xref: /freebsd/contrib/libpcap/gencode.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /*
2  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that: (1) source code distributions
7  * retain the above copyright notice and this paragraph in its entirety, (2)
8  * distributions including binary code include the above copyright notice and
9  * this paragraph in its entirety in the documentation or other materials
10  * provided with the distribution, and (3) all advertising materials mentioning
11  * features or use of this software display the following acknowledgement:
12  * ``This product includes software developed by the University of California,
13  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14  * the University nor the names of its contributors may be used to endorse
15  * or promote products derived from this software without specific prior
16  * written permission.
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20  */
21 
22 #include <config.h>
23 
24 #ifdef _WIN32
25   #include <ws2tcpip.h>
26 #else
27   #include <sys/socket.h>
28 
29   #ifdef __NetBSD__
30     #include <sys/param.h>
31   #endif
32 
33   #include <netinet/in.h>
34   #include <arpa/inet.h>
35 #endif /* _WIN32 */
36 
37 #include <stdlib.h>
38 #include <string.h>
39 #include <memory.h>
40 #include <setjmp.h>
41 #include <stdarg.h>
42 #include <stdio.h>
43 
44 #ifdef MSDOS
45 #include "pcap-dos.h"
46 #endif
47 
48 #include "pcap-int.h"
49 
50 #include "extract.h"
51 
52 #include "ethertype.h"
53 #include "nlpid.h"
54 #include "llc.h"
55 #include "gencode.h"
56 #include "ieee80211.h"
57 #include "atmuni31.h"
58 #include "sunatmpos.h"
59 #include "pflog.h"
60 #include "ppp.h"
61 #include "pcap/sll.h"
62 #include "pcap/ipnet.h"
63 #include "arcnet.h"
64 #include "diag-control.h"
65 
66 #include "scanner.h"
67 
68 #if defined(__linux__)
69 #include <linux/types.h>
70 #include <linux/if_packet.h>
71 #include <linux/filter.h>
72 #endif
73 
74 #ifndef offsetof
75 #define offsetof(s, e) ((size_t)&((s *)0)->e)
76 #endif
77 
78 #ifdef _WIN32
79   #ifdef INET6
80     #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
81 /* IPv6 address */
82 struct in6_addr
83   {
84     union
85       {
86 	uint8_t		u6_addr8[16];
87 	uint16_t	u6_addr16[8];
88 	uint32_t	u6_addr32[4];
89       } in6_u;
90 #define s6_addr			in6_u.u6_addr8
91 #define s6_addr16		in6_u.u6_addr16
92 #define s6_addr32		in6_u.u6_addr32
93 #define s6_addr64		in6_u.u6_addr64
94   };
95 
96 typedef unsigned short	sa_family_t;
97 
98 #define	__SOCKADDR_COMMON(sa_prefix) \
99   sa_family_t sa_prefix##family
100 
101 /* Ditto, for IPv6.  */
102 struct sockaddr_in6
103   {
104     __SOCKADDR_COMMON (sin6_);
105     uint16_t sin6_port;		/* Transport layer port # */
106     uint32_t sin6_flowinfo;	/* IPv6 flow information */
107     struct in6_addr sin6_addr;	/* IPv6 address */
108   };
109 
110       #ifndef EAI_ADDRFAMILY
111 struct addrinfo {
112 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */
113 	int	ai_family;	/* PF_xxx */
114 	int	ai_socktype;	/* SOCK_xxx */
115 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */
116 	size_t	ai_addrlen;	/* length of ai_addr */
117 	char	*ai_canonname;	/* canonical name for hostname */
118 	struct sockaddr *ai_addr;	/* binary address */
119 	struct addrinfo *ai_next;	/* next structure in linked list */
120 };
121       #endif /* EAI_ADDRFAMILY */
122     #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
123   #endif /* INET6 */
124 #else /* _WIN32 */
125   #include <netdb.h>	/* for "struct addrinfo" */
126 #endif /* _WIN32 */
127 #include <pcap/namedb.h>
128 
129 #include "nametoaddr.h"
130 
131 #define ETHERMTU	1500
132 
133 #ifndef IPPROTO_HOPOPTS
134 #define IPPROTO_HOPOPTS 0
135 #endif
136 #ifndef IPPROTO_ROUTING
137 #define IPPROTO_ROUTING 43
138 #endif
139 #ifndef IPPROTO_FRAGMENT
140 #define IPPROTO_FRAGMENT 44
141 #endif
142 #ifndef IPPROTO_DSTOPTS
143 #define IPPROTO_DSTOPTS 60
144 #endif
145 #ifndef IPPROTO_SCTP
146 #define IPPROTO_SCTP 132
147 #endif
148 
149 #define GENEVE_PORT 6081
150 
151 #ifdef HAVE_OS_PROTO_H
152 #include "os-proto.h"
153 #endif
154 
155 #define JMP(c) ((c)|BPF_JMP|BPF_K)
156 
157 /*
158  * "Push" the current value of the link-layer header type and link-layer
159  * header offset onto a "stack", and set a new value.  (It's not a
160  * full-blown stack; we keep only the top two items.)
161  */
162 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
163 { \
164 	(cs)->prevlinktype = (cs)->linktype; \
165 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
166 	(cs)->linktype = (new_linktype); \
167 	(cs)->off_linkhdr.is_variable = (new_is_variable); \
168 	(cs)->off_linkhdr.constant_part = (new_constant_part); \
169 	(cs)->off_linkhdr.reg = (new_reg); \
170 	(cs)->is_geneve = 0; \
171 }
172 
173 /*
174  * Offset "not set" value.
175  */
176 #define OFFSET_NOT_SET	0xffffffffU
177 
178 /*
179  * Absolute offsets, which are offsets from the beginning of the raw
180  * packet data, are, in the general case, the sum of a variable value
181  * and a constant value; the variable value may be absent, in which
182  * case the offset is only the constant value, and the constant value
183  * may be zero, in which case the offset is only the variable value.
184  *
185  * bpf_abs_offset is a structure containing all that information:
186  *
187  *   is_variable is 1 if there's a variable part.
188  *
189  *   constant_part is the constant part of the value, possibly zero;
190  *
191  *   if is_variable is 1, reg is the register number for a register
192  *   containing the variable value if the register has been assigned,
193  *   and -1 otherwise.
194  */
195 typedef struct {
196 	int	is_variable;
197 	u_int	constant_part;
198 	int	reg;
199 } bpf_abs_offset;
200 
201 /*
202  * Value passed to gen_load_a() to indicate what the offset argument
203  * is relative to the beginning of.
204  */
205 enum e_offrel {
206 	OR_PACKET,		/* full packet data */
207 	OR_LINKHDR,		/* link-layer header */
208 	OR_PREVLINKHDR,		/* previous link-layer header */
209 	OR_LLC,			/* 802.2 LLC header */
210 	OR_PREVMPLSHDR,		/* previous MPLS header */
211 	OR_LINKTYPE,		/* link-layer type */
212 	OR_LINKPL,		/* link-layer payload */
213 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
214 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
215 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
216 };
217 
218 /*
219  * We divvy out chunks of memory rather than call malloc each time so
220  * we don't have to worry about leaking memory.  It's probably
221  * not a big deal if all this memory was wasted but if this ever
222  * goes into a library that would probably not be a good idea.
223  *
224  * XXX - this *is* in a library....
225  */
226 #define NCHUNKS 16
227 #define CHUNK0SIZE 1024
228 struct chunk {
229 	size_t n_left;
230 	void *m;
231 };
232 
233 /* Code generator state */
234 
235 struct _compiler_state {
236 	jmp_buf top_ctx;
237 	pcap_t *bpf_pcap;
238 	int error_set;
239 
240 	struct icode ic;
241 
242 	int snaplen;
243 
244 	int linktype;
245 	int prevlinktype;
246 	int outermostlinktype;
247 
248 	bpf_u_int32 netmask;
249 	int no_optimize;
250 
251 	/* Hack for handling VLAN and MPLS stacks. */
252 	u_int label_stack_depth;
253 	u_int vlan_stack_depth;
254 
255 	/* XXX */
256 	u_int pcap_fddipad;
257 
258 	/*
259 	 * As errors are handled by a longjmp, anything allocated must
260 	 * be freed in the longjmp handler, so it must be reachable
261 	 * from that handler.
262 	 *
263 	 * One thing that's allocated is the result of pcap_nametoaddrinfo();
264 	 * it must be freed with freeaddrinfo().  This variable points to
265 	 * any addrinfo structure that would need to be freed.
266 	 */
267 	struct addrinfo *ai;
268 
269 	/*
270 	 * Another thing that's allocated is the result of pcap_ether_aton();
271 	 * it must be freed with free().  This variable points to any
272 	 * address that would need to be freed.
273 	 */
274 	u_char *e;
275 
276 	/*
277 	 * Various code constructs need to know the layout of the packet.
278 	 * These values give the necessary offsets from the beginning
279 	 * of the packet data.
280 	 */
281 
282 	/*
283 	 * Absolute offset of the beginning of the link-layer header.
284 	 */
285 	bpf_abs_offset off_linkhdr;
286 
287 	/*
288 	 * If we're checking a link-layer header for a packet encapsulated
289 	 * in another protocol layer, this is the equivalent information
290 	 * for the previous layers' link-layer header from the beginning
291 	 * of the raw packet data.
292 	 */
293 	bpf_abs_offset off_prevlinkhdr;
294 
295 	/*
296 	 * This is the equivalent information for the outermost layers'
297 	 * link-layer header.
298 	 */
299 	bpf_abs_offset off_outermostlinkhdr;
300 
301 	/*
302 	 * Absolute offset of the beginning of the link-layer payload.
303 	 */
304 	bpf_abs_offset off_linkpl;
305 
306 	/*
307 	 * "off_linktype" is the offset to information in the link-layer
308 	 * header giving the packet type. This is an absolute offset
309 	 * from the beginning of the packet.
310 	 *
311 	 * For Ethernet, it's the offset of the Ethernet type field; this
312 	 * means that it must have a value that skips VLAN tags.
313 	 *
314 	 * For link-layer types that always use 802.2 headers, it's the
315 	 * offset of the LLC header; this means that it must have a value
316 	 * that skips VLAN tags.
317 	 *
318 	 * For PPP, it's the offset of the PPP type field.
319 	 *
320 	 * For Cisco HDLC, it's the offset of the CHDLC type field.
321 	 *
322 	 * For BSD loopback, it's the offset of the AF_ value.
323 	 *
324 	 * For Linux cooked sockets, it's the offset of the type field.
325 	 *
326 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
327 	 * encapsulation, in which case, IP is assumed.
328 	 */
329 	bpf_abs_offset off_linktype;
330 
331 	/*
332 	 * TRUE if the link layer includes an ATM pseudo-header.
333 	 */
334 	int is_atm;
335 
336 	/*
337 	 * TRUE if "geneve" appeared in the filter; it causes us to
338 	 * generate code that checks for a Geneve header and assume
339 	 * that later filters apply to the encapsulated payload.
340 	 */
341 	int is_geneve;
342 
343 	/*
344 	 * TRUE if we need variable length part of VLAN offset
345 	 */
346 	int is_vlan_vloffset;
347 
348 	/*
349 	 * These are offsets for the ATM pseudo-header.
350 	 */
351 	u_int off_vpi;
352 	u_int off_vci;
353 	u_int off_proto;
354 
355 	/*
356 	 * These are offsets for the MTP2 fields.
357 	 */
358 	u_int off_li;
359 	u_int off_li_hsl;
360 
361 	/*
362 	 * These are offsets for the MTP3 fields.
363 	 */
364 	u_int off_sio;
365 	u_int off_opc;
366 	u_int off_dpc;
367 	u_int off_sls;
368 
369 	/*
370 	 * This is the offset of the first byte after the ATM pseudo_header,
371 	 * or -1 if there is no ATM pseudo-header.
372 	 */
373 	u_int off_payload;
374 
375 	/*
376 	 * These are offsets to the beginning of the network-layer header.
377 	 * They are relative to the beginning of the link-layer payload
378 	 * (i.e., they don't include off_linkhdr.constant_part or
379 	 * off_linkpl.constant_part).
380 	 *
381 	 * If the link layer never uses 802.2 LLC:
382 	 *
383 	 *	"off_nl" and "off_nl_nosnap" are the same.
384 	 *
385 	 * If the link layer always uses 802.2 LLC:
386 	 *
387 	 *	"off_nl" is the offset if there's a SNAP header following
388 	 *	the 802.2 header;
389 	 *
390 	 *	"off_nl_nosnap" is the offset if there's no SNAP header.
391 	 *
392 	 * If the link layer is Ethernet:
393 	 *
394 	 *	"off_nl" is the offset if the packet is an Ethernet II packet
395 	 *	(we assume no 802.3+802.2+SNAP);
396 	 *
397 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
398 	 *	with an 802.2 header following it.
399 	 */
400 	u_int off_nl;
401 	u_int off_nl_nosnap;
402 
403 	/*
404 	 * Here we handle simple allocation of the scratch registers.
405 	 * If too many registers are alloc'd, the allocator punts.
406 	 */
407 	int regused[BPF_MEMWORDS];
408 	int curreg;
409 
410 	/*
411 	 * Memory chunks.
412 	 */
413 	struct chunk chunks[NCHUNKS];
414 	int cur_chunk;
415 };
416 
417 /*
418  * For use by routines outside this file.
419  */
420 /* VARARGS */
421 void
422 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
423 {
424 	va_list ap;
425 
426 	/*
427 	 * If we've already set an error, don't override it.
428 	 * The lexical analyzer reports some errors by setting
429 	 * the error and then returning a LEX_ERROR token, which
430 	 * is not recognized by any grammar rule, and thus forces
431 	 * the parse to stop.  We don't want the error reported
432 	 * by the lexical analyzer to be overwritten by the syntax
433 	 * error.
434 	 */
435 	if (!cstate->error_set) {
436 		va_start(ap, fmt);
437 		(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
438 		    fmt, ap);
439 		va_end(ap);
440 		cstate->error_set = 1;
441 	}
442 }
443 
444 /*
445  * For use *ONLY* in routines in this file.
446  */
447 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
448     PCAP_PRINTFLIKE(2, 3);
449 
450 /* VARARGS */
451 static void PCAP_NORETURN
452 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
453 {
454 	va_list ap;
455 
456 	va_start(ap, fmt);
457 	(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
458 	    fmt, ap);
459 	va_end(ap);
460 	longjmp(cstate->top_ctx, 1);
461 	/*NOTREACHED*/
462 #ifdef _AIX
463 	PCAP_UNREACHABLE
464 #endif /* _AIX */
465 }
466 
467 static int init_linktype(compiler_state_t *, pcap_t *);
468 
469 static void init_regs(compiler_state_t *);
470 static int alloc_reg(compiler_state_t *);
471 static void free_reg(compiler_state_t *, int);
472 
473 static void initchunks(compiler_state_t *cstate);
474 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
475 static void *newchunk(compiler_state_t *cstate, size_t);
476 static void freechunks(compiler_state_t *cstate);
477 static inline struct block *new_block(compiler_state_t *cstate, int);
478 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
479 static struct block *gen_retblk(compiler_state_t *cstate, int);
480 static inline void syntax(compiler_state_t *cstate);
481 
482 static void backpatch(struct block *, struct block *);
483 static void merge(struct block *, struct block *);
484 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
485     u_int, bpf_u_int32);
486 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
487     u_int, bpf_u_int32);
488 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
489     u_int, bpf_u_int32);
490 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
491     u_int, bpf_u_int32);
492 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
493     u_int, bpf_u_int32);
494 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
495     u_int, bpf_u_int32, bpf_u_int32);
496 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
497     u_int, const u_char *);
498 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
499     u_int, bpf_u_int32, int, int, bpf_u_int32);
500 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
501     u_int, u_int);
502 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
503     u_int);
504 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
505 static struct block *gen_uncond(compiler_state_t *, int);
506 static inline struct block *gen_true(compiler_state_t *);
507 static inline struct block *gen_false(compiler_state_t *);
508 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
509 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
510 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
511 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
512 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
513 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
514 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
515 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
516 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
517 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
518     bpf_abs_offset *);
519 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
520 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
521 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
522 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
523 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
524     int, bpf_u_int32, u_int, u_int);
525 #ifdef INET6
526 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
527     struct in6_addr *, int, bpf_u_int32, u_int, u_int);
528 #endif
529 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
530 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
531 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
532 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
533 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
534 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
535 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
536 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
537 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
538     int, int, int);
539 #ifdef INET6
540 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
541     struct in6_addr *, int, int, int);
542 #endif
543 #ifndef INET6
544 static struct block *gen_gateway(compiler_state_t *, const u_char *,
545     struct addrinfo *, int, int);
546 #endif
547 static struct block *gen_ipfrag(compiler_state_t *);
548 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
549 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
550     bpf_u_int32);
551 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
552 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
553     bpf_u_int32);
554 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
555 static struct block *gen_port(compiler_state_t *, u_int, int, int);
556 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
557     bpf_u_int32, int);
558 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
559 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
560 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
561 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
562     bpf_u_int32, int);
563 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
564 static int lookup_proto(compiler_state_t *, const char *, int);
565 #if !defined(NO_PROTOCHAIN)
566 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
567 #endif /* !defined(NO_PROTOCHAIN) */
568 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
569 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
570 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
571 static struct block *gen_mac_multicast(compiler_state_t *, int);
572 static struct block *gen_len(compiler_state_t *, int, int);
573 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
574 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
575 
576 static struct block *gen_ppi_dlt_check(compiler_state_t *);
577 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
578     bpf_u_int32, int, int);
579 static struct block *gen_atmtype_llc(compiler_state_t *);
580 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
581 
582 static void
583 initchunks(compiler_state_t *cstate)
584 {
585 	int i;
586 
587 	for (i = 0; i < NCHUNKS; i++) {
588 		cstate->chunks[i].n_left = 0;
589 		cstate->chunks[i].m = NULL;
590 	}
591 	cstate->cur_chunk = 0;
592 }
593 
594 static void *
595 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
596 {
597 	struct chunk *cp;
598 	int k;
599 	size_t size;
600 
601 #ifndef __NetBSD__
602 	/* XXX Round up to nearest long. */
603 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
604 #else
605 	/* XXX Round up to structure boundary. */
606 	n = ALIGN(n);
607 #endif
608 
609 	cp = &cstate->chunks[cstate->cur_chunk];
610 	if (n > cp->n_left) {
611 		++cp;
612 		k = ++cstate->cur_chunk;
613 		if (k >= NCHUNKS) {
614 			bpf_set_error(cstate, "out of memory");
615 			return (NULL);
616 		}
617 		size = CHUNK0SIZE << k;
618 		cp->m = (void *)malloc(size);
619 		if (cp->m == NULL) {
620 			bpf_set_error(cstate, "out of memory");
621 			return (NULL);
622 		}
623 		memset((char *)cp->m, 0, size);
624 		cp->n_left = size;
625 		if (n > size) {
626 			bpf_set_error(cstate, "out of memory");
627 			return (NULL);
628 		}
629 	}
630 	cp->n_left -= n;
631 	return (void *)((char *)cp->m + cp->n_left);
632 }
633 
634 static void *
635 newchunk(compiler_state_t *cstate, size_t n)
636 {
637 	void *p;
638 
639 	p = newchunk_nolongjmp(cstate, n);
640 	if (p == NULL) {
641 		longjmp(cstate->top_ctx, 1);
642 		/*NOTREACHED*/
643 	}
644 	return (p);
645 }
646 
647 static void
648 freechunks(compiler_state_t *cstate)
649 {
650 	int i;
651 
652 	for (i = 0; i < NCHUNKS; ++i)
653 		if (cstate->chunks[i].m != NULL)
654 			free(cstate->chunks[i].m);
655 }
656 
657 /*
658  * A strdup whose allocations are freed after code generation is over.
659  * This is used by the lexical analyzer, so it can't longjmp; it just
660  * returns NULL on an allocation error, and the callers must check
661  * for it.
662  */
663 char *
664 sdup(compiler_state_t *cstate, const char *s)
665 {
666 	size_t n = strlen(s) + 1;
667 	char *cp = newchunk_nolongjmp(cstate, n);
668 
669 	if (cp == NULL)
670 		return (NULL);
671 	pcapint_strlcpy(cp, s, n);
672 	return (cp);
673 }
674 
675 static inline struct block *
676 new_block(compiler_state_t *cstate, int code)
677 {
678 	struct block *p;
679 
680 	p = (struct block *)newchunk(cstate, sizeof(*p));
681 	p->s.code = code;
682 	p->head = p;
683 
684 	return p;
685 }
686 
687 static inline struct slist *
688 new_stmt(compiler_state_t *cstate, int code)
689 {
690 	struct slist *p;
691 
692 	p = (struct slist *)newchunk(cstate, sizeof(*p));
693 	p->s.code = code;
694 
695 	return p;
696 }
697 
698 static struct block *
699 gen_retblk(compiler_state_t *cstate, int v)
700 {
701 	struct block *b = new_block(cstate, BPF_RET|BPF_K);
702 
703 	b->s.k = v;
704 	return b;
705 }
706 
707 static inline PCAP_NORETURN_DEF void
708 syntax(compiler_state_t *cstate)
709 {
710 	bpf_error(cstate, "syntax error in filter expression");
711 }
712 
713 int
714 pcap_compile(pcap_t *p, struct bpf_program *program,
715 	     const char *buf, int optimize, bpf_u_int32 mask)
716 {
717 #ifdef _WIN32
718 	static int done = 0;
719 #endif
720 	compiler_state_t cstate;
721 	const char * volatile xbuf = buf;
722 	yyscan_t scanner = NULL;
723 	volatile YY_BUFFER_STATE in_buffer = NULL;
724 	u_int len;
725 	int rc;
726 
727 	/*
728 	 * If this pcap_t hasn't been activated, it doesn't have a
729 	 * link-layer type, so we can't use it.
730 	 */
731 	if (!p->activated) {
732 		(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
733 		    "not-yet-activated pcap_t passed to pcap_compile");
734 		return (PCAP_ERROR);
735 	}
736 
737 #ifdef _WIN32
738 	if (!done) {
739 		pcap_wsockinit();
740 		done = 1;
741 	}
742 #endif
743 
744 #ifdef ENABLE_REMOTE
745 	/*
746 	 * If the device on which we're capturing need to be notified
747 	 * that a new filter is being compiled, do so.
748 	 *
749 	 * This allows them to save a copy of it, in case, for example,
750 	 * they're implementing a form of remote packet capture, and
751 	 * want the remote machine to filter out the packets in which
752 	 * it's sending the packets it's captured.
753 	 *
754 	 * XXX - the fact that we happen to be compiling a filter
755 	 * doesn't necessarily mean we'll be installing it as the
756 	 * filter for this pcap_t; we might be running it from userland
757 	 * on captured packets to do packet classification.  We really
758 	 * need a better way of handling this, but this is all that
759 	 * the WinPcap remote capture code did.
760 	 */
761 	if (p->save_current_filter_op != NULL)
762 		(p->save_current_filter_op)(p, buf);
763 #endif
764 
765 	initchunks(&cstate);
766 	cstate.no_optimize = 0;
767 #ifdef INET6
768 	cstate.ai = NULL;
769 #endif
770 	cstate.e = NULL;
771 	cstate.ic.root = NULL;
772 	cstate.ic.cur_mark = 0;
773 	cstate.bpf_pcap = p;
774 	cstate.error_set = 0;
775 	init_regs(&cstate);
776 
777 	cstate.netmask = mask;
778 
779 	cstate.snaplen = pcap_snapshot(p);
780 	if (cstate.snaplen == 0) {
781 		(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
782 			 "snaplen of 0 rejects all packets");
783 		rc = PCAP_ERROR;
784 		goto quit;
785 	}
786 
787 	if (pcap_lex_init(&scanner) != 0) {
788 		pcapint_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
789 		    errno, "can't initialize scanner");
790 		rc = PCAP_ERROR;
791 		goto quit;
792 	}
793 	in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
794 
795 	/*
796 	 * Associate the compiler state with the lexical analyzer
797 	 * state.
798 	 */
799 	pcap_set_extra(&cstate, scanner);
800 
801 	if (init_linktype(&cstate, p) == -1) {
802 		rc = PCAP_ERROR;
803 		goto quit;
804 	}
805 	if (pcap_parse(scanner, &cstate) != 0) {
806 #ifdef INET6
807 		if (cstate.ai != NULL)
808 			freeaddrinfo(cstate.ai);
809 #endif
810 		if (cstate.e != NULL)
811 			free(cstate.e);
812 		rc = PCAP_ERROR;
813 		goto quit;
814 	}
815 
816 	if (cstate.ic.root == NULL) {
817 		/*
818 		 * Catch errors reported by gen_retblk().
819 		 */
820 		if (setjmp(cstate.top_ctx)) {
821 			rc = PCAP_ERROR;
822 			goto quit;
823 		}
824 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
825 	}
826 
827 	if (optimize && !cstate.no_optimize) {
828 		if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
829 			/* Failure */
830 			rc = PCAP_ERROR;
831 			goto quit;
832 		}
833 		if (cstate.ic.root == NULL ||
834 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
835 			(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
836 			    "expression rejects all packets");
837 			rc = PCAP_ERROR;
838 			goto quit;
839 		}
840 	}
841 	program->bf_insns = icode_to_fcode(&cstate.ic,
842 	    cstate.ic.root, &len, p->errbuf);
843 	if (program->bf_insns == NULL) {
844 		/* Failure */
845 		rc = PCAP_ERROR;
846 		goto quit;
847 	}
848 	program->bf_len = len;
849 
850 	rc = 0;  /* We're all okay */
851 
852 quit:
853 	/*
854 	 * Clean up everything for the lexical analyzer.
855 	 */
856 	if (in_buffer != NULL)
857 		pcap__delete_buffer(in_buffer, scanner);
858 	if (scanner != NULL)
859 		pcap_lex_destroy(scanner);
860 
861 	/*
862 	 * Clean up our own allocated memory.
863 	 */
864 	freechunks(&cstate);
865 
866 	return (rc);
867 }
868 
869 /*
870  * entry point for using the compiler with no pcap open
871  * pass in all the stuff that is needed explicitly instead.
872  */
873 int
874 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
875 		    struct bpf_program *program,
876 		    const char *buf, int optimize, bpf_u_int32 mask)
877 {
878 	pcap_t *p;
879 	int ret;
880 
881 	p = pcap_open_dead(linktype_arg, snaplen_arg);
882 	if (p == NULL)
883 		return (PCAP_ERROR);
884 	ret = pcap_compile(p, program, buf, optimize, mask);
885 	pcap_close(p);
886 	return (ret);
887 }
888 
889 /*
890  * Clean up a "struct bpf_program" by freeing all the memory allocated
891  * in it.
892  */
893 void
894 pcap_freecode(struct bpf_program *program)
895 {
896 	program->bf_len = 0;
897 	if (program->bf_insns != NULL) {
898 		free((char *)program->bf_insns);
899 		program->bf_insns = NULL;
900 	}
901 }
902 
903 /*
904  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
905  * which of the jt and jf fields has been resolved and which is a pointer
906  * back to another unresolved block (or nil).  At least one of the fields
907  * in each block is already resolved.
908  */
909 static void
910 backpatch(struct block *list, struct block *target)
911 {
912 	struct block *next;
913 
914 	while (list) {
915 		if (!list->sense) {
916 			next = JT(list);
917 			JT(list) = target;
918 		} else {
919 			next = JF(list);
920 			JF(list) = target;
921 		}
922 		list = next;
923 	}
924 }
925 
926 /*
927  * Merge the lists in b0 and b1, using the 'sense' field to indicate
928  * which of jt and jf is the link.
929  */
930 static void
931 merge(struct block *b0, struct block *b1)
932 {
933 	register struct block **p = &b0;
934 
935 	/* Find end of list. */
936 	while (*p)
937 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
938 
939 	/* Concatenate the lists. */
940 	*p = b1;
941 }
942 
943 int
944 finish_parse(compiler_state_t *cstate, struct block *p)
945 {
946 	struct block *ppi_dlt_check;
947 
948 	/*
949 	 * Catch errors reported by us and routines below us, and return -1
950 	 * on an error.
951 	 */
952 	if (setjmp(cstate->top_ctx))
953 		return (-1);
954 
955 	/*
956 	 * Insert before the statements of the first (root) block any
957 	 * statements needed to load the lengths of any variable-length
958 	 * headers into registers.
959 	 *
960 	 * XXX - a fancier strategy would be to insert those before the
961 	 * statements of all blocks that use those lengths and that
962 	 * have no predecessors that use them, so that we only compute
963 	 * the lengths if we need them.  There might be even better
964 	 * approaches than that.
965 	 *
966 	 * However, those strategies would be more complicated, and
967 	 * as we don't generate code to compute a length if the
968 	 * program has no tests that use the length, and as most
969 	 * tests will probably use those lengths, we would just
970 	 * postpone computing the lengths so that it's not done
971 	 * for tests that fail early, and it's not clear that's
972 	 * worth the effort.
973 	 */
974 	insert_compute_vloffsets(cstate, p->head);
975 
976 	/*
977 	 * For DLT_PPI captures, generate a check of the per-packet
978 	 * DLT value to make sure it's DLT_IEEE802_11.
979 	 *
980 	 * XXX - TurboCap cards use DLT_PPI for Ethernet.
981 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
982 	 * with appropriate Ethernet information and use that rather
983 	 * than using something such as DLT_PPI where you don't know
984 	 * the link-layer header type until runtime, which, in the
985 	 * general case, would force us to generate both Ethernet *and*
986 	 * 802.11 code (*and* anything else for which PPI is used)
987 	 * and choose between them early in the BPF program?
988 	 */
989 	ppi_dlt_check = gen_ppi_dlt_check(cstate);
990 	if (ppi_dlt_check != NULL)
991 		gen_and(ppi_dlt_check, p);
992 
993 	backpatch(p, gen_retblk(cstate, cstate->snaplen));
994 	p->sense = !p->sense;
995 	backpatch(p, gen_retblk(cstate, 0));
996 	cstate->ic.root = p->head;
997 	return (0);
998 }
999 
1000 void
1001 gen_and(struct block *b0, struct block *b1)
1002 {
1003 	backpatch(b0, b1->head);
1004 	b0->sense = !b0->sense;
1005 	b1->sense = !b1->sense;
1006 	merge(b1, b0);
1007 	b1->sense = !b1->sense;
1008 	b1->head = b0->head;
1009 }
1010 
1011 void
1012 gen_or(struct block *b0, struct block *b1)
1013 {
1014 	b0->sense = !b0->sense;
1015 	backpatch(b0, b1->head);
1016 	b0->sense = !b0->sense;
1017 	merge(b1, b0);
1018 	b1->head = b0->head;
1019 }
1020 
1021 void
1022 gen_not(struct block *b)
1023 {
1024 	b->sense = !b->sense;
1025 }
1026 
1027 static struct block *
1028 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1029     u_int size, bpf_u_int32 v)
1030 {
1031 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1032 }
1033 
1034 static struct block *
1035 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1036     u_int size, bpf_u_int32 v)
1037 {
1038 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1039 }
1040 
1041 static struct block *
1042 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1043     u_int size, bpf_u_int32 v)
1044 {
1045 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1046 }
1047 
1048 static struct block *
1049 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1050     u_int size, bpf_u_int32 v)
1051 {
1052 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1053 }
1054 
1055 static struct block *
1056 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1057     u_int size, bpf_u_int32 v)
1058 {
1059 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1060 }
1061 
1062 static struct block *
1063 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1064     u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1065 {
1066 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1067 }
1068 
1069 static struct block *
1070 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1071     u_int size, const u_char *v)
1072 {
1073 	register struct block *b, *tmp;
1074 
1075 	b = NULL;
1076 	while (size >= 4) {
1077 		register const u_char *p = &v[size - 4];
1078 
1079 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1080 		    EXTRACT_BE_U_4(p));
1081 		if (b != NULL)
1082 			gen_and(b, tmp);
1083 		b = tmp;
1084 		size -= 4;
1085 	}
1086 	while (size >= 2) {
1087 		register const u_char *p = &v[size - 2];
1088 
1089 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1090 		    EXTRACT_BE_U_2(p));
1091 		if (b != NULL)
1092 			gen_and(b, tmp);
1093 		b = tmp;
1094 		size -= 2;
1095 	}
1096 	if (size > 0) {
1097 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1098 		if (b != NULL)
1099 			gen_and(b, tmp);
1100 		b = tmp;
1101 	}
1102 	return b;
1103 }
1104 
1105 /*
1106  * AND the field of size "size" at offset "offset" relative to the header
1107  * specified by "offrel" with "mask", and compare it with the value "v"
1108  * with the test specified by "jtype"; if "reverse" is true, the test
1109  * should test the opposite of "jtype".
1110  */
1111 static struct block *
1112 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1113     u_int size, bpf_u_int32 mask, int jtype, int reverse,
1114     bpf_u_int32 v)
1115 {
1116 	struct slist *s, *s2;
1117 	struct block *b;
1118 
1119 	s = gen_load_a(cstate, offrel, offset, size);
1120 
1121 	if (mask != 0xffffffff) {
1122 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1123 		s2->s.k = mask;
1124 		sappend(s, s2);
1125 	}
1126 
1127 	b = new_block(cstate, JMP(jtype));
1128 	b->stmts = s;
1129 	b->s.k = v;
1130 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1131 		gen_not(b);
1132 	return b;
1133 }
1134 
1135 static int
1136 init_linktype(compiler_state_t *cstate, pcap_t *p)
1137 {
1138 	cstate->pcap_fddipad = p->fddipad;
1139 
1140 	/*
1141 	 * We start out with only one link-layer header.
1142 	 */
1143 	cstate->outermostlinktype = pcap_datalink(p);
1144 	cstate->off_outermostlinkhdr.constant_part = 0;
1145 	cstate->off_outermostlinkhdr.is_variable = 0;
1146 	cstate->off_outermostlinkhdr.reg = -1;
1147 
1148 	cstate->prevlinktype = cstate->outermostlinktype;
1149 	cstate->off_prevlinkhdr.constant_part = 0;
1150 	cstate->off_prevlinkhdr.is_variable = 0;
1151 	cstate->off_prevlinkhdr.reg = -1;
1152 
1153 	cstate->linktype = cstate->outermostlinktype;
1154 	cstate->off_linkhdr.constant_part = 0;
1155 	cstate->off_linkhdr.is_variable = 0;
1156 	cstate->off_linkhdr.reg = -1;
1157 
1158 	/*
1159 	 * XXX
1160 	 */
1161 	cstate->off_linkpl.constant_part = 0;
1162 	cstate->off_linkpl.is_variable = 0;
1163 	cstate->off_linkpl.reg = -1;
1164 
1165 	cstate->off_linktype.constant_part = 0;
1166 	cstate->off_linktype.is_variable = 0;
1167 	cstate->off_linktype.reg = -1;
1168 
1169 	/*
1170 	 * Assume it's not raw ATM with a pseudo-header, for now.
1171 	 */
1172 	cstate->is_atm = 0;
1173 	cstate->off_vpi = OFFSET_NOT_SET;
1174 	cstate->off_vci = OFFSET_NOT_SET;
1175 	cstate->off_proto = OFFSET_NOT_SET;
1176 	cstate->off_payload = OFFSET_NOT_SET;
1177 
1178 	/*
1179 	 * And not Geneve.
1180 	 */
1181 	cstate->is_geneve = 0;
1182 
1183 	/*
1184 	 * No variable length VLAN offset by default
1185 	 */
1186 	cstate->is_vlan_vloffset = 0;
1187 
1188 	/*
1189 	 * And assume we're not doing SS7.
1190 	 */
1191 	cstate->off_li = OFFSET_NOT_SET;
1192 	cstate->off_li_hsl = OFFSET_NOT_SET;
1193 	cstate->off_sio = OFFSET_NOT_SET;
1194 	cstate->off_opc = OFFSET_NOT_SET;
1195 	cstate->off_dpc = OFFSET_NOT_SET;
1196 	cstate->off_sls = OFFSET_NOT_SET;
1197 
1198 	cstate->label_stack_depth = 0;
1199 	cstate->vlan_stack_depth = 0;
1200 
1201 	switch (cstate->linktype) {
1202 
1203 	case DLT_ARCNET:
1204 		cstate->off_linktype.constant_part = 2;
1205 		cstate->off_linkpl.constant_part = 6;
1206 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1207 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1208 		break;
1209 
1210 	case DLT_ARCNET_LINUX:
1211 		cstate->off_linktype.constant_part = 4;
1212 		cstate->off_linkpl.constant_part = 8;
1213 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1214 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1215 		break;
1216 
1217 	case DLT_EN10MB:
1218 		cstate->off_linktype.constant_part = 12;
1219 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */
1220 		cstate->off_nl = 0;		/* Ethernet II */
1221 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1222 		break;
1223 
1224 	case DLT_SLIP:
1225 		/*
1226 		 * SLIP doesn't have a link level type.  The 16 byte
1227 		 * header is hacked into our SLIP driver.
1228 		 */
1229 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1230 		cstate->off_linkpl.constant_part = 16;
1231 		cstate->off_nl = 0;
1232 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1233 		break;
1234 
1235 	case DLT_SLIP_BSDOS:
1236 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1237 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1238 		/* XXX end */
1239 		cstate->off_linkpl.constant_part = 24;
1240 		cstate->off_nl = 0;
1241 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1242 		break;
1243 
1244 	case DLT_NULL:
1245 	case DLT_LOOP:
1246 		cstate->off_linktype.constant_part = 0;
1247 		cstate->off_linkpl.constant_part = 4;
1248 		cstate->off_nl = 0;
1249 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1250 		break;
1251 
1252 	case DLT_ENC:
1253 		cstate->off_linktype.constant_part = 0;
1254 		cstate->off_linkpl.constant_part = 12;
1255 		cstate->off_nl = 0;
1256 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1257 		break;
1258 
1259 	case DLT_PPP:
1260 	case DLT_PPP_PPPD:
1261 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1262 	case DLT_HDLC:			/* NetBSD (Cisco) HDLC */
1263 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1264 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1265 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1266 		cstate->off_nl = 0;
1267 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1268 		break;
1269 
1270 	case DLT_PPP_ETHER:
1271 		/*
1272 		 * This does no include the Ethernet header, and
1273 		 * only covers session state.
1274 		 */
1275 		cstate->off_linktype.constant_part = 6;
1276 		cstate->off_linkpl.constant_part = 8;
1277 		cstate->off_nl = 0;
1278 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1279 		break;
1280 
1281 	case DLT_PPP_BSDOS:
1282 		cstate->off_linktype.constant_part = 5;
1283 		cstate->off_linkpl.constant_part = 24;
1284 		cstate->off_nl = 0;
1285 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1286 		break;
1287 
1288 	case DLT_FDDI:
1289 		/*
1290 		 * FDDI doesn't really have a link-level type field.
1291 		 * We set "off_linktype" to the offset of the LLC header.
1292 		 *
1293 		 * To check for Ethernet types, we assume that SSAP = SNAP
1294 		 * is being used and pick out the encapsulated Ethernet type.
1295 		 * XXX - should we generate code to check for SNAP?
1296 		 */
1297 		cstate->off_linktype.constant_part = 13;
1298 		cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1299 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1300 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1301 		cstate->off_nl = 8;		/* 802.2+SNAP */
1302 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1303 		break;
1304 
1305 	case DLT_IEEE802:
1306 		/*
1307 		 * Token Ring doesn't really have a link-level type field.
1308 		 * We set "off_linktype" to the offset of the LLC header.
1309 		 *
1310 		 * To check for Ethernet types, we assume that SSAP = SNAP
1311 		 * is being used and pick out the encapsulated Ethernet type.
1312 		 * XXX - should we generate code to check for SNAP?
1313 		 *
1314 		 * XXX - the header is actually variable-length.
1315 		 * Some various Linux patched versions gave 38
1316 		 * as "off_linktype" and 40 as "off_nl"; however,
1317 		 * if a token ring packet has *no* routing
1318 		 * information, i.e. is not source-routed, the correct
1319 		 * values are 20 and 22, as they are in the vanilla code.
1320 		 *
1321 		 * A packet is source-routed iff the uppermost bit
1322 		 * of the first byte of the source address, at an
1323 		 * offset of 8, has the uppermost bit set.  If the
1324 		 * packet is source-routed, the total number of bytes
1325 		 * of routing information is 2 plus bits 0x1F00 of
1326 		 * the 16-bit value at an offset of 14 (shifted right
1327 		 * 8 - figure out which byte that is).
1328 		 */
1329 		cstate->off_linktype.constant_part = 14;
1330 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1331 		cstate->off_nl = 8;		/* 802.2+SNAP */
1332 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1333 		break;
1334 
1335 	case DLT_PRISM_HEADER:
1336 	case DLT_IEEE802_11_RADIO_AVS:
1337 	case DLT_IEEE802_11_RADIO:
1338 		cstate->off_linkhdr.is_variable = 1;
1339 		/* Fall through, 802.11 doesn't have a variable link
1340 		 * prefix but is otherwise the same. */
1341 		/* FALLTHROUGH */
1342 
1343 	case DLT_IEEE802_11:
1344 		/*
1345 		 * 802.11 doesn't really have a link-level type field.
1346 		 * We set "off_linktype.constant_part" to the offset of
1347 		 * the LLC header.
1348 		 *
1349 		 * To check for Ethernet types, we assume that SSAP = SNAP
1350 		 * is being used and pick out the encapsulated Ethernet type.
1351 		 * XXX - should we generate code to check for SNAP?
1352 		 *
1353 		 * We also handle variable-length radio headers here.
1354 		 * The Prism header is in theory variable-length, but in
1355 		 * practice it's always 144 bytes long.  However, some
1356 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1357 		 * sometimes or always supply an AVS header, so we
1358 		 * have to check whether the radio header is a Prism
1359 		 * header or an AVS header, so, in practice, it's
1360 		 * variable-length.
1361 		 */
1362 		cstate->off_linktype.constant_part = 24;
1363 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1364 		cstate->off_linkpl.is_variable = 1;
1365 		cstate->off_nl = 8;		/* 802.2+SNAP */
1366 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1367 		break;
1368 
1369 	case DLT_PPI:
1370 		/*
1371 		 * At the moment we treat PPI the same way that we treat
1372 		 * normal Radiotap encoded packets. The difference is in
1373 		 * the function that generates the code at the beginning
1374 		 * to compute the header length.  Since this code generator
1375 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1376 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1377 		 * generate code to check for this too.
1378 		 */
1379 		cstate->off_linktype.constant_part = 24;
1380 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1381 		cstate->off_linkpl.is_variable = 1;
1382 		cstate->off_linkhdr.is_variable = 1;
1383 		cstate->off_nl = 8;		/* 802.2+SNAP */
1384 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1385 		break;
1386 
1387 	case DLT_ATM_RFC1483:
1388 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1389 		/*
1390 		 * assume routed, non-ISO PDUs
1391 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1392 		 *
1393 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1394 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1395 		 * latter would presumably be treated the way PPPoE
1396 		 * should be, so you can do "pppoe and udp port 2049"
1397 		 * or "pppoa and tcp port 80" and have it check for
1398 		 * PPPo{A,E} and a PPP protocol of IP and....
1399 		 */
1400 		cstate->off_linktype.constant_part = 0;
1401 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1402 		cstate->off_nl = 8;		/* 802.2+SNAP */
1403 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1404 		break;
1405 
1406 	case DLT_SUNATM:
1407 		/*
1408 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1409 		 * pseudo-header.
1410 		 */
1411 		cstate->is_atm = 1;
1412 		cstate->off_vpi = SUNATM_VPI_POS;
1413 		cstate->off_vci = SUNATM_VCI_POS;
1414 		cstate->off_proto = PROTO_POS;
1415 		cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1416 		cstate->off_linktype.constant_part = cstate->off_payload;
1417 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */
1418 		cstate->off_nl = 8;		/* 802.2+SNAP */
1419 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1420 		break;
1421 
1422 	case DLT_RAW:
1423 	case DLT_IPV4:
1424 	case DLT_IPV6:
1425 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1426 		cstate->off_linkpl.constant_part = 0;
1427 		cstate->off_nl = 0;
1428 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1429 		break;
1430 
1431 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket v1 */
1432 		cstate->off_linktype.constant_part = 14;
1433 		cstate->off_linkpl.constant_part = 16;
1434 		cstate->off_nl = 0;
1435 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1436 		break;
1437 
1438 	case DLT_LINUX_SLL2:	/* fake header for Linux cooked socket v2 */
1439 		cstate->off_linktype.constant_part = 0;
1440 		cstate->off_linkpl.constant_part = 20;
1441 		cstate->off_nl = 0;
1442 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1443 		break;
1444 
1445 	case DLT_LTALK:
1446 		/*
1447 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1448 		 * but really it just indicates whether there is a "short" or
1449 		 * "long" DDP packet following.
1450 		 */
1451 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1452 		cstate->off_linkpl.constant_part = 0;
1453 		cstate->off_nl = 0;
1454 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1455 		break;
1456 
1457 	case DLT_IP_OVER_FC:
1458 		/*
1459 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1460 		 * link-level type field.  We set "off_linktype" to the
1461 		 * offset of the LLC header.
1462 		 *
1463 		 * To check for Ethernet types, we assume that SSAP = SNAP
1464 		 * is being used and pick out the encapsulated Ethernet type.
1465 		 * XXX - should we generate code to check for SNAP? RFC
1466 		 * 2625 says SNAP should be used.
1467 		 */
1468 		cstate->off_linktype.constant_part = 16;
1469 		cstate->off_linkpl.constant_part = 16;
1470 		cstate->off_nl = 8;		/* 802.2+SNAP */
1471 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1472 		break;
1473 
1474 	case DLT_FRELAY:
1475 		/*
1476 		 * XXX - we should set this to handle SNAP-encapsulated
1477 		 * frames (NLPID of 0x80).
1478 		 */
1479 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1480 		cstate->off_linkpl.constant_part = 0;
1481 		cstate->off_nl = 0;
1482 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1483 		break;
1484 
1485                 /*
1486                  * the only BPF-interesting FRF.16 frames are non-control frames;
1487                  * Frame Relay has a variable length link-layer
1488                  * so lets start with offset 4 for now and increments later on (FIXME);
1489                  */
1490 	case DLT_MFR:
1491 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1492 		cstate->off_linkpl.constant_part = 0;
1493 		cstate->off_nl = 4;
1494 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1495 		break;
1496 
1497 	case DLT_APPLE_IP_OVER_IEEE1394:
1498 		cstate->off_linktype.constant_part = 16;
1499 		cstate->off_linkpl.constant_part = 18;
1500 		cstate->off_nl = 0;
1501 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1502 		break;
1503 
1504 	case DLT_SYMANTEC_FIREWALL:
1505 		cstate->off_linktype.constant_part = 6;
1506 		cstate->off_linkpl.constant_part = 44;
1507 		cstate->off_nl = 0;		/* Ethernet II */
1508 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1509 		break;
1510 
1511 	case DLT_PFLOG:
1512 		cstate->off_linktype.constant_part = 0;
1513 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1514 		cstate->off_linkpl.is_variable = 1;
1515 		cstate->off_nl = 0;
1516 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1517 		break;
1518 
1519         case DLT_JUNIPER_MFR:
1520         case DLT_JUNIPER_MLFR:
1521         case DLT_JUNIPER_MLPPP:
1522         case DLT_JUNIPER_PPP:
1523         case DLT_JUNIPER_CHDLC:
1524         case DLT_JUNIPER_FRELAY:
1525 		cstate->off_linktype.constant_part = 4;
1526 		cstate->off_linkpl.constant_part = 4;
1527 		cstate->off_nl = 0;
1528 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1529                 break;
1530 
1531 	case DLT_JUNIPER_ATM1:
1532 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1533 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1534 		cstate->off_nl = 0;
1535 		cstate->off_nl_nosnap = 10;
1536 		break;
1537 
1538 	case DLT_JUNIPER_ATM2:
1539 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1540 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1541 		cstate->off_nl = 0;
1542 		cstate->off_nl_nosnap = 10;
1543 		break;
1544 
1545 		/* frames captured on a Juniper PPPoE service PIC
1546 		 * contain raw ethernet frames */
1547 	case DLT_JUNIPER_PPPOE:
1548         case DLT_JUNIPER_ETHER:
1549 		cstate->off_linkpl.constant_part = 14;
1550 		cstate->off_linktype.constant_part = 16;
1551 		cstate->off_nl = 18;		/* Ethernet II */
1552 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */
1553 		break;
1554 
1555 	case DLT_JUNIPER_PPPOE_ATM:
1556 		cstate->off_linktype.constant_part = 4;
1557 		cstate->off_linkpl.constant_part = 6;
1558 		cstate->off_nl = 0;
1559 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1560 		break;
1561 
1562 	case DLT_JUNIPER_GGSN:
1563 		cstate->off_linktype.constant_part = 6;
1564 		cstate->off_linkpl.constant_part = 12;
1565 		cstate->off_nl = 0;
1566 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1567 		break;
1568 
1569 	case DLT_JUNIPER_ES:
1570 		cstate->off_linktype.constant_part = 6;
1571 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1572 		cstate->off_nl = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1573 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1574 		break;
1575 
1576 	case DLT_JUNIPER_MONITOR:
1577 		cstate->off_linktype.constant_part = 12;
1578 		cstate->off_linkpl.constant_part = 12;
1579 		cstate->off_nl = 0;			/* raw IP/IP6 header */
1580 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1581 		break;
1582 
1583 	case DLT_BACNET_MS_TP:
1584 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1585 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1586 		cstate->off_nl = OFFSET_NOT_SET;
1587 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1588 		break;
1589 
1590 	case DLT_JUNIPER_SERVICES:
1591 		cstate->off_linktype.constant_part = 12;
1592 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1593 		cstate->off_nl = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1594 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1595 		break;
1596 
1597 	case DLT_JUNIPER_VP:
1598 		cstate->off_linktype.constant_part = 18;
1599 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1600 		cstate->off_nl = OFFSET_NOT_SET;
1601 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1602 		break;
1603 
1604 	case DLT_JUNIPER_ST:
1605 		cstate->off_linktype.constant_part = 18;
1606 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1607 		cstate->off_nl = OFFSET_NOT_SET;
1608 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1609 		break;
1610 
1611 	case DLT_JUNIPER_ISM:
1612 		cstate->off_linktype.constant_part = 8;
1613 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1614 		cstate->off_nl = OFFSET_NOT_SET;
1615 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1616 		break;
1617 
1618 	case DLT_JUNIPER_VS:
1619 	case DLT_JUNIPER_SRX_E2E:
1620 	case DLT_JUNIPER_FIBRECHANNEL:
1621 	case DLT_JUNIPER_ATM_CEMIC:
1622 		cstate->off_linktype.constant_part = 8;
1623 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1624 		cstate->off_nl = OFFSET_NOT_SET;
1625 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1626 		break;
1627 
1628 	case DLT_MTP2:
1629 		cstate->off_li = 2;
1630 		cstate->off_li_hsl = 4;
1631 		cstate->off_sio = 3;
1632 		cstate->off_opc = 4;
1633 		cstate->off_dpc = 4;
1634 		cstate->off_sls = 7;
1635 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1636 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1637 		cstate->off_nl = OFFSET_NOT_SET;
1638 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1639 		break;
1640 
1641 	case DLT_MTP2_WITH_PHDR:
1642 		cstate->off_li = 6;
1643 		cstate->off_li_hsl = 8;
1644 		cstate->off_sio = 7;
1645 		cstate->off_opc = 8;
1646 		cstate->off_dpc = 8;
1647 		cstate->off_sls = 11;
1648 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1649 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1650 		cstate->off_nl = OFFSET_NOT_SET;
1651 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1652 		break;
1653 
1654 	case DLT_ERF:
1655 		cstate->off_li = 22;
1656 		cstate->off_li_hsl = 24;
1657 		cstate->off_sio = 23;
1658 		cstate->off_opc = 24;
1659 		cstate->off_dpc = 24;
1660 		cstate->off_sls = 27;
1661 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1662 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1663 		cstate->off_nl = OFFSET_NOT_SET;
1664 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1665 		break;
1666 
1667 	case DLT_PFSYNC:
1668 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1669 		cstate->off_linkpl.constant_part = 4;
1670 		cstate->off_nl = 0;
1671 		cstate->off_nl_nosnap = 0;
1672 		break;
1673 
1674 	case DLT_AX25_KISS:
1675 		/*
1676 		 * Currently, only raw "link[N:M]" filtering is supported.
1677 		 */
1678 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */
1679 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1680 		cstate->off_nl = OFFSET_NOT_SET;	/* variable, min 16, max 71 steps of 7 */
1681 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1682 		break;
1683 
1684 	case DLT_IPNET:
1685 		cstate->off_linktype.constant_part = 1;
1686 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */
1687 		cstate->off_nl = 0;
1688 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1689 		break;
1690 
1691 	case DLT_NETANALYZER:
1692 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1693 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1694 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1695 		cstate->off_nl = 0;		/* Ethernet II */
1696 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1697 		break;
1698 
1699 	case DLT_NETANALYZER_TRANSPARENT:
1700 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1701 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1702 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1703 		cstate->off_nl = 0;		/* Ethernet II */
1704 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1705 		break;
1706 
1707 	default:
1708 		/*
1709 		 * For values in the range in which we've assigned new
1710 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1711 		 */
1712 		if (cstate->linktype >= DLT_HIGH_MATCHING_MIN &&
1713 		    cstate->linktype <= DLT_HIGH_MATCHING_MAX) {
1714 			cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1715 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1716 			cstate->off_nl = OFFSET_NOT_SET;
1717 			cstate->off_nl_nosnap = OFFSET_NOT_SET;
1718 		} else {
1719 			bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
1720 			    cstate->linktype, DLT_HIGH_MATCHING_MIN, DLT_HIGH_MATCHING_MAX);
1721 			return (-1);
1722 		}
1723 		break;
1724 	}
1725 
1726 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1727 	return (0);
1728 }
1729 
1730 /*
1731  * Load a value relative to the specified absolute offset.
1732  */
1733 static struct slist *
1734 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1735     u_int offset, u_int size)
1736 {
1737 	struct slist *s, *s2;
1738 
1739 	s = gen_abs_offset_varpart(cstate, abs_offset);
1740 
1741 	/*
1742 	 * If "s" is non-null, it has code to arrange that the X register
1743 	 * contains the variable part of the absolute offset, so we
1744 	 * generate a load relative to that, with an offset of
1745 	 * abs_offset->constant_part + offset.
1746 	 *
1747 	 * Otherwise, we can do an absolute load with an offset of
1748 	 * abs_offset->constant_part + offset.
1749 	 */
1750 	if (s != NULL) {
1751 		/*
1752 		 * "s" points to a list of statements that puts the
1753 		 * variable part of the absolute offset into the X register.
1754 		 * Do an indirect load, to use the X register as an offset.
1755 		 */
1756 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1757 		s2->s.k = abs_offset->constant_part + offset;
1758 		sappend(s, s2);
1759 	} else {
1760 		/*
1761 		 * There is no variable part of the absolute offset, so
1762 		 * just do an absolute load.
1763 		 */
1764 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1765 		s->s.k = abs_offset->constant_part + offset;
1766 	}
1767 	return s;
1768 }
1769 
1770 /*
1771  * Load a value relative to the beginning of the specified header.
1772  */
1773 static struct slist *
1774 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1775     u_int size)
1776 {
1777 	struct slist *s, *s2;
1778 
1779 	/*
1780 	 * Squelch warnings from compilers that *don't* assume that
1781 	 * offrel always has a valid enum value and therefore don't
1782 	 * assume that we'll always go through one of the case arms.
1783 	 *
1784 	 * If we have a default case, compilers that *do* assume that
1785 	 * will then complain about the default case code being
1786 	 * unreachable.
1787 	 *
1788 	 * Damned if you do, damned if you don't.
1789 	 */
1790 	s = NULL;
1791 
1792 	switch (offrel) {
1793 
1794 	case OR_PACKET:
1795                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1796                 s->s.k = offset;
1797 		break;
1798 
1799 	case OR_LINKHDR:
1800 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1801 		break;
1802 
1803 	case OR_PREVLINKHDR:
1804 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1805 		break;
1806 
1807 	case OR_LLC:
1808 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1809 		break;
1810 
1811 	case OR_PREVMPLSHDR:
1812 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1813 		break;
1814 
1815 	case OR_LINKPL:
1816 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1817 		break;
1818 
1819 	case OR_LINKPL_NOSNAP:
1820 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1821 		break;
1822 
1823 	case OR_LINKTYPE:
1824 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1825 		break;
1826 
1827 	case OR_TRAN_IPV4:
1828 		/*
1829 		 * Load the X register with the length of the IPv4 header
1830 		 * (plus the offset of the link-layer header, if it's
1831 		 * preceded by a variable-length header such as a radio
1832 		 * header), in bytes.
1833 		 */
1834 		s = gen_loadx_iphdrlen(cstate);
1835 
1836 		/*
1837 		 * Load the item at {offset of the link-layer payload} +
1838 		 * {offset, relative to the start of the link-layer
1839 		 * payload, of the IPv4 header} + {length of the IPv4 header} +
1840 		 * {specified offset}.
1841 		 *
1842 		 * If the offset of the link-layer payload is variable,
1843 		 * the variable part of that offset is included in the
1844 		 * value in the X register, and we include the constant
1845 		 * part in the offset of the load.
1846 		 */
1847 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1848 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1849 		sappend(s, s2);
1850 		break;
1851 
1852 	case OR_TRAN_IPV6:
1853 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1854 		break;
1855 	}
1856 	return s;
1857 }
1858 
1859 /*
1860  * Generate code to load into the X register the sum of the length of
1861  * the IPv4 header and the variable part of the offset of the link-layer
1862  * payload.
1863  */
1864 static struct slist *
1865 gen_loadx_iphdrlen(compiler_state_t *cstate)
1866 {
1867 	struct slist *s, *s2;
1868 
1869 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1870 	if (s != NULL) {
1871 		/*
1872 		 * The offset of the link-layer payload has a variable
1873 		 * part.  "s" points to a list of statements that put
1874 		 * the variable part of that offset into the X register.
1875 		 *
1876 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1877 		 * don't have a constant offset, so we have to load the
1878 		 * value in question into the A register and add to it
1879 		 * the value from the X register.
1880 		 */
1881 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1882 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1883 		sappend(s, s2);
1884 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1885 		s2->s.k = 0xf;
1886 		sappend(s, s2);
1887 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1888 		s2->s.k = 2;
1889 		sappend(s, s2);
1890 
1891 		/*
1892 		 * The A register now contains the length of the IP header.
1893 		 * We need to add to it the variable part of the offset of
1894 		 * the link-layer payload, which is still in the X
1895 		 * register, and move the result into the X register.
1896 		 */
1897 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1898 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1899 	} else {
1900 		/*
1901 		 * The offset of the link-layer payload is a constant,
1902 		 * so no code was generated to load the (nonexistent)
1903 		 * variable part of that offset.
1904 		 *
1905 		 * This means we can use the 4*([k]&0xf) addressing
1906 		 * mode.  Load the length of the IPv4 header, which
1907 		 * is at an offset of cstate->off_nl from the beginning of
1908 		 * the link-layer payload, and thus at an offset of
1909 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1910 		 * of the raw packet data, using that addressing mode.
1911 		 */
1912 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1913 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1914 	}
1915 	return s;
1916 }
1917 
1918 
1919 static struct block *
1920 gen_uncond(compiler_state_t *cstate, int rsense)
1921 {
1922 	struct block *b;
1923 	struct slist *s;
1924 
1925 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
1926 	s->s.k = !rsense;
1927 	b = new_block(cstate, JMP(BPF_JEQ));
1928 	b->stmts = s;
1929 
1930 	return b;
1931 }
1932 
1933 static inline struct block *
1934 gen_true(compiler_state_t *cstate)
1935 {
1936 	return gen_uncond(cstate, 1);
1937 }
1938 
1939 static inline struct block *
1940 gen_false(compiler_state_t *cstate)
1941 {
1942 	return gen_uncond(cstate, 0);
1943 }
1944 
1945 /*
1946  * Byte-swap a 32-bit number.
1947  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1948  * big-endian platforms.)
1949  */
1950 #define	SWAPLONG(y) \
1951 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1952 
1953 /*
1954  * Generate code to match a particular packet type.
1955  *
1956  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1957  * value, if <= ETHERMTU.  We use that to determine whether to
1958  * match the type/length field or to check the type/length field for
1959  * a value <= ETHERMTU to see whether it's a type field and then do
1960  * the appropriate test.
1961  */
1962 static struct block *
1963 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1964 {
1965 	struct block *b0, *b1;
1966 
1967 	switch (ll_proto) {
1968 
1969 	case LLCSAP_ISONS:
1970 	case LLCSAP_IP:
1971 	case LLCSAP_NETBEUI:
1972 		/*
1973 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1974 		 * so we check the DSAP and SSAP.
1975 		 *
1976 		 * LLCSAP_IP checks for IP-over-802.2, rather
1977 		 * than IP-over-Ethernet or IP-over-SNAP.
1978 		 *
1979 		 * XXX - should we check both the DSAP and the
1980 		 * SSAP, like this, or should we check just the
1981 		 * DSAP, as we do for other types <= ETHERMTU
1982 		 * (i.e., other SAP values)?
1983 		 */
1984 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1985 		gen_not(b0);
1986 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
1987 		gen_and(b0, b1);
1988 		return b1;
1989 
1990 	case LLCSAP_IPX:
1991 		/*
1992 		 * Check for;
1993 		 *
1994 		 *	Ethernet_II frames, which are Ethernet
1995 		 *	frames with a frame type of ETHERTYPE_IPX;
1996 		 *
1997 		 *	Ethernet_802.3 frames, which are 802.3
1998 		 *	frames (i.e., the type/length field is
1999 		 *	a length field, <= ETHERMTU, rather than
2000 		 *	a type field) with the first two bytes
2001 		 *	after the Ethernet/802.3 header being
2002 		 *	0xFFFF;
2003 		 *
2004 		 *	Ethernet_802.2 frames, which are 802.3
2005 		 *	frames with an 802.2 LLC header and
2006 		 *	with the IPX LSAP as the DSAP in the LLC
2007 		 *	header;
2008 		 *
2009 		 *	Ethernet_SNAP frames, which are 802.3
2010 		 *	frames with an LLC header and a SNAP
2011 		 *	header and with an OUI of 0x000000
2012 		 *	(encapsulated Ethernet) and a protocol
2013 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2014 		 *
2015 		 * XXX - should we generate the same code both
2016 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2017 		 */
2018 
2019 		/*
2020 		 * This generates code to check both for the
2021 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2022 		 */
2023 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2024 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2025 		gen_or(b0, b1);
2026 
2027 		/*
2028 		 * Now we add code to check for SNAP frames with
2029 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2030 		 */
2031 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2032 		gen_or(b0, b1);
2033 
2034 		/*
2035 		 * Now we generate code to check for 802.3
2036 		 * frames in general.
2037 		 */
2038 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2039 		gen_not(b0);
2040 
2041 		/*
2042 		 * Now add the check for 802.3 frames before the
2043 		 * check for Ethernet_802.2 and Ethernet_802.3,
2044 		 * as those checks should only be done on 802.3
2045 		 * frames, not on Ethernet frames.
2046 		 */
2047 		gen_and(b0, b1);
2048 
2049 		/*
2050 		 * Now add the check for Ethernet_II frames, and
2051 		 * do that before checking for the other frame
2052 		 * types.
2053 		 */
2054 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2055 		gen_or(b0, b1);
2056 		return b1;
2057 
2058 	case ETHERTYPE_ATALK:
2059 	case ETHERTYPE_AARP:
2060 		/*
2061 		 * EtherTalk (AppleTalk protocols on Ethernet link
2062 		 * layer) may use 802.2 encapsulation.
2063 		 */
2064 
2065 		/*
2066 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2067 		 * we check for an Ethernet type field less than
2068 		 * 1500, which means it's an 802.3 length field.
2069 		 */
2070 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2071 		gen_not(b0);
2072 
2073 		/*
2074 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2075 		 * SNAP packets with an organization code of
2076 		 * 0x080007 (Apple, for Appletalk) and a protocol
2077 		 * type of ETHERTYPE_ATALK (Appletalk).
2078 		 *
2079 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2080 		 * SNAP packets with an organization code of
2081 		 * 0x000000 (encapsulated Ethernet) and a protocol
2082 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2083 		 */
2084 		if (ll_proto == ETHERTYPE_ATALK)
2085 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2086 		else	/* ll_proto == ETHERTYPE_AARP */
2087 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2088 		gen_and(b0, b1);
2089 
2090 		/*
2091 		 * Check for Ethernet encapsulation (Ethertalk
2092 		 * phase 1?); we just check for the Ethernet
2093 		 * protocol type.
2094 		 */
2095 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2096 
2097 		gen_or(b0, b1);
2098 		return b1;
2099 
2100 	default:
2101 		if (ll_proto <= ETHERMTU) {
2102 			/*
2103 			 * This is an LLC SAP value, so the frames
2104 			 * that match would be 802.2 frames.
2105 			 * Check that the frame is an 802.2 frame
2106 			 * (i.e., that the length/type field is
2107 			 * a length field, <= ETHERMTU) and
2108 			 * then check the DSAP.
2109 			 */
2110 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2111 			gen_not(b0);
2112 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2113 			gen_and(b0, b1);
2114 			return b1;
2115 		} else {
2116 			/*
2117 			 * This is an Ethernet type, so compare
2118 			 * the length/type field with it (if
2119 			 * the frame is an 802.2 frame, the length
2120 			 * field will be <= ETHERMTU, and, as
2121 			 * "ll_proto" is > ETHERMTU, this test
2122 			 * will fail and the frame won't match,
2123 			 * which is what we want).
2124 			 */
2125 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2126 		}
2127 	}
2128 }
2129 
2130 static struct block *
2131 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2132 {
2133 	/*
2134 	 * For DLT_NULL, the link-layer header is a 32-bit word
2135 	 * containing an AF_ value in *host* byte order, and for
2136 	 * DLT_ENC, the link-layer header begins with a 32-bit
2137 	 * word containing an AF_ value in host byte order.
2138 	 *
2139 	 * In addition, if we're reading a saved capture file,
2140 	 * the host byte order in the capture may not be the
2141 	 * same as the host byte order on this machine.
2142 	 *
2143 	 * For DLT_LOOP, the link-layer header is a 32-bit
2144 	 * word containing an AF_ value in *network* byte order.
2145 	 */
2146 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2147 		/*
2148 		 * The AF_ value is in host byte order, but the BPF
2149 		 * interpreter will convert it to network byte order.
2150 		 *
2151 		 * If this is a save file, and it's from a machine
2152 		 * with the opposite byte order to ours, we byte-swap
2153 		 * the AF_ value.
2154 		 *
2155 		 * Then we run it through "htonl()", and generate
2156 		 * code to compare against the result.
2157 		 */
2158 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2159 			ll_proto = SWAPLONG(ll_proto);
2160 		ll_proto = htonl(ll_proto);
2161 	}
2162 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2163 }
2164 
2165 /*
2166  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2167  * or IPv6 then we have an error.
2168  */
2169 static struct block *
2170 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2171 {
2172 	switch (ll_proto) {
2173 
2174 	case ETHERTYPE_IP:
2175 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2176 		/*NOTREACHED*/
2177 
2178 	case ETHERTYPE_IPV6:
2179 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2180 		/*NOTREACHED*/
2181 
2182 	default:
2183 		break;
2184 	}
2185 
2186 	return gen_false(cstate);
2187 }
2188 
2189 /*
2190  * Generate code to match a particular packet type.
2191  *
2192  * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2193  * value, if <= ETHERMTU.  We use that to determine whether to
2194  * match the type field or to check the type field for the special
2195  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2196  */
2197 static struct block *
2198 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2199 {
2200 	struct block *b0, *b1;
2201 
2202 	switch (ll_proto) {
2203 
2204 	case LLCSAP_ISONS:
2205 	case LLCSAP_IP:
2206 	case LLCSAP_NETBEUI:
2207 		/*
2208 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2209 		 * so we check the DSAP and SSAP.
2210 		 *
2211 		 * LLCSAP_IP checks for IP-over-802.2, rather
2212 		 * than IP-over-Ethernet or IP-over-SNAP.
2213 		 *
2214 		 * XXX - should we check both the DSAP and the
2215 		 * SSAP, like this, or should we check just the
2216 		 * DSAP, as we do for other types <= ETHERMTU
2217 		 * (i.e., other SAP values)?
2218 		 */
2219 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2220 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2221 		gen_and(b0, b1);
2222 		return b1;
2223 
2224 	case LLCSAP_IPX:
2225 		/*
2226 		 *	Ethernet_II frames, which are Ethernet
2227 		 *	frames with a frame type of ETHERTYPE_IPX;
2228 		 *
2229 		 *	Ethernet_802.3 frames, which have a frame
2230 		 *	type of LINUX_SLL_P_802_3;
2231 		 *
2232 		 *	Ethernet_802.2 frames, which are 802.3
2233 		 *	frames with an 802.2 LLC header (i.e, have
2234 		 *	a frame type of LINUX_SLL_P_802_2) and
2235 		 *	with the IPX LSAP as the DSAP in the LLC
2236 		 *	header;
2237 		 *
2238 		 *	Ethernet_SNAP frames, which are 802.3
2239 		 *	frames with an LLC header and a SNAP
2240 		 *	header and with an OUI of 0x000000
2241 		 *	(encapsulated Ethernet) and a protocol
2242 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2243 		 *
2244 		 * First, do the checks on LINUX_SLL_P_802_2
2245 		 * frames; generate the check for either
2246 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2247 		 * then put a check for LINUX_SLL_P_802_2 frames
2248 		 * before it.
2249 		 */
2250 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2251 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2252 		gen_or(b0, b1);
2253 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2254 		gen_and(b0, b1);
2255 
2256 		/*
2257 		 * Now check for 802.3 frames and OR that with
2258 		 * the previous test.
2259 		 */
2260 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2261 		gen_or(b0, b1);
2262 
2263 		/*
2264 		 * Now add the check for Ethernet_II frames, and
2265 		 * do that before checking for the other frame
2266 		 * types.
2267 		 */
2268 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2269 		gen_or(b0, b1);
2270 		return b1;
2271 
2272 	case ETHERTYPE_ATALK:
2273 	case ETHERTYPE_AARP:
2274 		/*
2275 		 * EtherTalk (AppleTalk protocols on Ethernet link
2276 		 * layer) may use 802.2 encapsulation.
2277 		 */
2278 
2279 		/*
2280 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2281 		 * we check for the 802.2 protocol type in the
2282 		 * "Ethernet type" field.
2283 		 */
2284 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2285 
2286 		/*
2287 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2288 		 * SNAP packets with an organization code of
2289 		 * 0x080007 (Apple, for Appletalk) and a protocol
2290 		 * type of ETHERTYPE_ATALK (Appletalk).
2291 		 *
2292 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2293 		 * SNAP packets with an organization code of
2294 		 * 0x000000 (encapsulated Ethernet) and a protocol
2295 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2296 		 */
2297 		if (ll_proto == ETHERTYPE_ATALK)
2298 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2299 		else	/* ll_proto == ETHERTYPE_AARP */
2300 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2301 		gen_and(b0, b1);
2302 
2303 		/*
2304 		 * Check for Ethernet encapsulation (Ethertalk
2305 		 * phase 1?); we just check for the Ethernet
2306 		 * protocol type.
2307 		 */
2308 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2309 
2310 		gen_or(b0, b1);
2311 		return b1;
2312 
2313 	default:
2314 		if (ll_proto <= ETHERMTU) {
2315 			/*
2316 			 * This is an LLC SAP value, so the frames
2317 			 * that match would be 802.2 frames.
2318 			 * Check for the 802.2 protocol type
2319 			 * in the "Ethernet type" field, and
2320 			 * then check the DSAP.
2321 			 */
2322 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2323 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2324 			     ll_proto);
2325 			gen_and(b0, b1);
2326 			return b1;
2327 		} else {
2328 			/*
2329 			 * This is an Ethernet type, so compare
2330 			 * the length/type field with it (if
2331 			 * the frame is an 802.2 frame, the length
2332 			 * field will be <= ETHERMTU, and, as
2333 			 * "ll_proto" is > ETHERMTU, this test
2334 			 * will fail and the frame won't match,
2335 			 * which is what we want).
2336 			 */
2337 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2338 		}
2339 	}
2340 }
2341 
2342 /*
2343  * Load a value relative to the beginning of the link-layer header after the
2344  * pflog header.
2345  */
2346 static struct slist *
2347 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2348 {
2349 	struct slist *s1, *s2;
2350 
2351 	/*
2352 	 * Generate code to load the length of the pflog header into
2353 	 * the register assigned to hold that length, if one has been
2354 	 * assigned.  (If one hasn't been assigned, no code we've
2355 	 * generated uses that prefix, so we don't need to generate any
2356 	 * code to load it.)
2357 	 */
2358 	if (cstate->off_linkpl.reg != -1) {
2359 		/*
2360 		 * The length is in the first byte of the header.
2361 		 */
2362 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2363 		s1->s.k = 0;
2364 
2365 		/*
2366 		 * Round it up to a multiple of 4.
2367 		 * Add 3, and clear the lower 2 bits.
2368 		 */
2369 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2370 		s2->s.k = 3;
2371 		sappend(s1, s2);
2372 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2373 		s2->s.k = 0xfffffffc;
2374 		sappend(s1, s2);
2375 
2376 		/*
2377 		 * Now allocate a register to hold that value and store
2378 		 * it.
2379 		 */
2380 		s2 = new_stmt(cstate, BPF_ST);
2381 		s2->s.k = cstate->off_linkpl.reg;
2382 		sappend(s1, s2);
2383 
2384 		/*
2385 		 * Now move it into the X register.
2386 		 */
2387 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2388 		sappend(s1, s2);
2389 
2390 		return (s1);
2391 	} else
2392 		return (NULL);
2393 }
2394 
2395 static struct slist *
2396 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2397 {
2398 	struct slist *s1, *s2;
2399 	struct slist *sjeq_avs_cookie;
2400 	struct slist *sjcommon;
2401 
2402 	/*
2403 	 * This code is not compatible with the optimizer, as
2404 	 * we are generating jmp instructions within a normal
2405 	 * slist of instructions
2406 	 */
2407 	cstate->no_optimize = 1;
2408 
2409 	/*
2410 	 * Generate code to load the length of the radio header into
2411 	 * the register assigned to hold that length, if one has been
2412 	 * assigned.  (If one hasn't been assigned, no code we've
2413 	 * generated uses that prefix, so we don't need to generate any
2414 	 * code to load it.)
2415 	 *
2416 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2417 	 * or always use the AVS header rather than the Prism header.
2418 	 * We load a 4-byte big-endian value at the beginning of the
2419 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2420 	 * it's equal to 0x80211000.  If so, that indicates that it's
2421 	 * an AVS header (the masked-out bits are the version number).
2422 	 * Otherwise, it's a Prism header.
2423 	 *
2424 	 * XXX - the Prism header is also, in theory, variable-length,
2425 	 * but no known software generates headers that aren't 144
2426 	 * bytes long.
2427 	 */
2428 	if (cstate->off_linkhdr.reg != -1) {
2429 		/*
2430 		 * Load the cookie.
2431 		 */
2432 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2433 		s1->s.k = 0;
2434 
2435 		/*
2436 		 * AND it with 0xFFFFF000.
2437 		 */
2438 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2439 		s2->s.k = 0xFFFFF000;
2440 		sappend(s1, s2);
2441 
2442 		/*
2443 		 * Compare with 0x80211000.
2444 		 */
2445 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2446 		sjeq_avs_cookie->s.k = 0x80211000;
2447 		sappend(s1, sjeq_avs_cookie);
2448 
2449 		/*
2450 		 * If it's AVS:
2451 		 *
2452 		 * The 4 bytes at an offset of 4 from the beginning of
2453 		 * the AVS header are the length of the AVS header.
2454 		 * That field is big-endian.
2455 		 */
2456 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2457 		s2->s.k = 4;
2458 		sappend(s1, s2);
2459 		sjeq_avs_cookie->s.jt = s2;
2460 
2461 		/*
2462 		 * Now jump to the code to allocate a register
2463 		 * into which to save the header length and
2464 		 * store the length there.  (The "jump always"
2465 		 * instruction needs to have the k field set;
2466 		 * it's added to the PC, so, as we're jumping
2467 		 * over a single instruction, it should be 1.)
2468 		 */
2469 		sjcommon = new_stmt(cstate, JMP(BPF_JA));
2470 		sjcommon->s.k = 1;
2471 		sappend(s1, sjcommon);
2472 
2473 		/*
2474 		 * Now for the code that handles the Prism header.
2475 		 * Just load the length of the Prism header (144)
2476 		 * into the A register.  Have the test for an AVS
2477 		 * header branch here if we don't have an AVS header.
2478 		 */
2479 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2480 		s2->s.k = 144;
2481 		sappend(s1, s2);
2482 		sjeq_avs_cookie->s.jf = s2;
2483 
2484 		/*
2485 		 * Now allocate a register to hold that value and store
2486 		 * it.  The code for the AVS header will jump here after
2487 		 * loading the length of the AVS header.
2488 		 */
2489 		s2 = new_stmt(cstate, BPF_ST);
2490 		s2->s.k = cstate->off_linkhdr.reg;
2491 		sappend(s1, s2);
2492 		sjcommon->s.jf = s2;
2493 
2494 		/*
2495 		 * Now move it into the X register.
2496 		 */
2497 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2498 		sappend(s1, s2);
2499 
2500 		return (s1);
2501 	} else
2502 		return (NULL);
2503 }
2504 
2505 static struct slist *
2506 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2507 {
2508 	struct slist *s1, *s2;
2509 
2510 	/*
2511 	 * Generate code to load the length of the AVS header into
2512 	 * the register assigned to hold that length, if one has been
2513 	 * assigned.  (If one hasn't been assigned, no code we've
2514 	 * generated uses that prefix, so we don't need to generate any
2515 	 * code to load it.)
2516 	 */
2517 	if (cstate->off_linkhdr.reg != -1) {
2518 		/*
2519 		 * The 4 bytes at an offset of 4 from the beginning of
2520 		 * the AVS header are the length of the AVS header.
2521 		 * That field is big-endian.
2522 		 */
2523 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2524 		s1->s.k = 4;
2525 
2526 		/*
2527 		 * Now allocate a register to hold that value and store
2528 		 * it.
2529 		 */
2530 		s2 = new_stmt(cstate, BPF_ST);
2531 		s2->s.k = cstate->off_linkhdr.reg;
2532 		sappend(s1, s2);
2533 
2534 		/*
2535 		 * Now move it into the X register.
2536 		 */
2537 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2538 		sappend(s1, s2);
2539 
2540 		return (s1);
2541 	} else
2542 		return (NULL);
2543 }
2544 
2545 static struct slist *
2546 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2547 {
2548 	struct slist *s1, *s2;
2549 
2550 	/*
2551 	 * Generate code to load the length of the radiotap header into
2552 	 * the register assigned to hold that length, if one has been
2553 	 * assigned.  (If one hasn't been assigned, no code we've
2554 	 * generated uses that prefix, so we don't need to generate any
2555 	 * code to load it.)
2556 	 */
2557 	if (cstate->off_linkhdr.reg != -1) {
2558 		/*
2559 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2560 		 * of the radiotap header are the length of the radiotap
2561 		 * header; unfortunately, it's little-endian, so we have
2562 		 * to load it a byte at a time and construct the value.
2563 		 */
2564 
2565 		/*
2566 		 * Load the high-order byte, at an offset of 3, shift it
2567 		 * left a byte, and put the result in the X register.
2568 		 */
2569 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2570 		s1->s.k = 3;
2571 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2572 		sappend(s1, s2);
2573 		s2->s.k = 8;
2574 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2575 		sappend(s1, s2);
2576 
2577 		/*
2578 		 * Load the next byte, at an offset of 2, and OR the
2579 		 * value from the X register into it.
2580 		 */
2581 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2582 		sappend(s1, s2);
2583 		s2->s.k = 2;
2584 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2585 		sappend(s1, s2);
2586 
2587 		/*
2588 		 * Now allocate a register to hold that value and store
2589 		 * it.
2590 		 */
2591 		s2 = new_stmt(cstate, BPF_ST);
2592 		s2->s.k = cstate->off_linkhdr.reg;
2593 		sappend(s1, s2);
2594 
2595 		/*
2596 		 * Now move it into the X register.
2597 		 */
2598 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2599 		sappend(s1, s2);
2600 
2601 		return (s1);
2602 	} else
2603 		return (NULL);
2604 }
2605 
2606 /*
2607  * At the moment we treat PPI as normal Radiotap encoded
2608  * packets. The difference is in the function that generates
2609  * the code at the beginning to compute the header length.
2610  * Since this code generator of PPI supports bare 802.11
2611  * encapsulation only (i.e. the encapsulated DLT should be
2612  * DLT_IEEE802_11) we generate code to check for this too;
2613  * that's done in finish_parse().
2614  */
2615 static struct slist *
2616 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2617 {
2618 	struct slist *s1, *s2;
2619 
2620 	/*
2621 	 * Generate code to load the length of the radiotap header
2622 	 * into the register assigned to hold that length, if one has
2623 	 * been assigned.
2624 	 */
2625 	if (cstate->off_linkhdr.reg != -1) {
2626 		/*
2627 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2628 		 * of the radiotap header are the length of the radiotap
2629 		 * header; unfortunately, it's little-endian, so we have
2630 		 * to load it a byte at a time and construct the value.
2631 		 */
2632 
2633 		/*
2634 		 * Load the high-order byte, at an offset of 3, shift it
2635 		 * left a byte, and put the result in the X register.
2636 		 */
2637 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2638 		s1->s.k = 3;
2639 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2640 		sappend(s1, s2);
2641 		s2->s.k = 8;
2642 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2643 		sappend(s1, s2);
2644 
2645 		/*
2646 		 * Load the next byte, at an offset of 2, and OR the
2647 		 * value from the X register into it.
2648 		 */
2649 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2650 		sappend(s1, s2);
2651 		s2->s.k = 2;
2652 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2653 		sappend(s1, s2);
2654 
2655 		/*
2656 		 * Now allocate a register to hold that value and store
2657 		 * it.
2658 		 */
2659 		s2 = new_stmt(cstate, BPF_ST);
2660 		s2->s.k = cstate->off_linkhdr.reg;
2661 		sappend(s1, s2);
2662 
2663 		/*
2664 		 * Now move it into the X register.
2665 		 */
2666 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2667 		sappend(s1, s2);
2668 
2669 		return (s1);
2670 	} else
2671 		return (NULL);
2672 }
2673 
2674 /*
2675  * Load a value relative to the beginning of the link-layer header after the 802.11
2676  * header, i.e. LLC_SNAP.
2677  * The link-layer header doesn't necessarily begin at the beginning
2678  * of the packet data; there might be a variable-length prefix containing
2679  * radio information.
2680  */
2681 static struct slist *
2682 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2683 {
2684 	struct slist *s2;
2685 	struct slist *sjset_data_frame_1;
2686 	struct slist *sjset_data_frame_2;
2687 	struct slist *sjset_qos;
2688 	struct slist *sjset_radiotap_flags_present;
2689 	struct slist *sjset_radiotap_ext_present;
2690 	struct slist *sjset_radiotap_tsft_present;
2691 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2692 	struct slist *s_roundup;
2693 
2694 	if (cstate->off_linkpl.reg == -1) {
2695 		/*
2696 		 * No register has been assigned to the offset of
2697 		 * the link-layer payload, which means nobody needs
2698 		 * it; don't bother computing it - just return
2699 		 * what we already have.
2700 		 */
2701 		return (s);
2702 	}
2703 
2704 	/*
2705 	 * This code is not compatible with the optimizer, as
2706 	 * we are generating jmp instructions within a normal
2707 	 * slist of instructions
2708 	 */
2709 	cstate->no_optimize = 1;
2710 
2711 	/*
2712 	 * If "s" is non-null, it has code to arrange that the X register
2713 	 * contains the length of the prefix preceding the link-layer
2714 	 * header.
2715 	 *
2716 	 * Otherwise, the length of the prefix preceding the link-layer
2717 	 * header is "off_outermostlinkhdr.constant_part".
2718 	 */
2719 	if (s == NULL) {
2720 		/*
2721 		 * There is no variable-length header preceding the
2722 		 * link-layer header.
2723 		 *
2724 		 * Load the length of the fixed-length prefix preceding
2725 		 * the link-layer header (if any) into the X register,
2726 		 * and store it in the cstate->off_linkpl.reg register.
2727 		 * That length is off_outermostlinkhdr.constant_part.
2728 		 */
2729 		s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2730 		s->s.k = cstate->off_outermostlinkhdr.constant_part;
2731 	}
2732 
2733 	/*
2734 	 * The X register contains the offset of the beginning of the
2735 	 * link-layer header; add 24, which is the minimum length
2736 	 * of the MAC header for a data frame, to that, and store it
2737 	 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2738 	 * which is at the offset in the X register, with an indexed load.
2739 	 */
2740 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2741 	sappend(s, s2);
2742 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2743 	s2->s.k = 24;
2744 	sappend(s, s2);
2745 	s2 = new_stmt(cstate, BPF_ST);
2746 	s2->s.k = cstate->off_linkpl.reg;
2747 	sappend(s, s2);
2748 
2749 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2750 	s2->s.k = 0;
2751 	sappend(s, s2);
2752 
2753 	/*
2754 	 * Check the Frame Control field to see if this is a data frame;
2755 	 * a data frame has the 0x08 bit (b3) in that field set and the
2756 	 * 0x04 bit (b2) clear.
2757 	 */
2758 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2759 	sjset_data_frame_1->s.k = 0x08;
2760 	sappend(s, sjset_data_frame_1);
2761 
2762 	/*
2763 	 * If b3 is set, test b2, otherwise go to the first statement of
2764 	 * the rest of the program.
2765 	 */
2766 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2767 	sjset_data_frame_2->s.k = 0x04;
2768 	sappend(s, sjset_data_frame_2);
2769 	sjset_data_frame_1->s.jf = snext;
2770 
2771 	/*
2772 	 * If b2 is not set, this is a data frame; test the QoS bit.
2773 	 * Otherwise, go to the first statement of the rest of the
2774 	 * program.
2775 	 */
2776 	sjset_data_frame_2->s.jt = snext;
2777 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2778 	sjset_qos->s.k = 0x80;	/* QoS bit */
2779 	sappend(s, sjset_qos);
2780 
2781 	/*
2782 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2783 	 * field.
2784 	 * Otherwise, go to the first statement of the rest of the
2785 	 * program.
2786 	 */
2787 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2788 	s2->s.k = cstate->off_linkpl.reg;
2789 	sappend(s, s2);
2790 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2791 	s2->s.k = 2;
2792 	sappend(s, s2);
2793 	s2 = new_stmt(cstate, BPF_ST);
2794 	s2->s.k = cstate->off_linkpl.reg;
2795 	sappend(s, s2);
2796 
2797 	/*
2798 	 * If we have a radiotap header, look at it to see whether
2799 	 * there's Atheros padding between the MAC-layer header
2800 	 * and the payload.
2801 	 *
2802 	 * Note: all of the fields in the radiotap header are
2803 	 * little-endian, so we byte-swap all of the values
2804 	 * we test against, as they will be loaded as big-endian
2805 	 * values.
2806 	 *
2807 	 * XXX - in the general case, we would have to scan through
2808 	 * *all* the presence bits, if there's more than one word of
2809 	 * presence bits.  That would require a loop, meaning that
2810 	 * we wouldn't be able to run the filter in the kernel.
2811 	 *
2812 	 * We assume here that the Atheros adapters that insert the
2813 	 * annoying padding don't have multiple antennae and therefore
2814 	 * do not generate radiotap headers with multiple presence words.
2815 	 */
2816 	if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2817 		/*
2818 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2819 		 * in the first presence flag word?
2820 		 */
2821 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2822 		s2->s.k = 4;
2823 		sappend(s, s2);
2824 
2825 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2826 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2827 		sappend(s, sjset_radiotap_flags_present);
2828 
2829 		/*
2830 		 * If not, skip all of this.
2831 		 */
2832 		sjset_radiotap_flags_present->s.jf = snext;
2833 
2834 		/*
2835 		 * Otherwise, is the "extension" bit set in that word?
2836 		 */
2837 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2838 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2839 		sappend(s, sjset_radiotap_ext_present);
2840 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2841 
2842 		/*
2843 		 * If so, skip all of this.
2844 		 */
2845 		sjset_radiotap_ext_present->s.jt = snext;
2846 
2847 		/*
2848 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2849 		 */
2850 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2851 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2852 		sappend(s, sjset_radiotap_tsft_present);
2853 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2854 
2855 		/*
2856 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2857 		 * at an offset of 16 from the beginning of the raw packet
2858 		 * data (8 bytes for the radiotap header and 8 bytes for
2859 		 * the TSFT field).
2860 		 *
2861 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2862 		 * is set.
2863 		 */
2864 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2865 		s2->s.k = 16;
2866 		sappend(s, s2);
2867 		sjset_radiotap_tsft_present->s.jt = s2;
2868 
2869 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2870 		sjset_tsft_datapad->s.k = 0x20;
2871 		sappend(s, sjset_tsft_datapad);
2872 
2873 		/*
2874 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2875 		 * at an offset of 8 from the beginning of the raw packet
2876 		 * data (8 bytes for the radiotap header).
2877 		 *
2878 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2879 		 * is set.
2880 		 */
2881 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2882 		s2->s.k = 8;
2883 		sappend(s, s2);
2884 		sjset_radiotap_tsft_present->s.jf = s2;
2885 
2886 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2887 		sjset_notsft_datapad->s.k = 0x20;
2888 		sappend(s, sjset_notsft_datapad);
2889 
2890 		/*
2891 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2892 		 * set, round the length of the 802.11 header to
2893 		 * a multiple of 4.  Do that by adding 3 and then
2894 		 * dividing by and multiplying by 4, which we do by
2895 		 * ANDing with ~3.
2896 		 */
2897 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2898 		s_roundup->s.k = cstate->off_linkpl.reg;
2899 		sappend(s, s_roundup);
2900 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2901 		s2->s.k = 3;
2902 		sappend(s, s2);
2903 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2904 		s2->s.k = (bpf_u_int32)~3;
2905 		sappend(s, s2);
2906 		s2 = new_stmt(cstate, BPF_ST);
2907 		s2->s.k = cstate->off_linkpl.reg;
2908 		sappend(s, s2);
2909 
2910 		sjset_tsft_datapad->s.jt = s_roundup;
2911 		sjset_tsft_datapad->s.jf = snext;
2912 		sjset_notsft_datapad->s.jt = s_roundup;
2913 		sjset_notsft_datapad->s.jf = snext;
2914 	} else
2915 		sjset_qos->s.jf = snext;
2916 
2917 	return s;
2918 }
2919 
2920 static void
2921 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2922 {
2923 	struct slist *s;
2924 
2925 	/* There is an implicit dependency between the link
2926 	 * payload and link header since the payload computation
2927 	 * includes the variable part of the header. Therefore,
2928 	 * if nobody else has allocated a register for the link
2929 	 * header and we need it, do it now. */
2930 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2931 	    cstate->off_linkhdr.reg == -1)
2932 		cstate->off_linkhdr.reg = alloc_reg(cstate);
2933 
2934 	/*
2935 	 * For link-layer types that have a variable-length header
2936 	 * preceding the link-layer header, generate code to load
2937 	 * the offset of the link-layer header into the register
2938 	 * assigned to that offset, if any.
2939 	 *
2940 	 * XXX - this, and the next switch statement, won't handle
2941 	 * encapsulation of 802.11 or 802.11+radio information in
2942 	 * some other protocol stack.  That's significantly more
2943 	 * complicated.
2944 	 */
2945 	switch (cstate->outermostlinktype) {
2946 
2947 	case DLT_PRISM_HEADER:
2948 		s = gen_load_prism_llprefixlen(cstate);
2949 		break;
2950 
2951 	case DLT_IEEE802_11_RADIO_AVS:
2952 		s = gen_load_avs_llprefixlen(cstate);
2953 		break;
2954 
2955 	case DLT_IEEE802_11_RADIO:
2956 		s = gen_load_radiotap_llprefixlen(cstate);
2957 		break;
2958 
2959 	case DLT_PPI:
2960 		s = gen_load_ppi_llprefixlen(cstate);
2961 		break;
2962 
2963 	default:
2964 		s = NULL;
2965 		break;
2966 	}
2967 
2968 	/*
2969 	 * For link-layer types that have a variable-length link-layer
2970 	 * header, generate code to load the offset of the link-layer
2971 	 * payload into the register assigned to that offset, if any.
2972 	 */
2973 	switch (cstate->outermostlinktype) {
2974 
2975 	case DLT_IEEE802_11:
2976 	case DLT_PRISM_HEADER:
2977 	case DLT_IEEE802_11_RADIO_AVS:
2978 	case DLT_IEEE802_11_RADIO:
2979 	case DLT_PPI:
2980 		s = gen_load_802_11_header_len(cstate, s, b->stmts);
2981 		break;
2982 
2983 	case DLT_PFLOG:
2984 		s = gen_load_pflog_llprefixlen(cstate);
2985 		break;
2986 	}
2987 
2988 	/*
2989 	 * If there is no initialization yet and we need variable
2990 	 * length offsets for VLAN, initialize them to zero
2991 	 */
2992 	if (s == NULL && cstate->is_vlan_vloffset) {
2993 		struct slist *s2;
2994 
2995 		if (cstate->off_linkpl.reg == -1)
2996 			cstate->off_linkpl.reg = alloc_reg(cstate);
2997 		if (cstate->off_linktype.reg == -1)
2998 			cstate->off_linktype.reg = alloc_reg(cstate);
2999 
3000 		s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3001 		s->s.k = 0;
3002 		s2 = new_stmt(cstate, BPF_ST);
3003 		s2->s.k = cstate->off_linkpl.reg;
3004 		sappend(s, s2);
3005 		s2 = new_stmt(cstate, BPF_ST);
3006 		s2->s.k = cstate->off_linktype.reg;
3007 		sappend(s, s2);
3008 	}
3009 
3010 	/*
3011 	 * If we have any offset-loading code, append all the
3012 	 * existing statements in the block to those statements,
3013 	 * and make the resulting list the list of statements
3014 	 * for the block.
3015 	 */
3016 	if (s != NULL) {
3017 		sappend(s, b->stmts);
3018 		b->stmts = s;
3019 	}
3020 }
3021 
3022 static struct block *
3023 gen_ppi_dlt_check(compiler_state_t *cstate)
3024 {
3025 	struct slist *s_load_dlt;
3026 	struct block *b;
3027 
3028 	if (cstate->linktype == DLT_PPI)
3029 	{
3030 		/* Create the statements that check for the DLT
3031 		 */
3032 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
3033 		s_load_dlt->s.k = 4;
3034 
3035 		b = new_block(cstate, JMP(BPF_JEQ));
3036 
3037 		b->stmts = s_load_dlt;
3038 		b->s.k = SWAPLONG(DLT_IEEE802_11);
3039 	}
3040 	else
3041 	{
3042 		b = NULL;
3043 	}
3044 
3045 	return b;
3046 }
3047 
3048 /*
3049  * Take an absolute offset, and:
3050  *
3051  *    if it has no variable part, return NULL;
3052  *
3053  *    if it has a variable part, generate code to load the register
3054  *    containing that variable part into the X register, returning
3055  *    a pointer to that code - if no register for that offset has
3056  *    been allocated, allocate it first.
3057  *
3058  * (The code to set that register will be generated later, but will
3059  * be placed earlier in the code sequence.)
3060  */
3061 static struct slist *
3062 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3063 {
3064 	struct slist *s;
3065 
3066 	if (off->is_variable) {
3067 		if (off->reg == -1) {
3068 			/*
3069 			 * We haven't yet assigned a register for the
3070 			 * variable part of the offset of the link-layer
3071 			 * header; allocate one.
3072 			 */
3073 			off->reg = alloc_reg(cstate);
3074 		}
3075 
3076 		/*
3077 		 * Load the register containing the variable part of the
3078 		 * offset of the link-layer header into the X register.
3079 		 */
3080 		s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3081 		s->s.k = off->reg;
3082 		return s;
3083 	} else {
3084 		/*
3085 		 * That offset isn't variable, there's no variable part,
3086 		 * so we don't need to generate any code.
3087 		 */
3088 		return NULL;
3089 	}
3090 }
3091 
3092 /*
3093  * Map an Ethernet type to the equivalent PPP type.
3094  */
3095 static bpf_u_int32
3096 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3097 {
3098 	switch (ll_proto) {
3099 
3100 	case ETHERTYPE_IP:
3101 		ll_proto = PPP_IP;
3102 		break;
3103 
3104 	case ETHERTYPE_IPV6:
3105 		ll_proto = PPP_IPV6;
3106 		break;
3107 
3108 	case ETHERTYPE_DN:
3109 		ll_proto = PPP_DECNET;
3110 		break;
3111 
3112 	case ETHERTYPE_ATALK:
3113 		ll_proto = PPP_APPLE;
3114 		break;
3115 
3116 	case ETHERTYPE_NS:
3117 		ll_proto = PPP_NS;
3118 		break;
3119 
3120 	case LLCSAP_ISONS:
3121 		ll_proto = PPP_OSI;
3122 		break;
3123 
3124 	case LLCSAP_8021D:
3125 		/*
3126 		 * I'm assuming the "Bridging PDU"s that go
3127 		 * over PPP are Spanning Tree Protocol
3128 		 * Bridging PDUs.
3129 		 */
3130 		ll_proto = PPP_BRPDU;
3131 		break;
3132 
3133 	case LLCSAP_IPX:
3134 		ll_proto = PPP_IPX;
3135 		break;
3136 	}
3137 	return (ll_proto);
3138 }
3139 
3140 /*
3141  * Generate any tests that, for encapsulation of a link-layer packet
3142  * inside another protocol stack, need to be done to check for those
3143  * link-layer packets (and that haven't already been done by a check
3144  * for that encapsulation).
3145  */
3146 static struct block *
3147 gen_prevlinkhdr_check(compiler_state_t *cstate)
3148 {
3149 	struct block *b0;
3150 
3151 	if (cstate->is_geneve)
3152 		return gen_geneve_ll_check(cstate);
3153 
3154 	switch (cstate->prevlinktype) {
3155 
3156 	case DLT_SUNATM:
3157 		/*
3158 		 * This is LANE-encapsulated Ethernet; check that the LANE
3159 		 * packet doesn't begin with an LE Control marker, i.e.
3160 		 * that it's data, not a control message.
3161 		 *
3162 		 * (We've already generated a test for LANE.)
3163 		 */
3164 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3165 		gen_not(b0);
3166 		return b0;
3167 
3168 	default:
3169 		/*
3170 		 * No such tests are necessary.
3171 		 */
3172 		return NULL;
3173 	}
3174 	/*NOTREACHED*/
3175 }
3176 
3177 /*
3178  * The three different values we should check for when checking for an
3179  * IPv6 packet with DLT_NULL.
3180  */
3181 #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */
3182 #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */
3183 #define BSD_AFNUM_INET6_DARWIN	30	/* macOS, iOS, other Darwin-based OSes */
3184 
3185 /*
3186  * Generate code to match a particular packet type by matching the
3187  * link-layer type field or fields in the 802.2 LLC header.
3188  *
3189  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3190  * value, if <= ETHERMTU.
3191  */
3192 static struct block *
3193 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3194 {
3195 	struct block *b0, *b1, *b2;
3196 	const char *description;
3197 
3198 	/* are we checking MPLS-encapsulated packets? */
3199 	if (cstate->label_stack_depth > 0)
3200 		return gen_mpls_linktype(cstate, ll_proto);
3201 
3202 	switch (cstate->linktype) {
3203 
3204 	case DLT_EN10MB:
3205 	case DLT_NETANALYZER:
3206 	case DLT_NETANALYZER_TRANSPARENT:
3207 		/* Geneve has an EtherType regardless of whether there is an
3208 		 * L2 header. */
3209 		if (!cstate->is_geneve)
3210 			b0 = gen_prevlinkhdr_check(cstate);
3211 		else
3212 			b0 = NULL;
3213 
3214 		b1 = gen_ether_linktype(cstate, ll_proto);
3215 		if (b0 != NULL)
3216 			gen_and(b0, b1);
3217 		return b1;
3218 		/*NOTREACHED*/
3219 
3220 	case DLT_C_HDLC:
3221 	case DLT_HDLC:
3222 		switch (ll_proto) {
3223 
3224 		case LLCSAP_ISONS:
3225 			ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3226 			/* fall through */
3227 
3228 		default:
3229 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3230 			/*NOTREACHED*/
3231 		}
3232 
3233 	case DLT_IEEE802_11:
3234 	case DLT_PRISM_HEADER:
3235 	case DLT_IEEE802_11_RADIO_AVS:
3236 	case DLT_IEEE802_11_RADIO:
3237 	case DLT_PPI:
3238 		/*
3239 		 * Check that we have a data frame.
3240 		 */
3241 		b0 = gen_check_802_11_data_frame(cstate);
3242 
3243 		/*
3244 		 * Now check for the specified link-layer type.
3245 		 */
3246 		b1 = gen_llc_linktype(cstate, ll_proto);
3247 		gen_and(b0, b1);
3248 		return b1;
3249 		/*NOTREACHED*/
3250 
3251 	case DLT_FDDI:
3252 		/*
3253 		 * XXX - check for LLC frames.
3254 		 */
3255 		return gen_llc_linktype(cstate, ll_proto);
3256 		/*NOTREACHED*/
3257 
3258 	case DLT_IEEE802:
3259 		/*
3260 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3261 		 */
3262 		return gen_llc_linktype(cstate, ll_proto);
3263 		/*NOTREACHED*/
3264 
3265 	case DLT_ATM_RFC1483:
3266 	case DLT_ATM_CLIP:
3267 	case DLT_IP_OVER_FC:
3268 		return gen_llc_linktype(cstate, ll_proto);
3269 		/*NOTREACHED*/
3270 
3271 	case DLT_SUNATM:
3272 		/*
3273 		 * Check for an LLC-encapsulated version of this protocol;
3274 		 * if we were checking for LANE, linktype would no longer
3275 		 * be DLT_SUNATM.
3276 		 *
3277 		 * Check for LLC encapsulation and then check the protocol.
3278 		 */
3279 		b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3280 		b1 = gen_llc_linktype(cstate, ll_proto);
3281 		gen_and(b0, b1);
3282 		return b1;
3283 		/*NOTREACHED*/
3284 
3285 	case DLT_LINUX_SLL:
3286 		return gen_linux_sll_linktype(cstate, ll_proto);
3287 		/*NOTREACHED*/
3288 
3289 	case DLT_SLIP:
3290 	case DLT_SLIP_BSDOS:
3291 	case DLT_RAW:
3292 		/*
3293 		 * These types don't provide any type field; packets
3294 		 * are always IPv4 or IPv6.
3295 		 *
3296 		 * XXX - for IPv4, check for a version number of 4, and,
3297 		 * for IPv6, check for a version number of 6?
3298 		 */
3299 		switch (ll_proto) {
3300 
3301 		case ETHERTYPE_IP:
3302 			/* Check for a version number of 4. */
3303 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3304 
3305 		case ETHERTYPE_IPV6:
3306 			/* Check for a version number of 6. */
3307 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3308 
3309 		default:
3310 			return gen_false(cstate);	/* always false */
3311 		}
3312 		/*NOTREACHED*/
3313 
3314 	case DLT_IPV4:
3315 		/*
3316 		 * Raw IPv4, so no type field.
3317 		 */
3318 		if (ll_proto == ETHERTYPE_IP)
3319 			return gen_true(cstate);	/* always true */
3320 
3321 		/* Checking for something other than IPv4; always false */
3322 		return gen_false(cstate);
3323 		/*NOTREACHED*/
3324 
3325 	case DLT_IPV6:
3326 		/*
3327 		 * Raw IPv6, so no type field.
3328 		 */
3329 		if (ll_proto == ETHERTYPE_IPV6)
3330 			return gen_true(cstate);	/* always true */
3331 
3332 		/* Checking for something other than IPv6; always false */
3333 		return gen_false(cstate);
3334 		/*NOTREACHED*/
3335 
3336 	case DLT_PPP:
3337 	case DLT_PPP_PPPD:
3338 	case DLT_PPP_SERIAL:
3339 	case DLT_PPP_ETHER:
3340 		/*
3341 		 * We use Ethernet protocol types inside libpcap;
3342 		 * map them to the corresponding PPP protocol types.
3343 		 */
3344 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3345 		    ethertype_to_ppptype(ll_proto));
3346 		/*NOTREACHED*/
3347 
3348 	case DLT_PPP_BSDOS:
3349 		/*
3350 		 * We use Ethernet protocol types inside libpcap;
3351 		 * map them to the corresponding PPP protocol types.
3352 		 */
3353 		switch (ll_proto) {
3354 
3355 		case ETHERTYPE_IP:
3356 			/*
3357 			 * Also check for Van Jacobson-compressed IP.
3358 			 * XXX - do this for other forms of PPP?
3359 			 */
3360 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3361 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3362 			gen_or(b0, b1);
3363 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3364 			gen_or(b1, b0);
3365 			return b0;
3366 
3367 		default:
3368 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3369 			    ethertype_to_ppptype(ll_proto));
3370 		}
3371 		/*NOTREACHED*/
3372 
3373 	case DLT_NULL:
3374 	case DLT_LOOP:
3375 	case DLT_ENC:
3376 		switch (ll_proto) {
3377 
3378 		case ETHERTYPE_IP:
3379 			return (gen_loopback_linktype(cstate, AF_INET));
3380 
3381 		case ETHERTYPE_IPV6:
3382 			/*
3383 			 * AF_ values may, unfortunately, be platform-
3384 			 * dependent; AF_INET isn't, because everybody
3385 			 * used 4.2BSD's value, but AF_INET6 is, because
3386 			 * 4.2BSD didn't have a value for it (given that
3387 			 * IPv6 didn't exist back in the early 1980's),
3388 			 * and they all picked their own values.
3389 			 *
3390 			 * This means that, if we're reading from a
3391 			 * savefile, we need to check for all the
3392 			 * possible values.
3393 			 *
3394 			 * If we're doing a live capture, we only need
3395 			 * to check for this platform's value; however,
3396 			 * Npcap uses 24, which isn't Windows's AF_INET6
3397 			 * value.  (Given the multiple different values,
3398 			 * programs that read pcap files shouldn't be
3399 			 * checking for their platform's AF_INET6 value
3400 			 * anyway, they should check for all of the
3401 			 * possible values. and they might as well do
3402 			 * that even for live captures.)
3403 			 */
3404 			if (cstate->bpf_pcap->rfile != NULL) {
3405 				/*
3406 				 * Savefile - check for all three
3407 				 * possible IPv6 values.
3408 				 */
3409 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3410 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3411 				gen_or(b0, b1);
3412 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3413 				gen_or(b0, b1);
3414 				return (b1);
3415 			} else {
3416 				/*
3417 				 * Live capture, so we only need to
3418 				 * check for the value used on this
3419 				 * platform.
3420 				 */
3421 #ifdef _WIN32
3422 				/*
3423 				 * Npcap doesn't use Windows's AF_INET6,
3424 				 * as that collides with AF_IPX on
3425 				 * some BSDs (both have the value 23).
3426 				 * Instead, it uses 24.
3427 				 */
3428 				return (gen_loopback_linktype(cstate, 24));
3429 #else /* _WIN32 */
3430 #ifdef AF_INET6
3431 				return (gen_loopback_linktype(cstate, AF_INET6));
3432 #else /* AF_INET6 */
3433 				/*
3434 				 * I guess this platform doesn't support
3435 				 * IPv6, so we just reject all packets.
3436 				 */
3437 				return gen_false(cstate);
3438 #endif /* AF_INET6 */
3439 #endif /* _WIN32 */
3440 			}
3441 
3442 		default:
3443 			/*
3444 			 * Not a type on which we support filtering.
3445 			 * XXX - support those that have AF_ values
3446 			 * #defined on this platform, at least?
3447 			 */
3448 			return gen_false(cstate);
3449 		}
3450 
3451 	case DLT_PFLOG:
3452 		/*
3453 		 * af field is host byte order in contrast to the rest of
3454 		 * the packet.
3455 		 */
3456 		if (ll_proto == ETHERTYPE_IP)
3457 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3458 			    BPF_B, AF_INET));
3459 		else if (ll_proto == ETHERTYPE_IPV6)
3460 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3461 			    BPF_B, AF_INET6));
3462 		else
3463 			return gen_false(cstate);
3464 		/*NOTREACHED*/
3465 
3466 	case DLT_ARCNET:
3467 	case DLT_ARCNET_LINUX:
3468 		/*
3469 		 * XXX should we check for first fragment if the protocol
3470 		 * uses PHDS?
3471 		 */
3472 		switch (ll_proto) {
3473 
3474 		default:
3475 			return gen_false(cstate);
3476 
3477 		case ETHERTYPE_IPV6:
3478 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3479 				ARCTYPE_INET6));
3480 
3481 		case ETHERTYPE_IP:
3482 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3483 			    ARCTYPE_IP);
3484 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3485 			    ARCTYPE_IP_OLD);
3486 			gen_or(b0, b1);
3487 			return (b1);
3488 
3489 		case ETHERTYPE_ARP:
3490 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3491 			    ARCTYPE_ARP);
3492 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3493 			    ARCTYPE_ARP_OLD);
3494 			gen_or(b0, b1);
3495 			return (b1);
3496 
3497 		case ETHERTYPE_REVARP:
3498 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3499 			    ARCTYPE_REVARP));
3500 
3501 		case ETHERTYPE_ATALK:
3502 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3503 			    ARCTYPE_ATALK));
3504 		}
3505 		/*NOTREACHED*/
3506 
3507 	case DLT_LTALK:
3508 		switch (ll_proto) {
3509 		case ETHERTYPE_ATALK:
3510 			return gen_true(cstate);
3511 		default:
3512 			return gen_false(cstate);
3513 		}
3514 		/*NOTREACHED*/
3515 
3516 	case DLT_FRELAY:
3517 		/*
3518 		 * XXX - assumes a 2-byte Frame Relay header with
3519 		 * DLCI and flags.  What if the address is longer?
3520 		 */
3521 		switch (ll_proto) {
3522 
3523 		case ETHERTYPE_IP:
3524 			/*
3525 			 * Check for the special NLPID for IP.
3526 			 */
3527 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3528 
3529 		case ETHERTYPE_IPV6:
3530 			/*
3531 			 * Check for the special NLPID for IPv6.
3532 			 */
3533 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3534 
3535 		case LLCSAP_ISONS:
3536 			/*
3537 			 * Check for several OSI protocols.
3538 			 *
3539 			 * Frame Relay packets typically have an OSI
3540 			 * NLPID at the beginning; we check for each
3541 			 * of them.
3542 			 *
3543 			 * What we check for is the NLPID and a frame
3544 			 * control field of UI, i.e. 0x03 followed
3545 			 * by the NLPID.
3546 			 */
3547 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3548 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3549 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3550 			gen_or(b1, b2);
3551 			gen_or(b0, b2);
3552 			return b2;
3553 
3554 		default:
3555 			return gen_false(cstate);
3556 		}
3557 		/*NOTREACHED*/
3558 
3559 	case DLT_MFR:
3560 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3561 
3562         case DLT_JUNIPER_MFR:
3563         case DLT_JUNIPER_MLFR:
3564         case DLT_JUNIPER_MLPPP:
3565 	case DLT_JUNIPER_ATM1:
3566 	case DLT_JUNIPER_ATM2:
3567 	case DLT_JUNIPER_PPPOE:
3568 	case DLT_JUNIPER_PPPOE_ATM:
3569         case DLT_JUNIPER_GGSN:
3570         case DLT_JUNIPER_ES:
3571         case DLT_JUNIPER_MONITOR:
3572         case DLT_JUNIPER_SERVICES:
3573         case DLT_JUNIPER_ETHER:
3574         case DLT_JUNIPER_PPP:
3575         case DLT_JUNIPER_FRELAY:
3576         case DLT_JUNIPER_CHDLC:
3577         case DLT_JUNIPER_VP:
3578         case DLT_JUNIPER_ST:
3579         case DLT_JUNIPER_ISM:
3580         case DLT_JUNIPER_VS:
3581         case DLT_JUNIPER_SRX_E2E:
3582         case DLT_JUNIPER_FIBRECHANNEL:
3583 	case DLT_JUNIPER_ATM_CEMIC:
3584 
3585 		/* just lets verify the magic number for now -
3586 		 * on ATM we may have up to 6 different encapsulations on the wire
3587 		 * and need a lot of heuristics to figure out that the payload
3588 		 * might be;
3589 		 *
3590 		 * FIXME encapsulation specific BPF_ filters
3591 		 */
3592 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3593 
3594 	case DLT_BACNET_MS_TP:
3595 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3596 
3597 	case DLT_IPNET:
3598 		return gen_ipnet_linktype(cstate, ll_proto);
3599 
3600 	case DLT_LINUX_IRDA:
3601 		bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3602 
3603 	case DLT_DOCSIS:
3604 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3605 
3606 	case DLT_MTP2:
3607 	case DLT_MTP2_WITH_PHDR:
3608 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3609 
3610 	case DLT_ERF:
3611 		bpf_error(cstate, "ERF link-layer type filtering not implemented");
3612 
3613 	case DLT_PFSYNC:
3614 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3615 
3616 	case DLT_LINUX_LAPD:
3617 		bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3618 
3619 	case DLT_USB_FREEBSD:
3620 	case DLT_USB_LINUX:
3621 	case DLT_USB_LINUX_MMAPPED:
3622 	case DLT_USBPCAP:
3623 		bpf_error(cstate, "USB link-layer type filtering not implemented");
3624 
3625 	case DLT_BLUETOOTH_HCI_H4:
3626 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3627 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3628 
3629 	case DLT_CAN20B:
3630 	case DLT_CAN_SOCKETCAN:
3631 		bpf_error(cstate, "CAN link-layer type filtering not implemented");
3632 
3633 	case DLT_IEEE802_15_4:
3634 	case DLT_IEEE802_15_4_LINUX:
3635 	case DLT_IEEE802_15_4_NONASK_PHY:
3636 	case DLT_IEEE802_15_4_NOFCS:
3637 	case DLT_IEEE802_15_4_TAP:
3638 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3639 
3640 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3641 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3642 
3643 	case DLT_SITA:
3644 		bpf_error(cstate, "SITA link-layer type filtering not implemented");
3645 
3646 	case DLT_RAIF1:
3647 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3648 
3649 	case DLT_IPMB_KONTRON:
3650 	case DLT_IPMB_LINUX:
3651 		bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3652 
3653 	case DLT_AX25_KISS:
3654 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3655 
3656 	case DLT_NFLOG:
3657 		/* Using the fixed-size NFLOG header it is possible to tell only
3658 		 * the address family of the packet, other meaningful data is
3659 		 * either missing or behind TLVs.
3660 		 */
3661 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3662 
3663 	default:
3664 		/*
3665 		 * Does this link-layer header type have a field
3666 		 * indicating the type of the next protocol?  If
3667 		 * so, off_linktype.constant_part will be the offset of that
3668 		 * field in the packet; if not, it will be OFFSET_NOT_SET.
3669 		 */
3670 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3671 			/*
3672 			 * Yes; assume it's an Ethernet type.  (If
3673 			 * it's not, it needs to be handled specially
3674 			 * above.)
3675 			 */
3676 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3677 			/*NOTREACHED */
3678 		} else {
3679 			/*
3680 			 * No; report an error.
3681 			 */
3682 			description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3683 			bpf_error(cstate, "%s link-layer type filtering not implemented",
3684 			    description);
3685 			/*NOTREACHED */
3686 		}
3687 	}
3688 }
3689 
3690 /*
3691  * Check for an LLC SNAP packet with a given organization code and
3692  * protocol type; we check the entire contents of the 802.2 LLC and
3693  * snap headers, checking for DSAP and SSAP of SNAP and a control
3694  * field of 0x03 in the LLC header, and for the specified organization
3695  * code and protocol type in the SNAP header.
3696  */
3697 static struct block *
3698 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3699 {
3700 	u_char snapblock[8];
3701 
3702 	snapblock[0] = LLCSAP_SNAP;		/* DSAP = SNAP */
3703 	snapblock[1] = LLCSAP_SNAP;		/* SSAP = SNAP */
3704 	snapblock[2] = 0x03;			/* control = UI */
3705 	snapblock[3] = (u_char)(orgcode >> 16);	/* upper 8 bits of organization code */
3706 	snapblock[4] = (u_char)(orgcode >> 8);	/* middle 8 bits of organization code */
3707 	snapblock[5] = (u_char)(orgcode >> 0);	/* lower 8 bits of organization code */
3708 	snapblock[6] = (u_char)(ptype >> 8);	/* upper 8 bits of protocol type */
3709 	snapblock[7] = (u_char)(ptype >> 0);	/* lower 8 bits of protocol type */
3710 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3711 }
3712 
3713 /*
3714  * Generate code to match frames with an LLC header.
3715  */
3716 static struct block *
3717 gen_llc_internal(compiler_state_t *cstate)
3718 {
3719 	struct block *b0, *b1;
3720 
3721 	switch (cstate->linktype) {
3722 
3723 	case DLT_EN10MB:
3724 		/*
3725 		 * We check for an Ethernet type field less than
3726 		 * 1500, which means it's an 802.3 length field.
3727 		 */
3728 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3729 		gen_not(b0);
3730 
3731 		/*
3732 		 * Now check for the purported DSAP and SSAP not being
3733 		 * 0xFF, to rule out NetWare-over-802.3.
3734 		 */
3735 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3736 		gen_not(b1);
3737 		gen_and(b0, b1);
3738 		return b1;
3739 
3740 	case DLT_SUNATM:
3741 		/*
3742 		 * We check for LLC traffic.
3743 		 */
3744 		b0 = gen_atmtype_llc(cstate);
3745 		return b0;
3746 
3747 	case DLT_IEEE802:	/* Token Ring */
3748 		/*
3749 		 * XXX - check for LLC frames.
3750 		 */
3751 		return gen_true(cstate);
3752 
3753 	case DLT_FDDI:
3754 		/*
3755 		 * XXX - check for LLC frames.
3756 		 */
3757 		return gen_true(cstate);
3758 
3759 	case DLT_ATM_RFC1483:
3760 		/*
3761 		 * For LLC encapsulation, these are defined to have an
3762 		 * 802.2 LLC header.
3763 		 *
3764 		 * For VC encapsulation, they don't, but there's no
3765 		 * way to check for that; the protocol used on the VC
3766 		 * is negotiated out of band.
3767 		 */
3768 		return gen_true(cstate);
3769 
3770 	case DLT_IEEE802_11:
3771 	case DLT_PRISM_HEADER:
3772 	case DLT_IEEE802_11_RADIO:
3773 	case DLT_IEEE802_11_RADIO_AVS:
3774 	case DLT_PPI:
3775 		/*
3776 		 * Check that we have a data frame.
3777 		 */
3778 		b0 = gen_check_802_11_data_frame(cstate);
3779 		return b0;
3780 
3781 	default:
3782 		bpf_error(cstate, "'llc' not supported for %s",
3783 			  pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3784 		/*NOTREACHED*/
3785 	}
3786 }
3787 
3788 struct block *
3789 gen_llc(compiler_state_t *cstate)
3790 {
3791 	/*
3792 	 * Catch errors reported by us and routines below us, and return NULL
3793 	 * on an error.
3794 	 */
3795 	if (setjmp(cstate->top_ctx))
3796 		return (NULL);
3797 
3798 	return gen_llc_internal(cstate);
3799 }
3800 
3801 struct block *
3802 gen_llc_i(compiler_state_t *cstate)
3803 {
3804 	struct block *b0, *b1;
3805 	struct slist *s;
3806 
3807 	/*
3808 	 * Catch errors reported by us and routines below us, and return NULL
3809 	 * on an error.
3810 	 */
3811 	if (setjmp(cstate->top_ctx))
3812 		return (NULL);
3813 
3814 	/*
3815 	 * Check whether this is an LLC frame.
3816 	 */
3817 	b0 = gen_llc_internal(cstate);
3818 
3819 	/*
3820 	 * Load the control byte and test the low-order bit; it must
3821 	 * be clear for I frames.
3822 	 */
3823 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3824 	b1 = new_block(cstate, JMP(BPF_JSET));
3825 	b1->s.k = 0x01;
3826 	b1->stmts = s;
3827 	gen_not(b1);
3828 	gen_and(b0, b1);
3829 	return b1;
3830 }
3831 
3832 struct block *
3833 gen_llc_s(compiler_state_t *cstate)
3834 {
3835 	struct block *b0, *b1;
3836 
3837 	/*
3838 	 * Catch errors reported by us and routines below us, and return NULL
3839 	 * on an error.
3840 	 */
3841 	if (setjmp(cstate->top_ctx))
3842 		return (NULL);
3843 
3844 	/*
3845 	 * Check whether this is an LLC frame.
3846 	 */
3847 	b0 = gen_llc_internal(cstate);
3848 
3849 	/*
3850 	 * Now compare the low-order 2 bit of the control byte against
3851 	 * the appropriate value for S frames.
3852 	 */
3853 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3854 	gen_and(b0, b1);
3855 	return b1;
3856 }
3857 
3858 struct block *
3859 gen_llc_u(compiler_state_t *cstate)
3860 {
3861 	struct block *b0, *b1;
3862 
3863 	/*
3864 	 * Catch errors reported by us and routines below us, and return NULL
3865 	 * on an error.
3866 	 */
3867 	if (setjmp(cstate->top_ctx))
3868 		return (NULL);
3869 
3870 	/*
3871 	 * Check whether this is an LLC frame.
3872 	 */
3873 	b0 = gen_llc_internal(cstate);
3874 
3875 	/*
3876 	 * Now compare the low-order 2 bit of the control byte against
3877 	 * the appropriate value for U frames.
3878 	 */
3879 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3880 	gen_and(b0, b1);
3881 	return b1;
3882 }
3883 
3884 struct block *
3885 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3886 {
3887 	struct block *b0, *b1;
3888 
3889 	/*
3890 	 * Catch errors reported by us and routines below us, and return NULL
3891 	 * on an error.
3892 	 */
3893 	if (setjmp(cstate->top_ctx))
3894 		return (NULL);
3895 
3896 	/*
3897 	 * Check whether this is an LLC frame.
3898 	 */
3899 	b0 = gen_llc_internal(cstate);
3900 
3901 	/*
3902 	 * Now check for an S frame with the appropriate type.
3903 	 */
3904 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3905 	gen_and(b0, b1);
3906 	return b1;
3907 }
3908 
3909 struct block *
3910 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3911 {
3912 	struct block *b0, *b1;
3913 
3914 	/*
3915 	 * Catch errors reported by us and routines below us, and return NULL
3916 	 * on an error.
3917 	 */
3918 	if (setjmp(cstate->top_ctx))
3919 		return (NULL);
3920 
3921 	/*
3922 	 * Check whether this is an LLC frame.
3923 	 */
3924 	b0 = gen_llc_internal(cstate);
3925 
3926 	/*
3927 	 * Now check for a U frame with the appropriate type.
3928 	 */
3929 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3930 	gen_and(b0, b1);
3931 	return b1;
3932 }
3933 
3934 /*
3935  * Generate code to match a particular packet type, for link-layer types
3936  * using 802.2 LLC headers.
3937  *
3938  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3939  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3940  *
3941  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3942  * value, if <= ETHERMTU.  We use that to determine whether to
3943  * match the DSAP or both DSAP and LSAP or to check the OUI and
3944  * protocol ID in a SNAP header.
3945  */
3946 static struct block *
3947 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3948 {
3949 	/*
3950 	 * XXX - handle token-ring variable-length header.
3951 	 */
3952 	switch (ll_proto) {
3953 
3954 	case LLCSAP_IP:
3955 	case LLCSAP_ISONS:
3956 	case LLCSAP_NETBEUI:
3957 		/*
3958 		 * XXX - should we check both the DSAP and the
3959 		 * SSAP, like this, or should we check just the
3960 		 * DSAP, as we do for other SAP values?
3961 		 */
3962 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3963 			     ((ll_proto << 8) | ll_proto));
3964 
3965 	case LLCSAP_IPX:
3966 		/*
3967 		 * XXX - are there ever SNAP frames for IPX on
3968 		 * non-Ethernet 802.x networks?
3969 		 */
3970 		return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3971 
3972 	case ETHERTYPE_ATALK:
3973 		/*
3974 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3975 		 * SNAP packets with an organization code of
3976 		 * 0x080007 (Apple, for Appletalk) and a protocol
3977 		 * type of ETHERTYPE_ATALK (Appletalk).
3978 		 *
3979 		 * XXX - check for an organization code of
3980 		 * encapsulated Ethernet as well?
3981 		 */
3982 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3983 
3984 	default:
3985 		/*
3986 		 * XXX - we don't have to check for IPX 802.3
3987 		 * here, but should we check for the IPX Ethertype?
3988 		 */
3989 		if (ll_proto <= ETHERMTU) {
3990 			/*
3991 			 * This is an LLC SAP value, so check
3992 			 * the DSAP.
3993 			 */
3994 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
3995 		} else {
3996 			/*
3997 			 * This is an Ethernet type; we assume that it's
3998 			 * unlikely that it'll appear in the right place
3999 			 * at random, and therefore check only the
4000 			 * location that would hold the Ethernet type
4001 			 * in a SNAP frame with an organization code of
4002 			 * 0x000000 (encapsulated Ethernet).
4003 			 *
4004 			 * XXX - if we were to check for the SNAP DSAP and
4005 			 * LSAP, as per XXX, and were also to check for an
4006 			 * organization code of 0x000000 (encapsulated
4007 			 * Ethernet), we'd do
4008 			 *
4009 			 *	return gen_snap(cstate, 0x000000, ll_proto);
4010 			 *
4011 			 * here; for now, we don't, as per the above.
4012 			 * I don't know whether it's worth the extra CPU
4013 			 * time to do the right check or not.
4014 			 */
4015 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4016 		}
4017 	}
4018 }
4019 
4020 static struct block *
4021 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4022     int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
4023 {
4024 	struct block *b0, *b1;
4025 	u_int offset;
4026 
4027 	switch (dir) {
4028 
4029 	case Q_SRC:
4030 		offset = src_off;
4031 		break;
4032 
4033 	case Q_DST:
4034 		offset = dst_off;
4035 		break;
4036 
4037 	case Q_AND:
4038 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4039 		b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4040 		gen_and(b0, b1);
4041 		return b1;
4042 
4043 	case Q_DEFAULT:
4044 	case Q_OR:
4045 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4046 		b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4047 		gen_or(b0, b1);
4048 		return b1;
4049 
4050 	case Q_ADDR1:
4051 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4052 		/*NOTREACHED*/
4053 
4054 	case Q_ADDR2:
4055 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4056 		/*NOTREACHED*/
4057 
4058 	case Q_ADDR3:
4059 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4060 		/*NOTREACHED*/
4061 
4062 	case Q_ADDR4:
4063 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4064 		/*NOTREACHED*/
4065 
4066 	case Q_RA:
4067 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4068 		/*NOTREACHED*/
4069 
4070 	case Q_TA:
4071 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4072 		/*NOTREACHED*/
4073 
4074 	default:
4075 		abort();
4076 		/*NOTREACHED*/
4077 	}
4078 	b0 = gen_linktype(cstate, ll_proto);
4079 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4080 	gen_and(b0, b1);
4081 	return b1;
4082 }
4083 
4084 #ifdef INET6
4085 static struct block *
4086 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4087     struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4088     u_int dst_off)
4089 {
4090 	struct block *b0, *b1;
4091 	u_int offset;
4092 	/*
4093 	 * Code below needs to access four separate 32-bit parts of the 128-bit
4094 	 * IPv6 address and mask.  In some OSes this is as simple as using the
4095 	 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4096 	 * 8-, 16- and 32-bit arrays.  In other OSes this is not the case, as
4097 	 * far as libpcap sees it.  Hence copy the data before use to avoid
4098 	 * potential unaligned memory access and the associated compiler
4099 	 * warnings (whether genuine or not).
4100 	 */
4101 	bpf_u_int32 a[4], m[4];
4102 
4103 	switch (dir) {
4104 
4105 	case Q_SRC:
4106 		offset = src_off;
4107 		break;
4108 
4109 	case Q_DST:
4110 		offset = dst_off;
4111 		break;
4112 
4113 	case Q_AND:
4114 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4115 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4116 		gen_and(b0, b1);
4117 		return b1;
4118 
4119 	case Q_DEFAULT:
4120 	case Q_OR:
4121 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4122 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4123 		gen_or(b0, b1);
4124 		return b1;
4125 
4126 	case Q_ADDR1:
4127 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4128 		/*NOTREACHED*/
4129 
4130 	case Q_ADDR2:
4131 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4132 		/*NOTREACHED*/
4133 
4134 	case Q_ADDR3:
4135 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4136 		/*NOTREACHED*/
4137 
4138 	case Q_ADDR4:
4139 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4140 		/*NOTREACHED*/
4141 
4142 	case Q_RA:
4143 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4144 		/*NOTREACHED*/
4145 
4146 	case Q_TA:
4147 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4148 		/*NOTREACHED*/
4149 
4150 	default:
4151 		abort();
4152 		/*NOTREACHED*/
4153 	}
4154 	/* this order is important */
4155 	memcpy(a, addr, sizeof(a));
4156 	memcpy(m, mask, sizeof(m));
4157 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4158 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4159 	gen_and(b0, b1);
4160 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4161 	gen_and(b0, b1);
4162 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4163 	gen_and(b0, b1);
4164 	b0 = gen_linktype(cstate, ll_proto);
4165 	gen_and(b0, b1);
4166 	return b1;
4167 }
4168 #endif
4169 
4170 static struct block *
4171 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4172 {
4173 	register struct block *b0, *b1;
4174 
4175 	switch (dir) {
4176 	case Q_SRC:
4177 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4178 
4179 	case Q_DST:
4180 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4181 
4182 	case Q_AND:
4183 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4184 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4185 		gen_and(b0, b1);
4186 		return b1;
4187 
4188 	case Q_DEFAULT:
4189 	case Q_OR:
4190 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4191 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4192 		gen_or(b0, b1);
4193 		return b1;
4194 
4195 	case Q_ADDR1:
4196 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4197 		/*NOTREACHED*/
4198 
4199 	case Q_ADDR2:
4200 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4201 		/*NOTREACHED*/
4202 
4203 	case Q_ADDR3:
4204 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4205 		/*NOTREACHED*/
4206 
4207 	case Q_ADDR4:
4208 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4209 		/*NOTREACHED*/
4210 
4211 	case Q_RA:
4212 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4213 		/*NOTREACHED*/
4214 
4215 	case Q_TA:
4216 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4217 		/*NOTREACHED*/
4218 	}
4219 	abort();
4220 	/*NOTREACHED*/
4221 }
4222 
4223 /*
4224  * Like gen_ehostop, but for DLT_FDDI
4225  */
4226 static struct block *
4227 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4228 {
4229 	struct block *b0, *b1;
4230 
4231 	switch (dir) {
4232 	case Q_SRC:
4233 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4234 
4235 	case Q_DST:
4236 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4237 
4238 	case Q_AND:
4239 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4240 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4241 		gen_and(b0, b1);
4242 		return b1;
4243 
4244 	case Q_DEFAULT:
4245 	case Q_OR:
4246 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4247 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4248 		gen_or(b0, b1);
4249 		return b1;
4250 
4251 	case Q_ADDR1:
4252 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4253 		/*NOTREACHED*/
4254 
4255 	case Q_ADDR2:
4256 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4257 		/*NOTREACHED*/
4258 
4259 	case Q_ADDR3:
4260 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4261 		/*NOTREACHED*/
4262 
4263 	case Q_ADDR4:
4264 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4265 		/*NOTREACHED*/
4266 
4267 	case Q_RA:
4268 		bpf_error(cstate, "'ra' is only supported on 802.11");
4269 		/*NOTREACHED*/
4270 
4271 	case Q_TA:
4272 		bpf_error(cstate, "'ta' is only supported on 802.11");
4273 		/*NOTREACHED*/
4274 	}
4275 	abort();
4276 	/*NOTREACHED*/
4277 }
4278 
4279 /*
4280  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4281  */
4282 static struct block *
4283 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4284 {
4285 	register struct block *b0, *b1;
4286 
4287 	switch (dir) {
4288 	case Q_SRC:
4289 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4290 
4291 	case Q_DST:
4292 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4293 
4294 	case Q_AND:
4295 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4296 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4297 		gen_and(b0, b1);
4298 		return b1;
4299 
4300 	case Q_DEFAULT:
4301 	case Q_OR:
4302 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4303 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4304 		gen_or(b0, b1);
4305 		return b1;
4306 
4307 	case Q_ADDR1:
4308 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4309 		/*NOTREACHED*/
4310 
4311 	case Q_ADDR2:
4312 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4313 		/*NOTREACHED*/
4314 
4315 	case Q_ADDR3:
4316 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4317 		/*NOTREACHED*/
4318 
4319 	case Q_ADDR4:
4320 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4321 		/*NOTREACHED*/
4322 
4323 	case Q_RA:
4324 		bpf_error(cstate, "'ra' is only supported on 802.11");
4325 		/*NOTREACHED*/
4326 
4327 	case Q_TA:
4328 		bpf_error(cstate, "'ta' is only supported on 802.11");
4329 		/*NOTREACHED*/
4330 	}
4331 	abort();
4332 	/*NOTREACHED*/
4333 }
4334 
4335 /*
4336  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4337  * various 802.11 + radio headers.
4338  */
4339 static struct block *
4340 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4341 {
4342 	register struct block *b0, *b1, *b2;
4343 	register struct slist *s;
4344 
4345 #ifdef ENABLE_WLAN_FILTERING_PATCH
4346 	/*
4347 	 * TODO GV 20070613
4348 	 * We need to disable the optimizer because the optimizer is buggy
4349 	 * and wipes out some LD instructions generated by the below
4350 	 * code to validate the Frame Control bits
4351 	 */
4352 	cstate->no_optimize = 1;
4353 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4354 
4355 	switch (dir) {
4356 	case Q_SRC:
4357 		/*
4358 		 * Oh, yuk.
4359 		 *
4360 		 *	For control frames, there is no SA.
4361 		 *
4362 		 *	For management frames, SA is at an
4363 		 *	offset of 10 from the beginning of
4364 		 *	the packet.
4365 		 *
4366 		 *	For data frames, SA is at an offset
4367 		 *	of 10 from the beginning of the packet
4368 		 *	if From DS is clear, at an offset of
4369 		 *	16 from the beginning of the packet
4370 		 *	if From DS is set and To DS is clear,
4371 		 *	and an offset of 24 from the beginning
4372 		 *	of the packet if From DS is set and To DS
4373 		 *	is set.
4374 		 */
4375 
4376 		/*
4377 		 * Generate the tests to be done for data frames
4378 		 * with From DS set.
4379 		 *
4380 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
4381 		 */
4382 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4383 		b1 = new_block(cstate, JMP(BPF_JSET));
4384 		b1->s.k = 0x01;	/* To DS */
4385 		b1->stmts = s;
4386 
4387 		/*
4388 		 * If To DS is set, the SA is at 24.
4389 		 */
4390 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4391 		gen_and(b1, b0);
4392 
4393 		/*
4394 		 * Now, check for To DS not set, i.e. check
4395 		 * "!(link[1] & 0x01)".
4396 		 */
4397 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4398 		b2 = new_block(cstate, JMP(BPF_JSET));
4399 		b2->s.k = 0x01;	/* To DS */
4400 		b2->stmts = s;
4401 		gen_not(b2);
4402 
4403 		/*
4404 		 * If To DS is not set, the SA is at 16.
4405 		 */
4406 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4407 		gen_and(b2, b1);
4408 
4409 		/*
4410 		 * Now OR together the last two checks.  That gives
4411 		 * the complete set of checks for data frames with
4412 		 * From DS set.
4413 		 */
4414 		gen_or(b1, b0);
4415 
4416 		/*
4417 		 * Now check for From DS being set, and AND that with
4418 		 * the ORed-together checks.
4419 		 */
4420 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4421 		b1 = new_block(cstate, JMP(BPF_JSET));
4422 		b1->s.k = 0x02;	/* From DS */
4423 		b1->stmts = s;
4424 		gen_and(b1, b0);
4425 
4426 		/*
4427 		 * Now check for data frames with From DS not set.
4428 		 */
4429 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4430 		b2 = new_block(cstate, JMP(BPF_JSET));
4431 		b2->s.k = 0x02;	/* From DS */
4432 		b2->stmts = s;
4433 		gen_not(b2);
4434 
4435 		/*
4436 		 * If From DS isn't set, the SA is at 10.
4437 		 */
4438 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4439 		gen_and(b2, b1);
4440 
4441 		/*
4442 		 * Now OR together the checks for data frames with
4443 		 * From DS not set and for data frames with From DS
4444 		 * set; that gives the checks done for data frames.
4445 		 */
4446 		gen_or(b1, b0);
4447 
4448 		/*
4449 		 * Now check for a data frame.
4450 		 * I.e, check "link[0] & 0x08".
4451 		 */
4452 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4453 		b1 = new_block(cstate, JMP(BPF_JSET));
4454 		b1->s.k = 0x08;
4455 		b1->stmts = s;
4456 
4457 		/*
4458 		 * AND that with the checks done for data frames.
4459 		 */
4460 		gen_and(b1, b0);
4461 
4462 		/*
4463 		 * If the high-order bit of the type value is 0, this
4464 		 * is a management frame.
4465 		 * I.e, check "!(link[0] & 0x08)".
4466 		 */
4467 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4468 		b2 = new_block(cstate, JMP(BPF_JSET));
4469 		b2->s.k = 0x08;
4470 		b2->stmts = s;
4471 		gen_not(b2);
4472 
4473 		/*
4474 		 * For management frames, the SA is at 10.
4475 		 */
4476 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4477 		gen_and(b2, b1);
4478 
4479 		/*
4480 		 * OR that with the checks done for data frames.
4481 		 * That gives the checks done for management and
4482 		 * data frames.
4483 		 */
4484 		gen_or(b1, b0);
4485 
4486 		/*
4487 		 * If the low-order bit of the type value is 1,
4488 		 * this is either a control frame or a frame
4489 		 * with a reserved type, and thus not a
4490 		 * frame with an SA.
4491 		 *
4492 		 * I.e., check "!(link[0] & 0x04)".
4493 		 */
4494 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4495 		b1 = new_block(cstate, JMP(BPF_JSET));
4496 		b1->s.k = 0x04;
4497 		b1->stmts = s;
4498 		gen_not(b1);
4499 
4500 		/*
4501 		 * AND that with the checks for data and management
4502 		 * frames.
4503 		 */
4504 		gen_and(b1, b0);
4505 		return b0;
4506 
4507 	case Q_DST:
4508 		/*
4509 		 * Oh, yuk.
4510 		 *
4511 		 *	For control frames, there is no DA.
4512 		 *
4513 		 *	For management frames, DA is at an
4514 		 *	offset of 4 from the beginning of
4515 		 *	the packet.
4516 		 *
4517 		 *	For data frames, DA is at an offset
4518 		 *	of 4 from the beginning of the packet
4519 		 *	if To DS is clear and at an offset of
4520 		 *	16 from the beginning of the packet
4521 		 *	if To DS is set.
4522 		 */
4523 
4524 		/*
4525 		 * Generate the tests to be done for data frames.
4526 		 *
4527 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4528 		 */
4529 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4530 		b1 = new_block(cstate, JMP(BPF_JSET));
4531 		b1->s.k = 0x01;	/* To DS */
4532 		b1->stmts = s;
4533 
4534 		/*
4535 		 * If To DS is set, the DA is at 16.
4536 		 */
4537 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4538 		gen_and(b1, b0);
4539 
4540 		/*
4541 		 * Now, check for To DS not set, i.e. check
4542 		 * "!(link[1] & 0x01)".
4543 		 */
4544 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4545 		b2 = new_block(cstate, JMP(BPF_JSET));
4546 		b2->s.k = 0x01;	/* To DS */
4547 		b2->stmts = s;
4548 		gen_not(b2);
4549 
4550 		/*
4551 		 * If To DS is not set, the DA is at 4.
4552 		 */
4553 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4554 		gen_and(b2, b1);
4555 
4556 		/*
4557 		 * Now OR together the last two checks.  That gives
4558 		 * the complete set of checks for data frames.
4559 		 */
4560 		gen_or(b1, b0);
4561 
4562 		/*
4563 		 * Now check for a data frame.
4564 		 * I.e, check "link[0] & 0x08".
4565 		 */
4566 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4567 		b1 = new_block(cstate, JMP(BPF_JSET));
4568 		b1->s.k = 0x08;
4569 		b1->stmts = s;
4570 
4571 		/*
4572 		 * AND that with the checks done for data frames.
4573 		 */
4574 		gen_and(b1, b0);
4575 
4576 		/*
4577 		 * If the high-order bit of the type value is 0, this
4578 		 * is a management frame.
4579 		 * I.e, check "!(link[0] & 0x08)".
4580 		 */
4581 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4582 		b2 = new_block(cstate, JMP(BPF_JSET));
4583 		b2->s.k = 0x08;
4584 		b2->stmts = s;
4585 		gen_not(b2);
4586 
4587 		/*
4588 		 * For management frames, the DA is at 4.
4589 		 */
4590 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4591 		gen_and(b2, b1);
4592 
4593 		/*
4594 		 * OR that with the checks done for data frames.
4595 		 * That gives the checks done for management and
4596 		 * data frames.
4597 		 */
4598 		gen_or(b1, b0);
4599 
4600 		/*
4601 		 * If the low-order bit of the type value is 1,
4602 		 * this is either a control frame or a frame
4603 		 * with a reserved type, and thus not a
4604 		 * frame with an SA.
4605 		 *
4606 		 * I.e., check "!(link[0] & 0x04)".
4607 		 */
4608 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4609 		b1 = new_block(cstate, JMP(BPF_JSET));
4610 		b1->s.k = 0x04;
4611 		b1->stmts = s;
4612 		gen_not(b1);
4613 
4614 		/*
4615 		 * AND that with the checks for data and management
4616 		 * frames.
4617 		 */
4618 		gen_and(b1, b0);
4619 		return b0;
4620 
4621 	case Q_AND:
4622 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4623 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4624 		gen_and(b0, b1);
4625 		return b1;
4626 
4627 	case Q_DEFAULT:
4628 	case Q_OR:
4629 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4630 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4631 		gen_or(b0, b1);
4632 		return b1;
4633 
4634 	/*
4635 	 * XXX - add BSSID keyword?
4636 	 */
4637 	case Q_ADDR1:
4638 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4639 
4640 	case Q_ADDR2:
4641 		/*
4642 		 * Not present in CTS or ACK control frames.
4643 		 */
4644 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4645 			IEEE80211_FC0_TYPE_MASK);
4646 		gen_not(b0);
4647 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4648 			IEEE80211_FC0_SUBTYPE_MASK);
4649 		gen_not(b1);
4650 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4651 			IEEE80211_FC0_SUBTYPE_MASK);
4652 		gen_not(b2);
4653 		gen_and(b1, b2);
4654 		gen_or(b0, b2);
4655 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4656 		gen_and(b2, b1);
4657 		return b1;
4658 
4659 	case Q_ADDR3:
4660 		/*
4661 		 * Not present in control frames.
4662 		 */
4663 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4664 			IEEE80211_FC0_TYPE_MASK);
4665 		gen_not(b0);
4666 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4667 		gen_and(b0, b1);
4668 		return b1;
4669 
4670 	case Q_ADDR4:
4671 		/*
4672 		 * Present only if the direction mask has both "From DS"
4673 		 * and "To DS" set.  Neither control frames nor management
4674 		 * frames should have both of those set, so we don't
4675 		 * check the frame type.
4676 		 */
4677 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4678 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4679 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4680 		gen_and(b0, b1);
4681 		return b1;
4682 
4683 	case Q_RA:
4684 		/*
4685 		 * Not present in management frames; addr1 in other
4686 		 * frames.
4687 		 */
4688 
4689 		/*
4690 		 * If the high-order bit of the type value is 0, this
4691 		 * is a management frame.
4692 		 * I.e, check "(link[0] & 0x08)".
4693 		 */
4694 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4695 		b1 = new_block(cstate, JMP(BPF_JSET));
4696 		b1->s.k = 0x08;
4697 		b1->stmts = s;
4698 
4699 		/*
4700 		 * Check addr1.
4701 		 */
4702 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4703 
4704 		/*
4705 		 * AND that with the check of addr1.
4706 		 */
4707 		gen_and(b1, b0);
4708 		return (b0);
4709 
4710 	case Q_TA:
4711 		/*
4712 		 * Not present in management frames; addr2, if present,
4713 		 * in other frames.
4714 		 */
4715 
4716 		/*
4717 		 * Not present in CTS or ACK control frames.
4718 		 */
4719 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4720 			IEEE80211_FC0_TYPE_MASK);
4721 		gen_not(b0);
4722 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4723 			IEEE80211_FC0_SUBTYPE_MASK);
4724 		gen_not(b1);
4725 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4726 			IEEE80211_FC0_SUBTYPE_MASK);
4727 		gen_not(b2);
4728 		gen_and(b1, b2);
4729 		gen_or(b0, b2);
4730 
4731 		/*
4732 		 * If the high-order bit of the type value is 0, this
4733 		 * is a management frame.
4734 		 * I.e, check "(link[0] & 0x08)".
4735 		 */
4736 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4737 		b1 = new_block(cstate, JMP(BPF_JSET));
4738 		b1->s.k = 0x08;
4739 		b1->stmts = s;
4740 
4741 		/*
4742 		 * AND that with the check for frames other than
4743 		 * CTS and ACK frames.
4744 		 */
4745 		gen_and(b1, b2);
4746 
4747 		/*
4748 		 * Check addr2.
4749 		 */
4750 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4751 		gen_and(b2, b1);
4752 		return b1;
4753 	}
4754 	abort();
4755 	/*NOTREACHED*/
4756 }
4757 
4758 /*
4759  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4760  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4761  * as the RFC states.)
4762  */
4763 static struct block *
4764 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4765 {
4766 	register struct block *b0, *b1;
4767 
4768 	switch (dir) {
4769 	case Q_SRC:
4770 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4771 
4772 	case Q_DST:
4773 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4774 
4775 	case Q_AND:
4776 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4777 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4778 		gen_and(b0, b1);
4779 		return b1;
4780 
4781 	case Q_DEFAULT:
4782 	case Q_OR:
4783 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4784 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4785 		gen_or(b0, b1);
4786 		return b1;
4787 
4788 	case Q_ADDR1:
4789 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4790 		/*NOTREACHED*/
4791 
4792 	case Q_ADDR2:
4793 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4794 		/*NOTREACHED*/
4795 
4796 	case Q_ADDR3:
4797 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4798 		/*NOTREACHED*/
4799 
4800 	case Q_ADDR4:
4801 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4802 		/*NOTREACHED*/
4803 
4804 	case Q_RA:
4805 		bpf_error(cstate, "'ra' is only supported on 802.11");
4806 		/*NOTREACHED*/
4807 
4808 	case Q_TA:
4809 		bpf_error(cstate, "'ta' is only supported on 802.11");
4810 		/*NOTREACHED*/
4811 	}
4812 	abort();
4813 	/*NOTREACHED*/
4814 }
4815 
4816 /*
4817  * This is quite tricky because there may be pad bytes in front of the
4818  * DECNET header, and then there are two possible data packet formats that
4819  * carry both src and dst addresses, plus 5 packet types in a format that
4820  * carries only the src node, plus 2 types that use a different format and
4821  * also carry just the src node.
4822  *
4823  * Yuck.
4824  *
4825  * Instead of doing those all right, we just look for data packets with
4826  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4827  * will require a lot more hacking.
4828  *
4829  * To add support for filtering on DECNET "areas" (network numbers)
4830  * one would want to add a "mask" argument to this routine.  That would
4831  * make the filter even more inefficient, although one could be clever
4832  * and not generate masking instructions if the mask is 0xFFFF.
4833  */
4834 static struct block *
4835 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4836 {
4837 	struct block *b0, *b1, *b2, *tmp;
4838 	u_int offset_lh;	/* offset if long header is received */
4839 	u_int offset_sh;	/* offset if short header is received */
4840 
4841 	switch (dir) {
4842 
4843 	case Q_DST:
4844 		offset_sh = 1;	/* follows flags */
4845 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4846 		break;
4847 
4848 	case Q_SRC:
4849 		offset_sh = 3;	/* follows flags, dstnode */
4850 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4851 		break;
4852 
4853 	case Q_AND:
4854 		/* Inefficient because we do our Calvinball dance twice */
4855 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4856 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4857 		gen_and(b0, b1);
4858 		return b1;
4859 
4860 	case Q_DEFAULT:
4861 	case Q_OR:
4862 		/* Inefficient because we do our Calvinball dance twice */
4863 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4864 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4865 		gen_or(b0, b1);
4866 		return b1;
4867 
4868 	case Q_ADDR1:
4869 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4870 		/*NOTREACHED*/
4871 
4872 	case Q_ADDR2:
4873 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4874 		/*NOTREACHED*/
4875 
4876 	case Q_ADDR3:
4877 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4878 		/*NOTREACHED*/
4879 
4880 	case Q_ADDR4:
4881 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4882 		/*NOTREACHED*/
4883 
4884 	case Q_RA:
4885 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4886 		/*NOTREACHED*/
4887 
4888 	case Q_TA:
4889 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4890 		/*NOTREACHED*/
4891 
4892 	default:
4893 		abort();
4894 		/*NOTREACHED*/
4895 	}
4896 	b0 = gen_linktype(cstate, ETHERTYPE_DN);
4897 	/* Check for pad = 1, long header case */
4898 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4899 	    (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4900 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4901 	    BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4902 	gen_and(tmp, b1);
4903 	/* Check for pad = 0, long header case */
4904 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4905 	    (bpf_u_int32)0x7);
4906 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4907 	    (bpf_u_int32)ntohs((u_short)addr));
4908 	gen_and(tmp, b2);
4909 	gen_or(b2, b1);
4910 	/* Check for pad = 1, short header case */
4911 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4912 	    (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4913 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4914 	    (bpf_u_int32)ntohs((u_short)addr));
4915 	gen_and(tmp, b2);
4916 	gen_or(b2, b1);
4917 	/* Check for pad = 0, short header case */
4918 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4919 	    (bpf_u_int32)0x7);
4920 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4921 	    (bpf_u_int32)ntohs((u_short)addr));
4922 	gen_and(tmp, b2);
4923 	gen_or(b2, b1);
4924 
4925 	/* Combine with test for cstate->linktype */
4926 	gen_and(b0, b1);
4927 	return b1;
4928 }
4929 
4930 /*
4931  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4932  * test the bottom-of-stack bit, and then check the version number
4933  * field in the IP header.
4934  */
4935 static struct block *
4936 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4937 {
4938 	struct block *b0, *b1;
4939 
4940         switch (ll_proto) {
4941 
4942         case ETHERTYPE_IP:
4943                 /* match the bottom-of-stack bit */
4944                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4945                 /* match the IPv4 version number */
4946                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4947                 gen_and(b0, b1);
4948                 return b1;
4949 
4950         case ETHERTYPE_IPV6:
4951                 /* match the bottom-of-stack bit */
4952                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4953                 /* match the IPv4 version number */
4954                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4955                 gen_and(b0, b1);
4956                 return b1;
4957 
4958         default:
4959                /* FIXME add other L3 proto IDs */
4960                bpf_error(cstate, "unsupported protocol over mpls");
4961                /*NOTREACHED*/
4962         }
4963 }
4964 
4965 static struct block *
4966 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4967     int proto, int dir, int type)
4968 {
4969 	struct block *b0, *b1;
4970 	const char *typestr;
4971 
4972 	if (type == Q_NET)
4973 		typestr = "net";
4974 	else
4975 		typestr = "host";
4976 
4977 	switch (proto) {
4978 
4979 	case Q_DEFAULT:
4980 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4981 		/*
4982 		 * Only check for non-IPv4 addresses if we're not
4983 		 * checking MPLS-encapsulated packets.
4984 		 */
4985 		if (cstate->label_stack_depth == 0) {
4986 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4987 			gen_or(b0, b1);
4988 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4989 			gen_or(b1, b0);
4990 		}
4991 		return b0;
4992 
4993 	case Q_LINK:
4994 		bpf_error(cstate, "link-layer modifier applied to %s", typestr);
4995 
4996 	case Q_IP:
4997 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4998 
4999 	case Q_RARP:
5000 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
5001 
5002 	case Q_ARP:
5003 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
5004 
5005 	case Q_SCTP:
5006 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
5007 
5008 	case Q_TCP:
5009 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
5010 
5011 	case Q_UDP:
5012 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
5013 
5014 	case Q_ICMP:
5015 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
5016 
5017 	case Q_IGMP:
5018 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
5019 
5020 	case Q_IGRP:
5021 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
5022 
5023 	case Q_ATALK:
5024 		bpf_error(cstate, "AppleTalk host filtering not implemented");
5025 
5026 	case Q_DECNET:
5027 		return gen_dnhostop(cstate, addr, dir);
5028 
5029 	case Q_LAT:
5030 		bpf_error(cstate, "LAT host filtering not implemented");
5031 
5032 	case Q_SCA:
5033 		bpf_error(cstate, "SCA host filtering not implemented");
5034 
5035 	case Q_MOPRC:
5036 		bpf_error(cstate, "MOPRC host filtering not implemented");
5037 
5038 	case Q_MOPDL:
5039 		bpf_error(cstate, "MOPDL host filtering not implemented");
5040 
5041 	case Q_IPV6:
5042 		bpf_error(cstate, "'ip6' modifier applied to ip host");
5043 
5044 	case Q_ICMPV6:
5045 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
5046 
5047 	case Q_AH:
5048 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
5049 
5050 	case Q_ESP:
5051 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5052 
5053 	case Q_PIM:
5054 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5055 
5056 	case Q_VRRP:
5057 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5058 
5059 	case Q_AARP:
5060 		bpf_error(cstate, "AARP host filtering not implemented");
5061 
5062 	case Q_ISO:
5063 		bpf_error(cstate, "ISO host filtering not implemented");
5064 
5065 	case Q_ESIS:
5066 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5067 
5068 	case Q_ISIS:
5069 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5070 
5071 	case Q_CLNP:
5072 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5073 
5074 	case Q_STP:
5075 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5076 
5077 	case Q_IPX:
5078 		bpf_error(cstate, "IPX host filtering not implemented");
5079 
5080 	case Q_NETBEUI:
5081 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5082 
5083 	case Q_ISIS_L1:
5084 		bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5085 
5086 	case Q_ISIS_L2:
5087 		bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5088 
5089 	case Q_ISIS_IIH:
5090 		bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5091 
5092 	case Q_ISIS_SNP:
5093 		bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5094 
5095 	case Q_ISIS_CSNP:
5096 		bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5097 
5098 	case Q_ISIS_PSNP:
5099 		bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5100 
5101 	case Q_ISIS_LSP:
5102 		bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5103 
5104 	case Q_RADIO:
5105 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5106 
5107 	case Q_CARP:
5108 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5109 
5110 	default:
5111 		abort();
5112 	}
5113 	/*NOTREACHED*/
5114 }
5115 
5116 #ifdef INET6
5117 static struct block *
5118 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5119     struct in6_addr *mask, int proto, int dir, int type)
5120 {
5121 	const char *typestr;
5122 
5123 	if (type == Q_NET)
5124 		typestr = "net";
5125 	else
5126 		typestr = "host";
5127 
5128 	switch (proto) {
5129 
5130 	case Q_DEFAULT:
5131 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5132 
5133 	case Q_LINK:
5134 		bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5135 
5136 	case Q_IP:
5137 		bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5138 
5139 	case Q_RARP:
5140 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5141 
5142 	case Q_ARP:
5143 		bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5144 
5145 	case Q_SCTP:
5146 		bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5147 
5148 	case Q_TCP:
5149 		bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5150 
5151 	case Q_UDP:
5152 		bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5153 
5154 	case Q_ICMP:
5155 		bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5156 
5157 	case Q_IGMP:
5158 		bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5159 
5160 	case Q_IGRP:
5161 		bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5162 
5163 	case Q_ATALK:
5164 		bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5165 
5166 	case Q_DECNET:
5167 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5168 
5169 	case Q_LAT:
5170 		bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5171 
5172 	case Q_SCA:
5173 		bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5174 
5175 	case Q_MOPRC:
5176 		bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5177 
5178 	case Q_MOPDL:
5179 		bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5180 
5181 	case Q_IPV6:
5182 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5183 
5184 	case Q_ICMPV6:
5185 		bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5186 
5187 	case Q_AH:
5188 		bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5189 
5190 	case Q_ESP:
5191 		bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5192 
5193 	case Q_PIM:
5194 		bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5195 
5196 	case Q_VRRP:
5197 		bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5198 
5199 	case Q_AARP:
5200 		bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5201 
5202 	case Q_ISO:
5203 		bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5204 
5205 	case Q_ESIS:
5206 		bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5207 
5208 	case Q_ISIS:
5209 		bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5210 
5211 	case Q_CLNP:
5212 		bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5213 
5214 	case Q_STP:
5215 		bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5216 
5217 	case Q_IPX:
5218 		bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5219 
5220 	case Q_NETBEUI:
5221 		bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5222 
5223 	case Q_ISIS_L1:
5224 		bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5225 
5226 	case Q_ISIS_L2:
5227 		bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5228 
5229 	case Q_ISIS_IIH:
5230 		bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5231 
5232 	case Q_ISIS_SNP:
5233 		bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5234 
5235 	case Q_ISIS_CSNP:
5236 		bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5237 
5238 	case Q_ISIS_PSNP:
5239 		bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5240 
5241 	case Q_ISIS_LSP:
5242 		bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5243 
5244 	case Q_RADIO:
5245 		bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5246 
5247 	case Q_CARP:
5248 		bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5249 
5250 	default:
5251 		abort();
5252 	}
5253 	/*NOTREACHED*/
5254 }
5255 #endif
5256 
5257 #ifndef INET6
5258 static struct block *
5259 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5260     struct addrinfo *alist, int proto, int dir)
5261 {
5262 	struct block *b0, *b1, *tmp;
5263 	struct addrinfo *ai;
5264 	struct sockaddr_in *sin;
5265 
5266 	if (dir != 0)
5267 		bpf_error(cstate, "direction applied to 'gateway'");
5268 
5269 	switch (proto) {
5270 	case Q_DEFAULT:
5271 	case Q_IP:
5272 	case Q_ARP:
5273 	case Q_RARP:
5274 		switch (cstate->linktype) {
5275 		case DLT_EN10MB:
5276 		case DLT_NETANALYZER:
5277 		case DLT_NETANALYZER_TRANSPARENT:
5278 			b1 = gen_prevlinkhdr_check(cstate);
5279 			b0 = gen_ehostop(cstate, eaddr, Q_OR);
5280 			if (b1 != NULL)
5281 				gen_and(b1, b0);
5282 			break;
5283 		case DLT_FDDI:
5284 			b0 = gen_fhostop(cstate, eaddr, Q_OR);
5285 			break;
5286 		case DLT_IEEE802:
5287 			b0 = gen_thostop(cstate, eaddr, Q_OR);
5288 			break;
5289 		case DLT_IEEE802_11:
5290 		case DLT_PRISM_HEADER:
5291 		case DLT_IEEE802_11_RADIO_AVS:
5292 		case DLT_IEEE802_11_RADIO:
5293 		case DLT_PPI:
5294 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5295 			break;
5296 		case DLT_SUNATM:
5297 			/*
5298 			 * This is LLC-multiplexed traffic; if it were
5299 			 * LANE, cstate->linktype would have been set to
5300 			 * DLT_EN10MB.
5301 			 */
5302 			bpf_error(cstate,
5303 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5304 		case DLT_IP_OVER_FC:
5305 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5306 			break;
5307 		default:
5308 			bpf_error(cstate,
5309 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5310 		}
5311 		b1 = NULL;
5312 		for (ai = alist; ai != NULL; ai = ai->ai_next) {
5313 			/*
5314 			 * Does it have an address?
5315 			 */
5316 			if (ai->ai_addr != NULL) {
5317 				/*
5318 				 * Yes.  Is it an IPv4 address?
5319 				 */
5320 				if (ai->ai_addr->sa_family == AF_INET) {
5321 					/*
5322 					 * Generate an entry for it.
5323 					 */
5324 					sin = (struct sockaddr_in *)ai->ai_addr;
5325 					tmp = gen_host(cstate,
5326 					    ntohl(sin->sin_addr.s_addr),
5327 					    0xffffffff, proto, Q_OR, Q_HOST);
5328 					/*
5329 					 * Is it the *first* IPv4 address?
5330 					 */
5331 					if (b1 == NULL) {
5332 						/*
5333 						 * Yes, so start with it.
5334 						 */
5335 						b1 = tmp;
5336 					} else {
5337 						/*
5338 						 * No, so OR it into the
5339 						 * existing set of
5340 						 * addresses.
5341 						 */
5342 						gen_or(b1, tmp);
5343 						b1 = tmp;
5344 					}
5345 				}
5346 			}
5347 		}
5348 		if (b1 == NULL) {
5349 			/*
5350 			 * No IPv4 addresses found.
5351 			 */
5352 			return (NULL);
5353 		}
5354 		gen_not(b1);
5355 		gen_and(b0, b1);
5356 		return b1;
5357 	}
5358 	bpf_error(cstate, "illegal modifier of 'gateway'");
5359 	/*NOTREACHED*/
5360 }
5361 #endif
5362 
5363 static struct block *
5364 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5365 {
5366 	struct block *b0;
5367 	struct block *b1;
5368 
5369 	switch (proto) {
5370 
5371 	case Q_SCTP:
5372 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5373 		break;
5374 
5375 	case Q_TCP:
5376 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5377 		break;
5378 
5379 	case Q_UDP:
5380 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5381 		break;
5382 
5383 	case Q_ICMP:
5384 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5385 		break;
5386 
5387 #ifndef	IPPROTO_IGMP
5388 #define	IPPROTO_IGMP	2
5389 #endif
5390 
5391 	case Q_IGMP:
5392 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5393 		break;
5394 
5395 #ifndef	IPPROTO_IGRP
5396 #define	IPPROTO_IGRP	9
5397 #endif
5398 	case Q_IGRP:
5399 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5400 		break;
5401 
5402 #ifndef IPPROTO_PIM
5403 #define IPPROTO_PIM	103
5404 #endif
5405 
5406 	case Q_PIM:
5407 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5408 		break;
5409 
5410 #ifndef IPPROTO_VRRP
5411 #define IPPROTO_VRRP	112
5412 #endif
5413 
5414 	case Q_VRRP:
5415 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5416 		break;
5417 
5418 #ifndef IPPROTO_CARP
5419 #define IPPROTO_CARP	112
5420 #endif
5421 
5422 	case Q_CARP:
5423 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5424 		break;
5425 
5426 	case Q_IP:
5427 		b1 = gen_linktype(cstate, ETHERTYPE_IP);
5428 		break;
5429 
5430 	case Q_ARP:
5431 		b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5432 		break;
5433 
5434 	case Q_RARP:
5435 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5436 		break;
5437 
5438 	case Q_LINK:
5439 		bpf_error(cstate, "link layer applied in wrong context");
5440 
5441 	case Q_ATALK:
5442 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5443 		break;
5444 
5445 	case Q_AARP:
5446 		b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5447 		break;
5448 
5449 	case Q_DECNET:
5450 		b1 = gen_linktype(cstate, ETHERTYPE_DN);
5451 		break;
5452 
5453 	case Q_SCA:
5454 		b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5455 		break;
5456 
5457 	case Q_LAT:
5458 		b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5459 		break;
5460 
5461 	case Q_MOPDL:
5462 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5463 		break;
5464 
5465 	case Q_MOPRC:
5466 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5467 		break;
5468 
5469 	case Q_IPV6:
5470 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5471 		break;
5472 
5473 #ifndef IPPROTO_ICMPV6
5474 #define IPPROTO_ICMPV6	58
5475 #endif
5476 	case Q_ICMPV6:
5477 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5478 		break;
5479 
5480 #ifndef IPPROTO_AH
5481 #define IPPROTO_AH	51
5482 #endif
5483 	case Q_AH:
5484 		b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5485 		break;
5486 
5487 #ifndef IPPROTO_ESP
5488 #define IPPROTO_ESP	50
5489 #endif
5490 	case Q_ESP:
5491 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5492 		break;
5493 
5494 	case Q_ISO:
5495 		b1 = gen_linktype(cstate, LLCSAP_ISONS);
5496 		break;
5497 
5498 	case Q_ESIS:
5499 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5500 		break;
5501 
5502 	case Q_ISIS:
5503 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5504 		break;
5505 
5506 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5507 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5508 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5509 		gen_or(b0, b1);
5510 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5511 		gen_or(b0, b1);
5512 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5513 		gen_or(b0, b1);
5514 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5515 		gen_or(b0, b1);
5516 		break;
5517 
5518 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5519 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5520 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5521 		gen_or(b0, b1);
5522 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5523 		gen_or(b0, b1);
5524 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5525 		gen_or(b0, b1);
5526 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5527 		gen_or(b0, b1);
5528 		break;
5529 
5530 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5531 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5532 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5533 		gen_or(b0, b1);
5534 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5535 		gen_or(b0, b1);
5536 		break;
5537 
5538 	case Q_ISIS_LSP:
5539 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5540 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5541 		gen_or(b0, b1);
5542 		break;
5543 
5544 	case Q_ISIS_SNP:
5545 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5546 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5547 		gen_or(b0, b1);
5548 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5549 		gen_or(b0, b1);
5550 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5551 		gen_or(b0, b1);
5552 		break;
5553 
5554 	case Q_ISIS_CSNP:
5555 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5556 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5557 		gen_or(b0, b1);
5558 		break;
5559 
5560 	case Q_ISIS_PSNP:
5561 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5562 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5563 		gen_or(b0, b1);
5564 		break;
5565 
5566 	case Q_CLNP:
5567 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5568 		break;
5569 
5570 	case Q_STP:
5571 		b1 = gen_linktype(cstate, LLCSAP_8021D);
5572 		break;
5573 
5574 	case Q_IPX:
5575 		b1 = gen_linktype(cstate, LLCSAP_IPX);
5576 		break;
5577 
5578 	case Q_NETBEUI:
5579 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5580 		break;
5581 
5582 	case Q_RADIO:
5583 		bpf_error(cstate, "'radio' is not a valid protocol type");
5584 
5585 	default:
5586 		abort();
5587 	}
5588 	return b1;
5589 }
5590 
5591 struct block *
5592 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5593 {
5594 	/*
5595 	 * Catch errors reported by us and routines below us, and return NULL
5596 	 * on an error.
5597 	 */
5598 	if (setjmp(cstate->top_ctx))
5599 		return (NULL);
5600 
5601 	return gen_proto_abbrev_internal(cstate, proto);
5602 }
5603 
5604 static struct block *
5605 gen_ipfrag(compiler_state_t *cstate)
5606 {
5607 	struct slist *s;
5608 	struct block *b;
5609 
5610 	/* not IPv4 frag other than the first frag */
5611 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5612 	b = new_block(cstate, JMP(BPF_JSET));
5613 	b->s.k = 0x1fff;
5614 	b->stmts = s;
5615 	gen_not(b);
5616 
5617 	return b;
5618 }
5619 
5620 /*
5621  * Generate a comparison to a port value in the transport-layer header
5622  * at the specified offset from the beginning of that header.
5623  *
5624  * XXX - this handles a variable-length prefix preceding the link-layer
5625  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5626  * variable-length link-layer headers (such as Token Ring or 802.11
5627  * headers).
5628  */
5629 static struct block *
5630 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5631 {
5632 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5633 }
5634 
5635 static struct block *
5636 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5637 {
5638 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5639 }
5640 
5641 static struct block *
5642 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5643 {
5644 	struct block *b0, *b1, *tmp;
5645 
5646 	/* ip proto 'proto' and not a fragment other than the first fragment */
5647 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5648 	b0 = gen_ipfrag(cstate);
5649 	gen_and(tmp, b0);
5650 
5651 	switch (dir) {
5652 	case Q_SRC:
5653 		b1 = gen_portatom(cstate, 0, port);
5654 		break;
5655 
5656 	case Q_DST:
5657 		b1 = gen_portatom(cstate, 2, port);
5658 		break;
5659 
5660 	case Q_AND:
5661 		tmp = gen_portatom(cstate, 0, port);
5662 		b1 = gen_portatom(cstate, 2, port);
5663 		gen_and(tmp, b1);
5664 		break;
5665 
5666 	case Q_DEFAULT:
5667 	case Q_OR:
5668 		tmp = gen_portatom(cstate, 0, port);
5669 		b1 = gen_portatom(cstate, 2, port);
5670 		gen_or(tmp, b1);
5671 		break;
5672 
5673 	case Q_ADDR1:
5674 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5675 		/*NOTREACHED*/
5676 
5677 	case Q_ADDR2:
5678 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5679 		/*NOTREACHED*/
5680 
5681 	case Q_ADDR3:
5682 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5683 		/*NOTREACHED*/
5684 
5685 	case Q_ADDR4:
5686 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5687 		/*NOTREACHED*/
5688 
5689 	case Q_RA:
5690 		bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5691 		/*NOTREACHED*/
5692 
5693 	case Q_TA:
5694 		bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5695 		/*NOTREACHED*/
5696 
5697 	default:
5698 		abort();
5699 		/*NOTREACHED*/
5700 	}
5701 	gen_and(b0, b1);
5702 
5703 	return b1;
5704 }
5705 
5706 static struct block *
5707 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5708 {
5709 	struct block *b0, *b1, *tmp;
5710 
5711 	/*
5712 	 * ether proto ip
5713 	 *
5714 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5715 	 * not LLC encapsulation with LLCSAP_IP.
5716 	 *
5717 	 * For IEEE 802 networks - which includes 802.5 token ring
5718 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5719 	 * says that SNAP encapsulation is used, not LLC encapsulation
5720 	 * with LLCSAP_IP.
5721 	 *
5722 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5723 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5724 	 * encapsulation with LLCSAP_IP.
5725 	 *
5726 	 * So we always check for ETHERTYPE_IP.
5727 	 */
5728 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5729 
5730 	switch (ip_proto) {
5731 	case IPPROTO_UDP:
5732 	case IPPROTO_TCP:
5733 	case IPPROTO_SCTP:
5734 		b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5735 		break;
5736 
5737 	case PROTO_UNDEF:
5738 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5739 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5740 		gen_or(tmp, b1);
5741 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5742 		gen_or(tmp, b1);
5743 		break;
5744 
5745 	default:
5746 		abort();
5747 	}
5748 	gen_and(b0, b1);
5749 	return b1;
5750 }
5751 
5752 struct block *
5753 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5754 {
5755 	struct block *b0, *b1, *tmp;
5756 
5757 	/* ip6 proto 'proto' */
5758 	/* XXX - catch the first fragment of a fragmented packet? */
5759 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5760 
5761 	switch (dir) {
5762 	case Q_SRC:
5763 		b1 = gen_portatom6(cstate, 0, port);
5764 		break;
5765 
5766 	case Q_DST:
5767 		b1 = gen_portatom6(cstate, 2, port);
5768 		break;
5769 
5770 	case Q_AND:
5771 		tmp = gen_portatom6(cstate, 0, port);
5772 		b1 = gen_portatom6(cstate, 2, port);
5773 		gen_and(tmp, b1);
5774 		break;
5775 
5776 	case Q_DEFAULT:
5777 	case Q_OR:
5778 		tmp = gen_portatom6(cstate, 0, port);
5779 		b1 = gen_portatom6(cstate, 2, port);
5780 		gen_or(tmp, b1);
5781 		break;
5782 
5783 	default:
5784 		abort();
5785 	}
5786 	gen_and(b0, b1);
5787 
5788 	return b1;
5789 }
5790 
5791 static struct block *
5792 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5793 {
5794 	struct block *b0, *b1, *tmp;
5795 
5796 	/* link proto ip6 */
5797 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5798 
5799 	switch (ip_proto) {
5800 	case IPPROTO_UDP:
5801 	case IPPROTO_TCP:
5802 	case IPPROTO_SCTP:
5803 		b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5804 		break;
5805 
5806 	case PROTO_UNDEF:
5807 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5808 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5809 		gen_or(tmp, b1);
5810 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5811 		gen_or(tmp, b1);
5812 		break;
5813 
5814 	default:
5815 		abort();
5816 	}
5817 	gen_and(b0, b1);
5818 	return b1;
5819 }
5820 
5821 /* gen_portrange code */
5822 static struct block *
5823 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5824     bpf_u_int32 v2)
5825 {
5826 	struct block *b1, *b2;
5827 
5828 	if (v1 > v2) {
5829 		/*
5830 		 * Reverse the order of the ports, so v1 is the lower one.
5831 		 */
5832 		bpf_u_int32 vtemp;
5833 
5834 		vtemp = v1;
5835 		v1 = v2;
5836 		v2 = vtemp;
5837 	}
5838 
5839 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5840 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5841 
5842 	gen_and(b1, b2);
5843 
5844 	return b2;
5845 }
5846 
5847 static struct block *
5848 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5849     bpf_u_int32 proto, int dir)
5850 {
5851 	struct block *b0, *b1, *tmp;
5852 
5853 	/* ip proto 'proto' and not a fragment other than the first fragment */
5854 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5855 	b0 = gen_ipfrag(cstate);
5856 	gen_and(tmp, b0);
5857 
5858 	switch (dir) {
5859 	case Q_SRC:
5860 		b1 = gen_portrangeatom(cstate, 0, port1, port2);
5861 		break;
5862 
5863 	case Q_DST:
5864 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5865 		break;
5866 
5867 	case Q_AND:
5868 		tmp = gen_portrangeatom(cstate, 0, port1, port2);
5869 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5870 		gen_and(tmp, b1);
5871 		break;
5872 
5873 	case Q_DEFAULT:
5874 	case Q_OR:
5875 		tmp = gen_portrangeatom(cstate, 0, port1, port2);
5876 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5877 		gen_or(tmp, b1);
5878 		break;
5879 
5880 	case Q_ADDR1:
5881 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5882 		/*NOTREACHED*/
5883 
5884 	case Q_ADDR2:
5885 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5886 		/*NOTREACHED*/
5887 
5888 	case Q_ADDR3:
5889 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5890 		/*NOTREACHED*/
5891 
5892 	case Q_ADDR4:
5893 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5894 		/*NOTREACHED*/
5895 
5896 	case Q_RA:
5897 		bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5898 		/*NOTREACHED*/
5899 
5900 	case Q_TA:
5901 		bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5902 		/*NOTREACHED*/
5903 
5904 	default:
5905 		abort();
5906 		/*NOTREACHED*/
5907 	}
5908 	gen_and(b0, b1);
5909 
5910 	return b1;
5911 }
5912 
5913 static struct block *
5914 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5915     int dir)
5916 {
5917 	struct block *b0, *b1, *tmp;
5918 
5919 	/* link proto ip */
5920 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5921 
5922 	switch (ip_proto) {
5923 	case IPPROTO_UDP:
5924 	case IPPROTO_TCP:
5925 	case IPPROTO_SCTP:
5926 		b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5927 		    dir);
5928 		break;
5929 
5930 	case PROTO_UNDEF:
5931 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5932 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5933 		gen_or(tmp, b1);
5934 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5935 		gen_or(tmp, b1);
5936 		break;
5937 
5938 	default:
5939 		abort();
5940 	}
5941 	gen_and(b0, b1);
5942 	return b1;
5943 }
5944 
5945 static struct block *
5946 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5947     bpf_u_int32 v2)
5948 {
5949 	struct block *b1, *b2;
5950 
5951 	if (v1 > v2) {
5952 		/*
5953 		 * Reverse the order of the ports, so v1 is the lower one.
5954 		 */
5955 		bpf_u_int32 vtemp;
5956 
5957 		vtemp = v1;
5958 		v1 = v2;
5959 		v2 = vtemp;
5960 	}
5961 
5962 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5963 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5964 
5965 	gen_and(b1, b2);
5966 
5967 	return b2;
5968 }
5969 
5970 static struct block *
5971 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5972     bpf_u_int32 proto, int dir)
5973 {
5974 	struct block *b0, *b1, *tmp;
5975 
5976 	/* ip6 proto 'proto' */
5977 	/* XXX - catch the first fragment of a fragmented packet? */
5978 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5979 
5980 	switch (dir) {
5981 	case Q_SRC:
5982 		b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5983 		break;
5984 
5985 	case Q_DST:
5986 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5987 		break;
5988 
5989 	case Q_AND:
5990 		tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5991 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5992 		gen_and(tmp, b1);
5993 		break;
5994 
5995 	case Q_DEFAULT:
5996 	case Q_OR:
5997 		tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5998 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5999 		gen_or(tmp, b1);
6000 		break;
6001 
6002 	default:
6003 		abort();
6004 	}
6005 	gen_and(b0, b1);
6006 
6007 	return b1;
6008 }
6009 
6010 static struct block *
6011 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6012     int dir)
6013 {
6014 	struct block *b0, *b1, *tmp;
6015 
6016 	/* link proto ip6 */
6017 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6018 
6019 	switch (ip_proto) {
6020 	case IPPROTO_UDP:
6021 	case IPPROTO_TCP:
6022 	case IPPROTO_SCTP:
6023 		b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6024 		    dir);
6025 		break;
6026 
6027 	case PROTO_UNDEF:
6028 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6029 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6030 		gen_or(tmp, b1);
6031 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6032 		gen_or(tmp, b1);
6033 		break;
6034 
6035 	default:
6036 		abort();
6037 	}
6038 	gen_and(b0, b1);
6039 	return b1;
6040 }
6041 
6042 static int
6043 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6044 {
6045 	register int v;
6046 
6047 	switch (proto) {
6048 
6049 	case Q_DEFAULT:
6050 	case Q_IP:
6051 	case Q_IPV6:
6052 		v = pcap_nametoproto(name);
6053 		if (v == PROTO_UNDEF)
6054 			bpf_error(cstate, "unknown ip proto '%s'", name);
6055 		break;
6056 
6057 	case Q_LINK:
6058 		/* XXX should look up h/w protocol type based on cstate->linktype */
6059 		v = pcap_nametoeproto(name);
6060 		if (v == PROTO_UNDEF) {
6061 			v = pcap_nametollc(name);
6062 			if (v == PROTO_UNDEF)
6063 				bpf_error(cstate, "unknown ether proto '%s'", name);
6064 		}
6065 		break;
6066 
6067 	case Q_ISO:
6068 		if (strcmp(name, "esis") == 0)
6069 			v = ISO9542_ESIS;
6070 		else if (strcmp(name, "isis") == 0)
6071 			v = ISO10589_ISIS;
6072 		else if (strcmp(name, "clnp") == 0)
6073 			v = ISO8473_CLNP;
6074 		else
6075 			bpf_error(cstate, "unknown osi proto '%s'", name);
6076 		break;
6077 
6078 	default:
6079 		v = PROTO_UNDEF;
6080 		break;
6081 	}
6082 	return v;
6083 }
6084 
6085 #if !defined(NO_PROTOCHAIN)
6086 static struct block *
6087 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6088 {
6089 	struct block *b0, *b;
6090 	struct slist *s[100];
6091 	int fix2, fix3, fix4, fix5;
6092 	int ahcheck, again, end;
6093 	int i, max;
6094 	int reg2 = alloc_reg(cstate);
6095 
6096 	memset(s, 0, sizeof(s));
6097 	fix3 = fix4 = fix5 = 0;
6098 
6099 	switch (proto) {
6100 	case Q_IP:
6101 	case Q_IPV6:
6102 		break;
6103 	case Q_DEFAULT:
6104 		b0 = gen_protochain(cstate, v, Q_IP);
6105 		b = gen_protochain(cstate, v, Q_IPV6);
6106 		gen_or(b0, b);
6107 		return b;
6108 	default:
6109 		bpf_error(cstate, "bad protocol applied for 'protochain'");
6110 		/*NOTREACHED*/
6111 	}
6112 
6113 	/*
6114 	 * We don't handle variable-length prefixes before the link-layer
6115 	 * header, or variable-length link-layer headers, here yet.
6116 	 * We might want to add BPF instructions to do the protochain
6117 	 * work, to simplify that and, on platforms that have a BPF
6118 	 * interpreter with the new instructions, let the filtering
6119 	 * be done in the kernel.  (We already require a modified BPF
6120 	 * engine to do the protochain stuff, to support backward
6121 	 * branches, and backward branch support is unlikely to appear
6122 	 * in kernel BPF engines.)
6123 	 */
6124 	if (cstate->off_linkpl.is_variable)
6125 		bpf_error(cstate, "'protochain' not supported with variable length headers");
6126 
6127 	/*
6128 	 * To quote a comment in optimize.c:
6129 	 *
6130 	 * "These data structures are used in a Cocke and Schwartz style
6131 	 * value numbering scheme.  Since the flowgraph is acyclic,
6132 	 * exit values can be propagated from a node's predecessors
6133 	 * provided it is uniquely defined."
6134 	 *
6135 	 * "Acyclic" means "no backward branches", which means "no
6136 	 * loops", so we have to turn the optimizer off.
6137 	 */
6138 	cstate->no_optimize = 1;
6139 
6140 	/*
6141 	 * s[0] is a dummy entry to protect other BPF insn from damage
6142 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
6143 	 * hard to find interdependency made by jump table fixup.
6144 	 */
6145 	i = 0;
6146 	s[i] = new_stmt(cstate, 0);	/*dummy*/
6147 	i++;
6148 
6149 	switch (proto) {
6150 	case Q_IP:
6151 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6152 
6153 		/* A = ip->ip_p */
6154 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6155 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6156 		i++;
6157 		/* X = ip->ip_hl << 2 */
6158 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6159 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6160 		i++;
6161 		break;
6162 
6163 	case Q_IPV6:
6164 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6165 
6166 		/* A = ip6->ip_nxt */
6167 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6168 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6169 		i++;
6170 		/* X = sizeof(struct ip6_hdr) */
6171 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6172 		s[i]->s.k = 40;
6173 		i++;
6174 		break;
6175 
6176 	default:
6177 		bpf_error(cstate, "unsupported proto to gen_protochain");
6178 		/*NOTREACHED*/
6179 	}
6180 
6181 	/* again: if (A == v) goto end; else fall through; */
6182 	again = i;
6183 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6184 	s[i]->s.k = v;
6185 	s[i]->s.jt = NULL;		/*later*/
6186 	s[i]->s.jf = NULL;		/*update in next stmt*/
6187 	fix5 = i;
6188 	i++;
6189 
6190 #ifndef IPPROTO_NONE
6191 #define IPPROTO_NONE	59
6192 #endif
6193 	/* if (A == IPPROTO_NONE) goto end */
6194 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6195 	s[i]->s.jt = NULL;	/*later*/
6196 	s[i]->s.jf = NULL;	/*update in next stmt*/
6197 	s[i]->s.k = IPPROTO_NONE;
6198 	s[fix5]->s.jf = s[i];
6199 	fix2 = i;
6200 	i++;
6201 
6202 	if (proto == Q_IPV6) {
6203 		int v6start, v6end, v6advance, j;
6204 
6205 		v6start = i;
6206 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
6207 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6208 		s[i]->s.jt = NULL;	/*later*/
6209 		s[i]->s.jf = NULL;	/*update in next stmt*/
6210 		s[i]->s.k = IPPROTO_HOPOPTS;
6211 		s[fix2]->s.jf = s[i];
6212 		i++;
6213 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
6214 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6215 		s[i]->s.jt = NULL;	/*later*/
6216 		s[i]->s.jf = NULL;	/*update in next stmt*/
6217 		s[i]->s.k = IPPROTO_DSTOPTS;
6218 		i++;
6219 		/* if (A == IPPROTO_ROUTING) goto v6advance */
6220 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6221 		s[i]->s.jt = NULL;	/*later*/
6222 		s[i]->s.jf = NULL;	/*update in next stmt*/
6223 		s[i]->s.k = IPPROTO_ROUTING;
6224 		i++;
6225 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6226 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6227 		s[i]->s.jt = NULL;	/*later*/
6228 		s[i]->s.jf = NULL;	/*later*/
6229 		s[i]->s.k = IPPROTO_FRAGMENT;
6230 		fix3 = i;
6231 		v6end = i;
6232 		i++;
6233 
6234 		/* v6advance: */
6235 		v6advance = i;
6236 
6237 		/*
6238 		 * in short,
6239 		 * A = P[X + packet head];
6240 		 * X = X + (P[X + packet head + 1] + 1) * 8;
6241 		 */
6242 		/* A = P[X + packet head] */
6243 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6244 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6245 		i++;
6246 		/* MEM[reg2] = A */
6247 		s[i] = new_stmt(cstate, BPF_ST);
6248 		s[i]->s.k = reg2;
6249 		i++;
6250 		/* A = P[X + packet head + 1]; */
6251 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6252 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6253 		i++;
6254 		/* A += 1 */
6255 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6256 		s[i]->s.k = 1;
6257 		i++;
6258 		/* A *= 8 */
6259 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6260 		s[i]->s.k = 8;
6261 		i++;
6262 		/* A += X */
6263 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6264 		s[i]->s.k = 0;
6265 		i++;
6266 		/* X = A; */
6267 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6268 		i++;
6269 		/* A = MEM[reg2] */
6270 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6271 		s[i]->s.k = reg2;
6272 		i++;
6273 
6274 		/* goto again; (must use BPF_JA for backward jump) */
6275 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6276 		s[i]->s.k = again - i - 1;
6277 		s[i - 1]->s.jf = s[i];
6278 		i++;
6279 
6280 		/* fixup */
6281 		for (j = v6start; j <= v6end; j++)
6282 			s[j]->s.jt = s[v6advance];
6283 	} else {
6284 		/* nop */
6285 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6286 		s[i]->s.k = 0;
6287 		s[fix2]->s.jf = s[i];
6288 		i++;
6289 	}
6290 
6291 	/* ahcheck: */
6292 	ahcheck = i;
6293 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
6294 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6295 	s[i]->s.jt = NULL;	/*later*/
6296 	s[i]->s.jf = NULL;	/*later*/
6297 	s[i]->s.k = IPPROTO_AH;
6298 	if (fix3)
6299 		s[fix3]->s.jf = s[ahcheck];
6300 	fix4 = i;
6301 	i++;
6302 
6303 	/*
6304 	 * in short,
6305 	 * A = P[X];
6306 	 * X = X + (P[X + 1] + 2) * 4;
6307 	 */
6308 	/* A = X */
6309 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6310 	i++;
6311 	/* A = P[X + packet head]; */
6312 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6313 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6314 	i++;
6315 	/* MEM[reg2] = A */
6316 	s[i] = new_stmt(cstate, BPF_ST);
6317 	s[i]->s.k = reg2;
6318 	i++;
6319 	/* A = X */
6320 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6321 	i++;
6322 	/* A += 1 */
6323 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6324 	s[i]->s.k = 1;
6325 	i++;
6326 	/* X = A */
6327 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6328 	i++;
6329 	/* A = P[X + packet head] */
6330 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6331 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6332 	i++;
6333 	/* A += 2 */
6334 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6335 	s[i]->s.k = 2;
6336 	i++;
6337 	/* A *= 4 */
6338 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6339 	s[i]->s.k = 4;
6340 	i++;
6341 	/* X = A; */
6342 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6343 	i++;
6344 	/* A = MEM[reg2] */
6345 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6346 	s[i]->s.k = reg2;
6347 	i++;
6348 
6349 	/* goto again; (must use BPF_JA for backward jump) */
6350 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6351 	s[i]->s.k = again - i - 1;
6352 	i++;
6353 
6354 	/* end: nop */
6355 	end = i;
6356 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6357 	s[i]->s.k = 0;
6358 	s[fix2]->s.jt = s[end];
6359 	s[fix4]->s.jf = s[end];
6360 	s[fix5]->s.jt = s[end];
6361 	i++;
6362 
6363 	/*
6364 	 * make slist chain
6365 	 */
6366 	max = i;
6367 	for (i = 0; i < max - 1; i++)
6368 		s[i]->next = s[i + 1];
6369 	s[max - 1]->next = NULL;
6370 
6371 	/*
6372 	 * emit final check
6373 	 */
6374 	b = new_block(cstate, JMP(BPF_JEQ));
6375 	b->stmts = s[1];	/*remember, s[0] is dummy*/
6376 	b->s.k = v;
6377 
6378 	free_reg(cstate, reg2);
6379 
6380 	gen_and(b0, b);
6381 	return b;
6382 }
6383 #endif /* !defined(NO_PROTOCHAIN) */
6384 
6385 static struct block *
6386 gen_check_802_11_data_frame(compiler_state_t *cstate)
6387 {
6388 	struct slist *s;
6389 	struct block *b0, *b1;
6390 
6391 	/*
6392 	 * A data frame has the 0x08 bit (b3) in the frame control field set
6393 	 * and the 0x04 bit (b2) clear.
6394 	 */
6395 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6396 	b0 = new_block(cstate, JMP(BPF_JSET));
6397 	b0->s.k = 0x08;
6398 	b0->stmts = s;
6399 
6400 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6401 	b1 = new_block(cstate, JMP(BPF_JSET));
6402 	b1->s.k = 0x04;
6403 	b1->stmts = s;
6404 	gen_not(b1);
6405 
6406 	gen_and(b1, b0);
6407 
6408 	return b0;
6409 }
6410 
6411 /*
6412  * Generate code that checks whether the packet is a packet for protocol
6413  * <proto> and whether the type field in that protocol's header has
6414  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6415  * IP packet and checks the protocol number in the IP header against <v>.
6416  *
6417  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6418  * against Q_IP and Q_IPV6.
6419  */
6420 static struct block *
6421 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6422 {
6423 	struct block *b0, *b1;
6424 	struct block *b2;
6425 
6426 	if (dir != Q_DEFAULT)
6427 		bpf_error(cstate, "direction applied to 'proto'");
6428 
6429 	switch (proto) {
6430 	case Q_DEFAULT:
6431 		b0 = gen_proto(cstate, v, Q_IP, dir);
6432 		b1 = gen_proto(cstate, v, Q_IPV6, dir);
6433 		gen_or(b0, b1);
6434 		return b1;
6435 
6436 	case Q_LINK:
6437 		return gen_linktype(cstate, v);
6438 
6439 	case Q_IP:
6440 		/*
6441 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6442 		 * not LLC encapsulation with LLCSAP_IP.
6443 		 *
6444 		 * For IEEE 802 networks - which includes 802.5 token ring
6445 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6446 		 * says that SNAP encapsulation is used, not LLC encapsulation
6447 		 * with LLCSAP_IP.
6448 		 *
6449 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6450 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
6451 		 * encapsulation with LLCSAP_IP.
6452 		 *
6453 		 * So we always check for ETHERTYPE_IP.
6454 		 */
6455 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6456 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6457 		gen_and(b0, b1);
6458 		return b1;
6459 
6460 	case Q_ARP:
6461 		bpf_error(cstate, "arp does not encapsulate another protocol");
6462 		/*NOTREACHED*/
6463 
6464 	case Q_RARP:
6465 		bpf_error(cstate, "rarp does not encapsulate another protocol");
6466 		/*NOTREACHED*/
6467 
6468 	case Q_SCTP:
6469 		bpf_error(cstate, "'sctp proto' is bogus");
6470 		/*NOTREACHED*/
6471 
6472 	case Q_TCP:
6473 		bpf_error(cstate, "'tcp proto' is bogus");
6474 		/*NOTREACHED*/
6475 
6476 	case Q_UDP:
6477 		bpf_error(cstate, "'udp proto' is bogus");
6478 		/*NOTREACHED*/
6479 
6480 	case Q_ICMP:
6481 		bpf_error(cstate, "'icmp proto' is bogus");
6482 		/*NOTREACHED*/
6483 
6484 	case Q_IGMP:
6485 		bpf_error(cstate, "'igmp proto' is bogus");
6486 		/*NOTREACHED*/
6487 
6488 	case Q_IGRP:
6489 		bpf_error(cstate, "'igrp proto' is bogus");
6490 		/*NOTREACHED*/
6491 
6492 	case Q_ATALK:
6493 		bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6494 		/*NOTREACHED*/
6495 
6496 	case Q_DECNET:
6497 		bpf_error(cstate, "DECNET encapsulation is not specifiable");
6498 		/*NOTREACHED*/
6499 
6500 	case Q_LAT:
6501 		bpf_error(cstate, "LAT does not encapsulate another protocol");
6502 		/*NOTREACHED*/
6503 
6504 	case Q_SCA:
6505 		bpf_error(cstate, "SCA does not encapsulate another protocol");
6506 		/*NOTREACHED*/
6507 
6508 	case Q_MOPRC:
6509 		bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6510 		/*NOTREACHED*/
6511 
6512 	case Q_MOPDL:
6513 		bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6514 		/*NOTREACHED*/
6515 
6516 	case Q_IPV6:
6517 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6518 		/*
6519 		 * Also check for a fragment header before the final
6520 		 * header.
6521 		 */
6522 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6523 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6524 		gen_and(b2, b1);
6525 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6526 		gen_or(b2, b1);
6527 		gen_and(b0, b1);
6528 		return b1;
6529 
6530 	case Q_ICMPV6:
6531 		bpf_error(cstate, "'icmp6 proto' is bogus");
6532 		/*NOTREACHED*/
6533 
6534 	case Q_AH:
6535 		bpf_error(cstate, "'ah proto' is bogus");
6536 		/*NOTREACHED*/
6537 
6538 	case Q_ESP:
6539 		bpf_error(cstate, "'esp proto' is bogus");
6540 		/*NOTREACHED*/
6541 
6542 	case Q_PIM:
6543 		bpf_error(cstate, "'pim proto' is bogus");
6544 		/*NOTREACHED*/
6545 
6546 	case Q_VRRP:
6547 		bpf_error(cstate, "'vrrp proto' is bogus");
6548 		/*NOTREACHED*/
6549 
6550 	case Q_AARP:
6551 		bpf_error(cstate, "'aarp proto' is bogus");
6552 		/*NOTREACHED*/
6553 
6554 	case Q_ISO:
6555 		switch (cstate->linktype) {
6556 
6557 		case DLT_FRELAY:
6558 			/*
6559 			 * Frame Relay packets typically have an OSI
6560 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6561 			 * generates code to check for all the OSI
6562 			 * NLPIDs, so calling it and then adding a check
6563 			 * for the particular NLPID for which we're
6564 			 * looking is bogus, as we can just check for
6565 			 * the NLPID.
6566 			 *
6567 			 * What we check for is the NLPID and a frame
6568 			 * control field value of UI, i.e. 0x03 followed
6569 			 * by the NLPID.
6570 			 *
6571 			 * XXX - assumes a 2-byte Frame Relay header with
6572 			 * DLCI and flags.  What if the address is longer?
6573 			 *
6574 			 * XXX - what about SNAP-encapsulated frames?
6575 			 */
6576 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6577 			/*NOTREACHED*/
6578 
6579 		case DLT_C_HDLC:
6580 		case DLT_HDLC:
6581 			/*
6582 			 * Cisco uses an Ethertype lookalike - for OSI,
6583 			 * it's 0xfefe.
6584 			 */
6585 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6586 			/* OSI in C-HDLC is stuffed with a fudge byte */
6587 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6588 			gen_and(b0, b1);
6589 			return b1;
6590 
6591 		default:
6592 			b0 = gen_linktype(cstate, LLCSAP_ISONS);
6593 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6594 			gen_and(b0, b1);
6595 			return b1;
6596 		}
6597 
6598 	case Q_ESIS:
6599 		bpf_error(cstate, "'esis proto' is bogus");
6600 		/*NOTREACHED*/
6601 
6602 	case Q_ISIS:
6603 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6604 		/*
6605 		 * 4 is the offset of the PDU type relative to the IS-IS
6606 		 * header.
6607 		 */
6608 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6609 		gen_and(b0, b1);
6610 		return b1;
6611 
6612 	case Q_CLNP:
6613 		bpf_error(cstate, "'clnp proto' is not supported");
6614 		/*NOTREACHED*/
6615 
6616 	case Q_STP:
6617 		bpf_error(cstate, "'stp proto' is bogus");
6618 		/*NOTREACHED*/
6619 
6620 	case Q_IPX:
6621 		bpf_error(cstate, "'ipx proto' is bogus");
6622 		/*NOTREACHED*/
6623 
6624 	case Q_NETBEUI:
6625 		bpf_error(cstate, "'netbeui proto' is bogus");
6626 		/*NOTREACHED*/
6627 
6628 	case Q_ISIS_L1:
6629 		bpf_error(cstate, "'l1 proto' is bogus");
6630 		/*NOTREACHED*/
6631 
6632 	case Q_ISIS_L2:
6633 		bpf_error(cstate, "'l2 proto' is bogus");
6634 		/*NOTREACHED*/
6635 
6636 	case Q_ISIS_IIH:
6637 		bpf_error(cstate, "'iih proto' is bogus");
6638 		/*NOTREACHED*/
6639 
6640 	case Q_ISIS_SNP:
6641 		bpf_error(cstate, "'snp proto' is bogus");
6642 		/*NOTREACHED*/
6643 
6644 	case Q_ISIS_CSNP:
6645 		bpf_error(cstate, "'csnp proto' is bogus");
6646 		/*NOTREACHED*/
6647 
6648 	case Q_ISIS_PSNP:
6649 		bpf_error(cstate, "'psnp proto' is bogus");
6650 		/*NOTREACHED*/
6651 
6652 	case Q_ISIS_LSP:
6653 		bpf_error(cstate, "'lsp proto' is bogus");
6654 		/*NOTREACHED*/
6655 
6656 	case Q_RADIO:
6657 		bpf_error(cstate, "'radio proto' is bogus");
6658 		/*NOTREACHED*/
6659 
6660 	case Q_CARP:
6661 		bpf_error(cstate, "'carp proto' is bogus");
6662 		/*NOTREACHED*/
6663 
6664 	default:
6665 		abort();
6666 		/*NOTREACHED*/
6667 	}
6668 	/*NOTREACHED*/
6669 }
6670 
6671 /*
6672  * Convert a non-numeric name to a port number.
6673  */
6674 static int
6675 nametoport(compiler_state_t *cstate, const char *name, int ipproto)
6676 {
6677 	struct addrinfo hints, *res, *ai;
6678 	int error;
6679 	struct sockaddr_in *in4;
6680 #ifdef INET6
6681 	struct sockaddr_in6 *in6;
6682 #endif
6683 	int port = -1;
6684 
6685 	/*
6686 	 * We check for both TCP and UDP in case there are
6687 	 * ambiguous entries.
6688 	 */
6689 	memset(&hints, 0, sizeof(hints));
6690 	hints.ai_family = PF_UNSPEC;
6691 	hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
6692 	hints.ai_protocol = ipproto;
6693 	error = getaddrinfo(NULL, name, &hints, &res);
6694 	if (error != 0) {
6695 		switch (error) {
6696 
6697 		case EAI_NONAME:
6698 		case EAI_SERVICE:
6699 			/*
6700 			 * No such port.  Just return -1.
6701 			 */
6702 			break;
6703 
6704 #ifdef EAI_SYSTEM
6705 		case EAI_SYSTEM:
6706 			/*
6707 			 * We don't use strerror() because it's not
6708 			 * guaranteed to be thread-safe on all platforms
6709 			 * (probably because it might use a non-thread-local
6710 			 * buffer into which to format an error message
6711 			 * if the error code isn't one for which it has
6712 			 * a canned string; three cheers for C string
6713 			 * handling).
6714 			 */
6715 			bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
6716 			    name, errno);
6717 			port = -2;	/* a real error */
6718 			break;
6719 #endif
6720 
6721 		default:
6722 			/*
6723 			 * This is a real error, not just "there's
6724 			 * no such service name".
6725 			 *
6726 			 * We don't use gai_strerror() because it's not
6727 			 * guaranteed to be thread-safe on all platforms
6728 			 * (probably because it might use a non-thread-local
6729 			 * buffer into which to format an error message
6730 			 * if the error code isn't one for which it has
6731 			 * a canned string; three cheers for C string
6732 			 * handling).
6733 			 */
6734 			bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
6735 			    name, error);
6736 			port = -2;	/* a real error */
6737 			break;
6738 		}
6739 	} else {
6740 		/*
6741 		 * OK, we found it.  Did it find anything?
6742 		 */
6743 		for (ai = res; ai != NULL; ai = ai->ai_next) {
6744 			/*
6745 			 * Does it have an address?
6746 			 */
6747 			if (ai->ai_addr != NULL) {
6748 				/*
6749 				 * Yes.  Get a port number; we're done.
6750 				 */
6751 				if (ai->ai_addr->sa_family == AF_INET) {
6752 					in4 = (struct sockaddr_in *)ai->ai_addr;
6753 					port = ntohs(in4->sin_port);
6754 					break;
6755 				}
6756 #ifdef INET6
6757 				if (ai->ai_addr->sa_family == AF_INET6) {
6758 					in6 = (struct sockaddr_in6 *)ai->ai_addr;
6759 					port = ntohs(in6->sin6_port);
6760 					break;
6761 				}
6762 #endif
6763 			}
6764 		}
6765 		freeaddrinfo(res);
6766 	}
6767 	return port;
6768 }
6769 
6770 /*
6771  * Convert a string to a port number.
6772  */
6773 static bpf_u_int32
6774 stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
6775     int *proto)
6776 {
6777 	stoulen_ret ret;
6778 	char *cpy;
6779 	bpf_u_int32 val;
6780 	int tcp_port = -1;
6781 	int udp_port = -1;
6782 
6783 	/*
6784 	 * See if it's a number.
6785 	 */
6786 	ret = stoulen(string, string_size, &val, cstate);
6787 	switch (ret) {
6788 
6789 	case STOULEN_OK:
6790 		/* Unknown port type - it's just a number. */
6791 		*proto = PROTO_UNDEF;
6792 		break;
6793 
6794 	case STOULEN_NOT_OCTAL_NUMBER:
6795 	case STOULEN_NOT_HEX_NUMBER:
6796 	case STOULEN_NOT_DECIMAL_NUMBER:
6797 		/*
6798 		 * Not a valid number; try looking it up as a port.
6799 		 */
6800 		cpy = malloc(string_size + 1);	/* +1 for terminating '\0' */
6801 		memcpy(cpy, string, string_size);
6802 		cpy[string_size] = '\0';
6803 		tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
6804 		if (tcp_port == -2) {
6805 			/*
6806 			 * We got a hard error; the error string has
6807 			 * already been set.
6808 			 */
6809 			free(cpy);
6810 			longjmp(cstate->top_ctx, 1);
6811 			/*NOTREACHED*/
6812 		}
6813 		udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
6814 		if (udp_port == -2) {
6815 			/*
6816 			 * We got a hard error; the error string has
6817 			 * already been set.
6818 			 */
6819 			free(cpy);
6820 			longjmp(cstate->top_ctx, 1);
6821 			/*NOTREACHED*/
6822 		}
6823 
6824 		/*
6825 		 * We need to check /etc/services for ambiguous entries.
6826 		 * If we find an ambiguous entry, and it has the
6827 		 * same port number, change the proto to PROTO_UNDEF
6828 		 * so both TCP and UDP will be checked.
6829 		 */
6830 		if (tcp_port >= 0) {
6831 			val = (bpf_u_int32)tcp_port;
6832 			*proto = IPPROTO_TCP;
6833 			if (udp_port >= 0) {
6834 				if (udp_port == tcp_port)
6835 					*proto = PROTO_UNDEF;
6836 #ifdef notdef
6837 				else
6838 					/* Can't handle ambiguous names that refer
6839 					   to different port numbers. */
6840 					warning("ambiguous port %s in /etc/services",
6841 						cpy);
6842 #endif
6843 			}
6844 			free(cpy);
6845 			break;
6846 		}
6847 		if (udp_port >= 0) {
6848 			val = (bpf_u_int32)udp_port;
6849 			*proto = IPPROTO_UDP;
6850 			free(cpy);
6851 			break;
6852 		}
6853 #if defined(ultrix) || defined(__osf__)
6854 		/* Special hack in case NFS isn't in /etc/services */
6855 		if (strcmp(cpy, "nfs") == 0) {
6856 			val = 2049;
6857 			*proto = PROTO_UNDEF;
6858 			free(cpy);
6859 			break;
6860 		}
6861 #endif
6862 		bpf_set_error(cstate, "'%s' is not a valid port", cpy);
6863 		free(cpy);
6864 		longjmp(cstate->top_ctx, 1);
6865 		/*NOTREACHED*/
6866 
6867 	case STOULEN_ERROR:
6868 		/* Error already set. */
6869 		longjmp(cstate->top_ctx, 1);
6870 		/*NOTREACHED*/
6871 
6872 	default:
6873 		/* Should not happen */
6874 		bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
6875 		longjmp(cstate->top_ctx, 1);
6876 		/*NOTREACHED*/
6877 	}
6878 	return (val);
6879 }
6880 
6881 /*
6882  * Convert a string in the form PPP-PPP, which correspond to ports, to
6883  * a starting and ending port in a port range.
6884  */
6885 static void
6886 stringtoportrange(compiler_state_t *cstate, const char *string,
6887     bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
6888 {
6889 	char *hyphen_off;
6890 	const char *first, *second;
6891 	size_t first_size, second_size;
6892 	int save_proto;
6893 
6894 	if ((hyphen_off = strchr(string, '-')) == NULL)
6895 		bpf_error(cstate, "port range '%s' contains no hyphen", string);
6896 
6897 	/*
6898 	 * Make sure there are no other hyphens.
6899 	 *
6900 	 * XXX - we support named ports, but there are some port names
6901 	 * in /etc/services that include hyphens, so this would rule
6902 	 * that out.
6903 	 */
6904 	if (strchr(hyphen_off + 1, '-') != NULL)
6905 		bpf_error(cstate, "port range '%s' contains more than one hyphen",
6906 		    string);
6907 
6908 	/*
6909 	 * Get the length of the first port.
6910 	 */
6911 	first = string;
6912 	first_size = hyphen_off - string;
6913 	if (first_size == 0) {
6914 		/* Range of "-port", which we don't support. */
6915 		bpf_error(cstate, "port range '%s' has no starting port", string);
6916 	}
6917 
6918 	/*
6919 	 * Try to convert it to a port.
6920 	 */
6921 	*port1 = stringtoport(cstate, first, first_size, proto);
6922 	save_proto = *proto;
6923 
6924 	/*
6925 	 * Get the length of the second port.
6926 	 */
6927 	second = hyphen_off + 1;
6928 	second_size = strlen(second);
6929 	if (second_size == 0) {
6930 		/* Range of "port-", which we don't support. */
6931 		bpf_error(cstate, "port range '%s' has no ending port", string);
6932 	}
6933 
6934 	/*
6935 	 * Try to convert it to a port.
6936 	 */
6937 	*port2 = stringtoport(cstate, second, second_size, proto);
6938 	if (*proto != save_proto)
6939 		*proto = PROTO_UNDEF;
6940 }
6941 
6942 struct block *
6943 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6944 {
6945 	int proto = q.proto;
6946 	int dir = q.dir;
6947 	int tproto;
6948 	u_char *eaddr;
6949 	bpf_u_int32 mask, addr;
6950 	struct addrinfo *res, *res0;
6951 	struct sockaddr_in *sin4;
6952 #ifdef INET6
6953 	int tproto6;
6954 	struct sockaddr_in6 *sin6;
6955 	struct in6_addr mask128;
6956 #endif /*INET6*/
6957 	struct block *b, *tmp;
6958 	int port, real_proto;
6959 	bpf_u_int32 port1, port2;
6960 
6961 	/*
6962 	 * Catch errors reported by us and routines below us, and return NULL
6963 	 * on an error.
6964 	 */
6965 	if (setjmp(cstate->top_ctx))
6966 		return (NULL);
6967 
6968 	switch (q.addr) {
6969 
6970 	case Q_NET:
6971 		addr = pcap_nametonetaddr(name);
6972 		if (addr == 0)
6973 			bpf_error(cstate, "unknown network '%s'", name);
6974 		/* Left justify network addr and calculate its network mask */
6975 		mask = 0xffffffff;
6976 		while (addr && (addr & 0xff000000) == 0) {
6977 			addr <<= 8;
6978 			mask <<= 8;
6979 		}
6980 		return gen_host(cstate, addr, mask, proto, dir, q.addr);
6981 
6982 	case Q_DEFAULT:
6983 	case Q_HOST:
6984 		if (proto == Q_LINK) {
6985 			switch (cstate->linktype) {
6986 
6987 			case DLT_EN10MB:
6988 			case DLT_NETANALYZER:
6989 			case DLT_NETANALYZER_TRANSPARENT:
6990 				eaddr = pcap_ether_hostton(name);
6991 				if (eaddr == NULL)
6992 					bpf_error(cstate,
6993 					    "unknown ether host '%s'", name);
6994 				tmp = gen_prevlinkhdr_check(cstate);
6995 				b = gen_ehostop(cstate, eaddr, dir);
6996 				if (tmp != NULL)
6997 					gen_and(tmp, b);
6998 				free(eaddr);
6999 				return b;
7000 
7001 			case DLT_FDDI:
7002 				eaddr = pcap_ether_hostton(name);
7003 				if (eaddr == NULL)
7004 					bpf_error(cstate,
7005 					    "unknown FDDI host '%s'", name);
7006 				b = gen_fhostop(cstate, eaddr, dir);
7007 				free(eaddr);
7008 				return b;
7009 
7010 			case DLT_IEEE802:
7011 				eaddr = pcap_ether_hostton(name);
7012 				if (eaddr == NULL)
7013 					bpf_error(cstate,
7014 					    "unknown token ring host '%s'", name);
7015 				b = gen_thostop(cstate, eaddr, dir);
7016 				free(eaddr);
7017 				return b;
7018 
7019 			case DLT_IEEE802_11:
7020 			case DLT_PRISM_HEADER:
7021 			case DLT_IEEE802_11_RADIO_AVS:
7022 			case DLT_IEEE802_11_RADIO:
7023 			case DLT_PPI:
7024 				eaddr = pcap_ether_hostton(name);
7025 				if (eaddr == NULL)
7026 					bpf_error(cstate,
7027 					    "unknown 802.11 host '%s'", name);
7028 				b = gen_wlanhostop(cstate, eaddr, dir);
7029 				free(eaddr);
7030 				return b;
7031 
7032 			case DLT_IP_OVER_FC:
7033 				eaddr = pcap_ether_hostton(name);
7034 				if (eaddr == NULL)
7035 					bpf_error(cstate,
7036 					    "unknown Fibre Channel host '%s'", name);
7037 				b = gen_ipfchostop(cstate, eaddr, dir);
7038 				free(eaddr);
7039 				return b;
7040 			}
7041 
7042 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
7043 		} else if (proto == Q_DECNET) {
7044 			unsigned short dn_addr;
7045 
7046 			if (!__pcap_nametodnaddr(name, &dn_addr)) {
7047 #ifdef	DECNETLIB
7048 				bpf_error(cstate, "unknown decnet host name '%s'\n", name);
7049 #else
7050 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
7051 					name);
7052 #endif
7053 			}
7054 			/*
7055 			 * I don't think DECNET hosts can be multihomed, so
7056 			 * there is no need to build up a list of addresses
7057 			 */
7058 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
7059 		} else {
7060 #ifdef INET6
7061 			memset(&mask128, 0xff, sizeof(mask128));
7062 #endif
7063 			res0 = res = pcap_nametoaddrinfo(name);
7064 			if (res == NULL)
7065 				bpf_error(cstate, "unknown host '%s'", name);
7066 			cstate->ai = res;
7067 			b = tmp = NULL;
7068 			tproto = proto;
7069 #ifdef INET6
7070 			tproto6 = proto;
7071 #endif
7072 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
7073 			    tproto == Q_DEFAULT) {
7074 				tproto = Q_IP;
7075 #ifdef INET6
7076 				tproto6 = Q_IPV6;
7077 #endif
7078 			}
7079 			for (res = res0; res; res = res->ai_next) {
7080 				switch (res->ai_family) {
7081 				case AF_INET:
7082 #ifdef INET6
7083 					if (tproto == Q_IPV6)
7084 						continue;
7085 #endif
7086 
7087 					sin4 = (struct sockaddr_in *)
7088 						res->ai_addr;
7089 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
7090 						0xffffffff, tproto, dir, q.addr);
7091 					break;
7092 #ifdef INET6
7093 				case AF_INET6:
7094 					if (tproto6 == Q_IP)
7095 						continue;
7096 
7097 					sin6 = (struct sockaddr_in6 *)
7098 						res->ai_addr;
7099 					tmp = gen_host6(cstate, &sin6->sin6_addr,
7100 						&mask128, tproto6, dir, q.addr);
7101 					break;
7102 #endif
7103 				default:
7104 					continue;
7105 				}
7106 				if (b)
7107 					gen_or(b, tmp);
7108 				b = tmp;
7109 			}
7110 			cstate->ai = NULL;
7111 			freeaddrinfo(res0);
7112 			if (b == NULL) {
7113 				bpf_error(cstate, "unknown host '%s'%s", name,
7114 				    (proto == Q_DEFAULT)
7115 					? ""
7116 					: " for specified address family");
7117 			}
7118 			return b;
7119 		}
7120 
7121 	case Q_PORT:
7122 		if (proto != Q_DEFAULT &&
7123 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7124 			bpf_error(cstate, "illegal qualifier of 'port'");
7125 		if (pcap_nametoport(name, &port, &real_proto) == 0)
7126 			bpf_error(cstate, "unknown port '%s'", name);
7127 		if (proto == Q_UDP) {
7128 			if (real_proto == IPPROTO_TCP)
7129 				bpf_error(cstate, "port '%s' is tcp", name);
7130 			else if (real_proto == IPPROTO_SCTP)
7131 				bpf_error(cstate, "port '%s' is sctp", name);
7132 			else
7133 				/* override PROTO_UNDEF */
7134 				real_proto = IPPROTO_UDP;
7135 		}
7136 		if (proto == Q_TCP) {
7137 			if (real_proto == IPPROTO_UDP)
7138 				bpf_error(cstate, "port '%s' is udp", name);
7139 
7140 			else if (real_proto == IPPROTO_SCTP)
7141 				bpf_error(cstate, "port '%s' is sctp", name);
7142 			else
7143 				/* override PROTO_UNDEF */
7144 				real_proto = IPPROTO_TCP;
7145 		}
7146 		if (proto == Q_SCTP) {
7147 			if (real_proto == IPPROTO_UDP)
7148 				bpf_error(cstate, "port '%s' is udp", name);
7149 
7150 			else if (real_proto == IPPROTO_TCP)
7151 				bpf_error(cstate, "port '%s' is tcp", name);
7152 			else
7153 				/* override PROTO_UNDEF */
7154 				real_proto = IPPROTO_SCTP;
7155 		}
7156 		if (port < 0)
7157 			bpf_error(cstate, "illegal port number %d < 0", port);
7158 		if (port > 65535)
7159 			bpf_error(cstate, "illegal port number %d > 65535", port);
7160 		b = gen_port(cstate, port, real_proto, dir);
7161 		gen_or(gen_port6(cstate, port, real_proto, dir), b);
7162 		return b;
7163 
7164 	case Q_PORTRANGE:
7165 		if (proto != Q_DEFAULT &&
7166 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7167 			bpf_error(cstate, "illegal qualifier of 'portrange'");
7168 		stringtoportrange(cstate, name, &port1, &port2, &real_proto);
7169 		if (proto == Q_UDP) {
7170 			if (real_proto == IPPROTO_TCP)
7171 				bpf_error(cstate, "port in range '%s' is tcp", name);
7172 			else if (real_proto == IPPROTO_SCTP)
7173 				bpf_error(cstate, "port in range '%s' is sctp", name);
7174 			else
7175 				/* override PROTO_UNDEF */
7176 				real_proto = IPPROTO_UDP;
7177 		}
7178 		if (proto == Q_TCP) {
7179 			if (real_proto == IPPROTO_UDP)
7180 				bpf_error(cstate, "port in range '%s' is udp", name);
7181 			else if (real_proto == IPPROTO_SCTP)
7182 				bpf_error(cstate, "port in range '%s' is sctp", name);
7183 			else
7184 				/* override PROTO_UNDEF */
7185 				real_proto = IPPROTO_TCP;
7186 		}
7187 		if (proto == Q_SCTP) {
7188 			if (real_proto == IPPROTO_UDP)
7189 				bpf_error(cstate, "port in range '%s' is udp", name);
7190 			else if (real_proto == IPPROTO_TCP)
7191 				bpf_error(cstate, "port in range '%s' is tcp", name);
7192 			else
7193 				/* override PROTO_UNDEF */
7194 				real_proto = IPPROTO_SCTP;
7195 		}
7196 		if (port1 > 65535)
7197 			bpf_error(cstate, "illegal port number %d > 65535", port1);
7198 		if (port2 > 65535)
7199 			bpf_error(cstate, "illegal port number %d > 65535", port2);
7200 
7201 		b = gen_portrange(cstate, port1, port2, real_proto, dir);
7202 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
7203 		return b;
7204 
7205 	case Q_GATEWAY:
7206 #ifndef INET6
7207 		eaddr = pcap_ether_hostton(name);
7208 		if (eaddr == NULL)
7209 			bpf_error(cstate, "unknown ether host: %s", name);
7210 
7211 		res = pcap_nametoaddrinfo(name);
7212 		cstate->ai = res;
7213 		if (res == NULL)
7214 			bpf_error(cstate, "unknown host '%s'", name);
7215 		b = gen_gateway(cstate, eaddr, res, proto, dir);
7216 		cstate->ai = NULL;
7217 		freeaddrinfo(res);
7218 		if (b == NULL)
7219 			bpf_error(cstate, "unknown host '%s'", name);
7220 		return b;
7221 #else
7222 		bpf_error(cstate, "'gateway' not supported in this configuration");
7223 #endif /*INET6*/
7224 
7225 	case Q_PROTO:
7226 		real_proto = lookup_proto(cstate, name, proto);
7227 		if (real_proto >= 0)
7228 			return gen_proto(cstate, real_proto, proto, dir);
7229 		else
7230 			bpf_error(cstate, "unknown protocol: %s", name);
7231 
7232 #if !defined(NO_PROTOCHAIN)
7233 	case Q_PROTOCHAIN:
7234 		real_proto = lookup_proto(cstate, name, proto);
7235 		if (real_proto >= 0)
7236 			return gen_protochain(cstate, real_proto, proto);
7237 		else
7238 			bpf_error(cstate, "unknown protocol: %s", name);
7239 #endif /* !defined(NO_PROTOCHAIN) */
7240 
7241 	case Q_UNDEF:
7242 		syntax(cstate);
7243 		/*NOTREACHED*/
7244 	}
7245 	abort();
7246 	/*NOTREACHED*/
7247 }
7248 
7249 struct block *
7250 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
7251     bpf_u_int32 masklen, struct qual q)
7252 {
7253 	register int nlen, mlen;
7254 	bpf_u_int32 n, m;
7255 
7256 	/*
7257 	 * Catch errors reported by us and routines below us, and return NULL
7258 	 * on an error.
7259 	 */
7260 	if (setjmp(cstate->top_ctx))
7261 		return (NULL);
7262 
7263 	nlen = __pcap_atoin(s1, &n);
7264 	if (nlen < 0)
7265 		bpf_error(cstate, "invalid IPv4 address '%s'", s1);
7266 	/* Promote short ipaddr */
7267 	n <<= 32 - nlen;
7268 
7269 	if (s2 != NULL) {
7270 		mlen = __pcap_atoin(s2, &m);
7271 		if (mlen < 0)
7272 			bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7273 		/* Promote short ipaddr */
7274 		m <<= 32 - mlen;
7275 		if ((n & ~m) != 0)
7276 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7277 			    s1, s2);
7278 	} else {
7279 		/* Convert mask len to mask */
7280 		if (masklen > 32)
7281 			bpf_error(cstate, "mask length must be <= 32");
7282 		if (masklen == 0) {
7283 			/*
7284 			 * X << 32 is not guaranteed by C to be 0; it's
7285 			 * undefined.
7286 			 */
7287 			m = 0;
7288 		} else
7289 			m = 0xffffffff << (32 - masklen);
7290 		if ((n & ~m) != 0)
7291 			bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7292 			    s1, masklen);
7293 	}
7294 
7295 	switch (q.addr) {
7296 
7297 	case Q_NET:
7298 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7299 
7300 	default:
7301 		bpf_error(cstate, "Mask syntax for networks only");
7302 		/*NOTREACHED*/
7303 	}
7304 	/*NOTREACHED*/
7305 }
7306 
7307 struct block *
7308 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7309 {
7310 	bpf_u_int32 mask;
7311 	int proto;
7312 	int dir;
7313 	register int vlen;
7314 
7315 	/*
7316 	 * Catch errors reported by us and routines below us, and return NULL
7317 	 * on an error.
7318 	 */
7319 	if (setjmp(cstate->top_ctx))
7320 		return (NULL);
7321 
7322 	proto = q.proto;
7323 	dir = q.dir;
7324 	if (s == NULL)
7325 		vlen = 32;
7326 	else if (q.proto == Q_DECNET) {
7327 		vlen = __pcap_atodn(s, &v);
7328 		if (vlen == 0)
7329 			bpf_error(cstate, "malformed decnet address '%s'", s);
7330 	} else {
7331 		vlen = __pcap_atoin(s, &v);
7332 		if (vlen < 0)
7333 			bpf_error(cstate, "invalid IPv4 address '%s'", s);
7334 	}
7335 
7336 	switch (q.addr) {
7337 
7338 	case Q_DEFAULT:
7339 	case Q_HOST:
7340 	case Q_NET:
7341 		if (proto == Q_DECNET)
7342 			return gen_host(cstate, v, 0, proto, dir, q.addr);
7343 		else if (proto == Q_LINK) {
7344 			bpf_error(cstate, "illegal link layer address");
7345 		} else {
7346 			mask = 0xffffffff;
7347 			if (s == NULL && q.addr == Q_NET) {
7348 				/* Promote short net number */
7349 				while (v && (v & 0xff000000) == 0) {
7350 					v <<= 8;
7351 					mask <<= 8;
7352 				}
7353 			} else {
7354 				/* Promote short ipaddr */
7355 				v <<= 32 - vlen;
7356 				mask <<= 32 - vlen ;
7357 			}
7358 			return gen_host(cstate, v, mask, proto, dir, q.addr);
7359 		}
7360 
7361 	case Q_PORT:
7362 		if (proto == Q_UDP)
7363 			proto = IPPROTO_UDP;
7364 		else if (proto == Q_TCP)
7365 			proto = IPPROTO_TCP;
7366 		else if (proto == Q_SCTP)
7367 			proto = IPPROTO_SCTP;
7368 		else if (proto == Q_DEFAULT)
7369 			proto = PROTO_UNDEF;
7370 		else
7371 			bpf_error(cstate, "illegal qualifier of 'port'");
7372 
7373 		if (v > 65535)
7374 			bpf_error(cstate, "illegal port number %u > 65535", v);
7375 
7376 	    {
7377 		struct block *b;
7378 		b = gen_port(cstate, v, proto, dir);
7379 		gen_or(gen_port6(cstate, v, proto, dir), b);
7380 		return b;
7381 	    }
7382 
7383 	case Q_PORTRANGE:
7384 		if (proto == Q_UDP)
7385 			proto = IPPROTO_UDP;
7386 		else if (proto == Q_TCP)
7387 			proto = IPPROTO_TCP;
7388 		else if (proto == Q_SCTP)
7389 			proto = IPPROTO_SCTP;
7390 		else if (proto == Q_DEFAULT)
7391 			proto = PROTO_UNDEF;
7392 		else
7393 			bpf_error(cstate, "illegal qualifier of 'portrange'");
7394 
7395 		if (v > 65535)
7396 			bpf_error(cstate, "illegal port number %u > 65535", v);
7397 
7398 	    {
7399 		struct block *b;
7400 		b = gen_portrange(cstate, v, v, proto, dir);
7401 		gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7402 		return b;
7403 	    }
7404 
7405 	case Q_GATEWAY:
7406 		bpf_error(cstate, "'gateway' requires a name");
7407 		/*NOTREACHED*/
7408 
7409 	case Q_PROTO:
7410 		return gen_proto(cstate, v, proto, dir);
7411 
7412 #if !defined(NO_PROTOCHAIN)
7413 	case Q_PROTOCHAIN:
7414 		return gen_protochain(cstate, v, proto);
7415 #endif
7416 
7417 	case Q_UNDEF:
7418 		syntax(cstate);
7419 		/*NOTREACHED*/
7420 
7421 	default:
7422 		abort();
7423 		/*NOTREACHED*/
7424 	}
7425 	/*NOTREACHED*/
7426 }
7427 
7428 #ifdef INET6
7429 struct block *
7430 gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
7431     struct qual q)
7432 {
7433 	struct addrinfo *res;
7434 	struct in6_addr *addr;
7435 	struct in6_addr mask;
7436 	struct block *b;
7437 	bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */
7438 
7439 	/*
7440 	 * Catch errors reported by us and routines below us, and return NULL
7441 	 * on an error.
7442 	 */
7443 	if (setjmp(cstate->top_ctx))
7444 		return (NULL);
7445 
7446 	res = pcap_nametoaddrinfo(s);
7447 	if (!res)
7448 		bpf_error(cstate, "invalid ip6 address %s", s);
7449 	cstate->ai = res;
7450 	if (res->ai_next)
7451 		bpf_error(cstate, "%s resolved to multiple address", s);
7452 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7453 
7454 	if (masklen > sizeof(mask.s6_addr) * 8)
7455 		bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
7456 	memset(&mask, 0, sizeof(mask));
7457 	memset(&mask.s6_addr, 0xff, masklen / 8);
7458 	if (masklen % 8) {
7459 		mask.s6_addr[masklen / 8] =
7460 			(0xff << (8 - masklen % 8)) & 0xff;
7461 	}
7462 
7463 	memcpy(a, addr, sizeof(a));
7464 	memcpy(m, &mask, sizeof(m));
7465 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7466 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7467 		bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
7468 	}
7469 
7470 	switch (q.addr) {
7471 
7472 	case Q_DEFAULT:
7473 	case Q_HOST:
7474 		if (masklen != 128)
7475 			bpf_error(cstate, "Mask syntax for networks only");
7476 		/* FALLTHROUGH */
7477 
7478 	case Q_NET:
7479 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7480 		cstate->ai = NULL;
7481 		freeaddrinfo(res);
7482 		return b;
7483 
7484 	default:
7485 		bpf_error(cstate, "invalid qualifier against IPv6 address");
7486 		/*NOTREACHED*/
7487 	}
7488 }
7489 #endif /*INET6*/
7490 
7491 struct block *
7492 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7493 {
7494 	struct block *b, *tmp;
7495 
7496 	/*
7497 	 * Catch errors reported by us and routines below us, and return NULL
7498 	 * on an error.
7499 	 */
7500 	if (setjmp(cstate->top_ctx))
7501 		return (NULL);
7502 
7503 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7504 		cstate->e = pcap_ether_aton(s);
7505 		if (cstate->e == NULL)
7506 			bpf_error(cstate, "malloc");
7507 		switch (cstate->linktype) {
7508 		case DLT_EN10MB:
7509 		case DLT_NETANALYZER:
7510 		case DLT_NETANALYZER_TRANSPARENT:
7511 			tmp = gen_prevlinkhdr_check(cstate);
7512 			b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7513 			if (tmp != NULL)
7514 				gen_and(tmp, b);
7515 			break;
7516 		case DLT_FDDI:
7517 			b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7518 			break;
7519 		case DLT_IEEE802:
7520 			b = gen_thostop(cstate, cstate->e, (int)q.dir);
7521 			break;
7522 		case DLT_IEEE802_11:
7523 		case DLT_PRISM_HEADER:
7524 		case DLT_IEEE802_11_RADIO_AVS:
7525 		case DLT_IEEE802_11_RADIO:
7526 		case DLT_PPI:
7527 			b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7528 			break;
7529 		case DLT_IP_OVER_FC:
7530 			b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7531 			break;
7532 		default:
7533 			free(cstate->e);
7534 			cstate->e = NULL;
7535 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7536 			/*NOTREACHED*/
7537 		}
7538 		free(cstate->e);
7539 		cstate->e = NULL;
7540 		return (b);
7541 	}
7542 	bpf_error(cstate, "ethernet address used in non-ether expression");
7543 	/*NOTREACHED*/
7544 }
7545 
7546 void
7547 sappend(struct slist *s0, struct slist *s1)
7548 {
7549 	/*
7550 	 * This is definitely not the best way to do this, but the
7551 	 * lists will rarely get long.
7552 	 */
7553 	while (s0->next)
7554 		s0 = s0->next;
7555 	s0->next = s1;
7556 }
7557 
7558 static struct slist *
7559 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7560 {
7561 	struct slist *s;
7562 
7563 	s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7564 	s->s.k = a->regno;
7565 	return s;
7566 }
7567 
7568 static struct slist *
7569 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7570 {
7571 	struct slist *s;
7572 
7573 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
7574 	s->s.k = a->regno;
7575 	return s;
7576 }
7577 
7578 /*
7579  * Modify "index" to use the value stored into its register as an
7580  * offset relative to the beginning of the header for the protocol
7581  * "proto", and allocate a register and put an item "size" bytes long
7582  * (1, 2, or 4) at that offset into that register, making it the register
7583  * for "index".
7584  */
7585 static struct arth *
7586 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7587     bpf_u_int32 size)
7588 {
7589 	int size_code;
7590 	struct slist *s, *tmp;
7591 	struct block *b;
7592 	int regno = alloc_reg(cstate);
7593 
7594 	free_reg(cstate, inst->regno);
7595 	switch (size) {
7596 
7597 	default:
7598 		bpf_error(cstate, "data size must be 1, 2, or 4");
7599 		/*NOTREACHED*/
7600 
7601 	case 1:
7602 		size_code = BPF_B;
7603 		break;
7604 
7605 	case 2:
7606 		size_code = BPF_H;
7607 		break;
7608 
7609 	case 4:
7610 		size_code = BPF_W;
7611 		break;
7612 	}
7613 	switch (proto) {
7614 	default:
7615 		bpf_error(cstate, "unsupported index operation");
7616 
7617 	case Q_RADIO:
7618 		/*
7619 		 * The offset is relative to the beginning of the packet
7620 		 * data, if we have a radio header.  (If we don't, this
7621 		 * is an error.)
7622 		 */
7623 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7624 		    cstate->linktype != DLT_IEEE802_11_RADIO &&
7625 		    cstate->linktype != DLT_PRISM_HEADER)
7626 			bpf_error(cstate, "radio information not present in capture");
7627 
7628 		/*
7629 		 * Load into the X register the offset computed into the
7630 		 * register specified by "index".
7631 		 */
7632 		s = xfer_to_x(cstate, inst);
7633 
7634 		/*
7635 		 * Load the item at that offset.
7636 		 */
7637 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7638 		sappend(s, tmp);
7639 		sappend(inst->s, s);
7640 		break;
7641 
7642 	case Q_LINK:
7643 		/*
7644 		 * The offset is relative to the beginning of
7645 		 * the link-layer header.
7646 		 *
7647 		 * XXX - what about ATM LANE?  Should the index be
7648 		 * relative to the beginning of the AAL5 frame, so
7649 		 * that 0 refers to the beginning of the LE Control
7650 		 * field, or relative to the beginning of the LAN
7651 		 * frame, so that 0 refers, for Ethernet LANE, to
7652 		 * the beginning of the destination address?
7653 		 */
7654 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7655 
7656 		/*
7657 		 * If "s" is non-null, it has code to arrange that the
7658 		 * X register contains the length of the prefix preceding
7659 		 * the link-layer header.  Add to it the offset computed
7660 		 * into the register specified by "index", and move that
7661 		 * into the X register.  Otherwise, just load into the X
7662 		 * register the offset computed into the register specified
7663 		 * by "index".
7664 		 */
7665 		if (s != NULL) {
7666 			sappend(s, xfer_to_a(cstate, inst));
7667 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7668 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7669 		} else
7670 			s = xfer_to_x(cstate, inst);
7671 
7672 		/*
7673 		 * Load the item at the sum of the offset we've put in the
7674 		 * X register and the offset of the start of the link
7675 		 * layer header (which is 0 if the radio header is
7676 		 * variable-length; that header length is what we put
7677 		 * into the X register and then added to the index).
7678 		 */
7679 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7680 		tmp->s.k = cstate->off_linkhdr.constant_part;
7681 		sappend(s, tmp);
7682 		sappend(inst->s, s);
7683 		break;
7684 
7685 	case Q_IP:
7686 	case Q_ARP:
7687 	case Q_RARP:
7688 	case Q_ATALK:
7689 	case Q_DECNET:
7690 	case Q_SCA:
7691 	case Q_LAT:
7692 	case Q_MOPRC:
7693 	case Q_MOPDL:
7694 	case Q_IPV6:
7695 		/*
7696 		 * The offset is relative to the beginning of
7697 		 * the network-layer header.
7698 		 * XXX - are there any cases where we want
7699 		 * cstate->off_nl_nosnap?
7700 		 */
7701 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7702 
7703 		/*
7704 		 * If "s" is non-null, it has code to arrange that the
7705 		 * X register contains the variable part of the offset
7706 		 * of the link-layer payload.  Add to it the offset
7707 		 * computed into the register specified by "index",
7708 		 * and move that into the X register.  Otherwise, just
7709 		 * load into the X register the offset computed into
7710 		 * the register specified by "index".
7711 		 */
7712 		if (s != NULL) {
7713 			sappend(s, xfer_to_a(cstate, inst));
7714 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7715 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7716 		} else
7717 			s = xfer_to_x(cstate, inst);
7718 
7719 		/*
7720 		 * Load the item at the sum of the offset we've put in the
7721 		 * X register, the offset of the start of the network
7722 		 * layer header from the beginning of the link-layer
7723 		 * payload, and the constant part of the offset of the
7724 		 * start of the link-layer payload.
7725 		 */
7726 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7727 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7728 		sappend(s, tmp);
7729 		sappend(inst->s, s);
7730 
7731 		/*
7732 		 * Do the computation only if the packet contains
7733 		 * the protocol in question.
7734 		 */
7735 		b = gen_proto_abbrev_internal(cstate, proto);
7736 		if (inst->b)
7737 			gen_and(inst->b, b);
7738 		inst->b = b;
7739 		break;
7740 
7741 	case Q_SCTP:
7742 	case Q_TCP:
7743 	case Q_UDP:
7744 	case Q_ICMP:
7745 	case Q_IGMP:
7746 	case Q_IGRP:
7747 	case Q_PIM:
7748 	case Q_VRRP:
7749 	case Q_CARP:
7750 		/*
7751 		 * The offset is relative to the beginning of
7752 		 * the transport-layer header.
7753 		 *
7754 		 * Load the X register with the length of the IPv4 header
7755 		 * (plus the offset of the link-layer header, if it's
7756 		 * a variable-length header), in bytes.
7757 		 *
7758 		 * XXX - are there any cases where we want
7759 		 * cstate->off_nl_nosnap?
7760 		 * XXX - we should, if we're built with
7761 		 * IPv6 support, generate code to load either
7762 		 * IPv4, IPv6, or both, as appropriate.
7763 		 */
7764 		s = gen_loadx_iphdrlen(cstate);
7765 
7766 		/*
7767 		 * The X register now contains the sum of the variable
7768 		 * part of the offset of the link-layer payload and the
7769 		 * length of the network-layer header.
7770 		 *
7771 		 * Load into the A register the offset relative to
7772 		 * the beginning of the transport layer header,
7773 		 * add the X register to that, move that to the
7774 		 * X register, and load with an offset from the
7775 		 * X register equal to the sum of the constant part of
7776 		 * the offset of the link-layer payload and the offset,
7777 		 * relative to the beginning of the link-layer payload,
7778 		 * of the network-layer header.
7779 		 */
7780 		sappend(s, xfer_to_a(cstate, inst));
7781 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7782 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7783 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7784 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7785 		sappend(inst->s, s);
7786 
7787 		/*
7788 		 * Do the computation only if the packet contains
7789 		 * the protocol in question - which is true only
7790 		 * if this is an IP datagram and is the first or
7791 		 * only fragment of that datagram.
7792 		 */
7793 		gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7794 		if (inst->b)
7795 			gen_and(inst->b, b);
7796 		gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7797 		inst->b = b;
7798 		break;
7799 	case Q_ICMPV6:
7800 		/*
7801 		 * Do the computation only if the packet contains
7802 		 * the protocol in question.
7803 		 */
7804 		b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7805 		if (inst->b)
7806 			gen_and(inst->b, b);
7807 		inst->b = b;
7808 
7809 		/*
7810 		 * Check if we have an icmp6 next header
7811 		 */
7812 		b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7813 		if (inst->b)
7814 			gen_and(inst->b, b);
7815 		inst->b = b;
7816 
7817 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7818 		/*
7819 		 * If "s" is non-null, it has code to arrange that the
7820 		 * X register contains the variable part of the offset
7821 		 * of the link-layer payload.  Add to it the offset
7822 		 * computed into the register specified by "index",
7823 		 * and move that into the X register.  Otherwise, just
7824 		 * load into the X register the offset computed into
7825 		 * the register specified by "index".
7826 		 */
7827 		if (s != NULL) {
7828 			sappend(s, xfer_to_a(cstate, inst));
7829 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7830 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7831 		} else
7832 			s = xfer_to_x(cstate, inst);
7833 
7834 		/*
7835 		 * Load the item at the sum of the offset we've put in the
7836 		 * X register, the offset of the start of the network
7837 		 * layer header from the beginning of the link-layer
7838 		 * payload, and the constant part of the offset of the
7839 		 * start of the link-layer payload.
7840 		 */
7841 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7842 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7843 
7844 		sappend(s, tmp);
7845 		sappend(inst->s, s);
7846 
7847 		break;
7848 	}
7849 	inst->regno = regno;
7850 	s = new_stmt(cstate, BPF_ST);
7851 	s->s.k = regno;
7852 	sappend(inst->s, s);
7853 
7854 	return inst;
7855 }
7856 
7857 struct arth *
7858 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7859     bpf_u_int32 size)
7860 {
7861 	/*
7862 	 * Catch errors reported by us and routines below us, and return NULL
7863 	 * on an error.
7864 	 */
7865 	if (setjmp(cstate->top_ctx))
7866 		return (NULL);
7867 
7868 	return gen_load_internal(cstate, proto, inst, size);
7869 }
7870 
7871 static struct block *
7872 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7873     struct arth *a1, int reversed)
7874 {
7875 	struct slist *s0, *s1, *s2;
7876 	struct block *b, *tmp;
7877 
7878 	s0 = xfer_to_x(cstate, a1);
7879 	s1 = xfer_to_a(cstate, a0);
7880 	if (code == BPF_JEQ) {
7881 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7882 		b = new_block(cstate, JMP(code));
7883 		sappend(s1, s2);
7884 	}
7885 	else
7886 		b = new_block(cstate, BPF_JMP|code|BPF_X);
7887 	if (reversed)
7888 		gen_not(b);
7889 
7890 	sappend(s0, s1);
7891 	sappend(a1->s, s0);
7892 	sappend(a0->s, a1->s);
7893 
7894 	b->stmts = a0->s;
7895 
7896 	free_reg(cstate, a0->regno);
7897 	free_reg(cstate, a1->regno);
7898 
7899 	/* 'and' together protocol checks */
7900 	if (a0->b) {
7901 		if (a1->b) {
7902 			gen_and(a0->b, tmp = a1->b);
7903 		}
7904 		else
7905 			tmp = a0->b;
7906 	} else
7907 		tmp = a1->b;
7908 
7909 	if (tmp)
7910 		gen_and(tmp, b);
7911 
7912 	return b;
7913 }
7914 
7915 struct block *
7916 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7917     struct arth *a1, int reversed)
7918 {
7919 	/*
7920 	 * Catch errors reported by us and routines below us, and return NULL
7921 	 * on an error.
7922 	 */
7923 	if (setjmp(cstate->top_ctx))
7924 		return (NULL);
7925 
7926 	return gen_relation_internal(cstate, code, a0, a1, reversed);
7927 }
7928 
7929 struct arth *
7930 gen_loadlen(compiler_state_t *cstate)
7931 {
7932 	int regno;
7933 	struct arth *a;
7934 	struct slist *s;
7935 
7936 	/*
7937 	 * Catch errors reported by us and routines below us, and return NULL
7938 	 * on an error.
7939 	 */
7940 	if (setjmp(cstate->top_ctx))
7941 		return (NULL);
7942 
7943 	regno = alloc_reg(cstate);
7944 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7945 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7946 	s->next = new_stmt(cstate, BPF_ST);
7947 	s->next->s.k = regno;
7948 	a->s = s;
7949 	a->regno = regno;
7950 
7951 	return a;
7952 }
7953 
7954 static struct arth *
7955 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7956 {
7957 	struct arth *a;
7958 	struct slist *s;
7959 	int reg;
7960 
7961 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7962 
7963 	reg = alloc_reg(cstate);
7964 
7965 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
7966 	s->s.k = val;
7967 	s->next = new_stmt(cstate, BPF_ST);
7968 	s->next->s.k = reg;
7969 	a->s = s;
7970 	a->regno = reg;
7971 
7972 	return a;
7973 }
7974 
7975 struct arth *
7976 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7977 {
7978 	/*
7979 	 * Catch errors reported by us and routines below us, and return NULL
7980 	 * on an error.
7981 	 */
7982 	if (setjmp(cstate->top_ctx))
7983 		return (NULL);
7984 
7985 	return gen_loadi_internal(cstate, val);
7986 }
7987 
7988 /*
7989  * The a_arg dance is to avoid annoying whining by compilers that
7990  * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7991  * It's not *used* after setjmp returns.
7992  */
7993 struct arth *
7994 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7995 {
7996 	struct arth *a = a_arg;
7997 	struct slist *s;
7998 
7999 	/*
8000 	 * Catch errors reported by us and routines below us, and return NULL
8001 	 * on an error.
8002 	 */
8003 	if (setjmp(cstate->top_ctx))
8004 		return (NULL);
8005 
8006 	s = xfer_to_a(cstate, a);
8007 	sappend(a->s, s);
8008 	s = new_stmt(cstate, BPF_ALU|BPF_NEG);
8009 	s->s.k = 0;
8010 	sappend(a->s, s);
8011 	s = new_stmt(cstate, BPF_ST);
8012 	s->s.k = a->regno;
8013 	sappend(a->s, s);
8014 
8015 	return a;
8016 }
8017 
8018 /*
8019  * The a0_arg dance is to avoid annoying whining by compilers that
8020  * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8021  * It's not *used* after setjmp returns.
8022  */
8023 struct arth *
8024 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
8025     struct arth *a1)
8026 {
8027 	struct arth *a0 = a0_arg;
8028 	struct slist *s0, *s1, *s2;
8029 
8030 	/*
8031 	 * Catch errors reported by us and routines below us, and return NULL
8032 	 * on an error.
8033 	 */
8034 	if (setjmp(cstate->top_ctx))
8035 		return (NULL);
8036 
8037 	/*
8038 	 * Disallow division by, or modulus by, zero; we do this here
8039 	 * so that it gets done even if the optimizer is disabled.
8040 	 *
8041 	 * Also disallow shifts by a value greater than 31; we do this
8042 	 * here, for the same reason.
8043 	 */
8044 	if (code == BPF_DIV) {
8045 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8046 			bpf_error(cstate, "division by zero");
8047 	} else if (code == BPF_MOD) {
8048 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8049 			bpf_error(cstate, "modulus by zero");
8050 	} else if (code == BPF_LSH || code == BPF_RSH) {
8051 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
8052 			bpf_error(cstate, "shift by more than 31 bits");
8053 	}
8054 	s0 = xfer_to_x(cstate, a1);
8055 	s1 = xfer_to_a(cstate, a0);
8056 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
8057 
8058 	sappend(s1, s2);
8059 	sappend(s0, s1);
8060 	sappend(a1->s, s0);
8061 	sappend(a0->s, a1->s);
8062 
8063 	free_reg(cstate, a0->regno);
8064 	free_reg(cstate, a1->regno);
8065 
8066 	s0 = new_stmt(cstate, BPF_ST);
8067 	a0->regno = s0->s.k = alloc_reg(cstate);
8068 	sappend(a0->s, s0);
8069 
8070 	return a0;
8071 }
8072 
8073 /*
8074  * Initialize the table of used registers and the current register.
8075  */
8076 static void
8077 init_regs(compiler_state_t *cstate)
8078 {
8079 	cstate->curreg = 0;
8080 	memset(cstate->regused, 0, sizeof cstate->regused);
8081 }
8082 
8083 /*
8084  * Return the next free register.
8085  */
8086 static int
8087 alloc_reg(compiler_state_t *cstate)
8088 {
8089 	int n = BPF_MEMWORDS;
8090 
8091 	while (--n >= 0) {
8092 		if (cstate->regused[cstate->curreg])
8093 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
8094 		else {
8095 			cstate->regused[cstate->curreg] = 1;
8096 			return cstate->curreg;
8097 		}
8098 	}
8099 	bpf_error(cstate, "too many registers needed to evaluate expression");
8100 	/*NOTREACHED*/
8101 }
8102 
8103 /*
8104  * Return a register to the table so it can
8105  * be used later.
8106  */
8107 static void
8108 free_reg(compiler_state_t *cstate, int n)
8109 {
8110 	cstate->regused[n] = 0;
8111 }
8112 
8113 static struct block *
8114 gen_len(compiler_state_t *cstate, int jmp, int n)
8115 {
8116 	struct slist *s;
8117 	struct block *b;
8118 
8119 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
8120 	b = new_block(cstate, JMP(jmp));
8121 	b->stmts = s;
8122 	b->s.k = n;
8123 
8124 	return b;
8125 }
8126 
8127 struct block *
8128 gen_greater(compiler_state_t *cstate, int n)
8129 {
8130 	/*
8131 	 * Catch errors reported by us and routines below us, and return NULL
8132 	 * on an error.
8133 	 */
8134 	if (setjmp(cstate->top_ctx))
8135 		return (NULL);
8136 
8137 	return gen_len(cstate, BPF_JGE, n);
8138 }
8139 
8140 /*
8141  * Actually, this is less than or equal.
8142  */
8143 struct block *
8144 gen_less(compiler_state_t *cstate, int n)
8145 {
8146 	struct block *b;
8147 
8148 	/*
8149 	 * Catch errors reported by us and routines below us, and return NULL
8150 	 * on an error.
8151 	 */
8152 	if (setjmp(cstate->top_ctx))
8153 		return (NULL);
8154 
8155 	b = gen_len(cstate, BPF_JGT, n);
8156 	gen_not(b);
8157 
8158 	return b;
8159 }
8160 
8161 /*
8162  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8163  * the beginning of the link-layer header.
8164  * XXX - that means you can't test values in the radiotap header, but
8165  * as that header is difficult if not impossible to parse generally
8166  * without a loop, that might not be a severe problem.  A new keyword
8167  * "radio" could be added for that, although what you'd really want
8168  * would be a way of testing particular radio header values, which
8169  * would generate code appropriate to the radio header in question.
8170  */
8171 struct block *
8172 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
8173 {
8174 	struct block *b;
8175 	struct slist *s;
8176 
8177 	/*
8178 	 * Catch errors reported by us and routines below us, and return NULL
8179 	 * on an error.
8180 	 */
8181 	if (setjmp(cstate->top_ctx))
8182 		return (NULL);
8183 
8184 	switch (op) {
8185 	default:
8186 		abort();
8187 
8188 	case '=':
8189 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8190 
8191 	case '<':
8192 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8193 		return b;
8194 
8195 	case '>':
8196 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8197 		return b;
8198 
8199 	case '|':
8200 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
8201 		break;
8202 
8203 	case '&':
8204 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8205 		break;
8206 	}
8207 	s->s.k = val;
8208 	b = new_block(cstate, JMP(BPF_JEQ));
8209 	b->stmts = s;
8210 	gen_not(b);
8211 
8212 	return b;
8213 }
8214 
8215 static const u_char abroadcast[] = { 0x0 };
8216 
8217 struct block *
8218 gen_broadcast(compiler_state_t *cstate, int proto)
8219 {
8220 	bpf_u_int32 hostmask;
8221 	struct block *b0, *b1, *b2;
8222 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8223 
8224 	/*
8225 	 * Catch errors reported by us and routines below us, and return NULL
8226 	 * on an error.
8227 	 */
8228 	if (setjmp(cstate->top_ctx))
8229 		return (NULL);
8230 
8231 	switch (proto) {
8232 
8233 	case Q_DEFAULT:
8234 	case Q_LINK:
8235 		switch (cstate->linktype) {
8236 		case DLT_ARCNET:
8237 		case DLT_ARCNET_LINUX:
8238 			return gen_ahostop(cstate, abroadcast, Q_DST);
8239 		case DLT_EN10MB:
8240 		case DLT_NETANALYZER:
8241 		case DLT_NETANALYZER_TRANSPARENT:
8242 			b1 = gen_prevlinkhdr_check(cstate);
8243 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
8244 			if (b1 != NULL)
8245 				gen_and(b1, b0);
8246 			return b0;
8247 		case DLT_FDDI:
8248 			return gen_fhostop(cstate, ebroadcast, Q_DST);
8249 		case DLT_IEEE802:
8250 			return gen_thostop(cstate, ebroadcast, Q_DST);
8251 		case DLT_IEEE802_11:
8252 		case DLT_PRISM_HEADER:
8253 		case DLT_IEEE802_11_RADIO_AVS:
8254 		case DLT_IEEE802_11_RADIO:
8255 		case DLT_PPI:
8256 			return gen_wlanhostop(cstate, ebroadcast, Q_DST);
8257 		case DLT_IP_OVER_FC:
8258 			return gen_ipfchostop(cstate, ebroadcast, Q_DST);
8259 		default:
8260 			bpf_error(cstate, "not a broadcast link");
8261 		}
8262 		/*NOTREACHED*/
8263 
8264 	case Q_IP:
8265 		/*
8266 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8267 		 * as an indication that we don't know the netmask, and fail
8268 		 * in that case.
8269 		 */
8270 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8271 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8272 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
8273 		hostmask = ~cstate->netmask;
8274 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8275 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
8276 			      ~0 & hostmask, hostmask);
8277 		gen_or(b1, b2);
8278 		gen_and(b0, b2);
8279 		return b2;
8280 	}
8281 	bpf_error(cstate, "only link-layer/IP broadcast filters supported");
8282 	/*NOTREACHED*/
8283 }
8284 
8285 /*
8286  * Generate code to test the low-order bit of a MAC address (that's
8287  * the bottom bit of the *first* byte).
8288  */
8289 static struct block *
8290 gen_mac_multicast(compiler_state_t *cstate, int offset)
8291 {
8292 	register struct block *b0;
8293 	register struct slist *s;
8294 
8295 	/* link[offset] & 1 != 0 */
8296 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8297 	b0 = new_block(cstate, JMP(BPF_JSET));
8298 	b0->s.k = 1;
8299 	b0->stmts = s;
8300 	return b0;
8301 }
8302 
8303 struct block *
8304 gen_multicast(compiler_state_t *cstate, int proto)
8305 {
8306 	register struct block *b0, *b1, *b2;
8307 	register struct slist *s;
8308 
8309 	/*
8310 	 * Catch errors reported by us and routines below us, and return NULL
8311 	 * on an error.
8312 	 */
8313 	if (setjmp(cstate->top_ctx))
8314 		return (NULL);
8315 
8316 	switch (proto) {
8317 
8318 	case Q_DEFAULT:
8319 	case Q_LINK:
8320 		switch (cstate->linktype) {
8321 		case DLT_ARCNET:
8322 		case DLT_ARCNET_LINUX:
8323 			/* all ARCnet multicasts use the same address */
8324 			return gen_ahostop(cstate, abroadcast, Q_DST);
8325 		case DLT_EN10MB:
8326 		case DLT_NETANALYZER:
8327 		case DLT_NETANALYZER_TRANSPARENT:
8328 			b1 = gen_prevlinkhdr_check(cstate);
8329 			/* ether[0] & 1 != 0 */
8330 			b0 = gen_mac_multicast(cstate, 0);
8331 			if (b1 != NULL)
8332 				gen_and(b1, b0);
8333 			return b0;
8334 		case DLT_FDDI:
8335 			/*
8336 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8337 			 *
8338 			 * XXX - was that referring to bit-order issues?
8339 			 */
8340 			/* fddi[1] & 1 != 0 */
8341 			return gen_mac_multicast(cstate, 1);
8342 		case DLT_IEEE802:
8343 			/* tr[2] & 1 != 0 */
8344 			return gen_mac_multicast(cstate, 2);
8345 		case DLT_IEEE802_11:
8346 		case DLT_PRISM_HEADER:
8347 		case DLT_IEEE802_11_RADIO_AVS:
8348 		case DLT_IEEE802_11_RADIO:
8349 		case DLT_PPI:
8350 			/*
8351 			 * Oh, yuk.
8352 			 *
8353 			 *	For control frames, there is no DA.
8354 			 *
8355 			 *	For management frames, DA is at an
8356 			 *	offset of 4 from the beginning of
8357 			 *	the packet.
8358 			 *
8359 			 *	For data frames, DA is at an offset
8360 			 *	of 4 from the beginning of the packet
8361 			 *	if To DS is clear and at an offset of
8362 			 *	16 from the beginning of the packet
8363 			 *	if To DS is set.
8364 			 */
8365 
8366 			/*
8367 			 * Generate the tests to be done for data frames.
8368 			 *
8369 			 * First, check for To DS set, i.e. "link[1] & 0x01".
8370 			 */
8371 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8372 			b1 = new_block(cstate, JMP(BPF_JSET));
8373 			b1->s.k = 0x01;	/* To DS */
8374 			b1->stmts = s;
8375 
8376 			/*
8377 			 * If To DS is set, the DA is at 16.
8378 			 */
8379 			b0 = gen_mac_multicast(cstate, 16);
8380 			gen_and(b1, b0);
8381 
8382 			/*
8383 			 * Now, check for To DS not set, i.e. check
8384 			 * "!(link[1] & 0x01)".
8385 			 */
8386 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8387 			b2 = new_block(cstate, JMP(BPF_JSET));
8388 			b2->s.k = 0x01;	/* To DS */
8389 			b2->stmts = s;
8390 			gen_not(b2);
8391 
8392 			/*
8393 			 * If To DS is not set, the DA is at 4.
8394 			 */
8395 			b1 = gen_mac_multicast(cstate, 4);
8396 			gen_and(b2, b1);
8397 
8398 			/*
8399 			 * Now OR together the last two checks.  That gives
8400 			 * the complete set of checks for data frames.
8401 			 */
8402 			gen_or(b1, b0);
8403 
8404 			/*
8405 			 * Now check for a data frame.
8406 			 * I.e, check "link[0] & 0x08".
8407 			 */
8408 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8409 			b1 = new_block(cstate, JMP(BPF_JSET));
8410 			b1->s.k = 0x08;
8411 			b1->stmts = s;
8412 
8413 			/*
8414 			 * AND that with the checks done for data frames.
8415 			 */
8416 			gen_and(b1, b0);
8417 
8418 			/*
8419 			 * If the high-order bit of the type value is 0, this
8420 			 * is a management frame.
8421 			 * I.e, check "!(link[0] & 0x08)".
8422 			 */
8423 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8424 			b2 = new_block(cstate, JMP(BPF_JSET));
8425 			b2->s.k = 0x08;
8426 			b2->stmts = s;
8427 			gen_not(b2);
8428 
8429 			/*
8430 			 * For management frames, the DA is at 4.
8431 			 */
8432 			b1 = gen_mac_multicast(cstate, 4);
8433 			gen_and(b2, b1);
8434 
8435 			/*
8436 			 * OR that with the checks done for data frames.
8437 			 * That gives the checks done for management and
8438 			 * data frames.
8439 			 */
8440 			gen_or(b1, b0);
8441 
8442 			/*
8443 			 * If the low-order bit of the type value is 1,
8444 			 * this is either a control frame or a frame
8445 			 * with a reserved type, and thus not a
8446 			 * frame with an SA.
8447 			 *
8448 			 * I.e., check "!(link[0] & 0x04)".
8449 			 */
8450 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8451 			b1 = new_block(cstate, JMP(BPF_JSET));
8452 			b1->s.k = 0x04;
8453 			b1->stmts = s;
8454 			gen_not(b1);
8455 
8456 			/*
8457 			 * AND that with the checks for data and management
8458 			 * frames.
8459 			 */
8460 			gen_and(b1, b0);
8461 			return b0;
8462 		case DLT_IP_OVER_FC:
8463 			b0 = gen_mac_multicast(cstate, 2);
8464 			return b0;
8465 		default:
8466 			break;
8467 		}
8468 		/* Link not known to support multicasts */
8469 		break;
8470 
8471 	case Q_IP:
8472 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
8473 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8474 		gen_and(b0, b1);
8475 		return b1;
8476 
8477 	case Q_IPV6:
8478 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8479 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8480 		gen_and(b0, b1);
8481 		return b1;
8482 	}
8483 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8484 	/*NOTREACHED*/
8485 }
8486 
8487 struct block *
8488 gen_ifindex(compiler_state_t *cstate, int ifindex)
8489 {
8490 	register struct block *b0;
8491 
8492 	/*
8493 	 * Catch errors reported by us and routines below us, and return NULL
8494 	 * on an error.
8495 	 */
8496 	if (setjmp(cstate->top_ctx))
8497 		return (NULL);
8498 
8499 	/*
8500 	 * Only some data link types support ifindex qualifiers.
8501 	 */
8502 	switch (cstate->linktype) {
8503 	case DLT_LINUX_SLL2:
8504 		/* match packets on this interface */
8505 		b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8506 		break;
8507 	default:
8508 #if defined(__linux__)
8509 		/*
8510 		 * This is Linux; we require PF_PACKET support.
8511 		 * If this is a *live* capture, we can look at
8512 		 * special meta-data in the filter expression;
8513 		 * if it's a savefile, we can't.
8514 		 */
8515 		if (cstate->bpf_pcap->rfile != NULL) {
8516 			/* We have a FILE *, so this is a savefile */
8517 			bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8518 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8519 			/*NOTREACHED*/
8520 		}
8521 		/* match ifindex */
8522 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8523 		             ifindex);
8524 #else /* defined(__linux__) */
8525 		bpf_error(cstate, "ifindex not supported on %s",
8526 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8527 		/*NOTREACHED*/
8528 #endif /* defined(__linux__) */
8529 	}
8530 	return (b0);
8531 }
8532 
8533 /*
8534  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8535  * Outbound traffic is sent by this machine, while inbound traffic is
8536  * sent by a remote machine (and may include packets destined for a
8537  * unicast or multicast link-layer address we are not subscribing to).
8538  * These are the same definitions implemented by pcap_setdirection().
8539  * Capturing only unicast traffic destined for this host is probably
8540  * better accomplished using a higher-layer filter.
8541  */
8542 struct block *
8543 gen_inbound(compiler_state_t *cstate, int dir)
8544 {
8545 	register struct block *b0;
8546 
8547 	/*
8548 	 * Catch errors reported by us and routines below us, and return NULL
8549 	 * on an error.
8550 	 */
8551 	if (setjmp(cstate->top_ctx))
8552 		return (NULL);
8553 
8554 	/*
8555 	 * Only some data link types support inbound/outbound qualifiers.
8556 	 */
8557 	switch (cstate->linktype) {
8558 	case DLT_SLIP:
8559 		b0 = gen_relation_internal(cstate, BPF_JEQ,
8560 			  gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8561 			  gen_loadi_internal(cstate, 0),
8562 			  dir);
8563 		break;
8564 
8565 	case DLT_IPNET:
8566 		if (dir) {
8567 			/* match outgoing packets */
8568 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8569 		} else {
8570 			/* match incoming packets */
8571 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8572 		}
8573 		break;
8574 
8575 	case DLT_LINUX_SLL:
8576 		/* match outgoing packets */
8577 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8578 		if (!dir) {
8579 			/* to filter on inbound traffic, invert the match */
8580 			gen_not(b0);
8581 		}
8582 		break;
8583 
8584 	case DLT_LINUX_SLL2:
8585 		/* match outgoing packets */
8586 		b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8587 		if (!dir) {
8588 			/* to filter on inbound traffic, invert the match */
8589 			gen_not(b0);
8590 		}
8591 		break;
8592 
8593 	case DLT_PFLOG:
8594 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8595 		    ((dir == 0) ? PF_IN : PF_OUT));
8596 		break;
8597 
8598 	case DLT_PPP_PPPD:
8599 		if (dir) {
8600 			/* match outgoing packets */
8601 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8602 		} else {
8603 			/* match incoming packets */
8604 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8605 		}
8606 		break;
8607 
8608         case DLT_JUNIPER_MFR:
8609         case DLT_JUNIPER_MLFR:
8610         case DLT_JUNIPER_MLPPP:
8611 	case DLT_JUNIPER_ATM1:
8612 	case DLT_JUNIPER_ATM2:
8613 	case DLT_JUNIPER_PPPOE:
8614 	case DLT_JUNIPER_PPPOE_ATM:
8615         case DLT_JUNIPER_GGSN:
8616         case DLT_JUNIPER_ES:
8617         case DLT_JUNIPER_MONITOR:
8618         case DLT_JUNIPER_SERVICES:
8619         case DLT_JUNIPER_ETHER:
8620         case DLT_JUNIPER_PPP:
8621         case DLT_JUNIPER_FRELAY:
8622         case DLT_JUNIPER_CHDLC:
8623         case DLT_JUNIPER_VP:
8624         case DLT_JUNIPER_ST:
8625         case DLT_JUNIPER_ISM:
8626         case DLT_JUNIPER_VS:
8627         case DLT_JUNIPER_SRX_E2E:
8628         case DLT_JUNIPER_FIBRECHANNEL:
8629 	case DLT_JUNIPER_ATM_CEMIC:
8630 
8631 		/* juniper flags (including direction) are stored
8632 		 * the byte after the 3-byte magic number */
8633 		if (dir) {
8634 			/* match outgoing packets */
8635 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8636 		} else {
8637 			/* match incoming packets */
8638 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8639 		}
8640 		break;
8641 
8642 	default:
8643 		/*
8644 		 * If we have packet meta-data indicating a direction,
8645 		 * and that metadata can be checked by BPF code, check
8646 		 * it.  Otherwise, give up, as this link-layer type has
8647 		 * nothing in the packet data.
8648 		 *
8649 		 * Currently, the only platform where a BPF filter can
8650 		 * check that metadata is Linux with the in-kernel
8651 		 * BPF interpreter.  If other packet capture mechanisms
8652 		 * and BPF filters also supported this, it would be
8653 		 * nice.  It would be even better if they made that
8654 		 * metadata available so that we could provide it
8655 		 * with newer capture APIs, allowing it to be saved
8656 		 * in pcapng files.
8657 		 */
8658 #if defined(__linux__)
8659 		/*
8660 		 * This is Linux; we require PF_PACKET support.
8661 		 * If this is a *live* capture, we can look at
8662 		 * special meta-data in the filter expression;
8663 		 * if it's a savefile, we can't.
8664 		 */
8665 		if (cstate->bpf_pcap->rfile != NULL) {
8666 			/* We have a FILE *, so this is a savefile */
8667 			bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8668 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8669 			/*NOTREACHED*/
8670 		}
8671 		/* match outgoing packets */
8672 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8673 		             PACKET_OUTGOING);
8674 		if (!dir) {
8675 			/* to filter on inbound traffic, invert the match */
8676 			gen_not(b0);
8677 		}
8678 #else /* defined(__linux__) */
8679 		bpf_error(cstate, "inbound/outbound not supported on %s",
8680 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8681 		/*NOTREACHED*/
8682 #endif /* defined(__linux__) */
8683 	}
8684 	return (b0);
8685 }
8686 
8687 /* PF firewall log matched interface */
8688 struct block *
8689 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8690 {
8691 	struct block *b0;
8692 	u_int len, off;
8693 
8694 	/*
8695 	 * Catch errors reported by us and routines below us, and return NULL
8696 	 * on an error.
8697 	 */
8698 	if (setjmp(cstate->top_ctx))
8699 		return (NULL);
8700 
8701 	if (cstate->linktype != DLT_PFLOG) {
8702 		bpf_error(cstate, "ifname supported only on PF linktype");
8703 		/*NOTREACHED*/
8704 	}
8705 	len = sizeof(((struct pfloghdr *)0)->ifname);
8706 	off = offsetof(struct pfloghdr, ifname);
8707 	if (strlen(ifname) >= len) {
8708 		bpf_error(cstate, "ifname interface names can only be %d characters",
8709 		    len-1);
8710 		/*NOTREACHED*/
8711 	}
8712 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8713 	    (const u_char *)ifname);
8714 	return (b0);
8715 }
8716 
8717 /* PF firewall log ruleset name */
8718 struct block *
8719 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8720 {
8721 	struct block *b0;
8722 
8723 	/*
8724 	 * Catch errors reported by us and routines below us, and return NULL
8725 	 * on an error.
8726 	 */
8727 	if (setjmp(cstate->top_ctx))
8728 		return (NULL);
8729 
8730 	if (cstate->linktype != DLT_PFLOG) {
8731 		bpf_error(cstate, "ruleset supported only on PF linktype");
8732 		/*NOTREACHED*/
8733 	}
8734 
8735 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8736 		bpf_error(cstate, "ruleset names can only be %ld characters",
8737 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8738 		/*NOTREACHED*/
8739 	}
8740 
8741 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8742 	    (u_int)strlen(ruleset), (const u_char *)ruleset);
8743 	return (b0);
8744 }
8745 
8746 /* PF firewall log rule number */
8747 struct block *
8748 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8749 {
8750 	struct block *b0;
8751 
8752 	/*
8753 	 * Catch errors reported by us and routines below us, and return NULL
8754 	 * on an error.
8755 	 */
8756 	if (setjmp(cstate->top_ctx))
8757 		return (NULL);
8758 
8759 	if (cstate->linktype != DLT_PFLOG) {
8760 		bpf_error(cstate, "rnr supported only on PF linktype");
8761 		/*NOTREACHED*/
8762 	}
8763 
8764 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8765 		 (bpf_u_int32)rnr);
8766 	return (b0);
8767 }
8768 
8769 /* PF firewall log sub-rule number */
8770 struct block *
8771 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8772 {
8773 	struct block *b0;
8774 
8775 	/*
8776 	 * Catch errors reported by us and routines below us, and return NULL
8777 	 * on an error.
8778 	 */
8779 	if (setjmp(cstate->top_ctx))
8780 		return (NULL);
8781 
8782 	if (cstate->linktype != DLT_PFLOG) {
8783 		bpf_error(cstate, "srnr supported only on PF linktype");
8784 		/*NOTREACHED*/
8785 	}
8786 
8787 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8788 	    (bpf_u_int32)srnr);
8789 	return (b0);
8790 }
8791 
8792 /* PF firewall log reason code */
8793 struct block *
8794 gen_pf_reason(compiler_state_t *cstate, int reason)
8795 {
8796 	struct block *b0;
8797 
8798 	/*
8799 	 * Catch errors reported by us and routines below us, and return NULL
8800 	 * on an error.
8801 	 */
8802 	if (setjmp(cstate->top_ctx))
8803 		return (NULL);
8804 
8805 	if (cstate->linktype != DLT_PFLOG) {
8806 		bpf_error(cstate, "reason supported only on PF linktype");
8807 		/*NOTREACHED*/
8808 	}
8809 
8810 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8811 	    (bpf_u_int32)reason);
8812 	return (b0);
8813 }
8814 
8815 /* PF firewall log action */
8816 struct block *
8817 gen_pf_action(compiler_state_t *cstate, int action)
8818 {
8819 	struct block *b0;
8820 
8821 	/*
8822 	 * Catch errors reported by us and routines below us, and return NULL
8823 	 * on an error.
8824 	 */
8825 	if (setjmp(cstate->top_ctx))
8826 		return (NULL);
8827 
8828 	if (cstate->linktype != DLT_PFLOG) {
8829 		bpf_error(cstate, "action supported only on PF linktype");
8830 		/*NOTREACHED*/
8831 	}
8832 
8833 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8834 	    (bpf_u_int32)action);
8835 	return (b0);
8836 }
8837 
8838 /* IEEE 802.11 wireless header */
8839 struct block *
8840 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8841 {
8842 	struct block *b0;
8843 
8844 	/*
8845 	 * Catch errors reported by us and routines below us, and return NULL
8846 	 * on an error.
8847 	 */
8848 	if (setjmp(cstate->top_ctx))
8849 		return (NULL);
8850 
8851 	switch (cstate->linktype) {
8852 
8853 	case DLT_IEEE802_11:
8854 	case DLT_PRISM_HEADER:
8855 	case DLT_IEEE802_11_RADIO_AVS:
8856 	case DLT_IEEE802_11_RADIO:
8857 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8858 		break;
8859 
8860 	default:
8861 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8862 		/*NOTREACHED*/
8863 	}
8864 
8865 	return (b0);
8866 }
8867 
8868 struct block *
8869 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8870 {
8871 	struct block *b0;
8872 
8873 	/*
8874 	 * Catch errors reported by us and routines below us, and return NULL
8875 	 * on an error.
8876 	 */
8877 	if (setjmp(cstate->top_ctx))
8878 		return (NULL);
8879 
8880 	switch (cstate->linktype) {
8881 
8882 	case DLT_IEEE802_11:
8883 	case DLT_PRISM_HEADER:
8884 	case DLT_IEEE802_11_RADIO_AVS:
8885 	case DLT_IEEE802_11_RADIO:
8886 		break;
8887 
8888 	default:
8889 		bpf_error(cstate, "frame direction supported only with 802.11 headers");
8890 		/*NOTREACHED*/
8891 	}
8892 
8893 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8894 	    IEEE80211_FC1_DIR_MASK);
8895 
8896 	return (b0);
8897 }
8898 
8899 struct block *
8900 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8901 {
8902 	struct block *b;
8903 
8904 	/*
8905 	 * Catch errors reported by us and routines below us, and return NULL
8906 	 * on an error.
8907 	 */
8908 	if (setjmp(cstate->top_ctx))
8909 		return (NULL);
8910 
8911 	switch (cstate->linktype) {
8912 
8913 	case DLT_ARCNET:
8914 	case DLT_ARCNET_LINUX:
8915 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8916 		    q.proto == Q_LINK) {
8917 			cstate->e = pcap_ether_aton(s);
8918 			if (cstate->e == NULL)
8919 				bpf_error(cstate, "malloc");
8920 			b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8921 			free(cstate->e);
8922 			cstate->e = NULL;
8923 			return (b);
8924 		} else
8925 			bpf_error(cstate, "ARCnet address used in non-arc expression");
8926 		/*NOTREACHED*/
8927 
8928 	default:
8929 		bpf_error(cstate, "aid supported only on ARCnet");
8930 		/*NOTREACHED*/
8931 	}
8932 }
8933 
8934 static struct block *
8935 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8936 {
8937 	register struct block *b0, *b1;
8938 
8939 	switch (dir) {
8940 	/* src comes first, different from Ethernet */
8941 	case Q_SRC:
8942 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8943 
8944 	case Q_DST:
8945 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8946 
8947 	case Q_AND:
8948 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8949 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8950 		gen_and(b0, b1);
8951 		return b1;
8952 
8953 	case Q_DEFAULT:
8954 	case Q_OR:
8955 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8956 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8957 		gen_or(b0, b1);
8958 		return b1;
8959 
8960 	case Q_ADDR1:
8961 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8962 		/*NOTREACHED*/
8963 
8964 	case Q_ADDR2:
8965 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8966 		/*NOTREACHED*/
8967 
8968 	case Q_ADDR3:
8969 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8970 		/*NOTREACHED*/
8971 
8972 	case Q_ADDR4:
8973 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8974 		/*NOTREACHED*/
8975 
8976 	case Q_RA:
8977 		bpf_error(cstate, "'ra' is only supported on 802.11");
8978 		/*NOTREACHED*/
8979 
8980 	case Q_TA:
8981 		bpf_error(cstate, "'ta' is only supported on 802.11");
8982 		/*NOTREACHED*/
8983 	}
8984 	abort();
8985 	/*NOTREACHED*/
8986 }
8987 
8988 static struct block *
8989 gen_vlan_tpid_test(compiler_state_t *cstate)
8990 {
8991 	struct block *b0, *b1;
8992 
8993 	/* check for VLAN, including 802.1ad and QinQ */
8994 	b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8995 	b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8996 	gen_or(b0,b1);
8997 	b0 = b1;
8998 	b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8999 	gen_or(b0,b1);
9000 
9001 	return b1;
9002 }
9003 
9004 static struct block *
9005 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
9006 {
9007 	if (vlan_num > 0x0fff) {
9008 		bpf_error(cstate, "VLAN tag %u greater than maximum %u",
9009 		    vlan_num, 0x0fff);
9010 	}
9011 	return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
9012 }
9013 
9014 static struct block *
9015 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9016     int has_vlan_tag)
9017 {
9018 	struct block *b0, *b1;
9019 
9020 	b0 = gen_vlan_tpid_test(cstate);
9021 
9022 	if (has_vlan_tag) {
9023 		b1 = gen_vlan_vid_test(cstate, vlan_num);
9024 		gen_and(b0, b1);
9025 		b0 = b1;
9026 	}
9027 
9028 	/*
9029 	 * Both payload and link header type follow the VLAN tags so that
9030 	 * both need to be updated.
9031 	 */
9032 	cstate->off_linkpl.constant_part += 4;
9033 	cstate->off_linktype.constant_part += 4;
9034 
9035 	return b0;
9036 }
9037 
9038 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9039 /* add v to variable part of off */
9040 static void
9041 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
9042     bpf_u_int32 v, struct slist *s)
9043 {
9044 	struct slist *s2;
9045 
9046 	if (!off->is_variable)
9047 		off->is_variable = 1;
9048 	if (off->reg == -1)
9049 		off->reg = alloc_reg(cstate);
9050 
9051 	s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
9052 	s2->s.k = off->reg;
9053 	sappend(s, s2);
9054 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
9055 	s2->s.k = v;
9056 	sappend(s, s2);
9057 	s2 = new_stmt(cstate, BPF_ST);
9058 	s2->s.k = off->reg;
9059 	sappend(s, s2);
9060 }
9061 
9062 /*
9063  * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
9064  * and link type offsets first
9065  */
9066 static void
9067 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
9068 {
9069 	struct slist s;
9070 
9071 	/* offset determined at run time, shift variable part */
9072 	s.next = NULL;
9073 	cstate->is_vlan_vloffset = 1;
9074 	gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
9075 	gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
9076 
9077 	/* we get a pointer to a chain of or-ed blocks, patch first of them */
9078 	sappend(s.next, b_tpid->head->stmts);
9079 	b_tpid->head->stmts = s.next;
9080 }
9081 
9082 /*
9083  * patch block b_vid (VLAN id test) to load VID value either from packet
9084  * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
9085  */
9086 static void
9087 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
9088 {
9089 	struct slist *s, *s2, *sjeq;
9090 	unsigned cnt;
9091 
9092 	s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9093 	s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9094 
9095 	/* true -> next instructions, false -> beginning of b_vid */
9096 	sjeq = new_stmt(cstate, JMP(BPF_JEQ));
9097 	sjeq->s.k = 1;
9098 	sjeq->s.jf = b_vid->stmts;
9099 	sappend(s, sjeq);
9100 
9101 	s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9102 	s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
9103 	sappend(s, s2);
9104 	sjeq->s.jt = s2;
9105 
9106 	/* Jump to the test in b_vid. We need to jump one instruction before
9107 	 * the end of the b_vid block so that we only skip loading the TCI
9108 	 * from packet data and not the 'and' instruction extracting VID.
9109 	 */
9110 	cnt = 0;
9111 	for (s2 = b_vid->stmts; s2; s2 = s2->next)
9112 		cnt++;
9113 	s2 = new_stmt(cstate, JMP(BPF_JA));
9114 	s2->s.k = cnt - 1;
9115 	sappend(s, s2);
9116 
9117 	/* insert our statements at the beginning of b_vid */
9118 	sappend(s, b_vid->stmts);
9119 	b_vid->stmts = s;
9120 }
9121 
9122 /*
9123  * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9124  * extensions.  Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9125  * tag can be either in metadata or in packet data; therefore if the
9126  * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9127  * header for VLAN tag. As the decision is done at run time, we need
9128  * update variable part of the offsets
9129  */
9130 static struct block *
9131 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9132     int has_vlan_tag)
9133 {
9134         struct block *b0, *b_tpid, *b_vid = NULL;
9135         struct slist *s;
9136 
9137         /* generate new filter code based on extracting packet
9138          * metadata */
9139         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9140         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9141 
9142         b0 = new_block(cstate, JMP(BPF_JEQ));
9143         b0->stmts = s;
9144         b0->s.k = 1;
9145 
9146 	/*
9147 	 * This is tricky. We need to insert the statements updating variable
9148 	 * parts of offsets before the traditional TPID and VID tests so
9149 	 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9150 	 * we do not want this update to affect those checks. That's why we
9151 	 * generate both test blocks first and insert the statements updating
9152 	 * variable parts of both offsets after that. This wouldn't work if
9153 	 * there already were variable length link header when entering this
9154 	 * function but gen_vlan_bpf_extensions() isn't called in that case.
9155 	 */
9156 	b_tpid = gen_vlan_tpid_test(cstate);
9157 	if (has_vlan_tag)
9158 		b_vid = gen_vlan_vid_test(cstate, vlan_num);
9159 
9160 	gen_vlan_patch_tpid_test(cstate, b_tpid);
9161 	gen_or(b0, b_tpid);
9162 	b0 = b_tpid;
9163 
9164 	if (has_vlan_tag) {
9165 		gen_vlan_patch_vid_test(cstate, b_vid);
9166 		gen_and(b0, b_vid);
9167 		b0 = b_vid;
9168 	}
9169 
9170         return b0;
9171 }
9172 #endif
9173 
9174 /*
9175  * support IEEE 802.1Q VLAN trunk over ethernet
9176  */
9177 struct block *
9178 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
9179 {
9180 	struct	block	*b0;
9181 
9182 	/*
9183 	 * Catch errors reported by us and routines below us, and return NULL
9184 	 * on an error.
9185 	 */
9186 	if (setjmp(cstate->top_ctx))
9187 		return (NULL);
9188 
9189 	/* can't check for VLAN-encapsulated packets inside MPLS */
9190 	if (cstate->label_stack_depth > 0)
9191 		bpf_error(cstate, "no VLAN match after MPLS");
9192 
9193 	/*
9194 	 * Check for a VLAN packet, and then change the offsets to point
9195 	 * to the type and data fields within the VLAN packet.  Just
9196 	 * increment the offsets, so that we can support a hierarchy, e.g.
9197 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
9198 	 * VLAN 100.
9199 	 *
9200 	 * XXX - this is a bit of a kludge.  If we were to split the
9201 	 * compiler into a parser that parses an expression and
9202 	 * generates an expression tree, and a code generator that
9203 	 * takes an expression tree (which could come from our
9204 	 * parser or from some other parser) and generates BPF code,
9205 	 * we could perhaps make the offsets parameters of routines
9206 	 * and, in the handler for an "AND" node, pass to subnodes
9207 	 * other than the VLAN node the adjusted offsets.
9208 	 *
9209 	 * This would mean that "vlan" would, instead of changing the
9210 	 * behavior of *all* tests after it, change only the behavior
9211 	 * of tests ANDed with it.  That would change the documented
9212 	 * semantics of "vlan", which might break some expressions.
9213 	 * However, it would mean that "(vlan and ip) or ip" would check
9214 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9215 	 * checking only for VLAN-encapsulated IP, so that could still
9216 	 * be considered worth doing; it wouldn't break expressions
9217 	 * that are of the form "vlan and ..." or "vlan N and ...",
9218 	 * which I suspect are the most common expressions involving
9219 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
9220 	 * would really want, now, as all the "or ..." tests would
9221 	 * be done assuming a VLAN, even though the "or" could be viewed
9222 	 * as meaning "or, if this isn't a VLAN packet...".
9223 	 */
9224 	switch (cstate->linktype) {
9225 
9226 	case DLT_EN10MB:
9227 	case DLT_NETANALYZER:
9228 	case DLT_NETANALYZER_TRANSPARENT:
9229 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9230 		/* Verify that this is the outer part of the packet and
9231 		 * not encapsulated somehow. */
9232 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
9233 		    cstate->off_linkhdr.constant_part ==
9234 		    cstate->off_outermostlinkhdr.constant_part) {
9235 			/*
9236 			 * Do we need special VLAN handling?
9237 			 */
9238 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
9239 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
9240 				    has_vlan_tag);
9241 			else
9242 				b0 = gen_vlan_no_bpf_extensions(cstate,
9243 				    vlan_num, has_vlan_tag);
9244 		} else
9245 #endif
9246 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
9247 			    has_vlan_tag);
9248 		break;
9249 
9250 	case DLT_IEEE802_11:
9251 	case DLT_PRISM_HEADER:
9252 	case DLT_IEEE802_11_RADIO_AVS:
9253 	case DLT_IEEE802_11_RADIO:
9254 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
9255 		break;
9256 
9257 	default:
9258 		bpf_error(cstate, "no VLAN support for %s",
9259 		      pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9260 		/*NOTREACHED*/
9261 	}
9262 
9263 	cstate->vlan_stack_depth++;
9264 
9265 	return (b0);
9266 }
9267 
9268 /*
9269  * support for MPLS
9270  *
9271  * The label_num_arg dance is to avoid annoying whining by compilers that
9272  * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9273  * It's not *used* after setjmp returns.
9274  */
9275 struct block *
9276 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9277     int has_label_num)
9278 {
9279 	volatile bpf_u_int32 label_num = label_num_arg;
9280 	struct	block	*b0, *b1;
9281 
9282 	/*
9283 	 * Catch errors reported by us and routines below us, and return NULL
9284 	 * on an error.
9285 	 */
9286 	if (setjmp(cstate->top_ctx))
9287 		return (NULL);
9288 
9289 	if (cstate->label_stack_depth > 0) {
9290 		/* just match the bottom-of-stack bit clear */
9291 		b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9292 	} else {
9293 		/*
9294 		 * We're not in an MPLS stack yet, so check the link-layer
9295 		 * type against MPLS.
9296 		 */
9297 		switch (cstate->linktype) {
9298 
9299 		case DLT_C_HDLC: /* fall through */
9300 		case DLT_HDLC:
9301 		case DLT_EN10MB:
9302 		case DLT_NETANALYZER:
9303 		case DLT_NETANALYZER_TRANSPARENT:
9304 			b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9305 			break;
9306 
9307 		case DLT_PPP:
9308 			b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9309 			break;
9310 
9311 			/* FIXME add other DLT_s ...
9312 			 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9313 			 * leave it for now */
9314 
9315 		default:
9316 			bpf_error(cstate, "no MPLS support for %s",
9317 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9318 			/*NOTREACHED*/
9319 		}
9320 	}
9321 
9322 	/* If a specific MPLS label is requested, check it */
9323 	if (has_label_num) {
9324 		if (label_num > 0xFFFFF) {
9325 			bpf_error(cstate, "MPLS label %u greater than maximum %u",
9326 			    label_num, 0xFFFFF);
9327 		}
9328 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9329 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9330 		    0xfffff000); /* only compare the first 20 bits */
9331 		gen_and(b0, b1);
9332 		b0 = b1;
9333 	}
9334 
9335 	/*
9336 	 * Change the offsets to point to the type and data fields within
9337 	 * the MPLS packet.  Just increment the offsets, so that we
9338 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9339 	 * capture packets with an outer label of 100000 and an inner
9340 	 * label of 1024.
9341 	 *
9342 	 * Increment the MPLS stack depth as well; this indicates that
9343 	 * we're checking MPLS-encapsulated headers, to make sure higher
9344 	 * level code generators don't try to match against IP-related
9345 	 * protocols such as Q_ARP, Q_RARP etc.
9346 	 *
9347 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
9348 	 */
9349 	cstate->off_nl_nosnap += 4;
9350 	cstate->off_nl += 4;
9351 	cstate->label_stack_depth++;
9352 	return (b0);
9353 }
9354 
9355 /*
9356  * Support PPPOE discovery and session.
9357  */
9358 struct block *
9359 gen_pppoed(compiler_state_t *cstate)
9360 {
9361 	/*
9362 	 * Catch errors reported by us and routines below us, and return NULL
9363 	 * on an error.
9364 	 */
9365 	if (setjmp(cstate->top_ctx))
9366 		return (NULL);
9367 
9368 	/* check for PPPoE discovery */
9369 	return gen_linktype(cstate, ETHERTYPE_PPPOED);
9370 }
9371 
9372 struct block *
9373 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9374 {
9375 	struct block *b0, *b1;
9376 
9377 	/*
9378 	 * Catch errors reported by us and routines below us, and return NULL
9379 	 * on an error.
9380 	 */
9381 	if (setjmp(cstate->top_ctx))
9382 		return (NULL);
9383 
9384 	/*
9385 	 * Test against the PPPoE session link-layer type.
9386 	 */
9387 	b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9388 
9389 	/* If a specific session is requested, check PPPoE session id */
9390 	if (has_sess_num) {
9391 		if (sess_num > 0x0000ffff) {
9392 			bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9393 			    sess_num, 0x0000ffff);
9394 		}
9395 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9396 		gen_and(b0, b1);
9397 		b0 = b1;
9398 	}
9399 
9400 	/*
9401 	 * Change the offsets to point to the type and data fields within
9402 	 * the PPP packet, and note that this is PPPoE rather than
9403 	 * raw PPP.
9404 	 *
9405 	 * XXX - this is a bit of a kludge.  See the comments in
9406 	 * gen_vlan().
9407 	 *
9408 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
9409 	 * PPPoE header, followed by a PPP packet.
9410 	 *
9411 	 * There is no HDLC encapsulation for the PPP packet (it's
9412 	 * encapsulated in PPPoES instead), so the link-layer type
9413 	 * starts at the first byte of the PPP packet.  For PPPoE,
9414 	 * that offset is relative to the beginning of the total
9415 	 * link-layer payload, including any 802.2 LLC header, so
9416 	 * it's 6 bytes past cstate->off_nl.
9417 	 */
9418 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9419 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9420 	    cstate->off_linkpl.reg);
9421 
9422 	cstate->off_linktype = cstate->off_linkhdr;
9423 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9424 
9425 	cstate->off_nl = 0;
9426 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
9427 
9428 	return b0;
9429 }
9430 
9431 /* Check that this is Geneve and the VNI is correct if
9432  * specified. Parameterized to handle both IPv4 and IPv6. */
9433 static struct block *
9434 gen_geneve_check(compiler_state_t *cstate,
9435     struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9436     enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9437 {
9438 	struct block *b0, *b1;
9439 
9440 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9441 
9442 	/* Check that we are operating on version 0. Otherwise, we
9443 	 * can't decode the rest of the fields. The version is 2 bits
9444 	 * in the first byte of the Geneve header. */
9445 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9446 	gen_and(b0, b1);
9447 	b0 = b1;
9448 
9449 	if (has_vni) {
9450 		if (vni > 0xffffff) {
9451 			bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9452 			    vni, 0xffffff);
9453 		}
9454 		vni <<= 8; /* VNI is in the upper 3 bytes */
9455 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9456 		gen_and(b0, b1);
9457 		b0 = b1;
9458 	}
9459 
9460 	return b0;
9461 }
9462 
9463 /* The IPv4 and IPv6 Geneve checks need to do two things:
9464  * - Verify that this actually is Geneve with the right VNI.
9465  * - Place the IP header length (plus variable link prefix if
9466  *   needed) into register A to be used later to compute
9467  *   the inner packet offsets. */
9468 static struct block *
9469 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9470 {
9471 	struct block *b0, *b1;
9472 	struct slist *s, *s1;
9473 
9474 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9475 
9476 	/* Load the IP header length into A. */
9477 	s = gen_loadx_iphdrlen(cstate);
9478 
9479 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9480 	sappend(s, s1);
9481 
9482 	/* Forcibly append these statements to the true condition
9483 	 * of the protocol check by creating a new block that is
9484 	 * always true and ANDing them. */
9485 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9486 	b1->stmts = s;
9487 	b1->s.k = 0;
9488 
9489 	gen_and(b0, b1);
9490 
9491 	return b1;
9492 }
9493 
9494 static struct block *
9495 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9496 {
9497 	struct block *b0, *b1;
9498 	struct slist *s, *s1;
9499 
9500 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9501 
9502 	/* Load the IP header length. We need to account for a
9503 	 * variable length link prefix if there is one. */
9504 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9505 	if (s) {
9506 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9507 		s1->s.k = 40;
9508 		sappend(s, s1);
9509 
9510 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9511 		s1->s.k = 0;
9512 		sappend(s, s1);
9513 	} else {
9514 		s = new_stmt(cstate, BPF_LD|BPF_IMM);
9515 		s->s.k = 40;
9516 	}
9517 
9518 	/* Forcibly append these statements to the true condition
9519 	 * of the protocol check by creating a new block that is
9520 	 * always true and ANDing them. */
9521 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9522 	sappend(s, s1);
9523 
9524 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9525 	b1->stmts = s;
9526 	b1->s.k = 0;
9527 
9528 	gen_and(b0, b1);
9529 
9530 	return b1;
9531 }
9532 
9533 /* We need to store three values based on the Geneve header::
9534  * - The offset of the linktype.
9535  * - The offset of the end of the Geneve header.
9536  * - The offset of the end of the encapsulated MAC header. */
9537 static struct slist *
9538 gen_geneve_offsets(compiler_state_t *cstate)
9539 {
9540 	struct slist *s, *s1, *s_proto;
9541 
9542 	/* First we need to calculate the offset of the Geneve header
9543 	 * itself. This is composed of the IP header previously calculated
9544 	 * (include any variable link prefix) and stored in A plus the
9545 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
9546 	 * header). */
9547 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9548 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9549 
9550 	/* Stash this in X since we'll need it later. */
9551 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9552 	sappend(s, s1);
9553 
9554 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
9555 	 * store it. */
9556 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9557 	s1->s.k = 2;
9558 	sappend(s, s1);
9559 
9560 	cstate->off_linktype.reg = alloc_reg(cstate);
9561 	cstate->off_linktype.is_variable = 1;
9562 	cstate->off_linktype.constant_part = 0;
9563 
9564 	s1 = new_stmt(cstate, BPF_ST);
9565 	s1->s.k = cstate->off_linktype.reg;
9566 	sappend(s, s1);
9567 
9568 	/* Load the Geneve option length and mask and shift to get the
9569 	 * number of bytes. It is stored in the first byte of the Geneve
9570 	 * header. */
9571 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9572 	s1->s.k = 0;
9573 	sappend(s, s1);
9574 
9575 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9576 	s1->s.k = 0x3f;
9577 	sappend(s, s1);
9578 
9579 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9580 	s1->s.k = 4;
9581 	sappend(s, s1);
9582 
9583 	/* Add in the rest of the Geneve base header. */
9584 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9585 	s1->s.k = 8;
9586 	sappend(s, s1);
9587 
9588 	/* Add the Geneve header length to its offset and store. */
9589 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9590 	s1->s.k = 0;
9591 	sappend(s, s1);
9592 
9593 	/* Set the encapsulated type as Ethernet. Even though we may
9594 	 * not actually have Ethernet inside there are two reasons this
9595 	 * is useful:
9596 	 * - The linktype field is always in EtherType format regardless
9597 	 *   of whether it is in Geneve or an inner Ethernet frame.
9598 	 * - The only link layer that we have specific support for is
9599 	 *   Ethernet. We will confirm that the packet actually is
9600 	 *   Ethernet at runtime before executing these checks. */
9601 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9602 
9603 	s1 = new_stmt(cstate, BPF_ST);
9604 	s1->s.k = cstate->off_linkhdr.reg;
9605 	sappend(s, s1);
9606 
9607 	/* Calculate whether we have an Ethernet header or just raw IP/
9608 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9609 	 * and linktype by 14 bytes so that the network header can be found
9610 	 * seamlessly. Otherwise, keep what we've calculated already. */
9611 
9612 	/* We have a bare jmp so we can't use the optimizer. */
9613 	cstate->no_optimize = 1;
9614 
9615 	/* Load the EtherType in the Geneve header, 2 bytes in. */
9616 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9617 	s1->s.k = 2;
9618 	sappend(s, s1);
9619 
9620 	/* Load X with the end of the Geneve header. */
9621 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9622 	s1->s.k = cstate->off_linkhdr.reg;
9623 	sappend(s, s1);
9624 
9625 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
9626 	 * end of this check, we should have the total length in X. In
9627 	 * the non-Ethernet case, it's already there. */
9628 	s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9629 	s_proto->s.k = ETHERTYPE_TEB;
9630 	sappend(s, s_proto);
9631 
9632 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9633 	sappend(s, s1);
9634 	s_proto->s.jt = s1;
9635 
9636 	/* Since this is Ethernet, use the EtherType of the payload
9637 	 * directly as the linktype. Overwrite what we already have. */
9638 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9639 	s1->s.k = 12;
9640 	sappend(s, s1);
9641 
9642 	s1 = new_stmt(cstate, BPF_ST);
9643 	s1->s.k = cstate->off_linktype.reg;
9644 	sappend(s, s1);
9645 
9646 	/* Advance two bytes further to get the end of the Ethernet
9647 	 * header. */
9648 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9649 	s1->s.k = 2;
9650 	sappend(s, s1);
9651 
9652 	/* Move the result to X. */
9653 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9654 	sappend(s, s1);
9655 
9656 	/* Store the final result of our linkpl calculation. */
9657 	cstate->off_linkpl.reg = alloc_reg(cstate);
9658 	cstate->off_linkpl.is_variable = 1;
9659 	cstate->off_linkpl.constant_part = 0;
9660 
9661 	s1 = new_stmt(cstate, BPF_STX);
9662 	s1->s.k = cstate->off_linkpl.reg;
9663 	sappend(s, s1);
9664 	s_proto->s.jf = s1;
9665 
9666 	cstate->off_nl = 0;
9667 
9668 	return s;
9669 }
9670 
9671 /* Check to see if this is a Geneve packet. */
9672 struct block *
9673 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9674 {
9675 	struct block *b0, *b1;
9676 	struct slist *s;
9677 
9678 	/*
9679 	 * Catch errors reported by us and routines below us, and return NULL
9680 	 * on an error.
9681 	 */
9682 	if (setjmp(cstate->top_ctx))
9683 		return (NULL);
9684 
9685 	b0 = gen_geneve4(cstate, vni, has_vni);
9686 	b1 = gen_geneve6(cstate, vni, has_vni);
9687 
9688 	gen_or(b0, b1);
9689 	b0 = b1;
9690 
9691 	/* Later filters should act on the payload of the Geneve frame,
9692 	 * update all of the header pointers. Attach this code so that
9693 	 * it gets executed in the event that the Geneve filter matches. */
9694 	s = gen_geneve_offsets(cstate);
9695 
9696 	b1 = gen_true(cstate);
9697 	sappend(s, b1->stmts);
9698 	b1->stmts = s;
9699 
9700 	gen_and(b0, b1);
9701 
9702 	cstate->is_geneve = 1;
9703 
9704 	return b1;
9705 }
9706 
9707 /* Check that the encapsulated frame has a link layer header
9708  * for Ethernet filters. */
9709 static struct block *
9710 gen_geneve_ll_check(compiler_state_t *cstate)
9711 {
9712 	struct block *b0;
9713 	struct slist *s, *s1;
9714 
9715 	/* The easiest way to see if there is a link layer present
9716 	 * is to check if the link layer header and payload are not
9717 	 * the same. */
9718 
9719 	/* Geneve always generates pure variable offsets so we can
9720 	 * compare only the registers. */
9721 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
9722 	s->s.k = cstate->off_linkhdr.reg;
9723 
9724 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9725 	s1->s.k = cstate->off_linkpl.reg;
9726 	sappend(s, s1);
9727 
9728 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9729 	b0->stmts = s;
9730 	b0->s.k = 0;
9731 	gen_not(b0);
9732 
9733 	return b0;
9734 }
9735 
9736 static struct block *
9737 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9738     bpf_u_int32 jvalue, int jtype, int reverse)
9739 {
9740 	struct block *b0;
9741 
9742 	switch (atmfield) {
9743 
9744 	case A_VPI:
9745 		if (!cstate->is_atm)
9746 			bpf_error(cstate, "'vpi' supported only on raw ATM");
9747 		if (cstate->off_vpi == OFFSET_NOT_SET)
9748 			abort();
9749 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9750 		    0xffffffffU, jtype, reverse, jvalue);
9751 		break;
9752 
9753 	case A_VCI:
9754 		if (!cstate->is_atm)
9755 			bpf_error(cstate, "'vci' supported only on raw ATM");
9756 		if (cstate->off_vci == OFFSET_NOT_SET)
9757 			abort();
9758 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9759 		    0xffffffffU, jtype, reverse, jvalue);
9760 		break;
9761 
9762 	case A_PROTOTYPE:
9763 		if (cstate->off_proto == OFFSET_NOT_SET)
9764 			abort();	/* XXX - this isn't on FreeBSD */
9765 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9766 		    0x0fU, jtype, reverse, jvalue);
9767 		break;
9768 
9769 	case A_MSGTYPE:
9770 		if (cstate->off_payload == OFFSET_NOT_SET)
9771 			abort();
9772 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9773 		    0xffffffffU, jtype, reverse, jvalue);
9774 		break;
9775 
9776 	case A_CALLREFTYPE:
9777 		if (!cstate->is_atm)
9778 			bpf_error(cstate, "'callref' supported only on raw ATM");
9779 		if (cstate->off_proto == OFFSET_NOT_SET)
9780 			abort();
9781 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9782 		    0xffffffffU, jtype, reverse, jvalue);
9783 		break;
9784 
9785 	default:
9786 		abort();
9787 	}
9788 	return b0;
9789 }
9790 
9791 static struct block *
9792 gen_atmtype_metac(compiler_state_t *cstate)
9793 {
9794 	struct block *b0, *b1;
9795 
9796 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9797 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9798 	gen_and(b0, b1);
9799 	return b1;
9800 }
9801 
9802 static struct block *
9803 gen_atmtype_sc(compiler_state_t *cstate)
9804 {
9805 	struct block *b0, *b1;
9806 
9807 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9808 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9809 	gen_and(b0, b1);
9810 	return b1;
9811 }
9812 
9813 static struct block *
9814 gen_atmtype_llc(compiler_state_t *cstate)
9815 {
9816 	struct block *b0;
9817 
9818 	b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9819 	cstate->linktype = cstate->prevlinktype;
9820 	return b0;
9821 }
9822 
9823 struct block *
9824 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9825     bpf_u_int32 jvalue, int jtype, int reverse)
9826 {
9827 	/*
9828 	 * Catch errors reported by us and routines below us, and return NULL
9829 	 * on an error.
9830 	 */
9831 	if (setjmp(cstate->top_ctx))
9832 		return (NULL);
9833 
9834 	return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9835 	    reverse);
9836 }
9837 
9838 struct block *
9839 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9840 {
9841 	struct block *b0, *b1;
9842 
9843 	/*
9844 	 * Catch errors reported by us and routines below us, and return NULL
9845 	 * on an error.
9846 	 */
9847 	if (setjmp(cstate->top_ctx))
9848 		return (NULL);
9849 
9850 	switch (type) {
9851 
9852 	case A_METAC:
9853 		/* Get all packets in Meta signalling Circuit */
9854 		if (!cstate->is_atm)
9855 			bpf_error(cstate, "'metac' supported only on raw ATM");
9856 		b1 = gen_atmtype_metac(cstate);
9857 		break;
9858 
9859 	case A_BCC:
9860 		/* Get all packets in Broadcast Circuit*/
9861 		if (!cstate->is_atm)
9862 			bpf_error(cstate, "'bcc' supported only on raw ATM");
9863 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9864 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9865 		gen_and(b0, b1);
9866 		break;
9867 
9868 	case A_OAMF4SC:
9869 		/* Get all cells in Segment OAM F4 circuit*/
9870 		if (!cstate->is_atm)
9871 			bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9872 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9873 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9874 		gen_and(b0, b1);
9875 		break;
9876 
9877 	case A_OAMF4EC:
9878 		/* Get all cells in End-to-End OAM F4 Circuit*/
9879 		if (!cstate->is_atm)
9880 			bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9881 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9882 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9883 		gen_and(b0, b1);
9884 		break;
9885 
9886 	case A_SC:
9887 		/*  Get all packets in connection Signalling Circuit */
9888 		if (!cstate->is_atm)
9889 			bpf_error(cstate, "'sc' supported only on raw ATM");
9890 		b1 = gen_atmtype_sc(cstate);
9891 		break;
9892 
9893 	case A_ILMIC:
9894 		/* Get all packets in ILMI Circuit */
9895 		if (!cstate->is_atm)
9896 			bpf_error(cstate, "'ilmic' supported only on raw ATM");
9897 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9898 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9899 		gen_and(b0, b1);
9900 		break;
9901 
9902 	case A_LANE:
9903 		/* Get all LANE packets */
9904 		if (!cstate->is_atm)
9905 			bpf_error(cstate, "'lane' supported only on raw ATM");
9906 		b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9907 
9908 		/*
9909 		 * Arrange that all subsequent tests assume LANE
9910 		 * rather than LLC-encapsulated packets, and set
9911 		 * the offsets appropriately for LANE-encapsulated
9912 		 * Ethernet.
9913 		 *
9914 		 * We assume LANE means Ethernet, not Token Ring.
9915 		 */
9916 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9917 		    cstate->off_payload + 2,	/* Ethernet header */
9918 		    -1);
9919 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9920 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */
9921 		cstate->off_nl = 0;			/* Ethernet II */
9922 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */
9923 		break;
9924 
9925 	case A_LLC:
9926 		/* Get all LLC-encapsulated packets */
9927 		if (!cstate->is_atm)
9928 			bpf_error(cstate, "'llc' supported only on raw ATM");
9929 		b1 = gen_atmtype_llc(cstate);
9930 		break;
9931 
9932 	default:
9933 		abort();
9934 	}
9935 	return b1;
9936 }
9937 
9938 /*
9939  * Filtering for MTP2 messages based on li value
9940  * FISU, length is null
9941  * LSSU, length is 1 or 2
9942  * MSU, length is 3 or more
9943  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9944  */
9945 struct block *
9946 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9947 {
9948 	struct block *b0, *b1;
9949 
9950 	/*
9951 	 * Catch errors reported by us and routines below us, and return NULL
9952 	 * on an error.
9953 	 */
9954 	if (setjmp(cstate->top_ctx))
9955 		return (NULL);
9956 
9957 	switch (type) {
9958 
9959 	case M_FISU:
9960 		if ( (cstate->linktype != DLT_MTP2) &&
9961 		     (cstate->linktype != DLT_ERF) &&
9962 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9963 			bpf_error(cstate, "'fisu' supported only on MTP2");
9964 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9965 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9966 		    0x3fU, BPF_JEQ, 0, 0U);
9967 		break;
9968 
9969 	case M_LSSU:
9970 		if ( (cstate->linktype != DLT_MTP2) &&
9971 		     (cstate->linktype != DLT_ERF) &&
9972 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9973 			bpf_error(cstate, "'lssu' supported only on MTP2");
9974 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9975 		    0x3fU, BPF_JGT, 1, 2U);
9976 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9977 		    0x3fU, BPF_JGT, 0, 0U);
9978 		gen_and(b1, b0);
9979 		break;
9980 
9981 	case M_MSU:
9982 		if ( (cstate->linktype != DLT_MTP2) &&
9983 		     (cstate->linktype != DLT_ERF) &&
9984 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9985 			bpf_error(cstate, "'msu' supported only on MTP2");
9986 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9987 		    0x3fU, BPF_JGT, 0, 2U);
9988 		break;
9989 
9990 	case MH_FISU:
9991 		if ( (cstate->linktype != DLT_MTP2) &&
9992 		     (cstate->linktype != DLT_ERF) &&
9993 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9994 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9995 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9996 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9997 		    0xff80U, BPF_JEQ, 0, 0U);
9998 		break;
9999 
10000 	case MH_LSSU:
10001 		if ( (cstate->linktype != DLT_MTP2) &&
10002 		     (cstate->linktype != DLT_ERF) &&
10003 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10004 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
10005 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10006 		    0xff80U, BPF_JGT, 1, 0x0100U);
10007 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10008 		    0xff80U, BPF_JGT, 0, 0U);
10009 		gen_and(b1, b0);
10010 		break;
10011 
10012 	case MH_MSU:
10013 		if ( (cstate->linktype != DLT_MTP2) &&
10014 		     (cstate->linktype != DLT_ERF) &&
10015 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10016 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
10017 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10018 		    0xff80U, BPF_JGT, 0, 0x0100U);
10019 		break;
10020 
10021 	default:
10022 		abort();
10023 	}
10024 	return b0;
10025 }
10026 
10027 /*
10028  * The jvalue_arg dance is to avoid annoying whining by compilers that
10029  * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
10030  * It's not *used* after setjmp returns.
10031  */
10032 struct block *
10033 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
10034     bpf_u_int32 jvalue_arg, int jtype, int reverse)
10035 {
10036 	volatile bpf_u_int32 jvalue = jvalue_arg;
10037 	struct block *b0;
10038 	bpf_u_int32 val1 , val2 , val3;
10039 	u_int newoff_sio;
10040 	u_int newoff_opc;
10041 	u_int newoff_dpc;
10042 	u_int newoff_sls;
10043 
10044 	/*
10045 	 * Catch errors reported by us and routines below us, and return NULL
10046 	 * on an error.
10047 	 */
10048 	if (setjmp(cstate->top_ctx))
10049 		return (NULL);
10050 
10051 	newoff_sio = cstate->off_sio;
10052 	newoff_opc = cstate->off_opc;
10053 	newoff_dpc = cstate->off_dpc;
10054 	newoff_sls = cstate->off_sls;
10055 	switch (mtp3field) {
10056 
10057 	case MH_SIO:
10058 		newoff_sio += 3; /* offset for MTP2_HSL */
10059 		/* FALLTHROUGH */
10060 
10061 	case M_SIO:
10062 		if (cstate->off_sio == OFFSET_NOT_SET)
10063 			bpf_error(cstate, "'sio' supported only on SS7");
10064 		/* sio coded on 1 byte so max value 255 */
10065 		if(jvalue > 255)
10066 			bpf_error(cstate, "sio value %u too big; max value = 255",
10067 			    jvalue);
10068 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
10069 		    jtype, reverse, jvalue);
10070 		break;
10071 
10072 	case MH_OPC:
10073 		newoff_opc += 3;
10074 
10075 		/* FALLTHROUGH */
10076 	case M_OPC:
10077 		if (cstate->off_opc == OFFSET_NOT_SET)
10078 			bpf_error(cstate, "'opc' supported only on SS7");
10079 		/* opc coded on 14 bits so max value 16383 */
10080 		if (jvalue > 16383)
10081 			bpf_error(cstate, "opc value %u too big; max value = 16383",
10082 			    jvalue);
10083 		/* the following instructions are made to convert jvalue
10084 		 * to the form used to write opc in an ss7 message*/
10085 		val1 = jvalue & 0x00003c00;
10086 		val1 = val1 >>10;
10087 		val2 = jvalue & 0x000003fc;
10088 		val2 = val2 <<6;
10089 		val3 = jvalue & 0x00000003;
10090 		val3 = val3 <<22;
10091 		jvalue = val1 + val2 + val3;
10092 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
10093 		    jtype, reverse, jvalue);
10094 		break;
10095 
10096 	case MH_DPC:
10097 		newoff_dpc += 3;
10098 		/* FALLTHROUGH */
10099 
10100 	case M_DPC:
10101 		if (cstate->off_dpc == OFFSET_NOT_SET)
10102 			bpf_error(cstate, "'dpc' supported only on SS7");
10103 		/* dpc coded on 14 bits so max value 16383 */
10104 		if (jvalue > 16383)
10105 			bpf_error(cstate, "dpc value %u too big; max value = 16383",
10106 			    jvalue);
10107 		/* the following instructions are made to convert jvalue
10108 		 * to the forme used to write dpc in an ss7 message*/
10109 		val1 = jvalue & 0x000000ff;
10110 		val1 = val1 << 24;
10111 		val2 = jvalue & 0x00003f00;
10112 		val2 = val2 << 8;
10113 		jvalue = val1 + val2;
10114 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
10115 		    jtype, reverse, jvalue);
10116 		break;
10117 
10118 	case MH_SLS:
10119 		newoff_sls += 3;
10120 		/* FALLTHROUGH */
10121 
10122 	case M_SLS:
10123 		if (cstate->off_sls == OFFSET_NOT_SET)
10124 			bpf_error(cstate, "'sls' supported only on SS7");
10125 		/* sls coded on 4 bits so max value 15 */
10126 		if (jvalue > 15)
10127 			 bpf_error(cstate, "sls value %u too big; max value = 15",
10128 			     jvalue);
10129 		/* the following instruction is made to convert jvalue
10130 		 * to the forme used to write sls in an ss7 message*/
10131 		jvalue = jvalue << 4;
10132 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
10133 		    jtype, reverse, jvalue);
10134 		break;
10135 
10136 	default:
10137 		abort();
10138 	}
10139 	return b0;
10140 }
10141 
10142 static struct block *
10143 gen_msg_abbrev(compiler_state_t *cstate, int type)
10144 {
10145 	struct block *b1;
10146 
10147 	/*
10148 	 * Q.2931 signalling protocol messages for handling virtual circuits
10149 	 * establishment and teardown
10150 	 */
10151 	switch (type) {
10152 
10153 	case A_SETUP:
10154 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
10155 		break;
10156 
10157 	case A_CALLPROCEED:
10158 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
10159 		break;
10160 
10161 	case A_CONNECT:
10162 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
10163 		break;
10164 
10165 	case A_CONNECTACK:
10166 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
10167 		break;
10168 
10169 	case A_RELEASE:
10170 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
10171 		break;
10172 
10173 	case A_RELEASE_DONE:
10174 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
10175 		break;
10176 
10177 	default:
10178 		abort();
10179 	}
10180 	return b1;
10181 }
10182 
10183 struct block *
10184 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
10185 {
10186 	struct block *b0, *b1;
10187 
10188 	/*
10189 	 * Catch errors reported by us and routines below us, and return NULL
10190 	 * on an error.
10191 	 */
10192 	if (setjmp(cstate->top_ctx))
10193 		return (NULL);
10194 
10195 	switch (type) {
10196 
10197 	case A_OAM:
10198 		if (!cstate->is_atm)
10199 			bpf_error(cstate, "'oam' supported only on raw ATM");
10200 		/* OAM F4 type */
10201 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10202 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10203 		gen_or(b0, b1);
10204 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10205 		gen_and(b0, b1);
10206 		break;
10207 
10208 	case A_OAMF4:
10209 		if (!cstate->is_atm)
10210 			bpf_error(cstate, "'oamf4' supported only on raw ATM");
10211 		/* OAM F4 type */
10212 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10213 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10214 		gen_or(b0, b1);
10215 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10216 		gen_and(b0, b1);
10217 		break;
10218 
10219 	case A_CONNECTMSG:
10220 		/*
10221 		 * Get Q.2931 signalling messages for switched
10222 		 * virtual connection
10223 		 */
10224 		if (!cstate->is_atm)
10225 			bpf_error(cstate, "'connectmsg' supported only on raw ATM");
10226 		b0 = gen_msg_abbrev(cstate, A_SETUP);
10227 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10228 		gen_or(b0, b1);
10229 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
10230 		gen_or(b0, b1);
10231 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
10232 		gen_or(b0, b1);
10233 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
10234 		gen_or(b0, b1);
10235 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10236 		gen_or(b0, b1);
10237 		b0 = gen_atmtype_sc(cstate);
10238 		gen_and(b0, b1);
10239 		break;
10240 
10241 	case A_METACONNECT:
10242 		if (!cstate->is_atm)
10243 			bpf_error(cstate, "'metaconnect' supported only on raw ATM");
10244 		b0 = gen_msg_abbrev(cstate, A_SETUP);
10245 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10246 		gen_or(b0, b1);
10247 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
10248 		gen_or(b0, b1);
10249 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
10250 		gen_or(b0, b1);
10251 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10252 		gen_or(b0, b1);
10253 		b0 = gen_atmtype_metac(cstate);
10254 		gen_and(b0, b1);
10255 		break;
10256 
10257 	default:
10258 		abort();
10259 	}
10260 	return b1;
10261 }
10262