		 * XXX - we don't have to check for IPX 802.3
3772 		 * here, but should we check for the IPX Ethertype?
3773 		 */
3774 		if (proto <= ETHERMTU) {
3775 			/*
3776 			 * This is an LLC SAP value, so check
3777 			 * the DSAP.
3778 			 */
3779 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)proto);
3780 		} else {
3781 			/*
3782 			 * This is an Ethernet type; we assume that it's
3783 			 * unlikely that it'll appear in the right place
3784 			 * at random, and therefore check only the
3785 			 * location that would hold the Ethernet type
3786 			 * in a SNAP frame with an organization code of
3787 			 * 0x000000 (encapsulated Ethernet).
3788 			 *
3789 			 * XXX - if we were to check for the SNAP DSAP and
3790 			 * LSAP, as per XXX, and were also to check for an
3791 			 * organization code of 0x000000 (encapsulated
3792 			 * Ethernet), we'd do
3793 			 *
3794 			 *	return gen_snap(cstate, 0x000000, proto);
3795 			 *
3796 			 * here; for now, we don't, as per the above.
3797 			 * I don't know whether it's worth the extra CPU
3798 			 * time to do the right check or not.
3799 			 */
3800 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, (bpf_int32)proto);
3801 		}
3802 	}
3803 }
3804 
3805 static struct block *
3806 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
3807     int dir, int proto, u_int src_off, u_int dst_off)
3808 {
3809 	struct block *b0, *b1;
3810 	u_int offset;
3811 
3812 	switch (dir) {
3813 
3814 	case Q_SRC:
3815 		offset = src_off;
3816 		break;
3817 
3818 	case Q_DST:
3819 		offset = dst_off;
3820 		break;
3821 
3822 	case Q_AND:
3823 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3824 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3825 		gen_and(b0, b1);
3826 		return b1;
3827 
3828 	case Q_OR:
3829 	case Q_DEFAULT:
3830 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3831 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3832 		gen_or(b0, b1);
3833 		return b1;
3834 
3835 	default:
3836 		abort();
3837 	}
3838 	b0 = gen_linktype(cstate, proto);
3839 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
3840 	gen_and(b0, b1);
3841 	return b1;
3842 }
3843 
3844 #ifdef INET6
3845 static struct block *
3846 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
3847     struct in6_addr *mask, int dir, int proto, u_int src_off, u_int dst_off)
3848 {
3849 	struct block *b0, *b1;
3850 	u_int offset;
3851 	u_int32_t *a, *m;
3852 
3853 	switch (dir) {
3854 
3855 	case Q_SRC:
3856 		offset = src_off;
3857 		break;
3858 
3859 	case Q_DST:
3860 		offset = dst_off;
3861 		break;
3862 
3863 	case Q_AND:
3864 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3865 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3866 		gen_and(b0, b1);
3867 		return b1;
3868 
3869 	case Q_OR:
3870 	case Q_DEFAULT:
3871 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3872 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3873 		gen_or(b0, b1);
3874 		return b1;
3875 
3876 	default:
3877 		abort();
3878 	}
3879 	/* this order is important */
3880 	a = (u_int32_t *)addr;
3881 	m = (u_int32_t *)mask;
3882 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3883 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3884 	gen_and(b0, b1);
3885 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3886 	gen_and(b0, b1);
3887 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3888 	gen_and(b0, b1);
3889 	b0 = gen_linktype(cstate, proto);
3890 	gen_and(b0, b1);
3891 	return b1;
3892 }
3893 #endif
3894 
3895 static struct block *
3896 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
3897 {
3898 	register struct block *b0, *b1;
3899 
3900 	switch (dir) {
3901 	case Q_SRC:
3902 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
3903 
3904 	case Q_DST:
3905 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
3906 
3907 	case Q_AND:
3908 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
3909 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
3910 		gen_and(b0, b1);
3911 		return b1;
3912 
3913 	case Q_DEFAULT:
3914 	case Q_OR:
3915 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
3916 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
3917 		gen_or(b0, b1);
3918 		return b1;
3919 
3920 	case Q_ADDR1:
3921 		bpf_error(cstate, "'addr1' is only supported on 802.11 with 802.11 headers");
3922 		break;
3923 
3924 	case Q_ADDR2:
3925 		bpf_error(cstate, "'addr2' is only supported on 802.11 with 802.11 headers");
3926 		break;
3927 
3928 	case Q_ADDR3:
3929 		bpf_error(cstate, "'addr3' is only supported on 802.11 with 802.11 headers");
3930 		break;
3931 
3932 	case Q_ADDR4:
3933 		bpf_error(cstate, "'addr4' is only supported on 802.11 with 802.11 headers");
3934 		break;
3935 
3936 	case Q_RA:
3937 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
3938 		break;
3939 
3940 	case Q_TA:
3941 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
3942 		break;
3943 	}
3944 	abort();
3945 	/* NOTREACHED */
3946 }
3947 
3948 /*
3949  * Like gen_ehostop, but for DLT_FDDI
3950  */
3951 static struct block *
3952 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
3953 {
3954 	struct block *b0, *b1;
3955 
3956 	switch (dir) {
3957 	case Q_SRC:
3958 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
3959 
3960 	case Q_DST:
3961 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
3962 
3963 	case Q_AND:
3964 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
3965 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
3966 		gen_and(b0, b1);
3967 		return b1;
3968 
3969 	case Q_DEFAULT:
3970 	case Q_OR:
3971 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
3972 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
3973 		gen_or(b0, b1);
3974 		return b1;
3975 
3976 	case Q_ADDR1:
3977 		bpf_error(cstate, "'addr1' is only supported on 802.11");
3978 		break;
3979 
3980 	case Q_ADDR2:
3981 		bpf_error(cstate, "'addr2' is only supported on 802.11");
3982 		break;
3983 
3984 	case Q_ADDR3:
3985 		bpf_error(cstate, "'addr3' is only supported on 802.11");
3986 		break;
3987 
3988 	case Q_ADDR4:
3989 		bpf_error(cstate, "'addr4' is only supported on 802.11");
3990 		break;
3991 
3992 	case Q_RA:
3993 		bpf_error(cstate, "'ra' is only supported on 802.11");
3994 		break;
3995 
3996 	case Q_TA:
3997 		bpf_error(cstate, "'ta' is only supported on 802.11");
3998 		break;
3999 	}
4000 	abort();
4001 	/* NOTREACHED */
4002 }
4003 
4004 /*
4005  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4006  */
4007 static struct block *
4008 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4009 {
4010 	register struct block *b0, *b1;
4011 
4012 	switch (dir) {
4013 	case Q_SRC:
4014 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4015 
4016 	case Q_DST:
4017 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4018 
4019 	case Q_AND:
4020 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4021 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4022 		gen_and(b0, b1);
4023 		return b1;
4024 
4025 	case Q_DEFAULT:
4026 	case Q_OR:
4027 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4028 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4029 		gen_or(b0, b1);
4030 		return b1;
4031 
4032 	case Q_ADDR1:
4033 		bpf_error(cstate, "'addr1' is only supported on 802.11");
4034 		break;
4035 
4036 	case Q_ADDR2:
4037 		bpf_error(cstate, "'addr2' is only supported on 802.11");
4038 		break;
4039 
4040 	case Q_ADDR3:
4041 		bpf_error(cstate, "'addr3' is only supported on 802.11");
4042 		break;
4043 
4044 	case Q_ADDR4:
4045 		bpf_error(cstate, "'addr4' is only supported on 802.11");
4046 		break;
4047 
4048 	case Q_RA:
4049 		bpf_error(cstate, "'ra' is only supported on 802.11");
4050 		break;
4051 
4052 	case Q_TA:
4053 		bpf_error(cstate, "'ta' is only supported on 802.11");
4054 		break;
4055 	}
4056 	abort();
4057 	/* NOTREACHED */
4058 }
4059 
4060 /*
4061  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4062  * various 802.11 + radio headers.
4063  */
4064 static struct block *
4065 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4066 {
4067 	register struct block *b0, *b1, *b2;
4068 	register struct slist *s;
4069 
4070 #ifdef ENABLE_WLAN_FILTERING_PATCH
4071 	/*
4072 	 * TODO GV 20070613
4073 	 * We need to disable the optimizer because the optimizer is buggy
4074 	 * and wipes out some LD instructions generated by the below
4075 	 * code to validate the Frame Control bits
4076 	 */
4077 	cstate->no_optimize = 1;
4078 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4079 
4080 	switch (dir) {
4081 	case Q_SRC:
4082 		/*
4083 		 * Oh, yuk.
4084 		 *
4085 		 *	For control frames, there is no SA.
4086 		 *
4087 		 *	For management frames, SA is at an
4088 		 *	offset of 10 from the beginning of
4089 		 *	the packet.
4090 		 *
4091 		 *	For data frames, SA is at an offset
4092 		 *	of 10 from the beginning of the packet
4093 		 *	if From DS is clear, at an offset of
4094 		 *	16 from the beginning of the packet
4095 		 *	if From DS is set and To DS is clear,
4096 		 *	and an offset of 24 from the beginning
4097 		 *	of the packet if From DS is set and To DS
4098 		 *	is set.
4099 		 */
4100 
4101 		/*
4102 		 * Generate the tests to be done for data frames
4103 		 * with From DS set.
4104 		 *
4105 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
4106 		 */
4107 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4108 		b1 = new_block(cstate, JMP(BPF_JSET));
4109 		b1->s.k = 0x01;	/* To DS */
4110 		b1->stmts = s;
4111 
4112 		/*
4113 		 * If To DS is set, the SA is at 24.
4114 		 */
4115 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4116 		gen_and(b1, b0);
4117 
4118 		/*
4119 		 * Now, check for To DS not set, i.e. check
4120 		 * "!(link[1] & 0x01)".
4121 		 */
4122 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4123 		b2 = new_block(cstate, JMP(BPF_JSET));
4124 		b2->s.k = 0x01;	/* To DS */
4125 		b2->stmts = s;
4126 		gen_not(b2);
4127 
4128 		/*
4129 		 * If To DS is not set, the SA is at 16.
4130 		 */
4131 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4132 		gen_and(b2, b1);
4133 
4134 		/*
4135 		 * Now OR together the last two checks.  That gives
4136 		 * the complete set of checks for data frames with
4137 		 * From DS set.
4138 		 */
4139 		gen_or(b1, b0);
4140 
4141 		/*
4142 		 * Now check for From DS being set, and AND that with
4143 		 * the ORed-together checks.
4144 		 */
4145 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4146 		b1 = new_block(cstate, JMP(BPF_JSET));
4147 		b1->s.k = 0x02;	/* From DS */
4148 		b1->stmts = s;
4149 		gen_and(b1, b0);
4150 
4151 		/*
4152 		 * Now check for data frames with From DS not set.
4153 		 */
4154 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4155 		b2 = new_block(cstate, JMP(BPF_JSET));
4156 		b2->s.k = 0x02;	/* From DS */
4157 		b2->stmts = s;
4158 		gen_not(b2);
4159 
4160 		/*
4161 		 * If From DS isn't set, the SA is at 10.
4162 		 */
4163 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4164 		gen_and(b2, b1);
4165 
4166 		/*
4167 		 * Now OR together the checks for data frames with
4168 		 * From DS not set and for data frames with From DS
4169 		 * set; that gives the checks done for data frames.
4170 		 */
4171 		gen_or(b1, b0);
4172 
4173 		/*
4174 		 * Now check for a data frame.
4175 		 * I.e, check "link[0] & 0x08".
4176 		 */
4177 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4178 		b1 = new_block(cstate, JMP(BPF_JSET));
4179 		b1->s.k = 0x08;
4180 		b1->stmts = s;
4181 
4182 		/*
4183 		 * AND that with the checks done for data frames.
4184 		 */
4185 		gen_and(b1, b0);
4186 
4187 		/*
4188 		 * If the high-order bit of the type value is 0, this
4189 		 * is a management frame.
4190 		 * I.e, check "!(link[0] & 0x08)".
4191 		 */
4192 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4193 		b2 = new_block(cstate, JMP(BPF_JSET));
4194 		b2->s.k = 0x08;
4195 		b2->stmts = s;
4196 		gen_not(b2);
4197 
4198 		/*
4199 		 * For management frames, the SA is at 10.
4200 		 */
4201 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4202 		gen_and(b2, b1);
4203 
4204 		/*
4205 		 * OR that with the checks done for data frames.
4206 		 * That gives the checks done for management and
4207 		 * data frames.
4208 		 */
4209 		gen_or(b1, b0);
4210 
4211 		/*
4212 		 * If the low-order bit of the type value is 1,
4213 		 * this is either a control frame or a frame
4214 		 * with a reserved type, and thus not a
4215 		 * frame with an SA.
4216 		 *
4217 		 * I.e., check "!(link[0] & 0x04)".
4218 		 */
4219 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4220 		b1 = new_block(cstate, JMP(BPF_JSET));
4221 		b1->s.k = 0x04;
4222 		b1->stmts = s;
4223 		gen_not(b1);
4224 
4225 		/*
4226 		 * AND that with the checks for data and management
4227 		 * frames.
4228 		 */
4229 		gen_and(b1, b0);
4230 		return b0;
4231 
4232 	case Q_DST:
4233 		/*
4234 		 * Oh, yuk.
4235 		 *
4236 		 *	For control frames, there is no DA.
4237 		 *
4238 		 *	For management frames, DA is at an
4239 		 *	offset of 4 from the beginning of
4240 		 *	the packet.
4241 		 *
4242 		 *	For data frames, DA is at an offset
4243 		 *	of 4 from the beginning of the packet
4244 		 *	if To DS is clear and at an offset of
4245 		 *	16 from the beginning of the packet
4246 		 *	if To DS is set.
4247 		 */
4248 
4249 		/*
4250 		 * Generate the tests to be done for data frames.
4251 		 *
4252 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4253 		 */
4254 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4255 		b1 = new_block(cstate, JMP(BPF_JSET));
4256 		b1->s.k = 0x01;	/* To DS */
4257 		b1->stmts = s;
4258 
4259 		/*
4260 		 * If To DS is set, the DA is at 16.
4261 		 */
4262 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4263 		gen_and(b1, b0);
4264 
4265 		/*
4266 		 * Now, check for To DS not set, i.e. check
4267 		 * "!(link[1] & 0x01)".
4268 		 */
4269 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4270 		b2 = new_block(cstate, JMP(BPF_JSET));
4271 		b2->s.k = 0x01;	/* To DS */
4272 		b2->stmts = s;
4273 		gen_not(b2);
4274 
4275 		/*
4276 		 * If To DS is not set, the DA is at 4.
4277 		 */
4278 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4279 		gen_and(b2, b1);
4280 
4281 		/*
4282 		 * Now OR together the last two checks.  That gives
4283 		 * the complete set of checks for data frames.
4284 		 */
4285 		gen_or(b1, b0);
4286 
4287 		/*
4288 		 * Now check for a data frame.
4289 		 * I.e, check "link[0] & 0x08".
4290 		 */
4291 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4292 		b1 = new_block(cstate, JMP(BPF_JSET));
4293 		b1->s.k = 0x08;
4294 		b1->stmts = s;
4295 
4296 		/*
4297 		 * AND that with the checks done for data frames.
4298 		 */
4299 		gen_and(b1, b0);
4300 
4301 		/*
4302 		 * If the high-order bit of the type value is 0, this
4303 		 * is a management frame.
4304 		 * I.e, check "!(link[0] & 0x08)".
4305 		 */
4306 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4307 		b2 = new_block(cstate, JMP(BPF_JSET));
4308 		b2->s.k = 0x08;
4309 		b2->stmts = s;
4310 		gen_not(b2);
4311 
4312 		/*
4313 		 * For management frames, the DA is at 4.
4314 		 */
4315 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4316 		gen_and(b2, b1);
4317 
4318 		/*
4319 		 * OR that with the checks done for data frames.
4320 		 * That gives the checks done for management and
4321 		 * data frames.
4322 		 */
4323 		gen_or(b1, b0);
4324 
4325 		/*
4326 		 * If the low-order bit of the type value is 1,
4327 		 * this is either a control frame or a frame
4328 		 * with a reserved type, and thus not a
4329 		 * frame with an SA.
4330 		 *
4331 		 * I.e., check "!(link[0] & 0x04)".
4332 		 */
4333 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4334 		b1 = new_block(cstate, JMP(BPF_JSET));
4335 		b1->s.k = 0x04;
4336 		b1->stmts = s;
4337 		gen_not(b1);
4338 
4339 		/*
4340 		 * AND that with the checks for data and management
4341 		 * frames.
4342 		 */
4343 		gen_and(b1, b0);
4344 		return b0;
4345 
4346 	case Q_RA:
4347 		/*
4348 		 * Not present in management frames; addr1 in other
4349 		 * frames.
4350 		 */
4351 
4352 		/*
4353 		 * If the high-order bit of the type value is 0, this
4354 		 * is a management frame.
4355 		 * I.e, check "(link[0] & 0x08)".
4356 		 */
4357 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4358 		b1 = new_block(cstate, JMP(BPF_JSET));
4359 		b1->s.k = 0x08;
4360 		b1->stmts = s;
4361 
4362 		/*
4363 		 * Check addr1.
4364 		 */
4365 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4366 
4367 		/*
4368 		 * AND that with the check of addr1.
4369 		 */
4370 		gen_and(b1, b0);
4371 		return (b0);
4372 
4373 	case Q_TA:
4374 		/*
4375 		 * Not present in management frames; addr2, if present,
4376 		 * in other frames.
4377 		 */
4378 
4379 		/*
4380 		 * Not present in CTS or ACK control frames.
4381 		 */
4382 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4383 			IEEE80211_FC0_TYPE_MASK);
4384 		gen_not(b0);
4385 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4386 			IEEE80211_FC0_SUBTYPE_MASK);
4387 		gen_not(b1);
4388 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4389 			IEEE80211_FC0_SUBTYPE_MASK);
4390 		gen_not(b2);
4391 		gen_and(b1, b2);
4392 		gen_or(b0, b2);
4393 
4394 		/*
4395 		 * If the high-order bit of the type value is 0, this
4396 		 * is a management frame.
4397 		 * I.e, check "(link[0] & 0x08)".
4398 		 */
4399 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4400 		b1 = new_block(cstate, JMP(BPF_JSET));
4401 		b1->s.k = 0x08;
4402 		b1->stmts = s;
4403 
4404 		/*
4405 		 * AND that with the check for frames other than
4406 		 * CTS and ACK frames.
4407 		 */
4408 		gen_and(b1, b2);
4409 
4410 		/*
4411 		 * Check addr2.
4412 		 */
4413 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4414 		gen_and(b2, b1);
4415 		return b1;
4416 
4417 	/*
4418 	 * XXX - add BSSID keyword?
4419 	 */
4420 	case Q_ADDR1:
4421 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4422 
4423 	case Q_ADDR2:
4424 		/*
4425 		 * Not present in CTS or ACK control frames.
4426 		 */
4427 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4428 			IEEE80211_FC0_TYPE_MASK);
4429 		gen_not(b0);
4430 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4431 			IEEE80211_FC0_SUBTYPE_MASK);
4432 		gen_not(b1);
4433 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4434 			IEEE80211_FC0_SUBTYPE_MASK);
4435 		gen_not(b2);
4436 		gen_and(b1, b2);
4437 		gen_or(b0, b2);
4438 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4439 		gen_and(b2, b1);
4440 		return b1;
4441 
4442 	case Q_ADDR3:
4443 		/*
4444 		 * Not present in control frames.
4445 		 */
4446 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4447 			IEEE80211_FC0_TYPE_MASK);
4448 		gen_not(b0);
4449 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4450 		gen_and(b0, b1);
4451 		return b1;
4452 
4453 	case Q_ADDR4:
4454 		/*
4455 		 * Present only if the direction mask has both "From DS"
4456 		 * and "To DS" set.  Neither control frames nor management
4457 		 * frames should have both of those set, so we don't
4458 		 * check the frame type.
4459 		 */
4460 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4461 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4462 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4463 		gen_and(b0, b1);
4464 		return b1;
4465 
4466 	case Q_AND:
4467 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4468 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4469 		gen_and(b0, b1);
4470 		return b1;
4471 
4472 	case Q_DEFAULT:
4473 	case Q_OR:
4474 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4475 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4476 		gen_or(b0, b1);
4477 		return b1;
4478 	}
4479 	abort();
4480 	/* NOTREACHED */
4481 }
4482 
4483 /*
4484  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4485  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4486  * as the RFC states.)
4487  */
4488 static struct block *
4489 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4490 {
4491 	register struct block *b0, *b1;
4492 
4493 	switch (dir) {
4494 	case Q_SRC:
4495 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4496 
4497 	case Q_DST:
4498 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4499 
4500 	case Q_AND:
4501 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4502 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4503 		gen_and(b0, b1);
4504 		return b1;
4505 
4506 	case Q_DEFAULT:
4507 	case Q_OR:
4508 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4509 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4510 		gen_or(b0, b1);
4511 		return b1;
4512 
4513 	case Q_ADDR1:
4514 		bpf_error(cstate, "'addr1' is only supported on 802.11");
4515 		break;
4516 
4517 	case Q_ADDR2:
4518 		bpf_error(cstate, "'addr2' is only supported on 802.11");
4519 		break;
4520 
4521 	case Q_ADDR3:
4522 		bpf_error(cstate, "'addr3' is only supported on 802.11");
4523 		break;
4524 
4525 	case Q_ADDR4:
4526 		bpf_error(cstate, "'addr4' is only supported on 802.11");
4527 		break;
4528 
4529 	case Q_RA:
4530 		bpf_error(cstate, "'ra' is only supported on 802.11");
4531 		break;
4532 
4533 	case Q_TA:
4534 		bpf_error(cstate, "'ta' is only supported on 802.11");
4535 		break;
4536 	}
4537 	abort();
4538 	/* NOTREACHED */
4539 }
4540 
4541 /*
4542  * This is quite tricky because there may be pad bytes in front of the
4543  * DECNET header, and then there are two possible data packet formats that
4544  * carry both src and dst addresses, plus 5 packet types in a format that
4545  * carries only the src node, plus 2 types that use a different format and
4546  * also carry just the src node.
4547  *
4548  * Yuck.
4549  *
4550  * Instead of doing those all right, we just look for data packets with
4551  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4552  * will require a lot more hacking.
4553  *
4554  * To add support for filtering on DECNET "areas" (network numbers)
4555  * one would want to add a "mask" argument to this routine.  That would
4556  * make the filter even more inefficient, although one could be clever
4557  * and not generate masking instructions if the mask is 0xFFFF.
4558  */
4559 static struct block *
4560 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4561 {
4562 	struct block *b0, *b1, *b2, *tmp;
4563 	u_int offset_lh;	/* offset if long header is received */
4564 	u_int offset_sh;	/* offset if short header is received */
4565 
4566 	switch (dir) {
4567 
4568 	case Q_DST:
4569 		offset_sh = 1;	/* follows flags */
4570 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4571 		break;
4572 
4573 	case Q_SRC:
4574 		offset_sh = 3;	/* follows flags, dstnode */
4575 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4576 		break;
4577 
4578 	case Q_AND:
4579 		/* Inefficient because we do our Calvinball dance twice */
4580 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4581 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4582 		gen_and(b0, b1);
4583 		return b1;
4584 
4585 	case Q_OR:
4586 	case Q_DEFAULT:
4587 		/* Inefficient because we do our Calvinball dance twice */
4588 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4589 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4590 		gen_or(b0, b1);
4591 		return b1;
4592 
4593 	case Q_ISO:
4594 		bpf_error(cstate, "ISO host filtering not implemented");
4595 
4596 	default:
4597 		abort();
4598 	}
4599 	b0 = gen_linktype(cstate, ETHERTYPE_DN);
4600 	/* Check for pad = 1, long header case */
4601 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4602 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4603 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4604 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4605 	gen_and(tmp, b1);
4606 	/* Check for pad = 0, long header case */
4607 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4608 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4609 	gen_and(tmp, b2);
4610 	gen_or(b2, b1);
4611 	/* Check for pad = 1, short header case */
4612 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4613 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4614 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4615 	gen_and(tmp, b2);
4616 	gen_or(b2, b1);
4617 	/* Check for pad = 0, short header case */
4618 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4619 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4620 	gen_and(tmp, b2);
4621 	gen_or(b2, b1);
4622 
4623 	/* Combine with test for cstate->linktype */
4624 	gen_and(b0, b1);
4625 	return b1;
4626 }
4627 
4628 /*
4629  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4630  * test the bottom-of-stack bit, and then check the version number
4631  * field in the IP header.
4632  */
4633 static struct block *
4634 gen_mpls_linktype(compiler_state_t *cstate, int proto)
4635 {
4636 	struct block *b0, *b1;
4637 
4638         switch (proto) {
4639 
4640         case Q_IP:
4641                 /* match the bottom-of-stack bit */
4642                 b0 = gen_mcmp(cstate, OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4643                 /* match the IPv4 version number */
4644                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4645                 gen_and(b0, b1);
4646                 return b1;
4647 
4648        case Q_IPV6:
4649                 /* match the bottom-of-stack bit */
4650                 b0 = gen_mcmp(cstate, OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4651                 /* match the IPv4 version number */
4652                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4653                 gen_and(b0, b1);
4654                 return b1;
4655 
4656        default:
4657                 abort();
4658         }
4659 }
4660 
4661 static struct block *
4662 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4663     int proto, int dir, int type)
4664 {
4665 	struct block *b0, *b1;
4666 	const char *typestr;
4667 
4668 	if (type == Q_NET)
4669 		typestr = "net";
4670 	else
4671 		typestr = "host";
4672 
4673 	switch (proto) {
4674 
4675 	case Q_DEFAULT:
4676 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4677 		/*
4678 		 * Only check for non-IPv4 addresses if we're not
4679 		 * checking MPLS-encapsulated packets.
4680 		 */
4681 		if (cstate->label_stack_depth == 0) {
4682 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4683 			gen_or(b0, b1);
4684 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4685 			gen_or(b1, b0);
4686 		}
4687 		return b0;
4688 
4689 	case Q_IP:
4690 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4691 
4692 	case Q_RARP:
4693 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4694 
4695 	case Q_ARP:
4696 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4697 
4698 	case Q_TCP:
4699 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4700 
4701 	case Q_SCTP:
4702 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4703 
4704 	case Q_UDP:
4705 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4706 
4707 	case Q_ICMP:
4708 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4709 
4710 	case Q_IGMP:
4711 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4712 
4713 	case Q_IGRP:
4714 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4715 
4716 	case Q_PIM:
4717 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4718 
4719 	case Q_VRRP:
4720 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
4721 
4722 	case Q_CARP:
4723 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
4724 
4725 	case Q_ATALK:
4726 		bpf_error(cstate, "ATALK host filtering not implemented");
4727 
4728 	case Q_AARP:
4729 		bpf_error(cstate, "AARP host filtering not implemented");
4730 
4731 	case Q_DECNET:
4732 		return gen_dnhostop(cstate, addr, dir);
4733 
4734 	case Q_SCA:
4735 		bpf_error(cstate, "SCA host filtering not implemented");
4736 
4737 	case Q_LAT:
4738 		bpf_error(cstate, "LAT host filtering not implemented");
4739 
4740 	case Q_MOPDL:
4741 		bpf_error(cstate, "MOPDL host filtering not implemented");
4742 
4743 	case Q_MOPRC:
4744 		bpf_error(cstate, "MOPRC host filtering not implemented");
4745 
4746 	case Q_IPV6:
4747 		bpf_error(cstate, "'ip6' modifier applied to ip host");
4748 
4749 	case Q_ICMPV6:
4750 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4751 
4752 	case Q_AH:
4753 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4754 
4755 	case Q_ESP:
4756 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4757 
4758 	case Q_ISO:
4759 		bpf_error(cstate, "ISO host filtering not implemented");
4760 
4761 	case Q_ESIS:
4762 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
4763 
4764 	case Q_ISIS:
4765 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
4766 
4767 	case Q_CLNP:
4768 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
4769 
4770 	case Q_STP:
4771 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
4772 
4773 	case Q_IPX:
4774 		bpf_error(cstate, "IPX host filtering not implemented");
4775 
4776 	case Q_NETBEUI:
4777 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
4778 
4779 	case Q_RADIO:
4780 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
4781 
4782 	default:
4783 		abort();
4784 	}
4785 	/* NOTREACHED */
4786 }
4787 
4788 #ifdef INET6
4789 static struct block *
4790 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
4791     struct in6_addr *mask, int proto, int dir, int type)
4792 {
4793 	const char *typestr;
4794 
4795 	if (type == Q_NET)
4796 		typestr = "net";
4797 	else
4798 		typestr = "host";
4799 
4800 	switch (proto) {
4801 
4802 	case Q_DEFAULT:
4803 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
4804 
4805 	case Q_LINK:
4806 		bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
4807 
4808 	case Q_IP:
4809 		bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
4810 
4811 	case Q_RARP:
4812 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
4813 
4814 	case Q_ARP:
4815 		bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
4816 
4817 	case Q_SCTP:
4818 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4819 
4820 	case Q_TCP:
4821 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4822 
4823 	case Q_UDP:
4824 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4825 
4826 	case Q_ICMP:
4827 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4828 
4829 	case Q_IGMP:
4830 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4831 
4832 	case Q_IGRP:
4833 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4834 
4835 	case Q_PIM:
4836 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4837 
4838 	case Q_VRRP:
4839 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
4840 
4841 	case Q_CARP:
4842 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
4843 
4844 	case Q_ATALK:
4845 		bpf_error(cstate, "ATALK host filtering not implemented");
4846 
4847 	case Q_AARP:
4848 		bpf_error(cstate, "AARP host filtering not implemented");
4849 
4850 	case Q_DECNET:
4851 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
4852 
4853 	case Q_SCA:
4854 		bpf_error(cstate, "SCA host filtering not implemented");
4855 
4856 	case Q_LAT:
4857 		bpf_error(cstate, "LAT host filtering not implemented");
4858 
4859 	case Q_MOPDL:
4860 		bpf_error(cstate, "MOPDL host filtering not implemented");
4861 
4862 	case Q_MOPRC:
4863 		bpf_error(cstate, "MOPRC host filtering not implemented");
4864 
4865 	case Q_IPV6:
4866 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4867 
4868 	case Q_ICMPV6:
4869 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4870 
4871 	case Q_AH:
4872 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4873 
4874 	case Q_ESP:
4875 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4876 
4877 	case Q_ISO:
4878 		bpf_error(cstate, "ISO host filtering not implemented");
4879 
4880 	case Q_ESIS:
4881 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
4882 
4883 	case Q_ISIS:
4884 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
4885 
4886 	case Q_CLNP:
4887 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
4888 
4889 	case Q_STP:
4890 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
4891 
4892 	case Q_IPX:
4893 		bpf_error(cstate, "IPX host filtering not implemented");
4894 
4895 	case Q_NETBEUI:
4896 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
4897 
4898 	case Q_RADIO:
4899 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
4900 
4901 	default:
4902 		abort();
4903 	}
4904 	/* NOTREACHED */
4905 }
4906 #endif
4907 
4908 #ifndef INET6
4909 static struct block *
4910 gen_gateway(compiler_state_t *cstate, const u_char *eaddr, bpf_u_int32 **alist,
4911     int proto, int dir)
4912 {
4913 	struct block *b0, *b1, *tmp;
4914 
4915 	if (dir != 0)
4916 		bpf_error(cstate, "direction applied to 'gateway'");
4917 
4918 	switch (proto) {
4919 	case Q_DEFAULT:
4920 	case Q_IP:
4921 	case Q_ARP:
4922 	case Q_RARP:
4923 		switch (cstate->linktype) {
4924 		case DLT_EN10MB:
4925 		case DLT_NETANALYZER:
4926 		case DLT_NETANALYZER_TRANSPARENT:
4927 			b1 = gen_prevlinkhdr_check(cstate);
4928 			b0 = gen_ehostop(cstate, eaddr, Q_OR);
4929 			if (b1 != NULL)
4930 				gen_and(b1, b0);
4931 			break;
4932 		case DLT_FDDI:
4933 			b0 = gen_fhostop(cstate, eaddr, Q_OR);
4934 			break;
4935 		case DLT_IEEE802:
4936 			b0 = gen_thostop(cstate, eaddr, Q_OR);
4937 			break;
4938 		case DLT_IEEE802_11:
4939 		case DLT_PRISM_HEADER:
4940 		case DLT_IEEE802_11_RADIO_AVS:
4941 		case DLT_IEEE802_11_RADIO:
4942 		case DLT_PPI:
4943 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
4944 			break;
4945 		case DLT_SUNATM:
4946 			/*
4947 			 * This is LLC-multiplexed traffic; if it were
4948 			 * LANE, cstate->linktype would have been set to
4949 			 * DLT_EN10MB.
4950 			 */
4951 			bpf_error(cstate,
4952 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4953 			break;
4954 		case DLT_IP_OVER_FC:
4955 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
4956 			break;
4957 		default:
4958 			bpf_error(cstate,
4959 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4960 		}
4961 		b1 = gen_host(cstate, **alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4962 		while (*alist) {
4963 			tmp = gen_host(cstate, **alist++, 0xffffffff, proto, Q_OR,
4964 			    Q_HOST);
4965 			gen_or(b1, tmp);
4966 			b1 = tmp;
4967 		}
4968 		gen_not(b1);
4969 		gen_and(b0, b1);
4970 		return b1;
4971 	}
4972 	bpf_error(cstate, "illegal modifier of 'gateway'");
4973 	/* NOTREACHED */
4974 }
4975 #endif
4976 
4977 struct block *
4978 gen_proto_abbrev(compiler_state_t *cstate, int proto)
4979 {
4980 	struct block *b0;
4981 	struct block *b1;
4982 
4983 	switch (proto) {
4984 
4985 	case Q_SCTP:
4986 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4987 		b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4988 		gen_or(b0, b1);
4989 		break;
4990 
4991 	case Q_TCP:
4992 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT);
4993 		b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4994 		gen_or(b0, b1);
4995 		break;
4996 
4997 	case Q_UDP:
4998 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT);
4999 		b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
5000 		gen_or(b0, b1);
5001 		break;
5002 
5003 	case Q_ICMP:
5004 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5005 		break;
5006 
5007 #ifndef	IPPROTO_IGMP
5008 #define	IPPROTO_IGMP	2
5009 #endif
5010 
5011 	case Q_IGMP:
5012 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5013 		break;
5014 
5015 #ifndef	IPPROTO_IGRP
5016 #define	IPPROTO_IGRP	9
5017 #endif
5018 	case Q_IGRP:
5019 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5020 		break;
5021 
5022 #ifndef IPPROTO_PIM
5023 #define IPPROTO_PIM	103
5024 #endif
5025 
5026 	case Q_PIM:
5027 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT);
5028 		b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
5029 		gen_or(b0, b1);
5030 		break;
5031 
5032 #ifndef IPPROTO_VRRP
5033 #define IPPROTO_VRRP	112
5034 #endif
5035 
5036 	case Q_VRRP:
5037 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5038 		break;
5039 
5040 #ifndef IPPROTO_CARP
5041 #define IPPROTO_CARP	112
5042 #endif
5043 
5044 	case Q_CARP:
5045 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5046 		break;
5047 
5048 	case Q_IP:
5049 		b1 = gen_linktype(cstate, ETHERTYPE_IP);
5050 		break;
5051 
5052 	case Q_ARP:
5053 		b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5054 		break;
5055 
5056 	case Q_RARP:
5057 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5058 		break;
5059 
5060 	case Q_LINK:
5061 		bpf_error(cstate, "link layer applied in wrong context");
5062 
5063 	case Q_ATALK:
5064 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5065 		break;
5066 
5067 	case Q_AARP:
5068 		b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5069 		break;
5070 
5071 	case Q_DECNET:
5072 		b1 = gen_linktype(cstate, ETHERTYPE_DN);
5073 		break;
5074 
5075 	case Q_SCA:
5076 		b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5077 		break;
5078 
5079 	case Q_LAT:
5080 		b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5081 		break;
5082 
5083 	case Q_MOPDL:
5084 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5085 		break;
5086 
5087 	case Q_MOPRC:
5088 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5089 		break;
5090 
5091 	case Q_IPV6:
5092 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5093 		break;
5094 
5095 #ifndef IPPROTO_ICMPV6
5096 #define IPPROTO_ICMPV6	58
5097 #endif
5098 	case Q_ICMPV6:
5099 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5100 		break;
5101 
5102 #ifndef IPPROTO_AH
5103 #define IPPROTO_AH	51
5104 #endif
5105 	case Q_AH:
5106 		b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT);
5107 		b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT);
5108 		gen_or(b0, b1);
5109 		break;
5110 
5111 #ifndef IPPROTO_ESP
5112 #define IPPROTO_ESP	50
5113 #endif
5114 	case Q_ESP:
5115 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT);
5116 		b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
5117 		gen_or(b0, b1);
5118 		break;
5119 
5120 	case Q_ISO:
5121 		b1 = gen_linktype(cstate, LLCSAP_ISONS);
5122 		break;
5123 
5124 	case Q_ESIS:
5125 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5126 		break;
5127 
5128 	case Q_ISIS:
5129 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5130 		break;
5131 
5132 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5133 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5134 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5135 		gen_or(b0, b1);
5136 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5137 		gen_or(b0, b1);
5138 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5139 		gen_or(b0, b1);
5140 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5141 		gen_or(b0, b1);
5142 		break;
5143 
5144 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5145 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5146 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5147 		gen_or(b0, b1);
5148 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5149 		gen_or(b0, b1);
5150 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5151 		gen_or(b0, b1);
5152 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5153 		gen_or(b0, b1);
5154 		break;
5155 
5156 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5157 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5158 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5159 		gen_or(b0, b1);
5160 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5161 		gen_or(b0, b1);
5162 		break;
5163 
5164 	case Q_ISIS_LSP:
5165 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5166 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5167 		gen_or(b0, b1);
5168 		break;
5169 
5170 	case Q_ISIS_SNP:
5171 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5172 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5173 		gen_or(b0, b1);
5174 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5175 		gen_or(b0, b1);
5176 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5177 		gen_or(b0, b1);
5178 		break;
5179 
5180 	case Q_ISIS_CSNP:
5181 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5182 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5183 		gen_or(b0, b1);
5184 		break;
5185 
5186 	case Q_ISIS_PSNP:
5187 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5188 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5189 		gen_or(b0, b1);
5190 		break;
5191 
5192 	case Q_CLNP:
5193 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5194 		break;
5195 
5196 	case Q_STP:
5197 		b1 = gen_linktype(cstate, LLCSAP_8021D);
5198 		break;
5199 
5200 	case Q_IPX:
5201 		b1 = gen_linktype(cstate, LLCSAP_IPX);
5202 		break;
5203 
5204 	case Q_NETBEUI:
5205 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5206 		break;
5207 
5208 	case Q_RADIO:
5209 		bpf_error(cstate, "'radio' is not a valid protocol type");
5210 
5211 	default:
5212 		abort();
5213 	}
5214 	return b1;
5215 }
5216 
5217 static struct block *
5218 gen_ipfrag(compiler_state_t *cstate)
5219 {
5220 	struct slist *s;
5221 	struct block *b;
5222 
5223 	/* not IPv4 frag other than the first frag */
5224 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5225 	b = new_block(cstate, JMP(BPF_JSET));
5226 	b->s.k = 0x1fff;
5227 	b->stmts = s;
5228 	gen_not(b);
5229 
5230 	return b;
5231 }
5232 
5233 /*
5234  * Generate a comparison to a port value in the transport-layer header
5235  * at the specified offset from the beginning of that header.
5236  *
5237  * XXX - this handles a variable-length prefix preceding the link-layer
5238  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5239  * variable-length link-layer headers (such as Token Ring or 802.11
5240  * headers).
5241  */
5242 static struct block *
5243 gen_portatom(compiler_state_t *cstate, int off, bpf_int32 v)
5244 {
5245 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5246 }
5247 
5248 static struct block *
5249 gen_portatom6(compiler_state_t *cstate, int off, bpf_int32 v)
5250 {
5251 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5252 }
5253 
5254 struct block *
5255 gen_portop(compiler_state_t *cstate, int port, int proto, int dir)
5256 {
5257 	struct block *b0, *b1, *tmp;
5258 
5259 	/* ip proto 'proto' and not a fragment other than the first fragment */
5260 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5261 	b0 = gen_ipfrag(cstate);
5262 	gen_and(tmp, b0);
5263 
5264 	switch (dir) {
5265 	case Q_SRC:
5266 		b1 = gen_portatom(cstate, 0, (bpf_int32)port);
5267 		break;
5268 
5269 	case Q_DST:
5270 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5271 		break;
5272 
5273 	case Q_OR:
5274 	case Q_DEFAULT:
5275 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5276 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5277 		gen_or(tmp, b1);
5278 		break;
5279 
5280 	case Q_AND:
5281 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5282 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5283 		gen_and(tmp, b1);
5284 		break;
5285 
5286 	default:
5287 		abort();
5288 	}
5289 	gen_and(b0, b1);
5290 
5291 	return b1;
5292 }
5293 
5294 static struct block *
5295 gen_port(compiler_state_t *cstate, int port, int ip_proto, int dir)
5296 {
5297 	struct block *b0, *b1, *tmp;
5298 
5299 	/*
5300 	 * ether proto ip
5301 	 *
5302 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5303 	 * not LLC encapsulation with LLCSAP_IP.
5304 	 *
5305 	 * For IEEE 802 networks - which includes 802.5 token ring
5306 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5307 	 * says that SNAP encapsulation is used, not LLC encapsulation
5308 	 * with LLCSAP_IP.
5309 	 *
5310 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5311 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5312 	 * encapsulation with LLCSAP_IP.
5313 	 *
5314 	 * So we always check for ETHERTYPE_IP.
5315 	 */
5316 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5317 
5318 	switch (ip_proto) {
5319 	case IPPROTO_UDP:
5320 	case IPPROTO_TCP:
5321 	case IPPROTO_SCTP:
5322 		b1 = gen_portop(cstate, port, ip_proto, dir);
5323 		break;
5324 
5325 	case PROTO_UNDEF:
5326 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5327 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5328 		gen_or(tmp, b1);
5329 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5330 		gen_or(tmp, b1);
5331 		break;
5332 
5333 	default:
5334 		abort();
5335 	}
5336 	gen_and(b0, b1);
5337 	return b1;
5338 }
5339 
5340 struct block *
5341 gen_portop6(compiler_state_t *cstate, int port, int proto, int dir)
5342 {
5343 	struct block *b0, *b1, *tmp;
5344 
5345 	/* ip6 proto 'proto' */
5346 	/* XXX - catch the first fragment of a fragmented packet? */
5347 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5348 
5349 	switch (dir) {
5350 	case Q_SRC:
5351 		b1 = gen_portatom6(cstate, 0, (bpf_int32)port);
5352 		break;
5353 
5354 	case Q_DST:
5355 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5356 		break;
5357 
5358 	case Q_OR:
5359 	case Q_DEFAULT:
5360 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5361 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5362 		gen_or(tmp, b1);
5363 		break;
5364 
5365 	case Q_AND:
5366 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5367 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5368 		gen_and(tmp, b1);
5369 		break;
5370 
5371 	default:
5372 		abort();
5373 	}
5374 	gen_and(b0, b1);
5375 
5376 	return b1;
5377 }
5378 
5379 static struct block *
5380 gen_port6(compiler_state_t *cstate, int port, int ip_proto, int dir)
5381 {
5382 	struct block *b0, *b1, *tmp;
5383 
5384 	/* link proto ip6 */
5385 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5386 
5387 	switch (ip_proto) {
5388 	case IPPROTO_UDP:
5389 	case IPPROTO_TCP:
5390 	case IPPROTO_SCTP:
5391 		b1 = gen_portop6(cstate, port, ip_proto, dir);
5392 		break;
5393 
5394 	case PROTO_UNDEF:
5395 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5396 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5397 		gen_or(tmp, b1);
5398 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5399 		gen_or(tmp, b1);
5400 		break;
5401 
5402 	default:
5403 		abort();
5404 	}
5405 	gen_and(b0, b1);
5406 	return b1;
5407 }
5408 
5409 /* gen_portrange code */
5410 static struct block *
5411 gen_portrangeatom(compiler_state_t *cstate, int off, bpf_int32 v1,
5412     bpf_int32 v2)
5413 {
5414 	struct block *b1, *b2;
5415 
5416 	if (v1 > v2) {
5417 		/*
5418 		 * Reverse the order of the ports, so v1 is the lower one.
5419 		 */
5420 		bpf_int32 vtemp;
5421 
5422 		vtemp = v1;
5423 		v1 = v2;
5424 		v2 = vtemp;
5425 	}
5426 
5427 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5428 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5429 
5430 	gen_and(b1, b2);
5431 
5432 	return b2;
5433 }
5434 
5435 struct block *
5436 gen_portrangeop(compiler_state_t *cstate, int port1, int port2, int proto,
5437     int dir)
5438 {
5439 	struct block *b0, *b1, *tmp;
5440 
5441 	/* ip proto 'proto' and not a fragment other than the first fragment */
5442 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5443 	b0 = gen_ipfrag(cstate);
5444 	gen_and(tmp, b0);
5445 
5446 	switch (dir) {
5447 	case Q_SRC:
5448 		b1 = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5449 		break;
5450 
5451 	case Q_DST:
5452 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5453 		break;
5454 
5455 	case Q_OR:
5456 	case Q_DEFAULT:
5457 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5458 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5459 		gen_or(tmp, b1);
5460 		break;
5461 
5462 	case Q_AND:
5463 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5464 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5465 		gen_and(tmp, b1);
5466 		break;
5467 
5468 	default:
5469 		abort();
5470 	}
5471 	gen_and(b0, b1);
5472 
5473 	return b1;
5474 }
5475 
5476 static struct block *
5477 gen_portrange(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5478     int dir)
5479 {
5480 	struct block *b0, *b1, *tmp;
5481 
5482 	/* link proto ip */
5483 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5484 
5485 	switch (ip_proto) {
5486 	case IPPROTO_UDP:
5487 	case IPPROTO_TCP:
5488 	case IPPROTO_SCTP:
5489 		b1 = gen_portrangeop(cstate, port1, port2, ip_proto, dir);
5490 		break;
5491 
5492 	case PROTO_UNDEF:
5493 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5494 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5495 		gen_or(tmp, b1);
5496 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5497 		gen_or(tmp, b1);
5498 		break;
5499 
5500 	default:
5501 		abort();
5502 	}
5503 	gen_and(b0, b1);
5504 	return b1;
5505 }
5506 
5507 static struct block *
5508 gen_portrangeatom6(compiler_state_t *cstate, int off, bpf_int32 v1,
5509     bpf_int32 v2)
5510 {
5511 	struct block *b1, *b2;
5512 
5513 	if (v1 > v2) {
5514 		/*
5515 		 * Reverse the order of the ports, so v1 is the lower one.
5516 		 */
5517 		bpf_int32 vtemp;
5518 
5519 		vtemp = v1;
5520 		v1 = v2;
5521 		v2 = vtemp;
5522 	}
5523 
5524 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5525 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5526 
5527 	gen_and(b1, b2);
5528 
5529 	return b2;
5530 }
5531 
5532 struct block *
5533 gen_portrangeop6(compiler_state_t *cstate, int port1, int port2, int proto,
5534     int dir)
5535 {
5536 	struct block *b0, *b1, *tmp;
5537 
5538 	/* ip6 proto 'proto' */
5539 	/* XXX - catch the first fragment of a fragmented packet? */
5540 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5541 
5542 	switch (dir) {
5543 	case Q_SRC:
5544 		b1 = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5545 		break;
5546 
5547 	case Q_DST:
5548 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5549 		break;
5550 
5551 	case Q_OR:
5552 	case Q_DEFAULT:
5553 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5554 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5555 		gen_or(tmp, b1);
5556 		break;
5557 
5558 	case Q_AND:
5559 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5560 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5561 		gen_and(tmp, b1);
5562 		break;
5563 
5564 	default:
5565 		abort();
5566 	}
5567 	gen_and(b0, b1);
5568 
5569 	return b1;
5570 }
5571 
5572 static struct block *
5573 gen_portrange6(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5574     int dir)
5575 {
5576 	struct block *b0, *b1, *tmp;
5577 
5578 	/* link proto ip6 */
5579 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5580 
5581 	switch (ip_proto) {
5582 	case IPPROTO_UDP:
5583 	case IPPROTO_TCP:
5584 	case IPPROTO_SCTP:
5585 		b1 = gen_portrangeop6(cstate, port1, port2, ip_proto, dir);
5586 		break;
5587 
5588 	case PROTO_UNDEF:
5589 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
5590 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
5591 		gen_or(tmp, b1);
5592 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
5593 		gen_or(tmp, b1);
5594 		break;
5595 
5596 	default:
5597 		abort();
5598 	}
5599 	gen_and(b0, b1);
5600 	return b1;
5601 }
5602 
5603 static int
5604 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
5605 {
5606 	register int v;
5607 
5608 	switch (proto) {
5609 
5610 	case Q_DEFAULT:
5611 	case Q_IP:
5612 	case Q_IPV6:
5613 		v = pcap_nametoproto(name);
5614 		if (v == PROTO_UNDEF)
5615 			bpf_error(cstate, "unknown ip proto '%s'", name);
5616 		break;
5617 
5618 	case Q_LINK:
5619 		/* XXX should look up h/w protocol type based on cstate->linktype */
5620 		v = pcap_nametoeproto(name);
5621 		if (v == PROTO_UNDEF) {
5622 			v = pcap_nametollc(name);
5623 			if (v == PROTO_UNDEF)
5624 				bpf_error(cstate, "unknown ether proto '%s'", name);
5625 		}
5626 		break;
5627 
5628 	case Q_ISO:
5629 		if (strcmp(name, "esis") == 0)
5630 			v = ISO9542_ESIS;
5631 		else if (strcmp(name, "isis") == 0)
5632 			v = ISO10589_ISIS;
5633 		else if (strcmp(name, "clnp") == 0)
5634 			v = ISO8473_CLNP;
5635 		else
5636 			bpf_error(cstate, "unknown osi proto '%s'", name);
5637 		break;
5638 
5639 	default:
5640 		v = PROTO_UNDEF;
5641 		break;
5642 	}
5643 	return v;
5644 }
5645 
5646 #if 0
5647 struct stmt *
5648 gen_joinsp(s, n)
5649 	struct stmt **s;
5650 	int n;
5651 {
5652 	return NULL;
5653 }
5654 #endif
5655 
5656 static struct block *
5657 gen_protochain(compiler_state_t *cstate, int v, int proto, int dir)
5658 {
5659 #ifdef NO_PROTOCHAIN
5660 	return gen_proto(cstate, v, proto, dir);
5661 #else
5662 	struct block *b0, *b;
5663 	struct slist *s[100];
5664 	int fix2, fix3, fix4, fix5;
5665 	int ahcheck, again, end;
5666 	int i, max;
5667 	int reg2 = alloc_reg(cstate);
5668 
5669 	memset(s, 0, sizeof(s));
5670 	fix3 = fix4 = fix5 = 0;
5671 
5672 	switch (proto) {
5673 	case Q_IP:
5674 	case Q_IPV6:
5675 		break;
5676 	case Q_DEFAULT:
5677 		b0 = gen_protochain(cstate, v, Q_IP, dir);
5678 		b = gen_protochain(cstate, v, Q_IPV6, dir);
5679 		gen_or(b0, b);
5680 		return b;
5681 	default:
5682 		bpf_error(cstate, "bad protocol applied for 'protochain'");
5683 		/*NOTREACHED*/
5684 	}
5685 
5686 	/*
5687 	 * We don't handle variable-length prefixes before the link-layer
5688 	 * header, or variable-length link-layer headers, here yet.
5689 	 * We might want to add BPF instructions to do the protochain
5690 	 * work, to simplify that and, on platforms that have a BPF
5691 	 * interpreter with the new instructions, let the filtering
5692 	 * be done in the kernel.  (We already require a modified BPF
5693 	 * engine to do the protochain stuff, to support backward
5694 	 * branches, and backward branch support is unlikely to appear
5695 	 * in kernel BPF engines.)
5696 	 */
5697 	if (cstate->off_linkpl.is_variable)
5698 		bpf_error(cstate, "'protochain' not supported with variable length headers");
5699 
5700 	cstate->no_optimize = 1; /*this code is not compatible with optimzer yet */
5701 
5702 	/*
5703 	 * s[0] is a dummy entry to protect other BPF insn from damage
5704 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5705 	 * hard to find interdependency made by jump table fixup.
5706 	 */
5707 	i = 0;
5708 	s[i] = new_stmt(cstate, 0);	/*dummy*/
5709 	i++;
5710 
5711 	switch (proto) {
5712 	case Q_IP:
5713 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
5714 
5715 		/* A = ip->ip_p */
5716 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
5717 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
5718 		i++;
5719 		/* X = ip->ip_hl << 2 */
5720 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
5721 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5722 		i++;
5723 		break;
5724 
5725 	case Q_IPV6:
5726 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5727 
5728 		/* A = ip6->ip_nxt */
5729 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
5730 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
5731 		i++;
5732 		/* X = sizeof(struct ip6_hdr) */
5733 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
5734 		s[i]->s.k = 40;
5735 		i++;
5736 		break;
5737 
5738 	default:
5739 		bpf_error(cstate, "unsupported proto to gen_protochain");
5740 		/*NOTREACHED*/
5741 	}
5742 
5743 	/* again: if (A == v) goto end; else fall through; */
5744 	again = i;
5745 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5746 	s[i]->s.k = v;
5747 	s[i]->s.jt = NULL;		/*later*/
5748 	s[i]->s.jf = NULL;		/*update in next stmt*/
5749 	fix5 = i;
5750 	i++;
5751 
5752 #ifndef IPPROTO_NONE
5753 #define IPPROTO_NONE	59
5754 #endif
5755 	/* if (A == IPPROTO_NONE) goto end */
5756 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5757 	s[i]->s.jt = NULL;	/*later*/
5758 	s[i]->s.jf = NULL;	/*update in next stmt*/
5759 	s[i]->s.k = IPPROTO_NONE;
5760 	s[fix5]->s.jf = s[i];
5761 	fix2 = i;
5762 	i++;
5763 
5764 	if (proto == Q_IPV6) {
5765 		int v6start, v6end, v6advance, j;
5766 
5767 		v6start = i;
5768 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5769 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5770 		s[i]->s.jt = NULL;	/*later*/
5771 		s[i]->s.jf = NULL;	/*update in next stmt*/
5772 		s[i]->s.k = IPPROTO_HOPOPTS;
5773 		s[fix2]->s.jf = s[i];
5774 		i++;
5775 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5776 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5777 		s[i]->s.jt = NULL;	/*later*/
5778 		s[i]->s.jf = NULL;	/*update in next stmt*/
5779 		s[i]->s.k = IPPROTO_DSTOPTS;
5780 		i++;
5781 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5782 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5783 		s[i]->s.jt = NULL;	/*later*/
5784 		s[i]->s.jf = NULL;	/*update in next stmt*/
5785 		s[i]->s.k = IPPROTO_ROUTING;
5786 		i++;
5787 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5788 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5789 		s[i]->s.jt = NULL;	/*later*/
5790 		s[i]->s.jf = NULL;	/*later*/
5791 		s[i]->s.k = IPPROTO_FRAGMENT;
5792 		fix3 = i;
5793 		v6end = i;
5794 		i++;
5795 
5796 		/* v6advance: */
5797 		v6advance = i;
5798 
5799 		/*
5800 		 * in short,
5801 		 * A = P[X + packet head];
5802 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5803 		 */
5804 		/* A = P[X + packet head] */
5805 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5806 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5807 		i++;
5808 		/* MEM[reg2] = A */
5809 		s[i] = new_stmt(cstate, BPF_ST);
5810 		s[i]->s.k = reg2;
5811 		i++;
5812 		/* A = P[X + packet head + 1]; */
5813 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5814 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
5815 		i++;
5816 		/* A += 1 */
5817 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5818 		s[i]->s.k = 1;
5819 		i++;
5820 		/* A *= 8 */
5821 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
5822 		s[i]->s.k = 8;
5823 		i++;
5824 		/* A += X */
5825 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
5826 		s[i]->s.k = 0;
5827 		i++;
5828 		/* X = A; */
5829 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5830 		i++;
5831 		/* A = MEM[reg2] */
5832 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
5833 		s[i]->s.k = reg2;
5834 		i++;
5835 
5836 		/* goto again; (must use BPF_JA for backward jump) */
5837 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
5838 		s[i]->s.k = again - i - 1;
5839 		s[i - 1]->s.jf = s[i];
5840 		i++;
5841 
5842 		/* fixup */
5843 		for (j = v6start; j <= v6end; j++)
5844 			s[j]->s.jt = s[v6advance];
5845 	} else {
5846 		/* nop */
5847 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5848 		s[i]->s.k = 0;
5849 		s[fix2]->s.jf = s[i];
5850 		i++;
5851 	}
5852 
5853 	/* ahcheck: */
5854 	ahcheck = i;
5855 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5856 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5857 	s[i]->s.jt = NULL;	/*later*/
5858 	s[i]->s.jf = NULL;	/*later*/
5859 	s[i]->s.k = IPPROTO_AH;
5860 	if (fix3)
5861 		s[fix3]->s.jf = s[ahcheck];
5862 	fix4 = i;
5863 	i++;
5864 
5865 	/*
5866 	 * in short,
5867 	 * A = P[X];
5868 	 * X = X + (P[X + 1] + 2) * 4;
5869 	 */
5870 	/* A = X */
5871 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
5872 	i++;
5873 	/* A = P[X + packet head]; */
5874 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5875 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5876 	i++;
5877 	/* MEM[reg2] = A */
5878 	s[i] = new_stmt(cstate, BPF_ST);
5879 	s[i]->s.k = reg2;
5880 	i++;
5881 	/* A = X */
5882 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
5883 	i++;
5884 	/* A += 1 */
5885 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5886 	s[i]->s.k = 1;
5887 	i++;
5888 	/* X = A */
5889 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5890 	i++;
5891 	/* A = P[X + packet head] */
5892 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5893 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5894 	i++;
5895 	/* A += 2 */
5896 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5897 	s[i]->s.k = 2;
5898 	i++;
5899 	/* A *= 4 */
5900 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
5901 	s[i]->s.k = 4;
5902 	i++;
5903 	/* X = A; */
5904 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5905 	i++;
5906 	/* A = MEM[reg2] */
5907 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
5908 	s[i]->s.k = reg2;
5909 	i++;
5910 
5911 	/* goto again; (must use BPF_JA for backward jump) */
5912 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
5913 	s[i]->s.k = again - i - 1;
5914 	i++;
5915 
5916 	/* end: nop */
5917 	end = i;
5918 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5919 	s[i]->s.k = 0;
5920 	s[fix2]->s.jt = s[end];
5921 	s[fix4]->s.jf = s[end];
5922 	s[fix5]->s.jt = s[end];
5923 	i++;
5924 
5925 	/*
5926 	 * make slist chain
5927 	 */
5928 	max = i;
5929 	for (i = 0; i < max - 1; i++)
5930 		s[i]->next = s[i + 1];
5931 	s[max - 1]->next = NULL;
5932 
5933 	/*
5934 	 * emit final check
5935 	 */
5936 	b = new_block(cstate, JMP(BPF_JEQ));
5937 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5938 	b->s.k = v;
5939 
5940 	free_reg(cstate, reg2);
5941 
5942 	gen_and(b0, b);
5943 	return b;
5944 #endif
5945 }
5946 
5947 static struct block *
5948 gen_check_802_11_data_frame(compiler_state_t *cstate)
5949 {
5950 	struct slist *s;
5951 	struct block *b0, *b1;
5952 
5953 	/*
5954 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5955 	 * and the 0x04 bit (b2) clear.
5956 	 */
5957 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
5958 	b0 = new_block(cstate, JMP(BPF_JSET));
5959 	b0->s.k = 0x08;
5960 	b0->stmts = s;
5961 
5962 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
5963 	b1 = new_block(cstate, JMP(BPF_JSET));
5964 	b1->s.k = 0x04;
5965 	b1->stmts = s;
5966 	gen_not(b1);
5967 
5968 	gen_and(b1, b0);
5969 
5970 	return b0;
5971 }
5972 
5973 /*
5974  * Generate code that checks whether the packet is a packet for protocol
5975  * <proto> and whether the type field in that protocol's header has
5976  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5977  * IP packet and checks the protocol number in the IP header against <v>.
5978  *
5979  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5980  * against Q_IP and Q_IPV6.
5981  */
5982 static struct block *
5983 gen_proto(compiler_state_t *cstate, int v, int proto, int dir)
5984 {
5985 	struct block *b0, *b1;
5986 #ifndef CHASE_CHAIN
5987 	struct block *b2;
5988 #endif
5989 
5990 	if (dir != Q_DEFAULT)
5991 		bpf_error(cstate, "direction applied to 'proto'");
5992 
5993 	switch (proto) {
5994 	case Q_DEFAULT:
5995 		b0 = gen_proto(cstate, v, Q_IP, dir);
5996 		b1 = gen_proto(cstate, v, Q_IPV6, dir);
5997 		gen_or(b0, b1);
5998 		return b1;
5999 
6000 	case Q_IP:
6001 		/*
6002 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6003 		 * not LLC encapsulation with LLCSAP_IP.
6004 		 *
6005 		 * For IEEE 802 networks - which includes 802.5 token ring
6006 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6007 		 * says that SNAP encapsulation is used, not LLC encapsulation
6008 		 * with LLCSAP_IP.
6009 		 *
6010 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6011 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
6012 		 * encapsulation with LLCSAP_IP.
6013 		 *
6014 		 * So we always check for ETHERTYPE_IP.
6015 		 */
6016 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6017 #ifndef CHASE_CHAIN
6018 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)v);
6019 #else
6020 		b1 = gen_protochain(cstate, v, Q_IP);
6021 #endif
6022 		gen_and(b0, b1);
6023 		return b1;
6024 
6025 	case Q_ISO:
6026 		switch (cstate->linktype) {
6027 
6028 		case DLT_FRELAY:
6029 			/*
6030 			 * Frame Relay packets typically have an OSI
6031 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6032 			 * generates code to check for all the OSI
6033 			 * NLPIDs, so calling it and then adding a check
6034 			 * for the particular NLPID for which we're
6035 			 * looking is bogus, as we can just check for
6036 			 * the NLPID.
6037 			 *
6038 			 * What we check for is the NLPID and a frame
6039 			 * control field value of UI, i.e. 0x03 followed
6040 			 * by the NLPID.
6041 			 *
6042 			 * XXX - assumes a 2-byte Frame Relay header with
6043 			 * DLCI and flags.  What if the address is longer?
6044 			 *
6045 			 * XXX - what about SNAP-encapsulated frames?
6046 			 */
6047 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6048 			/*NOTREACHED*/
6049 			break;
6050 
6051 		case DLT_C_HDLC:
6052 			/*
6053 			 * Cisco uses an Ethertype lookalike - for OSI,
6054 			 * it's 0xfefe.
6055 			 */
6056 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6057 			/* OSI in C-HDLC is stuffed with a fudge byte */
6058 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
6059 			gen_and(b0, b1);
6060 			return b1;
6061 
6062 		default:
6063 			b0 = gen_linktype(cstate, LLCSAP_ISONS);
6064 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
6065 			gen_and(b0, b1);
6066 			return b1;
6067 		}
6068 
6069 	case Q_ISIS:
6070 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6071 		/*
6072 		 * 4 is the offset of the PDU type relative to the IS-IS
6073 		 * header.
6074 		 */
6075 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
6076 		gen_and(b0, b1);
6077 		return b1;
6078 
6079 	case Q_ARP:
6080 		bpf_error(cstate, "arp does not encapsulate another protocol");
6081 		/* NOTREACHED */
6082 
6083 	case Q_RARP:
6084 		bpf_error(cstate, "rarp does not encapsulate another protocol");
6085 		/* NOTREACHED */
6086 
6087 	case Q_ATALK:
6088 		bpf_error(cstate, "atalk encapsulation is not specifiable");
6089 		/* NOTREACHED */
6090 
6091 	case Q_DECNET:
6092 		bpf_error(cstate, "decnet encapsulation is not specifiable");
6093 		/* NOTREACHED */
6094 
6095 	case Q_SCA:
6096 		bpf_error(cstate, "sca does not encapsulate another protocol");
6097 		/* NOTREACHED */
6098 
6099 	case Q_LAT:
6100 		bpf_error(cstate, "lat does not encapsulate another protocol");
6101 		/* NOTREACHED */
6102 
6103 	case Q_MOPRC:
6104 		bpf_error(cstate, "moprc does not encapsulate another protocol");
6105 		/* NOTREACHED */
6106 
6107 	case Q_MOPDL:
6108 		bpf_error(cstate, "mopdl does not encapsulate another protocol");
6109 		/* NOTREACHED */
6110 
6111 	case Q_LINK:
6112 		return gen_linktype(cstate, v);
6113 
6114 	case Q_UDP:
6115 		bpf_error(cstate, "'udp proto' is bogus");
6116 		/* NOTREACHED */
6117 
6118 	case Q_TCP:
6119 		bpf_error(cstate, "'tcp proto' is bogus");
6120 		/* NOTREACHED */
6121 
6122 	case Q_SCTP:
6123 		bpf_error(cstate, "'sctp proto' is bogus");
6124 		/* NOTREACHED */
6125 
6126 	case Q_ICMP:
6127 		bpf_error(cstate, "'icmp proto' is bogus");
6128 		/* NOTREACHED */
6129 
6130 	case Q_IGMP:
6131 		bpf_error(cstate, "'igmp proto' is bogus");
6132 		/* NOTREACHED */
6133 
6134 	case Q_IGRP:
6135 		bpf_error(cstate, "'igrp proto' is bogus");
6136 		/* NOTREACHED */
6137 
6138 	case Q_PIM:
6139 		bpf_error(cstate, "'pim proto' is bogus");
6140 		/* NOTREACHED */
6141 
6142 	case Q_VRRP:
6143 		bpf_error(cstate, "'vrrp proto' is bogus");
6144 		/* NOTREACHED */
6145 
6146 	case Q_CARP:
6147 		bpf_error(cstate, "'carp proto' is bogus");
6148 		/* NOTREACHED */
6149 
6150 	case Q_IPV6:
6151 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6152 #ifndef CHASE_CHAIN
6153 		/*
6154 		 * Also check for a fragment header before the final
6155 		 * header.
6156 		 */
6157 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6158 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, (bpf_int32)v);
6159 		gen_and(b2, b1);
6160 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)v);
6161 		gen_or(b2, b1);
6162 #else
6163 		b1 = gen_protochain(cstate, v, Q_IPV6);
6164 #endif
6165 		gen_and(b0, b1);
6166 		return b1;
6167 
6168 	case Q_ICMPV6:
6169 		bpf_error(cstate, "'icmp6 proto' is bogus");
6170 
6171 	case Q_AH:
6172 		bpf_error(cstate, "'ah proto' is bogus");
6173 
6174 	case Q_ESP:
6175 		bpf_error(cstate, "'ah proto' is bogus");
6176 
6177 	case Q_STP:
6178 		bpf_error(cstate, "'stp proto' is bogus");
6179 
6180 	case Q_IPX:
6181 		bpf_error(cstate, "'ipx proto' is bogus");
6182 
6183 	case Q_NETBEUI:
6184 		bpf_error(cstate, "'netbeui proto' is bogus");
6185 
6186 	case Q_RADIO:
6187 		bpf_error(cstate, "'radio proto' is bogus");
6188 
6189 	default:
6190 		abort();
6191 		/* NOTREACHED */
6192 	}
6193 	/* NOTREACHED */
6194 }
6195 
6196 struct block *
6197 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6198 {
6199 	int proto = q.proto;
6200 	int dir = q.dir;
6201 	int tproto;
6202 	u_char *eaddr;
6203 	bpf_u_int32 mask, addr;
6204 #ifndef INET6
6205 	bpf_u_int32 **alist;
6206 #else
6207 	int tproto6;
6208 	struct sockaddr_in *sin4;
6209 	struct sockaddr_in6 *sin6;
6210 	struct addrinfo *res, *res0;
6211 	struct in6_addr mask128;
6212 #endif /*INET6*/
6213 	struct block *b, *tmp;
6214 	int port, real_proto;
6215 	int port1, port2;
6216 
6217 	switch (q.addr) {
6218 
6219 	case Q_NET:
6220 		addr = pcap_nametonetaddr(name);
6221 		if (addr == 0)
6222 			bpf_error(cstate, "unknown network '%s'", name);
6223 		/* Left justify network addr and calculate its network mask */
6224 		mask = 0xffffffff;
6225 		while (addr && (addr & 0xff000000) == 0) {
6226 			addr <<= 8;
6227 			mask <<= 8;
6228 		}
6229 		return gen_host(cstate, addr, mask, proto, dir, q.addr);
6230 
6231 	case Q_DEFAULT:
6232 	case Q_HOST:
6233 		if (proto == Q_LINK) {
6234 			switch (cstate->linktype) {
6235 
6236 			case DLT_EN10MB:
6237 			case DLT_NETANALYZER:
6238 			case DLT_NETANALYZER_TRANSPARENT:
6239 				eaddr = pcap_ether_hostton(name);
6240 				if (eaddr == NULL)
6241 					bpf_error(cstate,
6242 					    "unknown ether host '%s'", name);
6243 				tmp = gen_prevlinkhdr_check(cstate);
6244 				b = gen_ehostop(cstate, eaddr, dir);
6245 				if (tmp != NULL)
6246 					gen_and(tmp, b);
6247 				free(eaddr);
6248 				return b;
6249 
6250 			case DLT_FDDI:
6251 				eaddr = pcap_ether_hostton(name);
6252 				if (eaddr == NULL)
6253 					bpf_error(cstate,
6254 					    "unknown FDDI host '%s'", name);
6255 				b = gen_fhostop(cstate, eaddr, dir);
6256 				free(eaddr);
6257 				return b;
6258 
6259 			case DLT_IEEE802:
6260 				eaddr = pcap_ether_hostton(name);
6261 				if (eaddr == NULL)
6262 					bpf_error(cstate,
6263 					    "unknown token ring host '%s'", name);
6264 				b = gen_thostop(cstate, eaddr, dir);
6265 				free(eaddr);
6266 				return b;
6267 
6268 			case DLT_IEEE802_11:
6269 			case DLT_PRISM_HEADER:
6270 			case DLT_IEEE802_11_RADIO_AVS:
6271 			case DLT_IEEE802_11_RADIO:
6272 			case DLT_PPI:
6273 				eaddr = pcap_ether_hostton(name);
6274 				if (eaddr == NULL)
6275 					bpf_error(cstate,
6276 					    "unknown 802.11 host '%s'", name);
6277 				b = gen_wlanhostop(cstate, eaddr, dir);
6278 				free(eaddr);
6279 				return b;
6280 
6281 			case DLT_IP_OVER_FC:
6282 				eaddr = pcap_ether_hostton(name);
6283 				if (eaddr == NULL)
6284 					bpf_error(cstate,
6285 					    "unknown Fibre Channel host '%s'", name);
6286 				b = gen_ipfchostop(cstate, eaddr, dir);
6287 				free(eaddr);
6288 				return b;
6289 			}
6290 
6291 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6292 		} else if (proto == Q_DECNET) {
6293 			unsigned short dn_addr;
6294 
6295 			if (!__pcap_nametodnaddr(name, &dn_addr)) {
6296 #ifdef	DECNETLIB
6297 				bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6298 #else
6299 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6300 					name);
6301 #endif
6302 			}
6303 			/*
6304 			 * I don't think DECNET hosts can be multihomed, so
6305 			 * there is no need to build up a list of addresses
6306 			 */
6307 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6308 		} else {
6309 #ifndef INET6
6310 			alist = pcap_nametoaddr(name);
6311 			if (alist == NULL || *alist == NULL)
6312 				bpf_error(cstate, "unknown host '%s'", name);
6313 			tproto = proto;
6314 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6315 			    tproto == Q_DEFAULT)
6316 				tproto = Q_IP;
6317 			b = gen_host(cstate, **alist++, 0xffffffff, tproto, dir, q.addr);
6318 			while (*alist) {
6319 				tmp = gen_host(cstate, **alist++, 0xffffffff,
6320 					       tproto, dir, q.addr);
6321 				gen_or(b, tmp);
6322 				b = tmp;
6323 			}
6324 			return b;
6325 #else
6326 			memset(&mask128, 0xff, sizeof(mask128));
6327 			res0 = res = pcap_nametoaddrinfo(name);
6328 			if (res == NULL)
6329 				bpf_error(cstate, "unknown host '%s'", name);
6330 			cstate->ai = res;
6331 			b = tmp = NULL;
6332 			tproto = tproto6 = proto;
6333 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6334 			    tproto == Q_DEFAULT) {
6335 				tproto = Q_IP;
6336 				tproto6 = Q_IPV6;
6337 			}
6338 			for (res = res0; res; res = res->ai_next) {
6339 				switch (res->ai_family) {
6340 				case AF_INET:
6341 					if (tproto == Q_IPV6)
6342 						continue;
6343 
6344 					sin4 = (struct sockaddr_in *)
6345 						res->ai_addr;
6346 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6347 						0xffffffff, tproto, dir, q.addr);
6348 					break;
6349 				case AF_INET6:
6350 					if (tproto6 == Q_IP)
6351 						continue;
6352 
6353 					sin6 = (struct sockaddr_in6 *)
6354 						res->ai_addr;
6355 					tmp = gen_host6(cstate, &sin6->sin6_addr,
6356 						&mask128, tproto6, dir, q.addr);
6357 					break;
6358 				default:
6359 					continue;
6360 				}
6361 				if (b)
6362 					gen_or(b, tmp);
6363 				b = tmp;
6364 			}
6365 			cstate->ai = NULL;
6366 			freeaddrinfo(res0);
6367 			if (b == NULL) {
6368 				bpf_error(cstate, "unknown host '%s'%s", name,
6369 				    (proto == Q_DEFAULT)
6370 					? ""
6371 					: " for specified address family");
6372 			}
6373 			return b;
6374 #endif /*INET6*/
6375 		}
6376 
6377 	case Q_PORT:
6378 		if (proto != Q_DEFAULT &&
6379 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6380 			bpf_error(cstate, "illegal qualifier of 'port'");
6381 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6382 			bpf_error(cstate, "unknown port '%s'", name);
6383 		if (proto == Q_UDP) {
6384 			if (real_proto == IPPROTO_TCP)
6385 				bpf_error(cstate, "port '%s' is tcp", name);
6386 			else if (real_proto == IPPROTO_SCTP)
6387 				bpf_error(cstate, "port '%s' is sctp", name);
6388 			else
6389 				/* override PROTO_UNDEF */
6390 				real_proto = IPPROTO_UDP;
6391 		}
6392 		if (proto == Q_TCP) {
6393 			if (real_proto == IPPROTO_UDP)
6394 				bpf_error(cstate, "port '%s' is udp", name);
6395 
6396 			else if (real_proto == IPPROTO_SCTP)
6397 				bpf_error(cstate, "port '%s' is sctp", name);
6398 			else
6399 				/* override PROTO_UNDEF */
6400 				real_proto = IPPROTO_TCP;
6401 		}
6402 		if (proto == Q_SCTP) {
6403 			if (real_proto == IPPROTO_UDP)
6404 				bpf_error(cstate, "port '%s' is udp", name);
6405 
6406 			else if (real_proto == IPPROTO_TCP)
6407 				bpf_error(cstate, "port '%s' is tcp", name);
6408 			else
6409 				/* override PROTO_UNDEF */
6410 				real_proto = IPPROTO_SCTP;
6411 		}
6412 		if (port < 0)
6413 			bpf_error(cstate, "illegal port number %d < 0", port);
6414 		if (port > 65535)
6415 			bpf_error(cstate, "illegal port number %d > 65535", port);
6416 		b = gen_port(cstate, port, real_proto, dir);
6417 		gen_or(gen_port6(cstate, port, real_proto, dir), b);
6418 		return b;
6419 
6420 	case Q_PORTRANGE:
6421 		if (proto != Q_DEFAULT &&
6422 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6423 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6424 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6425 			bpf_error(cstate, "unknown port in range '%s'", name);
6426 		if (proto == Q_UDP) {
6427 			if (real_proto == IPPROTO_TCP)
6428 				bpf_error(cstate, "port in range '%s' is tcp", name);
6429 			else if (real_proto == IPPROTO_SCTP)
6430 				bpf_error(cstate, "port in range '%s' is sctp", name);
6431 			else
6432 				/* override PROTO_UNDEF */
6433 				real_proto = IPPROTO_UDP;
6434 		}
6435 		if (proto == Q_TCP) {
6436 			if (real_proto == IPPROTO_UDP)
6437 				bpf_error(cstate, "port in range '%s' is udp", name);
6438 			else if (real_proto == IPPROTO_SCTP)
6439 				bpf_error(cstate, "port in range '%s' is sctp", name);
6440 			else
6441 				/* override PROTO_UNDEF */
6442 				real_proto = IPPROTO_TCP;
6443 		}
6444 		if (proto == Q_SCTP) {
6445 			if (real_proto == IPPROTO_UDP)
6446 				bpf_error(cstate, "port in range '%s' is udp", name);
6447 			else if (real_proto == IPPROTO_TCP)
6448 				bpf_error(cstate, "port in range '%s' is tcp", name);
6449 			else
6450 				/* override PROTO_UNDEF */
6451 				real_proto = IPPROTO_SCTP;
6452 		}
6453 		if (port1 < 0)
6454 			bpf_error(cstate, "illegal port number %d < 0", port1);
6455 		if (port1 > 65535)
6456 			bpf_error(cstate, "illegal port number %d > 65535", port1);
6457 		if (port2 < 0)
6458 			bpf_error(cstate, "illegal port number %d < 0", port2);
6459 		if (port2 > 65535)
6460 			bpf_error(cstate, "illegal port number %d > 65535", port2);
6461 
6462 		b = gen_portrange(cstate, port1, port2, real_proto, dir);
6463 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6464 		return b;
6465 
6466 	case Q_GATEWAY:
6467 #ifndef INET6
6468 		eaddr = pcap_ether_hostton(name);
6469 		if (eaddr == NULL)
6470 			bpf_error(cstate, "unknown ether host: %s", name);
6471 
6472 		alist = pcap_nametoaddr(name);
6473 		if (alist == NULL || *alist == NULL)
6474 			bpf_error(cstate, "unknown host '%s'", name);
6475 		b = gen_gateway(cstate, eaddr, alist, proto, dir);
6476 		free(eaddr);
6477 		return b;
6478 #else
6479 		bpf_error(cstate, "'gateway' not supported in this configuration");
6480 #endif /*INET6*/
6481 
6482 	case Q_PROTO:
6483 		real_proto = lookup_proto(cstate, name, proto);
6484 		if (real_proto >= 0)
6485 			return gen_proto(cstate, real_proto, proto, dir);
6486 		else
6487 			bpf_error(cstate, "unknown protocol: %s", name);
6488 
6489 	case Q_PROTOCHAIN:
6490 		real_proto = lookup_proto(cstate, name, proto);
6491 		if (real_proto >= 0)
6492 			return gen_protochain(cstate, real_proto, proto, dir);
6493 		else
6494 			bpf_error(cstate, "unknown protocol: %s", name);
6495 
6496 	case Q_UNDEF:
6497 		syntax(cstate);
6498 		/* NOTREACHED */
6499 	}
6500 	abort();
6501 	/* NOTREACHED */
6502 }
6503 
6504 struct block *
6505 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6506     unsigned int masklen, struct qual q)
6507 {
6508 	register int nlen, mlen;
6509 	bpf_u_int32 n, m;
6510 
6511 	nlen = __pcap_atoin(s1, &n);
6512 	/* Promote short ipaddr */
6513 	n <<= 32 - nlen;
6514 
6515 	if (s2 != NULL) {
6516 		mlen = __pcap_atoin(s2, &m);
6517 		/* Promote short ipaddr */
6518 		m <<= 32 - mlen;
6519 		if ((n & ~m) != 0)
6520 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
6521 			    s1, s2);
6522 	} else {
6523 		/* Convert mask len to mask */
6524 		if (masklen > 32)
6525 			bpf_error(cstate, "mask length must be <= 32");
6526 		if (masklen == 0) {
6527 			/*
6528 			 * X << 32 is not guaranteed by C to be 0; it's
6529 			 * undefined.
6530 			 */
6531 			m = 0;
6532 		} else
6533 			m = 0xffffffff << (32 - masklen);
6534 		if ((n & ~m) != 0)
6535 			bpf_error(cstate, "non-network bits set in \"%s/%d\"",
6536 			    s1, masklen);
6537 	}
6538 
6539 	switch (q.addr) {
6540 
6541 	case Q_NET:
6542 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
6543 
6544 	default:
6545 		bpf_error(cstate, "Mask syntax for networks only");
6546 		/* NOTREACHED */
6547 	}
6548 	/* NOTREACHED */
6549 	return NULL;
6550 }
6551 
6552 struct block *
6553 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
6554 {
6555 	bpf_u_int32 mask;
6556 	int proto = q.proto;
6557 	int dir = q.dir;
6558 	register int vlen;
6559 
6560 	if (s == NULL)
6561 		vlen = 32;
6562 	else if (q.proto == Q_DECNET) {
6563 		vlen = __pcap_atodn(s, &v);
6564 		if (vlen == 0)
6565 			bpf_error(cstate, "malformed decnet address '%s'", s);
6566 	} else
6567 		vlen = __pcap_atoin(s, &v);
6568 
6569 	switch (q.addr) {
6570 
6571 	case Q_DEFAULT:
6572 	case Q_HOST:
6573 	case Q_NET:
6574 		if (proto == Q_DECNET)
6575 			return gen_host(cstate, v, 0, proto, dir, q.addr);
6576 		else if (proto == Q_LINK) {
6577 			bpf_error(cstate, "illegal link layer address");
6578 		} else {
6579 			mask = 0xffffffff;
6580 			if (s == NULL && q.addr == Q_NET) {
6581 				/* Promote short net number */
6582 				while (v && (v & 0xff000000) == 0) {
6583 					v <<= 8;
6584 					mask <<= 8;
6585 				}
6586 			} else {
6587 				/* Promote short ipaddr */
6588 				v <<= 32 - vlen;
6589 				mask <<= 32 - vlen ;
6590 			}
6591 			return gen_host(cstate, v, mask, proto, dir, q.addr);
6592 		}
6593 
6594 	case Q_PORT:
6595 		if (proto == Q_UDP)
6596 			proto = IPPROTO_UDP;
6597 		else if (proto == Q_TCP)
6598 			proto = IPPROTO_TCP;
6599 		else if (proto == Q_SCTP)
6600 			proto = IPPROTO_SCTP;
6601 		else if (proto == Q_DEFAULT)
6602 			proto = PROTO_UNDEF;
6603 		else
6604 			bpf_error(cstate, "illegal qualifier of 'port'");
6605 
6606 		if (v > 65535)
6607 			bpf_error(cstate, "illegal port number %u > 65535", v);
6608 
6609 	    {
6610 		struct block *b;
6611 		b = gen_port(cstate, (int)v, proto, dir);
6612 		gen_or(gen_port6(cstate, (int)v, proto, dir), b);
6613 		return b;
6614 	    }
6615 
6616 	case Q_PORTRANGE:
6617 		if (proto == Q_UDP)
6618 			proto = IPPROTO_UDP;
6619 		else if (proto == Q_TCP)
6620 			proto = IPPROTO_TCP;
6621 		else if (proto == Q_SCTP)
6622 			proto = IPPROTO_SCTP;
6623 		else if (proto == Q_DEFAULT)
6624 			proto = PROTO_UNDEF;
6625 		else
6626 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6627 
6628 		if (v > 65535)
6629 			bpf_error(cstate, "illegal port number %u > 65535", v);
6630 
6631 	    {
6632 		struct block *b;
6633 		b = gen_portrange(cstate, (int)v, (int)v, proto, dir);
6634 		gen_or(gen_portrange6(cstate, (int)v, (int)v, proto, dir), b);
6635 		return b;
6636 	    }
6637 
6638 	case Q_GATEWAY:
6639 		bpf_error(cstate, "'gateway' requires a name");
6640 		/* NOTREACHED */
6641 
6642 	case Q_PROTO:
6643 		return gen_proto(cstate, (int)v, proto, dir);
6644 
6645 	case Q_PROTOCHAIN:
6646 		return gen_protochain(cstate, (int)v, proto, dir);
6647 
6648 	case Q_UNDEF:
6649 		syntax(cstate);
6650 		/* NOTREACHED */
6651 
6652 	default:
6653 		abort();
6654 		/* NOTREACHED */
6655 	}
6656 	/* NOTREACHED */
6657 }
6658 
6659 #ifdef INET6
6660 struct block *
6661 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
6662     unsigned int masklen, struct qual q)
6663 {
6664 	struct addrinfo *res;
6665 	struct in6_addr *addr;
6666 	struct in6_addr mask;
6667 	struct block *b;
6668 	u_int32_t *a, *m;
6669 
6670 	if (s2)
6671 		bpf_error(cstate, "no mask %s supported", s2);
6672 
6673 	res = pcap_nametoaddrinfo(s1);
6674 	if (!res)
6675 		bpf_error(cstate, "invalid ip6 address %s", s1);
6676 	cstate->ai = res;
6677 	if (res->ai_next)
6678 		bpf_error(cstate, "%s resolved to multiple address", s1);
6679 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6680 
6681 	if (sizeof(mask) * 8 < masklen)
6682 		bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6683 	memset(&mask, 0, sizeof(mask));
6684 	memset(&mask, 0xff, masklen / 8);
6685 	if (masklen % 8) {
6686 		mask.s6_addr[masklen / 8] =
6687 			(0xff << (8 - masklen % 8)) & 0xff;
6688 	}
6689 
6690 	a = (u_int32_t *)addr;
6691 	m = (u_int32_t *)&mask;
6692 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6693 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6694 		bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
6695 	}
6696 
6697 	switch (q.addr) {
6698 
6699 	case Q_DEFAULT:
6700 	case Q_HOST:
6701 		if (masklen != 128)
6702 			bpf_error(cstate, "Mask syntax for networks only");
6703 		/* FALLTHROUGH */
6704 
6705 	case Q_NET:
6706 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
6707 		cstate->ai = NULL;
6708 		freeaddrinfo(res);
6709 		return b;
6710 
6711 	default:
6712 		bpf_error(cstate, "invalid qualifier against IPv6 address");
6713 		/* NOTREACHED */
6714 	}
6715 	return NULL;
6716 }
6717 #endif /*INET6*/
6718 
6719 struct block *
6720 gen_ecode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
6721 {
6722 	struct block *b, *tmp;
6723 
6724 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6725 		switch (cstate->linktype) {
6726 		case DLT_EN10MB:
6727 		case DLT_NETANALYZER:
6728 		case DLT_NETANALYZER_TRANSPARENT:
6729 			tmp = gen_prevlinkhdr_check(cstate);
6730 			b = gen_ehostop(cstate, eaddr, (int)q.dir);
6731 			if (tmp != NULL)
6732 				gen_and(tmp, b);
6733 			return b;
6734 		case DLT_FDDI:
6735 			return gen_fhostop(cstate, eaddr, (int)q.dir);
6736 		case DLT_IEEE802:
6737 			return gen_thostop(cstate, eaddr, (int)q.dir);
6738 		case DLT_IEEE802_11:
6739 		case DLT_PRISM_HEADER:
6740 		case DLT_IEEE802_11_RADIO_AVS:
6741 		case DLT_IEEE802_11_RADIO:
6742 		case DLT_PPI:
6743 			return gen_wlanhostop(cstate, eaddr, (int)q.dir);
6744 		case DLT_IP_OVER_FC:
6745 			return gen_ipfchostop(cstate, eaddr, (int)q.dir);
6746 		default:
6747 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6748 			break;
6749 		}
6750 	}
6751 	bpf_error(cstate, "ethernet address used in non-ether expression");
6752 	/* NOTREACHED */
6753 	return NULL;
6754 }
6755 
6756 void
6757 sappend(s0, s1)
6758 	struct slist *s0, *s1;
6759 {
6760 	/*
6761 	 * This is definitely not the best way to do this, but the
6762 	 * lists will rarely get long.
6763 	 */
6764 	while (s0->next)
6765 		s0 = s0->next;
6766 	s0->next = s1;
6767 }
6768 
6769 static struct slist *
6770 xfer_to_x(compiler_state_t *cstate, struct arth *a)
6771 {
6772 	struct slist *s;
6773 
6774 	s = new_stmt(cstate, BPF_LDX|BPF_MEM);
6775 	s->s.k = a->regno;
6776 	return s;
6777 }
6778 
6779 static struct slist *
6780 xfer_to_a(compiler_state_t *cstate, struct arth *a)
6781 {
6782 	struct slist *s;
6783 
6784 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
6785 	s->s.k = a->regno;
6786 	return s;
6787 }
6788 
6789 /*
6790  * Modify "index" to use the value stored into its register as an
6791  * offset relative to the beginning of the header for the protocol
6792  * "proto", and allocate a register and put an item "size" bytes long
6793  * (1, 2, or 4) at that offset into that register, making it the register
6794  * for "index".
6795  */
6796 struct arth *
6797 gen_load(compiler_state_t *cstate, int proto, struct arth *inst, int size)
6798 {
6799 	struct slist *s, *tmp;
6800 	struct block *b;
6801 	int regno = alloc_reg(cstate);
6802 
6803 	free_reg(cstate, inst->regno);
6804 	switch (size) {
6805 
6806 	default:
6807 		bpf_error(cstate, "data size must be 1, 2, or 4");
6808 
6809 	case 1:
6810 		size = BPF_B;
6811 		break;
6812 
6813 	case 2:
6814 		size = BPF_H;
6815 		break;
6816 
6817 	case 4:
6818 		size = BPF_W;
6819 		break;
6820 	}
6821 	switch (proto) {
6822 	default:
6823 		bpf_error(cstate, "unsupported index operation");
6824 
6825 	case Q_RADIO:
6826 		/*
6827 		 * The offset is relative to the beginning of the packet
6828 		 * data, if we have a radio header.  (If we don't, this
6829 		 * is an error.)
6830 		 */
6831 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
6832 		    cstate->linktype != DLT_IEEE802_11_RADIO &&
6833 		    cstate->linktype != DLT_PRISM_HEADER)
6834 			bpf_error(cstate, "radio information not present in capture");
6835 
6836 		/*
6837 		 * Load into the X register the offset computed into the
6838 		 * register specified by "index".
6839 		 */
6840 		s = xfer_to_x(cstate, inst);
6841 
6842 		/*
6843 		 * Load the item at that offset.
6844 		 */
6845 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6846 		sappend(s, tmp);
6847 		sappend(inst->s, s);
6848 		break;
6849 
6850 	case Q_LINK:
6851 		/*
6852 		 * The offset is relative to the beginning of
6853 		 * the link-layer header.
6854 		 *
6855 		 * XXX - what about ATM LANE?  Should the index be
6856 		 * relative to the beginning of the AAL5 frame, so
6857 		 * that 0 refers to the beginning of the LE Control
6858 		 * field, or relative to the beginning of the LAN
6859 		 * frame, so that 0 refers, for Ethernet LANE, to
6860 		 * the beginning of the destination address?
6861 		 */
6862 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
6863 
6864 		/*
6865 		 * If "s" is non-null, it has code to arrange that the
6866 		 * X register contains the length of the prefix preceding
6867 		 * the link-layer header.  Add to it the offset computed
6868 		 * into the register specified by "index", and move that
6869 		 * into the X register.  Otherwise, just load into the X
6870 		 * register the offset computed into the register specified
6871 		 * by "index".
6872 		 */
6873 		if (s != NULL) {
6874 			sappend(s, xfer_to_a(cstate, inst));
6875 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
6876 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
6877 		} else
6878 			s = xfer_to_x(cstate, inst);
6879 
6880 		/*
6881 		 * Load the item at the sum of the offset we've put in the
6882 		 * X register and the offset of the start of the link
6883 		 * layer header (which is 0 if the radio header is
6884 		 * variable-length; that header length is what we put
6885 		 * into the X register and then added to the index).
6886 		 */
6887 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6888 		tmp->s.k = cstate->off_linkhdr.constant_part;
6889 		sappend(s, tmp);
6890 		sappend(inst->s, s);
6891 		break;
6892 
6893 	case Q_IP:
6894 	case Q_ARP:
6895 	case Q_RARP:
6896 	case Q_ATALK:
6897 	case Q_DECNET:
6898 	case Q_SCA:
6899 	case Q_LAT:
6900 	case Q_MOPRC:
6901 	case Q_MOPDL:
6902 	case Q_IPV6:
6903 		/*
6904 		 * The offset is relative to the beginning of
6905 		 * the network-layer header.
6906 		 * XXX - are there any cases where we want
6907 		 * cstate->off_nl_nosnap?
6908 		 */
6909 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
6910 
6911 		/*
6912 		 * If "s" is non-null, it has code to arrange that the
6913 		 * X register contains the variable part of the offset
6914 		 * of the link-layer payload.  Add to it the offset
6915 		 * computed into the register specified by "index",
6916 		 * and move that into the X register.  Otherwise, just
6917 		 * load into the X register the offset computed into
6918 		 * the register specified by "index".
6919 		 */
6920 		if (s != NULL) {
6921 			sappend(s, xfer_to_a(cstate, inst));
6922 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
6923 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
6924 		} else
6925 			s = xfer_to_x(cstate, inst);
6926 
6927 		/*
6928 		 * Load the item at the sum of the offset we've put in the
6929 		 * X register, the offset of the start of the network
6930 		 * layer header from the beginning of the link-layer
6931 		 * payload, and the constant part of the offset of the
6932 		 * start of the link-layer payload.
6933 		 */
6934 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6935 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6936 		sappend(s, tmp);
6937 		sappend(inst->s, s);
6938 
6939 		/*
6940 		 * Do the computation only if the packet contains
6941 		 * the protocol in question.
6942 		 */
6943 		b = gen_proto_abbrev(cstate, proto);
6944 		if (inst->b)
6945 			gen_and(inst->b, b);
6946 		inst->b = b;
6947 		break;
6948 
6949 	case Q_SCTP:
6950 	case Q_TCP:
6951 	case Q_UDP:
6952 	case Q_ICMP:
6953 	case Q_IGMP:
6954 	case Q_IGRP:
6955 	case Q_PIM:
6956 	case Q_VRRP:
6957 	case Q_CARP:
6958 		/*
6959 		 * The offset is relative to the beginning of
6960 		 * the transport-layer header.
6961 		 *
6962 		 * Load the X register with the length of the IPv4 header
6963 		 * (plus the offset of the link-layer header, if it's
6964 		 * a variable-length header), in bytes.
6965 		 *
6966 		 * XXX - are there any cases where we want
6967 		 * cstate->off_nl_nosnap?
6968 		 * XXX - we should, if we're built with
6969 		 * IPv6 support, generate code to load either
6970 		 * IPv4, IPv6, or both, as appropriate.
6971 		 */
6972 		s = gen_loadx_iphdrlen(cstate);
6973 
6974 		/*
6975 		 * The X register now contains the sum of the variable
6976 		 * part of the offset of the link-layer payload and the
6977 		 * length of the network-layer header.
6978 		 *
6979 		 * Load into the A register the offset relative to
6980 		 * the beginning of the transport layer header,
6981 		 * add the X register to that, move that to the
6982 		 * X register, and load with an offset from the
6983 		 * X register equal to the sum of the constant part of
6984 		 * the offset of the link-layer payload and the offset,
6985 		 * relative to the beginning of the link-layer payload,
6986 		 * of the network-layer header.
6987 		 */
6988 		sappend(s, xfer_to_a(cstate, inst));
6989 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
6990 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
6991 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size));
6992 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6993 		sappend(inst->s, s);
6994 
6995 		/*
6996 		 * Do the computation only if the packet contains
6997 		 * the protocol in question - which is true only
6998 		 * if this is an IP datagram and is the first or
6999 		 * only fragment of that datagram.
7000 		 */
7001 		gen_and(gen_proto_abbrev(cstate, proto), b = gen_ipfrag(cstate));
7002 		if (inst->b)
7003 			gen_and(inst->b, b);
7004 		gen_and(gen_proto_abbrev(cstate, Q_IP), b);
7005 		inst->b = b;
7006 		break;
7007 	case Q_ICMPV6:
7008 		bpf_error(cstate, "IPv6 upper-layer protocol is not supported by proto[x]");
7009 		/*NOTREACHED*/
7010 	}
7011 	inst->regno = regno;
7012 	s = new_stmt(cstate, BPF_ST);
7013 	s->s.k = regno;
7014 	sappend(inst->s, s);
7015 
7016 	return inst;
7017 }
7018 
7019 struct block *
7020 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7021     struct arth *a1, int reversed)
7022 {
7023 	struct slist *s0, *s1, *s2;
7024 	struct block *b, *tmp;
7025 
7026 	s0 = xfer_to_x(cstate, a1);
7027 	s1 = xfer_to_a(cstate, a0);
7028 	if (code == BPF_JEQ) {
7029 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7030 		b = new_block(cstate, JMP(code));
7031 		sappend(s1, s2);
7032 	}
7033 	else
7034 		b = new_block(cstate, BPF_JMP|code|BPF_X);
7035 	if (reversed)
7036 		gen_not(b);
7037 
7038 	sappend(s0, s1);
7039 	sappend(a1->s, s0);
7040 	sappend(a0->s, a1->s);
7041 
7042 	b->stmts = a0->s;
7043 
7044 	free_reg(cstate, a0->regno);
7045 	free_reg(cstate, a1->regno);
7046 
7047 	/* 'and' together protocol checks */
7048 	if (a0->b) {
7049 		if (a1->b) {
7050 			gen_and(a0->b, tmp = a1->b);
7051 		}
7052 		else
7053 			tmp = a0->b;
7054 	} else
7055 		tmp = a1->b;
7056 
7057 	if (tmp)
7058 		gen_and(tmp, b);
7059 
7060 	return b;
7061 }
7062 
7063 struct arth *
7064 gen_loadlen(compiler_state_t *cstate)
7065 {
7066 	int regno = alloc_reg(cstate);
7067 	struct arth *a = (struct arth *)newchunk(cstate, sizeof(*a));
7068 	struct slist *s;
7069 
7070 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7071 	s->next = new_stmt(cstate, BPF_ST);
7072 	s->next->s.k = regno;
7073 	a->s = s;
7074 	a->regno = regno;
7075 
7076 	return a;
7077 }
7078 
7079 struct arth *
7080 gen_loadi(compiler_state_t *cstate, int val)
7081 {
7082 	struct arth *a;
7083 	struct slist *s;
7084 	int reg;
7085 
7086 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7087 
7088 	reg = alloc_reg(cstate);
7089 
7090 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
7091 	s->s.k = val;
7092 	s->next = new_stmt(cstate, BPF_ST);
7093 	s->next->s.k = reg;
7094 	a->s = s;
7095 	a->regno = reg;
7096 
7097 	return a;
7098 }
7099 
7100 struct arth *
7101 gen_neg(compiler_state_t *cstate, struct arth *a)
7102 {
7103 	struct slist *s;
7104 
7105 	s = xfer_to_a(cstate, a);
7106 	sappend(a->s, s);
7107 	s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7108 	s->s.k = 0;
7109 	sappend(a->s, s);
7110 	s = new_stmt(cstate, BPF_ST);
7111 	s->s.k = a->regno;
7112 	sappend(a->s, s);
7113 
7114 	return a;
7115 }
7116 
7117 struct arth *
7118 gen_arth(compiler_state_t *cstate, int code, struct arth *a0,
7119     struct arth *a1)
7120 {
7121 	struct slist *s0, *s1, *s2;
7122 
7123 	/*
7124 	 * Disallow division by, or modulus by, zero; we do this here
7125 	 * so that it gets done even if the optimizer is disabled.
7126 	 */
7127 	if (code == BPF_DIV) {
7128 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7129 			bpf_error(cstate, "division by zero");
7130 	} else if (code == BPF_MOD) {
7131 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7132 			bpf_error(cstate, "modulus by zero");
7133 	}
7134 	s0 = xfer_to_x(cstate, a1);
7135 	s1 = xfer_to_a(cstate, a0);
7136 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7137 
7138 	sappend(s1, s2);
7139 	sappend(s0, s1);
7140 	sappend(a1->s, s0);
7141 	sappend(a0->s, a1->s);
7142 
7143 	free_reg(cstate, a0->regno);
7144 	free_reg(cstate, a1->regno);
7145 
7146 	s0 = new_stmt(cstate, BPF_ST);
7147 	a0->regno = s0->s.k = alloc_reg(cstate);
7148 	sappend(a0->s, s0);
7149 
7150 	return a0;
7151 }
7152 
7153 /*
7154  * Initialize the table of used registers and the current register.
7155  */
7156 static void
7157 init_regs(compiler_state_t *cstate)
7158 {
7159 	cstate->curreg = 0;
7160 	memset(cstate->regused, 0, sizeof cstate->regused);
7161 }
7162 
7163 /*
7164  * Return the next free register.
7165  */
7166 static int
7167 alloc_reg(compiler_state_t *cstate)
7168 {
7169 	int n = BPF_MEMWORDS;
7170 
7171 	while (--n >= 0) {
7172 		if (cstate->regused[cstate->curreg])
7173 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7174 		else {
7175 			cstate->regused[cstate->curreg] = 1;
7176 			return cstate->curreg;
7177 		}
7178 	}
7179 	bpf_error(cstate, "too many registers needed to evaluate expression");
7180 	/* NOTREACHED */
7181 	return 0;
7182 }
7183 
7184 /*
7185  * Return a register to the table so it can
7186  * be used later.
7187  */
7188 static void
7189 free_reg(compiler_state_t *cstate, int n)
7190 {
7191 	cstate->regused[n] = 0;
7192 }
7193 
7194 static struct block *
7195 gen_len(compiler_state_t *cstate, int jmp, int n)
7196 {
7197 	struct slist *s;
7198 	struct block *b;
7199 
7200 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7201 	b = new_block(cstate, JMP(jmp));
7202 	b->stmts = s;
7203 	b->s.k = n;
7204 
7205 	return b;
7206 }
7207 
7208 struct block *
7209 gen_greater(compiler_state_t *cstate, int n)
7210 {
7211 	return gen_len(cstate, BPF_JGE, n);
7212 }
7213 
7214 /*
7215  * Actually, this is less than or equal.
7216  */
7217 struct block *
7218 gen_less(compiler_state_t *cstate, int n)
7219 {
7220 	struct block *b;
7221 
7222 	b = gen_len(cstate, BPF_JGT, n);
7223 	gen_not(b);
7224 
7225 	return b;
7226 }
7227 
7228 /*
7229  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7230  * the beginning of the link-layer header.
7231  * XXX - that means you can't test values in the radiotap header, but
7232  * as that header is difficult if not impossible to parse generally
7233  * without a loop, that might not be a severe problem.  A new keyword
7234  * "radio" could be added for that, although what you'd really want
7235  * would be a way of testing particular radio header values, which
7236  * would generate code appropriate to the radio header in question.
7237  */
7238 struct block *
7239 gen_byteop(compiler_state_t *cstate, int op, int idx, int val)
7240 {
7241 	struct block *b;
7242 	struct slist *s;
7243 
7244 	switch (op) {
7245 	default:
7246 		abort();
7247 
7248 	case '=':
7249 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7250 
7251 	case '<':
7252 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7253 		return b;
7254 
7255 	case '>':
7256 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7257 		return b;
7258 
7259 	case '|':
7260 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7261 		break;
7262 
7263 	case '&':
7264 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7265 		break;
7266 	}
7267 	s->s.k = val;
7268 	b = new_block(cstate, JMP(BPF_JEQ));
7269 	b->stmts = s;
7270 	gen_not(b);
7271 
7272 	return b;
7273 }
7274 
7275 static const u_char abroadcast[] = { 0x0 };
7276 
7277 struct block *
7278 gen_broadcast(compiler_state_t *cstate, int proto)
7279 {
7280 	bpf_u_int32 hostmask;
7281 	struct block *b0, *b1, *b2;
7282 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7283 
7284 	switch (proto) {
7285 
7286 	case Q_DEFAULT:
7287 	case Q_LINK:
7288 		switch (cstate->linktype) {
7289 		case DLT_ARCNET:
7290 		case DLT_ARCNET_LINUX:
7291 			return gen_ahostop(cstate, abroadcast, Q_DST);
7292 		case DLT_EN10MB:
7293 		case DLT_NETANALYZER:
7294 		case DLT_NETANALYZER_TRANSPARENT:
7295 			b1 = gen_prevlinkhdr_check(cstate);
7296 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7297 			if (b1 != NULL)
7298 				gen_and(b1, b0);
7299 			return b0;
7300 		case DLT_FDDI:
7301 			return gen_fhostop(cstate, ebroadcast, Q_DST);
7302 		case DLT_IEEE802:
7303 			return gen_thostop(cstate, ebroadcast, Q_DST);
7304 		case DLT_IEEE802_11:
7305 		case DLT_PRISM_HEADER:
7306 		case DLT_IEEE802_11_RADIO_AVS:
7307 		case DLT_IEEE802_11_RADIO:
7308 		case DLT_PPI:
7309 			return gen_wlanhostop(cstate, ebroadcast, Q_DST);
7310 		case DLT_IP_OVER_FC:
7311 			return gen_ipfchostop(cstate, ebroadcast, Q_DST);
7312 		default:
7313 			bpf_error(cstate, "not a broadcast link");
7314 		}
7315 		break;
7316 
7317 	case Q_IP:
7318 		/*
7319 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7320 		 * as an indication that we don't know the netmask, and fail
7321 		 * in that case.
7322 		 */
7323 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
7324 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
7325 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
7326 		hostmask = ~cstate->netmask;
7327 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
7328 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
7329 			      (bpf_int32)(~0 & hostmask), hostmask);
7330 		gen_or(b1, b2);
7331 		gen_and(b0, b2);
7332 		return b2;
7333 	}
7334 	bpf_error(cstate, "only link-layer/IP broadcast filters supported");
7335 	/* NOTREACHED */
7336 	return NULL;
7337 }
7338 
7339 /*
7340  * Generate code to test the low-order bit of a MAC address (that's
7341  * the bottom bit of the *first* byte).
7342  */
7343 static struct block *
7344 gen_mac_multicast(compiler_state_t *cstate, int offset)
7345 {
7346 	register struct block *b0;
7347 	register struct slist *s;
7348 
7349 	/* link[offset] & 1 != 0 */
7350 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
7351 	b0 = new_block(cstate, JMP(BPF_JSET));
7352 	b0->s.k = 1;
7353 	b0->stmts = s;
7354 	return b0;
7355 }
7356 
7357 struct block *
7358 gen_multicast(compiler_state_t *cstate, int proto)
7359 {
7360 	register struct block *b0, *b1, *b2;
7361 	register struct slist *s;
7362 
7363 	switch (proto) {
7364 
7365 	case Q_DEFAULT:
7366 	case Q_LINK:
7367 		switch (cstate->linktype) {
7368 		case DLT_ARCNET:
7369 		case DLT_ARCNET_LINUX:
7370 			/* all ARCnet multicasts use the same address */
7371 			return gen_ahostop(cstate, abroadcast, Q_DST);
7372 		case DLT_EN10MB:
7373 		case DLT_NETANALYZER:
7374 		case DLT_NETANALYZER_TRANSPARENT:
7375 			b1 = gen_prevlinkhdr_check(cstate);
7376 			/* ether[0] & 1 != 0 */
7377 			b0 = gen_mac_multicast(cstate, 0);
7378 			if (b1 != NULL)
7379 				gen_and(b1, b0);
7380 			return b0;
7381 		case DLT_FDDI:
7382 			/*
7383 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7384 			 *
7385 			 * XXX - was that referring to bit-order issues?
7386 			 */
7387 			/* fddi[1] & 1 != 0 */
7388 			return gen_mac_multicast(cstate, 1);
7389 		case DLT_IEEE802:
7390 			/* tr[2] & 1 != 0 */
7391 			return gen_mac_multicast(cstate, 2);
7392 		case DLT_IEEE802_11:
7393 		case DLT_PRISM_HEADER:
7394 		case DLT_IEEE802_11_RADIO_AVS:
7395 		case DLT_IEEE802_11_RADIO:
7396 		case DLT_PPI:
7397 			/*
7398 			 * Oh, yuk.
7399 			 *
7400 			 *	For control frames, there is no DA.
7401 			 *
7402 			 *	For management frames, DA is at an
7403 			 *	offset of 4 from the beginning of
7404 			 *	the packet.
7405 			 *
7406 			 *	For data frames, DA is at an offset
7407 			 *	of 4 from the beginning of the packet
7408 			 *	if To DS is clear and at an offset of
7409 			 *	16 from the beginning of the packet
7410 			 *	if To DS is set.
7411 			 */
7412 
7413 			/*
7414 			 * Generate the tests to be done for data frames.
7415 			 *
7416 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7417 			 */
7418 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
7419 			b1 = new_block(cstate, JMP(BPF_JSET));
7420 			b1->s.k = 0x01;	/* To DS */
7421 			b1->stmts = s;
7422 
7423 			/*
7424 			 * If To DS is set, the DA is at 16.
7425 			 */
7426 			b0 = gen_mac_multicast(cstate, 16);
7427 			gen_and(b1, b0);
7428 
7429 			/*
7430 			 * Now, check for To DS not set, i.e. check
7431 			 * "!(link[1] & 0x01)".
7432 			 */
7433 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
7434 			b2 = new_block(cstate, JMP(BPF_JSET));
7435 			b2->s.k = 0x01;	/* To DS */
7436 			b2->stmts = s;
7437 			gen_not(b2);
7438 
7439 			/*
7440 			 * If To DS is not set, the DA is at 4.
7441 			 */
7442 			b1 = gen_mac_multicast(cstate, 4);
7443 			gen_and(b2, b1);
7444 
7445 			/*
7446 			 * Now OR together the last two checks.  That gives
7447 			 * the complete set of checks for data frames.
7448 			 */
7449 			gen_or(b1, b0);
7450 
7451 			/*
7452 			 * Now check for a data frame.
7453 			 * I.e, check "link[0] & 0x08".
7454 			 */
7455 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7456 			b1 = new_block(cstate, JMP(BPF_JSET));
7457 			b1->s.k = 0x08;
7458 			b1->stmts = s;
7459 
7460 			/*
7461 			 * AND that with the checks done for data frames.
7462 			 */
7463 			gen_and(b1, b0);
7464 
7465 			/*
7466 			 * If the high-order bit of the type value is 0, this
7467 			 * is a management frame.
7468 			 * I.e, check "!(link[0] & 0x08)".
7469 			 */
7470 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7471 			b2 = new_block(cstate, JMP(BPF_JSET));
7472 			b2->s.k = 0x08;
7473 			b2->stmts = s;
7474 			gen_not(b2);
7475 
7476 			/*
7477 			 * For management frames, the DA is at 4.
7478 			 */
7479 			b1 = gen_mac_multicast(cstate, 4);
7480 			gen_and(b2, b1);
7481 
7482 			/*
7483 			 * OR that with the checks done for data frames.
7484 			 * That gives the checks done for management and
7485 			 * data frames.
7486 			 */
7487 			gen_or(b1, b0);
7488 
7489 			/*
7490 			 * If the low-order bit of the type value is 1,
7491 			 * this is either a control frame or a frame
7492 			 * with a reserved type, and thus not a
7493 			 * frame with an SA.
7494 			 *
7495 			 * I.e., check "!(link[0] & 0x04)".
7496 			 */
7497 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7498 			b1 = new_block(cstate, JMP(BPF_JSET));
7499 			b1->s.k = 0x04;
7500 			b1->stmts = s;
7501 			gen_not(b1);
7502 
7503 			/*
7504 			 * AND that with the checks for data and management
7505 			 * frames.
7506 			 */
7507 			gen_and(b1, b0);
7508 			return b0;
7509 		case DLT_IP_OVER_FC:
7510 			b0 = gen_mac_multicast(cstate, 2);
7511 			return b0;
7512 		default:
7513 			break;
7514 		}
7515 		/* Link not known to support multicasts */
7516 		break;
7517 
7518 	case Q_IP:
7519 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
7520 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, (bpf_int32)224);
7521 		gen_and(b0, b1);
7522 		return b1;
7523 
7524 	case Q_IPV6:
7525 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
7526 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, (bpf_int32)255);
7527 		gen_and(b0, b1);
7528 		return b1;
7529 	}
7530 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7531 	/* NOTREACHED */
7532 	return NULL;
7533 }
7534 
7535 /*
7536  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7537  * Outbound traffic is sent by this machine, while inbound traffic is
7538  * sent by a remote machine (and may include packets destined for a
7539  * unicast or multicast link-layer address we are not subscribing to).
7540  * These are the same definitions implemented by pcap_setdirection().
7541  * Capturing only unicast traffic destined for this host is probably
7542  * better accomplished using a higher-layer filter.
7543  */
7544 struct block *
7545 gen_inbound(compiler_state_t *cstate, int dir)
7546 {
7547 	register struct block *b0;
7548 
7549 	/*
7550 	 * Only some data link types support inbound/outbound qualifiers.
7551 	 */
7552 	switch (cstate->linktype) {
7553 	case DLT_SLIP:
7554 		b0 = gen_relation(cstate, BPF_JEQ,
7555 			  gen_load(cstate, Q_LINK, gen_loadi(cstate, 0), 1),
7556 			  gen_loadi(cstate, 0),
7557 			  dir);
7558 		break;
7559 
7560 	case DLT_IPNET:
7561 		if (dir) {
7562 			/* match outgoing packets */
7563 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
7564 		} else {
7565 			/* match incoming packets */
7566 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
7567 		}
7568 		break;
7569 
7570 	case DLT_LINUX_SLL:
7571 		/* match outgoing packets */
7572 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
7573 		if (!dir) {
7574 			/* to filter on inbound traffic, invert the match */
7575 			gen_not(b0);
7576 		}
7577 		break;
7578 
7579 #ifdef HAVE_NET_PFVAR_H
7580 	case DLT_PFLOG:
7581 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
7582 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7583 		break;
7584 #endif
7585 
7586 	case DLT_PPP_PPPD:
7587 		if (dir) {
7588 			/* match outgoing packets */
7589 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
7590 		} else {
7591 			/* match incoming packets */
7592 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
7593 		}
7594 		break;
7595 
7596         case DLT_JUNIPER_MFR:
7597         case DLT_JUNIPER_MLFR:
7598         case DLT_JUNIPER_MLPPP:
7599 	case DLT_JUNIPER_ATM1:
7600 	case DLT_JUNIPER_ATM2:
7601 	case DLT_JUNIPER_PPPOE:
7602 	case DLT_JUNIPER_PPPOE_ATM:
7603         case DLT_JUNIPER_GGSN:
7604         case DLT_JUNIPER_ES:
7605         case DLT_JUNIPER_MONITOR:
7606         case DLT_JUNIPER_SERVICES:
7607         case DLT_JUNIPER_ETHER:
7608         case DLT_JUNIPER_PPP:
7609         case DLT_JUNIPER_FRELAY:
7610         case DLT_JUNIPER_CHDLC:
7611         case DLT_JUNIPER_VP:
7612         case DLT_JUNIPER_ST:
7613         case DLT_JUNIPER_ISM:
7614         case DLT_JUNIPER_VS:
7615         case DLT_JUNIPER_SRX_E2E:
7616         case DLT_JUNIPER_FIBRECHANNEL:
7617 	case DLT_JUNIPER_ATM_CEMIC:
7618 
7619 		/* juniper flags (including direction) are stored
7620 		 * the byte after the 3-byte magic number */
7621 		if (dir) {
7622 			/* match outgoing packets */
7623 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
7624 		} else {
7625 			/* match incoming packets */
7626 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
7627 		}
7628 		break;
7629 
7630 	default:
7631 		/*
7632 		 * If we have packet meta-data indicating a direction,
7633 		 * check it, otherwise give up as this link-layer type
7634 		 * has nothing in the packet data.
7635 		 */
7636 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7637 		/*
7638 		 * This is Linux with PF_PACKET support.
7639 		 * If this is a *live* capture, we can look at
7640 		 * special meta-data in the filter expression;
7641 		 * if it's a savefile, we can't.
7642 		 */
7643 		if (cstate->bpf_pcap->rfile != NULL) {
7644 			/* We have a FILE *, so this is a savefile */
7645 			bpf_error(cstate, "inbound/outbound not supported on linktype %d when reading savefiles",
7646 			    cstate->linktype);
7647 			b0 = NULL;
7648 			/* NOTREACHED */
7649 		}
7650 		/* match outgoing packets */
7651 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7652 		             PACKET_OUTGOING);
7653 		if (!dir) {
7654 			/* to filter on inbound traffic, invert the match */
7655 			gen_not(b0);
7656 		}
7657 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7658 		bpf_error(cstate, "inbound/outbound not supported on linktype %d",
7659 		    cstate->linktype);
7660 		b0 = NULL;
7661 		/* NOTREACHED */
7662 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7663 	}
7664 	return (b0);
7665 }
7666 
7667 #ifdef HAVE_NET_PFVAR_H
7668 /* PF firewall log matched interface */
7669 struct block *
7670 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
7671 {
7672 	struct block *b0;
7673 	u_int len, off;
7674 
7675 	if (cstate->linktype != DLT_PFLOG) {
7676 		bpf_error(cstate, "ifname supported only on PF linktype");
7677 		/* NOTREACHED */
7678 	}
7679 	len = sizeof(((struct pfloghdr *)0)->ifname);
7680 	off = offsetof(struct pfloghdr, ifname);
7681 	if (strlen(ifname) >= len) {
7682 		bpf_error(cstate, "ifname interface names can only be %d characters",
7683 		    len-1);
7684 		/* NOTREACHED */
7685 	}
7686 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname);
7687 	return (b0);
7688 }
7689 
7690 /* PF firewall log ruleset name */
7691 struct block *
7692 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
7693 {
7694 	struct block *b0;
7695 
7696 	if (cstate->linktype != DLT_PFLOG) {
7697 		bpf_error(cstate, "ruleset supported only on PF linktype");
7698 		/* NOTREACHED */
7699 	}
7700 
7701 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7702 		bpf_error(cstate, "ruleset names can only be %ld characters",
7703 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7704 		/* NOTREACHED */
7705 	}
7706 
7707 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
7708 	    strlen(ruleset), (const u_char *)ruleset);
7709 	return (b0);
7710 }
7711 
7712 /* PF firewall log rule number */
7713 struct block *
7714 gen_pf_rnr(compiler_state_t *cstate, int rnr)
7715 {
7716 	struct block *b0;
7717 
7718 	if (cstate->linktype != DLT_PFLOG) {
7719 		bpf_error(cstate, "rnr supported only on PF linktype");
7720 		/* NOTREACHED */
7721 	}
7722 
7723 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
7724 		 (bpf_int32)rnr);
7725 	return (b0);
7726 }
7727 
7728 /* PF firewall log sub-rule number */
7729 struct block *
7730 gen_pf_srnr(compiler_state_t *cstate, int srnr)
7731 {
7732 	struct block *b0;
7733 
7734 	if (cstate->linktype != DLT_PFLOG) {
7735 		bpf_error(cstate, "srnr supported only on PF linktype");
7736 		/* NOTREACHED */
7737 	}
7738 
7739 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
7740 	    (bpf_int32)srnr);
7741 	return (b0);
7742 }
7743 
7744 /* PF firewall log reason code */
7745 struct block *
7746 gen_pf_reason(compiler_state_t *cstate, int reason)
7747 {
7748 	struct block *b0;
7749 
7750 	if (cstate->linktype != DLT_PFLOG) {
7751 		bpf_error(cstate, "reason supported only on PF linktype");
7752 		/* NOTREACHED */
7753 	}
7754 
7755 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
7756 	    (bpf_int32)reason);
7757 	return (b0);
7758 }
7759 
7760 /* PF firewall log action */
7761 struct block *
7762 gen_pf_action(compiler_state_t *cstate, int action)
7763 {
7764 	struct block *b0;
7765 
7766 	if (cstate->linktype != DLT_PFLOG) {
7767 		bpf_error(cstate, "action supported only on PF linktype");
7768 		/* NOTREACHED */
7769 	}
7770 
7771 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
7772 	    (bpf_int32)action);
7773 	return (b0);
7774 }
7775 #else /* !HAVE_NET_PFVAR_H */
7776 struct block *
7777 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
7778 {
7779 	bpf_error(cstate, "libpcap was compiled without pf support");
7780 	/* NOTREACHED */
7781 	return (NULL);
7782 }
7783 
7784 struct block *
7785 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
7786 {
7787 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7788 	/* NOTREACHED */
7789 	return (NULL);
7790 }
7791 
7792 struct block *
7793 gen_pf_rnr(compiler_state_t *cstate, int rnr)
7794 {
7795 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7796 	/* NOTREACHED */
7797 	return (NULL);
7798 }
7799 
7800 struct block *
7801 gen_pf_srnr(compiler_state_t *cstate, int srnr)
7802 {
7803 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7804 	/* NOTREACHED */
7805 	return (NULL);
7806 }
7807 
7808 struct block *
7809 gen_pf_reason(compiler_state_t *cstate, int reason)
7810 {
7811 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7812 	/* NOTREACHED */
7813 	return (NULL);
7814 }
7815 
7816 struct block *
7817 gen_pf_action(compiler_state_t *cstate, int action)
7818 {
7819 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7820 	/* NOTREACHED */
7821 	return (NULL);
7822 }
7823 #endif /* HAVE_NET_PFVAR_H */
7824 
7825 /* IEEE 802.11 wireless header */
7826 struct block *
7827 gen_p80211_type(compiler_state_t *cstate, int type, int mask)
7828 {
7829 	struct block *b0;
7830 
7831 	switch (cstate->linktype) {
7832 
7833 	case DLT_IEEE802_11:
7834 	case DLT_PRISM_HEADER:
7835 	case DLT_IEEE802_11_RADIO_AVS:
7836 	case DLT_IEEE802_11_RADIO:
7837 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
7838 		    (bpf_int32)mask);
7839 		break;
7840 
7841 	default:
7842 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
7843 		/* NOTREACHED */
7844 	}
7845 
7846 	return (b0);
7847 }
7848 
7849 struct block *
7850 gen_p80211_fcdir(compiler_state_t *cstate, int fcdir)
7851 {
7852 	struct block *b0;
7853 
7854 	switch (cstate->linktype) {
7855 
7856 	case DLT_IEEE802_11:
7857 	case DLT_PRISM_HEADER:
7858 	case DLT_IEEE802_11_RADIO_AVS:
7859 	case DLT_IEEE802_11_RADIO:
7860 		break;
7861 
7862 	default:
7863 		bpf_error(cstate, "frame direction supported only with 802.11 headers");
7864 		/* NOTREACHED */
7865 	}
7866 
7867 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
7868 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7869 
7870 	return (b0);
7871 }
7872 
7873 struct block *
7874 gen_acode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
7875 {
7876 	switch (cstate->linktype) {
7877 
7878 	case DLT_ARCNET:
7879 	case DLT_ARCNET_LINUX:
7880 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7881 		    q.proto == Q_LINK)
7882 			return (gen_ahostop(cstate, eaddr, (int)q.dir));
7883 		else {
7884 			bpf_error(cstate, "ARCnet address used in non-arc expression");
7885 			/* NOTREACHED */
7886 		}
7887 		break;
7888 
7889 	default:
7890 		bpf_error(cstate, "aid supported only on ARCnet");
7891 		/* NOTREACHED */
7892 	}
7893 	bpf_error(cstate, "ARCnet address used in non-arc expression");
7894 	/* NOTREACHED */
7895 	return NULL;
7896 }
7897 
7898 static struct block *
7899 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
7900 {
7901 	register struct block *b0, *b1;
7902 
7903 	switch (dir) {
7904 	/* src comes first, different from Ethernet */
7905 	case Q_SRC:
7906 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
7907 
7908 	case Q_DST:
7909 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
7910 
7911 	case Q_AND:
7912 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
7913 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
7914 		gen_and(b0, b1);
7915 		return b1;
7916 
7917 	case Q_DEFAULT:
7918 	case Q_OR:
7919 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
7920 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
7921 		gen_or(b0, b1);
7922 		return b1;
7923 
7924 	case Q_ADDR1:
7925 		bpf_error(cstate, "'addr1' is only supported on 802.11");
7926 		break;
7927 
7928 	case Q_ADDR2:
7929 		bpf_error(cstate, "'addr2' is only supported on 802.11");
7930 		break;
7931 
7932 	case Q_ADDR3:
7933 		bpf_error(cstate, "'addr3' is only supported on 802.11");
7934 		break;
7935 
7936 	case Q_ADDR4:
7937 		bpf_error(cstate, "'addr4' is only supported on 802.11");
7938 		break;
7939 
7940 	case Q_RA:
7941 		bpf_error(cstate, "'ra' is only supported on 802.11");
7942 		break;
7943 
7944 	case Q_TA:
7945 		bpf_error(cstate, "'ta' is only supported on 802.11");
7946 		break;
7947 	}
7948 	abort();
7949 	/* NOTREACHED */
7950 }
7951 
7952 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
7953 static struct block *
7954 gen_vlan_bpf_extensions(compiler_state_t *cstate, int vlan_num)
7955 {
7956         struct block *b0, *b1;
7957         struct slist *s;
7958 
7959         /* generate new filter code based on extracting packet
7960          * metadata */
7961         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
7962         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
7963 
7964         b0 = new_block(cstate, JMP(BPF_JEQ));
7965         b0->stmts = s;
7966         b0->s.k = 1;
7967 
7968         if (vlan_num >= 0) {
7969                 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
7970                 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
7971 
7972                 b1 = new_block(cstate, JMP(BPF_JEQ));
7973                 b1->stmts = s;
7974                 b1->s.k = (bpf_int32) vlan_num;
7975 
7976                 gen_and(b0,b1);
7977                 b0 = b1;
7978         }
7979 
7980         return b0;
7981 }
7982 #endif
7983 
7984 static struct block *
7985 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, int vlan_num)
7986 {
7987         struct block *b0, *b1;
7988 
7989         /* check for VLAN, including QinQ */
7990         b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
7991         b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
7992         gen_or(b0,b1);
7993         b0 = b1;
7994         b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
7995         gen_or(b0,b1);
7996         b0 = b1;
7997 
7998         /* If a specific VLAN is requested, check VLAN id */
7999         if (vlan_num >= 0) {
8000                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_H,
8001                               (bpf_int32)vlan_num, 0x0fff);
8002                 gen_and(b0, b1);
8003                 b0 = b1;
8004         }
8005 
8006 	/*
8007 	 * The payload follows the full header, including the
8008 	 * VLAN tags, so skip past this VLAN tag.
8009 	 */
8010         cstate->off_linkpl.constant_part += 4;
8011 
8012 	/*
8013 	 * The link-layer type information follows the VLAN tags, so
8014 	 * skip past this VLAN tag.
8015 	 */
8016         cstate->off_linktype.constant_part += 4;
8017 
8018         return b0;
8019 }
8020 
8021 /*
8022  * support IEEE 802.1Q VLAN trunk over ethernet
8023  */
8024 struct block *
8025 gen_vlan(compiler_state_t *cstate, int vlan_num)
8026 {
8027 	struct	block	*b0;
8028 
8029 	/* can't check for VLAN-encapsulated packets inside MPLS */
8030 	if (cstate->label_stack_depth > 0)
8031 		bpf_error(cstate, "no VLAN match after MPLS");
8032 
8033 	/*
8034 	 * Check for a VLAN packet, and then change the offsets to point
8035 	 * to the type and data fields within the VLAN packet.  Just
8036 	 * increment the offsets, so that we can support a hierarchy, e.g.
8037 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8038 	 * VLAN 100.
8039 	 *
8040 	 * XXX - this is a bit of a kludge.  If we were to split the
8041 	 * compiler into a parser that parses an expression and
8042 	 * generates an expression tree, and a code generator that
8043 	 * takes an expression tree (which could come from our
8044 	 * parser or from some other parser) and generates BPF code,
8045 	 * we could perhaps make the offsets parameters of routines
8046 	 * and, in the handler for an "AND" node, pass to subnodes
8047 	 * other than the VLAN node the adjusted offsets.
8048 	 *
8049 	 * This would mean that "vlan" would, instead of changing the
8050 	 * behavior of *all* tests after it, change only the behavior
8051 	 * of tests ANDed with it.  That would change the documented
8052 	 * semantics of "vlan", which might break some expressions.
8053 	 * However, it would mean that "(vlan and ip) or ip" would check
8054 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8055 	 * checking only for VLAN-encapsulated IP, so that could still
8056 	 * be considered worth doing; it wouldn't break expressions
8057 	 * that are of the form "vlan and ..." or "vlan N and ...",
8058 	 * which I suspect are the most common expressions involving
8059 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
8060 	 * would really want, now, as all the "or ..." tests would
8061 	 * be done assuming a VLAN, even though the "or" could be viewed
8062 	 * as meaning "or, if this isn't a VLAN packet...".
8063 	 */
8064 	switch (cstate->linktype) {
8065 
8066 	case DLT_EN10MB:
8067 	case DLT_NETANALYZER:
8068 	case DLT_NETANALYZER_TRANSPARENT:
8069 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
8070 		/* Verify that this is the outer part of the packet and
8071 		 * not encapsulated somehow. */
8072 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8073 		    cstate->off_linkhdr.constant_part ==
8074 		    cstate->off_outermostlinkhdr.constant_part) {
8075 			/*
8076 			 * Do we need special VLAN handling?
8077 			 */
8078 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8079 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num);
8080 			else
8081 				b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8082 		} else
8083 #endif
8084 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8085                 break;
8086 
8087 	case DLT_IEEE802_11:
8088 	case DLT_PRISM_HEADER:
8089 	case DLT_IEEE802_11_RADIO_AVS:
8090 	case DLT_IEEE802_11_RADIO:
8091 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8092 		break;
8093 
8094 	default:
8095 		bpf_error(cstate, "no VLAN support for data link type %d",
8096 		      cstate->linktype);
8097 		/*NOTREACHED*/
8098 	}
8099 
8100         cstate->vlan_stack_depth++;
8101 
8102 	return (b0);
8103 }
8104 
8105 /*
8106  * support for MPLS
8107  */
8108 struct block *
8109 gen_mpls(compiler_state_t *cstate, int label_num)
8110 {
8111 	struct	block	*b0, *b1;
8112 
8113         if (cstate->label_stack_depth > 0) {
8114             /* just match the bottom-of-stack bit clear */
8115             b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
8116         } else {
8117             /*
8118              * We're not in an MPLS stack yet, so check the link-layer
8119              * type against MPLS.
8120              */
8121             switch (cstate->linktype) {
8122 
8123             case DLT_C_HDLC: /* fall through */
8124             case DLT_EN10MB:
8125             case DLT_NETANALYZER:
8126             case DLT_NETANALYZER_TRANSPARENT:
8127                     b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
8128                     break;
8129 
8130             case DLT_PPP:
8131                     b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
8132                     break;
8133 
8134                     /* FIXME add other DLT_s ...
8135                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
8136                      * leave it for now */
8137 
8138             default:
8139                     bpf_error(cstate, "no MPLS support for data link type %d",
8140                           cstate->linktype);
8141                     b0 = NULL;
8142                     /*NOTREACHED*/
8143                     break;
8144             }
8145         }
8146 
8147 	/* If a specific MPLS label is requested, check it */
8148 	if (label_num >= 0) {
8149 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8150 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
8151 		    0xfffff000); /* only compare the first 20 bits */
8152 		gen_and(b0, b1);
8153 		b0 = b1;
8154 	}
8155 
8156         /*
8157          * Change the offsets to point to the type and data fields within
8158          * the MPLS packet.  Just increment the offsets, so that we
8159          * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8160          * capture packets with an outer label of 100000 and an inner
8161          * label of 1024.
8162          *
8163          * Increment the MPLS stack depth as well; this indicates that
8164          * we're checking MPLS-encapsulated headers, to make sure higher
8165          * level code generators don't try to match against IP-related
8166          * protocols such as Q_ARP, Q_RARP etc.
8167          *
8168          * XXX - this is a bit of a kludge.  See comments in gen_vlan().
8169          */
8170         cstate->off_nl_nosnap += 4;
8171         cstate->off_nl += 4;
8172         cstate->label_stack_depth++;
8173 	return (b0);
8174 }
8175 
8176 /*
8177  * Support PPPOE discovery and session.
8178  */
8179 struct block *
8180 gen_pppoed(compiler_state_t *cstate)
8181 {
8182 	/* check for PPPoE discovery */
8183 	return gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOED);
8184 }
8185 
8186 struct block *
8187 gen_pppoes(compiler_state_t *cstate, int sess_num)
8188 {
8189 	struct block *b0, *b1;
8190 
8191 	/*
8192 	 * Test against the PPPoE session link-layer type.
8193 	 */
8194 	b0 = gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOES);
8195 
8196 	/* If a specific session is requested, check PPPoE session id */
8197 	if (sess_num >= 0) {
8198 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W,
8199 		    (bpf_int32)sess_num, 0x0000ffff);
8200 		gen_and(b0, b1);
8201 		b0 = b1;
8202 	}
8203 
8204 	/*
8205 	 * Change the offsets to point to the type and data fields within
8206 	 * the PPP packet, and note that this is PPPoE rather than
8207 	 * raw PPP.
8208 	 *
8209 	 * XXX - this is a bit of a kludge.  If we were to split the
8210 	 * compiler into a parser that parses an expression and
8211 	 * generates an expression tree, and a code generator that
8212 	 * takes an expression tree (which could come from our
8213 	 * parser or from some other parser) and generates BPF code,
8214 	 * we could perhaps make the offsets parameters of routines
8215 	 * and, in the handler for an "AND" node, pass to subnodes
8216 	 * other than the PPPoE node the adjusted offsets.
8217 	 *
8218 	 * This would mean that "pppoes" would, instead of changing the
8219 	 * behavior of *all* tests after it, change only the behavior
8220 	 * of tests ANDed with it.  That would change the documented
8221 	 * semantics of "pppoes", which might break some expressions.
8222 	 * However, it would mean that "(pppoes and ip) or ip" would check
8223 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8224 	 * checking only for VLAN-encapsulated IP, so that could still
8225 	 * be considered worth doing; it wouldn't break expressions
8226 	 * that are of the form "pppoes and ..." which I suspect are the
8227 	 * most common expressions involving "pppoes".  "pppoes or ..."
8228 	 * doesn't necessarily do what the user would really want, now,
8229 	 * as all the "or ..." tests would be done assuming PPPoE, even
8230 	 * though the "or" could be viewed as meaning "or, if this isn't
8231 	 * a PPPoE packet...".
8232 	 *
8233 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8234 	 * PPPoE header, followed by a PPP packet.
8235 	 *
8236 	 * There is no HDLC encapsulation for the PPP packet (it's
8237 	 * encapsulated in PPPoES instead), so the link-layer type
8238 	 * starts at the first byte of the PPP packet.  For PPPoE,
8239 	 * that offset is relative to the beginning of the total
8240 	 * link-layer payload, including any 802.2 LLC header, so
8241 	 * it's 6 bytes past cstate->off_nl.
8242 	 */
8243 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
8244 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
8245 	    cstate->off_linkpl.reg);
8246 
8247 	cstate->off_linktype = cstate->off_linkhdr;
8248 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
8249 
8250 	cstate->off_nl = 0;
8251 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
8252 
8253 	return b0;
8254 }
8255 
8256 /* Check that this is Geneve and the VNI is correct if
8257  * specified. Parameterized to handle both IPv4 and IPv6. */
8258 static struct block *
8259 gen_geneve_check(compiler_state_t *cstate,
8260     struct block *(*gen_portfn)(compiler_state_t *, int, int, int),
8261     enum e_offrel offrel, int vni)
8262 {
8263 	struct block *b0, *b1;
8264 
8265 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
8266 
8267 	/* Check that we are operating on version 0. Otherwise, we
8268 	 * can't decode the rest of the fields. The version is 2 bits
8269 	 * in the first byte of the Geneve header. */
8270 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
8271 	gen_and(b0, b1);
8272 	b0 = b1;
8273 
8274 	if (vni >= 0) {
8275 		vni <<= 8; /* VNI is in the upper 3 bytes */
8276 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, (bpf_int32)vni,
8277 			      0xffffff00);
8278 		gen_and(b0, b1);
8279 		b0 = b1;
8280 	}
8281 
8282 	return b0;
8283 }
8284 
8285 /* The IPv4 and IPv6 Geneve checks need to do two things:
8286  * - Verify that this actually is Geneve with the right VNI.
8287  * - Place the IP header length (plus variable link prefix if
8288  *   needed) into register A to be used later to compute
8289  *   the inner packet offsets. */
8290 static struct block *
8291 gen_geneve4(compiler_state_t *cstate, int vni)
8292 {
8293 	struct block *b0, *b1;
8294 	struct slist *s, *s1;
8295 
8296 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni);
8297 
8298 	/* Load the IP header length into A. */
8299 	s = gen_loadx_iphdrlen(cstate);
8300 
8301 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
8302 	sappend(s, s1);
8303 
8304 	/* Forcibly append these statements to the true condition
8305 	 * of the protocol check by creating a new block that is
8306 	 * always true and ANDing them. */
8307 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8308 	b1->stmts = s;
8309 	b1->s.k = 0;
8310 
8311 	gen_and(b0, b1);
8312 
8313 	return b1;
8314 }
8315 
8316 static struct block *
8317 gen_geneve6(compiler_state_t *cstate, int vni)
8318 {
8319 	struct block *b0, *b1;
8320 	struct slist *s, *s1;
8321 
8322 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni);
8323 
8324 	/* Load the IP header length. We need to account for a
8325 	 * variable length link prefix if there is one. */
8326 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
8327 	if (s) {
8328 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
8329 		s1->s.k = 40;
8330 		sappend(s, s1);
8331 
8332 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
8333 		s1->s.k = 0;
8334 		sappend(s, s1);
8335 	} else {
8336 		s = new_stmt(cstate, BPF_LD|BPF_IMM);
8337 		s->s.k = 40;
8338 	}
8339 
8340 	/* Forcibly append these statements to the true condition
8341 	 * of the protocol check by creating a new block that is
8342 	 * always true and ANDing them. */
8343 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8344 	sappend(s, s1);
8345 
8346 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8347 	b1->stmts = s;
8348 	b1->s.k = 0;
8349 
8350 	gen_and(b0, b1);
8351 
8352 	return b1;
8353 }
8354 
8355 /* We need to store three values based on the Geneve header::
8356  * - The offset of the linktype.
8357  * - The offset of the end of the Geneve header.
8358  * - The offset of the end of the encapsulated MAC header. */
8359 static struct slist *
8360 gen_geneve_offsets(compiler_state_t *cstate)
8361 {
8362 	struct slist *s, *s1, *s_proto;
8363 
8364 	/* First we need to calculate the offset of the Geneve header
8365 	 * itself. This is composed of the IP header previously calculated
8366 	 * (include any variable link prefix) and stored in A plus the
8367 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
8368 	 * header). */
8369 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8370 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
8371 
8372 	/* Stash this in X since we'll need it later. */
8373 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8374 	sappend(s, s1);
8375 
8376 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
8377 	 * store it. */
8378 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8379 	s1->s.k = 2;
8380 	sappend(s, s1);
8381 
8382 	cstate->off_linktype.reg = alloc_reg(cstate);
8383 	cstate->off_linktype.is_variable = 1;
8384 	cstate->off_linktype.constant_part = 0;
8385 
8386 	s1 = new_stmt(cstate, BPF_ST);
8387 	s1->s.k = cstate->off_linktype.reg;
8388 	sappend(s, s1);
8389 
8390 	/* Load the Geneve option length and mask and shift to get the
8391 	 * number of bytes. It is stored in the first byte of the Geneve
8392 	 * header. */
8393 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
8394 	s1->s.k = 0;
8395 	sappend(s, s1);
8396 
8397 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8398 	s1->s.k = 0x3f;
8399 	sappend(s, s1);
8400 
8401 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
8402 	s1->s.k = 4;
8403 	sappend(s, s1);
8404 
8405 	/* Add in the rest of the Geneve base header. */
8406 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8407 	s1->s.k = 8;
8408 	sappend(s, s1);
8409 
8410 	/* Add the Geneve header length to its offset and store. */
8411 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
8412 	s1->s.k = 0;
8413 	sappend(s, s1);
8414 
8415 	/* Set the encapsulated type as Ethernet. Even though we may
8416 	 * not actually have Ethernet inside there are two reasons this
8417 	 * is useful:
8418 	 * - The linktype field is always in EtherType format regardless
8419 	 *   of whether it is in Geneve or an inner Ethernet frame.
8420 	 * - The only link layer that we have specific support for is
8421 	 *   Ethernet. We will confirm that the packet actually is
8422 	 *   Ethernet at runtime before executing these checks. */
8423 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
8424 
8425 	s1 = new_stmt(cstate, BPF_ST);
8426 	s1->s.k = cstate->off_linkhdr.reg;
8427 	sappend(s, s1);
8428 
8429 	/* Calculate whether we have an Ethernet header or just raw IP/
8430 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
8431 	 * and linktype by 14 bytes so that the network header can be found
8432 	 * seamlessly. Otherwise, keep what we've calculated already. */
8433 
8434 	/* We have a bare jmp so we can't use the optimizer. */
8435 	cstate->no_optimize = 1;
8436 
8437 	/* Load the EtherType in the Geneve header, 2 bytes in. */
8438 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
8439 	s1->s.k = 2;
8440 	sappend(s, s1);
8441 
8442 	/* Load X with the end of the Geneve header. */
8443 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
8444 	s1->s.k = cstate->off_linkhdr.reg;
8445 	sappend(s, s1);
8446 
8447 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
8448 	 * end of this check, we should have the total length in X. In
8449 	 * the non-Ethernet case, it's already there. */
8450 	s_proto = new_stmt(cstate, JMP(BPF_JEQ));
8451 	s_proto->s.k = ETHERTYPE_TEB;
8452 	sappend(s, s_proto);
8453 
8454 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
8455 	sappend(s, s1);
8456 	s_proto->s.jt = s1;
8457 
8458 	/* Since this is Ethernet, use the EtherType of the payload
8459 	 * directly as the linktype. Overwrite what we already have. */
8460 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8461 	s1->s.k = 12;
8462 	sappend(s, s1);
8463 
8464 	s1 = new_stmt(cstate, BPF_ST);
8465 	s1->s.k = cstate->off_linktype.reg;
8466 	sappend(s, s1);
8467 
8468 	/* Advance two bytes further to get the end of the Ethernet
8469 	 * header. */
8470 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8471 	s1->s.k = 2;
8472 	sappend(s, s1);
8473 
8474 	/* Move the result to X. */
8475 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8476 	sappend(s, s1);
8477 
8478 	/* Store the final result of our linkpl calculation. */
8479 	cstate->off_linkpl.reg = alloc_reg(cstate);
8480 	cstate->off_linkpl.is_variable = 1;
8481 	cstate->off_linkpl.constant_part = 0;
8482 
8483 	s1 = new_stmt(cstate, BPF_STX);
8484 	s1->s.k = cstate->off_linkpl.reg;
8485 	sappend(s, s1);
8486 	s_proto->s.jf = s1;
8487 
8488 	cstate->off_nl = 0;
8489 
8490 	return s;
8491 }
8492 
8493 /* Check to see if this is a Geneve packet. */
8494 struct block *
8495 gen_geneve(compiler_state_t *cstate, int vni)
8496 {
8497 	struct block *b0, *b1;
8498 	struct slist *s;
8499 
8500 	b0 = gen_geneve4(cstate, vni);
8501 	b1 = gen_geneve6(cstate, vni);
8502 
8503 	gen_or(b0, b1);
8504 	b0 = b1;
8505 
8506 	/* Later filters should act on the payload of the Geneve frame,
8507 	 * update all of the header pointers. Attach this code so that
8508 	 * it gets executed in the event that the Geneve filter matches. */
8509 	s = gen_geneve_offsets(cstate);
8510 
8511 	b1 = gen_true(cstate);
8512 	sappend(s, b1->stmts);
8513 	b1->stmts = s;
8514 
8515 	gen_and(b0, b1);
8516 
8517 	cstate->is_geneve = 1;
8518 
8519 	return b1;
8520 }
8521 
8522 /* Check that the encapsulated frame has a link layer header
8523  * for Ethernet filters. */
8524 static struct block *
8525 gen_geneve_ll_check(compiler_state_t *cstate)
8526 {
8527 	struct block *b0;
8528 	struct slist *s, *s1;
8529 
8530 	/* The easiest way to see if there is a link layer present
8531 	 * is to check if the link layer header and payload are not
8532 	 * the same. */
8533 
8534 	/* Geneve always generates pure variable offsets so we can
8535 	 * compare only the registers. */
8536 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
8537 	s->s.k = cstate->off_linkhdr.reg;
8538 
8539 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
8540 	s1->s.k = cstate->off_linkpl.reg;
8541 	sappend(s, s1);
8542 
8543 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8544 	b0->stmts = s;
8545 	b0->s.k = 0;
8546 	gen_not(b0);
8547 
8548 	return b0;
8549 }
8550 
8551 struct block *
8552 gen_atmfield_code(compiler_state_t *cstate, int atmfield, bpf_int32 jvalue,
8553     bpf_u_int32 jtype, int reverse)
8554 {
8555 	struct block *b0;
8556 
8557 	switch (atmfield) {
8558 
8559 	case A_VPI:
8560 		if (!cstate->is_atm)
8561 			bpf_error(cstate, "'vpi' supported only on raw ATM");
8562 		if (cstate->off_vpi == (u_int)-1)
8563 			abort();
8564 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B, 0xffffffff, jtype,
8565 		    reverse, jvalue);
8566 		break;
8567 
8568 	case A_VCI:
8569 		if (!cstate->is_atm)
8570 			bpf_error(cstate, "'vci' supported only on raw ATM");
8571 		if (cstate->off_vci == (u_int)-1)
8572 			abort();
8573 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H, 0xffffffff, jtype,
8574 		    reverse, jvalue);
8575 		break;
8576 
8577 	case A_PROTOTYPE:
8578 		if (cstate->off_proto == (u_int)-1)
8579 			abort();	/* XXX - this isn't on FreeBSD */
8580 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0x0f, jtype,
8581 		    reverse, jvalue);
8582 		break;
8583 
8584 	case A_MSGTYPE:
8585 		if (cstate->off_payload == (u_int)-1)
8586 			abort();
8587 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
8588 		    0xffffffff, jtype, reverse, jvalue);
8589 		break;
8590 
8591 	case A_CALLREFTYPE:
8592 		if (!cstate->is_atm)
8593 			bpf_error(cstate, "'callref' supported only on raw ATM");
8594 		if (cstate->off_proto == (u_int)-1)
8595 			abort();
8596 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0xffffffff,
8597 		    jtype, reverse, jvalue);
8598 		break;
8599 
8600 	default:
8601 		abort();
8602 	}
8603 	return b0;
8604 }
8605 
8606 struct block *
8607 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
8608 {
8609 	struct block *b0, *b1;
8610 
8611 	switch (type) {
8612 
8613 	case A_METAC:
8614 		/* Get all packets in Meta signalling Circuit */
8615 		if (!cstate->is_atm)
8616 			bpf_error(cstate, "'metac' supported only on raw ATM");
8617 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8618 		b1 = gen_atmfield_code(cstate, A_VCI, 1, BPF_JEQ, 0);
8619 		gen_and(b0, b1);
8620 		break;
8621 
8622 	case A_BCC:
8623 		/* Get all packets in Broadcast Circuit*/
8624 		if (!cstate->is_atm)
8625 			bpf_error(cstate, "'bcc' supported only on raw ATM");
8626 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8627 		b1 = gen_atmfield_code(cstate, A_VCI, 2, BPF_JEQ, 0);
8628 		gen_and(b0, b1);
8629 		break;
8630 
8631 	case A_OAMF4SC:
8632 		/* Get all cells in Segment OAM F4 circuit*/
8633 		if (!cstate->is_atm)
8634 			bpf_error(cstate, "'oam4sc' supported only on raw ATM");
8635 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8636 		b1 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
8637 		gen_and(b0, b1);
8638 		break;
8639 
8640 	case A_OAMF4EC:
8641 		/* Get all cells in End-to-End OAM F4 Circuit*/
8642 		if (!cstate->is_atm)
8643 			bpf_error(cstate, "'oam4ec' supported only on raw ATM");
8644 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8645 		b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
8646 		gen_and(b0, b1);
8647 		break;
8648 
8649 	case A_SC:
8650 		/*  Get all packets in connection Signalling Circuit */
8651 		if (!cstate->is_atm)
8652 			bpf_error(cstate, "'sc' supported only on raw ATM");
8653 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8654 		b1 = gen_atmfield_code(cstate, A_VCI, 5, BPF_JEQ, 0);
8655 		gen_and(b0, b1);
8656 		break;
8657 
8658 	case A_ILMIC:
8659 		/* Get all packets in ILMI Circuit */
8660 		if (!cstate->is_atm)
8661 			bpf_error(cstate, "'ilmic' supported only on raw ATM");
8662 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8663 		b1 = gen_atmfield_code(cstate, A_VCI, 16, BPF_JEQ, 0);
8664 		gen_and(b0, b1);
8665 		break;
8666 
8667 	case A_LANE:
8668 		/* Get all LANE packets */
8669 		if (!cstate->is_atm)
8670 			bpf_error(cstate, "'lane' supported only on raw ATM");
8671 		b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8672 
8673 		/*
8674 		 * Arrange that all subsequent tests assume LANE
8675 		 * rather than LLC-encapsulated packets, and set
8676 		 * the offsets appropriately for LANE-encapsulated
8677 		 * Ethernet.
8678 		 *
8679 		 * We assume LANE means Ethernet, not Token Ring.
8680 		 */
8681 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
8682 		    cstate->off_payload + 2,	/* Ethernet header */
8683 		    -1);
8684 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
8685 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */
8686 		cstate->off_nl = 0;			/* Ethernet II */
8687 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */
8688 		break;
8689 
8690 	case A_LLC:
8691 		/* Get all LLC-encapsulated packets */
8692 		if (!cstate->is_atm)
8693 			bpf_error(cstate, "'llc' supported only on raw ATM");
8694 		b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8695 		cstate->linktype = cstate->prevlinktype;
8696 		break;
8697 
8698 	default:
8699 		abort();
8700 	}
8701 	return b1;
8702 }
8703 
8704 /*
8705  * Filtering for MTP2 messages based on li value
8706  * FISU, length is null
8707  * LSSU, length is 1 or 2
8708  * MSU, length is 3 or more
8709  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8710  */
8711 struct block *
8712 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
8713 {
8714 	struct block *b0, *b1;
8715 
8716 	switch (type) {
8717 
8718 	case M_FISU:
8719 		if ( (cstate->linktype != DLT_MTP2) &&
8720 		     (cstate->linktype != DLT_ERF) &&
8721 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8722 			bpf_error(cstate, "'fisu' supported only on MTP2");
8723 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8724 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8725 		break;
8726 
8727 	case M_LSSU:
8728 		if ( (cstate->linktype != DLT_MTP2) &&
8729 		     (cstate->linktype != DLT_ERF) &&
8730 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8731 			bpf_error(cstate, "'lssu' supported only on MTP2");
8732 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8733 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8734 		gen_and(b1, b0);
8735 		break;
8736 
8737 	case M_MSU:
8738 		if ( (cstate->linktype != DLT_MTP2) &&
8739 		     (cstate->linktype != DLT_ERF) &&
8740 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8741 			bpf_error(cstate, "'msu' supported only on MTP2");
8742 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8743 		break;
8744 
8745 	case MH_FISU:
8746 		if ( (cstate->linktype != DLT_MTP2) &&
8747 		     (cstate->linktype != DLT_ERF) &&
8748 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8749 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
8750 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8751 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
8752 		break;
8753 
8754 	case MH_LSSU:
8755 		if ( (cstate->linktype != DLT_MTP2) &&
8756 		     (cstate->linktype != DLT_ERF) &&
8757 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8758 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
8759 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
8760 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
8761 		gen_and(b1, b0);
8762 		break;
8763 
8764 	case MH_MSU:
8765 		if ( (cstate->linktype != DLT_MTP2) &&
8766 		     (cstate->linktype != DLT_ERF) &&
8767 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8768 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
8769 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
8770 		break;
8771 
8772 	default:
8773 		abort();
8774 	}
8775 	return b0;
8776 }
8777 
8778 struct block *
8779 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field, bpf_u_int32 jvalue,
8780     bpf_u_int32 jtype, int reverse)
8781 {
8782 	struct block *b0;
8783 	bpf_u_int32 val1 , val2 , val3;
8784 	u_int newoff_sio = cstate->off_sio;
8785 	u_int newoff_opc = cstate->off_opc;
8786 	u_int newoff_dpc = cstate->off_dpc;
8787 	u_int newoff_sls = cstate->off_sls;
8788 
8789 	switch (mtp3field) {
8790 
8791 	case MH_SIO:
8792 		newoff_sio += 3; /* offset for MTP2_HSL */
8793 		/* FALLTHROUGH */
8794 
8795 	case M_SIO:
8796 		if (cstate->off_sio == (u_int)-1)
8797 			bpf_error(cstate, "'sio' supported only on SS7");
8798 		/* sio coded on 1 byte so max value 255 */
8799 		if(jvalue > 255)
8800 		        bpf_error(cstate, "sio value %u too big; max value = 255",
8801 		            jvalue);
8802 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
8803 		    (u_int)jtype, reverse, (u_int)jvalue);
8804 		break;
8805 
8806 	case MH_OPC:
8807 		newoff_opc+=3;
8808         case M_OPC:
8809 	        if (cstate->off_opc == (u_int)-1)
8810 			bpf_error(cstate, "'opc' supported only on SS7");
8811 		/* opc coded on 14 bits so max value 16383 */
8812 		if (jvalue > 16383)
8813 		        bpf_error(cstate, "opc value %u too big; max value = 16383",
8814 		            jvalue);
8815 		/* the following instructions are made to convert jvalue
8816 		 * to the form used to write opc in an ss7 message*/
8817 		val1 = jvalue & 0x00003c00;
8818 		val1 = val1 >>10;
8819 		val2 = jvalue & 0x000003fc;
8820 		val2 = val2 <<6;
8821 		val3 = jvalue & 0x00000003;
8822 		val3 = val3 <<22;
8823 		jvalue = val1 + val2 + val3;
8824 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
8825 		    (u_int)jtype, reverse, (u_int)jvalue);
8826 		break;
8827 
8828 	case MH_DPC:
8829 		newoff_dpc += 3;
8830 		/* FALLTHROUGH */
8831 
8832 	case M_DPC:
8833 	        if (cstate->off_dpc == (u_int)-1)
8834 			bpf_error(cstate, "'dpc' supported only on SS7");
8835 		/* dpc coded on 14 bits so max value 16383 */
8836 		if (jvalue > 16383)
8837 		        bpf_error(cstate, "dpc value %u too big; max value = 16383",
8838 		            jvalue);
8839 		/* the following instructions are made to convert jvalue
8840 		 * to the forme used to write dpc in an ss7 message*/
8841 		val1 = jvalue & 0x000000ff;
8842 		val1 = val1 << 24;
8843 		val2 = jvalue & 0x00003f00;
8844 		val2 = val2 << 8;
8845 		jvalue = val1 + val2;
8846 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
8847 		    (u_int)jtype, reverse, (u_int)jvalue);
8848 		break;
8849 
8850 	case MH_SLS:
8851 	  newoff_sls+=3;
8852 	case M_SLS:
8853 	        if (cstate->off_sls == (u_int)-1)
8854 			bpf_error(cstate, "'sls' supported only on SS7");
8855 		/* sls coded on 4 bits so max value 15 */
8856 		if (jvalue > 15)
8857 		         bpf_error(cstate, "sls value %u too big; max value = 15",
8858 		             jvalue);
8859 		/* the following instruction is made to convert jvalue
8860 		 * to the forme used to write sls in an ss7 message*/
8861 		jvalue = jvalue << 4;
8862 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0,
8863 		    (u_int)jtype,reverse, (u_int)jvalue);
8864 		break;
8865 
8866 	default:
8867 		abort();
8868 	}
8869 	return b0;
8870 }
8871 
8872 static struct block *
8873 gen_msg_abbrev(compiler_state_t *cstate, int type)
8874 {
8875 	struct block *b1;
8876 
8877 	/*
8878 	 * Q.2931 signalling protocol messages for handling virtual circuits
8879 	 * establishment and teardown
8880 	 */
8881 	switch (type) {
8882 
8883 	case A_SETUP:
8884 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
8885 		break;
8886 
8887 	case A_CALLPROCEED:
8888 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8889 		break;
8890 
8891 	case A_CONNECT:
8892 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8893 		break;
8894 
8895 	case A_CONNECTACK:
8896 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8897 		break;
8898 
8899 	case A_RELEASE:
8900 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8901 		break;
8902 
8903 	case A_RELEASE_DONE:
8904 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8905 		break;
8906 
8907 	default:
8908 		abort();
8909 	}
8910 	return b1;
8911 }
8912 
8913 struct block *
8914 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
8915 {
8916 	struct block *b0, *b1;
8917 
8918 	switch (type) {
8919 
8920 	case A_OAM:
8921 		if (!cstate->is_atm)
8922 			bpf_error(cstate, "'oam' supported only on raw ATM");
8923 		b1 = gen_atmmulti_abbrev(cstate, A_OAMF4);
8924 		break;
8925 
8926 	case A_OAMF4:
8927 		if (!cstate->is_atm)
8928 			bpf_error(cstate, "'oamf4' supported only on raw ATM");
8929 		/* OAM F4 type */
8930 		b0 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
8931 		b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
8932 		gen_or(b0, b1);
8933 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8934 		gen_and(b0, b1);
8935 		break;
8936 
8937 	case A_CONNECTMSG:
8938 		/*
8939 		 * Get Q.2931 signalling messages for switched
8940 		 * virtual connection
8941 		 */
8942 		if (!cstate->is_atm)
8943 			bpf_error(cstate, "'connectmsg' supported only on raw ATM");
8944 		b0 = gen_msg_abbrev(cstate, A_SETUP);
8945 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
8946 		gen_or(b0, b1);
8947 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
8948 		gen_or(b0, b1);
8949 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
8950 		gen_or(b0, b1);
8951 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
8952 		gen_or(b0, b1);
8953 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
8954 		gen_or(b0, b1);
8955 		b0 = gen_atmtype_abbrev(cstate, A_SC);
8956 		gen_and(b0, b1);
8957 		break;
8958 
8959 	case A_METACONNECT:
8960 		if (!cstate->is_atm)
8961 			bpf_error(cstate, "'metaconnect' supported only on raw ATM");
8962 		b0 = gen_msg_abbrev(cstate, A_SETUP);
8963 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
8964 		gen_or(b0, b1);
8965 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
8966 		gen_or(b0, b1);
8967 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
8968 		gen_or(b0, b1);
8969 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
8970 		gen_or(b0, b1);
8971 		b0 = gen_atmtype_abbrev(cstate, A_METAC);
8972 		gen_and(b0, b1);
8973 		break;
8974 
8975 	default:
8976 		abort();
8977 	}
8978 	return b1;
8979 }
8980