xref: /freebsd/contrib/libpcap/gencode.c (revision 7aa383846770374466b1dcb2cefd71bde9acf463)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  *
22  * $FreeBSD$
23  */
24 #ifndef lint
25 static const char rcsid[] _U_ =
26     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.290.2.16 2008-09-22 20:16:01 guy Exp $ (LBL)";
27 #endif
28 
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32 
33 #ifdef WIN32
34 #include <pcap-stdinc.h>
35 #else /* WIN32 */
36 #include <sys/types.h>
37 #include <sys/socket.h>
38 #endif /* WIN32 */
39 
40 /*
41  * XXX - why was this included even on UNIX?
42  */
43 #ifdef __MINGW32__
44 #include "IP6_misc.h"
45 #endif
46 
47 #ifndef WIN32
48 
49 #ifdef __NetBSD__
50 #include <sys/param.h>
51 #endif
52 
53 #include <netinet/in.h>
54 
55 #endif /* WIN32 */
56 
57 #include <stdlib.h>
58 #include <string.h>
59 #include <memory.h>
60 #include <setjmp.h>
61 #include <stdarg.h>
62 
63 #ifdef MSDOS
64 #include "pcap-dos.h"
65 #endif
66 
67 #include "pcap-int.h"
68 
69 #include "ethertype.h"
70 #include "nlpid.h"
71 #include "llc.h"
72 #include "gencode.h"
73 #include "ieee80211.h"
74 #include "atmuni31.h"
75 #include "sunatmpos.h"
76 #include "ppp.h"
77 #include "pcap/sll.h"
78 #include "arcnet.h"
79 #ifdef HAVE_NET_PFVAR_H
80 #include <sys/socket.h>
81 #include <net/if.h>
82 #include <net/pfvar.h>
83 #include <net/if_pflog.h>
84 #endif
85 #ifndef offsetof
86 #define offsetof(s, e) ((size_t)&((s *)0)->e)
87 #endif
88 #ifdef INET6
89 #ifndef WIN32
90 #include <netdb.h>	/* for "struct addrinfo" */
91 #endif /* WIN32 */
92 #endif /*INET6*/
93 #include <pcap/namedb.h>
94 
95 #define ETHERMTU	1500
96 
97 #ifndef IPPROTO_SCTP
98 #define IPPROTO_SCTP 132
99 #endif
100 
101 #ifdef HAVE_OS_PROTO_H
102 #include "os-proto.h"
103 #endif
104 
105 #define JMP(c) ((c)|BPF_JMP|BPF_K)
106 
107 /* Locals */
108 static jmp_buf top_ctx;
109 static pcap_t *bpf_pcap;
110 
111 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
112 #ifdef WIN32
113 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
114 #else
115 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
116 #endif
117 
118 /* XXX */
119 #ifdef PCAP_FDDIPAD
120 static int	pcap_fddipad;
121 #endif
122 
123 /* VARARGS */
124 void
125 bpf_error(const char *fmt, ...)
126 {
127 	va_list ap;
128 
129 	va_start(ap, fmt);
130 	if (bpf_pcap != NULL)
131 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
132 		    fmt, ap);
133 	va_end(ap);
134 	longjmp(top_ctx, 1);
135 	/* NOTREACHED */
136 }
137 
138 static void init_linktype(pcap_t *);
139 
140 static void init_regs(void);
141 static int alloc_reg(void);
142 static void free_reg(int);
143 
144 static struct block *root;
145 
146 /*
147  * Value passed to gen_load_a() to indicate what the offset argument
148  * is relative to.
149  */
150 enum e_offrel {
151 	OR_PACKET,	/* relative to the beginning of the packet */
152 	OR_LINK,	/* relative to the beginning of the link-layer header */
153 	OR_MACPL,	/* relative to the end of the MAC-layer header */
154 	OR_NET,		/* relative to the network-layer header */
155 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
156 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
157 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
158 };
159 
160 /*
161  * We divy out chunks of memory rather than call malloc each time so
162  * we don't have to worry about leaking memory.  It's probably
163  * not a big deal if all this memory was wasted but if this ever
164  * goes into a library that would probably not be a good idea.
165  *
166  * XXX - this *is* in a library....
167  */
168 #define NCHUNKS 16
169 #define CHUNK0SIZE 1024
170 struct chunk {
171 	u_int n_left;
172 	void *m;
173 };
174 
175 static struct chunk chunks[NCHUNKS];
176 static int cur_chunk;
177 
178 static void *newchunk(u_int);
179 static void freechunks(void);
180 static inline struct block *new_block(int);
181 static inline struct slist *new_stmt(int);
182 static struct block *gen_retblk(int);
183 static inline void syntax(void);
184 
185 static void backpatch(struct block *, struct block *);
186 static void merge(struct block *, struct block *);
187 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
188 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
189 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
190 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
191 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
192 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
193     bpf_u_int32);
194 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
195 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
196     bpf_u_int32, bpf_u_int32, int, bpf_int32);
197 static struct slist *gen_load_llrel(u_int, u_int);
198 static struct slist *gen_load_macplrel(u_int, u_int);
199 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
200 static struct slist *gen_loadx_iphdrlen(void);
201 static struct block *gen_uncond(int);
202 static inline struct block *gen_true(void);
203 static inline struct block *gen_false(void);
204 static struct block *gen_ether_linktype(int);
205 static struct block *gen_linux_sll_linktype(int);
206 static struct slist *gen_load_prism_llprefixlen(void);
207 static struct slist *gen_load_avs_llprefixlen(void);
208 static struct slist *gen_load_radiotap_llprefixlen(void);
209 static struct slist *gen_load_ppi_llprefixlen(void);
210 static void insert_compute_vloffsets(struct block *);
211 static struct slist *gen_llprefixlen(void);
212 static struct slist *gen_off_macpl(void);
213 static int ethertype_to_ppptype(int);
214 static struct block *gen_linktype(int);
215 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
216 static struct block *gen_llc_linktype(int);
217 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
218 #ifdef INET6
219 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
220 #endif
221 static struct block *gen_ahostop(const u_char *, int);
222 static struct block *gen_ehostop(const u_char *, int);
223 static struct block *gen_fhostop(const u_char *, int);
224 static struct block *gen_thostop(const u_char *, int);
225 static struct block *gen_wlanhostop(const u_char *, int);
226 static struct block *gen_ipfchostop(const u_char *, int);
227 static struct block *gen_dnhostop(bpf_u_int32, int);
228 static struct block *gen_mpls_linktype(int);
229 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
230 #ifdef INET6
231 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
232 #endif
233 #ifndef INET6
234 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
235 #endif
236 static struct block *gen_ipfrag(void);
237 static struct block *gen_portatom(int, bpf_int32);
238 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
239 #ifdef INET6
240 static struct block *gen_portatom6(int, bpf_int32);
241 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
242 #endif
243 struct block *gen_portop(int, int, int);
244 static struct block *gen_port(int, int, int);
245 struct block *gen_portrangeop(int, int, int, int);
246 static struct block *gen_portrange(int, int, int, int);
247 #ifdef INET6
248 struct block *gen_portop6(int, int, int);
249 static struct block *gen_port6(int, int, int);
250 struct block *gen_portrangeop6(int, int, int, int);
251 static struct block *gen_portrange6(int, int, int, int);
252 #endif
253 static int lookup_proto(const char *, int);
254 static struct block *gen_protochain(int, int, int);
255 static struct block *gen_proto(int, int, int);
256 static struct slist *xfer_to_x(struct arth *);
257 static struct slist *xfer_to_a(struct arth *);
258 static struct block *gen_mac_multicast(int);
259 static struct block *gen_len(int, int);
260 static struct block *gen_check_802_11_data_frame(void);
261 
262 static struct block *gen_ppi_dlt_check(void);
263 static struct block *gen_msg_abbrev(int type);
264 
265 static void *
266 newchunk(n)
267 	u_int n;
268 {
269 	struct chunk *cp;
270 	int k;
271 	size_t size;
272 
273 #ifndef __NetBSD__
274 	/* XXX Round up to nearest long. */
275 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
276 #else
277 	/* XXX Round up to structure boundary. */
278 	n = ALIGN(n);
279 #endif
280 
281 	cp = &chunks[cur_chunk];
282 	if (n > cp->n_left) {
283 		++cp, k = ++cur_chunk;
284 		if (k >= NCHUNKS)
285 			bpf_error("out of memory");
286 		size = CHUNK0SIZE << k;
287 		cp->m = (void *)malloc(size);
288 		if (cp->m == NULL)
289 			bpf_error("out of memory");
290 		memset((char *)cp->m, 0, size);
291 		cp->n_left = size;
292 		if (n > size)
293 			bpf_error("out of memory");
294 	}
295 	cp->n_left -= n;
296 	return (void *)((char *)cp->m + cp->n_left);
297 }
298 
299 static void
300 freechunks()
301 {
302 	int i;
303 
304 	cur_chunk = 0;
305 	for (i = 0; i < NCHUNKS; ++i)
306 		if (chunks[i].m != NULL) {
307 			free(chunks[i].m);
308 			chunks[i].m = NULL;
309 		}
310 }
311 
312 /*
313  * A strdup whose allocations are freed after code generation is over.
314  */
315 char *
316 sdup(s)
317 	register const char *s;
318 {
319 	int n = strlen(s) + 1;
320 	char *cp = newchunk(n);
321 
322 	strlcpy(cp, s, n);
323 	return (cp);
324 }
325 
326 static inline struct block *
327 new_block(code)
328 	int code;
329 {
330 	struct block *p;
331 
332 	p = (struct block *)newchunk(sizeof(*p));
333 	p->s.code = code;
334 	p->head = p;
335 
336 	return p;
337 }
338 
339 static inline struct slist *
340 new_stmt(code)
341 	int code;
342 {
343 	struct slist *p;
344 
345 	p = (struct slist *)newchunk(sizeof(*p));
346 	p->s.code = code;
347 
348 	return p;
349 }
350 
351 static struct block *
352 gen_retblk(v)
353 	int v;
354 {
355 	struct block *b = new_block(BPF_RET|BPF_K);
356 
357 	b->s.k = v;
358 	return b;
359 }
360 
361 static inline void
362 syntax()
363 {
364 	bpf_error("syntax error in filter expression");
365 }
366 
367 static bpf_u_int32 netmask;
368 static int snaplen;
369 int no_optimize;
370 
371 int
372 pcap_compile(pcap_t *p, struct bpf_program *program,
373 	     const char *buf, int optimize, bpf_u_int32 mask)
374 {
375 	extern int n_errors;
376 	const char * volatile xbuf = buf;
377 	int len;
378 
379 	no_optimize = 0;
380 	n_errors = 0;
381 	root = NULL;
382 	bpf_pcap = p;
383 	init_regs();
384 	if (setjmp(top_ctx)) {
385 		lex_cleanup();
386 		freechunks();
387 		return (-1);
388 	}
389 
390 	netmask = mask;
391 
392 	snaplen = pcap_snapshot(p);
393 	if (snaplen == 0) {
394 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
395 			 "snaplen of 0 rejects all packets");
396 		return -1;
397 	}
398 
399 	lex_init(xbuf ? xbuf : "");
400 	init_linktype(p);
401 	(void)pcap_parse();
402 
403 	if (n_errors)
404 		syntax();
405 
406 	if (root == NULL)
407 		root = gen_retblk(snaplen);
408 
409 	if (optimize && !no_optimize) {
410 		bpf_optimize(&root);
411 		if (root == NULL ||
412 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
413 			bpf_error("expression rejects all packets");
414 	}
415 	program->bf_insns = icode_to_fcode(root, &len);
416 	program->bf_len = len;
417 
418 	lex_cleanup();
419 	freechunks();
420 	return (0);
421 }
422 
423 /*
424  * entry point for using the compiler with no pcap open
425  * pass in all the stuff that is needed explicitly instead.
426  */
427 int
428 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
429 		    struct bpf_program *program,
430 	     const char *buf, int optimize, bpf_u_int32 mask)
431 {
432 	pcap_t *p;
433 	int ret;
434 
435 	p = pcap_open_dead(linktype_arg, snaplen_arg);
436 	if (p == NULL)
437 		return (-1);
438 	ret = pcap_compile(p, program, buf, optimize, mask);
439 	pcap_close(p);
440 	return (ret);
441 }
442 
443 /*
444  * Clean up a "struct bpf_program" by freeing all the memory allocated
445  * in it.
446  */
447 void
448 pcap_freecode(struct bpf_program *program)
449 {
450 	program->bf_len = 0;
451 	if (program->bf_insns != NULL) {
452 		free((char *)program->bf_insns);
453 		program->bf_insns = NULL;
454 	}
455 }
456 
457 /*
458  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
459  * which of the jt and jf fields has been resolved and which is a pointer
460  * back to another unresolved block (or nil).  At least one of the fields
461  * in each block is already resolved.
462  */
463 static void
464 backpatch(list, target)
465 	struct block *list, *target;
466 {
467 	struct block *next;
468 
469 	while (list) {
470 		if (!list->sense) {
471 			next = JT(list);
472 			JT(list) = target;
473 		} else {
474 			next = JF(list);
475 			JF(list) = target;
476 		}
477 		list = next;
478 	}
479 }
480 
481 /*
482  * Merge the lists in b0 and b1, using the 'sense' field to indicate
483  * which of jt and jf is the link.
484  */
485 static void
486 merge(b0, b1)
487 	struct block *b0, *b1;
488 {
489 	register struct block **p = &b0;
490 
491 	/* Find end of list. */
492 	while (*p)
493 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
494 
495 	/* Concatenate the lists. */
496 	*p = b1;
497 }
498 
499 void
500 finish_parse(p)
501 	struct block *p;
502 {
503 	struct block *ppi_dlt_check;
504 
505 	/*
506 	 * Insert before the statements of the first (root) block any
507 	 * statements needed to load the lengths of any variable-length
508 	 * headers into registers.
509 	 *
510 	 * XXX - a fancier strategy would be to insert those before the
511 	 * statements of all blocks that use those lengths and that
512 	 * have no predecessors that use them, so that we only compute
513 	 * the lengths if we need them.  There might be even better
514 	 * approaches than that.
515 	 *
516 	 * However, those strategies would be more complicated, and
517 	 * as we don't generate code to compute a length if the
518 	 * program has no tests that use the length, and as most
519 	 * tests will probably use those lengths, we would just
520 	 * postpone computing the lengths so that it's not done
521 	 * for tests that fail early, and it's not clear that's
522 	 * worth the effort.
523 	 */
524 	insert_compute_vloffsets(p->head);
525 
526 	/*
527 	 * For DLT_PPI captures, generate a check of the per-packet
528 	 * DLT value to make sure it's DLT_IEEE802_11.
529 	 */
530 	ppi_dlt_check = gen_ppi_dlt_check();
531 	if (ppi_dlt_check != NULL)
532 		gen_and(ppi_dlt_check, p);
533 
534 	backpatch(p, gen_retblk(snaplen));
535 	p->sense = !p->sense;
536 	backpatch(p, gen_retblk(0));
537 	root = p->head;
538 }
539 
540 void
541 gen_and(b0, b1)
542 	struct block *b0, *b1;
543 {
544 	backpatch(b0, b1->head);
545 	b0->sense = !b0->sense;
546 	b1->sense = !b1->sense;
547 	merge(b1, b0);
548 	b1->sense = !b1->sense;
549 	b1->head = b0->head;
550 }
551 
552 void
553 gen_or(b0, b1)
554 	struct block *b0, *b1;
555 {
556 	b0->sense = !b0->sense;
557 	backpatch(b0, b1->head);
558 	b0->sense = !b0->sense;
559 	merge(b1, b0);
560 	b1->head = b0->head;
561 }
562 
563 void
564 gen_not(b)
565 	struct block *b;
566 {
567 	b->sense = !b->sense;
568 }
569 
570 static struct block *
571 gen_cmp(offrel, offset, size, v)
572 	enum e_offrel offrel;
573 	u_int offset, size;
574 	bpf_int32 v;
575 {
576 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
577 }
578 
579 static struct block *
580 gen_cmp_gt(offrel, offset, size, v)
581 	enum e_offrel offrel;
582 	u_int offset, size;
583 	bpf_int32 v;
584 {
585 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
586 }
587 
588 static struct block *
589 gen_cmp_ge(offrel, offset, size, v)
590 	enum e_offrel offrel;
591 	u_int offset, size;
592 	bpf_int32 v;
593 {
594 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
595 }
596 
597 static struct block *
598 gen_cmp_lt(offrel, offset, size, v)
599 	enum e_offrel offrel;
600 	u_int offset, size;
601 	bpf_int32 v;
602 {
603 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
604 }
605 
606 static struct block *
607 gen_cmp_le(offrel, offset, size, v)
608 	enum e_offrel offrel;
609 	u_int offset, size;
610 	bpf_int32 v;
611 {
612 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
613 }
614 
615 static struct block *
616 gen_mcmp(offrel, offset, size, v, mask)
617 	enum e_offrel offrel;
618 	u_int offset, size;
619 	bpf_int32 v;
620 	bpf_u_int32 mask;
621 {
622 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
623 }
624 
625 static struct block *
626 gen_bcmp(offrel, offset, size, v)
627 	enum e_offrel offrel;
628 	register u_int offset, size;
629 	register const u_char *v;
630 {
631 	register struct block *b, *tmp;
632 
633 	b = NULL;
634 	while (size >= 4) {
635 		register const u_char *p = &v[size - 4];
636 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
637 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
638 
639 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
640 		if (b != NULL)
641 			gen_and(b, tmp);
642 		b = tmp;
643 		size -= 4;
644 	}
645 	while (size >= 2) {
646 		register const u_char *p = &v[size - 2];
647 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
648 
649 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
650 		if (b != NULL)
651 			gen_and(b, tmp);
652 		b = tmp;
653 		size -= 2;
654 	}
655 	if (size > 0) {
656 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
657 		if (b != NULL)
658 			gen_and(b, tmp);
659 		b = tmp;
660 	}
661 	return b;
662 }
663 
664 /*
665  * AND the field of size "size" at offset "offset" relative to the header
666  * specified by "offrel" with "mask", and compare it with the value "v"
667  * with the test specified by "jtype"; if "reverse" is true, the test
668  * should test the opposite of "jtype".
669  */
670 static struct block *
671 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
672 	enum e_offrel offrel;
673 	bpf_int32 v;
674 	bpf_u_int32 offset, size, mask, jtype;
675 	int reverse;
676 {
677 	struct slist *s, *s2;
678 	struct block *b;
679 
680 	s = gen_load_a(offrel, offset, size);
681 
682 	if (mask != 0xffffffff) {
683 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
684 		s2->s.k = mask;
685 		sappend(s, s2);
686 	}
687 
688 	b = new_block(JMP(jtype));
689 	b->stmts = s;
690 	b->s.k = v;
691 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
692 		gen_not(b);
693 	return b;
694 }
695 
696 /*
697  * Various code constructs need to know the layout of the data link
698  * layer.  These variables give the necessary offsets from the beginning
699  * of the packet data.
700  */
701 
702 /*
703  * This is the offset of the beginning of the link-layer header from
704  * the beginning of the raw packet data.
705  *
706  * It's usually 0, except for 802.11 with a fixed-length radio header.
707  * (For 802.11 with a variable-length radio header, we have to generate
708  * code to compute that offset; off_ll is 0 in that case.)
709  */
710 static u_int off_ll;
711 
712 /*
713  * If there's a variable-length header preceding the link-layer header,
714  * "reg_off_ll" is the register number for a register containing the
715  * length of that header, and therefore the offset of the link-layer
716  * header from the beginning of the raw packet data.  Otherwise,
717  * "reg_off_ll" is -1.
718  */
719 static int reg_off_ll;
720 
721 /*
722  * This is the offset of the beginning of the MAC-layer header from
723  * the beginning of the link-layer header.
724  * It's usually 0, except for ATM LANE, where it's the offset, relative
725  * to the beginning of the raw packet data, of the Ethernet header.
726  */
727 static u_int off_mac;
728 
729 /*
730  * This is the offset of the beginning of the MAC-layer payload,
731  * from the beginning of the raw packet data.
732  *
733  * I.e., it's the sum of the length of the link-layer header (without,
734  * for example, any 802.2 LLC header, so it's the MAC-layer
735  * portion of that header), plus any prefix preceding the
736  * link-layer header.
737  */
738 static u_int off_macpl;
739 
740 /*
741  * This is 1 if the offset of the beginning of the MAC-layer payload
742  * from the beginning of the link-layer header is variable-length.
743  */
744 static int off_macpl_is_variable;
745 
746 /*
747  * If the link layer has variable_length headers, "reg_off_macpl"
748  * is the register number for a register containing the length of the
749  * link-layer header plus the length of any variable-length header
750  * preceding the link-layer header.  Otherwise, "reg_off_macpl"
751  * is -1.
752  */
753 static int reg_off_macpl;
754 
755 /*
756  * "off_linktype" is the offset to information in the link-layer header
757  * giving the packet type.  This offset is relative to the beginning
758  * of the link-layer header (i.e., it doesn't include off_ll).
759  *
760  * For Ethernet, it's the offset of the Ethernet type field.
761  *
762  * For link-layer types that always use 802.2 headers, it's the
763  * offset of the LLC header.
764  *
765  * For PPP, it's the offset of the PPP type field.
766  *
767  * For Cisco HDLC, it's the offset of the CHDLC type field.
768  *
769  * For BSD loopback, it's the offset of the AF_ value.
770  *
771  * For Linux cooked sockets, it's the offset of the type field.
772  *
773  * It's set to -1 for no encapsulation, in which case, IP is assumed.
774  */
775 static u_int off_linktype;
776 
777 /*
778  * TRUE if "pppoes" appeared in the filter; it causes link-layer type
779  * checks to check the PPP header, assumed to follow a LAN-style link-
780  * layer header and a PPPoE session header.
781  */
782 static int is_pppoes = 0;
783 
784 /*
785  * TRUE if the link layer includes an ATM pseudo-header.
786  */
787 static int is_atm = 0;
788 
789 /*
790  * TRUE if "lane" appeared in the filter; it causes us to generate
791  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
792  */
793 static int is_lane = 0;
794 
795 /*
796  * These are offsets for the ATM pseudo-header.
797  */
798 static u_int off_vpi;
799 static u_int off_vci;
800 static u_int off_proto;
801 
802 /*
803  * These are offsets for the MTP2 fields.
804  */
805 static u_int off_li;
806 
807 /*
808  * These are offsets for the MTP3 fields.
809  */
810 static u_int off_sio;
811 static u_int off_opc;
812 static u_int off_dpc;
813 static u_int off_sls;
814 
815 /*
816  * This is the offset of the first byte after the ATM pseudo_header,
817  * or -1 if there is no ATM pseudo-header.
818  */
819 static u_int off_payload;
820 
821 /*
822  * These are offsets to the beginning of the network-layer header.
823  * They are relative to the beginning of the MAC-layer payload (i.e.,
824  * they don't include off_ll or off_macpl).
825  *
826  * If the link layer never uses 802.2 LLC:
827  *
828  *	"off_nl" and "off_nl_nosnap" are the same.
829  *
830  * If the link layer always uses 802.2 LLC:
831  *
832  *	"off_nl" is the offset if there's a SNAP header following
833  *	the 802.2 header;
834  *
835  *	"off_nl_nosnap" is the offset if there's no SNAP header.
836  *
837  * If the link layer is Ethernet:
838  *
839  *	"off_nl" is the offset if the packet is an Ethernet II packet
840  *	(we assume no 802.3+802.2+SNAP);
841  *
842  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
843  *	with an 802.2 header following it.
844  */
845 static u_int off_nl;
846 static u_int off_nl_nosnap;
847 
848 static int linktype;
849 
850 static void
851 init_linktype(p)
852 	pcap_t *p;
853 {
854 	linktype = pcap_datalink(p);
855 #ifdef PCAP_FDDIPAD
856 	pcap_fddipad = p->fddipad;
857 #endif
858 
859 	/*
860 	 * Assume it's not raw ATM with a pseudo-header, for now.
861 	 */
862 	off_mac = 0;
863 	is_atm = 0;
864 	is_lane = 0;
865 	off_vpi = -1;
866 	off_vci = -1;
867 	off_proto = -1;
868 	off_payload = -1;
869 
870 	/*
871 	 * And that we're not doing PPPoE.
872 	 */
873 	is_pppoes = 0;
874 
875 	/*
876 	 * And assume we're not doing SS7.
877 	 */
878 	off_li = -1;
879 	off_sio = -1;
880 	off_opc = -1;
881 	off_dpc = -1;
882 	off_sls = -1;
883 
884 	/*
885 	 * Also assume it's not 802.11.
886 	 */
887 	off_ll = 0;
888 	off_macpl = 0;
889 	off_macpl_is_variable = 0;
890 
891 	orig_linktype = -1;
892 	orig_nl = -1;
893         label_stack_depth = 0;
894 
895 	reg_off_ll = -1;
896 	reg_off_macpl = -1;
897 
898 	switch (linktype) {
899 
900 	case DLT_ARCNET:
901 		off_linktype = 2;
902 		off_macpl = 6;
903 		off_nl = 0;		/* XXX in reality, variable! */
904 		off_nl_nosnap = 0;	/* no 802.2 LLC */
905 		return;
906 
907 	case DLT_ARCNET_LINUX:
908 		off_linktype = 4;
909 		off_macpl = 8;
910 		off_nl = 0;		/* XXX in reality, variable! */
911 		off_nl_nosnap = 0;	/* no 802.2 LLC */
912 		return;
913 
914 	case DLT_EN10MB:
915 		off_linktype = 12;
916 		off_macpl = 14;		/* Ethernet header length */
917 		off_nl = 0;		/* Ethernet II */
918 		off_nl_nosnap = 3;	/* 802.3+802.2 */
919 		return;
920 
921 	case DLT_SLIP:
922 		/*
923 		 * SLIP doesn't have a link level type.  The 16 byte
924 		 * header is hacked into our SLIP driver.
925 		 */
926 		off_linktype = -1;
927 		off_macpl = 16;
928 		off_nl = 0;
929 		off_nl_nosnap = 0;	/* no 802.2 LLC */
930 		return;
931 
932 	case DLT_SLIP_BSDOS:
933 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
934 		off_linktype = -1;
935 		/* XXX end */
936 		off_macpl = 24;
937 		off_nl = 0;
938 		off_nl_nosnap = 0;	/* no 802.2 LLC */
939 		return;
940 
941 	case DLT_NULL:
942 	case DLT_LOOP:
943 		off_linktype = 0;
944 		off_macpl = 4;
945 		off_nl = 0;
946 		off_nl_nosnap = 0;	/* no 802.2 LLC */
947 		return;
948 
949 	case DLT_ENC:
950 		off_linktype = 0;
951 		off_macpl = 12;
952 		off_nl = 0;
953 		off_nl_nosnap = 0;	/* no 802.2 LLC */
954 		return;
955 
956 	case DLT_PPP:
957 	case DLT_PPP_PPPD:
958 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
959 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
960 		off_linktype = 2;
961 		off_macpl = 4;
962 		off_nl = 0;
963 		off_nl_nosnap = 0;	/* no 802.2 LLC */
964 		return;
965 
966 	case DLT_PPP_ETHER:
967 		/*
968 		 * This does no include the Ethernet header, and
969 		 * only covers session state.
970 		 */
971 		off_linktype = 6;
972 		off_macpl = 8;
973 		off_nl = 0;
974 		off_nl_nosnap = 0;	/* no 802.2 LLC */
975 		return;
976 
977 	case DLT_PPP_BSDOS:
978 		off_linktype = 5;
979 		off_macpl = 24;
980 		off_nl = 0;
981 		off_nl_nosnap = 0;	/* no 802.2 LLC */
982 		return;
983 
984 	case DLT_FDDI:
985 		/*
986 		 * FDDI doesn't really have a link-level type field.
987 		 * We set "off_linktype" to the offset of the LLC header.
988 		 *
989 		 * To check for Ethernet types, we assume that SSAP = SNAP
990 		 * is being used and pick out the encapsulated Ethernet type.
991 		 * XXX - should we generate code to check for SNAP?
992 		 */
993 		off_linktype = 13;
994 #ifdef PCAP_FDDIPAD
995 		off_linktype += pcap_fddipad;
996 #endif
997 		off_macpl = 13;		/* FDDI MAC header length */
998 #ifdef PCAP_FDDIPAD
999 		off_macpl += pcap_fddipad;
1000 #endif
1001 		off_nl = 8;		/* 802.2+SNAP */
1002 		off_nl_nosnap = 3;	/* 802.2 */
1003 		return;
1004 
1005 	case DLT_IEEE802:
1006 		/*
1007 		 * Token Ring doesn't really have a link-level type field.
1008 		 * We set "off_linktype" to the offset of the LLC header.
1009 		 *
1010 		 * To check for Ethernet types, we assume that SSAP = SNAP
1011 		 * is being used and pick out the encapsulated Ethernet type.
1012 		 * XXX - should we generate code to check for SNAP?
1013 		 *
1014 		 * XXX - the header is actually variable-length.
1015 		 * Some various Linux patched versions gave 38
1016 		 * as "off_linktype" and 40 as "off_nl"; however,
1017 		 * if a token ring packet has *no* routing
1018 		 * information, i.e. is not source-routed, the correct
1019 		 * values are 20 and 22, as they are in the vanilla code.
1020 		 *
1021 		 * A packet is source-routed iff the uppermost bit
1022 		 * of the first byte of the source address, at an
1023 		 * offset of 8, has the uppermost bit set.  If the
1024 		 * packet is source-routed, the total number of bytes
1025 		 * of routing information is 2 plus bits 0x1F00 of
1026 		 * the 16-bit value at an offset of 14 (shifted right
1027 		 * 8 - figure out which byte that is).
1028 		 */
1029 		off_linktype = 14;
1030 		off_macpl = 14;		/* Token Ring MAC header length */
1031 		off_nl = 8;		/* 802.2+SNAP */
1032 		off_nl_nosnap = 3;	/* 802.2 */
1033 		return;
1034 
1035 	case DLT_IEEE802_11:
1036 	case DLT_PRISM_HEADER:
1037 	case DLT_IEEE802_11_RADIO_AVS:
1038 	case DLT_IEEE802_11_RADIO:
1039 		/*
1040 		 * 802.11 doesn't really have a link-level type field.
1041 		 * We set "off_linktype" to the offset of the LLC header.
1042 		 *
1043 		 * To check for Ethernet types, we assume that SSAP = SNAP
1044 		 * is being used and pick out the encapsulated Ethernet type.
1045 		 * XXX - should we generate code to check for SNAP?
1046 		 *
1047 		 * We also handle variable-length radio headers here.
1048 		 * The Prism header is in theory variable-length, but in
1049 		 * practice it's always 144 bytes long.  However, some
1050 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1051 		 * sometimes or always supply an AVS header, so we
1052 		 * have to check whether the radio header is a Prism
1053 		 * header or an AVS header, so, in practice, it's
1054 		 * variable-length.
1055 		 */
1056 		off_linktype = 24;
1057 		off_macpl = 0;		/* link-layer header is variable-length */
1058 		off_macpl_is_variable = 1;
1059 		off_nl = 8;		/* 802.2+SNAP */
1060 		off_nl_nosnap = 3;	/* 802.2 */
1061 		return;
1062 
1063 	case DLT_PPI:
1064 		/*
1065 		 * At the moment we treat PPI the same way that we treat
1066 		 * normal Radiotap encoded packets. The difference is in
1067 		 * the function that generates the code at the beginning
1068 		 * to compute the header length.  Since this code generator
1069 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1070 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1071 		 * generate code to check for this too.
1072 		 */
1073 		off_linktype = 24;
1074 		off_macpl = 0;		/* link-layer header is variable-length */
1075 		off_macpl_is_variable = 1;
1076 		off_nl = 8;		/* 802.2+SNAP */
1077 		off_nl_nosnap = 3;	/* 802.2 */
1078 		return;
1079 
1080 	case DLT_ATM_RFC1483:
1081 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1082 		/*
1083 		 * assume routed, non-ISO PDUs
1084 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1085 		 *
1086 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1087 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1088 		 * latter would presumably be treated the way PPPoE
1089 		 * should be, so you can do "pppoe and udp port 2049"
1090 		 * or "pppoa and tcp port 80" and have it check for
1091 		 * PPPo{A,E} and a PPP protocol of IP and....
1092 		 */
1093 		off_linktype = 0;
1094 		off_macpl = 0;		/* packet begins with LLC header */
1095 		off_nl = 8;		/* 802.2+SNAP */
1096 		off_nl_nosnap = 3;	/* 802.2 */
1097 		return;
1098 
1099 	case DLT_SUNATM:
1100 		/*
1101 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1102 		 * pseudo-header.
1103 		 */
1104 		is_atm = 1;
1105 		off_vpi = SUNATM_VPI_POS;
1106 		off_vci = SUNATM_VCI_POS;
1107 		off_proto = PROTO_POS;
1108 		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1109 		off_payload = SUNATM_PKT_BEGIN_POS;
1110 		off_linktype = off_payload;
1111 		off_macpl = off_payload;	/* if LLC-encapsulated */
1112 		off_nl = 8;		/* 802.2+SNAP */
1113 		off_nl_nosnap = 3;	/* 802.2 */
1114 		return;
1115 
1116 	case DLT_RAW:
1117 		off_linktype = -1;
1118 		off_macpl = 0;
1119 		off_nl = 0;
1120 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1121 		return;
1122 
1123 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1124 		off_linktype = 14;
1125 		off_macpl = 16;
1126 		off_nl = 0;
1127 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1128 		return;
1129 
1130 	case DLT_LTALK:
1131 		/*
1132 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1133 		 * but really it just indicates whether there is a "short" or
1134 		 * "long" DDP packet following.
1135 		 */
1136 		off_linktype = -1;
1137 		off_macpl = 0;
1138 		off_nl = 0;
1139 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1140 		return;
1141 
1142 	case DLT_IP_OVER_FC:
1143 		/*
1144 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1145 		 * link-level type field.  We set "off_linktype" to the
1146 		 * offset of the LLC header.
1147 		 *
1148 		 * To check for Ethernet types, we assume that SSAP = SNAP
1149 		 * is being used and pick out the encapsulated Ethernet type.
1150 		 * XXX - should we generate code to check for SNAP? RFC
1151 		 * 2625 says SNAP should be used.
1152 		 */
1153 		off_linktype = 16;
1154 		off_macpl = 16;
1155 		off_nl = 8;		/* 802.2+SNAP */
1156 		off_nl_nosnap = 3;	/* 802.2 */
1157 		return;
1158 
1159 	case DLT_FRELAY:
1160 		/*
1161 		 * XXX - we should set this to handle SNAP-encapsulated
1162 		 * frames (NLPID of 0x80).
1163 		 */
1164 		off_linktype = -1;
1165 		off_macpl = 0;
1166 		off_nl = 0;
1167 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1168 		return;
1169 
1170                 /*
1171                  * the only BPF-interesting FRF.16 frames are non-control frames;
1172                  * Frame Relay has a variable length link-layer
1173                  * so lets start with offset 4 for now and increments later on (FIXME);
1174                  */
1175 	case DLT_MFR:
1176 		off_linktype = -1;
1177 		off_macpl = 0;
1178 		off_nl = 4;
1179 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1180 		return;
1181 
1182 	case DLT_APPLE_IP_OVER_IEEE1394:
1183 		off_linktype = 16;
1184 		off_macpl = 18;
1185 		off_nl = 0;
1186 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1187 		return;
1188 
1189 	case DLT_LINUX_IRDA:
1190 		/*
1191 		 * Currently, only raw "link[N:M]" filtering is supported.
1192 		 */
1193 		off_linktype = -1;
1194 		off_macpl = -1;
1195 		off_nl = -1;
1196 		off_nl_nosnap = -1;
1197 		return;
1198 
1199 	case DLT_DOCSIS:
1200 		/*
1201 		 * Currently, only raw "link[N:M]" filtering is supported.
1202 		 */
1203 		off_linktype = -1;
1204 		off_macpl = -1;
1205 		off_nl = -1;
1206 		off_nl_nosnap = -1;
1207 		return;
1208 
1209 	case DLT_SYMANTEC_FIREWALL:
1210 		off_linktype = 6;
1211 		off_macpl = 44;
1212 		off_nl = 0;		/* Ethernet II */
1213 		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1214 		return;
1215 
1216 #ifdef HAVE_NET_PFVAR_H
1217 	case DLT_PFLOG:
1218 		off_linktype = 0;
1219 		off_macpl = PFLOG_HDRLEN;
1220 		off_nl = 0;
1221 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1222 		return;
1223 #endif
1224 
1225         case DLT_JUNIPER_MFR:
1226         case DLT_JUNIPER_MLFR:
1227         case DLT_JUNIPER_MLPPP:
1228         case DLT_JUNIPER_PPP:
1229         case DLT_JUNIPER_CHDLC:
1230         case DLT_JUNIPER_FRELAY:
1231                 off_linktype = 4;
1232 		off_macpl = 4;
1233 		off_nl = 0;
1234 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1235                 return;
1236 
1237 	case DLT_JUNIPER_ATM1:
1238 		off_linktype = 4;	/* in reality variable between 4-8 */
1239 		off_macpl = 4;	/* in reality variable between 4-8 */
1240 		off_nl = 0;
1241 		off_nl_nosnap = 10;
1242 		return;
1243 
1244 	case DLT_JUNIPER_ATM2:
1245 		off_linktype = 8;	/* in reality variable between 8-12 */
1246 		off_macpl = 8;	/* in reality variable between 8-12 */
1247 		off_nl = 0;
1248 		off_nl_nosnap = 10;
1249 		return;
1250 
1251 		/* frames captured on a Juniper PPPoE service PIC
1252 		 * contain raw ethernet frames */
1253 	case DLT_JUNIPER_PPPOE:
1254         case DLT_JUNIPER_ETHER:
1255         	off_macpl = 14;
1256 		off_linktype = 16;
1257 		off_nl = 18;		/* Ethernet II */
1258 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1259 		return;
1260 
1261 	case DLT_JUNIPER_PPPOE_ATM:
1262 		off_linktype = 4;
1263 		off_macpl = 6;
1264 		off_nl = 0;
1265 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1266 		return;
1267 
1268 	case DLT_JUNIPER_GGSN:
1269 		off_linktype = 6;
1270 		off_macpl = 12;
1271 		off_nl = 0;
1272 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1273 		return;
1274 
1275 	case DLT_JUNIPER_ES:
1276 		off_linktype = 6;
1277 		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1278 		off_nl = -1;		/* not really a network layer but raw IP addresses */
1279 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1280 		return;
1281 
1282 	case DLT_JUNIPER_MONITOR:
1283 		off_linktype = 12;
1284 		off_macpl = 12;
1285 		off_nl = 0;		/* raw IP/IP6 header */
1286 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1287 		return;
1288 
1289 	case DLT_JUNIPER_SERVICES:
1290 		off_linktype = 12;
1291 		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1292 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1293 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1294 		return;
1295 
1296 	case DLT_JUNIPER_VP:
1297 		off_linktype = 18;
1298 		off_macpl = -1;
1299 		off_nl = -1;
1300 		off_nl_nosnap = -1;
1301 		return;
1302 
1303 	case DLT_JUNIPER_ST:
1304 		off_linktype = 18;
1305 		off_macpl = -1;
1306 		off_nl = -1;
1307 		off_nl_nosnap = -1;
1308 		return;
1309 
1310 	case DLT_JUNIPER_ISM:
1311 		off_linktype = 8;
1312 		off_macpl = -1;
1313 		off_nl = -1;
1314 		off_nl_nosnap = -1;
1315 		return;
1316 
1317 	case DLT_MTP2:
1318 		off_li = 2;
1319 		off_sio = 3;
1320 		off_opc = 4;
1321 		off_dpc = 4;
1322 		off_sls = 7;
1323 		off_linktype = -1;
1324 		off_macpl = -1;
1325 		off_nl = -1;
1326 		off_nl_nosnap = -1;
1327 		return;
1328 
1329 	case DLT_MTP2_WITH_PHDR:
1330 		off_li = 6;
1331 		off_sio = 7;
1332 		off_opc = 8;
1333 		off_dpc = 8;
1334 		off_sls = 11;
1335 		off_linktype = -1;
1336 		off_macpl = -1;
1337 		off_nl = -1;
1338 		off_nl_nosnap = -1;
1339 		return;
1340 
1341 	case DLT_ERF:
1342 		off_li = 22;
1343 		off_sio = 23;
1344 		off_opc = 24;
1345 		off_dpc = 24;
1346 		off_sls = 27;
1347 		off_linktype = -1;
1348 		off_macpl = -1;
1349 		off_nl = -1;
1350 		off_nl_nosnap = -1;
1351 		return;
1352 
1353 #ifdef DLT_PFSYNC
1354 	case DLT_PFSYNC:
1355 		off_linktype = -1;
1356 		off_macpl = 4;
1357 		off_nl = 0;
1358 		off_nl_nosnap = 0;
1359 		return;
1360 #endif
1361 
1362 	case DLT_LINUX_LAPD:
1363 		/*
1364 		 * Currently, only raw "link[N:M]" filtering is supported.
1365 		 */
1366 		off_linktype = -1;
1367 		off_macpl = -1;
1368 		off_nl = -1;
1369 		off_nl_nosnap = -1;
1370 		return;
1371 
1372 	case DLT_USB:
1373 		/*
1374 		 * Currently, only raw "link[N:M]" filtering is supported.
1375 		 */
1376 		off_linktype = -1;
1377 		off_macpl = -1;
1378 		off_nl = -1;
1379 		off_nl_nosnap = -1;
1380 		return;
1381 
1382 	case DLT_BLUETOOTH_HCI_H4:
1383 		/*
1384 		 * Currently, only raw "link[N:M]" filtering is supported.
1385 		 */
1386 		off_linktype = -1;
1387 		off_macpl = -1;
1388 		off_nl = -1;
1389 		off_nl_nosnap = -1;
1390 		return;
1391 
1392 	case DLT_USB_LINUX:
1393 		/*
1394 		 * Currently, only raw "link[N:M]" filtering is supported.
1395 		 */
1396 		off_linktype = -1;
1397 		off_macpl = -1;
1398 		off_nl = -1;
1399 		off_nl_nosnap = -1;
1400 		return;
1401 
1402 	case DLT_CAN20B:
1403 		/*
1404 		 * Currently, only raw "link[N:M]" filtering is supported.
1405 		 */
1406 		off_linktype = -1;
1407 		off_macpl = -1;
1408 		off_nl = -1;
1409 		off_nl_nosnap = -1;
1410 		return;
1411 
1412 	case DLT_IEEE802_15_4_LINUX:
1413 		/*
1414 		 * Currently, only raw "link[N:M]" filtering is supported.
1415 		 */
1416 		off_linktype = -1;
1417 		off_macpl = -1;
1418 		off_nl = -1;
1419 		off_nl_nosnap = -1;
1420 		return;
1421 
1422 	case DLT_IEEE802_16_MAC_CPS_RADIO:
1423 		/*
1424 		 * Currently, only raw "link[N:M]" filtering is supported.
1425 		 */
1426 		off_linktype = -1;
1427 		off_macpl = -1;
1428 		off_nl = -1;
1429 		off_nl_nosnap = -1;
1430 		return;
1431 
1432 	case DLT_IEEE802_15_4:
1433 		/*
1434 		 * Currently, only raw "link[N:M]" filtering is supported.
1435 		 */
1436 		off_linktype = -1;
1437 		off_macpl = -1;
1438 		off_nl = -1;
1439 		off_nl_nosnap = -1;
1440 		return;
1441 
1442 	case DLT_SITA:
1443 		/*
1444 		 * Currently, only raw "link[N:M]" filtering is supported.
1445 		 */
1446 		off_linktype = -1;
1447 		off_macpl = -1;
1448 		off_nl = -1;
1449 		off_nl_nosnap = -1;
1450 		return;
1451 
1452 	case DLT_RAIF1:
1453 		/*
1454 		 * Currently, only raw "link[N:M]" filtering is supported.
1455 		 */
1456 		off_linktype = -1;
1457 		off_macpl = -1;
1458 		off_nl = -1;
1459 		off_nl_nosnap = -1;
1460 		return;
1461 
1462 	case DLT_IPMB:
1463 		/*
1464 		 * Currently, only raw "link[N:M]" filtering is supported.
1465 		 */
1466 		off_linktype = -1;
1467 		off_macpl = -1;
1468 		off_nl = -1;
1469 		off_nl_nosnap = -1;
1470 		return;
1471 
1472 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
1473 		/*
1474 		 * Currently, only raw "link[N:M]" filtering is supported.
1475 		 */
1476 		off_linktype = -1;
1477 		off_macpl = -1;
1478 		off_nl = -1;
1479 		off_nl_nosnap = -1;
1480 		return;
1481 
1482 	case DLT_AX25_KISS:
1483 		/*
1484 		 * Currently, only raw "link[N:M]" filtering is supported.
1485 		 */
1486 		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1487 		off_macpl = -1;
1488 		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1489 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1490 		off_mac = 1;		/* step over the kiss length byte */
1491 		return;
1492 
1493 	case DLT_IEEE802_15_4_NONASK_PHY:
1494 		/*
1495 		 * Currently, only raw "link[N:M]" filtering is supported.
1496 		 */
1497 		off_linktype = -1;
1498 		off_macpl = -1;
1499 		off_nl = -1;
1500 		off_nl_nosnap = -1;
1501 		return;
1502 	}
1503 	bpf_error("unknown data link type %d", linktype);
1504 	/* NOTREACHED */
1505 }
1506 
1507 /*
1508  * Load a value relative to the beginning of the link-layer header.
1509  * The link-layer header doesn't necessarily begin at the beginning
1510  * of the packet data; there might be a variable-length prefix containing
1511  * radio information.
1512  */
1513 static struct slist *
1514 gen_load_llrel(offset, size)
1515 	u_int offset, size;
1516 {
1517 	struct slist *s, *s2;
1518 
1519 	s = gen_llprefixlen();
1520 
1521 	/*
1522 	 * If "s" is non-null, it has code to arrange that the X register
1523 	 * contains the length of the prefix preceding the link-layer
1524 	 * header.
1525 	 *
1526 	 * Otherwise, the length of the prefix preceding the link-layer
1527 	 * header is "off_ll".
1528 	 */
1529 	if (s != NULL) {
1530 		/*
1531 		 * There's a variable-length prefix preceding the
1532 		 * link-layer header.  "s" points to a list of statements
1533 		 * that put the length of that prefix into the X register.
1534 		 * do an indirect load, to use the X register as an offset.
1535 		 */
1536 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1537 		s2->s.k = offset;
1538 		sappend(s, s2);
1539 	} else {
1540 		/*
1541 		 * There is no variable-length header preceding the
1542 		 * link-layer header; add in off_ll, which, if there's
1543 		 * a fixed-length header preceding the link-layer header,
1544 		 * is the length of that header.
1545 		 */
1546 		s = new_stmt(BPF_LD|BPF_ABS|size);
1547 		s->s.k = offset + off_ll;
1548 	}
1549 	return s;
1550 }
1551 
1552 /*
1553  * Load a value relative to the beginning of the MAC-layer payload.
1554  */
1555 static struct slist *
1556 gen_load_macplrel(offset, size)
1557 	u_int offset, size;
1558 {
1559 	struct slist *s, *s2;
1560 
1561 	s = gen_off_macpl();
1562 
1563 	/*
1564 	 * If s is non-null, the offset of the MAC-layer payload is
1565 	 * variable, and s points to a list of instructions that
1566 	 * arrange that the X register contains that offset.
1567 	 *
1568 	 * Otherwise, the offset of the MAC-layer payload is constant,
1569 	 * and is in off_macpl.
1570 	 */
1571 	if (s != NULL) {
1572 		/*
1573 		 * The offset of the MAC-layer payload is in the X
1574 		 * register.  Do an indirect load, to use the X register
1575 		 * as an offset.
1576 		 */
1577 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1578 		s2->s.k = offset;
1579 		sappend(s, s2);
1580 	} else {
1581 		/*
1582 		 * The offset of the MAC-layer payload is constant,
1583 		 * and is in off_macpl; load the value at that offset
1584 		 * plus the specified offset.
1585 		 */
1586 		s = new_stmt(BPF_LD|BPF_ABS|size);
1587 		s->s.k = off_macpl + offset;
1588 	}
1589 	return s;
1590 }
1591 
1592 /*
1593  * Load a value relative to the beginning of the specified header.
1594  */
1595 static struct slist *
1596 gen_load_a(offrel, offset, size)
1597 	enum e_offrel offrel;
1598 	u_int offset, size;
1599 {
1600 	struct slist *s, *s2;
1601 
1602 	switch (offrel) {
1603 
1604 	case OR_PACKET:
1605                 s = new_stmt(BPF_LD|BPF_ABS|size);
1606                 s->s.k = offset;
1607 		break;
1608 
1609 	case OR_LINK:
1610 		s = gen_load_llrel(offset, size);
1611 		break;
1612 
1613 	case OR_MACPL:
1614 		s = gen_load_macplrel(offset, size);
1615 		break;
1616 
1617 	case OR_NET:
1618 		s = gen_load_macplrel(off_nl + offset, size);
1619 		break;
1620 
1621 	case OR_NET_NOSNAP:
1622 		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1623 		break;
1624 
1625 	case OR_TRAN_IPV4:
1626 		/*
1627 		 * Load the X register with the length of the IPv4 header
1628 		 * (plus the offset of the link-layer header, if it's
1629 		 * preceded by a variable-length header such as a radio
1630 		 * header), in bytes.
1631 		 */
1632 		s = gen_loadx_iphdrlen();
1633 
1634 		/*
1635 		 * Load the item at {offset of the MAC-layer payload} +
1636 		 * {offset, relative to the start of the MAC-layer
1637 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1638 		 * {specified offset}.
1639 		 *
1640 		 * (If the offset of the MAC-layer payload is variable,
1641 		 * it's included in the value in the X register, and
1642 		 * off_macpl is 0.)
1643 		 */
1644 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1645 		s2->s.k = off_macpl + off_nl + offset;
1646 		sappend(s, s2);
1647 		break;
1648 
1649 	case OR_TRAN_IPV6:
1650 		s = gen_load_macplrel(off_nl + 40 + offset, size);
1651 		break;
1652 
1653 	default:
1654 		abort();
1655 		return NULL;
1656 	}
1657 	return s;
1658 }
1659 
1660 /*
1661  * Generate code to load into the X register the sum of the length of
1662  * the IPv4 header and any variable-length header preceding the link-layer
1663  * header.
1664  */
1665 static struct slist *
1666 gen_loadx_iphdrlen()
1667 {
1668 	struct slist *s, *s2;
1669 
1670 	s = gen_off_macpl();
1671 	if (s != NULL) {
1672 		/*
1673 		 * There's a variable-length prefix preceding the
1674 		 * link-layer header, or the link-layer header is itself
1675 		 * variable-length.  "s" points to a list of statements
1676 		 * that put the offset of the MAC-layer payload into
1677 		 * the X register.
1678 		 *
1679 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1680 		 * don't have a constant offset, so we have to load the
1681 		 * value in question into the A register and add to it
1682 		 * the value from the X register.
1683 		 */
1684 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1685 		s2->s.k = off_nl;
1686 		sappend(s, s2);
1687 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1688 		s2->s.k = 0xf;
1689 		sappend(s, s2);
1690 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1691 		s2->s.k = 2;
1692 		sappend(s, s2);
1693 
1694 		/*
1695 		 * The A register now contains the length of the
1696 		 * IP header.  We need to add to it the offset of
1697 		 * the MAC-layer payload, which is still in the X
1698 		 * register, and move the result into the X register.
1699 		 */
1700 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1701 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1702 	} else {
1703 		/*
1704 		 * There is no variable-length header preceding the
1705 		 * link-layer header, and the link-layer header is
1706 		 * fixed-length; load the length of the IPv4 header,
1707 		 * which is at an offset of off_nl from the beginning
1708 		 * of the MAC-layer payload, and thus at an offset
1709 		 * of off_mac_pl + off_nl from the beginning of the
1710 		 * raw packet data.
1711 		 */
1712 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1713 		s->s.k = off_macpl + off_nl;
1714 	}
1715 	return s;
1716 }
1717 
1718 static struct block *
1719 gen_uncond(rsense)
1720 	int rsense;
1721 {
1722 	struct block *b;
1723 	struct slist *s;
1724 
1725 	s = new_stmt(BPF_LD|BPF_IMM);
1726 	s->s.k = !rsense;
1727 	b = new_block(JMP(BPF_JEQ));
1728 	b->stmts = s;
1729 
1730 	return b;
1731 }
1732 
1733 static inline struct block *
1734 gen_true()
1735 {
1736 	return gen_uncond(1);
1737 }
1738 
1739 static inline struct block *
1740 gen_false()
1741 {
1742 	return gen_uncond(0);
1743 }
1744 
1745 /*
1746  * Byte-swap a 32-bit number.
1747  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1748  * big-endian platforms.)
1749  */
1750 #define	SWAPLONG(y) \
1751 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1752 
1753 /*
1754  * Generate code to match a particular packet type.
1755  *
1756  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1757  * value, if <= ETHERMTU.  We use that to determine whether to
1758  * match the type/length field or to check the type/length field for
1759  * a value <= ETHERMTU to see whether it's a type field and then do
1760  * the appropriate test.
1761  */
1762 static struct block *
1763 gen_ether_linktype(proto)
1764 	register int proto;
1765 {
1766 	struct block *b0, *b1;
1767 
1768 	switch (proto) {
1769 
1770 	case LLCSAP_ISONS:
1771 	case LLCSAP_IP:
1772 	case LLCSAP_NETBEUI:
1773 		/*
1774 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1775 		 * so we check the DSAP and SSAP.
1776 		 *
1777 		 * LLCSAP_IP checks for IP-over-802.2, rather
1778 		 * than IP-over-Ethernet or IP-over-SNAP.
1779 		 *
1780 		 * XXX - should we check both the DSAP and the
1781 		 * SSAP, like this, or should we check just the
1782 		 * DSAP, as we do for other types <= ETHERMTU
1783 		 * (i.e., other SAP values)?
1784 		 */
1785 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1786 		gen_not(b0);
1787 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1788 			     ((proto << 8) | proto));
1789 		gen_and(b0, b1);
1790 		return b1;
1791 
1792 	case LLCSAP_IPX:
1793 		/*
1794 		 * Check for;
1795 		 *
1796 		 *	Ethernet_II frames, which are Ethernet
1797 		 *	frames with a frame type of ETHERTYPE_IPX;
1798 		 *
1799 		 *	Ethernet_802.3 frames, which are 802.3
1800 		 *	frames (i.e., the type/length field is
1801 		 *	a length field, <= ETHERMTU, rather than
1802 		 *	a type field) with the first two bytes
1803 		 *	after the Ethernet/802.3 header being
1804 		 *	0xFFFF;
1805 		 *
1806 		 *	Ethernet_802.2 frames, which are 802.3
1807 		 *	frames with an 802.2 LLC header and
1808 		 *	with the IPX LSAP as the DSAP in the LLC
1809 		 *	header;
1810 		 *
1811 		 *	Ethernet_SNAP frames, which are 802.3
1812 		 *	frames with an LLC header and a SNAP
1813 		 *	header and with an OUI of 0x000000
1814 		 *	(encapsulated Ethernet) and a protocol
1815 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1816 		 *
1817 		 * XXX - should we generate the same code both
1818 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1819 		 */
1820 
1821 		/*
1822 		 * This generates code to check both for the
1823 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1824 		 */
1825 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1826 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1827 		gen_or(b0, b1);
1828 
1829 		/*
1830 		 * Now we add code to check for SNAP frames with
1831 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1832 		 */
1833 		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1834 		gen_or(b0, b1);
1835 
1836 		/*
1837 		 * Now we generate code to check for 802.3
1838 		 * frames in general.
1839 		 */
1840 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1841 		gen_not(b0);
1842 
1843 		/*
1844 		 * Now add the check for 802.3 frames before the
1845 		 * check for Ethernet_802.2 and Ethernet_802.3,
1846 		 * as those checks should only be done on 802.3
1847 		 * frames, not on Ethernet frames.
1848 		 */
1849 		gen_and(b0, b1);
1850 
1851 		/*
1852 		 * Now add the check for Ethernet_II frames, and
1853 		 * do that before checking for the other frame
1854 		 * types.
1855 		 */
1856 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1857 		    (bpf_int32)ETHERTYPE_IPX);
1858 		gen_or(b0, b1);
1859 		return b1;
1860 
1861 	case ETHERTYPE_ATALK:
1862 	case ETHERTYPE_AARP:
1863 		/*
1864 		 * EtherTalk (AppleTalk protocols on Ethernet link
1865 		 * layer) may use 802.2 encapsulation.
1866 		 */
1867 
1868 		/*
1869 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1870 		 * we check for an Ethernet type field less than
1871 		 * 1500, which means it's an 802.3 length field.
1872 		 */
1873 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1874 		gen_not(b0);
1875 
1876 		/*
1877 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1878 		 * SNAP packets with an organization code of
1879 		 * 0x080007 (Apple, for Appletalk) and a protocol
1880 		 * type of ETHERTYPE_ATALK (Appletalk).
1881 		 *
1882 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1883 		 * SNAP packets with an organization code of
1884 		 * 0x000000 (encapsulated Ethernet) and a protocol
1885 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1886 		 */
1887 		if (proto == ETHERTYPE_ATALK)
1888 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1889 		else	/* proto == ETHERTYPE_AARP */
1890 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1891 		gen_and(b0, b1);
1892 
1893 		/*
1894 		 * Check for Ethernet encapsulation (Ethertalk
1895 		 * phase 1?); we just check for the Ethernet
1896 		 * protocol type.
1897 		 */
1898 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1899 
1900 		gen_or(b0, b1);
1901 		return b1;
1902 
1903 	default:
1904 		if (proto <= ETHERMTU) {
1905 			/*
1906 			 * This is an LLC SAP value, so the frames
1907 			 * that match would be 802.2 frames.
1908 			 * Check that the frame is an 802.2 frame
1909 			 * (i.e., that the length/type field is
1910 			 * a length field, <= ETHERMTU) and
1911 			 * then check the DSAP.
1912 			 */
1913 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1914 			gen_not(b0);
1915 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1916 			    (bpf_int32)proto);
1917 			gen_and(b0, b1);
1918 			return b1;
1919 		} else {
1920 			/*
1921 			 * This is an Ethernet type, so compare
1922 			 * the length/type field with it (if
1923 			 * the frame is an 802.2 frame, the length
1924 			 * field will be <= ETHERMTU, and, as
1925 			 * "proto" is > ETHERMTU, this test
1926 			 * will fail and the frame won't match,
1927 			 * which is what we want).
1928 			 */
1929 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1930 			    (bpf_int32)proto);
1931 		}
1932 	}
1933 }
1934 
1935 /*
1936  * Generate code to match a particular packet type.
1937  *
1938  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1939  * value, if <= ETHERMTU.  We use that to determine whether to
1940  * match the type field or to check the type field for the special
1941  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1942  */
1943 static struct block *
1944 gen_linux_sll_linktype(proto)
1945 	register int proto;
1946 {
1947 	struct block *b0, *b1;
1948 
1949 	switch (proto) {
1950 
1951 	case LLCSAP_ISONS:
1952 	case LLCSAP_IP:
1953 	case LLCSAP_NETBEUI:
1954 		/*
1955 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1956 		 * so we check the DSAP and SSAP.
1957 		 *
1958 		 * LLCSAP_IP checks for IP-over-802.2, rather
1959 		 * than IP-over-Ethernet or IP-over-SNAP.
1960 		 *
1961 		 * XXX - should we check both the DSAP and the
1962 		 * SSAP, like this, or should we check just the
1963 		 * DSAP, as we do for other types <= ETHERMTU
1964 		 * (i.e., other SAP values)?
1965 		 */
1966 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1967 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1968 			     ((proto << 8) | proto));
1969 		gen_and(b0, b1);
1970 		return b1;
1971 
1972 	case LLCSAP_IPX:
1973 		/*
1974 		 *	Ethernet_II frames, which are Ethernet
1975 		 *	frames with a frame type of ETHERTYPE_IPX;
1976 		 *
1977 		 *	Ethernet_802.3 frames, which have a frame
1978 		 *	type of LINUX_SLL_P_802_3;
1979 		 *
1980 		 *	Ethernet_802.2 frames, which are 802.3
1981 		 *	frames with an 802.2 LLC header (i.e, have
1982 		 *	a frame type of LINUX_SLL_P_802_2) and
1983 		 *	with the IPX LSAP as the DSAP in the LLC
1984 		 *	header;
1985 		 *
1986 		 *	Ethernet_SNAP frames, which are 802.3
1987 		 *	frames with an LLC header and a SNAP
1988 		 *	header and with an OUI of 0x000000
1989 		 *	(encapsulated Ethernet) and a protocol
1990 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1991 		 *
1992 		 * First, do the checks on LINUX_SLL_P_802_2
1993 		 * frames; generate the check for either
1994 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1995 		 * then put a check for LINUX_SLL_P_802_2 frames
1996 		 * before it.
1997 		 */
1998 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1999 		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
2000 		gen_or(b0, b1);
2001 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2002 		gen_and(b0, b1);
2003 
2004 		/*
2005 		 * Now check for 802.3 frames and OR that with
2006 		 * the previous test.
2007 		 */
2008 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2009 		gen_or(b0, b1);
2010 
2011 		/*
2012 		 * Now add the check for Ethernet_II frames, and
2013 		 * do that before checking for the other frame
2014 		 * types.
2015 		 */
2016 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2017 		    (bpf_int32)ETHERTYPE_IPX);
2018 		gen_or(b0, b1);
2019 		return b1;
2020 
2021 	case ETHERTYPE_ATALK:
2022 	case ETHERTYPE_AARP:
2023 		/*
2024 		 * EtherTalk (AppleTalk protocols on Ethernet link
2025 		 * layer) may use 802.2 encapsulation.
2026 		 */
2027 
2028 		/*
2029 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2030 		 * we check for the 802.2 protocol type in the
2031 		 * "Ethernet type" field.
2032 		 */
2033 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2034 
2035 		/*
2036 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2037 		 * SNAP packets with an organization code of
2038 		 * 0x080007 (Apple, for Appletalk) and a protocol
2039 		 * type of ETHERTYPE_ATALK (Appletalk).
2040 		 *
2041 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2042 		 * SNAP packets with an organization code of
2043 		 * 0x000000 (encapsulated Ethernet) and a protocol
2044 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2045 		 */
2046 		if (proto == ETHERTYPE_ATALK)
2047 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2048 		else	/* proto == ETHERTYPE_AARP */
2049 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2050 		gen_and(b0, b1);
2051 
2052 		/*
2053 		 * Check for Ethernet encapsulation (Ethertalk
2054 		 * phase 1?); we just check for the Ethernet
2055 		 * protocol type.
2056 		 */
2057 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2058 
2059 		gen_or(b0, b1);
2060 		return b1;
2061 
2062 	default:
2063 		if (proto <= ETHERMTU) {
2064 			/*
2065 			 * This is an LLC SAP value, so the frames
2066 			 * that match would be 802.2 frames.
2067 			 * Check for the 802.2 protocol type
2068 			 * in the "Ethernet type" field, and
2069 			 * then check the DSAP.
2070 			 */
2071 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2072 			    LINUX_SLL_P_802_2);
2073 			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2074 			     (bpf_int32)proto);
2075 			gen_and(b0, b1);
2076 			return b1;
2077 		} else {
2078 			/*
2079 			 * This is an Ethernet type, so compare
2080 			 * the length/type field with it (if
2081 			 * the frame is an 802.2 frame, the length
2082 			 * field will be <= ETHERMTU, and, as
2083 			 * "proto" is > ETHERMTU, this test
2084 			 * will fail and the frame won't match,
2085 			 * which is what we want).
2086 			 */
2087 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2088 			    (bpf_int32)proto);
2089 		}
2090 	}
2091 }
2092 
2093 static struct slist *
2094 gen_load_prism_llprefixlen()
2095 {
2096 	struct slist *s1, *s2;
2097 	struct slist *sjeq_avs_cookie;
2098 	struct slist *sjcommon;
2099 
2100 	/*
2101 	 * This code is not compatible with the optimizer, as
2102 	 * we are generating jmp instructions within a normal
2103 	 * slist of instructions
2104 	 */
2105 	no_optimize = 1;
2106 
2107 	/*
2108 	 * Generate code to load the length of the radio header into
2109 	 * the register assigned to hold that length, if one has been
2110 	 * assigned.  (If one hasn't been assigned, no code we've
2111 	 * generated uses that prefix, so we don't need to generate any
2112 	 * code to load it.)
2113 	 *
2114 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2115 	 * or always use the AVS header rather than the Prism header.
2116 	 * We load a 4-byte big-endian value at the beginning of the
2117 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2118 	 * it's equal to 0x80211000.  If so, that indicates that it's
2119 	 * an AVS header (the masked-out bits are the version number).
2120 	 * Otherwise, it's a Prism header.
2121 	 *
2122 	 * XXX - the Prism header is also, in theory, variable-length,
2123 	 * but no known software generates headers that aren't 144
2124 	 * bytes long.
2125 	 */
2126 	if (reg_off_ll != -1) {
2127 		/*
2128 		 * Load the cookie.
2129 		 */
2130 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2131 		s1->s.k = 0;
2132 
2133 		/*
2134 		 * AND it with 0xFFFFF000.
2135 		 */
2136 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2137 		s2->s.k = 0xFFFFF000;
2138 		sappend(s1, s2);
2139 
2140 		/*
2141 		 * Compare with 0x80211000.
2142 		 */
2143 		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2144 		sjeq_avs_cookie->s.k = 0x80211000;
2145 		sappend(s1, sjeq_avs_cookie);
2146 
2147 		/*
2148 		 * If it's AVS:
2149 		 *
2150 		 * The 4 bytes at an offset of 4 from the beginning of
2151 		 * the AVS header are the length of the AVS header.
2152 		 * That field is big-endian.
2153 		 */
2154 		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2155 		s2->s.k = 4;
2156 		sappend(s1, s2);
2157 		sjeq_avs_cookie->s.jt = s2;
2158 
2159 		/*
2160 		 * Now jump to the code to allocate a register
2161 		 * into which to save the header length and
2162 		 * store the length there.  (The "jump always"
2163 		 * instruction needs to have the k field set;
2164 		 * it's added to the PC, so, as we're jumping
2165 		 * over a single instruction, it should be 1.)
2166 		 */
2167 		sjcommon = new_stmt(JMP(BPF_JA));
2168 		sjcommon->s.k = 1;
2169 		sappend(s1, sjcommon);
2170 
2171 		/*
2172 		 * Now for the code that handles the Prism header.
2173 		 * Just load the length of the Prism header (144)
2174 		 * into the A register.  Have the test for an AVS
2175 		 * header branch here if we don't have an AVS header.
2176 		 */
2177 		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2178 		s2->s.k = 144;
2179 		sappend(s1, s2);
2180 		sjeq_avs_cookie->s.jf = s2;
2181 
2182 		/*
2183 		 * Now allocate a register to hold that value and store
2184 		 * it.  The code for the AVS header will jump here after
2185 		 * loading the length of the AVS header.
2186 		 */
2187 		s2 = new_stmt(BPF_ST);
2188 		s2->s.k = reg_off_ll;
2189 		sappend(s1, s2);
2190 		sjcommon->s.jf = s2;
2191 
2192 		/*
2193 		 * Now move it into the X register.
2194 		 */
2195 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2196 		sappend(s1, s2);
2197 
2198 		return (s1);
2199 	} else
2200 		return (NULL);
2201 }
2202 
2203 static struct slist *
2204 gen_load_avs_llprefixlen()
2205 {
2206 	struct slist *s1, *s2;
2207 
2208 	/*
2209 	 * Generate code to load the length of the AVS header into
2210 	 * the register assigned to hold that length, if one has been
2211 	 * assigned.  (If one hasn't been assigned, no code we've
2212 	 * generated uses that prefix, so we don't need to generate any
2213 	 * code to load it.)
2214 	 */
2215 	if (reg_off_ll != -1) {
2216 		/*
2217 		 * The 4 bytes at an offset of 4 from the beginning of
2218 		 * the AVS header are the length of the AVS header.
2219 		 * That field is big-endian.
2220 		 */
2221 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2222 		s1->s.k = 4;
2223 
2224 		/*
2225 		 * Now allocate a register to hold that value and store
2226 		 * it.
2227 		 */
2228 		s2 = new_stmt(BPF_ST);
2229 		s2->s.k = reg_off_ll;
2230 		sappend(s1, s2);
2231 
2232 		/*
2233 		 * Now move it into the X register.
2234 		 */
2235 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2236 		sappend(s1, s2);
2237 
2238 		return (s1);
2239 	} else
2240 		return (NULL);
2241 }
2242 
2243 static struct slist *
2244 gen_load_radiotap_llprefixlen()
2245 {
2246 	struct slist *s1, *s2;
2247 
2248 	/*
2249 	 * Generate code to load the length of the radiotap header into
2250 	 * the register assigned to hold that length, if one has been
2251 	 * assigned.  (If one hasn't been assigned, no code we've
2252 	 * generated uses that prefix, so we don't need to generate any
2253 	 * code to load it.)
2254 	 */
2255 	if (reg_off_ll != -1) {
2256 		/*
2257 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2258 		 * of the radiotap header are the length of the radiotap
2259 		 * header; unfortunately, it's little-endian, so we have
2260 		 * to load it a byte at a time and construct the value.
2261 		 */
2262 
2263 		/*
2264 		 * Load the high-order byte, at an offset of 3, shift it
2265 		 * left a byte, and put the result in the X register.
2266 		 */
2267 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2268 		s1->s.k = 3;
2269 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2270 		sappend(s1, s2);
2271 		s2->s.k = 8;
2272 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2273 		sappend(s1, s2);
2274 
2275 		/*
2276 		 * Load the next byte, at an offset of 2, and OR the
2277 		 * value from the X register into it.
2278 		 */
2279 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2280 		sappend(s1, s2);
2281 		s2->s.k = 2;
2282 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2283 		sappend(s1, s2);
2284 
2285 		/*
2286 		 * Now allocate a register to hold that value and store
2287 		 * it.
2288 		 */
2289 		s2 = new_stmt(BPF_ST);
2290 		s2->s.k = reg_off_ll;
2291 		sappend(s1, s2);
2292 
2293 		/*
2294 		 * Now move it into the X register.
2295 		 */
2296 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2297 		sappend(s1, s2);
2298 
2299 		return (s1);
2300 	} else
2301 		return (NULL);
2302 }
2303 
2304 /*
2305  * At the moment we treat PPI as normal Radiotap encoded
2306  * packets. The difference is in the function that generates
2307  * the code at the beginning to compute the header length.
2308  * Since this code generator of PPI supports bare 802.11
2309  * encapsulation only (i.e. the encapsulated DLT should be
2310  * DLT_IEEE802_11) we generate code to check for this too;
2311  * that's done in finish_parse().
2312  */
2313 static struct slist *
2314 gen_load_ppi_llprefixlen()
2315 {
2316 	struct slist *s1, *s2;
2317 
2318 	/*
2319 	 * Generate code to load the length of the radiotap header
2320 	 * into the register assigned to hold that length, if one has
2321 	 * been assigned.
2322 	 */
2323 	if (reg_off_ll != -1) {
2324 		/*
2325 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2326 		 * of the radiotap header are the length of the radiotap
2327 		 * header; unfortunately, it's little-endian, so we have
2328 		 * to load it a byte at a time and construct the value.
2329 		 */
2330 
2331 		/*
2332 		 * Load the high-order byte, at an offset of 3, shift it
2333 		 * left a byte, and put the result in the X register.
2334 		 */
2335 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2336 		s1->s.k = 3;
2337 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2338 		sappend(s1, s2);
2339 		s2->s.k = 8;
2340 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2341 		sappend(s1, s2);
2342 
2343 		/*
2344 		 * Load the next byte, at an offset of 2, and OR the
2345 		 * value from the X register into it.
2346 		 */
2347 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2348 		sappend(s1, s2);
2349 		s2->s.k = 2;
2350 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2351 		sappend(s1, s2);
2352 
2353 		/*
2354 		 * Now allocate a register to hold that value and store
2355 		 * it.
2356 		 */
2357 		s2 = new_stmt(BPF_ST);
2358 		s2->s.k = reg_off_ll;
2359 		sappend(s1, s2);
2360 
2361 		/*
2362 		 * Now move it into the X register.
2363 		 */
2364 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2365 		sappend(s1, s2);
2366 
2367 		return (s1);
2368 	} else
2369 		return (NULL);
2370 }
2371 
2372 /*
2373  * Load a value relative to the beginning of the link-layer header after the 802.11
2374  * header, i.e. LLC_SNAP.
2375  * The link-layer header doesn't necessarily begin at the beginning
2376  * of the packet data; there might be a variable-length prefix containing
2377  * radio information.
2378  */
2379 static struct slist *
2380 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2381 {
2382 	struct slist *s2;
2383 	struct slist *sjset_data_frame_1;
2384 	struct slist *sjset_data_frame_2;
2385 	struct slist *sjset_qos;
2386 	struct slist *sjset_radiotap_flags;
2387 	struct slist *sjset_radiotap_tsft;
2388 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2389 	struct slist *s_roundup;
2390 
2391 	if (reg_off_macpl == -1) {
2392 		/*
2393 		 * No register has been assigned to the offset of
2394 		 * the MAC-layer payload, which means nobody needs
2395 		 * it; don't bother computing it - just return
2396 		 * what we already have.
2397 		 */
2398 		return (s);
2399 	}
2400 
2401 	/*
2402 	 * This code is not compatible with the optimizer, as
2403 	 * we are generating jmp instructions within a normal
2404 	 * slist of instructions
2405 	 */
2406 	no_optimize = 1;
2407 
2408 	/*
2409 	 * If "s" is non-null, it has code to arrange that the X register
2410 	 * contains the length of the prefix preceding the link-layer
2411 	 * header.
2412 	 *
2413 	 * Otherwise, the length of the prefix preceding the link-layer
2414 	 * header is "off_ll".
2415 	 */
2416 	if (s == NULL) {
2417 		/*
2418 		 * There is no variable-length header preceding the
2419 		 * link-layer header.
2420 		 *
2421 		 * Load the length of the fixed-length prefix preceding
2422 		 * the link-layer header (if any) into the X register,
2423 		 * and store it in the reg_off_macpl register.
2424 		 * That length is off_ll.
2425 		 */
2426 		s = new_stmt(BPF_LDX|BPF_IMM);
2427 		s->s.k = off_ll;
2428 	}
2429 
2430 	/*
2431 	 * The X register contains the offset of the beginning of the
2432 	 * link-layer header; add 24, which is the minimum length
2433 	 * of the MAC header for a data frame, to that, and store it
2434 	 * in reg_off_macpl, and then load the Frame Control field,
2435 	 * which is at the offset in the X register, with an indexed load.
2436 	 */
2437 	s2 = new_stmt(BPF_MISC|BPF_TXA);
2438 	sappend(s, s2);
2439 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2440 	s2->s.k = 24;
2441 	sappend(s, s2);
2442 	s2 = new_stmt(BPF_ST);
2443 	s2->s.k = reg_off_macpl;
2444 	sappend(s, s2);
2445 
2446 	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2447 	s2->s.k = 0;
2448 	sappend(s, s2);
2449 
2450 	/*
2451 	 * Check the Frame Control field to see if this is a data frame;
2452 	 * a data frame has the 0x08 bit (b3) in that field set and the
2453 	 * 0x04 bit (b2) clear.
2454 	 */
2455 	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2456 	sjset_data_frame_1->s.k = 0x08;
2457 	sappend(s, sjset_data_frame_1);
2458 
2459 	/*
2460 	 * If b3 is set, test b2, otherwise go to the first statement of
2461 	 * the rest of the program.
2462 	 */
2463 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2464 	sjset_data_frame_2->s.k = 0x04;
2465 	sappend(s, sjset_data_frame_2);
2466 	sjset_data_frame_1->s.jf = snext;
2467 
2468 	/*
2469 	 * If b2 is not set, this is a data frame; test the QoS bit.
2470 	 * Otherwise, go to the first statement of the rest of the
2471 	 * program.
2472 	 */
2473 	sjset_data_frame_2->s.jt = snext;
2474 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2475 	sjset_qos->s.k = 0x80;	/* QoS bit */
2476 	sappend(s, sjset_qos);
2477 
2478 	/*
2479 	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2480 	 * field.
2481 	 * Otherwise, go to the first statement of the rest of the
2482 	 * program.
2483 	 */
2484 	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2485 	s2->s.k = reg_off_macpl;
2486 	sappend(s, s2);
2487 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2488 	s2->s.k = 2;
2489 	sappend(s, s2);
2490 	s2 = new_stmt(BPF_ST);
2491 	s2->s.k = reg_off_macpl;
2492 	sappend(s, s2);
2493 
2494 	/*
2495 	 * If we have a radiotap header, look at it to see whether
2496 	 * there's Atheros padding between the MAC-layer header
2497 	 * and the payload.
2498 	 *
2499 	 * Note: all of the fields in the radiotap header are
2500 	 * little-endian, so we byte-swap all of the values
2501 	 * we test against, as they will be loaded as big-endian
2502 	 * values.
2503 	 */
2504 	if (linktype == DLT_IEEE802_11_RADIO) {
2505 		/*
2506 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2507 		 * in the presence flag?
2508 		 */
2509 		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2510 		s2->s.k = 4;
2511 		sappend(s, s2);
2512 
2513 		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2514 		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2515 		sappend(s, sjset_radiotap_flags);
2516 
2517 		/*
2518 		 * If not, skip all of this.
2519 		 */
2520 		sjset_radiotap_flags->s.jf = snext;
2521 
2522 		/*
2523 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2524 		 */
2525 		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2526 		    new_stmt(JMP(BPF_JSET));
2527 		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2528 		sappend(s, sjset_radiotap_tsft);
2529 
2530 		/*
2531 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2532 		 * at an offset of 16 from the beginning of the raw packet
2533 		 * data (8 bytes for the radiotap header and 8 bytes for
2534 		 * the TSFT field).
2535 		 *
2536 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2537 		 * is set.
2538 		 */
2539 		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2540 		s2->s.k = 16;
2541 		sappend(s, s2);
2542 
2543 		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2544 		sjset_tsft_datapad->s.k = 0x20;
2545 		sappend(s, sjset_tsft_datapad);
2546 
2547 		/*
2548 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2549 		 * at an offset of 8 from the beginning of the raw packet
2550 		 * data (8 bytes for the radiotap header).
2551 		 *
2552 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2553 		 * is set.
2554 		 */
2555 		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2556 		s2->s.k = 8;
2557 		sappend(s, s2);
2558 
2559 		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2560 		sjset_notsft_datapad->s.k = 0x20;
2561 		sappend(s, sjset_notsft_datapad);
2562 
2563 		/*
2564 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2565 		 * set, round the length of the 802.11 header to
2566 		 * a multiple of 4.  Do that by adding 3 and then
2567 		 * dividing by and multiplying by 4, which we do by
2568 		 * ANDing with ~3.
2569 		 */
2570 		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2571 		s_roundup->s.k = reg_off_macpl;
2572 		sappend(s, s_roundup);
2573 		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2574 		s2->s.k = 3;
2575 		sappend(s, s2);
2576 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2577 		s2->s.k = ~3;
2578 		sappend(s, s2);
2579 		s2 = new_stmt(BPF_ST);
2580 		s2->s.k = reg_off_macpl;
2581 		sappend(s, s2);
2582 
2583 		sjset_tsft_datapad->s.jt = s_roundup;
2584 		sjset_tsft_datapad->s.jf = snext;
2585 		sjset_notsft_datapad->s.jt = s_roundup;
2586 		sjset_notsft_datapad->s.jf = snext;
2587 	} else
2588 		sjset_qos->s.jf = snext;
2589 
2590 	return s;
2591 }
2592 
2593 static void
2594 insert_compute_vloffsets(b)
2595 	struct block *b;
2596 {
2597 	struct slist *s;
2598 
2599 	/*
2600 	 * For link-layer types that have a variable-length header
2601 	 * preceding the link-layer header, generate code to load
2602 	 * the offset of the link-layer header into the register
2603 	 * assigned to that offset, if any.
2604 	 */
2605 	switch (linktype) {
2606 
2607 	case DLT_PRISM_HEADER:
2608 		s = gen_load_prism_llprefixlen();
2609 		break;
2610 
2611 	case DLT_IEEE802_11_RADIO_AVS:
2612 		s = gen_load_avs_llprefixlen();
2613 		break;
2614 
2615 	case DLT_IEEE802_11_RADIO:
2616 		s = gen_load_radiotap_llprefixlen();
2617 		break;
2618 
2619 	case DLT_PPI:
2620 		s = gen_load_ppi_llprefixlen();
2621 		break;
2622 
2623 	default:
2624 		s = NULL;
2625 		break;
2626 	}
2627 
2628 	/*
2629 	 * For link-layer types that have a variable-length link-layer
2630 	 * header, generate code to load the offset of the MAC-layer
2631 	 * payload into the register assigned to that offset, if any.
2632 	 */
2633 	switch (linktype) {
2634 
2635 	case DLT_IEEE802_11:
2636 	case DLT_PRISM_HEADER:
2637 	case DLT_IEEE802_11_RADIO_AVS:
2638 	case DLT_IEEE802_11_RADIO:
2639 	case DLT_PPI:
2640 		s = gen_load_802_11_header_len(s, b->stmts);
2641 		break;
2642 	}
2643 
2644 	/*
2645 	 * If we have any offset-loading code, append all the
2646 	 * existing statements in the block to those statements,
2647 	 * and make the resulting list the list of statements
2648 	 * for the block.
2649 	 */
2650 	if (s != NULL) {
2651 		sappend(s, b->stmts);
2652 		b->stmts = s;
2653 	}
2654 }
2655 
2656 static struct block *
2657 gen_ppi_dlt_check(void)
2658 {
2659 	struct slist *s_load_dlt;
2660 	struct block *b;
2661 
2662 	if (linktype == DLT_PPI)
2663 	{
2664 		/* Create the statements that check for the DLT
2665 		 */
2666 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2667 		s_load_dlt->s.k = 4;
2668 
2669 		b = new_block(JMP(BPF_JEQ));
2670 
2671 		b->stmts = s_load_dlt;
2672 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2673 	}
2674 	else
2675 	{
2676 		b = NULL;
2677 	}
2678 
2679 	return b;
2680 }
2681 
2682 static struct slist *
2683 gen_prism_llprefixlen(void)
2684 {
2685 	struct slist *s;
2686 
2687 	if (reg_off_ll == -1) {
2688 		/*
2689 		 * We haven't yet assigned a register for the length
2690 		 * of the radio header; allocate one.
2691 		 */
2692 		reg_off_ll = alloc_reg();
2693 	}
2694 
2695 	/*
2696 	 * Load the register containing the radio length
2697 	 * into the X register.
2698 	 */
2699 	s = new_stmt(BPF_LDX|BPF_MEM);
2700 	s->s.k = reg_off_ll;
2701 	return s;
2702 }
2703 
2704 static struct slist *
2705 gen_avs_llprefixlen(void)
2706 {
2707 	struct slist *s;
2708 
2709 	if (reg_off_ll == -1) {
2710 		/*
2711 		 * We haven't yet assigned a register for the length
2712 		 * of the AVS header; allocate one.
2713 		 */
2714 		reg_off_ll = alloc_reg();
2715 	}
2716 
2717 	/*
2718 	 * Load the register containing the AVS length
2719 	 * into the X register.
2720 	 */
2721 	s = new_stmt(BPF_LDX|BPF_MEM);
2722 	s->s.k = reg_off_ll;
2723 	return s;
2724 }
2725 
2726 static struct slist *
2727 gen_radiotap_llprefixlen(void)
2728 {
2729 	struct slist *s;
2730 
2731 	if (reg_off_ll == -1) {
2732 		/*
2733 		 * We haven't yet assigned a register for the length
2734 		 * of the radiotap header; allocate one.
2735 		 */
2736 		reg_off_ll = alloc_reg();
2737 	}
2738 
2739 	/*
2740 	 * Load the register containing the radiotap length
2741 	 * into the X register.
2742 	 */
2743 	s = new_stmt(BPF_LDX|BPF_MEM);
2744 	s->s.k = reg_off_ll;
2745 	return s;
2746 }
2747 
2748 /*
2749  * At the moment we treat PPI as normal Radiotap encoded
2750  * packets. The difference is in the function that generates
2751  * the code at the beginning to compute the header length.
2752  * Since this code generator of PPI supports bare 802.11
2753  * encapsulation only (i.e. the encapsulated DLT should be
2754  * DLT_IEEE802_11) we generate code to check for this too.
2755  */
2756 static struct slist *
2757 gen_ppi_llprefixlen(void)
2758 {
2759 	struct slist *s;
2760 
2761 	if (reg_off_ll == -1) {
2762 		/*
2763 		 * We haven't yet assigned a register for the length
2764 		 * of the radiotap header; allocate one.
2765 		 */
2766 		reg_off_ll = alloc_reg();
2767 	}
2768 
2769 	/*
2770 	 * Load the register containing the PPI length
2771 	 * into the X register.
2772 	 */
2773 	s = new_stmt(BPF_LDX|BPF_MEM);
2774 	s->s.k = reg_off_ll;
2775 	return s;
2776 }
2777 
2778 /*
2779  * Generate code to compute the link-layer header length, if necessary,
2780  * putting it into the X register, and to return either a pointer to a
2781  * "struct slist" for the list of statements in that code, or NULL if
2782  * no code is necessary.
2783  */
2784 static struct slist *
2785 gen_llprefixlen(void)
2786 {
2787 	switch (linktype) {
2788 
2789 	case DLT_PRISM_HEADER:
2790 		return gen_prism_llprefixlen();
2791 
2792 	case DLT_IEEE802_11_RADIO_AVS:
2793 		return gen_avs_llprefixlen();
2794 
2795 	case DLT_IEEE802_11_RADIO:
2796 		return gen_radiotap_llprefixlen();
2797 
2798 	case DLT_PPI:
2799 		return gen_ppi_llprefixlen();
2800 
2801 	default:
2802 		return NULL;
2803 	}
2804 }
2805 
2806 /*
2807  * Generate code to load the register containing the offset of the
2808  * MAC-layer payload into the X register; if no register for that offset
2809  * has been allocated, allocate it first.
2810  */
2811 static struct slist *
2812 gen_off_macpl(void)
2813 {
2814 	struct slist *s;
2815 
2816 	if (off_macpl_is_variable) {
2817 		if (reg_off_macpl == -1) {
2818 			/*
2819 			 * We haven't yet assigned a register for the offset
2820 			 * of the MAC-layer payload; allocate one.
2821 			 */
2822 			reg_off_macpl = alloc_reg();
2823 		}
2824 
2825 		/*
2826 		 * Load the register containing the offset of the MAC-layer
2827 		 * payload into the X register.
2828 		 */
2829 		s = new_stmt(BPF_LDX|BPF_MEM);
2830 		s->s.k = reg_off_macpl;
2831 		return s;
2832 	} else {
2833 		/*
2834 		 * That offset isn't variable, so we don't need to
2835 		 * generate any code.
2836 		 */
2837 		return NULL;
2838 	}
2839 }
2840 
2841 /*
2842  * Map an Ethernet type to the equivalent PPP type.
2843  */
2844 static int
2845 ethertype_to_ppptype(proto)
2846 	int proto;
2847 {
2848 	switch (proto) {
2849 
2850 	case ETHERTYPE_IP:
2851 		proto = PPP_IP;
2852 		break;
2853 
2854 #ifdef INET6
2855 	case ETHERTYPE_IPV6:
2856 		proto = PPP_IPV6;
2857 		break;
2858 #endif
2859 
2860 	case ETHERTYPE_DN:
2861 		proto = PPP_DECNET;
2862 		break;
2863 
2864 	case ETHERTYPE_ATALK:
2865 		proto = PPP_APPLE;
2866 		break;
2867 
2868 	case ETHERTYPE_NS:
2869 		proto = PPP_NS;
2870 		break;
2871 
2872 	case LLCSAP_ISONS:
2873 		proto = PPP_OSI;
2874 		break;
2875 
2876 	case LLCSAP_8021D:
2877 		/*
2878 		 * I'm assuming the "Bridging PDU"s that go
2879 		 * over PPP are Spanning Tree Protocol
2880 		 * Bridging PDUs.
2881 		 */
2882 		proto = PPP_BRPDU;
2883 		break;
2884 
2885 	case LLCSAP_IPX:
2886 		proto = PPP_IPX;
2887 		break;
2888 	}
2889 	return (proto);
2890 }
2891 
2892 /*
2893  * Generate code to match a particular packet type by matching the
2894  * link-layer type field or fields in the 802.2 LLC header.
2895  *
2896  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2897  * value, if <= ETHERMTU.
2898  */
2899 static struct block *
2900 gen_linktype(proto)
2901 	register int proto;
2902 {
2903 	struct block *b0, *b1, *b2;
2904 
2905 	/* are we checking MPLS-encapsulated packets? */
2906 	if (label_stack_depth > 0) {
2907 		switch (proto) {
2908 		case ETHERTYPE_IP:
2909 		case PPP_IP:
2910 			/* FIXME add other L3 proto IDs */
2911 			return gen_mpls_linktype(Q_IP);
2912 
2913 		case ETHERTYPE_IPV6:
2914 		case PPP_IPV6:
2915 			/* FIXME add other L3 proto IDs */
2916 			return gen_mpls_linktype(Q_IPV6);
2917 
2918 		default:
2919 			bpf_error("unsupported protocol over mpls");
2920 			/* NOTREACHED */
2921 		}
2922 	}
2923 
2924 	/*
2925 	 * Are we testing PPPoE packets?
2926 	 */
2927 	if (is_pppoes) {
2928 		/*
2929 		 * The PPPoE session header is part of the
2930 		 * MAC-layer payload, so all references
2931 		 * should be relative to the beginning of
2932 		 * that payload.
2933 		 */
2934 
2935 		/*
2936 		 * We use Ethernet protocol types inside libpcap;
2937 		 * map them to the corresponding PPP protocol types.
2938 		 */
2939 		proto = ethertype_to_ppptype(proto);
2940 		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2941 	}
2942 
2943 	switch (linktype) {
2944 
2945 	case DLT_EN10MB:
2946 		return gen_ether_linktype(proto);
2947 		/*NOTREACHED*/
2948 		break;
2949 
2950 	case DLT_C_HDLC:
2951 		switch (proto) {
2952 
2953 		case LLCSAP_ISONS:
2954 			proto = (proto << 8 | LLCSAP_ISONS);
2955 			/* fall through */
2956 
2957 		default:
2958 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2959 			    (bpf_int32)proto);
2960 			/*NOTREACHED*/
2961 			break;
2962 		}
2963 		break;
2964 
2965 	case DLT_IEEE802_11:
2966 	case DLT_PRISM_HEADER:
2967 	case DLT_IEEE802_11_RADIO_AVS:
2968 	case DLT_IEEE802_11_RADIO:
2969 	case DLT_PPI:
2970 		/*
2971 		 * Check that we have a data frame.
2972 		 */
2973 		b0 = gen_check_802_11_data_frame();
2974 
2975 		/*
2976 		 * Now check for the specified link-layer type.
2977 		 */
2978 		b1 = gen_llc_linktype(proto);
2979 		gen_and(b0, b1);
2980 		return b1;
2981 		/*NOTREACHED*/
2982 		break;
2983 
2984 	case DLT_FDDI:
2985 		/*
2986 		 * XXX - check for asynchronous frames, as per RFC 1103.
2987 		 */
2988 		return gen_llc_linktype(proto);
2989 		/*NOTREACHED*/
2990 		break;
2991 
2992 	case DLT_IEEE802:
2993 		/*
2994 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2995 		 */
2996 		return gen_llc_linktype(proto);
2997 		/*NOTREACHED*/
2998 		break;
2999 
3000 	case DLT_ATM_RFC1483:
3001 	case DLT_ATM_CLIP:
3002 	case DLT_IP_OVER_FC:
3003 		return gen_llc_linktype(proto);
3004 		/*NOTREACHED*/
3005 		break;
3006 
3007 	case DLT_SUNATM:
3008 		/*
3009 		 * If "is_lane" is set, check for a LANE-encapsulated
3010 		 * version of this protocol, otherwise check for an
3011 		 * LLC-encapsulated version of this protocol.
3012 		 *
3013 		 * We assume LANE means Ethernet, not Token Ring.
3014 		 */
3015 		if (is_lane) {
3016 			/*
3017 			 * Check that the packet doesn't begin with an
3018 			 * LE Control marker.  (We've already generated
3019 			 * a test for LANE.)
3020 			 */
3021 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3022 			    0xFF00);
3023 			gen_not(b0);
3024 
3025 			/*
3026 			 * Now generate an Ethernet test.
3027 			 */
3028 			b1 = gen_ether_linktype(proto);
3029 			gen_and(b0, b1);
3030 			return b1;
3031 		} else {
3032 			/*
3033 			 * Check for LLC encapsulation and then check the
3034 			 * protocol.
3035 			 */
3036 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3037 			b1 = gen_llc_linktype(proto);
3038 			gen_and(b0, b1);
3039 			return b1;
3040 		}
3041 		/*NOTREACHED*/
3042 		break;
3043 
3044 	case DLT_LINUX_SLL:
3045 		return gen_linux_sll_linktype(proto);
3046 		/*NOTREACHED*/
3047 		break;
3048 
3049 	case DLT_SLIP:
3050 	case DLT_SLIP_BSDOS:
3051 	case DLT_RAW:
3052 		/*
3053 		 * These types don't provide any type field; packets
3054 		 * are always IPv4 or IPv6.
3055 		 *
3056 		 * XXX - for IPv4, check for a version number of 4, and,
3057 		 * for IPv6, check for a version number of 6?
3058 		 */
3059 		switch (proto) {
3060 
3061 		case ETHERTYPE_IP:
3062 			/* Check for a version number of 4. */
3063 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3064 #ifdef INET6
3065 		case ETHERTYPE_IPV6:
3066 			/* Check for a version number of 6. */
3067 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3068 #endif
3069 
3070 		default:
3071 			return gen_false();		/* always false */
3072 		}
3073 		/*NOTREACHED*/
3074 		break;
3075 
3076 	case DLT_PPP:
3077 	case DLT_PPP_PPPD:
3078 	case DLT_PPP_SERIAL:
3079 	case DLT_PPP_ETHER:
3080 		/*
3081 		 * We use Ethernet protocol types inside libpcap;
3082 		 * map them to the corresponding PPP protocol types.
3083 		 */
3084 		proto = ethertype_to_ppptype(proto);
3085 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3086 		/*NOTREACHED*/
3087 		break;
3088 
3089 	case DLT_PPP_BSDOS:
3090 		/*
3091 		 * We use Ethernet protocol types inside libpcap;
3092 		 * map them to the corresponding PPP protocol types.
3093 		 */
3094 		switch (proto) {
3095 
3096 		case ETHERTYPE_IP:
3097 			/*
3098 			 * Also check for Van Jacobson-compressed IP.
3099 			 * XXX - do this for other forms of PPP?
3100 			 */
3101 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3102 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3103 			gen_or(b0, b1);
3104 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3105 			gen_or(b1, b0);
3106 			return b0;
3107 
3108 		default:
3109 			proto = ethertype_to_ppptype(proto);
3110 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3111 				(bpf_int32)proto);
3112 		}
3113 		/*NOTREACHED*/
3114 		break;
3115 
3116 	case DLT_NULL:
3117 	case DLT_LOOP:
3118 	case DLT_ENC:
3119 		/*
3120 		 * For DLT_NULL, the link-layer header is a 32-bit
3121 		 * word containing an AF_ value in *host* byte order,
3122 		 * and for DLT_ENC, the link-layer header begins
3123 		 * with a 32-bit work containing an AF_ value in
3124 		 * host byte order.
3125 		 *
3126 		 * In addition, if we're reading a saved capture file,
3127 		 * the host byte order in the capture may not be the
3128 		 * same as the host byte order on this machine.
3129 		 *
3130 		 * For DLT_LOOP, the link-layer header is a 32-bit
3131 		 * word containing an AF_ value in *network* byte order.
3132 		 *
3133 		 * XXX - AF_ values may, unfortunately, be platform-
3134 		 * dependent; for example, FreeBSD's AF_INET6 is 24
3135 		 * whilst NetBSD's and OpenBSD's is 26.
3136 		 *
3137 		 * This means that, when reading a capture file, just
3138 		 * checking for our AF_INET6 value won't work if the
3139 		 * capture file came from another OS.
3140 		 */
3141 		switch (proto) {
3142 
3143 		case ETHERTYPE_IP:
3144 			proto = AF_INET;
3145 			break;
3146 
3147 #ifdef INET6
3148 		case ETHERTYPE_IPV6:
3149 			proto = AF_INET6;
3150 			break;
3151 #endif
3152 
3153 		default:
3154 			/*
3155 			 * Not a type on which we support filtering.
3156 			 * XXX - support those that have AF_ values
3157 			 * #defined on this platform, at least?
3158 			 */
3159 			return gen_false();
3160 		}
3161 
3162 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3163 			/*
3164 			 * The AF_ value is in host byte order, but
3165 			 * the BPF interpreter will convert it to
3166 			 * network byte order.
3167 			 *
3168 			 * If this is a save file, and it's from a
3169 			 * machine with the opposite byte order to
3170 			 * ours, we byte-swap the AF_ value.
3171 			 *
3172 			 * Then we run it through "htonl()", and
3173 			 * generate code to compare against the result.
3174 			 */
3175 			if (bpf_pcap->sf.rfile != NULL &&
3176 			    bpf_pcap->sf.swapped)
3177 				proto = SWAPLONG(proto);
3178 			proto = htonl(proto);
3179 		}
3180 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3181 
3182 #ifdef HAVE_NET_PFVAR_H
3183 	case DLT_PFLOG:
3184 		/*
3185 		 * af field is host byte order in contrast to the rest of
3186 		 * the packet.
3187 		 */
3188 		if (proto == ETHERTYPE_IP)
3189 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3190 			    BPF_B, (bpf_int32)AF_INET));
3191 #ifdef INET6
3192 		else if (proto == ETHERTYPE_IPV6)
3193 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3194 			    BPF_B, (bpf_int32)AF_INET6));
3195 #endif /* INET6 */
3196 		else
3197 			return gen_false();
3198 		/*NOTREACHED*/
3199 		break;
3200 #endif /* HAVE_NET_PFVAR_H */
3201 
3202 	case DLT_ARCNET:
3203 	case DLT_ARCNET_LINUX:
3204 		/*
3205 		 * XXX should we check for first fragment if the protocol
3206 		 * uses PHDS?
3207 		 */
3208 		switch (proto) {
3209 
3210 		default:
3211 			return gen_false();
3212 
3213 #ifdef INET6
3214 		case ETHERTYPE_IPV6:
3215 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3216 				(bpf_int32)ARCTYPE_INET6));
3217 #endif /* INET6 */
3218 
3219 		case ETHERTYPE_IP:
3220 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3221 				     (bpf_int32)ARCTYPE_IP);
3222 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3223 				     (bpf_int32)ARCTYPE_IP_OLD);
3224 			gen_or(b0, b1);
3225 			return (b1);
3226 
3227 		case ETHERTYPE_ARP:
3228 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3229 				     (bpf_int32)ARCTYPE_ARP);
3230 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3231 				     (bpf_int32)ARCTYPE_ARP_OLD);
3232 			gen_or(b0, b1);
3233 			return (b1);
3234 
3235 		case ETHERTYPE_REVARP:
3236 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3237 					(bpf_int32)ARCTYPE_REVARP));
3238 
3239 		case ETHERTYPE_ATALK:
3240 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3241 					(bpf_int32)ARCTYPE_ATALK));
3242 		}
3243 		/*NOTREACHED*/
3244 		break;
3245 
3246 	case DLT_LTALK:
3247 		switch (proto) {
3248 		case ETHERTYPE_ATALK:
3249 			return gen_true();
3250 		default:
3251 			return gen_false();
3252 		}
3253 		/*NOTREACHED*/
3254 		break;
3255 
3256 	case DLT_FRELAY:
3257 		/*
3258 		 * XXX - assumes a 2-byte Frame Relay header with
3259 		 * DLCI and flags.  What if the address is longer?
3260 		 */
3261 		switch (proto) {
3262 
3263 		case ETHERTYPE_IP:
3264 			/*
3265 			 * Check for the special NLPID for IP.
3266 			 */
3267 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3268 
3269 #ifdef INET6
3270 		case ETHERTYPE_IPV6:
3271 			/*
3272 			 * Check for the special NLPID for IPv6.
3273 			 */
3274 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3275 #endif
3276 
3277 		case LLCSAP_ISONS:
3278 			/*
3279 			 * Check for several OSI protocols.
3280 			 *
3281 			 * Frame Relay packets typically have an OSI
3282 			 * NLPID at the beginning; we check for each
3283 			 * of them.
3284 			 *
3285 			 * What we check for is the NLPID and a frame
3286 			 * control field of UI, i.e. 0x03 followed
3287 			 * by the NLPID.
3288 			 */
3289 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3290 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3291 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3292 			gen_or(b1, b2);
3293 			gen_or(b0, b2);
3294 			return b2;
3295 
3296 		default:
3297 			return gen_false();
3298 		}
3299 		/*NOTREACHED*/
3300 		break;
3301 
3302 	case DLT_MFR:
3303 		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3304 
3305         case DLT_JUNIPER_MFR:
3306         case DLT_JUNIPER_MLFR:
3307         case DLT_JUNIPER_MLPPP:
3308 	case DLT_JUNIPER_ATM1:
3309 	case DLT_JUNIPER_ATM2:
3310 	case DLT_JUNIPER_PPPOE:
3311 	case DLT_JUNIPER_PPPOE_ATM:
3312         case DLT_JUNIPER_GGSN:
3313         case DLT_JUNIPER_ES:
3314         case DLT_JUNIPER_MONITOR:
3315         case DLT_JUNIPER_SERVICES:
3316         case DLT_JUNIPER_ETHER:
3317         case DLT_JUNIPER_PPP:
3318         case DLT_JUNIPER_FRELAY:
3319         case DLT_JUNIPER_CHDLC:
3320         case DLT_JUNIPER_VP:
3321         case DLT_JUNIPER_ST:
3322         case DLT_JUNIPER_ISM:
3323 		/* just lets verify the magic number for now -
3324 		 * on ATM we may have up to 6 different encapsulations on the wire
3325 		 * and need a lot of heuristics to figure out that the payload
3326 		 * might be;
3327 		 *
3328 		 * FIXME encapsulation specific BPF_ filters
3329 		 */
3330 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3331 
3332 	case DLT_LINUX_IRDA:
3333 		bpf_error("IrDA link-layer type filtering not implemented");
3334 
3335 	case DLT_DOCSIS:
3336 		bpf_error("DOCSIS link-layer type filtering not implemented");
3337 
3338 	case DLT_MTP2:
3339 	case DLT_MTP2_WITH_PHDR:
3340 		bpf_error("MTP2 link-layer type filtering not implemented");
3341 
3342 	case DLT_ERF:
3343 		bpf_error("ERF link-layer type filtering not implemented");
3344 
3345 #ifdef DLT_PFSYNC
3346 	case DLT_PFSYNC:
3347 		bpf_error("PFSYNC link-layer type filtering not implemented");
3348 #endif
3349 
3350 	case DLT_LINUX_LAPD:
3351 		bpf_error("LAPD link-layer type filtering not implemented");
3352 
3353 	case DLT_USB:
3354 	case DLT_USB_LINUX:
3355 		bpf_error("USB link-layer type filtering not implemented");
3356 
3357 	case DLT_BLUETOOTH_HCI_H4:
3358 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3359 		bpf_error("Bluetooth link-layer type filtering not implemented");
3360 
3361 	case DLT_CAN20B:
3362 		bpf_error("CAN20B link-layer type filtering not implemented");
3363 
3364 	case DLT_IEEE802_15_4:
3365 	case DLT_IEEE802_15_4_LINUX:
3366 	case DLT_IEEE802_15_4_NONASK_PHY:
3367 		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3368 
3369 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3370 		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3371 
3372 	case DLT_SITA:
3373 		bpf_error("SITA link-layer type filtering not implemented");
3374 
3375 	case DLT_RAIF1:
3376 		bpf_error("RAIF1 link-layer type filtering not implemented");
3377 
3378 	case DLT_IPMB:
3379 		bpf_error("IPMB link-layer type filtering not implemented");
3380 
3381 	case DLT_AX25_KISS:
3382 		bpf_error("AX.25 link-layer type filtering not implemented");
3383 	}
3384 
3385 	/*
3386 	 * All the types that have no encapsulation should either be
3387 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3388 	 * all packets are IP packets, or should be handled in some
3389 	 * special case, if none of them are (if some are and some
3390 	 * aren't, the lack of encapsulation is a problem, as we'd
3391 	 * have to find some other way of determining the packet type).
3392 	 *
3393 	 * Therefore, if "off_linktype" is -1, there's an error.
3394 	 */
3395 	if (off_linktype == (u_int)-1)
3396 		abort();
3397 
3398 	/*
3399 	 * Any type not handled above should always have an Ethernet
3400 	 * type at an offset of "off_linktype".
3401 	 */
3402 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3403 }
3404 
3405 /*
3406  * Check for an LLC SNAP packet with a given organization code and
3407  * protocol type; we check the entire contents of the 802.2 LLC and
3408  * snap headers, checking for DSAP and SSAP of SNAP and a control
3409  * field of 0x03 in the LLC header, and for the specified organization
3410  * code and protocol type in the SNAP header.
3411  */
3412 static struct block *
3413 gen_snap(orgcode, ptype)
3414 	bpf_u_int32 orgcode;
3415 	bpf_u_int32 ptype;
3416 {
3417 	u_char snapblock[8];
3418 
3419 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3420 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3421 	snapblock[2] = 0x03;		/* control = UI */
3422 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3423 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3424 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3425 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3426 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3427 	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3428 }
3429 
3430 /*
3431  * Generate code to match a particular packet type, for link-layer types
3432  * using 802.2 LLC headers.
3433  *
3434  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3435  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3436  *
3437  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3438  * value, if <= ETHERMTU.  We use that to determine whether to
3439  * match the DSAP or both DSAP and LSAP or to check the OUI and
3440  * protocol ID in a SNAP header.
3441  */
3442 static struct block *
3443 gen_llc_linktype(proto)
3444 	int proto;
3445 {
3446 	/*
3447 	 * XXX - handle token-ring variable-length header.
3448 	 */
3449 	switch (proto) {
3450 
3451 	case LLCSAP_IP:
3452 	case LLCSAP_ISONS:
3453 	case LLCSAP_NETBEUI:
3454 		/*
3455 		 * XXX - should we check both the DSAP and the
3456 		 * SSAP, like this, or should we check just the
3457 		 * DSAP, as we do for other types <= ETHERMTU
3458 		 * (i.e., other SAP values)?
3459 		 */
3460 		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3461 			     ((proto << 8) | proto));
3462 
3463 	case LLCSAP_IPX:
3464 		/*
3465 		 * XXX - are there ever SNAP frames for IPX on
3466 		 * non-Ethernet 802.x networks?
3467 		 */
3468 		return gen_cmp(OR_MACPL, 0, BPF_B,
3469 		    (bpf_int32)LLCSAP_IPX);
3470 
3471 	case ETHERTYPE_ATALK:
3472 		/*
3473 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3474 		 * SNAP packets with an organization code of
3475 		 * 0x080007 (Apple, for Appletalk) and a protocol
3476 		 * type of ETHERTYPE_ATALK (Appletalk).
3477 		 *
3478 		 * XXX - check for an organization code of
3479 		 * encapsulated Ethernet as well?
3480 		 */
3481 		return gen_snap(0x080007, ETHERTYPE_ATALK);
3482 
3483 	default:
3484 		/*
3485 		 * XXX - we don't have to check for IPX 802.3
3486 		 * here, but should we check for the IPX Ethertype?
3487 		 */
3488 		if (proto <= ETHERMTU) {
3489 			/*
3490 			 * This is an LLC SAP value, so check
3491 			 * the DSAP.
3492 			 */
3493 			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3494 		} else {
3495 			/*
3496 			 * This is an Ethernet type; we assume that it's
3497 			 * unlikely that it'll appear in the right place
3498 			 * at random, and therefore check only the
3499 			 * location that would hold the Ethernet type
3500 			 * in a SNAP frame with an organization code of
3501 			 * 0x000000 (encapsulated Ethernet).
3502 			 *
3503 			 * XXX - if we were to check for the SNAP DSAP and
3504 			 * LSAP, as per XXX, and were also to check for an
3505 			 * organization code of 0x000000 (encapsulated
3506 			 * Ethernet), we'd do
3507 			 *
3508 			 *	return gen_snap(0x000000, proto);
3509 			 *
3510 			 * here; for now, we don't, as per the above.
3511 			 * I don't know whether it's worth the extra CPU
3512 			 * time to do the right check or not.
3513 			 */
3514 			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3515 		}
3516 	}
3517 }
3518 
3519 static struct block *
3520 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3521 	bpf_u_int32 addr;
3522 	bpf_u_int32 mask;
3523 	int dir, proto;
3524 	u_int src_off, dst_off;
3525 {
3526 	struct block *b0, *b1;
3527 	u_int offset;
3528 
3529 	switch (dir) {
3530 
3531 	case Q_SRC:
3532 		offset = src_off;
3533 		break;
3534 
3535 	case Q_DST:
3536 		offset = dst_off;
3537 		break;
3538 
3539 	case Q_AND:
3540 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3541 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3542 		gen_and(b0, b1);
3543 		return b1;
3544 
3545 	case Q_OR:
3546 	case Q_DEFAULT:
3547 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3548 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3549 		gen_or(b0, b1);
3550 		return b1;
3551 
3552 	default:
3553 		abort();
3554 	}
3555 	b0 = gen_linktype(proto);
3556 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3557 	gen_and(b0, b1);
3558 	return b1;
3559 }
3560 
3561 #ifdef INET6
3562 static struct block *
3563 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3564 	struct in6_addr *addr;
3565 	struct in6_addr *mask;
3566 	int dir, proto;
3567 	u_int src_off, dst_off;
3568 {
3569 	struct block *b0, *b1;
3570 	u_int offset;
3571 	u_int32_t *a, *m;
3572 
3573 	switch (dir) {
3574 
3575 	case Q_SRC:
3576 		offset = src_off;
3577 		break;
3578 
3579 	case Q_DST:
3580 		offset = dst_off;
3581 		break;
3582 
3583 	case Q_AND:
3584 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3585 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3586 		gen_and(b0, b1);
3587 		return b1;
3588 
3589 	case Q_OR:
3590 	case Q_DEFAULT:
3591 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3592 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3593 		gen_or(b0, b1);
3594 		return b1;
3595 
3596 	default:
3597 		abort();
3598 	}
3599 	/* this order is important */
3600 	a = (u_int32_t *)addr;
3601 	m = (u_int32_t *)mask;
3602 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3603 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3604 	gen_and(b0, b1);
3605 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3606 	gen_and(b0, b1);
3607 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3608 	gen_and(b0, b1);
3609 	b0 = gen_linktype(proto);
3610 	gen_and(b0, b1);
3611 	return b1;
3612 }
3613 #endif /*INET6*/
3614 
3615 static struct block *
3616 gen_ehostop(eaddr, dir)
3617 	register const u_char *eaddr;
3618 	register int dir;
3619 {
3620 	register struct block *b0, *b1;
3621 
3622 	switch (dir) {
3623 	case Q_SRC:
3624 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3625 
3626 	case Q_DST:
3627 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3628 
3629 	case Q_AND:
3630 		b0 = gen_ehostop(eaddr, Q_SRC);
3631 		b1 = gen_ehostop(eaddr, Q_DST);
3632 		gen_and(b0, b1);
3633 		return b1;
3634 
3635 	case Q_DEFAULT:
3636 	case Q_OR:
3637 		b0 = gen_ehostop(eaddr, Q_SRC);
3638 		b1 = gen_ehostop(eaddr, Q_DST);
3639 		gen_or(b0, b1);
3640 		return b1;
3641 	}
3642 	abort();
3643 	/* NOTREACHED */
3644 }
3645 
3646 /*
3647  * Like gen_ehostop, but for DLT_FDDI
3648  */
3649 static struct block *
3650 gen_fhostop(eaddr, dir)
3651 	register const u_char *eaddr;
3652 	register int dir;
3653 {
3654 	struct block *b0, *b1;
3655 
3656 	switch (dir) {
3657 	case Q_SRC:
3658 #ifdef PCAP_FDDIPAD
3659 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3660 #else
3661 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3662 #endif
3663 
3664 	case Q_DST:
3665 #ifdef PCAP_FDDIPAD
3666 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3667 #else
3668 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3669 #endif
3670 
3671 	case Q_AND:
3672 		b0 = gen_fhostop(eaddr, Q_SRC);
3673 		b1 = gen_fhostop(eaddr, Q_DST);
3674 		gen_and(b0, b1);
3675 		return b1;
3676 
3677 	case Q_DEFAULT:
3678 	case Q_OR:
3679 		b0 = gen_fhostop(eaddr, Q_SRC);
3680 		b1 = gen_fhostop(eaddr, Q_DST);
3681 		gen_or(b0, b1);
3682 		return b1;
3683 	}
3684 	abort();
3685 	/* NOTREACHED */
3686 }
3687 
3688 /*
3689  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3690  */
3691 static struct block *
3692 gen_thostop(eaddr, dir)
3693 	register const u_char *eaddr;
3694 	register int dir;
3695 {
3696 	register struct block *b0, *b1;
3697 
3698 	switch (dir) {
3699 	case Q_SRC:
3700 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3701 
3702 	case Q_DST:
3703 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3704 
3705 	case Q_AND:
3706 		b0 = gen_thostop(eaddr, Q_SRC);
3707 		b1 = gen_thostop(eaddr, Q_DST);
3708 		gen_and(b0, b1);
3709 		return b1;
3710 
3711 	case Q_DEFAULT:
3712 	case Q_OR:
3713 		b0 = gen_thostop(eaddr, Q_SRC);
3714 		b1 = gen_thostop(eaddr, Q_DST);
3715 		gen_or(b0, b1);
3716 		return b1;
3717 	}
3718 	abort();
3719 	/* NOTREACHED */
3720 }
3721 
3722 /*
3723  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3724  * various 802.11 + radio headers.
3725  */
3726 static struct block *
3727 gen_wlanhostop(eaddr, dir)
3728 	register const u_char *eaddr;
3729 	register int dir;
3730 {
3731 	register struct block *b0, *b1, *b2;
3732 	register struct slist *s;
3733 
3734 #ifdef ENABLE_WLAN_FILTERING_PATCH
3735 	/*
3736 	 * TODO GV 20070613
3737 	 * We need to disable the optimizer because the optimizer is buggy
3738 	 * and wipes out some LD instructions generated by the below
3739 	 * code to validate the Frame Control bits
3740 	 */
3741 	no_optimize = 1;
3742 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3743 
3744 	switch (dir) {
3745 	case Q_SRC:
3746 		/*
3747 		 * Oh, yuk.
3748 		 *
3749 		 *	For control frames, there is no SA.
3750 		 *
3751 		 *	For management frames, SA is at an
3752 		 *	offset of 10 from the beginning of
3753 		 *	the packet.
3754 		 *
3755 		 *	For data frames, SA is at an offset
3756 		 *	of 10 from the beginning of the packet
3757 		 *	if From DS is clear, at an offset of
3758 		 *	16 from the beginning of the packet
3759 		 *	if From DS is set and To DS is clear,
3760 		 *	and an offset of 24 from the beginning
3761 		 *	of the packet if From DS is set and To DS
3762 		 *	is set.
3763 		 */
3764 
3765 		/*
3766 		 * Generate the tests to be done for data frames
3767 		 * with From DS set.
3768 		 *
3769 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3770 		 */
3771 		s = gen_load_a(OR_LINK, 1, BPF_B);
3772 		b1 = new_block(JMP(BPF_JSET));
3773 		b1->s.k = 0x01;	/* To DS */
3774 		b1->stmts = s;
3775 
3776 		/*
3777 		 * If To DS is set, the SA is at 24.
3778 		 */
3779 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3780 		gen_and(b1, b0);
3781 
3782 		/*
3783 		 * Now, check for To DS not set, i.e. check
3784 		 * "!(link[1] & 0x01)".
3785 		 */
3786 		s = gen_load_a(OR_LINK, 1, BPF_B);
3787 		b2 = new_block(JMP(BPF_JSET));
3788 		b2->s.k = 0x01;	/* To DS */
3789 		b2->stmts = s;
3790 		gen_not(b2);
3791 
3792 		/*
3793 		 * If To DS is not set, the SA is at 16.
3794 		 */
3795 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3796 		gen_and(b2, b1);
3797 
3798 		/*
3799 		 * Now OR together the last two checks.  That gives
3800 		 * the complete set of checks for data frames with
3801 		 * From DS set.
3802 		 */
3803 		gen_or(b1, b0);
3804 
3805 		/*
3806 		 * Now check for From DS being set, and AND that with
3807 		 * the ORed-together checks.
3808 		 */
3809 		s = gen_load_a(OR_LINK, 1, BPF_B);
3810 		b1 = new_block(JMP(BPF_JSET));
3811 		b1->s.k = 0x02;	/* From DS */
3812 		b1->stmts = s;
3813 		gen_and(b1, b0);
3814 
3815 		/*
3816 		 * Now check for data frames with From DS not set.
3817 		 */
3818 		s = gen_load_a(OR_LINK, 1, BPF_B);
3819 		b2 = new_block(JMP(BPF_JSET));
3820 		b2->s.k = 0x02;	/* From DS */
3821 		b2->stmts = s;
3822 		gen_not(b2);
3823 
3824 		/*
3825 		 * If From DS isn't set, the SA is at 10.
3826 		 */
3827 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3828 		gen_and(b2, b1);
3829 
3830 		/*
3831 		 * Now OR together the checks for data frames with
3832 		 * From DS not set and for data frames with From DS
3833 		 * set; that gives the checks done for data frames.
3834 		 */
3835 		gen_or(b1, b0);
3836 
3837 		/*
3838 		 * Now check for a data frame.
3839 		 * I.e, check "link[0] & 0x08".
3840 		 */
3841 		s = gen_load_a(OR_LINK, 0, BPF_B);
3842 		b1 = new_block(JMP(BPF_JSET));
3843 		b1->s.k = 0x08;
3844 		b1->stmts = s;
3845 
3846 		/*
3847 		 * AND that with the checks done for data frames.
3848 		 */
3849 		gen_and(b1, b0);
3850 
3851 		/*
3852 		 * If the high-order bit of the type value is 0, this
3853 		 * is a management frame.
3854 		 * I.e, check "!(link[0] & 0x08)".
3855 		 */
3856 		s = gen_load_a(OR_LINK, 0, BPF_B);
3857 		b2 = new_block(JMP(BPF_JSET));
3858 		b2->s.k = 0x08;
3859 		b2->stmts = s;
3860 		gen_not(b2);
3861 
3862 		/*
3863 		 * For management frames, the SA is at 10.
3864 		 */
3865 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3866 		gen_and(b2, b1);
3867 
3868 		/*
3869 		 * OR that with the checks done for data frames.
3870 		 * That gives the checks done for management and
3871 		 * data frames.
3872 		 */
3873 		gen_or(b1, b0);
3874 
3875 		/*
3876 		 * If the low-order bit of the type value is 1,
3877 		 * this is either a control frame or a frame
3878 		 * with a reserved type, and thus not a
3879 		 * frame with an SA.
3880 		 *
3881 		 * I.e., check "!(link[0] & 0x04)".
3882 		 */
3883 		s = gen_load_a(OR_LINK, 0, BPF_B);
3884 		b1 = new_block(JMP(BPF_JSET));
3885 		b1->s.k = 0x04;
3886 		b1->stmts = s;
3887 		gen_not(b1);
3888 
3889 		/*
3890 		 * AND that with the checks for data and management
3891 		 * frames.
3892 		 */
3893 		gen_and(b1, b0);
3894 		return b0;
3895 
3896 	case Q_DST:
3897 		/*
3898 		 * Oh, yuk.
3899 		 *
3900 		 *	For control frames, there is no DA.
3901 		 *
3902 		 *	For management frames, DA is at an
3903 		 *	offset of 4 from the beginning of
3904 		 *	the packet.
3905 		 *
3906 		 *	For data frames, DA is at an offset
3907 		 *	of 4 from the beginning of the packet
3908 		 *	if To DS is clear and at an offset of
3909 		 *	16 from the beginning of the packet
3910 		 *	if To DS is set.
3911 		 */
3912 
3913 		/*
3914 		 * Generate the tests to be done for data frames.
3915 		 *
3916 		 * First, check for To DS set, i.e. "link[1] & 0x01".
3917 		 */
3918 		s = gen_load_a(OR_LINK, 1, BPF_B);
3919 		b1 = new_block(JMP(BPF_JSET));
3920 		b1->s.k = 0x01;	/* To DS */
3921 		b1->stmts = s;
3922 
3923 		/*
3924 		 * If To DS is set, the DA is at 16.
3925 		 */
3926 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3927 		gen_and(b1, b0);
3928 
3929 		/*
3930 		 * Now, check for To DS not set, i.e. check
3931 		 * "!(link[1] & 0x01)".
3932 		 */
3933 		s = gen_load_a(OR_LINK, 1, BPF_B);
3934 		b2 = new_block(JMP(BPF_JSET));
3935 		b2->s.k = 0x01;	/* To DS */
3936 		b2->stmts = s;
3937 		gen_not(b2);
3938 
3939 		/*
3940 		 * If To DS is not set, the DA is at 4.
3941 		 */
3942 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3943 		gen_and(b2, b1);
3944 
3945 		/*
3946 		 * Now OR together the last two checks.  That gives
3947 		 * the complete set of checks for data frames.
3948 		 */
3949 		gen_or(b1, b0);
3950 
3951 		/*
3952 		 * Now check for a data frame.
3953 		 * I.e, check "link[0] & 0x08".
3954 		 */
3955 		s = gen_load_a(OR_LINK, 0, BPF_B);
3956 		b1 = new_block(JMP(BPF_JSET));
3957 		b1->s.k = 0x08;
3958 		b1->stmts = s;
3959 
3960 		/*
3961 		 * AND that with the checks done for data frames.
3962 		 */
3963 		gen_and(b1, b0);
3964 
3965 		/*
3966 		 * If the high-order bit of the type value is 0, this
3967 		 * is a management frame.
3968 		 * I.e, check "!(link[0] & 0x08)".
3969 		 */
3970 		s = gen_load_a(OR_LINK, 0, BPF_B);
3971 		b2 = new_block(JMP(BPF_JSET));
3972 		b2->s.k = 0x08;
3973 		b2->stmts = s;
3974 		gen_not(b2);
3975 
3976 		/*
3977 		 * For management frames, the DA is at 4.
3978 		 */
3979 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3980 		gen_and(b2, b1);
3981 
3982 		/*
3983 		 * OR that with the checks done for data frames.
3984 		 * That gives the checks done for management and
3985 		 * data frames.
3986 		 */
3987 		gen_or(b1, b0);
3988 
3989 		/*
3990 		 * If the low-order bit of the type value is 1,
3991 		 * this is either a control frame or a frame
3992 		 * with a reserved type, and thus not a
3993 		 * frame with an SA.
3994 		 *
3995 		 * I.e., check "!(link[0] & 0x04)".
3996 		 */
3997 		s = gen_load_a(OR_LINK, 0, BPF_B);
3998 		b1 = new_block(JMP(BPF_JSET));
3999 		b1->s.k = 0x04;
4000 		b1->stmts = s;
4001 		gen_not(b1);
4002 
4003 		/*
4004 		 * AND that with the checks for data and management
4005 		 * frames.
4006 		 */
4007 		gen_and(b1, b0);
4008 		return b0;
4009 
4010 	/*
4011 	 * XXX - add RA, TA, and BSSID keywords?
4012 	 */
4013 	case Q_ADDR1:
4014 		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4015 
4016 	case Q_ADDR2:
4017 		/*
4018 		 * Not present in CTS or ACK control frames.
4019 		 */
4020 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4021 			IEEE80211_FC0_TYPE_MASK);
4022 		gen_not(b0);
4023 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4024 			IEEE80211_FC0_SUBTYPE_MASK);
4025 		gen_not(b1);
4026 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4027 			IEEE80211_FC0_SUBTYPE_MASK);
4028 		gen_not(b2);
4029 		gen_and(b1, b2);
4030 		gen_or(b0, b2);
4031 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4032 		gen_and(b2, b1);
4033 		return b1;
4034 
4035 	case Q_ADDR3:
4036 		/*
4037 		 * Not present in control frames.
4038 		 */
4039 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4040 			IEEE80211_FC0_TYPE_MASK);
4041 		gen_not(b0);
4042 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4043 		gen_and(b0, b1);
4044 		return b1;
4045 
4046 	case Q_ADDR4:
4047 		/*
4048 		 * Present only if the direction mask has both "From DS"
4049 		 * and "To DS" set.  Neither control frames nor management
4050 		 * frames should have both of those set, so we don't
4051 		 * check the frame type.
4052 		 */
4053 		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4054 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4055 		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4056 		gen_and(b0, b1);
4057 		return b1;
4058 
4059 	case Q_AND:
4060 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4061 		b1 = gen_wlanhostop(eaddr, Q_DST);
4062 		gen_and(b0, b1);
4063 		return b1;
4064 
4065 	case Q_DEFAULT:
4066 	case Q_OR:
4067 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4068 		b1 = gen_wlanhostop(eaddr, Q_DST);
4069 		gen_or(b0, b1);
4070 		return b1;
4071 	}
4072 	abort();
4073 	/* NOTREACHED */
4074 }
4075 
4076 /*
4077  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4078  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4079  * as the RFC states.)
4080  */
4081 static struct block *
4082 gen_ipfchostop(eaddr, dir)
4083 	register const u_char *eaddr;
4084 	register int dir;
4085 {
4086 	register struct block *b0, *b1;
4087 
4088 	switch (dir) {
4089 	case Q_SRC:
4090 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4091 
4092 	case Q_DST:
4093 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4094 
4095 	case Q_AND:
4096 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4097 		b1 = gen_ipfchostop(eaddr, Q_DST);
4098 		gen_and(b0, b1);
4099 		return b1;
4100 
4101 	case Q_DEFAULT:
4102 	case Q_OR:
4103 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4104 		b1 = gen_ipfchostop(eaddr, Q_DST);
4105 		gen_or(b0, b1);
4106 		return b1;
4107 	}
4108 	abort();
4109 	/* NOTREACHED */
4110 }
4111 
4112 /*
4113  * This is quite tricky because there may be pad bytes in front of the
4114  * DECNET header, and then there are two possible data packet formats that
4115  * carry both src and dst addresses, plus 5 packet types in a format that
4116  * carries only the src node, plus 2 types that use a different format and
4117  * also carry just the src node.
4118  *
4119  * Yuck.
4120  *
4121  * Instead of doing those all right, we just look for data packets with
4122  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4123  * will require a lot more hacking.
4124  *
4125  * To add support for filtering on DECNET "areas" (network numbers)
4126  * one would want to add a "mask" argument to this routine.  That would
4127  * make the filter even more inefficient, although one could be clever
4128  * and not generate masking instructions if the mask is 0xFFFF.
4129  */
4130 static struct block *
4131 gen_dnhostop(addr, dir)
4132 	bpf_u_int32 addr;
4133 	int dir;
4134 {
4135 	struct block *b0, *b1, *b2, *tmp;
4136 	u_int offset_lh;	/* offset if long header is received */
4137 	u_int offset_sh;	/* offset if short header is received */
4138 
4139 	switch (dir) {
4140 
4141 	case Q_DST:
4142 		offset_sh = 1;	/* follows flags */
4143 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4144 		break;
4145 
4146 	case Q_SRC:
4147 		offset_sh = 3;	/* follows flags, dstnode */
4148 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4149 		break;
4150 
4151 	case Q_AND:
4152 		/* Inefficient because we do our Calvinball dance twice */
4153 		b0 = gen_dnhostop(addr, Q_SRC);
4154 		b1 = gen_dnhostop(addr, Q_DST);
4155 		gen_and(b0, b1);
4156 		return b1;
4157 
4158 	case Q_OR:
4159 	case Q_DEFAULT:
4160 		/* Inefficient because we do our Calvinball dance twice */
4161 		b0 = gen_dnhostop(addr, Q_SRC);
4162 		b1 = gen_dnhostop(addr, Q_DST);
4163 		gen_or(b0, b1);
4164 		return b1;
4165 
4166 	case Q_ISO:
4167 		bpf_error("ISO host filtering not implemented");
4168 
4169 	default:
4170 		abort();
4171 	}
4172 	b0 = gen_linktype(ETHERTYPE_DN);
4173 	/* Check for pad = 1, long header case */
4174 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4175 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4176 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4177 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4178 	gen_and(tmp, b1);
4179 	/* Check for pad = 0, long header case */
4180 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4181 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4182 	gen_and(tmp, b2);
4183 	gen_or(b2, b1);
4184 	/* Check for pad = 1, short header case */
4185 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4186 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4187 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4188 	gen_and(tmp, b2);
4189 	gen_or(b2, b1);
4190 	/* Check for pad = 0, short header case */
4191 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4192 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4193 	gen_and(tmp, b2);
4194 	gen_or(b2, b1);
4195 
4196 	/* Combine with test for linktype */
4197 	gen_and(b0, b1);
4198 	return b1;
4199 }
4200 
4201 /*
4202  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4203  * test the bottom-of-stack bit, and then check the version number
4204  * field in the IP header.
4205  */
4206 static struct block *
4207 gen_mpls_linktype(proto)
4208 	int proto;
4209 {
4210 	struct block *b0, *b1;
4211 
4212         switch (proto) {
4213 
4214         case Q_IP:
4215                 /* match the bottom-of-stack bit */
4216                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4217                 /* match the IPv4 version number */
4218                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4219                 gen_and(b0, b1);
4220                 return b1;
4221 
4222        case Q_IPV6:
4223                 /* match the bottom-of-stack bit */
4224                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4225                 /* match the IPv4 version number */
4226                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4227                 gen_and(b0, b1);
4228                 return b1;
4229 
4230        default:
4231                 abort();
4232         }
4233 }
4234 
4235 static struct block *
4236 gen_host(addr, mask, proto, dir, type)
4237 	bpf_u_int32 addr;
4238 	bpf_u_int32 mask;
4239 	int proto;
4240 	int dir;
4241 	int type;
4242 {
4243 	struct block *b0, *b1;
4244 	const char *typestr;
4245 
4246 	if (type == Q_NET)
4247 		typestr = "net";
4248 	else
4249 		typestr = "host";
4250 
4251 	switch (proto) {
4252 
4253 	case Q_DEFAULT:
4254 		b0 = gen_host(addr, mask, Q_IP, dir, type);
4255 		/*
4256 		 * Only check for non-IPv4 addresses if we're not
4257 		 * checking MPLS-encapsulated packets.
4258 		 */
4259 		if (label_stack_depth == 0) {
4260 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4261 			gen_or(b0, b1);
4262 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4263 			gen_or(b1, b0);
4264 		}
4265 		return b0;
4266 
4267 	case Q_IP:
4268 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4269 
4270 	case Q_RARP:
4271 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4272 
4273 	case Q_ARP:
4274 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4275 
4276 	case Q_TCP:
4277 		bpf_error("'tcp' modifier applied to %s", typestr);
4278 
4279 	case Q_SCTP:
4280 		bpf_error("'sctp' modifier applied to %s", typestr);
4281 
4282 	case Q_UDP:
4283 		bpf_error("'udp' modifier applied to %s", typestr);
4284 
4285 	case Q_ICMP:
4286 		bpf_error("'icmp' modifier applied to %s", typestr);
4287 
4288 	case Q_IGMP:
4289 		bpf_error("'igmp' modifier applied to %s", typestr);
4290 
4291 	case Q_IGRP:
4292 		bpf_error("'igrp' modifier applied to %s", typestr);
4293 
4294 	case Q_PIM:
4295 		bpf_error("'pim' modifier applied to %s", typestr);
4296 
4297 	case Q_VRRP:
4298 		bpf_error("'vrrp' modifier applied to %s", typestr);
4299 
4300 	case Q_ATALK:
4301 		bpf_error("ATALK host filtering not implemented");
4302 
4303 	case Q_AARP:
4304 		bpf_error("AARP host filtering not implemented");
4305 
4306 	case Q_DECNET:
4307 		return gen_dnhostop(addr, dir);
4308 
4309 	case Q_SCA:
4310 		bpf_error("SCA host filtering not implemented");
4311 
4312 	case Q_LAT:
4313 		bpf_error("LAT host filtering not implemented");
4314 
4315 	case Q_MOPDL:
4316 		bpf_error("MOPDL host filtering not implemented");
4317 
4318 	case Q_MOPRC:
4319 		bpf_error("MOPRC host filtering not implemented");
4320 
4321 #ifdef INET6
4322 	case Q_IPV6:
4323 		bpf_error("'ip6' modifier applied to ip host");
4324 
4325 	case Q_ICMPV6:
4326 		bpf_error("'icmp6' modifier applied to %s", typestr);
4327 #endif /* INET6 */
4328 
4329 	case Q_AH:
4330 		bpf_error("'ah' modifier applied to %s", typestr);
4331 
4332 	case Q_ESP:
4333 		bpf_error("'esp' modifier applied to %s", typestr);
4334 
4335 	case Q_ISO:
4336 		bpf_error("ISO host filtering not implemented");
4337 
4338 	case Q_ESIS:
4339 		bpf_error("'esis' modifier applied to %s", typestr);
4340 
4341 	case Q_ISIS:
4342 		bpf_error("'isis' modifier applied to %s", typestr);
4343 
4344 	case Q_CLNP:
4345 		bpf_error("'clnp' modifier applied to %s", typestr);
4346 
4347 	case Q_STP:
4348 		bpf_error("'stp' modifier applied to %s", typestr);
4349 
4350 	case Q_IPX:
4351 		bpf_error("IPX host filtering not implemented");
4352 
4353 	case Q_NETBEUI:
4354 		bpf_error("'netbeui' modifier applied to %s", typestr);
4355 
4356 	case Q_RADIO:
4357 		bpf_error("'radio' modifier applied to %s", typestr);
4358 
4359 	default:
4360 		abort();
4361 	}
4362 	/* NOTREACHED */
4363 }
4364 
4365 #ifdef INET6
4366 static struct block *
4367 gen_host6(addr, mask, proto, dir, type)
4368 	struct in6_addr *addr;
4369 	struct in6_addr *mask;
4370 	int proto;
4371 	int dir;
4372 	int type;
4373 {
4374 	const char *typestr;
4375 
4376 	if (type == Q_NET)
4377 		typestr = "net";
4378 	else
4379 		typestr = "host";
4380 
4381 	switch (proto) {
4382 
4383 	case Q_DEFAULT:
4384 		return gen_host6(addr, mask, Q_IPV6, dir, type);
4385 
4386 	case Q_IP:
4387 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4388 
4389 	case Q_RARP:
4390 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4391 
4392 	case Q_ARP:
4393 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4394 
4395 	case Q_SCTP:
4396 		bpf_error("'sctp' modifier applied to %s", typestr);
4397 
4398 	case Q_TCP:
4399 		bpf_error("'tcp' modifier applied to %s", typestr);
4400 
4401 	case Q_UDP:
4402 		bpf_error("'udp' modifier applied to %s", typestr);
4403 
4404 	case Q_ICMP:
4405 		bpf_error("'icmp' modifier applied to %s", typestr);
4406 
4407 	case Q_IGMP:
4408 		bpf_error("'igmp' modifier applied to %s", typestr);
4409 
4410 	case Q_IGRP:
4411 		bpf_error("'igrp' modifier applied to %s", typestr);
4412 
4413 	case Q_PIM:
4414 		bpf_error("'pim' modifier applied to %s", typestr);
4415 
4416 	case Q_VRRP:
4417 		bpf_error("'vrrp' modifier applied to %s", typestr);
4418 
4419 	case Q_ATALK:
4420 		bpf_error("ATALK host filtering not implemented");
4421 
4422 	case Q_AARP:
4423 		bpf_error("AARP host filtering not implemented");
4424 
4425 	case Q_DECNET:
4426 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4427 
4428 	case Q_SCA:
4429 		bpf_error("SCA host filtering not implemented");
4430 
4431 	case Q_LAT:
4432 		bpf_error("LAT host filtering not implemented");
4433 
4434 	case Q_MOPDL:
4435 		bpf_error("MOPDL host filtering not implemented");
4436 
4437 	case Q_MOPRC:
4438 		bpf_error("MOPRC host filtering not implemented");
4439 
4440 	case Q_IPV6:
4441 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4442 
4443 	case Q_ICMPV6:
4444 		bpf_error("'icmp6' modifier applied to %s", typestr);
4445 
4446 	case Q_AH:
4447 		bpf_error("'ah' modifier applied to %s", typestr);
4448 
4449 	case Q_ESP:
4450 		bpf_error("'esp' modifier applied to %s", typestr);
4451 
4452 	case Q_ISO:
4453 		bpf_error("ISO host filtering not implemented");
4454 
4455 	case Q_ESIS:
4456 		bpf_error("'esis' modifier applied to %s", typestr);
4457 
4458 	case Q_ISIS:
4459 		bpf_error("'isis' modifier applied to %s", typestr);
4460 
4461 	case Q_CLNP:
4462 		bpf_error("'clnp' modifier applied to %s", typestr);
4463 
4464 	case Q_STP:
4465 		bpf_error("'stp' modifier applied to %s", typestr);
4466 
4467 	case Q_IPX:
4468 		bpf_error("IPX host filtering not implemented");
4469 
4470 	case Q_NETBEUI:
4471 		bpf_error("'netbeui' modifier applied to %s", typestr);
4472 
4473 	case Q_RADIO:
4474 		bpf_error("'radio' modifier applied to %s", typestr);
4475 
4476 	default:
4477 		abort();
4478 	}
4479 	/* NOTREACHED */
4480 }
4481 #endif /*INET6*/
4482 
4483 #ifndef INET6
4484 static struct block *
4485 gen_gateway(eaddr, alist, proto, dir)
4486 	const u_char *eaddr;
4487 	bpf_u_int32 **alist;
4488 	int proto;
4489 	int dir;
4490 {
4491 	struct block *b0, *b1, *tmp;
4492 
4493 	if (dir != 0)
4494 		bpf_error("direction applied to 'gateway'");
4495 
4496 	switch (proto) {
4497 	case Q_DEFAULT:
4498 	case Q_IP:
4499 	case Q_ARP:
4500 	case Q_RARP:
4501 		switch (linktype) {
4502 		case DLT_EN10MB:
4503 			b0 = gen_ehostop(eaddr, Q_OR);
4504 			break;
4505 		case DLT_FDDI:
4506 			b0 = gen_fhostop(eaddr, Q_OR);
4507 			break;
4508 		case DLT_IEEE802:
4509 			b0 = gen_thostop(eaddr, Q_OR);
4510 			break;
4511 		case DLT_IEEE802_11:
4512 		case DLT_PRISM_HEADER:
4513 		case DLT_IEEE802_11_RADIO_AVS:
4514 		case DLT_IEEE802_11_RADIO:
4515 		case DLT_PPI:
4516 			b0 = gen_wlanhostop(eaddr, Q_OR);
4517 			break;
4518 		case DLT_SUNATM:
4519 			if (is_lane) {
4520 				/*
4521 				 * Check that the packet doesn't begin with an
4522 				 * LE Control marker.  (We've already generated
4523 				 * a test for LANE.)
4524 				 */
4525 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4526 				    BPF_H, 0xFF00);
4527 				gen_not(b1);
4528 
4529 				/*
4530 				 * Now check the MAC address.
4531 				 */
4532 				b0 = gen_ehostop(eaddr, Q_OR);
4533 				gen_and(b1, b0);
4534 			}
4535 			break;
4536 		case DLT_IP_OVER_FC:
4537 			b0 = gen_ipfchostop(eaddr, Q_OR);
4538 			break;
4539 		default:
4540 			bpf_error(
4541 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
4542 		}
4543 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4544 		while (*alist) {
4545 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4546 			    Q_HOST);
4547 			gen_or(b1, tmp);
4548 			b1 = tmp;
4549 		}
4550 		gen_not(b1);
4551 		gen_and(b0, b1);
4552 		return b1;
4553 	}
4554 	bpf_error("illegal modifier of 'gateway'");
4555 	/* NOTREACHED */
4556 }
4557 #endif
4558 
4559 struct block *
4560 gen_proto_abbrev(proto)
4561 	int proto;
4562 {
4563 	struct block *b0;
4564 	struct block *b1;
4565 
4566 	switch (proto) {
4567 
4568 	case Q_SCTP:
4569 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4570 #ifdef INET6
4571 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4572 		gen_or(b0, b1);
4573 #endif
4574 		break;
4575 
4576 	case Q_TCP:
4577 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4578 #ifdef INET6
4579 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4580 		gen_or(b0, b1);
4581 #endif
4582 		break;
4583 
4584 	case Q_UDP:
4585 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4586 #ifdef INET6
4587 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4588 		gen_or(b0, b1);
4589 #endif
4590 		break;
4591 
4592 	case Q_ICMP:
4593 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4594 		break;
4595 
4596 #ifndef	IPPROTO_IGMP
4597 #define	IPPROTO_IGMP	2
4598 #endif
4599 
4600 	case Q_IGMP:
4601 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4602 		break;
4603 
4604 #ifndef	IPPROTO_IGRP
4605 #define	IPPROTO_IGRP	9
4606 #endif
4607 	case Q_IGRP:
4608 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4609 		break;
4610 
4611 #ifndef IPPROTO_PIM
4612 #define IPPROTO_PIM	103
4613 #endif
4614 
4615 	case Q_PIM:
4616 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4617 #ifdef INET6
4618 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4619 		gen_or(b0, b1);
4620 #endif
4621 		break;
4622 
4623 #ifndef IPPROTO_VRRP
4624 #define IPPROTO_VRRP	112
4625 #endif
4626 
4627 	case Q_VRRP:
4628 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4629 		break;
4630 
4631 	case Q_IP:
4632 		b1 =  gen_linktype(ETHERTYPE_IP);
4633 		break;
4634 
4635 	case Q_ARP:
4636 		b1 =  gen_linktype(ETHERTYPE_ARP);
4637 		break;
4638 
4639 	case Q_RARP:
4640 		b1 =  gen_linktype(ETHERTYPE_REVARP);
4641 		break;
4642 
4643 	case Q_LINK:
4644 		bpf_error("link layer applied in wrong context");
4645 
4646 	case Q_ATALK:
4647 		b1 =  gen_linktype(ETHERTYPE_ATALK);
4648 		break;
4649 
4650 	case Q_AARP:
4651 		b1 =  gen_linktype(ETHERTYPE_AARP);
4652 		break;
4653 
4654 	case Q_DECNET:
4655 		b1 =  gen_linktype(ETHERTYPE_DN);
4656 		break;
4657 
4658 	case Q_SCA:
4659 		b1 =  gen_linktype(ETHERTYPE_SCA);
4660 		break;
4661 
4662 	case Q_LAT:
4663 		b1 =  gen_linktype(ETHERTYPE_LAT);
4664 		break;
4665 
4666 	case Q_MOPDL:
4667 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4668 		break;
4669 
4670 	case Q_MOPRC:
4671 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4672 		break;
4673 
4674 #ifdef INET6
4675 	case Q_IPV6:
4676 		b1 = gen_linktype(ETHERTYPE_IPV6);
4677 		break;
4678 
4679 #ifndef IPPROTO_ICMPV6
4680 #define IPPROTO_ICMPV6	58
4681 #endif
4682 	case Q_ICMPV6:
4683 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4684 		break;
4685 #endif /* INET6 */
4686 
4687 #ifndef IPPROTO_AH
4688 #define IPPROTO_AH	51
4689 #endif
4690 	case Q_AH:
4691 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4692 #ifdef INET6
4693 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4694 		gen_or(b0, b1);
4695 #endif
4696 		break;
4697 
4698 #ifndef IPPROTO_ESP
4699 #define IPPROTO_ESP	50
4700 #endif
4701 	case Q_ESP:
4702 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4703 #ifdef INET6
4704 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4705 		gen_or(b0, b1);
4706 #endif
4707 		break;
4708 
4709 	case Q_ISO:
4710 		b1 = gen_linktype(LLCSAP_ISONS);
4711 		break;
4712 
4713 	case Q_ESIS:
4714 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4715 		break;
4716 
4717 	case Q_ISIS:
4718 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4719 		break;
4720 
4721 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4722 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4723 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4724 		gen_or(b0, b1);
4725 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4726 		gen_or(b0, b1);
4727 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4728 		gen_or(b0, b1);
4729 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4730 		gen_or(b0, b1);
4731 		break;
4732 
4733 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4734 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4735 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4736 		gen_or(b0, b1);
4737 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4738 		gen_or(b0, b1);
4739 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4740 		gen_or(b0, b1);
4741 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4742 		gen_or(b0, b1);
4743 		break;
4744 
4745 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4746 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4747 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4748 		gen_or(b0, b1);
4749 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4750 		gen_or(b0, b1);
4751 		break;
4752 
4753 	case Q_ISIS_LSP:
4754 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4755 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4756 		gen_or(b0, b1);
4757 		break;
4758 
4759 	case Q_ISIS_SNP:
4760 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4761 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4762 		gen_or(b0, b1);
4763 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4764 		gen_or(b0, b1);
4765 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4766 		gen_or(b0, b1);
4767 		break;
4768 
4769 	case Q_ISIS_CSNP:
4770 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4771 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4772 		gen_or(b0, b1);
4773 		break;
4774 
4775 	case Q_ISIS_PSNP:
4776 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4777 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4778 		gen_or(b0, b1);
4779 		break;
4780 
4781 	case Q_CLNP:
4782 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4783 		break;
4784 
4785 	case Q_STP:
4786 		b1 = gen_linktype(LLCSAP_8021D);
4787 		break;
4788 
4789 	case Q_IPX:
4790 		b1 = gen_linktype(LLCSAP_IPX);
4791 		break;
4792 
4793 	case Q_NETBEUI:
4794 		b1 = gen_linktype(LLCSAP_NETBEUI);
4795 		break;
4796 
4797 	case Q_RADIO:
4798 		bpf_error("'radio' is not a valid protocol type");
4799 
4800 	default:
4801 		abort();
4802 	}
4803 	return b1;
4804 }
4805 
4806 static struct block *
4807 gen_ipfrag()
4808 {
4809 	struct slist *s;
4810 	struct block *b;
4811 
4812 	/* not ip frag */
4813 	s = gen_load_a(OR_NET, 6, BPF_H);
4814 	b = new_block(JMP(BPF_JSET));
4815 	b->s.k = 0x1fff;
4816 	b->stmts = s;
4817 	gen_not(b);
4818 
4819 	return b;
4820 }
4821 
4822 /*
4823  * Generate a comparison to a port value in the transport-layer header
4824  * at the specified offset from the beginning of that header.
4825  *
4826  * XXX - this handles a variable-length prefix preceding the link-layer
4827  * header, such as the radiotap or AVS radio prefix, but doesn't handle
4828  * variable-length link-layer headers (such as Token Ring or 802.11
4829  * headers).
4830  */
4831 static struct block *
4832 gen_portatom(off, v)
4833 	int off;
4834 	bpf_int32 v;
4835 {
4836 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
4837 }
4838 
4839 #ifdef INET6
4840 static struct block *
4841 gen_portatom6(off, v)
4842 	int off;
4843 	bpf_int32 v;
4844 {
4845 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
4846 }
4847 #endif/*INET6*/
4848 
4849 struct block *
4850 gen_portop(port, proto, dir)
4851 	int port, proto, dir;
4852 {
4853 	struct block *b0, *b1, *tmp;
4854 
4855 	/* ip proto 'proto' */
4856 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
4857 	b0 = gen_ipfrag();
4858 	gen_and(tmp, b0);
4859 
4860 	switch (dir) {
4861 	case Q_SRC:
4862 		b1 = gen_portatom(0, (bpf_int32)port);
4863 		break;
4864 
4865 	case Q_DST:
4866 		b1 = gen_portatom(2, (bpf_int32)port);
4867 		break;
4868 
4869 	case Q_OR:
4870 	case Q_DEFAULT:
4871 		tmp = gen_portatom(0, (bpf_int32)port);
4872 		b1 = gen_portatom(2, (bpf_int32)port);
4873 		gen_or(tmp, b1);
4874 		break;
4875 
4876 	case Q_AND:
4877 		tmp = gen_portatom(0, (bpf_int32)port);
4878 		b1 = gen_portatom(2, (bpf_int32)port);
4879 		gen_and(tmp, b1);
4880 		break;
4881 
4882 	default:
4883 		abort();
4884 	}
4885 	gen_and(b0, b1);
4886 
4887 	return b1;
4888 }
4889 
4890 static struct block *
4891 gen_port(port, ip_proto, dir)
4892 	int port;
4893 	int ip_proto;
4894 	int dir;
4895 {
4896 	struct block *b0, *b1, *tmp;
4897 
4898 	/*
4899 	 * ether proto ip
4900 	 *
4901 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4902 	 * not LLC encapsulation with LLCSAP_IP.
4903 	 *
4904 	 * For IEEE 802 networks - which includes 802.5 token ring
4905 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4906 	 * says that SNAP encapsulation is used, not LLC encapsulation
4907 	 * with LLCSAP_IP.
4908 	 *
4909 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4910 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
4911 	 * encapsulation with LLCSAP_IP.
4912 	 *
4913 	 * So we always check for ETHERTYPE_IP.
4914 	 */
4915 	b0 =  gen_linktype(ETHERTYPE_IP);
4916 
4917 	switch (ip_proto) {
4918 	case IPPROTO_UDP:
4919 	case IPPROTO_TCP:
4920 	case IPPROTO_SCTP:
4921 		b1 = gen_portop(port, ip_proto, dir);
4922 		break;
4923 
4924 	case PROTO_UNDEF:
4925 		tmp = gen_portop(port, IPPROTO_TCP, dir);
4926 		b1 = gen_portop(port, IPPROTO_UDP, dir);
4927 		gen_or(tmp, b1);
4928 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
4929 		gen_or(tmp, b1);
4930 		break;
4931 
4932 	default:
4933 		abort();
4934 	}
4935 	gen_and(b0, b1);
4936 	return b1;
4937 }
4938 
4939 #ifdef INET6
4940 struct block *
4941 gen_portop6(port, proto, dir)
4942 	int port, proto, dir;
4943 {
4944 	struct block *b0, *b1, *tmp;
4945 
4946 	/* ip6 proto 'proto' */
4947 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
4948 
4949 	switch (dir) {
4950 	case Q_SRC:
4951 		b1 = gen_portatom6(0, (bpf_int32)port);
4952 		break;
4953 
4954 	case Q_DST:
4955 		b1 = gen_portatom6(2, (bpf_int32)port);
4956 		break;
4957 
4958 	case Q_OR:
4959 	case Q_DEFAULT:
4960 		tmp = gen_portatom6(0, (bpf_int32)port);
4961 		b1 = gen_portatom6(2, (bpf_int32)port);
4962 		gen_or(tmp, b1);
4963 		break;
4964 
4965 	case Q_AND:
4966 		tmp = gen_portatom6(0, (bpf_int32)port);
4967 		b1 = gen_portatom6(2, (bpf_int32)port);
4968 		gen_and(tmp, b1);
4969 		break;
4970 
4971 	default:
4972 		abort();
4973 	}
4974 	gen_and(b0, b1);
4975 
4976 	return b1;
4977 }
4978 
4979 static struct block *
4980 gen_port6(port, ip_proto, dir)
4981 	int port;
4982 	int ip_proto;
4983 	int dir;
4984 {
4985 	struct block *b0, *b1, *tmp;
4986 
4987 	/* link proto ip6 */
4988 	b0 =  gen_linktype(ETHERTYPE_IPV6);
4989 
4990 	switch (ip_proto) {
4991 	case IPPROTO_UDP:
4992 	case IPPROTO_TCP:
4993 	case IPPROTO_SCTP:
4994 		b1 = gen_portop6(port, ip_proto, dir);
4995 		break;
4996 
4997 	case PROTO_UNDEF:
4998 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
4999 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5000 		gen_or(tmp, b1);
5001 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5002 		gen_or(tmp, b1);
5003 		break;
5004 
5005 	default:
5006 		abort();
5007 	}
5008 	gen_and(b0, b1);
5009 	return b1;
5010 }
5011 #endif /* INET6 */
5012 
5013 /* gen_portrange code */
5014 static struct block *
5015 gen_portrangeatom(off, v1, v2)
5016 	int off;
5017 	bpf_int32 v1, v2;
5018 {
5019 	struct block *b1, *b2;
5020 
5021 	if (v1 > v2) {
5022 		/*
5023 		 * Reverse the order of the ports, so v1 is the lower one.
5024 		 */
5025 		bpf_int32 vtemp;
5026 
5027 		vtemp = v1;
5028 		v1 = v2;
5029 		v2 = vtemp;
5030 	}
5031 
5032 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5033 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5034 
5035 	gen_and(b1, b2);
5036 
5037 	return b2;
5038 }
5039 
5040 struct block *
5041 gen_portrangeop(port1, port2, proto, dir)
5042 	int port1, port2;
5043 	int proto;
5044 	int dir;
5045 {
5046 	struct block *b0, *b1, *tmp;
5047 
5048 	/* ip proto 'proto' */
5049 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5050 	b0 = gen_ipfrag();
5051 	gen_and(tmp, b0);
5052 
5053 	switch (dir) {
5054 	case Q_SRC:
5055 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5056 		break;
5057 
5058 	case Q_DST:
5059 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5060 		break;
5061 
5062 	case Q_OR:
5063 	case Q_DEFAULT:
5064 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5065 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5066 		gen_or(tmp, b1);
5067 		break;
5068 
5069 	case Q_AND:
5070 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5071 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5072 		gen_and(tmp, b1);
5073 		break;
5074 
5075 	default:
5076 		abort();
5077 	}
5078 	gen_and(b0, b1);
5079 
5080 	return b1;
5081 }
5082 
5083 static struct block *
5084 gen_portrange(port1, port2, ip_proto, dir)
5085 	int port1, port2;
5086 	int ip_proto;
5087 	int dir;
5088 {
5089 	struct block *b0, *b1, *tmp;
5090 
5091 	/* link proto ip */
5092 	b0 =  gen_linktype(ETHERTYPE_IP);
5093 
5094 	switch (ip_proto) {
5095 	case IPPROTO_UDP:
5096 	case IPPROTO_TCP:
5097 	case IPPROTO_SCTP:
5098 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5099 		break;
5100 
5101 	case PROTO_UNDEF:
5102 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5103 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5104 		gen_or(tmp, b1);
5105 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5106 		gen_or(tmp, b1);
5107 		break;
5108 
5109 	default:
5110 		abort();
5111 	}
5112 	gen_and(b0, b1);
5113 	return b1;
5114 }
5115 
5116 #ifdef INET6
5117 static struct block *
5118 gen_portrangeatom6(off, v1, v2)
5119 	int off;
5120 	bpf_int32 v1, v2;
5121 {
5122 	struct block *b1, *b2;
5123 
5124 	if (v1 > v2) {
5125 		/*
5126 		 * Reverse the order of the ports, so v1 is the lower one.
5127 		 */
5128 		bpf_int32 vtemp;
5129 
5130 		vtemp = v1;
5131 		v1 = v2;
5132 		v2 = vtemp;
5133 	}
5134 
5135 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5136 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5137 
5138 	gen_and(b1, b2);
5139 
5140 	return b2;
5141 }
5142 
5143 struct block *
5144 gen_portrangeop6(port1, port2, proto, dir)
5145 	int port1, port2;
5146 	int proto;
5147 	int dir;
5148 {
5149 	struct block *b0, *b1, *tmp;
5150 
5151 	/* ip6 proto 'proto' */
5152 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5153 
5154 	switch (dir) {
5155 	case Q_SRC:
5156 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5157 		break;
5158 
5159 	case Q_DST:
5160 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5161 		break;
5162 
5163 	case Q_OR:
5164 	case Q_DEFAULT:
5165 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5166 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5167 		gen_or(tmp, b1);
5168 		break;
5169 
5170 	case Q_AND:
5171 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5172 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5173 		gen_and(tmp, b1);
5174 		break;
5175 
5176 	default:
5177 		abort();
5178 	}
5179 	gen_and(b0, b1);
5180 
5181 	return b1;
5182 }
5183 
5184 static struct block *
5185 gen_portrange6(port1, port2, ip_proto, dir)
5186 	int port1, port2;
5187 	int ip_proto;
5188 	int dir;
5189 {
5190 	struct block *b0, *b1, *tmp;
5191 
5192 	/* link proto ip6 */
5193 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5194 
5195 	switch (ip_proto) {
5196 	case IPPROTO_UDP:
5197 	case IPPROTO_TCP:
5198 	case IPPROTO_SCTP:
5199 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5200 		break;
5201 
5202 	case PROTO_UNDEF:
5203 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5204 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5205 		gen_or(tmp, b1);
5206 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5207 		gen_or(tmp, b1);
5208 		break;
5209 
5210 	default:
5211 		abort();
5212 	}
5213 	gen_and(b0, b1);
5214 	return b1;
5215 }
5216 #endif /* INET6 */
5217 
5218 static int
5219 lookup_proto(name, proto)
5220 	register const char *name;
5221 	register int proto;
5222 {
5223 	register int v;
5224 
5225 	switch (proto) {
5226 
5227 	case Q_DEFAULT:
5228 	case Q_IP:
5229 	case Q_IPV6:
5230 		v = pcap_nametoproto(name);
5231 		if (v == PROTO_UNDEF)
5232 			bpf_error("unknown ip proto '%s'", name);
5233 		break;
5234 
5235 	case Q_LINK:
5236 		/* XXX should look up h/w protocol type based on linktype */
5237 		v = pcap_nametoeproto(name);
5238 		if (v == PROTO_UNDEF) {
5239 			v = pcap_nametollc(name);
5240 			if (v == PROTO_UNDEF)
5241 				bpf_error("unknown ether proto '%s'", name);
5242 		}
5243 		break;
5244 
5245 	case Q_ISO:
5246 		if (strcmp(name, "esis") == 0)
5247 			v = ISO9542_ESIS;
5248 		else if (strcmp(name, "isis") == 0)
5249 			v = ISO10589_ISIS;
5250 		else if (strcmp(name, "clnp") == 0)
5251 			v = ISO8473_CLNP;
5252 		else
5253 			bpf_error("unknown osi proto '%s'", name);
5254 		break;
5255 
5256 	default:
5257 		v = PROTO_UNDEF;
5258 		break;
5259 	}
5260 	return v;
5261 }
5262 
5263 #if 0
5264 struct stmt *
5265 gen_joinsp(s, n)
5266 	struct stmt **s;
5267 	int n;
5268 {
5269 	return NULL;
5270 }
5271 #endif
5272 
5273 static struct block *
5274 gen_protochain(v, proto, dir)
5275 	int v;
5276 	int proto;
5277 	int dir;
5278 {
5279 #ifdef NO_PROTOCHAIN
5280 	return gen_proto(v, proto, dir);
5281 #else
5282 	struct block *b0, *b;
5283 	struct slist *s[100];
5284 	int fix2, fix3, fix4, fix5;
5285 	int ahcheck, again, end;
5286 	int i, max;
5287 	int reg2 = alloc_reg();
5288 
5289 	memset(s, 0, sizeof(s));
5290 	fix2 = fix3 = fix4 = fix5 = 0;
5291 
5292 	switch (proto) {
5293 	case Q_IP:
5294 	case Q_IPV6:
5295 		break;
5296 	case Q_DEFAULT:
5297 		b0 = gen_protochain(v, Q_IP, dir);
5298 		b = gen_protochain(v, Q_IPV6, dir);
5299 		gen_or(b0, b);
5300 		return b;
5301 	default:
5302 		bpf_error("bad protocol applied for 'protochain'");
5303 		/*NOTREACHED*/
5304 	}
5305 
5306 	/*
5307 	 * We don't handle variable-length prefixes before the link-layer
5308 	 * header, or variable-length link-layer headers, here yet.
5309 	 * We might want to add BPF instructions to do the protochain
5310 	 * work, to simplify that and, on platforms that have a BPF
5311 	 * interpreter with the new instructions, let the filtering
5312 	 * be done in the kernel.  (We already require a modified BPF
5313 	 * engine to do the protochain stuff, to support backward
5314 	 * branches, and backward branch support is unlikely to appear
5315 	 * in kernel BPF engines.)
5316 	 */
5317 	switch (linktype) {
5318 
5319 	case DLT_IEEE802_11:
5320 	case DLT_PRISM_HEADER:
5321 	case DLT_IEEE802_11_RADIO_AVS:
5322 	case DLT_IEEE802_11_RADIO:
5323 	case DLT_PPI:
5324 		bpf_error("'protochain' not supported with 802.11");
5325 	}
5326 
5327 	no_optimize = 1; /*this code is not compatible with optimzer yet */
5328 
5329 	/*
5330 	 * s[0] is a dummy entry to protect other BPF insn from damage
5331 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5332 	 * hard to find interdependency made by jump table fixup.
5333 	 */
5334 	i = 0;
5335 	s[i] = new_stmt(0);	/*dummy*/
5336 	i++;
5337 
5338 	switch (proto) {
5339 	case Q_IP:
5340 		b0 = gen_linktype(ETHERTYPE_IP);
5341 
5342 		/* A = ip->ip_p */
5343 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5344 		s[i]->s.k = off_macpl + off_nl + 9;
5345 		i++;
5346 		/* X = ip->ip_hl << 2 */
5347 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5348 		s[i]->s.k = off_macpl + off_nl;
5349 		i++;
5350 		break;
5351 #ifdef INET6
5352 	case Q_IPV6:
5353 		b0 = gen_linktype(ETHERTYPE_IPV6);
5354 
5355 		/* A = ip6->ip_nxt */
5356 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5357 		s[i]->s.k = off_macpl + off_nl + 6;
5358 		i++;
5359 		/* X = sizeof(struct ip6_hdr) */
5360 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5361 		s[i]->s.k = 40;
5362 		i++;
5363 		break;
5364 #endif
5365 	default:
5366 		bpf_error("unsupported proto to gen_protochain");
5367 		/*NOTREACHED*/
5368 	}
5369 
5370 	/* again: if (A == v) goto end; else fall through; */
5371 	again = i;
5372 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5373 	s[i]->s.k = v;
5374 	s[i]->s.jt = NULL;		/*later*/
5375 	s[i]->s.jf = NULL;		/*update in next stmt*/
5376 	fix5 = i;
5377 	i++;
5378 
5379 #ifndef IPPROTO_NONE
5380 #define IPPROTO_NONE	59
5381 #endif
5382 	/* if (A == IPPROTO_NONE) goto end */
5383 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5384 	s[i]->s.jt = NULL;	/*later*/
5385 	s[i]->s.jf = NULL;	/*update in next stmt*/
5386 	s[i]->s.k = IPPROTO_NONE;
5387 	s[fix5]->s.jf = s[i];
5388 	fix2 = i;
5389 	i++;
5390 
5391 #ifdef INET6
5392 	if (proto == Q_IPV6) {
5393 		int v6start, v6end, v6advance, j;
5394 
5395 		v6start = i;
5396 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5397 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5398 		s[i]->s.jt = NULL;	/*later*/
5399 		s[i]->s.jf = NULL;	/*update in next stmt*/
5400 		s[i]->s.k = IPPROTO_HOPOPTS;
5401 		s[fix2]->s.jf = s[i];
5402 		i++;
5403 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5404 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5405 		s[i]->s.jt = NULL;	/*later*/
5406 		s[i]->s.jf = NULL;	/*update in next stmt*/
5407 		s[i]->s.k = IPPROTO_DSTOPTS;
5408 		i++;
5409 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5410 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5411 		s[i]->s.jt = NULL;	/*later*/
5412 		s[i]->s.jf = NULL;	/*update in next stmt*/
5413 		s[i]->s.k = IPPROTO_ROUTING;
5414 		i++;
5415 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5416 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5417 		s[i]->s.jt = NULL;	/*later*/
5418 		s[i]->s.jf = NULL;	/*later*/
5419 		s[i]->s.k = IPPROTO_FRAGMENT;
5420 		fix3 = i;
5421 		v6end = i;
5422 		i++;
5423 
5424 		/* v6advance: */
5425 		v6advance = i;
5426 
5427 		/*
5428 		 * in short,
5429 		 * A = P[X];
5430 		 * X = X + (P[X + 1] + 1) * 8;
5431 		 */
5432 		/* A = X */
5433 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
5434 		i++;
5435 		/* A = P[X + packet head] */
5436 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5437 		s[i]->s.k = off_macpl + off_nl;
5438 		i++;
5439 		/* MEM[reg2] = A */
5440 		s[i] = new_stmt(BPF_ST);
5441 		s[i]->s.k = reg2;
5442 		i++;
5443 		/* A = X */
5444 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
5445 		i++;
5446 		/* A += 1 */
5447 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5448 		s[i]->s.k = 1;
5449 		i++;
5450 		/* X = A */
5451 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5452 		i++;
5453 		/* A = P[X + packet head]; */
5454 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5455 		s[i]->s.k = off_macpl + off_nl;
5456 		i++;
5457 		/* A += 1 */
5458 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5459 		s[i]->s.k = 1;
5460 		i++;
5461 		/* A *= 8 */
5462 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5463 		s[i]->s.k = 8;
5464 		i++;
5465 		/* X = A; */
5466 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5467 		i++;
5468 		/* A = MEM[reg2] */
5469 		s[i] = new_stmt(BPF_LD|BPF_MEM);
5470 		s[i]->s.k = reg2;
5471 		i++;
5472 
5473 		/* goto again; (must use BPF_JA for backward jump) */
5474 		s[i] = new_stmt(BPF_JMP|BPF_JA);
5475 		s[i]->s.k = again - i - 1;
5476 		s[i - 1]->s.jf = s[i];
5477 		i++;
5478 
5479 		/* fixup */
5480 		for (j = v6start; j <= v6end; j++)
5481 			s[j]->s.jt = s[v6advance];
5482 	} else
5483 #endif
5484 	{
5485 		/* nop */
5486 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5487 		s[i]->s.k = 0;
5488 		s[fix2]->s.jf = s[i];
5489 		i++;
5490 	}
5491 
5492 	/* ahcheck: */
5493 	ahcheck = i;
5494 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5495 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5496 	s[i]->s.jt = NULL;	/*later*/
5497 	s[i]->s.jf = NULL;	/*later*/
5498 	s[i]->s.k = IPPROTO_AH;
5499 	if (fix3)
5500 		s[fix3]->s.jf = s[ahcheck];
5501 	fix4 = i;
5502 	i++;
5503 
5504 	/*
5505 	 * in short,
5506 	 * A = P[X];
5507 	 * X = X + (P[X + 1] + 2) * 4;
5508 	 */
5509 	/* A = X */
5510 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5511 	i++;
5512 	/* A = P[X + packet head]; */
5513 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5514 	s[i]->s.k = off_macpl + off_nl;
5515 	i++;
5516 	/* MEM[reg2] = A */
5517 	s[i] = new_stmt(BPF_ST);
5518 	s[i]->s.k = reg2;
5519 	i++;
5520 	/* A = X */
5521 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5522 	i++;
5523 	/* A += 1 */
5524 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5525 	s[i]->s.k = 1;
5526 	i++;
5527 	/* X = A */
5528 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5529 	i++;
5530 	/* A = P[X + packet head] */
5531 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5532 	s[i]->s.k = off_macpl + off_nl;
5533 	i++;
5534 	/* A += 2 */
5535 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5536 	s[i]->s.k = 2;
5537 	i++;
5538 	/* A *= 4 */
5539 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5540 	s[i]->s.k = 4;
5541 	i++;
5542 	/* X = A; */
5543 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5544 	i++;
5545 	/* A = MEM[reg2] */
5546 	s[i] = new_stmt(BPF_LD|BPF_MEM);
5547 	s[i]->s.k = reg2;
5548 	i++;
5549 
5550 	/* goto again; (must use BPF_JA for backward jump) */
5551 	s[i] = new_stmt(BPF_JMP|BPF_JA);
5552 	s[i]->s.k = again - i - 1;
5553 	i++;
5554 
5555 	/* end: nop */
5556 	end = i;
5557 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5558 	s[i]->s.k = 0;
5559 	s[fix2]->s.jt = s[end];
5560 	s[fix4]->s.jf = s[end];
5561 	s[fix5]->s.jt = s[end];
5562 	i++;
5563 
5564 	/*
5565 	 * make slist chain
5566 	 */
5567 	max = i;
5568 	for (i = 0; i < max - 1; i++)
5569 		s[i]->next = s[i + 1];
5570 	s[max - 1]->next = NULL;
5571 
5572 	/*
5573 	 * emit final check
5574 	 */
5575 	b = new_block(JMP(BPF_JEQ));
5576 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5577 	b->s.k = v;
5578 
5579 	free_reg(reg2);
5580 
5581 	gen_and(b0, b);
5582 	return b;
5583 #endif
5584 }
5585 
5586 static struct block *
5587 gen_check_802_11_data_frame()
5588 {
5589 	struct slist *s;
5590 	struct block *b0, *b1;
5591 
5592 	/*
5593 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5594 	 * and the 0x04 bit (b2) clear.
5595 	 */
5596 	s = gen_load_a(OR_LINK, 0, BPF_B);
5597 	b0 = new_block(JMP(BPF_JSET));
5598 	b0->s.k = 0x08;
5599 	b0->stmts = s;
5600 
5601 	s = gen_load_a(OR_LINK, 0, BPF_B);
5602 	b1 = new_block(JMP(BPF_JSET));
5603 	b1->s.k = 0x04;
5604 	b1->stmts = s;
5605 	gen_not(b1);
5606 
5607 	gen_and(b1, b0);
5608 
5609 	return b0;
5610 }
5611 
5612 /*
5613  * Generate code that checks whether the packet is a packet for protocol
5614  * <proto> and whether the type field in that protocol's header has
5615  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5616  * IP packet and checks the protocol number in the IP header against <v>.
5617  *
5618  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5619  * against Q_IP and Q_IPV6.
5620  */
5621 static struct block *
5622 gen_proto(v, proto, dir)
5623 	int v;
5624 	int proto;
5625 	int dir;
5626 {
5627 	struct block *b0, *b1;
5628 
5629 	if (dir != Q_DEFAULT)
5630 		bpf_error("direction applied to 'proto'");
5631 
5632 	switch (proto) {
5633 	case Q_DEFAULT:
5634 #ifdef INET6
5635 		b0 = gen_proto(v, Q_IP, dir);
5636 		b1 = gen_proto(v, Q_IPV6, dir);
5637 		gen_or(b0, b1);
5638 		return b1;
5639 #else
5640 		/*FALLTHROUGH*/
5641 #endif
5642 	case Q_IP:
5643 		/*
5644 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5645 		 * not LLC encapsulation with LLCSAP_IP.
5646 		 *
5647 		 * For IEEE 802 networks - which includes 802.5 token ring
5648 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5649 		 * says that SNAP encapsulation is used, not LLC encapsulation
5650 		 * with LLCSAP_IP.
5651 		 *
5652 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5653 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5654 		 * encapsulation with LLCSAP_IP.
5655 		 *
5656 		 * So we always check for ETHERTYPE_IP.
5657 		 */
5658 		b0 = gen_linktype(ETHERTYPE_IP);
5659 #ifndef CHASE_CHAIN
5660 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5661 #else
5662 		b1 = gen_protochain(v, Q_IP);
5663 #endif
5664 		gen_and(b0, b1);
5665 		return b1;
5666 
5667 	case Q_ISO:
5668 		switch (linktype) {
5669 
5670 		case DLT_FRELAY:
5671 			/*
5672 			 * Frame Relay packets typically have an OSI
5673 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5674 			 * generates code to check for all the OSI
5675 			 * NLPIDs, so calling it and then adding a check
5676 			 * for the particular NLPID for which we're
5677 			 * looking is bogus, as we can just check for
5678 			 * the NLPID.
5679 			 *
5680 			 * What we check for is the NLPID and a frame
5681 			 * control field value of UI, i.e. 0x03 followed
5682 			 * by the NLPID.
5683 			 *
5684 			 * XXX - assumes a 2-byte Frame Relay header with
5685 			 * DLCI and flags.  What if the address is longer?
5686 			 *
5687 			 * XXX - what about SNAP-encapsulated frames?
5688 			 */
5689 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5690 			/*NOTREACHED*/
5691 			break;
5692 
5693 		case DLT_C_HDLC:
5694 			/*
5695 			 * Cisco uses an Ethertype lookalike - for OSI,
5696 			 * it's 0xfefe.
5697 			 */
5698 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5699 			/* OSI in C-HDLC is stuffed with a fudge byte */
5700 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5701 			gen_and(b0, b1);
5702 			return b1;
5703 
5704 		default:
5705 			b0 = gen_linktype(LLCSAP_ISONS);
5706 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5707 			gen_and(b0, b1);
5708 			return b1;
5709 		}
5710 
5711 	case Q_ISIS:
5712 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5713 		/*
5714 		 * 4 is the offset of the PDU type relative to the IS-IS
5715 		 * header.
5716 		 */
5717 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5718 		gen_and(b0, b1);
5719 		return b1;
5720 
5721 	case Q_ARP:
5722 		bpf_error("arp does not encapsulate another protocol");
5723 		/* NOTREACHED */
5724 
5725 	case Q_RARP:
5726 		bpf_error("rarp does not encapsulate another protocol");
5727 		/* NOTREACHED */
5728 
5729 	case Q_ATALK:
5730 		bpf_error("atalk encapsulation is not specifiable");
5731 		/* NOTREACHED */
5732 
5733 	case Q_DECNET:
5734 		bpf_error("decnet encapsulation is not specifiable");
5735 		/* NOTREACHED */
5736 
5737 	case Q_SCA:
5738 		bpf_error("sca does not encapsulate another protocol");
5739 		/* NOTREACHED */
5740 
5741 	case Q_LAT:
5742 		bpf_error("lat does not encapsulate another protocol");
5743 		/* NOTREACHED */
5744 
5745 	case Q_MOPRC:
5746 		bpf_error("moprc does not encapsulate another protocol");
5747 		/* NOTREACHED */
5748 
5749 	case Q_MOPDL:
5750 		bpf_error("mopdl does not encapsulate another protocol");
5751 		/* NOTREACHED */
5752 
5753 	case Q_LINK:
5754 		return gen_linktype(v);
5755 
5756 	case Q_UDP:
5757 		bpf_error("'udp proto' is bogus");
5758 		/* NOTREACHED */
5759 
5760 	case Q_TCP:
5761 		bpf_error("'tcp proto' is bogus");
5762 		/* NOTREACHED */
5763 
5764 	case Q_SCTP:
5765 		bpf_error("'sctp proto' is bogus");
5766 		/* NOTREACHED */
5767 
5768 	case Q_ICMP:
5769 		bpf_error("'icmp proto' is bogus");
5770 		/* NOTREACHED */
5771 
5772 	case Q_IGMP:
5773 		bpf_error("'igmp proto' is bogus");
5774 		/* NOTREACHED */
5775 
5776 	case Q_IGRP:
5777 		bpf_error("'igrp proto' is bogus");
5778 		/* NOTREACHED */
5779 
5780 	case Q_PIM:
5781 		bpf_error("'pim proto' is bogus");
5782 		/* NOTREACHED */
5783 
5784 	case Q_VRRP:
5785 		bpf_error("'vrrp proto' is bogus");
5786 		/* NOTREACHED */
5787 
5788 #ifdef INET6
5789 	case Q_IPV6:
5790 		b0 = gen_linktype(ETHERTYPE_IPV6);
5791 #ifndef CHASE_CHAIN
5792 		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5793 #else
5794 		b1 = gen_protochain(v, Q_IPV6);
5795 #endif
5796 		gen_and(b0, b1);
5797 		return b1;
5798 
5799 	case Q_ICMPV6:
5800 		bpf_error("'icmp6 proto' is bogus");
5801 #endif /* INET6 */
5802 
5803 	case Q_AH:
5804 		bpf_error("'ah proto' is bogus");
5805 
5806 	case Q_ESP:
5807 		bpf_error("'ah proto' is bogus");
5808 
5809 	case Q_STP:
5810 		bpf_error("'stp proto' is bogus");
5811 
5812 	case Q_IPX:
5813 		bpf_error("'ipx proto' is bogus");
5814 
5815 	case Q_NETBEUI:
5816 		bpf_error("'netbeui proto' is bogus");
5817 
5818 	case Q_RADIO:
5819 		bpf_error("'radio proto' is bogus");
5820 
5821 	default:
5822 		abort();
5823 		/* NOTREACHED */
5824 	}
5825 	/* NOTREACHED */
5826 }
5827 
5828 struct block *
5829 gen_scode(name, q)
5830 	register const char *name;
5831 	struct qual q;
5832 {
5833 	int proto = q.proto;
5834 	int dir = q.dir;
5835 	int tproto;
5836 	u_char *eaddr;
5837 	bpf_u_int32 mask, addr;
5838 #ifndef INET6
5839 	bpf_u_int32 **alist;
5840 #else
5841 	int tproto6;
5842 	struct sockaddr_in *sin4;
5843 	struct sockaddr_in6 *sin6;
5844 	struct addrinfo *res, *res0;
5845 	struct in6_addr mask128;
5846 #endif /*INET6*/
5847 	struct block *b, *tmp;
5848 	int port, real_proto;
5849 	int port1, port2;
5850 
5851 	switch (q.addr) {
5852 
5853 	case Q_NET:
5854 		addr = pcap_nametonetaddr(name);
5855 		if (addr == 0)
5856 			bpf_error("unknown network '%s'", name);
5857 		/* Left justify network addr and calculate its network mask */
5858 		mask = 0xffffffff;
5859 		while (addr && (addr & 0xff000000) == 0) {
5860 			addr <<= 8;
5861 			mask <<= 8;
5862 		}
5863 		return gen_host(addr, mask, proto, dir, q.addr);
5864 
5865 	case Q_DEFAULT:
5866 	case Q_HOST:
5867 		if (proto == Q_LINK) {
5868 			switch (linktype) {
5869 
5870 			case DLT_EN10MB:
5871 				eaddr = pcap_ether_hostton(name);
5872 				if (eaddr == NULL)
5873 					bpf_error(
5874 					    "unknown ether host '%s'", name);
5875 				b = gen_ehostop(eaddr, dir);
5876 				free(eaddr);
5877 				return b;
5878 
5879 			case DLT_FDDI:
5880 				eaddr = pcap_ether_hostton(name);
5881 				if (eaddr == NULL)
5882 					bpf_error(
5883 					    "unknown FDDI host '%s'", name);
5884 				b = gen_fhostop(eaddr, dir);
5885 				free(eaddr);
5886 				return b;
5887 
5888 			case DLT_IEEE802:
5889 				eaddr = pcap_ether_hostton(name);
5890 				if (eaddr == NULL)
5891 					bpf_error(
5892 					    "unknown token ring host '%s'", name);
5893 				b = gen_thostop(eaddr, dir);
5894 				free(eaddr);
5895 				return b;
5896 
5897 			case DLT_IEEE802_11:
5898 			case DLT_PRISM_HEADER:
5899 			case DLT_IEEE802_11_RADIO_AVS:
5900 			case DLT_IEEE802_11_RADIO:
5901 			case DLT_PPI:
5902 				eaddr = pcap_ether_hostton(name);
5903 				if (eaddr == NULL)
5904 					bpf_error(
5905 					    "unknown 802.11 host '%s'", name);
5906 				b = gen_wlanhostop(eaddr, dir);
5907 				free(eaddr);
5908 				return b;
5909 
5910 			case DLT_IP_OVER_FC:
5911 				eaddr = pcap_ether_hostton(name);
5912 				if (eaddr == NULL)
5913 					bpf_error(
5914 					    "unknown Fibre Channel host '%s'", name);
5915 				b = gen_ipfchostop(eaddr, dir);
5916 				free(eaddr);
5917 				return b;
5918 
5919 			case DLT_SUNATM:
5920 				if (!is_lane)
5921 					break;
5922 
5923 				/*
5924 				 * Check that the packet doesn't begin
5925 				 * with an LE Control marker.  (We've
5926 				 * already generated a test for LANE.)
5927 				 */
5928 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
5929 				    BPF_H, 0xFF00);
5930 				gen_not(tmp);
5931 
5932 				eaddr = pcap_ether_hostton(name);
5933 				if (eaddr == NULL)
5934 					bpf_error(
5935 					    "unknown ether host '%s'", name);
5936 				b = gen_ehostop(eaddr, dir);
5937 				gen_and(tmp, b);
5938 				free(eaddr);
5939 				return b;
5940 			}
5941 
5942 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
5943 		} else if (proto == Q_DECNET) {
5944 			unsigned short dn_addr = __pcap_nametodnaddr(name);
5945 			/*
5946 			 * I don't think DECNET hosts can be multihomed, so
5947 			 * there is no need to build up a list of addresses
5948 			 */
5949 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
5950 		} else {
5951 #ifndef INET6
5952 			alist = pcap_nametoaddr(name);
5953 			if (alist == NULL || *alist == NULL)
5954 				bpf_error("unknown host '%s'", name);
5955 			tproto = proto;
5956 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
5957 				tproto = Q_IP;
5958 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
5959 			while (*alist) {
5960 				tmp = gen_host(**alist++, 0xffffffff,
5961 					       tproto, dir, q.addr);
5962 				gen_or(b, tmp);
5963 				b = tmp;
5964 			}
5965 			return b;
5966 #else
5967 			memset(&mask128, 0xff, sizeof(mask128));
5968 			res0 = res = pcap_nametoaddrinfo(name);
5969 			if (res == NULL)
5970 				bpf_error("unknown host '%s'", name);
5971 			b = tmp = NULL;
5972 			tproto = tproto6 = proto;
5973 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
5974 				tproto = Q_IP;
5975 				tproto6 = Q_IPV6;
5976 			}
5977 			for (res = res0; res; res = res->ai_next) {
5978 				switch (res->ai_family) {
5979 				case AF_INET:
5980 					if (tproto == Q_IPV6)
5981 						continue;
5982 
5983 					sin4 = (struct sockaddr_in *)
5984 						res->ai_addr;
5985 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
5986 						0xffffffff, tproto, dir, q.addr);
5987 					break;
5988 				case AF_INET6:
5989 					if (tproto6 == Q_IP)
5990 						continue;
5991 
5992 					sin6 = (struct sockaddr_in6 *)
5993 						res->ai_addr;
5994 					tmp = gen_host6(&sin6->sin6_addr,
5995 						&mask128, tproto6, dir, q.addr);
5996 					break;
5997 				default:
5998 					continue;
5999 				}
6000 				if (b)
6001 					gen_or(b, tmp);
6002 				b = tmp;
6003 			}
6004 			freeaddrinfo(res0);
6005 			if (b == NULL) {
6006 				bpf_error("unknown host '%s'%s", name,
6007 				    (proto == Q_DEFAULT)
6008 					? ""
6009 					: " for specified address family");
6010 			}
6011 			return b;
6012 #endif /*INET6*/
6013 		}
6014 
6015 	case Q_PORT:
6016 		if (proto != Q_DEFAULT &&
6017 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6018 			bpf_error("illegal qualifier of 'port'");
6019 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6020 			bpf_error("unknown port '%s'", name);
6021 		if (proto == Q_UDP) {
6022 			if (real_proto == IPPROTO_TCP)
6023 				bpf_error("port '%s' is tcp", name);
6024 			else if (real_proto == IPPROTO_SCTP)
6025 				bpf_error("port '%s' is sctp", name);
6026 			else
6027 				/* override PROTO_UNDEF */
6028 				real_proto = IPPROTO_UDP;
6029 		}
6030 		if (proto == Q_TCP) {
6031 			if (real_proto == IPPROTO_UDP)
6032 				bpf_error("port '%s' is udp", name);
6033 
6034 			else if (real_proto == IPPROTO_SCTP)
6035 				bpf_error("port '%s' is sctp", name);
6036 			else
6037 				/* override PROTO_UNDEF */
6038 				real_proto = IPPROTO_TCP;
6039 		}
6040 		if (proto == Q_SCTP) {
6041 			if (real_proto == IPPROTO_UDP)
6042 				bpf_error("port '%s' is udp", name);
6043 
6044 			else if (real_proto == IPPROTO_TCP)
6045 				bpf_error("port '%s' is tcp", name);
6046 			else
6047 				/* override PROTO_UNDEF */
6048 				real_proto = IPPROTO_SCTP;
6049 		}
6050 #ifndef INET6
6051 		return gen_port(port, real_proto, dir);
6052 #else
6053 		b = gen_port(port, real_proto, dir);
6054 		gen_or(gen_port6(port, real_proto, dir), b);
6055 		return b;
6056 #endif /* INET6 */
6057 
6058 	case Q_PORTRANGE:
6059 		if (proto != Q_DEFAULT &&
6060 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6061 			bpf_error("illegal qualifier of 'portrange'");
6062 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6063 			bpf_error("unknown port in range '%s'", name);
6064 		if (proto == Q_UDP) {
6065 			if (real_proto == IPPROTO_TCP)
6066 				bpf_error("port in range '%s' is tcp", name);
6067 			else if (real_proto == IPPROTO_SCTP)
6068 				bpf_error("port in range '%s' is sctp", name);
6069 			else
6070 				/* override PROTO_UNDEF */
6071 				real_proto = IPPROTO_UDP;
6072 		}
6073 		if (proto == Q_TCP) {
6074 			if (real_proto == IPPROTO_UDP)
6075 				bpf_error("port in range '%s' is udp", name);
6076 			else if (real_proto == IPPROTO_SCTP)
6077 				bpf_error("port in range '%s' is sctp", name);
6078 			else
6079 				/* override PROTO_UNDEF */
6080 				real_proto = IPPROTO_TCP;
6081 		}
6082 		if (proto == Q_SCTP) {
6083 			if (real_proto == IPPROTO_UDP)
6084 				bpf_error("port in range '%s' is udp", name);
6085 			else if (real_proto == IPPROTO_TCP)
6086 				bpf_error("port in range '%s' is tcp", name);
6087 			else
6088 				/* override PROTO_UNDEF */
6089 				real_proto = IPPROTO_SCTP;
6090 		}
6091 #ifndef INET6
6092 		return gen_portrange(port1, port2, real_proto, dir);
6093 #else
6094 		b = gen_portrange(port1, port2, real_proto, dir);
6095 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6096 		return b;
6097 #endif /* INET6 */
6098 
6099 	case Q_GATEWAY:
6100 #ifndef INET6
6101 		eaddr = pcap_ether_hostton(name);
6102 		if (eaddr == NULL)
6103 			bpf_error("unknown ether host: %s", name);
6104 
6105 		alist = pcap_nametoaddr(name);
6106 		if (alist == NULL || *alist == NULL)
6107 			bpf_error("unknown host '%s'", name);
6108 		b = gen_gateway(eaddr, alist, proto, dir);
6109 		free(eaddr);
6110 		return b;
6111 #else
6112 		bpf_error("'gateway' not supported in this configuration");
6113 #endif /*INET6*/
6114 
6115 	case Q_PROTO:
6116 		real_proto = lookup_proto(name, proto);
6117 		if (real_proto >= 0)
6118 			return gen_proto(real_proto, proto, dir);
6119 		else
6120 			bpf_error("unknown protocol: %s", name);
6121 
6122 	case Q_PROTOCHAIN:
6123 		real_proto = lookup_proto(name, proto);
6124 		if (real_proto >= 0)
6125 			return gen_protochain(real_proto, proto, dir);
6126 		else
6127 			bpf_error("unknown protocol: %s", name);
6128 
6129 	case Q_UNDEF:
6130 		syntax();
6131 		/* NOTREACHED */
6132 	}
6133 	abort();
6134 	/* NOTREACHED */
6135 }
6136 
6137 struct block *
6138 gen_mcode(s1, s2, masklen, q)
6139 	register const char *s1, *s2;
6140 	register int masklen;
6141 	struct qual q;
6142 {
6143 	register int nlen, mlen;
6144 	bpf_u_int32 n, m;
6145 
6146 	nlen = __pcap_atoin(s1, &n);
6147 	/* Promote short ipaddr */
6148 	n <<= 32 - nlen;
6149 
6150 	if (s2 != NULL) {
6151 		mlen = __pcap_atoin(s2, &m);
6152 		/* Promote short ipaddr */
6153 		m <<= 32 - mlen;
6154 		if ((n & ~m) != 0)
6155 			bpf_error("non-network bits set in \"%s mask %s\"",
6156 			    s1, s2);
6157 	} else {
6158 		/* Convert mask len to mask */
6159 		if (masklen > 32)
6160 			bpf_error("mask length must be <= 32");
6161 		if (masklen == 0) {
6162 			/*
6163 			 * X << 32 is not guaranteed by C to be 0; it's
6164 			 * undefined.
6165 			 */
6166 			m = 0;
6167 		} else
6168 			m = 0xffffffff << (32 - masklen);
6169 		if ((n & ~m) != 0)
6170 			bpf_error("non-network bits set in \"%s/%d\"",
6171 			    s1, masklen);
6172 	}
6173 
6174 	switch (q.addr) {
6175 
6176 	case Q_NET:
6177 		return gen_host(n, m, q.proto, q.dir, q.addr);
6178 
6179 	default:
6180 		bpf_error("Mask syntax for networks only");
6181 		/* NOTREACHED */
6182 	}
6183 	/* NOTREACHED */
6184 	return NULL;
6185 }
6186 
6187 struct block *
6188 gen_ncode(s, v, q)
6189 	register const char *s;
6190 	bpf_u_int32 v;
6191 	struct qual q;
6192 {
6193 	bpf_u_int32 mask;
6194 	int proto = q.proto;
6195 	int dir = q.dir;
6196 	register int vlen;
6197 
6198 	if (s == NULL)
6199 		vlen = 32;
6200 	else if (q.proto == Q_DECNET)
6201 		vlen = __pcap_atodn(s, &v);
6202 	else
6203 		vlen = __pcap_atoin(s, &v);
6204 
6205 	switch (q.addr) {
6206 
6207 	case Q_DEFAULT:
6208 	case Q_HOST:
6209 	case Q_NET:
6210 		if (proto == Q_DECNET)
6211 			return gen_host(v, 0, proto, dir, q.addr);
6212 		else if (proto == Q_LINK) {
6213 			bpf_error("illegal link layer address");
6214 		} else {
6215 			mask = 0xffffffff;
6216 			if (s == NULL && q.addr == Q_NET) {
6217 				/* Promote short net number */
6218 				while (v && (v & 0xff000000) == 0) {
6219 					v <<= 8;
6220 					mask <<= 8;
6221 				}
6222 			} else {
6223 				/* Promote short ipaddr */
6224 				v <<= 32 - vlen;
6225 				mask <<= 32 - vlen;
6226 			}
6227 			return gen_host(v, mask, proto, dir, q.addr);
6228 		}
6229 
6230 	case Q_PORT:
6231 		if (proto == Q_UDP)
6232 			proto = IPPROTO_UDP;
6233 		else if (proto == Q_TCP)
6234 			proto = IPPROTO_TCP;
6235 		else if (proto == Q_SCTP)
6236 			proto = IPPROTO_SCTP;
6237 		else if (proto == Q_DEFAULT)
6238 			proto = PROTO_UNDEF;
6239 		else
6240 			bpf_error("illegal qualifier of 'port'");
6241 
6242 #ifndef INET6
6243 		return gen_port((int)v, proto, dir);
6244 #else
6245 	    {
6246 		struct block *b;
6247 		b = gen_port((int)v, proto, dir);
6248 		gen_or(gen_port6((int)v, proto, dir), b);
6249 		return b;
6250 	    }
6251 #endif /* INET6 */
6252 
6253 	case Q_PORTRANGE:
6254 		if (proto == Q_UDP)
6255 			proto = IPPROTO_UDP;
6256 		else if (proto == Q_TCP)
6257 			proto = IPPROTO_TCP;
6258 		else if (proto == Q_SCTP)
6259 			proto = IPPROTO_SCTP;
6260 		else if (proto == Q_DEFAULT)
6261 			proto = PROTO_UNDEF;
6262 		else
6263 			bpf_error("illegal qualifier of 'portrange'");
6264 
6265 #ifndef INET6
6266 		return gen_portrange((int)v, (int)v, proto, dir);
6267 #else
6268 	    {
6269 		struct block *b;
6270 		b = gen_portrange((int)v, (int)v, proto, dir);
6271 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6272 		return b;
6273 	    }
6274 #endif /* INET6 */
6275 
6276 	case Q_GATEWAY:
6277 		bpf_error("'gateway' requires a name");
6278 		/* NOTREACHED */
6279 
6280 	case Q_PROTO:
6281 		return gen_proto((int)v, proto, dir);
6282 
6283 	case Q_PROTOCHAIN:
6284 		return gen_protochain((int)v, proto, dir);
6285 
6286 	case Q_UNDEF:
6287 		syntax();
6288 		/* NOTREACHED */
6289 
6290 	default:
6291 		abort();
6292 		/* NOTREACHED */
6293 	}
6294 	/* NOTREACHED */
6295 }
6296 
6297 #ifdef INET6
6298 struct block *
6299 gen_mcode6(s1, s2, masklen, q)
6300 	register const char *s1, *s2;
6301 	register int masklen;
6302 	struct qual q;
6303 {
6304 	struct addrinfo *res;
6305 	struct in6_addr *addr;
6306 	struct in6_addr mask;
6307 	struct block *b;
6308 	u_int32_t *a, *m;
6309 
6310 	if (s2)
6311 		bpf_error("no mask %s supported", s2);
6312 
6313 	res = pcap_nametoaddrinfo(s1);
6314 	if (!res)
6315 		bpf_error("invalid ip6 address %s", s1);
6316 	if (res->ai_next)
6317 		bpf_error("%s resolved to multiple address", s1);
6318 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6319 
6320 	if (sizeof(mask) * 8 < masklen)
6321 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6322 	memset(&mask, 0, sizeof(mask));
6323 	memset(&mask, 0xff, masklen / 8);
6324 	if (masklen % 8) {
6325 		mask.s6_addr[masklen / 8] =
6326 			(0xff << (8 - masklen % 8)) & 0xff;
6327 	}
6328 
6329 	a = (u_int32_t *)addr;
6330 	m = (u_int32_t *)&mask;
6331 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6332 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6333 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6334 	}
6335 
6336 	switch (q.addr) {
6337 
6338 	case Q_DEFAULT:
6339 	case Q_HOST:
6340 		if (masklen != 128)
6341 			bpf_error("Mask syntax for networks only");
6342 		/* FALLTHROUGH */
6343 
6344 	case Q_NET:
6345 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6346 		freeaddrinfo(res);
6347 		return b;
6348 
6349 	default:
6350 		bpf_error("invalid qualifier against IPv6 address");
6351 		/* NOTREACHED */
6352 	}
6353 	return NULL;
6354 }
6355 #endif /*INET6*/
6356 
6357 struct block *
6358 gen_ecode(eaddr, q)
6359 	register const u_char *eaddr;
6360 	struct qual q;
6361 {
6362 	struct block *b, *tmp;
6363 
6364 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6365 		switch (linktype) {
6366 		case DLT_EN10MB:
6367 			return gen_ehostop(eaddr, (int)q.dir);
6368 		case DLT_FDDI:
6369 			return gen_fhostop(eaddr, (int)q.dir);
6370 		case DLT_IEEE802:
6371 			return gen_thostop(eaddr, (int)q.dir);
6372 		case DLT_IEEE802_11:
6373 		case DLT_PRISM_HEADER:
6374 		case DLT_IEEE802_11_RADIO_AVS:
6375 		case DLT_IEEE802_11_RADIO:
6376 		case DLT_PPI:
6377 			return gen_wlanhostop(eaddr, (int)q.dir);
6378 		case DLT_SUNATM:
6379 			if (is_lane) {
6380 				/*
6381 				 * Check that the packet doesn't begin with an
6382 				 * LE Control marker.  (We've already generated
6383 				 * a test for LANE.)
6384 				 */
6385 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6386 					0xFF00);
6387 				gen_not(tmp);
6388 
6389 				/*
6390 				 * Now check the MAC address.
6391 				 */
6392 				b = gen_ehostop(eaddr, (int)q.dir);
6393 				gen_and(tmp, b);
6394 				return b;
6395 			}
6396 			break;
6397 		case DLT_IP_OVER_FC:
6398 			return gen_ipfchostop(eaddr, (int)q.dir);
6399 		default:
6400 			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6401 			break;
6402 		}
6403 	}
6404 	bpf_error("ethernet address used in non-ether expression");
6405 	/* NOTREACHED */
6406 	return NULL;
6407 }
6408 
6409 void
6410 sappend(s0, s1)
6411 	struct slist *s0, *s1;
6412 {
6413 	/*
6414 	 * This is definitely not the best way to do this, but the
6415 	 * lists will rarely get long.
6416 	 */
6417 	while (s0->next)
6418 		s0 = s0->next;
6419 	s0->next = s1;
6420 }
6421 
6422 static struct slist *
6423 xfer_to_x(a)
6424 	struct arth *a;
6425 {
6426 	struct slist *s;
6427 
6428 	s = new_stmt(BPF_LDX|BPF_MEM);
6429 	s->s.k = a->regno;
6430 	return s;
6431 }
6432 
6433 static struct slist *
6434 xfer_to_a(a)
6435 	struct arth *a;
6436 {
6437 	struct slist *s;
6438 
6439 	s = new_stmt(BPF_LD|BPF_MEM);
6440 	s->s.k = a->regno;
6441 	return s;
6442 }
6443 
6444 /*
6445  * Modify "index" to use the value stored into its register as an
6446  * offset relative to the beginning of the header for the protocol
6447  * "proto", and allocate a register and put an item "size" bytes long
6448  * (1, 2, or 4) at that offset into that register, making it the register
6449  * for "index".
6450  */
6451 struct arth *
6452 gen_load(proto, inst, size)
6453 	int proto;
6454 	struct arth *inst;
6455 	int size;
6456 {
6457 	struct slist *s, *tmp;
6458 	struct block *b;
6459 	int regno = alloc_reg();
6460 
6461 	free_reg(inst->regno);
6462 	switch (size) {
6463 
6464 	default:
6465 		bpf_error("data size must be 1, 2, or 4");
6466 
6467 	case 1:
6468 		size = BPF_B;
6469 		break;
6470 
6471 	case 2:
6472 		size = BPF_H;
6473 		break;
6474 
6475 	case 4:
6476 		size = BPF_W;
6477 		break;
6478 	}
6479 	switch (proto) {
6480 	default:
6481 		bpf_error("unsupported index operation");
6482 
6483 	case Q_RADIO:
6484 		/*
6485 		 * The offset is relative to the beginning of the packet
6486 		 * data, if we have a radio header.  (If we don't, this
6487 		 * is an error.)
6488 		 */
6489 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6490 		    linktype != DLT_IEEE802_11_RADIO &&
6491 		    linktype != DLT_PRISM_HEADER)
6492 			bpf_error("radio information not present in capture");
6493 
6494 		/*
6495 		 * Load into the X register the offset computed into the
6496 		 * register specifed by "index".
6497 		 */
6498 		s = xfer_to_x(inst);
6499 
6500 		/*
6501 		 * Load the item at that offset.
6502 		 */
6503 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6504 		sappend(s, tmp);
6505 		sappend(inst->s, s);
6506 		break;
6507 
6508 	case Q_LINK:
6509 		/*
6510 		 * The offset is relative to the beginning of
6511 		 * the link-layer header.
6512 		 *
6513 		 * XXX - what about ATM LANE?  Should the index be
6514 		 * relative to the beginning of the AAL5 frame, so
6515 		 * that 0 refers to the beginning of the LE Control
6516 		 * field, or relative to the beginning of the LAN
6517 		 * frame, so that 0 refers, for Ethernet LANE, to
6518 		 * the beginning of the destination address?
6519 		 */
6520 		s = gen_llprefixlen();
6521 
6522 		/*
6523 		 * If "s" is non-null, it has code to arrange that the
6524 		 * X register contains the length of the prefix preceding
6525 		 * the link-layer header.  Add to it the offset computed
6526 		 * into the register specified by "index", and move that
6527 		 * into the X register.  Otherwise, just load into the X
6528 		 * register the offset computed into the register specifed
6529 		 * by "index".
6530 		 */
6531 		if (s != NULL) {
6532 			sappend(s, xfer_to_a(inst));
6533 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6534 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6535 		} else
6536 			s = xfer_to_x(inst);
6537 
6538 		/*
6539 		 * Load the item at the sum of the offset we've put in the
6540 		 * X register and the offset of the start of the link
6541 		 * layer header (which is 0 if the radio header is
6542 		 * variable-length; that header length is what we put
6543 		 * into the X register and then added to the index).
6544 		 */
6545 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6546 		tmp->s.k = off_ll;
6547 		sappend(s, tmp);
6548 		sappend(inst->s, s);
6549 		break;
6550 
6551 	case Q_IP:
6552 	case Q_ARP:
6553 	case Q_RARP:
6554 	case Q_ATALK:
6555 	case Q_DECNET:
6556 	case Q_SCA:
6557 	case Q_LAT:
6558 	case Q_MOPRC:
6559 	case Q_MOPDL:
6560 #ifdef INET6
6561 	case Q_IPV6:
6562 #endif
6563 		/*
6564 		 * The offset is relative to the beginning of
6565 		 * the network-layer header.
6566 		 * XXX - are there any cases where we want
6567 		 * off_nl_nosnap?
6568 		 */
6569 		s = gen_off_macpl();
6570 
6571 		/*
6572 		 * If "s" is non-null, it has code to arrange that the
6573 		 * X register contains the offset of the MAC-layer
6574 		 * payload.  Add to it the offset computed into the
6575 		 * register specified by "index", and move that into
6576 		 * the X register.  Otherwise, just load into the X
6577 		 * register the offset computed into the register specifed
6578 		 * by "index".
6579 		 */
6580 		if (s != NULL) {
6581 			sappend(s, xfer_to_a(inst));
6582 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6583 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6584 		} else
6585 			s = xfer_to_x(inst);
6586 
6587 		/*
6588 		 * Load the item at the sum of the offset we've put in the
6589 		 * X register, the offset of the start of the network
6590 		 * layer header from the beginning of the MAC-layer
6591 		 * payload, and the purported offset of the start of the
6592 		 * MAC-layer payload (which might be 0 if there's a
6593 		 * variable-length prefix before the link-layer header
6594 		 * or the link-layer header itself is variable-length;
6595 		 * the variable-length offset of the start of the
6596 		 * MAC-layer payload is what we put into the X register
6597 		 * and then added to the index).
6598 		 */
6599 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6600 		tmp->s.k = off_macpl + off_nl;
6601 		sappend(s, tmp);
6602 		sappend(inst->s, s);
6603 
6604 		/*
6605 		 * Do the computation only if the packet contains
6606 		 * the protocol in question.
6607 		 */
6608 		b = gen_proto_abbrev(proto);
6609 		if (inst->b)
6610 			gen_and(inst->b, b);
6611 		inst->b = b;
6612 		break;
6613 
6614 	case Q_SCTP:
6615 	case Q_TCP:
6616 	case Q_UDP:
6617 	case Q_ICMP:
6618 	case Q_IGMP:
6619 	case Q_IGRP:
6620 	case Q_PIM:
6621 	case Q_VRRP:
6622 		/*
6623 		 * The offset is relative to the beginning of
6624 		 * the transport-layer header.
6625 		 *
6626 		 * Load the X register with the length of the IPv4 header
6627 		 * (plus the offset of the link-layer header, if it's
6628 		 * a variable-length header), in bytes.
6629 		 *
6630 		 * XXX - are there any cases where we want
6631 		 * off_nl_nosnap?
6632 		 * XXX - we should, if we're built with
6633 		 * IPv6 support, generate code to load either
6634 		 * IPv4, IPv6, or both, as appropriate.
6635 		 */
6636 		s = gen_loadx_iphdrlen();
6637 
6638 		/*
6639 		 * The X register now contains the sum of the length
6640 		 * of any variable-length header preceding the link-layer
6641 		 * header, any variable-length link-layer header, and the
6642 		 * length of the network-layer header.
6643 		 *
6644 		 * Load into the A register the offset relative to
6645 		 * the beginning of the transport layer header,
6646 		 * add the X register to that, move that to the
6647 		 * X register, and load with an offset from the
6648 		 * X register equal to the offset of the network
6649 		 * layer header relative to the beginning of
6650 		 * the MAC-layer payload plus the fixed-length
6651 		 * portion of the offset of the MAC-layer payload
6652 		 * from the beginning of the raw packet data.
6653 		 */
6654 		sappend(s, xfer_to_a(inst));
6655 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6656 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6657 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6658 		tmp->s.k = off_macpl + off_nl;
6659 		sappend(inst->s, s);
6660 
6661 		/*
6662 		 * Do the computation only if the packet contains
6663 		 * the protocol in question - which is true only
6664 		 * if this is an IP datagram and is the first or
6665 		 * only fragment of that datagram.
6666 		 */
6667 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6668 		if (inst->b)
6669 			gen_and(inst->b, b);
6670 #ifdef INET6
6671 		gen_and(gen_proto_abbrev(Q_IP), b);
6672 #endif
6673 		inst->b = b;
6674 		break;
6675 #ifdef INET6
6676 	case Q_ICMPV6:
6677 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6678 		/*NOTREACHED*/
6679 #endif
6680 	}
6681 	inst->regno = regno;
6682 	s = new_stmt(BPF_ST);
6683 	s->s.k = regno;
6684 	sappend(inst->s, s);
6685 
6686 	return inst;
6687 }
6688 
6689 struct block *
6690 gen_relation(code, a0, a1, reversed)
6691 	int code;
6692 	struct arth *a0, *a1;
6693 	int reversed;
6694 {
6695 	struct slist *s0, *s1, *s2;
6696 	struct block *b, *tmp;
6697 
6698 	s0 = xfer_to_x(a1);
6699 	s1 = xfer_to_a(a0);
6700 	if (code == BPF_JEQ) {
6701 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6702 		b = new_block(JMP(code));
6703 		sappend(s1, s2);
6704 	}
6705 	else
6706 		b = new_block(BPF_JMP|code|BPF_X);
6707 	if (reversed)
6708 		gen_not(b);
6709 
6710 	sappend(s0, s1);
6711 	sappend(a1->s, s0);
6712 	sappend(a0->s, a1->s);
6713 
6714 	b->stmts = a0->s;
6715 
6716 	free_reg(a0->regno);
6717 	free_reg(a1->regno);
6718 
6719 	/* 'and' together protocol checks */
6720 	if (a0->b) {
6721 		if (a1->b) {
6722 			gen_and(a0->b, tmp = a1->b);
6723 		}
6724 		else
6725 			tmp = a0->b;
6726 	} else
6727 		tmp = a1->b;
6728 
6729 	if (tmp)
6730 		gen_and(tmp, b);
6731 
6732 	return b;
6733 }
6734 
6735 struct arth *
6736 gen_loadlen()
6737 {
6738 	int regno = alloc_reg();
6739 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6740 	struct slist *s;
6741 
6742 	s = new_stmt(BPF_LD|BPF_LEN);
6743 	s->next = new_stmt(BPF_ST);
6744 	s->next->s.k = regno;
6745 	a->s = s;
6746 	a->regno = regno;
6747 
6748 	return a;
6749 }
6750 
6751 struct arth *
6752 gen_loadi(val)
6753 	int val;
6754 {
6755 	struct arth *a;
6756 	struct slist *s;
6757 	int reg;
6758 
6759 	a = (struct arth *)newchunk(sizeof(*a));
6760 
6761 	reg = alloc_reg();
6762 
6763 	s = new_stmt(BPF_LD|BPF_IMM);
6764 	s->s.k = val;
6765 	s->next = new_stmt(BPF_ST);
6766 	s->next->s.k = reg;
6767 	a->s = s;
6768 	a->regno = reg;
6769 
6770 	return a;
6771 }
6772 
6773 struct arth *
6774 gen_neg(a)
6775 	struct arth *a;
6776 {
6777 	struct slist *s;
6778 
6779 	s = xfer_to_a(a);
6780 	sappend(a->s, s);
6781 	s = new_stmt(BPF_ALU|BPF_NEG);
6782 	s->s.k = 0;
6783 	sappend(a->s, s);
6784 	s = new_stmt(BPF_ST);
6785 	s->s.k = a->regno;
6786 	sappend(a->s, s);
6787 
6788 	return a;
6789 }
6790 
6791 struct arth *
6792 gen_arth(code, a0, a1)
6793 	int code;
6794 	struct arth *a0, *a1;
6795 {
6796 	struct slist *s0, *s1, *s2;
6797 
6798 	s0 = xfer_to_x(a1);
6799 	s1 = xfer_to_a(a0);
6800 	s2 = new_stmt(BPF_ALU|BPF_X|code);
6801 
6802 	sappend(s1, s2);
6803 	sappend(s0, s1);
6804 	sappend(a1->s, s0);
6805 	sappend(a0->s, a1->s);
6806 
6807 	free_reg(a0->regno);
6808 	free_reg(a1->regno);
6809 
6810 	s0 = new_stmt(BPF_ST);
6811 	a0->regno = s0->s.k = alloc_reg();
6812 	sappend(a0->s, s0);
6813 
6814 	return a0;
6815 }
6816 
6817 /*
6818  * Here we handle simple allocation of the scratch registers.
6819  * If too many registers are alloc'd, the allocator punts.
6820  */
6821 static int regused[BPF_MEMWORDS];
6822 static int curreg;
6823 
6824 /*
6825  * Initialize the table of used registers and the current register.
6826  */
6827 static void
6828 init_regs()
6829 {
6830 	curreg = 0;
6831 	memset(regused, 0, sizeof regused);
6832 }
6833 
6834 /*
6835  * Return the next free register.
6836  */
6837 static int
6838 alloc_reg()
6839 {
6840 	int n = BPF_MEMWORDS;
6841 
6842 	while (--n >= 0) {
6843 		if (regused[curreg])
6844 			curreg = (curreg + 1) % BPF_MEMWORDS;
6845 		else {
6846 			regused[curreg] = 1;
6847 			return curreg;
6848 		}
6849 	}
6850 	bpf_error("too many registers needed to evaluate expression");
6851 	/* NOTREACHED */
6852 	return 0;
6853 }
6854 
6855 /*
6856  * Return a register to the table so it can
6857  * be used later.
6858  */
6859 static void
6860 free_reg(n)
6861 	int n;
6862 {
6863 	regused[n] = 0;
6864 }
6865 
6866 static struct block *
6867 gen_len(jmp, n)
6868 	int jmp, n;
6869 {
6870 	struct slist *s;
6871 	struct block *b;
6872 
6873 	s = new_stmt(BPF_LD|BPF_LEN);
6874 	b = new_block(JMP(jmp));
6875 	b->stmts = s;
6876 	b->s.k = n;
6877 
6878 	return b;
6879 }
6880 
6881 struct block *
6882 gen_greater(n)
6883 	int n;
6884 {
6885 	return gen_len(BPF_JGE, n);
6886 }
6887 
6888 /*
6889  * Actually, this is less than or equal.
6890  */
6891 struct block *
6892 gen_less(n)
6893 	int n;
6894 {
6895 	struct block *b;
6896 
6897 	b = gen_len(BPF_JGT, n);
6898 	gen_not(b);
6899 
6900 	return b;
6901 }
6902 
6903 /*
6904  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
6905  * the beginning of the link-layer header.
6906  * XXX - that means you can't test values in the radiotap header, but
6907  * as that header is difficult if not impossible to parse generally
6908  * without a loop, that might not be a severe problem.  A new keyword
6909  * "radio" could be added for that, although what you'd really want
6910  * would be a way of testing particular radio header values, which
6911  * would generate code appropriate to the radio header in question.
6912  */
6913 struct block *
6914 gen_byteop(op, idx, val)
6915 	int op, idx, val;
6916 {
6917 	struct block *b;
6918 	struct slist *s;
6919 
6920 	switch (op) {
6921 	default:
6922 		abort();
6923 
6924 	case '=':
6925 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6926 
6927 	case '<':
6928 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6929 		return b;
6930 
6931 	case '>':
6932 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6933 		return b;
6934 
6935 	case '|':
6936 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
6937 		break;
6938 
6939 	case '&':
6940 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
6941 		break;
6942 	}
6943 	s->s.k = val;
6944 	b = new_block(JMP(BPF_JEQ));
6945 	b->stmts = s;
6946 	gen_not(b);
6947 
6948 	return b;
6949 }
6950 
6951 static u_char abroadcast[] = { 0x0 };
6952 
6953 struct block *
6954 gen_broadcast(proto)
6955 	int proto;
6956 {
6957 	bpf_u_int32 hostmask;
6958 	struct block *b0, *b1, *b2;
6959 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
6960 
6961 	switch (proto) {
6962 
6963 	case Q_DEFAULT:
6964 	case Q_LINK:
6965 		switch (linktype) {
6966 		case DLT_ARCNET:
6967 		case DLT_ARCNET_LINUX:
6968 			return gen_ahostop(abroadcast, Q_DST);
6969 		case DLT_EN10MB:
6970 			return gen_ehostop(ebroadcast, Q_DST);
6971 		case DLT_FDDI:
6972 			return gen_fhostop(ebroadcast, Q_DST);
6973 		case DLT_IEEE802:
6974 			return gen_thostop(ebroadcast, Q_DST);
6975 		case DLT_IEEE802_11:
6976 		case DLT_PRISM_HEADER:
6977 		case DLT_IEEE802_11_RADIO_AVS:
6978 		case DLT_IEEE802_11_RADIO:
6979 		case DLT_PPI:
6980 			return gen_wlanhostop(ebroadcast, Q_DST);
6981 		case DLT_IP_OVER_FC:
6982 			return gen_ipfchostop(ebroadcast, Q_DST);
6983 		case DLT_SUNATM:
6984 			if (is_lane) {
6985 				/*
6986 				 * Check that the packet doesn't begin with an
6987 				 * LE Control marker.  (We've already generated
6988 				 * a test for LANE.)
6989 				 */
6990 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6991 				    BPF_H, 0xFF00);
6992 				gen_not(b1);
6993 
6994 				/*
6995 				 * Now check the MAC address.
6996 				 */
6997 				b0 = gen_ehostop(ebroadcast, Q_DST);
6998 				gen_and(b1, b0);
6999 				return b0;
7000 			}
7001 			break;
7002 		default:
7003 			bpf_error("not a broadcast link");
7004 		}
7005 		break;
7006 
7007 	case Q_IP:
7008 		b0 = gen_linktype(ETHERTYPE_IP);
7009 		hostmask = ~netmask;
7010 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7011 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7012 			      (bpf_int32)(~0 & hostmask), hostmask);
7013 		gen_or(b1, b2);
7014 		gen_and(b0, b2);
7015 		return b2;
7016 	}
7017 	bpf_error("only link-layer/IP broadcast filters supported");
7018 	/* NOTREACHED */
7019 	return NULL;
7020 }
7021 
7022 /*
7023  * Generate code to test the low-order bit of a MAC address (that's
7024  * the bottom bit of the *first* byte).
7025  */
7026 static struct block *
7027 gen_mac_multicast(offset)
7028 	int offset;
7029 {
7030 	register struct block *b0;
7031 	register struct slist *s;
7032 
7033 	/* link[offset] & 1 != 0 */
7034 	s = gen_load_a(OR_LINK, offset, BPF_B);
7035 	b0 = new_block(JMP(BPF_JSET));
7036 	b0->s.k = 1;
7037 	b0->stmts = s;
7038 	return b0;
7039 }
7040 
7041 struct block *
7042 gen_multicast(proto)
7043 	int proto;
7044 {
7045 	register struct block *b0, *b1, *b2;
7046 	register struct slist *s;
7047 
7048 	switch (proto) {
7049 
7050 	case Q_DEFAULT:
7051 	case Q_LINK:
7052 		switch (linktype) {
7053 		case DLT_ARCNET:
7054 		case DLT_ARCNET_LINUX:
7055 			/* all ARCnet multicasts use the same address */
7056 			return gen_ahostop(abroadcast, Q_DST);
7057 		case DLT_EN10MB:
7058 			/* ether[0] & 1 != 0 */
7059 			return gen_mac_multicast(0);
7060 		case DLT_FDDI:
7061 			/*
7062 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7063 			 *
7064 			 * XXX - was that referring to bit-order issues?
7065 			 */
7066 			/* fddi[1] & 1 != 0 */
7067 			return gen_mac_multicast(1);
7068 		case DLT_IEEE802:
7069 			/* tr[2] & 1 != 0 */
7070 			return gen_mac_multicast(2);
7071 		case DLT_IEEE802_11:
7072 		case DLT_PRISM_HEADER:
7073 		case DLT_IEEE802_11_RADIO_AVS:
7074 		case DLT_IEEE802_11_RADIO:
7075 		case DLT_PPI:
7076 			/*
7077 			 * Oh, yuk.
7078 			 *
7079 			 *	For control frames, there is no DA.
7080 			 *
7081 			 *	For management frames, DA is at an
7082 			 *	offset of 4 from the beginning of
7083 			 *	the packet.
7084 			 *
7085 			 *	For data frames, DA is at an offset
7086 			 *	of 4 from the beginning of the packet
7087 			 *	if To DS is clear and at an offset of
7088 			 *	16 from the beginning of the packet
7089 			 *	if To DS is set.
7090 			 */
7091 
7092 			/*
7093 			 * Generate the tests to be done for data frames.
7094 			 *
7095 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7096 			 */
7097 			s = gen_load_a(OR_LINK, 1, BPF_B);
7098 			b1 = new_block(JMP(BPF_JSET));
7099 			b1->s.k = 0x01;	/* To DS */
7100 			b1->stmts = s;
7101 
7102 			/*
7103 			 * If To DS is set, the DA is at 16.
7104 			 */
7105 			b0 = gen_mac_multicast(16);
7106 			gen_and(b1, b0);
7107 
7108 			/*
7109 			 * Now, check for To DS not set, i.e. check
7110 			 * "!(link[1] & 0x01)".
7111 			 */
7112 			s = gen_load_a(OR_LINK, 1, BPF_B);
7113 			b2 = new_block(JMP(BPF_JSET));
7114 			b2->s.k = 0x01;	/* To DS */
7115 			b2->stmts = s;
7116 			gen_not(b2);
7117 
7118 			/*
7119 			 * If To DS is not set, the DA is at 4.
7120 			 */
7121 			b1 = gen_mac_multicast(4);
7122 			gen_and(b2, b1);
7123 
7124 			/*
7125 			 * Now OR together the last two checks.  That gives
7126 			 * the complete set of checks for data frames.
7127 			 */
7128 			gen_or(b1, b0);
7129 
7130 			/*
7131 			 * Now check for a data frame.
7132 			 * I.e, check "link[0] & 0x08".
7133 			 */
7134 			s = gen_load_a(OR_LINK, 0, BPF_B);
7135 			b1 = new_block(JMP(BPF_JSET));
7136 			b1->s.k = 0x08;
7137 			b1->stmts = s;
7138 
7139 			/*
7140 			 * AND that with the checks done for data frames.
7141 			 */
7142 			gen_and(b1, b0);
7143 
7144 			/*
7145 			 * If the high-order bit of the type value is 0, this
7146 			 * is a management frame.
7147 			 * I.e, check "!(link[0] & 0x08)".
7148 			 */
7149 			s = gen_load_a(OR_LINK, 0, BPF_B);
7150 			b2 = new_block(JMP(BPF_JSET));
7151 			b2->s.k = 0x08;
7152 			b2->stmts = s;
7153 			gen_not(b2);
7154 
7155 			/*
7156 			 * For management frames, the DA is at 4.
7157 			 */
7158 			b1 = gen_mac_multicast(4);
7159 			gen_and(b2, b1);
7160 
7161 			/*
7162 			 * OR that with the checks done for data frames.
7163 			 * That gives the checks done for management and
7164 			 * data frames.
7165 			 */
7166 			gen_or(b1, b0);
7167 
7168 			/*
7169 			 * If the low-order bit of the type value is 1,
7170 			 * this is either a control frame or a frame
7171 			 * with a reserved type, and thus not a
7172 			 * frame with an SA.
7173 			 *
7174 			 * I.e., check "!(link[0] & 0x04)".
7175 			 */
7176 			s = gen_load_a(OR_LINK, 0, BPF_B);
7177 			b1 = new_block(JMP(BPF_JSET));
7178 			b1->s.k = 0x04;
7179 			b1->stmts = s;
7180 			gen_not(b1);
7181 
7182 			/*
7183 			 * AND that with the checks for data and management
7184 			 * frames.
7185 			 */
7186 			gen_and(b1, b0);
7187 			return b0;
7188 		case DLT_IP_OVER_FC:
7189 			b0 = gen_mac_multicast(2);
7190 			return b0;
7191 		case DLT_SUNATM:
7192 			if (is_lane) {
7193 				/*
7194 				 * Check that the packet doesn't begin with an
7195 				 * LE Control marker.  (We've already generated
7196 				 * a test for LANE.)
7197 				 */
7198 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7199 				    BPF_H, 0xFF00);
7200 				gen_not(b1);
7201 
7202 				/* ether[off_mac] & 1 != 0 */
7203 				b0 = gen_mac_multicast(off_mac);
7204 				gen_and(b1, b0);
7205 				return b0;
7206 			}
7207 			break;
7208 		default:
7209 			break;
7210 		}
7211 		/* Link not known to support multicasts */
7212 		break;
7213 
7214 	case Q_IP:
7215 		b0 = gen_linktype(ETHERTYPE_IP);
7216 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7217 		gen_and(b0, b1);
7218 		return b1;
7219 
7220 #ifdef INET6
7221 	case Q_IPV6:
7222 		b0 = gen_linktype(ETHERTYPE_IPV6);
7223 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7224 		gen_and(b0, b1);
7225 		return b1;
7226 #endif /* INET6 */
7227 	}
7228 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7229 	/* NOTREACHED */
7230 	return NULL;
7231 }
7232 
7233 /*
7234  * generate command for inbound/outbound.  It's here so we can
7235  * make it link-type specific.  'dir' = 0 implies "inbound",
7236  * = 1 implies "outbound".
7237  */
7238 struct block *
7239 gen_inbound(dir)
7240 	int dir;
7241 {
7242 	register struct block *b0;
7243 
7244 	/*
7245 	 * Only some data link types support inbound/outbound qualifiers.
7246 	 */
7247 	switch (linktype) {
7248 	case DLT_SLIP:
7249 		b0 = gen_relation(BPF_JEQ,
7250 			  gen_load(Q_LINK, gen_loadi(0), 1),
7251 			  gen_loadi(0),
7252 			  dir);
7253 		break;
7254 
7255 	case DLT_LINUX_SLL:
7256 		if (dir) {
7257 			/*
7258 			 * Match packets sent by this machine.
7259 			 */
7260 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7261 		} else {
7262 			/*
7263 			 * Match packets sent to this machine.
7264 			 * (No broadcast or multicast packets, or
7265 			 * packets sent to some other machine and
7266 			 * received promiscuously.)
7267 			 *
7268 			 * XXX - packets sent to other machines probably
7269 			 * shouldn't be matched, but what about broadcast
7270 			 * or multicast packets we received?
7271 			 */
7272 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
7273 		}
7274 		break;
7275 
7276 #ifdef HAVE_NET_PFVAR_H
7277 	case DLT_PFLOG:
7278 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7279 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7280 		break;
7281 #endif
7282 
7283 	case DLT_PPP_PPPD:
7284 		if (dir) {
7285 			/* match outgoing packets */
7286 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7287 		} else {
7288 			/* match incoming packets */
7289 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7290 		}
7291 		break;
7292 
7293         case DLT_JUNIPER_MFR:
7294         case DLT_JUNIPER_MLFR:
7295         case DLT_JUNIPER_MLPPP:
7296 	case DLT_JUNIPER_ATM1:
7297 	case DLT_JUNIPER_ATM2:
7298 	case DLT_JUNIPER_PPPOE:
7299 	case DLT_JUNIPER_PPPOE_ATM:
7300         case DLT_JUNIPER_GGSN:
7301         case DLT_JUNIPER_ES:
7302         case DLT_JUNIPER_MONITOR:
7303         case DLT_JUNIPER_SERVICES:
7304         case DLT_JUNIPER_ETHER:
7305         case DLT_JUNIPER_PPP:
7306         case DLT_JUNIPER_FRELAY:
7307         case DLT_JUNIPER_CHDLC:
7308         case DLT_JUNIPER_VP:
7309         case DLT_JUNIPER_ST:
7310         case DLT_JUNIPER_ISM:
7311 		/* juniper flags (including direction) are stored
7312 		 * the byte after the 3-byte magic number */
7313 		if (dir) {
7314 			/* match outgoing packets */
7315 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7316 		} else {
7317 			/* match incoming packets */
7318 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7319 		}
7320 		break;
7321 
7322 	default:
7323 		bpf_error("inbound/outbound not supported on linktype %d",
7324 		    linktype);
7325 		b0 = NULL;
7326 		/* NOTREACHED */
7327 	}
7328 	return (b0);
7329 }
7330 
7331 #ifdef HAVE_NET_PFVAR_H
7332 /* PF firewall log matched interface */
7333 struct block *
7334 gen_pf_ifname(const char *ifname)
7335 {
7336 	struct block *b0;
7337 	u_int len, off;
7338 
7339 	if (linktype != DLT_PFLOG) {
7340 		bpf_error("ifname supported only on PF linktype");
7341 		/* NOTREACHED */
7342 	}
7343 	len = sizeof(((struct pfloghdr *)0)->ifname);
7344 	off = offsetof(struct pfloghdr, ifname);
7345 	if (strlen(ifname) >= len) {
7346 		bpf_error("ifname interface names can only be %d characters",
7347 		    len-1);
7348 		/* NOTREACHED */
7349 	}
7350 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7351 	return (b0);
7352 }
7353 
7354 /* PF firewall log ruleset name */
7355 struct block *
7356 gen_pf_ruleset(char *ruleset)
7357 {
7358 	struct block *b0;
7359 
7360 	if (linktype != DLT_PFLOG) {
7361 		bpf_error("ruleset supported only on PF linktype");
7362 		/* NOTREACHED */
7363 	}
7364 
7365 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7366 		bpf_error("ruleset names can only be %ld characters",
7367 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7368 		/* NOTREACHED */
7369 	}
7370 
7371 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7372 	    strlen(ruleset), (const u_char *)ruleset);
7373 	return (b0);
7374 }
7375 
7376 /* PF firewall log rule number */
7377 struct block *
7378 gen_pf_rnr(int rnr)
7379 {
7380 	struct block *b0;
7381 
7382 	if (linktype != DLT_PFLOG) {
7383 		bpf_error("rnr supported only on PF linktype");
7384 		/* NOTREACHED */
7385 	}
7386 
7387 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7388 		 (bpf_int32)rnr);
7389 	return (b0);
7390 }
7391 
7392 /* PF firewall log sub-rule number */
7393 struct block *
7394 gen_pf_srnr(int srnr)
7395 {
7396 	struct block *b0;
7397 
7398 	if (linktype != DLT_PFLOG) {
7399 		bpf_error("srnr supported only on PF linktype");
7400 		/* NOTREACHED */
7401 	}
7402 
7403 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7404 	    (bpf_int32)srnr);
7405 	return (b0);
7406 }
7407 
7408 /* PF firewall log reason code */
7409 struct block *
7410 gen_pf_reason(int reason)
7411 {
7412 	struct block *b0;
7413 
7414 	if (linktype != DLT_PFLOG) {
7415 		bpf_error("reason supported only on PF linktype");
7416 		/* NOTREACHED */
7417 	}
7418 
7419 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7420 	    (bpf_int32)reason);
7421 	return (b0);
7422 }
7423 
7424 /* PF firewall log action */
7425 struct block *
7426 gen_pf_action(int action)
7427 {
7428 	struct block *b0;
7429 
7430 	if (linktype != DLT_PFLOG) {
7431 		bpf_error("action supported only on PF linktype");
7432 		/* NOTREACHED */
7433 	}
7434 
7435 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7436 	    (bpf_int32)action);
7437 	return (b0);
7438 }
7439 #else /* !HAVE_NET_PFVAR_H */
7440 struct block *
7441 gen_pf_ifname(const char *ifname)
7442 {
7443 	bpf_error("libpcap was compiled without pf support");
7444 	/* NOTREACHED */
7445 	return (NULL);
7446 }
7447 
7448 struct block *
7449 gen_pf_ruleset(char *ruleset)
7450 {
7451 	bpf_error("libpcap was compiled on a machine without pf support");
7452 	/* NOTREACHED */
7453 	return (NULL);
7454 }
7455 
7456 struct block *
7457 gen_pf_rnr(int rnr)
7458 {
7459 	bpf_error("libpcap was compiled on a machine without pf support");
7460 	/* NOTREACHED */
7461 	return (NULL);
7462 }
7463 
7464 struct block *
7465 gen_pf_srnr(int srnr)
7466 {
7467 	bpf_error("libpcap was compiled on a machine without pf support");
7468 	/* NOTREACHED */
7469 	return (NULL);
7470 }
7471 
7472 struct block *
7473 gen_pf_reason(int reason)
7474 {
7475 	bpf_error("libpcap was compiled on a machine without pf support");
7476 	/* NOTREACHED */
7477 	return (NULL);
7478 }
7479 
7480 struct block *
7481 gen_pf_action(int action)
7482 {
7483 	bpf_error("libpcap was compiled on a machine without pf support");
7484 	/* NOTREACHED */
7485 	return (NULL);
7486 }
7487 #endif /* HAVE_NET_PFVAR_H */
7488 
7489 /* IEEE 802.11 wireless header */
7490 struct block *
7491 gen_p80211_type(int type, int mask)
7492 {
7493 	struct block *b0;
7494 
7495 	switch (linktype) {
7496 
7497 	case DLT_IEEE802_11:
7498 	case DLT_PRISM_HEADER:
7499 	case DLT_IEEE802_11_RADIO_AVS:
7500 	case DLT_IEEE802_11_RADIO:
7501 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7502 		    (bpf_int32)mask);
7503 		break;
7504 
7505 	default:
7506 		bpf_error("802.11 link-layer types supported only on 802.11");
7507 		/* NOTREACHED */
7508 	}
7509 
7510 	return (b0);
7511 }
7512 
7513 struct block *
7514 gen_p80211_fcdir(int fcdir)
7515 {
7516 	struct block *b0;
7517 
7518 	switch (linktype) {
7519 
7520 	case DLT_IEEE802_11:
7521 	case DLT_PRISM_HEADER:
7522 	case DLT_IEEE802_11_RADIO_AVS:
7523 	case DLT_IEEE802_11_RADIO:
7524 		break;
7525 
7526 	default:
7527 		bpf_error("frame direction supported only with 802.11 headers");
7528 		/* NOTREACHED */
7529 	}
7530 
7531 	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7532 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7533 
7534 	return (b0);
7535 }
7536 
7537 struct block *
7538 gen_acode(eaddr, q)
7539 	register const u_char *eaddr;
7540 	struct qual q;
7541 {
7542 	switch (linktype) {
7543 
7544 	case DLT_ARCNET:
7545 	case DLT_ARCNET_LINUX:
7546 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7547 		    q.proto == Q_LINK)
7548 			return (gen_ahostop(eaddr, (int)q.dir));
7549 		else {
7550 			bpf_error("ARCnet address used in non-arc expression");
7551 			/* NOTREACHED */
7552 		}
7553 		break;
7554 
7555 	default:
7556 		bpf_error("aid supported only on ARCnet");
7557 		/* NOTREACHED */
7558 	}
7559 	bpf_error("ARCnet address used in non-arc expression");
7560 	/* NOTREACHED */
7561 	return NULL;
7562 }
7563 
7564 static struct block *
7565 gen_ahostop(eaddr, dir)
7566 	register const u_char *eaddr;
7567 	register int dir;
7568 {
7569 	register struct block *b0, *b1;
7570 
7571 	switch (dir) {
7572 	/* src comes first, different from Ethernet */
7573 	case Q_SRC:
7574 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7575 
7576 	case Q_DST:
7577 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7578 
7579 	case Q_AND:
7580 		b0 = gen_ahostop(eaddr, Q_SRC);
7581 		b1 = gen_ahostop(eaddr, Q_DST);
7582 		gen_and(b0, b1);
7583 		return b1;
7584 
7585 	case Q_DEFAULT:
7586 	case Q_OR:
7587 		b0 = gen_ahostop(eaddr, Q_SRC);
7588 		b1 = gen_ahostop(eaddr, Q_DST);
7589 		gen_or(b0, b1);
7590 		return b1;
7591 	}
7592 	abort();
7593 	/* NOTREACHED */
7594 }
7595 
7596 /*
7597  * support IEEE 802.1Q VLAN trunk over ethernet
7598  */
7599 struct block *
7600 gen_vlan(vlan_num)
7601 	int vlan_num;
7602 {
7603 	struct	block	*b0, *b1;
7604 
7605 	/* can't check for VLAN-encapsulated packets inside MPLS */
7606 	if (label_stack_depth > 0)
7607 		bpf_error("no VLAN match after MPLS");
7608 
7609 	/*
7610 	 * Check for a VLAN packet, and then change the offsets to point
7611 	 * to the type and data fields within the VLAN packet.  Just
7612 	 * increment the offsets, so that we can support a hierarchy, e.g.
7613 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7614 	 * VLAN 100.
7615 	 *
7616 	 * XXX - this is a bit of a kludge.  If we were to split the
7617 	 * compiler into a parser that parses an expression and
7618 	 * generates an expression tree, and a code generator that
7619 	 * takes an expression tree (which could come from our
7620 	 * parser or from some other parser) and generates BPF code,
7621 	 * we could perhaps make the offsets parameters of routines
7622 	 * and, in the handler for an "AND" node, pass to subnodes
7623 	 * other than the VLAN node the adjusted offsets.
7624 	 *
7625 	 * This would mean that "vlan" would, instead of changing the
7626 	 * behavior of *all* tests after it, change only the behavior
7627 	 * of tests ANDed with it.  That would change the documented
7628 	 * semantics of "vlan", which might break some expressions.
7629 	 * However, it would mean that "(vlan and ip) or ip" would check
7630 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7631 	 * checking only for VLAN-encapsulated IP, so that could still
7632 	 * be considered worth doing; it wouldn't break expressions
7633 	 * that are of the form "vlan and ..." or "vlan N and ...",
7634 	 * which I suspect are the most common expressions involving
7635 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7636 	 * would really want, now, as all the "or ..." tests would
7637 	 * be done assuming a VLAN, even though the "or" could be viewed
7638 	 * as meaning "or, if this isn't a VLAN packet...".
7639 	 */
7640 	orig_nl = off_nl;
7641 
7642 	switch (linktype) {
7643 
7644 	case DLT_EN10MB:
7645 		/* check for VLAN */
7646 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7647 		    (bpf_int32)ETHERTYPE_8021Q);
7648 
7649 		/* If a specific VLAN is requested, check VLAN id */
7650 		if (vlan_num >= 0) {
7651 			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7652 			    (bpf_int32)vlan_num, 0x0fff);
7653 			gen_and(b0, b1);
7654 			b0 = b1;
7655 		}
7656 
7657 		off_macpl += 4;
7658 		off_linktype += 4;
7659 #if 0
7660 		off_nl_nosnap += 4;
7661 		off_nl += 4;
7662 #endif
7663 		break;
7664 
7665 	default:
7666 		bpf_error("no VLAN support for data link type %d",
7667 		      linktype);
7668 		/*NOTREACHED*/
7669 	}
7670 
7671 	return (b0);
7672 }
7673 
7674 /*
7675  * support for MPLS
7676  */
7677 struct block *
7678 gen_mpls(label_num)
7679 	int label_num;
7680 {
7681 	struct	block	*b0,*b1;
7682 
7683 	/*
7684 	 * Change the offsets to point to the type and data fields within
7685 	 * the MPLS packet.  Just increment the offsets, so that we
7686 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7687 	 * capture packets with an outer label of 100000 and an inner
7688 	 * label of 1024.
7689 	 *
7690 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7691 	 */
7692         orig_nl = off_nl;
7693 
7694         if (label_stack_depth > 0) {
7695             /* just match the bottom-of-stack bit clear */
7696             b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7697         } else {
7698             /*
7699              * Indicate that we're checking MPLS-encapsulated headers,
7700              * to make sure higher level code generators don't try to
7701              * match against IP-related protocols such as Q_ARP, Q_RARP
7702              * etc.
7703              */
7704             switch (linktype) {
7705 
7706             case DLT_C_HDLC: /* fall through */
7707             case DLT_EN10MB:
7708                     b0 = gen_linktype(ETHERTYPE_MPLS);
7709                     break;
7710 
7711             case DLT_PPP:
7712                     b0 = gen_linktype(PPP_MPLS_UCAST);
7713                     break;
7714 
7715                     /* FIXME add other DLT_s ...
7716                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
7717                      * leave it for now */
7718 
7719             default:
7720                     bpf_error("no MPLS support for data link type %d",
7721                           linktype);
7722                     b0 = NULL;
7723                     /*NOTREACHED*/
7724                     break;
7725             }
7726         }
7727 
7728 	/* If a specific MPLS label is requested, check it */
7729 	if (label_num >= 0) {
7730 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
7731 		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
7732 		    0xfffff000); /* only compare the first 20 bits */
7733 		gen_and(b0, b1);
7734 		b0 = b1;
7735 	}
7736 
7737         off_nl_nosnap += 4;
7738         off_nl += 4;
7739         label_stack_depth++;
7740 	return (b0);
7741 }
7742 
7743 /*
7744  * Support PPPOE discovery and session.
7745  */
7746 struct block *
7747 gen_pppoed()
7748 {
7749 	/* check for PPPoE discovery */
7750 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
7751 }
7752 
7753 struct block *
7754 gen_pppoes()
7755 {
7756 	struct block *b0;
7757 
7758 	/*
7759 	 * Test against the PPPoE session link-layer type.
7760 	 */
7761 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
7762 
7763 	/*
7764 	 * Change the offsets to point to the type and data fields within
7765 	 * the PPP packet, and note that this is PPPoE rather than
7766 	 * raw PPP.
7767 	 *
7768 	 * XXX - this is a bit of a kludge.  If we were to split the
7769 	 * compiler into a parser that parses an expression and
7770 	 * generates an expression tree, and a code generator that
7771 	 * takes an expression tree (which could come from our
7772 	 * parser or from some other parser) and generates BPF code,
7773 	 * we could perhaps make the offsets parameters of routines
7774 	 * and, in the handler for an "AND" node, pass to subnodes
7775 	 * other than the PPPoE node the adjusted offsets.
7776 	 *
7777 	 * This would mean that "pppoes" would, instead of changing the
7778 	 * behavior of *all* tests after it, change only the behavior
7779 	 * of tests ANDed with it.  That would change the documented
7780 	 * semantics of "pppoes", which might break some expressions.
7781 	 * However, it would mean that "(pppoes and ip) or ip" would check
7782 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7783 	 * checking only for VLAN-encapsulated IP, so that could still
7784 	 * be considered worth doing; it wouldn't break expressions
7785 	 * that are of the form "pppoes and ..." which I suspect are the
7786 	 * most common expressions involving "pppoes".  "pppoes or ..."
7787 	 * doesn't necessarily do what the user would really want, now,
7788 	 * as all the "or ..." tests would be done assuming PPPoE, even
7789 	 * though the "or" could be viewed as meaning "or, if this isn't
7790 	 * a PPPoE packet...".
7791 	 */
7792 	orig_linktype = off_linktype;	/* save original values */
7793 	orig_nl = off_nl;
7794 	is_pppoes = 1;
7795 
7796 	/*
7797 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
7798 	 * PPPoE header, followed by a PPP packet.
7799 	 *
7800 	 * There is no HDLC encapsulation for the PPP packet (it's
7801 	 * encapsulated in PPPoES instead), so the link-layer type
7802 	 * starts at the first byte of the PPP packet.  For PPPoE,
7803 	 * that offset is relative to the beginning of the total
7804 	 * link-layer payload, including any 802.2 LLC header, so
7805 	 * it's 6 bytes past off_nl.
7806 	 */
7807 	off_linktype = off_nl + 6;
7808 
7809 	/*
7810 	 * The network-layer offsets are relative to the beginning
7811 	 * of the MAC-layer payload; that's past the 6-byte
7812 	 * PPPoE header and the 2-byte PPP header.
7813 	 */
7814 	off_nl = 6+2;
7815 	off_nl_nosnap = 6+2;
7816 
7817 	return b0;
7818 }
7819 
7820 struct block *
7821 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
7822 	int atmfield;
7823 	bpf_int32 jvalue;
7824 	bpf_u_int32 jtype;
7825 	int reverse;
7826 {
7827 	struct block *b0;
7828 
7829 	switch (atmfield) {
7830 
7831 	case A_VPI:
7832 		if (!is_atm)
7833 			bpf_error("'vpi' supported only on raw ATM");
7834 		if (off_vpi == (u_int)-1)
7835 			abort();
7836 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
7837 		    reverse, jvalue);
7838 		break;
7839 
7840 	case A_VCI:
7841 		if (!is_atm)
7842 			bpf_error("'vci' supported only on raw ATM");
7843 		if (off_vci == (u_int)-1)
7844 			abort();
7845 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
7846 		    reverse, jvalue);
7847 		break;
7848 
7849 	case A_PROTOTYPE:
7850 		if (off_proto == (u_int)-1)
7851 			abort();	/* XXX - this isn't on FreeBSD */
7852 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
7853 		    reverse, jvalue);
7854 		break;
7855 
7856 	case A_MSGTYPE:
7857 		if (off_payload == (u_int)-1)
7858 			abort();
7859 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
7860 		    0xffffffff, jtype, reverse, jvalue);
7861 		break;
7862 
7863 	case A_CALLREFTYPE:
7864 		if (!is_atm)
7865 			bpf_error("'callref' supported only on raw ATM");
7866 		if (off_proto == (u_int)-1)
7867 			abort();
7868 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
7869 		    jtype, reverse, jvalue);
7870 		break;
7871 
7872 	default:
7873 		abort();
7874 	}
7875 	return b0;
7876 }
7877 
7878 struct block *
7879 gen_atmtype_abbrev(type)
7880 	int type;
7881 {
7882 	struct block *b0, *b1;
7883 
7884 	switch (type) {
7885 
7886 	case A_METAC:
7887 		/* Get all packets in Meta signalling Circuit */
7888 		if (!is_atm)
7889 			bpf_error("'metac' supported only on raw ATM");
7890 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7891 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
7892 		gen_and(b0, b1);
7893 		break;
7894 
7895 	case A_BCC:
7896 		/* Get all packets in Broadcast Circuit*/
7897 		if (!is_atm)
7898 			bpf_error("'bcc' supported only on raw ATM");
7899 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7900 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
7901 		gen_and(b0, b1);
7902 		break;
7903 
7904 	case A_OAMF4SC:
7905 		/* Get all cells in Segment OAM F4 circuit*/
7906 		if (!is_atm)
7907 			bpf_error("'oam4sc' supported only on raw ATM");
7908 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7909 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
7910 		gen_and(b0, b1);
7911 		break;
7912 
7913 	case A_OAMF4EC:
7914 		/* Get all cells in End-to-End OAM F4 Circuit*/
7915 		if (!is_atm)
7916 			bpf_error("'oam4ec' supported only on raw ATM");
7917 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7918 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
7919 		gen_and(b0, b1);
7920 		break;
7921 
7922 	case A_SC:
7923 		/*  Get all packets in connection Signalling Circuit */
7924 		if (!is_atm)
7925 			bpf_error("'sc' supported only on raw ATM");
7926 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7927 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
7928 		gen_and(b0, b1);
7929 		break;
7930 
7931 	case A_ILMIC:
7932 		/* Get all packets in ILMI Circuit */
7933 		if (!is_atm)
7934 			bpf_error("'ilmic' supported only on raw ATM");
7935 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7936 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
7937 		gen_and(b0, b1);
7938 		break;
7939 
7940 	case A_LANE:
7941 		/* Get all LANE packets */
7942 		if (!is_atm)
7943 			bpf_error("'lane' supported only on raw ATM");
7944 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
7945 
7946 		/*
7947 		 * Arrange that all subsequent tests assume LANE
7948 		 * rather than LLC-encapsulated packets, and set
7949 		 * the offsets appropriately for LANE-encapsulated
7950 		 * Ethernet.
7951 		 *
7952 		 * "off_mac" is the offset of the Ethernet header,
7953 		 * which is 2 bytes past the ATM pseudo-header
7954 		 * (skipping the pseudo-header and 2-byte LE Client
7955 		 * field).  The other offsets are Ethernet offsets
7956 		 * relative to "off_mac".
7957 		 */
7958 		is_lane = 1;
7959 		off_mac = off_payload + 2;	/* MAC header */
7960 		off_linktype = off_mac + 12;
7961 		off_macpl = off_mac + 14;	/* Ethernet */
7962 		off_nl = 0;			/* Ethernet II */
7963 		off_nl_nosnap = 3;		/* 802.3+802.2 */
7964 		break;
7965 
7966 	case A_LLC:
7967 		/* Get all LLC-encapsulated packets */
7968 		if (!is_atm)
7969 			bpf_error("'llc' supported only on raw ATM");
7970 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
7971 		is_lane = 0;
7972 		break;
7973 
7974 	default:
7975 		abort();
7976 	}
7977 	return b1;
7978 }
7979 
7980 /*
7981  * Filtering for MTP2 messages based on li value
7982  * FISU, length is null
7983  * LSSU, length is 1 or 2
7984  * MSU, length is 3 or more
7985  */
7986 struct block *
7987 gen_mtp2type_abbrev(type)
7988 	int type;
7989 {
7990 	struct block *b0, *b1;
7991 
7992 	switch (type) {
7993 
7994 	case M_FISU:
7995 		if ( (linktype != DLT_MTP2) &&
7996 		     (linktype != DLT_ERF) &&
7997 		     (linktype != DLT_MTP2_WITH_PHDR) )
7998 			bpf_error("'fisu' supported only on MTP2");
7999 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8000 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8001 		break;
8002 
8003 	case M_LSSU:
8004 		if ( (linktype != DLT_MTP2) &&
8005 		     (linktype != DLT_ERF) &&
8006 		     (linktype != DLT_MTP2_WITH_PHDR) )
8007 			bpf_error("'lssu' supported only on MTP2");
8008 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8009 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8010 		gen_and(b1, b0);
8011 		break;
8012 
8013 	case M_MSU:
8014 		if ( (linktype != DLT_MTP2) &&
8015 		     (linktype != DLT_ERF) &&
8016 		     (linktype != DLT_MTP2_WITH_PHDR) )
8017 			bpf_error("'msu' supported only on MTP2");
8018 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8019 		break;
8020 
8021 	default:
8022 		abort();
8023 	}
8024 	return b0;
8025 }
8026 
8027 struct block *
8028 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8029 	int mtp3field;
8030 	bpf_u_int32 jvalue;
8031 	bpf_u_int32 jtype;
8032 	int reverse;
8033 {
8034 	struct block *b0;
8035 	bpf_u_int32 val1 , val2 , val3;
8036 
8037 	switch (mtp3field) {
8038 
8039 	case M_SIO:
8040 		if (off_sio == (u_int)-1)
8041 			bpf_error("'sio' supported only on SS7");
8042 		/* sio coded on 1 byte so max value 255 */
8043 		if(jvalue > 255)
8044 		        bpf_error("sio value %u too big; max value = 255",
8045 		            jvalue);
8046 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8047 		    (u_int)jtype, reverse, (u_int)jvalue);
8048 		break;
8049 
8050         case M_OPC:
8051 	        if (off_opc == (u_int)-1)
8052 			bpf_error("'opc' supported only on SS7");
8053 		/* opc coded on 14 bits so max value 16383 */
8054 		if (jvalue > 16383)
8055 		        bpf_error("opc value %u too big; max value = 16383",
8056 		            jvalue);
8057 		/* the following instructions are made to convert jvalue
8058 		 * to the form used to write opc in an ss7 message*/
8059 		val1 = jvalue & 0x00003c00;
8060 		val1 = val1 >>10;
8061 		val2 = jvalue & 0x000003fc;
8062 		val2 = val2 <<6;
8063 		val3 = jvalue & 0x00000003;
8064 		val3 = val3 <<22;
8065 		jvalue = val1 + val2 + val3;
8066 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8067 		    (u_int)jtype, reverse, (u_int)jvalue);
8068 		break;
8069 
8070 	case M_DPC:
8071 	        if (off_dpc == (u_int)-1)
8072 			bpf_error("'dpc' supported only on SS7");
8073 		/* dpc coded on 14 bits so max value 16383 */
8074 		if (jvalue > 16383)
8075 		        bpf_error("dpc value %u too big; max value = 16383",
8076 		            jvalue);
8077 		/* the following instructions are made to convert jvalue
8078 		 * to the forme used to write dpc in an ss7 message*/
8079 		val1 = jvalue & 0x000000ff;
8080 		val1 = val1 << 24;
8081 		val2 = jvalue & 0x00003f00;
8082 		val2 = val2 << 8;
8083 		jvalue = val1 + val2;
8084 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8085 		    (u_int)jtype, reverse, (u_int)jvalue);
8086 		break;
8087 
8088 	case M_SLS:
8089 	        if (off_sls == (u_int)-1)
8090 			bpf_error("'sls' supported only on SS7");
8091 		/* sls coded on 4 bits so max value 15 */
8092 		if (jvalue > 15)
8093 		         bpf_error("sls value %u too big; max value = 15",
8094 		             jvalue);
8095 		/* the following instruction is made to convert jvalue
8096 		 * to the forme used to write sls in an ss7 message*/
8097 		jvalue = jvalue << 4;
8098 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8099 		    (u_int)jtype,reverse, (u_int)jvalue);
8100 		break;
8101 
8102 	default:
8103 		abort();
8104 	}
8105 	return b0;
8106 }
8107 
8108 static struct block *
8109 gen_msg_abbrev(type)
8110 	int type;
8111 {
8112 	struct block *b1;
8113 
8114 	/*
8115 	 * Q.2931 signalling protocol messages for handling virtual circuits
8116 	 * establishment and teardown
8117 	 */
8118 	switch (type) {
8119 
8120 	case A_SETUP:
8121 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8122 		break;
8123 
8124 	case A_CALLPROCEED:
8125 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8126 		break;
8127 
8128 	case A_CONNECT:
8129 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8130 		break;
8131 
8132 	case A_CONNECTACK:
8133 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8134 		break;
8135 
8136 	case A_RELEASE:
8137 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8138 		break;
8139 
8140 	case A_RELEASE_DONE:
8141 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8142 		break;
8143 
8144 	default:
8145 		abort();
8146 	}
8147 	return b1;
8148 }
8149 
8150 struct block *
8151 gen_atmmulti_abbrev(type)
8152 	int type;
8153 {
8154 	struct block *b0, *b1;
8155 
8156 	switch (type) {
8157 
8158 	case A_OAM:
8159 		if (!is_atm)
8160 			bpf_error("'oam' supported only on raw ATM");
8161 		b1 = gen_atmmulti_abbrev(A_OAMF4);
8162 		break;
8163 
8164 	case A_OAMF4:
8165 		if (!is_atm)
8166 			bpf_error("'oamf4' supported only on raw ATM");
8167 		/* OAM F4 type */
8168 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8169 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8170 		gen_or(b0, b1);
8171 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8172 		gen_and(b0, b1);
8173 		break;
8174 
8175 	case A_CONNECTMSG:
8176 		/*
8177 		 * Get Q.2931 signalling messages for switched
8178 		 * virtual connection
8179 		 */
8180 		if (!is_atm)
8181 			bpf_error("'connectmsg' supported only on raw ATM");
8182 		b0 = gen_msg_abbrev(A_SETUP);
8183 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8184 		gen_or(b0, b1);
8185 		b0 = gen_msg_abbrev(A_CONNECT);
8186 		gen_or(b0, b1);
8187 		b0 = gen_msg_abbrev(A_CONNECTACK);
8188 		gen_or(b0, b1);
8189 		b0 = gen_msg_abbrev(A_RELEASE);
8190 		gen_or(b0, b1);
8191 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8192 		gen_or(b0, b1);
8193 		b0 = gen_atmtype_abbrev(A_SC);
8194 		gen_and(b0, b1);
8195 		break;
8196 
8197 	case A_METACONNECT:
8198 		if (!is_atm)
8199 			bpf_error("'metaconnect' supported only on raw ATM");
8200 		b0 = gen_msg_abbrev(A_SETUP);
8201 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8202 		gen_or(b0, b1);
8203 		b0 = gen_msg_abbrev(A_CONNECT);
8204 		gen_or(b0, b1);
8205 		b0 = gen_msg_abbrev(A_RELEASE);
8206 		gen_or(b0, b1);
8207 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8208 		gen_or(b0, b1);
8209 		b0 = gen_atmtype_abbrev(A_METAC);
8210 		gen_and(b0, b1);
8211 		break;
8212 
8213 	default:
8214 		abort();
8215 	}
8216 	return b1;
8217 }
8218