xref: /freebsd/contrib/libpcap/gencode.c (revision 0572ccaa4543b0abef8ef81e384c1d04de9f3da1)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  *
22  * $FreeBSD$
23  */
24 #ifndef lint
25 static const char rcsid[] _U_ =
26     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
27 #endif
28 
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32 
33 #ifdef WIN32
34 #include <pcap-stdinc.h>
35 #else /* WIN32 */
36 #if HAVE_INTTYPES_H
37 #include <inttypes.h>
38 #elif HAVE_STDINT_H
39 #include <stdint.h>
40 #endif
41 #ifdef HAVE_SYS_BITYPES_H
42 #include <sys/bitypes.h>
43 #endif
44 #include <sys/types.h>
45 #include <sys/socket.h>
46 #endif /* WIN32 */
47 
48 /*
49  * XXX - why was this included even on UNIX?
50  */
51 #ifdef __MINGW32__
52 #include "ip6_misc.h"
53 #endif
54 
55 #ifndef WIN32
56 
57 #ifdef __NetBSD__
58 #include <sys/param.h>
59 #endif
60 
61 #include <netinet/in.h>
62 #include <arpa/inet.h>
63 
64 #endif /* WIN32 */
65 
66 #include <stdlib.h>
67 #include <string.h>
68 #include <memory.h>
69 #include <setjmp.h>
70 #include <stdarg.h>
71 
72 #ifdef MSDOS
73 #include "pcap-dos.h"
74 #endif
75 
76 #include "pcap-int.h"
77 
78 #include "ethertype.h"
79 #include "nlpid.h"
80 #include "llc.h"
81 #include "gencode.h"
82 #include "ieee80211.h"
83 #include "atmuni31.h"
84 #include "sunatmpos.h"
85 #include "ppp.h"
86 #include "pcap/sll.h"
87 #include "pcap/ipnet.h"
88 #include "arcnet.h"
89 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
90 #include <linux/types.h>
91 #include <linux/if_packet.h>
92 #include <linux/filter.h>
93 #endif
94 #ifdef HAVE_NET_PFVAR_H
95 #include <sys/socket.h>
96 #include <net/if.h>
97 #include <net/pfvar.h>
98 #include <net/if_pflog.h>
99 #endif
100 #ifndef offsetof
101 #define offsetof(s, e) ((size_t)&((s *)0)->e)
102 #endif
103 #ifdef INET6
104 #ifndef WIN32
105 #include <netdb.h>	/* for "struct addrinfo" */
106 #endif /* WIN32 */
107 #endif /*INET6*/
108 #include <pcap/namedb.h>
109 
110 #define ETHERMTU	1500
111 
112 #ifndef IPPROTO_HOPOPTS
113 #define IPPROTO_HOPOPTS 0
114 #endif
115 #ifndef IPPROTO_ROUTING
116 #define IPPROTO_ROUTING 43
117 #endif
118 #ifndef IPPROTO_FRAGMENT
119 #define IPPROTO_FRAGMENT 44
120 #endif
121 #ifndef IPPROTO_DSTOPTS
122 #define IPPROTO_DSTOPTS 60
123 #endif
124 #ifndef IPPROTO_SCTP
125 #define IPPROTO_SCTP 132
126 #endif
127 
128 #ifdef HAVE_OS_PROTO_H
129 #include "os-proto.h"
130 #endif
131 
132 #define JMP(c) ((c)|BPF_JMP|BPF_K)
133 
134 /* Locals */
135 static jmp_buf top_ctx;
136 static pcap_t *bpf_pcap;
137 
138 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
139 #ifdef WIN32
140 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
141 #else
142 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
143 #endif
144 
145 /* XXX */
146 #ifdef PCAP_FDDIPAD
147 static int	pcap_fddipad;
148 #endif
149 
150 /* VARARGS */
151 void
152 bpf_error(const char *fmt, ...)
153 {
154 	va_list ap;
155 
156 	va_start(ap, fmt);
157 	if (bpf_pcap != NULL)
158 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
159 		    fmt, ap);
160 	va_end(ap);
161 	longjmp(top_ctx, 1);
162 	/* NOTREACHED */
163 }
164 
165 static void init_linktype(pcap_t *);
166 
167 static void init_regs(void);
168 static int alloc_reg(void);
169 static void free_reg(int);
170 
171 static struct block *root;
172 
173 /*
174  * Value passed to gen_load_a() to indicate what the offset argument
175  * is relative to.
176  */
177 enum e_offrel {
178 	OR_PACKET,	/* relative to the beginning of the packet */
179 	OR_LINK,	/* relative to the beginning of the link-layer header */
180 	OR_MACPL,	/* relative to the end of the MAC-layer header */
181 	OR_NET,		/* relative to the network-layer header */
182 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
183 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
184 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
185 };
186 
187 #ifdef INET6
188 /*
189  * As errors are handled by a longjmp, anything allocated must be freed
190  * in the longjmp handler, so it must be reachable from that handler.
191  * One thing that's allocated is the result of pcap_nametoaddrinfo();
192  * it must be freed with freeaddrinfo().  This variable points to any
193  * addrinfo structure that would need to be freed.
194  */
195 static struct addrinfo *ai;
196 #endif
197 
198 /*
199  * We divy out chunks of memory rather than call malloc each time so
200  * we don't have to worry about leaking memory.  It's probably
201  * not a big deal if all this memory was wasted but if this ever
202  * goes into a library that would probably not be a good idea.
203  *
204  * XXX - this *is* in a library....
205  */
206 #define NCHUNKS 16
207 #define CHUNK0SIZE 1024
208 struct chunk {
209 	u_int n_left;
210 	void *m;
211 };
212 
213 static struct chunk chunks[NCHUNKS];
214 static int cur_chunk;
215 
216 static void *newchunk(u_int);
217 static void freechunks(void);
218 static inline struct block *new_block(int);
219 static inline struct slist *new_stmt(int);
220 static struct block *gen_retblk(int);
221 static inline void syntax(void);
222 
223 static void backpatch(struct block *, struct block *);
224 static void merge(struct block *, struct block *);
225 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
226 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
227 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
228 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
229 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
230 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
231     bpf_u_int32);
232 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
233 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
234     bpf_u_int32, bpf_u_int32, int, bpf_int32);
235 static struct slist *gen_load_llrel(u_int, u_int);
236 static struct slist *gen_load_macplrel(u_int, u_int);
237 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
238 static struct slist *gen_loadx_iphdrlen(void);
239 static struct block *gen_uncond(int);
240 static inline struct block *gen_true(void);
241 static inline struct block *gen_false(void);
242 static struct block *gen_ether_linktype(int);
243 static struct block *gen_ipnet_linktype(int);
244 static struct block *gen_linux_sll_linktype(int);
245 static struct slist *gen_load_prism_llprefixlen(void);
246 static struct slist *gen_load_avs_llprefixlen(void);
247 static struct slist *gen_load_radiotap_llprefixlen(void);
248 static struct slist *gen_load_ppi_llprefixlen(void);
249 static void insert_compute_vloffsets(struct block *);
250 static struct slist *gen_llprefixlen(void);
251 static struct slist *gen_off_macpl(void);
252 static int ethertype_to_ppptype(int);
253 static struct block *gen_linktype(int);
254 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
255 static struct block *gen_llc_linktype(int);
256 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
257 #ifdef INET6
258 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
259 #endif
260 static struct block *gen_ahostop(const u_char *, int);
261 static struct block *gen_ehostop(const u_char *, int);
262 static struct block *gen_fhostop(const u_char *, int);
263 static struct block *gen_thostop(const u_char *, int);
264 static struct block *gen_wlanhostop(const u_char *, int);
265 static struct block *gen_ipfchostop(const u_char *, int);
266 static struct block *gen_dnhostop(bpf_u_int32, int);
267 static struct block *gen_mpls_linktype(int);
268 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
269 #ifdef INET6
270 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
271 #endif
272 #ifndef INET6
273 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
274 #endif
275 static struct block *gen_ipfrag(void);
276 static struct block *gen_portatom(int, bpf_int32);
277 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
278 static struct block *gen_portatom6(int, bpf_int32);
279 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
280 struct block *gen_portop(int, int, int);
281 static struct block *gen_port(int, int, int);
282 struct block *gen_portrangeop(int, int, int, int);
283 static struct block *gen_portrange(int, int, int, int);
284 struct block *gen_portop6(int, int, int);
285 static struct block *gen_port6(int, int, int);
286 struct block *gen_portrangeop6(int, int, int, int);
287 static struct block *gen_portrange6(int, int, int, int);
288 static int lookup_proto(const char *, int);
289 static struct block *gen_protochain(int, int, int);
290 static struct block *gen_proto(int, int, int);
291 static struct slist *xfer_to_x(struct arth *);
292 static struct slist *xfer_to_a(struct arth *);
293 static struct block *gen_mac_multicast(int);
294 static struct block *gen_len(int, int);
295 static struct block *gen_check_802_11_data_frame(void);
296 
297 static struct block *gen_ppi_dlt_check(void);
298 static struct block *gen_msg_abbrev(int type);
299 
300 static void *
301 newchunk(n)
302 	u_int n;
303 {
304 	struct chunk *cp;
305 	int k;
306 	size_t size;
307 
308 #ifndef __NetBSD__
309 	/* XXX Round up to nearest long. */
310 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
311 #else
312 	/* XXX Round up to structure boundary. */
313 	n = ALIGN(n);
314 #endif
315 
316 	cp = &chunks[cur_chunk];
317 	if (n > cp->n_left) {
318 		++cp, k = ++cur_chunk;
319 		if (k >= NCHUNKS)
320 			bpf_error("out of memory");
321 		size = CHUNK0SIZE << k;
322 		cp->m = (void *)malloc(size);
323 		if (cp->m == NULL)
324 			bpf_error("out of memory");
325 		memset((char *)cp->m, 0, size);
326 		cp->n_left = size;
327 		if (n > size)
328 			bpf_error("out of memory");
329 	}
330 	cp->n_left -= n;
331 	return (void *)((char *)cp->m + cp->n_left);
332 }
333 
334 static void
335 freechunks()
336 {
337 	int i;
338 
339 	cur_chunk = 0;
340 	for (i = 0; i < NCHUNKS; ++i)
341 		if (chunks[i].m != NULL) {
342 			free(chunks[i].m);
343 			chunks[i].m = NULL;
344 		}
345 }
346 
347 /*
348  * A strdup whose allocations are freed after code generation is over.
349  */
350 char *
351 sdup(s)
352 	register const char *s;
353 {
354 	int n = strlen(s) + 1;
355 	char *cp = newchunk(n);
356 
357 	strlcpy(cp, s, n);
358 	return (cp);
359 }
360 
361 static inline struct block *
362 new_block(code)
363 	int code;
364 {
365 	struct block *p;
366 
367 	p = (struct block *)newchunk(sizeof(*p));
368 	p->s.code = code;
369 	p->head = p;
370 
371 	return p;
372 }
373 
374 static inline struct slist *
375 new_stmt(code)
376 	int code;
377 {
378 	struct slist *p;
379 
380 	p = (struct slist *)newchunk(sizeof(*p));
381 	p->s.code = code;
382 
383 	return p;
384 }
385 
386 static struct block *
387 gen_retblk(v)
388 	int v;
389 {
390 	struct block *b = new_block(BPF_RET|BPF_K);
391 
392 	b->s.k = v;
393 	return b;
394 }
395 
396 static inline void
397 syntax()
398 {
399 	bpf_error("syntax error in filter expression");
400 }
401 
402 static bpf_u_int32 netmask;
403 static int snaplen;
404 int no_optimize;
405 #ifdef WIN32
406 static int
407 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
408 	     const char *buf, int optimize, bpf_u_int32 mask);
409 
410 int
411 pcap_compile(pcap_t *p, struct bpf_program *program,
412 	     const char *buf, int optimize, bpf_u_int32 mask)
413 {
414 	int result;
415 
416 	EnterCriticalSection(&g_PcapCompileCriticalSection);
417 
418 	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
419 
420 	LeaveCriticalSection(&g_PcapCompileCriticalSection);
421 
422 	return result;
423 }
424 
425 static int
426 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
427 	     const char *buf, int optimize, bpf_u_int32 mask)
428 #else /* WIN32 */
429 int
430 pcap_compile(pcap_t *p, struct bpf_program *program,
431 	     const char *buf, int optimize, bpf_u_int32 mask)
432 #endif /* WIN32 */
433 {
434 	extern int n_errors;
435 	const char * volatile xbuf = buf;
436 	u_int len;
437 
438 	/*
439 	 * If this pcap_t hasn't been activated, it doesn't have a
440 	 * link-layer type, so we can't use it.
441 	 */
442 	if (!p->activated) {
443 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
444 		    "not-yet-activated pcap_t passed to pcap_compile");
445 		return (-1);
446 	}
447 	no_optimize = 0;
448 	n_errors = 0;
449 	root = NULL;
450 	bpf_pcap = p;
451 	init_regs();
452 	if (setjmp(top_ctx)) {
453 #ifdef INET6
454 		if (ai != NULL) {
455 			freeaddrinfo(ai);
456 			ai = NULL;
457 		}
458 #endif
459 		lex_cleanup();
460 		freechunks();
461 		return (-1);
462 	}
463 
464 	netmask = mask;
465 
466 	snaplen = pcap_snapshot(p);
467 	if (snaplen == 0) {
468 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
469 			 "snaplen of 0 rejects all packets");
470 		return -1;
471 	}
472 
473 	lex_init(xbuf ? xbuf : "");
474 	init_linktype(p);
475 	(void)pcap_parse();
476 
477 	if (n_errors)
478 		syntax();
479 
480 	if (root == NULL)
481 		root = gen_retblk(snaplen);
482 
483 	if (optimize && !no_optimize) {
484 		bpf_optimize(&root);
485 		if (root == NULL ||
486 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
487 			bpf_error("expression rejects all packets");
488 	}
489 	program->bf_insns = icode_to_fcode(root, &len);
490 	program->bf_len = len;
491 
492 	lex_cleanup();
493 	freechunks();
494 	return (0);
495 }
496 
497 /*
498  * entry point for using the compiler with no pcap open
499  * pass in all the stuff that is needed explicitly instead.
500  */
501 int
502 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
503 		    struct bpf_program *program,
504 	     const char *buf, int optimize, bpf_u_int32 mask)
505 {
506 	pcap_t *p;
507 	int ret;
508 
509 	p = pcap_open_dead(linktype_arg, snaplen_arg);
510 	if (p == NULL)
511 		return (-1);
512 	ret = pcap_compile(p, program, buf, optimize, mask);
513 	pcap_close(p);
514 	return (ret);
515 }
516 
517 /*
518  * Clean up a "struct bpf_program" by freeing all the memory allocated
519  * in it.
520  */
521 void
522 pcap_freecode(struct bpf_program *program)
523 {
524 	program->bf_len = 0;
525 	if (program->bf_insns != NULL) {
526 		free((char *)program->bf_insns);
527 		program->bf_insns = NULL;
528 	}
529 }
530 
531 /*
532  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
533  * which of the jt and jf fields has been resolved and which is a pointer
534  * back to another unresolved block (or nil).  At least one of the fields
535  * in each block is already resolved.
536  */
537 static void
538 backpatch(list, target)
539 	struct block *list, *target;
540 {
541 	struct block *next;
542 
543 	while (list) {
544 		if (!list->sense) {
545 			next = JT(list);
546 			JT(list) = target;
547 		} else {
548 			next = JF(list);
549 			JF(list) = target;
550 		}
551 		list = next;
552 	}
553 }
554 
555 /*
556  * Merge the lists in b0 and b1, using the 'sense' field to indicate
557  * which of jt and jf is the link.
558  */
559 static void
560 merge(b0, b1)
561 	struct block *b0, *b1;
562 {
563 	register struct block **p = &b0;
564 
565 	/* Find end of list. */
566 	while (*p)
567 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
568 
569 	/* Concatenate the lists. */
570 	*p = b1;
571 }
572 
573 void
574 finish_parse(p)
575 	struct block *p;
576 {
577 	struct block *ppi_dlt_check;
578 
579 	/*
580 	 * Insert before the statements of the first (root) block any
581 	 * statements needed to load the lengths of any variable-length
582 	 * headers into registers.
583 	 *
584 	 * XXX - a fancier strategy would be to insert those before the
585 	 * statements of all blocks that use those lengths and that
586 	 * have no predecessors that use them, so that we only compute
587 	 * the lengths if we need them.  There might be even better
588 	 * approaches than that.
589 	 *
590 	 * However, those strategies would be more complicated, and
591 	 * as we don't generate code to compute a length if the
592 	 * program has no tests that use the length, and as most
593 	 * tests will probably use those lengths, we would just
594 	 * postpone computing the lengths so that it's not done
595 	 * for tests that fail early, and it's not clear that's
596 	 * worth the effort.
597 	 */
598 	insert_compute_vloffsets(p->head);
599 
600 	/*
601 	 * For DLT_PPI captures, generate a check of the per-packet
602 	 * DLT value to make sure it's DLT_IEEE802_11.
603 	 */
604 	ppi_dlt_check = gen_ppi_dlt_check();
605 	if (ppi_dlt_check != NULL)
606 		gen_and(ppi_dlt_check, p);
607 
608 	backpatch(p, gen_retblk(snaplen));
609 	p->sense = !p->sense;
610 	backpatch(p, gen_retblk(0));
611 	root = p->head;
612 }
613 
614 void
615 gen_and(b0, b1)
616 	struct block *b0, *b1;
617 {
618 	backpatch(b0, b1->head);
619 	b0->sense = !b0->sense;
620 	b1->sense = !b1->sense;
621 	merge(b1, b0);
622 	b1->sense = !b1->sense;
623 	b1->head = b0->head;
624 }
625 
626 void
627 gen_or(b0, b1)
628 	struct block *b0, *b1;
629 {
630 	b0->sense = !b0->sense;
631 	backpatch(b0, b1->head);
632 	b0->sense = !b0->sense;
633 	merge(b1, b0);
634 	b1->head = b0->head;
635 }
636 
637 void
638 gen_not(b)
639 	struct block *b;
640 {
641 	b->sense = !b->sense;
642 }
643 
644 static struct block *
645 gen_cmp(offrel, offset, size, v)
646 	enum e_offrel offrel;
647 	u_int offset, size;
648 	bpf_int32 v;
649 {
650 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
651 }
652 
653 static struct block *
654 gen_cmp_gt(offrel, offset, size, v)
655 	enum e_offrel offrel;
656 	u_int offset, size;
657 	bpf_int32 v;
658 {
659 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
660 }
661 
662 static struct block *
663 gen_cmp_ge(offrel, offset, size, v)
664 	enum e_offrel offrel;
665 	u_int offset, size;
666 	bpf_int32 v;
667 {
668 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
669 }
670 
671 static struct block *
672 gen_cmp_lt(offrel, offset, size, v)
673 	enum e_offrel offrel;
674 	u_int offset, size;
675 	bpf_int32 v;
676 {
677 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
678 }
679 
680 static struct block *
681 gen_cmp_le(offrel, offset, size, v)
682 	enum e_offrel offrel;
683 	u_int offset, size;
684 	bpf_int32 v;
685 {
686 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
687 }
688 
689 static struct block *
690 gen_mcmp(offrel, offset, size, v, mask)
691 	enum e_offrel offrel;
692 	u_int offset, size;
693 	bpf_int32 v;
694 	bpf_u_int32 mask;
695 {
696 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
697 }
698 
699 static struct block *
700 gen_bcmp(offrel, offset, size, v)
701 	enum e_offrel offrel;
702 	register u_int offset, size;
703 	register const u_char *v;
704 {
705 	register struct block *b, *tmp;
706 
707 	b = NULL;
708 	while (size >= 4) {
709 		register const u_char *p = &v[size - 4];
710 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
711 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
712 
713 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
714 		if (b != NULL)
715 			gen_and(b, tmp);
716 		b = tmp;
717 		size -= 4;
718 	}
719 	while (size >= 2) {
720 		register const u_char *p = &v[size - 2];
721 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
722 
723 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
724 		if (b != NULL)
725 			gen_and(b, tmp);
726 		b = tmp;
727 		size -= 2;
728 	}
729 	if (size > 0) {
730 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
731 		if (b != NULL)
732 			gen_and(b, tmp);
733 		b = tmp;
734 	}
735 	return b;
736 }
737 
738 /*
739  * AND the field of size "size" at offset "offset" relative to the header
740  * specified by "offrel" with "mask", and compare it with the value "v"
741  * with the test specified by "jtype"; if "reverse" is true, the test
742  * should test the opposite of "jtype".
743  */
744 static struct block *
745 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
746 	enum e_offrel offrel;
747 	bpf_int32 v;
748 	bpf_u_int32 offset, size, mask, jtype;
749 	int reverse;
750 {
751 	struct slist *s, *s2;
752 	struct block *b;
753 
754 	s = gen_load_a(offrel, offset, size);
755 
756 	if (mask != 0xffffffff) {
757 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
758 		s2->s.k = mask;
759 		sappend(s, s2);
760 	}
761 
762 	b = new_block(JMP(jtype));
763 	b->stmts = s;
764 	b->s.k = v;
765 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
766 		gen_not(b);
767 	return b;
768 }
769 
770 /*
771  * Various code constructs need to know the layout of the data link
772  * layer.  These variables give the necessary offsets from the beginning
773  * of the packet data.
774  */
775 
776 /*
777  * This is the offset of the beginning of the link-layer header from
778  * the beginning of the raw packet data.
779  *
780  * It's usually 0, except for 802.11 with a fixed-length radio header.
781  * (For 802.11 with a variable-length radio header, we have to generate
782  * code to compute that offset; off_ll is 0 in that case.)
783  */
784 static u_int off_ll;
785 
786 /*
787  * If there's a variable-length header preceding the link-layer header,
788  * "reg_off_ll" is the register number for a register containing the
789  * length of that header, and therefore the offset of the link-layer
790  * header from the beginning of the raw packet data.  Otherwise,
791  * "reg_off_ll" is -1.
792  */
793 static int reg_off_ll;
794 
795 /*
796  * This is the offset of the beginning of the MAC-layer header from
797  * the beginning of the link-layer header.
798  * It's usually 0, except for ATM LANE, where it's the offset, relative
799  * to the beginning of the raw packet data, of the Ethernet header, and
800  * for Ethernet with various additional information.
801  */
802 static u_int off_mac;
803 
804 /*
805  * This is the offset of the beginning of the MAC-layer payload,
806  * from the beginning of the raw packet data.
807  *
808  * I.e., it's the sum of the length of the link-layer header (without,
809  * for example, any 802.2 LLC header, so it's the MAC-layer
810  * portion of that header), plus any prefix preceding the
811  * link-layer header.
812  */
813 static u_int off_macpl;
814 
815 /*
816  * This is 1 if the offset of the beginning of the MAC-layer payload
817  * from the beginning of the link-layer header is variable-length.
818  */
819 static int off_macpl_is_variable;
820 
821 /*
822  * If the link layer has variable_length headers, "reg_off_macpl"
823  * is the register number for a register containing the length of the
824  * link-layer header plus the length of any variable-length header
825  * preceding the link-layer header.  Otherwise, "reg_off_macpl"
826  * is -1.
827  */
828 static int reg_off_macpl;
829 
830 /*
831  * "off_linktype" is the offset to information in the link-layer header
832  * giving the packet type.  This offset is relative to the beginning
833  * of the link-layer header (i.e., it doesn't include off_ll).
834  *
835  * For Ethernet, it's the offset of the Ethernet type field.
836  *
837  * For link-layer types that always use 802.2 headers, it's the
838  * offset of the LLC header.
839  *
840  * For PPP, it's the offset of the PPP type field.
841  *
842  * For Cisco HDLC, it's the offset of the CHDLC type field.
843  *
844  * For BSD loopback, it's the offset of the AF_ value.
845  *
846  * For Linux cooked sockets, it's the offset of the type field.
847  *
848  * It's set to -1 for no encapsulation, in which case, IP is assumed.
849  */
850 static u_int off_linktype;
851 
852 /*
853  * TRUE if "pppoes" appeared in the filter; it causes link-layer type
854  * checks to check the PPP header, assumed to follow a LAN-style link-
855  * layer header and a PPPoE session header.
856  */
857 static int is_pppoes = 0;
858 
859 /*
860  * TRUE if the link layer includes an ATM pseudo-header.
861  */
862 static int is_atm = 0;
863 
864 /*
865  * TRUE if "lane" appeared in the filter; it causes us to generate
866  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
867  */
868 static int is_lane = 0;
869 
870 /*
871  * These are offsets for the ATM pseudo-header.
872  */
873 static u_int off_vpi;
874 static u_int off_vci;
875 static u_int off_proto;
876 
877 /*
878  * These are offsets for the MTP2 fields.
879  */
880 static u_int off_li;
881 
882 /*
883  * These are offsets for the MTP3 fields.
884  */
885 static u_int off_sio;
886 static u_int off_opc;
887 static u_int off_dpc;
888 static u_int off_sls;
889 
890 /*
891  * This is the offset of the first byte after the ATM pseudo_header,
892  * or -1 if there is no ATM pseudo-header.
893  */
894 static u_int off_payload;
895 
896 /*
897  * These are offsets to the beginning of the network-layer header.
898  * They are relative to the beginning of the MAC-layer payload (i.e.,
899  * they don't include off_ll or off_macpl).
900  *
901  * If the link layer never uses 802.2 LLC:
902  *
903  *	"off_nl" and "off_nl_nosnap" are the same.
904  *
905  * If the link layer always uses 802.2 LLC:
906  *
907  *	"off_nl" is the offset if there's a SNAP header following
908  *	the 802.2 header;
909  *
910  *	"off_nl_nosnap" is the offset if there's no SNAP header.
911  *
912  * If the link layer is Ethernet:
913  *
914  *	"off_nl" is the offset if the packet is an Ethernet II packet
915  *	(we assume no 802.3+802.2+SNAP);
916  *
917  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
918  *	with an 802.2 header following it.
919  */
920 static u_int off_nl;
921 static u_int off_nl_nosnap;
922 
923 static int linktype;
924 
925 static void
926 init_linktype(p)
927 	pcap_t *p;
928 {
929 	linktype = pcap_datalink(p);
930 #ifdef PCAP_FDDIPAD
931 	pcap_fddipad = p->fddipad;
932 #endif
933 
934 	/*
935 	 * Assume it's not raw ATM with a pseudo-header, for now.
936 	 */
937 	off_mac = 0;
938 	is_atm = 0;
939 	is_lane = 0;
940 	off_vpi = -1;
941 	off_vci = -1;
942 	off_proto = -1;
943 	off_payload = -1;
944 
945 	/*
946 	 * And that we're not doing PPPoE.
947 	 */
948 	is_pppoes = 0;
949 
950 	/*
951 	 * And assume we're not doing SS7.
952 	 */
953 	off_li = -1;
954 	off_sio = -1;
955 	off_opc = -1;
956 	off_dpc = -1;
957 	off_sls = -1;
958 
959 	/*
960 	 * Also assume it's not 802.11.
961 	 */
962 	off_ll = 0;
963 	off_macpl = 0;
964 	off_macpl_is_variable = 0;
965 
966 	orig_linktype = -1;
967 	orig_nl = -1;
968         label_stack_depth = 0;
969 
970 	reg_off_ll = -1;
971 	reg_off_macpl = -1;
972 
973 	switch (linktype) {
974 
975 	case DLT_ARCNET:
976 		off_linktype = 2;
977 		off_macpl = 6;
978 		off_nl = 0;		/* XXX in reality, variable! */
979 		off_nl_nosnap = 0;	/* no 802.2 LLC */
980 		return;
981 
982 	case DLT_ARCNET_LINUX:
983 		off_linktype = 4;
984 		off_macpl = 8;
985 		off_nl = 0;		/* XXX in reality, variable! */
986 		off_nl_nosnap = 0;	/* no 802.2 LLC */
987 		return;
988 
989 	case DLT_EN10MB:
990 		off_linktype = 12;
991 		off_macpl = 14;		/* Ethernet header length */
992 		off_nl = 0;		/* Ethernet II */
993 		off_nl_nosnap = 3;	/* 802.3+802.2 */
994 		return;
995 
996 	case DLT_SLIP:
997 		/*
998 		 * SLIP doesn't have a link level type.  The 16 byte
999 		 * header is hacked into our SLIP driver.
1000 		 */
1001 		off_linktype = -1;
1002 		off_macpl = 16;
1003 		off_nl = 0;
1004 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1005 		return;
1006 
1007 	case DLT_SLIP_BSDOS:
1008 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1009 		off_linktype = -1;
1010 		/* XXX end */
1011 		off_macpl = 24;
1012 		off_nl = 0;
1013 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1014 		return;
1015 
1016 	case DLT_NULL:
1017 	case DLT_LOOP:
1018 		off_linktype = 0;
1019 		off_macpl = 4;
1020 		off_nl = 0;
1021 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1022 		return;
1023 
1024 	case DLT_ENC:
1025 		off_linktype = 0;
1026 		off_macpl = 12;
1027 		off_nl = 0;
1028 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1029 		return;
1030 
1031 	case DLT_PPP:
1032 	case DLT_PPP_PPPD:
1033 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1034 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1035 		off_linktype = 2;
1036 		off_macpl = 4;
1037 		off_nl = 0;
1038 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1039 		return;
1040 
1041 	case DLT_PPP_ETHER:
1042 		/*
1043 		 * This does no include the Ethernet header, and
1044 		 * only covers session state.
1045 		 */
1046 		off_linktype = 6;
1047 		off_macpl = 8;
1048 		off_nl = 0;
1049 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1050 		return;
1051 
1052 	case DLT_PPP_BSDOS:
1053 		off_linktype = 5;
1054 		off_macpl = 24;
1055 		off_nl = 0;
1056 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1057 		return;
1058 
1059 	case DLT_FDDI:
1060 		/*
1061 		 * FDDI doesn't really have a link-level type field.
1062 		 * We set "off_linktype" to the offset of the LLC header.
1063 		 *
1064 		 * To check for Ethernet types, we assume that SSAP = SNAP
1065 		 * is being used and pick out the encapsulated Ethernet type.
1066 		 * XXX - should we generate code to check for SNAP?
1067 		 */
1068 		off_linktype = 13;
1069 #ifdef PCAP_FDDIPAD
1070 		off_linktype += pcap_fddipad;
1071 #endif
1072 		off_macpl = 13;		/* FDDI MAC header length */
1073 #ifdef PCAP_FDDIPAD
1074 		off_macpl += pcap_fddipad;
1075 #endif
1076 		off_nl = 8;		/* 802.2+SNAP */
1077 		off_nl_nosnap = 3;	/* 802.2 */
1078 		return;
1079 
1080 	case DLT_IEEE802:
1081 		/*
1082 		 * Token Ring doesn't really have a link-level type field.
1083 		 * We set "off_linktype" to the offset of the LLC header.
1084 		 *
1085 		 * To check for Ethernet types, we assume that SSAP = SNAP
1086 		 * is being used and pick out the encapsulated Ethernet type.
1087 		 * XXX - should we generate code to check for SNAP?
1088 		 *
1089 		 * XXX - the header is actually variable-length.
1090 		 * Some various Linux patched versions gave 38
1091 		 * as "off_linktype" and 40 as "off_nl"; however,
1092 		 * if a token ring packet has *no* routing
1093 		 * information, i.e. is not source-routed, the correct
1094 		 * values are 20 and 22, as they are in the vanilla code.
1095 		 *
1096 		 * A packet is source-routed iff the uppermost bit
1097 		 * of the first byte of the source address, at an
1098 		 * offset of 8, has the uppermost bit set.  If the
1099 		 * packet is source-routed, the total number of bytes
1100 		 * of routing information is 2 plus bits 0x1F00 of
1101 		 * the 16-bit value at an offset of 14 (shifted right
1102 		 * 8 - figure out which byte that is).
1103 		 */
1104 		off_linktype = 14;
1105 		off_macpl = 14;		/* Token Ring MAC header length */
1106 		off_nl = 8;		/* 802.2+SNAP */
1107 		off_nl_nosnap = 3;	/* 802.2 */
1108 		return;
1109 
1110 	case DLT_IEEE802_11:
1111 	case DLT_PRISM_HEADER:
1112 	case DLT_IEEE802_11_RADIO_AVS:
1113 	case DLT_IEEE802_11_RADIO:
1114 		/*
1115 		 * 802.11 doesn't really have a link-level type field.
1116 		 * We set "off_linktype" to the offset of the LLC header.
1117 		 *
1118 		 * To check for Ethernet types, we assume that SSAP = SNAP
1119 		 * is being used and pick out the encapsulated Ethernet type.
1120 		 * XXX - should we generate code to check for SNAP?
1121 		 *
1122 		 * We also handle variable-length radio headers here.
1123 		 * The Prism header is in theory variable-length, but in
1124 		 * practice it's always 144 bytes long.  However, some
1125 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1126 		 * sometimes or always supply an AVS header, so we
1127 		 * have to check whether the radio header is a Prism
1128 		 * header or an AVS header, so, in practice, it's
1129 		 * variable-length.
1130 		 */
1131 		off_linktype = 24;
1132 		off_macpl = 0;		/* link-layer header is variable-length */
1133 		off_macpl_is_variable = 1;
1134 		off_nl = 8;		/* 802.2+SNAP */
1135 		off_nl_nosnap = 3;	/* 802.2 */
1136 		return;
1137 
1138 	case DLT_PPI:
1139 		/*
1140 		 * At the moment we treat PPI the same way that we treat
1141 		 * normal Radiotap encoded packets. The difference is in
1142 		 * the function that generates the code at the beginning
1143 		 * to compute the header length.  Since this code generator
1144 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1145 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1146 		 * generate code to check for this too.
1147 		 */
1148 		off_linktype = 24;
1149 		off_macpl = 0;		/* link-layer header is variable-length */
1150 		off_macpl_is_variable = 1;
1151 		off_nl = 8;		/* 802.2+SNAP */
1152 		off_nl_nosnap = 3;	/* 802.2 */
1153 		return;
1154 
1155 	case DLT_ATM_RFC1483:
1156 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1157 		/*
1158 		 * assume routed, non-ISO PDUs
1159 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1160 		 *
1161 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1162 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1163 		 * latter would presumably be treated the way PPPoE
1164 		 * should be, so you can do "pppoe and udp port 2049"
1165 		 * or "pppoa and tcp port 80" and have it check for
1166 		 * PPPo{A,E} and a PPP protocol of IP and....
1167 		 */
1168 		off_linktype = 0;
1169 		off_macpl = 0;		/* packet begins with LLC header */
1170 		off_nl = 8;		/* 802.2+SNAP */
1171 		off_nl_nosnap = 3;	/* 802.2 */
1172 		return;
1173 
1174 	case DLT_SUNATM:
1175 		/*
1176 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1177 		 * pseudo-header.
1178 		 */
1179 		is_atm = 1;
1180 		off_vpi = SUNATM_VPI_POS;
1181 		off_vci = SUNATM_VCI_POS;
1182 		off_proto = PROTO_POS;
1183 		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1184 		off_payload = SUNATM_PKT_BEGIN_POS;
1185 		off_linktype = off_payload;
1186 		off_macpl = off_payload;	/* if LLC-encapsulated */
1187 		off_nl = 8;		/* 802.2+SNAP */
1188 		off_nl_nosnap = 3;	/* 802.2 */
1189 		return;
1190 
1191 	case DLT_RAW:
1192 	case DLT_IPV4:
1193 	case DLT_IPV6:
1194 		off_linktype = -1;
1195 		off_macpl = 0;
1196 		off_nl = 0;
1197 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1198 		return;
1199 
1200 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1201 		off_linktype = 14;
1202 		off_macpl = 16;
1203 		off_nl = 0;
1204 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1205 		return;
1206 
1207 	case DLT_LTALK:
1208 		/*
1209 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1210 		 * but really it just indicates whether there is a "short" or
1211 		 * "long" DDP packet following.
1212 		 */
1213 		off_linktype = -1;
1214 		off_macpl = 0;
1215 		off_nl = 0;
1216 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1217 		return;
1218 
1219 	case DLT_IP_OVER_FC:
1220 		/*
1221 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1222 		 * link-level type field.  We set "off_linktype" to the
1223 		 * offset of the LLC header.
1224 		 *
1225 		 * To check for Ethernet types, we assume that SSAP = SNAP
1226 		 * is being used and pick out the encapsulated Ethernet type.
1227 		 * XXX - should we generate code to check for SNAP? RFC
1228 		 * 2625 says SNAP should be used.
1229 		 */
1230 		off_linktype = 16;
1231 		off_macpl = 16;
1232 		off_nl = 8;		/* 802.2+SNAP */
1233 		off_nl_nosnap = 3;	/* 802.2 */
1234 		return;
1235 
1236 	case DLT_FRELAY:
1237 		/*
1238 		 * XXX - we should set this to handle SNAP-encapsulated
1239 		 * frames (NLPID of 0x80).
1240 		 */
1241 		off_linktype = -1;
1242 		off_macpl = 0;
1243 		off_nl = 0;
1244 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1245 		return;
1246 
1247                 /*
1248                  * the only BPF-interesting FRF.16 frames are non-control frames;
1249                  * Frame Relay has a variable length link-layer
1250                  * so lets start with offset 4 for now and increments later on (FIXME);
1251                  */
1252 	case DLT_MFR:
1253 		off_linktype = -1;
1254 		off_macpl = 0;
1255 		off_nl = 4;
1256 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1257 		return;
1258 
1259 	case DLT_APPLE_IP_OVER_IEEE1394:
1260 		off_linktype = 16;
1261 		off_macpl = 18;
1262 		off_nl = 0;
1263 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1264 		return;
1265 
1266 	case DLT_SYMANTEC_FIREWALL:
1267 		off_linktype = 6;
1268 		off_macpl = 44;
1269 		off_nl = 0;		/* Ethernet II */
1270 		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1271 		return;
1272 
1273 #ifdef HAVE_NET_PFVAR_H
1274 	case DLT_PFLOG:
1275 		off_linktype = 0;
1276 		off_macpl = PFLOG_HDRLEN;
1277 		off_nl = 0;
1278 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1279 		return;
1280 #endif
1281 
1282         case DLT_JUNIPER_MFR:
1283         case DLT_JUNIPER_MLFR:
1284         case DLT_JUNIPER_MLPPP:
1285         case DLT_JUNIPER_PPP:
1286         case DLT_JUNIPER_CHDLC:
1287         case DLT_JUNIPER_FRELAY:
1288                 off_linktype = 4;
1289 		off_macpl = 4;
1290 		off_nl = 0;
1291 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1292                 return;
1293 
1294 	case DLT_JUNIPER_ATM1:
1295 		off_linktype = 4;	/* in reality variable between 4-8 */
1296 		off_macpl = 4;	/* in reality variable between 4-8 */
1297 		off_nl = 0;
1298 		off_nl_nosnap = 10;
1299 		return;
1300 
1301 	case DLT_JUNIPER_ATM2:
1302 		off_linktype = 8;	/* in reality variable between 8-12 */
1303 		off_macpl = 8;	/* in reality variable between 8-12 */
1304 		off_nl = 0;
1305 		off_nl_nosnap = 10;
1306 		return;
1307 
1308 		/* frames captured on a Juniper PPPoE service PIC
1309 		 * contain raw ethernet frames */
1310 	case DLT_JUNIPER_PPPOE:
1311         case DLT_JUNIPER_ETHER:
1312         	off_macpl = 14;
1313 		off_linktype = 16;
1314 		off_nl = 18;		/* Ethernet II */
1315 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1316 		return;
1317 
1318 	case DLT_JUNIPER_PPPOE_ATM:
1319 		off_linktype = 4;
1320 		off_macpl = 6;
1321 		off_nl = 0;
1322 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1323 		return;
1324 
1325 	case DLT_JUNIPER_GGSN:
1326 		off_linktype = 6;
1327 		off_macpl = 12;
1328 		off_nl = 0;
1329 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1330 		return;
1331 
1332 	case DLT_JUNIPER_ES:
1333 		off_linktype = 6;
1334 		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1335 		off_nl = -1;		/* not really a network layer but raw IP addresses */
1336 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1337 		return;
1338 
1339 	case DLT_JUNIPER_MONITOR:
1340 		off_linktype = 12;
1341 		off_macpl = 12;
1342 		off_nl = 0;		/* raw IP/IP6 header */
1343 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1344 		return;
1345 
1346 	case DLT_JUNIPER_SERVICES:
1347 		off_linktype = 12;
1348 		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1349 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1350 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1351 		return;
1352 
1353 	case DLT_JUNIPER_VP:
1354 		off_linktype = 18;
1355 		off_macpl = -1;
1356 		off_nl = -1;
1357 		off_nl_nosnap = -1;
1358 		return;
1359 
1360 	case DLT_JUNIPER_ST:
1361 		off_linktype = 18;
1362 		off_macpl = -1;
1363 		off_nl = -1;
1364 		off_nl_nosnap = -1;
1365 		return;
1366 
1367 	case DLT_JUNIPER_ISM:
1368 		off_linktype = 8;
1369 		off_macpl = -1;
1370 		off_nl = -1;
1371 		off_nl_nosnap = -1;
1372 		return;
1373 
1374 	case DLT_JUNIPER_VS:
1375 	case DLT_JUNIPER_SRX_E2E:
1376 	case DLT_JUNIPER_FIBRECHANNEL:
1377 	case DLT_JUNIPER_ATM_CEMIC:
1378 		off_linktype = 8;
1379 		off_macpl = -1;
1380 		off_nl = -1;
1381 		off_nl_nosnap = -1;
1382 		return;
1383 
1384 	case DLT_MTP2:
1385 		off_li = 2;
1386 		off_sio = 3;
1387 		off_opc = 4;
1388 		off_dpc = 4;
1389 		off_sls = 7;
1390 		off_linktype = -1;
1391 		off_macpl = -1;
1392 		off_nl = -1;
1393 		off_nl_nosnap = -1;
1394 		return;
1395 
1396 	case DLT_MTP2_WITH_PHDR:
1397 		off_li = 6;
1398 		off_sio = 7;
1399 		off_opc = 8;
1400 		off_dpc = 8;
1401 		off_sls = 11;
1402 		off_linktype = -1;
1403 		off_macpl = -1;
1404 		off_nl = -1;
1405 		off_nl_nosnap = -1;
1406 		return;
1407 
1408 	case DLT_ERF:
1409 		off_li = 22;
1410 		off_sio = 23;
1411 		off_opc = 24;
1412 		off_dpc = 24;
1413 		off_sls = 27;
1414 		off_linktype = -1;
1415 		off_macpl = -1;
1416 		off_nl = -1;
1417 		off_nl_nosnap = -1;
1418 		return;
1419 
1420 	case DLT_PFSYNC:
1421 		off_linktype = -1;
1422 		off_macpl = 4;
1423 		off_nl = 0;
1424 		off_nl_nosnap = 0;
1425 		return;
1426 
1427 	case DLT_AX25_KISS:
1428 		/*
1429 		 * Currently, only raw "link[N:M]" filtering is supported.
1430 		 */
1431 		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1432 		off_macpl = -1;
1433 		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1434 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1435 		off_mac = 1;		/* step over the kiss length byte */
1436 		return;
1437 
1438 	case DLT_IPNET:
1439 		off_linktype = 1;
1440 		off_macpl = 24;		/* ipnet header length */
1441 		off_nl = 0;
1442 		off_nl_nosnap = -1;
1443 		return;
1444 
1445 	case DLT_NETANALYZER:
1446 		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1447 		off_linktype = 16;	/* includes 4-byte pseudo-header */
1448 		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1449 		off_nl = 0;		/* Ethernet II */
1450 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1451 		return;
1452 
1453 	case DLT_NETANALYZER_TRANSPARENT:
1454 		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1455 		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1456 		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1457 		off_nl = 0;		/* Ethernet II */
1458 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1459 		return;
1460 
1461 	default:
1462 		/*
1463 		 * For values in the range in which we've assigned new
1464 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1465 		 */
1466 		if (linktype >= DLT_MATCHING_MIN &&
1467 		    linktype <= DLT_MATCHING_MAX) {
1468 			off_linktype = -1;
1469 			off_macpl = -1;
1470 			off_nl = -1;
1471 			off_nl_nosnap = -1;
1472 			return;
1473 		}
1474 
1475 	}
1476 	bpf_error("unknown data link type %d", linktype);
1477 	/* NOTREACHED */
1478 }
1479 
1480 /*
1481  * Load a value relative to the beginning of the link-layer header.
1482  * The link-layer header doesn't necessarily begin at the beginning
1483  * of the packet data; there might be a variable-length prefix containing
1484  * radio information.
1485  */
1486 static struct slist *
1487 gen_load_llrel(offset, size)
1488 	u_int offset, size;
1489 {
1490 	struct slist *s, *s2;
1491 
1492 	s = gen_llprefixlen();
1493 
1494 	/*
1495 	 * If "s" is non-null, it has code to arrange that the X register
1496 	 * contains the length of the prefix preceding the link-layer
1497 	 * header.
1498 	 *
1499 	 * Otherwise, the length of the prefix preceding the link-layer
1500 	 * header is "off_ll".
1501 	 */
1502 	if (s != NULL) {
1503 		/*
1504 		 * There's a variable-length prefix preceding the
1505 		 * link-layer header.  "s" points to a list of statements
1506 		 * that put the length of that prefix into the X register.
1507 		 * do an indirect load, to use the X register as an offset.
1508 		 */
1509 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1510 		s2->s.k = offset;
1511 		sappend(s, s2);
1512 	} else {
1513 		/*
1514 		 * There is no variable-length header preceding the
1515 		 * link-layer header; add in off_ll, which, if there's
1516 		 * a fixed-length header preceding the link-layer header,
1517 		 * is the length of that header.
1518 		 */
1519 		s = new_stmt(BPF_LD|BPF_ABS|size);
1520 		s->s.k = offset + off_ll;
1521 	}
1522 	return s;
1523 }
1524 
1525 /*
1526  * Load a value relative to the beginning of the MAC-layer payload.
1527  */
1528 static struct slist *
1529 gen_load_macplrel(offset, size)
1530 	u_int offset, size;
1531 {
1532 	struct slist *s, *s2;
1533 
1534 	s = gen_off_macpl();
1535 
1536 	/*
1537 	 * If s is non-null, the offset of the MAC-layer payload is
1538 	 * variable, and s points to a list of instructions that
1539 	 * arrange that the X register contains that offset.
1540 	 *
1541 	 * Otherwise, the offset of the MAC-layer payload is constant,
1542 	 * and is in off_macpl.
1543 	 */
1544 	if (s != NULL) {
1545 		/*
1546 		 * The offset of the MAC-layer payload is in the X
1547 		 * register.  Do an indirect load, to use the X register
1548 		 * as an offset.
1549 		 */
1550 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1551 		s2->s.k = offset;
1552 		sappend(s, s2);
1553 	} else {
1554 		/*
1555 		 * The offset of the MAC-layer payload is constant,
1556 		 * and is in off_macpl; load the value at that offset
1557 		 * plus the specified offset.
1558 		 */
1559 		s = new_stmt(BPF_LD|BPF_ABS|size);
1560 		s->s.k = off_macpl + offset;
1561 	}
1562 	return s;
1563 }
1564 
1565 /*
1566  * Load a value relative to the beginning of the specified header.
1567  */
1568 static struct slist *
1569 gen_load_a(offrel, offset, size)
1570 	enum e_offrel offrel;
1571 	u_int offset, size;
1572 {
1573 	struct slist *s, *s2;
1574 
1575 	switch (offrel) {
1576 
1577 	case OR_PACKET:
1578                 s = new_stmt(BPF_LD|BPF_ABS|size);
1579                 s->s.k = offset;
1580 		break;
1581 
1582 	case OR_LINK:
1583 		s = gen_load_llrel(offset, size);
1584 		break;
1585 
1586 	case OR_MACPL:
1587 		s = gen_load_macplrel(offset, size);
1588 		break;
1589 
1590 	case OR_NET:
1591 		s = gen_load_macplrel(off_nl + offset, size);
1592 		break;
1593 
1594 	case OR_NET_NOSNAP:
1595 		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1596 		break;
1597 
1598 	case OR_TRAN_IPV4:
1599 		/*
1600 		 * Load the X register with the length of the IPv4 header
1601 		 * (plus the offset of the link-layer header, if it's
1602 		 * preceded by a variable-length header such as a radio
1603 		 * header), in bytes.
1604 		 */
1605 		s = gen_loadx_iphdrlen();
1606 
1607 		/*
1608 		 * Load the item at {offset of the MAC-layer payload} +
1609 		 * {offset, relative to the start of the MAC-layer
1610 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1611 		 * {specified offset}.
1612 		 *
1613 		 * (If the offset of the MAC-layer payload is variable,
1614 		 * it's included in the value in the X register, and
1615 		 * off_macpl is 0.)
1616 		 */
1617 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1618 		s2->s.k = off_macpl + off_nl + offset;
1619 		sappend(s, s2);
1620 		break;
1621 
1622 	case OR_TRAN_IPV6:
1623 		s = gen_load_macplrel(off_nl + 40 + offset, size);
1624 		break;
1625 
1626 	default:
1627 		abort();
1628 		return NULL;
1629 	}
1630 	return s;
1631 }
1632 
1633 /*
1634  * Generate code to load into the X register the sum of the length of
1635  * the IPv4 header and any variable-length header preceding the link-layer
1636  * header.
1637  */
1638 static struct slist *
1639 gen_loadx_iphdrlen()
1640 {
1641 	struct slist *s, *s2;
1642 
1643 	s = gen_off_macpl();
1644 	if (s != NULL) {
1645 		/*
1646 		 * There's a variable-length prefix preceding the
1647 		 * link-layer header, or the link-layer header is itself
1648 		 * variable-length.  "s" points to a list of statements
1649 		 * that put the offset of the MAC-layer payload into
1650 		 * the X register.
1651 		 *
1652 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1653 		 * don't have a constant offset, so we have to load the
1654 		 * value in question into the A register and add to it
1655 		 * the value from the X register.
1656 		 */
1657 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1658 		s2->s.k = off_nl;
1659 		sappend(s, s2);
1660 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1661 		s2->s.k = 0xf;
1662 		sappend(s, s2);
1663 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1664 		s2->s.k = 2;
1665 		sappend(s, s2);
1666 
1667 		/*
1668 		 * The A register now contains the length of the
1669 		 * IP header.  We need to add to it the offset of
1670 		 * the MAC-layer payload, which is still in the X
1671 		 * register, and move the result into the X register.
1672 		 */
1673 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1674 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1675 	} else {
1676 		/*
1677 		 * There is no variable-length header preceding the
1678 		 * link-layer header, and the link-layer header is
1679 		 * fixed-length; load the length of the IPv4 header,
1680 		 * which is at an offset of off_nl from the beginning
1681 		 * of the MAC-layer payload, and thus at an offset
1682 		 * of off_mac_pl + off_nl from the beginning of the
1683 		 * raw packet data.
1684 		 */
1685 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1686 		s->s.k = off_macpl + off_nl;
1687 	}
1688 	return s;
1689 }
1690 
1691 static struct block *
1692 gen_uncond(rsense)
1693 	int rsense;
1694 {
1695 	struct block *b;
1696 	struct slist *s;
1697 
1698 	s = new_stmt(BPF_LD|BPF_IMM);
1699 	s->s.k = !rsense;
1700 	b = new_block(JMP(BPF_JEQ));
1701 	b->stmts = s;
1702 
1703 	return b;
1704 }
1705 
1706 static inline struct block *
1707 gen_true()
1708 {
1709 	return gen_uncond(1);
1710 }
1711 
1712 static inline struct block *
1713 gen_false()
1714 {
1715 	return gen_uncond(0);
1716 }
1717 
1718 /*
1719  * Byte-swap a 32-bit number.
1720  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1721  * big-endian platforms.)
1722  */
1723 #define	SWAPLONG(y) \
1724 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1725 
1726 /*
1727  * Generate code to match a particular packet type.
1728  *
1729  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1730  * value, if <= ETHERMTU.  We use that to determine whether to
1731  * match the type/length field or to check the type/length field for
1732  * a value <= ETHERMTU to see whether it's a type field and then do
1733  * the appropriate test.
1734  */
1735 static struct block *
1736 gen_ether_linktype(proto)
1737 	register int proto;
1738 {
1739 	struct block *b0, *b1;
1740 
1741 	switch (proto) {
1742 
1743 	case LLCSAP_ISONS:
1744 	case LLCSAP_IP:
1745 	case LLCSAP_NETBEUI:
1746 		/*
1747 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1748 		 * so we check the DSAP and SSAP.
1749 		 *
1750 		 * LLCSAP_IP checks for IP-over-802.2, rather
1751 		 * than IP-over-Ethernet or IP-over-SNAP.
1752 		 *
1753 		 * XXX - should we check both the DSAP and the
1754 		 * SSAP, like this, or should we check just the
1755 		 * DSAP, as we do for other types <= ETHERMTU
1756 		 * (i.e., other SAP values)?
1757 		 */
1758 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1759 		gen_not(b0);
1760 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1761 			     ((proto << 8) | proto));
1762 		gen_and(b0, b1);
1763 		return b1;
1764 
1765 	case LLCSAP_IPX:
1766 		/*
1767 		 * Check for;
1768 		 *
1769 		 *	Ethernet_II frames, which are Ethernet
1770 		 *	frames with a frame type of ETHERTYPE_IPX;
1771 		 *
1772 		 *	Ethernet_802.3 frames, which are 802.3
1773 		 *	frames (i.e., the type/length field is
1774 		 *	a length field, <= ETHERMTU, rather than
1775 		 *	a type field) with the first two bytes
1776 		 *	after the Ethernet/802.3 header being
1777 		 *	0xFFFF;
1778 		 *
1779 		 *	Ethernet_802.2 frames, which are 802.3
1780 		 *	frames with an 802.2 LLC header and
1781 		 *	with the IPX LSAP as the DSAP in the LLC
1782 		 *	header;
1783 		 *
1784 		 *	Ethernet_SNAP frames, which are 802.3
1785 		 *	frames with an LLC header and a SNAP
1786 		 *	header and with an OUI of 0x000000
1787 		 *	(encapsulated Ethernet) and a protocol
1788 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1789 		 *
1790 		 * XXX - should we generate the same code both
1791 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1792 		 */
1793 
1794 		/*
1795 		 * This generates code to check both for the
1796 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1797 		 */
1798 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1799 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1800 		gen_or(b0, b1);
1801 
1802 		/*
1803 		 * Now we add code to check for SNAP frames with
1804 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1805 		 */
1806 		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1807 		gen_or(b0, b1);
1808 
1809 		/*
1810 		 * Now we generate code to check for 802.3
1811 		 * frames in general.
1812 		 */
1813 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1814 		gen_not(b0);
1815 
1816 		/*
1817 		 * Now add the check for 802.3 frames before the
1818 		 * check for Ethernet_802.2 and Ethernet_802.3,
1819 		 * as those checks should only be done on 802.3
1820 		 * frames, not on Ethernet frames.
1821 		 */
1822 		gen_and(b0, b1);
1823 
1824 		/*
1825 		 * Now add the check for Ethernet_II frames, and
1826 		 * do that before checking for the other frame
1827 		 * types.
1828 		 */
1829 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1830 		    (bpf_int32)ETHERTYPE_IPX);
1831 		gen_or(b0, b1);
1832 		return b1;
1833 
1834 	case ETHERTYPE_ATALK:
1835 	case ETHERTYPE_AARP:
1836 		/*
1837 		 * EtherTalk (AppleTalk protocols on Ethernet link
1838 		 * layer) may use 802.2 encapsulation.
1839 		 */
1840 
1841 		/*
1842 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1843 		 * we check for an Ethernet type field less than
1844 		 * 1500, which means it's an 802.3 length field.
1845 		 */
1846 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1847 		gen_not(b0);
1848 
1849 		/*
1850 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1851 		 * SNAP packets with an organization code of
1852 		 * 0x080007 (Apple, for Appletalk) and a protocol
1853 		 * type of ETHERTYPE_ATALK (Appletalk).
1854 		 *
1855 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1856 		 * SNAP packets with an organization code of
1857 		 * 0x000000 (encapsulated Ethernet) and a protocol
1858 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1859 		 */
1860 		if (proto == ETHERTYPE_ATALK)
1861 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1862 		else	/* proto == ETHERTYPE_AARP */
1863 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1864 		gen_and(b0, b1);
1865 
1866 		/*
1867 		 * Check for Ethernet encapsulation (Ethertalk
1868 		 * phase 1?); we just check for the Ethernet
1869 		 * protocol type.
1870 		 */
1871 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1872 
1873 		gen_or(b0, b1);
1874 		return b1;
1875 
1876 	default:
1877 		if (proto <= ETHERMTU) {
1878 			/*
1879 			 * This is an LLC SAP value, so the frames
1880 			 * that match would be 802.2 frames.
1881 			 * Check that the frame is an 802.2 frame
1882 			 * (i.e., that the length/type field is
1883 			 * a length field, <= ETHERMTU) and
1884 			 * then check the DSAP.
1885 			 */
1886 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1887 			gen_not(b0);
1888 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1889 			    (bpf_int32)proto);
1890 			gen_and(b0, b1);
1891 			return b1;
1892 		} else {
1893 			/*
1894 			 * This is an Ethernet type, so compare
1895 			 * the length/type field with it (if
1896 			 * the frame is an 802.2 frame, the length
1897 			 * field will be <= ETHERMTU, and, as
1898 			 * "proto" is > ETHERMTU, this test
1899 			 * will fail and the frame won't match,
1900 			 * which is what we want).
1901 			 */
1902 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1903 			    (bpf_int32)proto);
1904 		}
1905 	}
1906 }
1907 
1908 /*
1909  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1910  * or IPv6 then we have an error.
1911  */
1912 static struct block *
1913 gen_ipnet_linktype(proto)
1914 	register int proto;
1915 {
1916 	switch (proto) {
1917 
1918 	case ETHERTYPE_IP:
1919 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1920 		    (bpf_int32)IPH_AF_INET);
1921 		/* NOTREACHED */
1922 
1923 	case ETHERTYPE_IPV6:
1924 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1925 		    (bpf_int32)IPH_AF_INET6);
1926 		/* NOTREACHED */
1927 
1928 	default:
1929 		break;
1930 	}
1931 
1932 	return gen_false();
1933 }
1934 
1935 /*
1936  * Generate code to match a particular packet type.
1937  *
1938  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1939  * value, if <= ETHERMTU.  We use that to determine whether to
1940  * match the type field or to check the type field for the special
1941  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1942  */
1943 static struct block *
1944 gen_linux_sll_linktype(proto)
1945 	register int proto;
1946 {
1947 	struct block *b0, *b1;
1948 
1949 	switch (proto) {
1950 
1951 	case LLCSAP_ISONS:
1952 	case LLCSAP_IP:
1953 	case LLCSAP_NETBEUI:
1954 		/*
1955 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1956 		 * so we check the DSAP and SSAP.
1957 		 *
1958 		 * LLCSAP_IP checks for IP-over-802.2, rather
1959 		 * than IP-over-Ethernet or IP-over-SNAP.
1960 		 *
1961 		 * XXX - should we check both the DSAP and the
1962 		 * SSAP, like this, or should we check just the
1963 		 * DSAP, as we do for other types <= ETHERMTU
1964 		 * (i.e., other SAP values)?
1965 		 */
1966 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1967 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1968 			     ((proto << 8) | proto));
1969 		gen_and(b0, b1);
1970 		return b1;
1971 
1972 	case LLCSAP_IPX:
1973 		/*
1974 		 *	Ethernet_II frames, which are Ethernet
1975 		 *	frames with a frame type of ETHERTYPE_IPX;
1976 		 *
1977 		 *	Ethernet_802.3 frames, which have a frame
1978 		 *	type of LINUX_SLL_P_802_3;
1979 		 *
1980 		 *	Ethernet_802.2 frames, which are 802.3
1981 		 *	frames with an 802.2 LLC header (i.e, have
1982 		 *	a frame type of LINUX_SLL_P_802_2) and
1983 		 *	with the IPX LSAP as the DSAP in the LLC
1984 		 *	header;
1985 		 *
1986 		 *	Ethernet_SNAP frames, which are 802.3
1987 		 *	frames with an LLC header and a SNAP
1988 		 *	header and with an OUI of 0x000000
1989 		 *	(encapsulated Ethernet) and a protocol
1990 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1991 		 *
1992 		 * First, do the checks on LINUX_SLL_P_802_2
1993 		 * frames; generate the check for either
1994 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1995 		 * then put a check for LINUX_SLL_P_802_2 frames
1996 		 * before it.
1997 		 */
1998 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1999 		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
2000 		gen_or(b0, b1);
2001 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2002 		gen_and(b0, b1);
2003 
2004 		/*
2005 		 * Now check for 802.3 frames and OR that with
2006 		 * the previous test.
2007 		 */
2008 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2009 		gen_or(b0, b1);
2010 
2011 		/*
2012 		 * Now add the check for Ethernet_II frames, and
2013 		 * do that before checking for the other frame
2014 		 * types.
2015 		 */
2016 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2017 		    (bpf_int32)ETHERTYPE_IPX);
2018 		gen_or(b0, b1);
2019 		return b1;
2020 
2021 	case ETHERTYPE_ATALK:
2022 	case ETHERTYPE_AARP:
2023 		/*
2024 		 * EtherTalk (AppleTalk protocols on Ethernet link
2025 		 * layer) may use 802.2 encapsulation.
2026 		 */
2027 
2028 		/*
2029 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2030 		 * we check for the 802.2 protocol type in the
2031 		 * "Ethernet type" field.
2032 		 */
2033 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2034 
2035 		/*
2036 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2037 		 * SNAP packets with an organization code of
2038 		 * 0x080007 (Apple, for Appletalk) and a protocol
2039 		 * type of ETHERTYPE_ATALK (Appletalk).
2040 		 *
2041 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2042 		 * SNAP packets with an organization code of
2043 		 * 0x000000 (encapsulated Ethernet) and a protocol
2044 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2045 		 */
2046 		if (proto == ETHERTYPE_ATALK)
2047 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2048 		else	/* proto == ETHERTYPE_AARP */
2049 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2050 		gen_and(b0, b1);
2051 
2052 		/*
2053 		 * Check for Ethernet encapsulation (Ethertalk
2054 		 * phase 1?); we just check for the Ethernet
2055 		 * protocol type.
2056 		 */
2057 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2058 
2059 		gen_or(b0, b1);
2060 		return b1;
2061 
2062 	default:
2063 		if (proto <= ETHERMTU) {
2064 			/*
2065 			 * This is an LLC SAP value, so the frames
2066 			 * that match would be 802.2 frames.
2067 			 * Check for the 802.2 protocol type
2068 			 * in the "Ethernet type" field, and
2069 			 * then check the DSAP.
2070 			 */
2071 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2072 			    LINUX_SLL_P_802_2);
2073 			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2074 			     (bpf_int32)proto);
2075 			gen_and(b0, b1);
2076 			return b1;
2077 		} else {
2078 			/*
2079 			 * This is an Ethernet type, so compare
2080 			 * the length/type field with it (if
2081 			 * the frame is an 802.2 frame, the length
2082 			 * field will be <= ETHERMTU, and, as
2083 			 * "proto" is > ETHERMTU, this test
2084 			 * will fail and the frame won't match,
2085 			 * which is what we want).
2086 			 */
2087 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2088 			    (bpf_int32)proto);
2089 		}
2090 	}
2091 }
2092 
2093 static struct slist *
2094 gen_load_prism_llprefixlen()
2095 {
2096 	struct slist *s1, *s2;
2097 	struct slist *sjeq_avs_cookie;
2098 	struct slist *sjcommon;
2099 
2100 	/*
2101 	 * This code is not compatible with the optimizer, as
2102 	 * we are generating jmp instructions within a normal
2103 	 * slist of instructions
2104 	 */
2105 	no_optimize = 1;
2106 
2107 	/*
2108 	 * Generate code to load the length of the radio header into
2109 	 * the register assigned to hold that length, if one has been
2110 	 * assigned.  (If one hasn't been assigned, no code we've
2111 	 * generated uses that prefix, so we don't need to generate any
2112 	 * code to load it.)
2113 	 *
2114 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2115 	 * or always use the AVS header rather than the Prism header.
2116 	 * We load a 4-byte big-endian value at the beginning of the
2117 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2118 	 * it's equal to 0x80211000.  If so, that indicates that it's
2119 	 * an AVS header (the masked-out bits are the version number).
2120 	 * Otherwise, it's a Prism header.
2121 	 *
2122 	 * XXX - the Prism header is also, in theory, variable-length,
2123 	 * but no known software generates headers that aren't 144
2124 	 * bytes long.
2125 	 */
2126 	if (reg_off_ll != -1) {
2127 		/*
2128 		 * Load the cookie.
2129 		 */
2130 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2131 		s1->s.k = 0;
2132 
2133 		/*
2134 		 * AND it with 0xFFFFF000.
2135 		 */
2136 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2137 		s2->s.k = 0xFFFFF000;
2138 		sappend(s1, s2);
2139 
2140 		/*
2141 		 * Compare with 0x80211000.
2142 		 */
2143 		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2144 		sjeq_avs_cookie->s.k = 0x80211000;
2145 		sappend(s1, sjeq_avs_cookie);
2146 
2147 		/*
2148 		 * If it's AVS:
2149 		 *
2150 		 * The 4 bytes at an offset of 4 from the beginning of
2151 		 * the AVS header are the length of the AVS header.
2152 		 * That field is big-endian.
2153 		 */
2154 		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2155 		s2->s.k = 4;
2156 		sappend(s1, s2);
2157 		sjeq_avs_cookie->s.jt = s2;
2158 
2159 		/*
2160 		 * Now jump to the code to allocate a register
2161 		 * into which to save the header length and
2162 		 * store the length there.  (The "jump always"
2163 		 * instruction needs to have the k field set;
2164 		 * it's added to the PC, so, as we're jumping
2165 		 * over a single instruction, it should be 1.)
2166 		 */
2167 		sjcommon = new_stmt(JMP(BPF_JA));
2168 		sjcommon->s.k = 1;
2169 		sappend(s1, sjcommon);
2170 
2171 		/*
2172 		 * Now for the code that handles the Prism header.
2173 		 * Just load the length of the Prism header (144)
2174 		 * into the A register.  Have the test for an AVS
2175 		 * header branch here if we don't have an AVS header.
2176 		 */
2177 		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2178 		s2->s.k = 144;
2179 		sappend(s1, s2);
2180 		sjeq_avs_cookie->s.jf = s2;
2181 
2182 		/*
2183 		 * Now allocate a register to hold that value and store
2184 		 * it.  The code for the AVS header will jump here after
2185 		 * loading the length of the AVS header.
2186 		 */
2187 		s2 = new_stmt(BPF_ST);
2188 		s2->s.k = reg_off_ll;
2189 		sappend(s1, s2);
2190 		sjcommon->s.jf = s2;
2191 
2192 		/*
2193 		 * Now move it into the X register.
2194 		 */
2195 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2196 		sappend(s1, s2);
2197 
2198 		return (s1);
2199 	} else
2200 		return (NULL);
2201 }
2202 
2203 static struct slist *
2204 gen_load_avs_llprefixlen()
2205 {
2206 	struct slist *s1, *s2;
2207 
2208 	/*
2209 	 * Generate code to load the length of the AVS header into
2210 	 * the register assigned to hold that length, if one has been
2211 	 * assigned.  (If one hasn't been assigned, no code we've
2212 	 * generated uses that prefix, so we don't need to generate any
2213 	 * code to load it.)
2214 	 */
2215 	if (reg_off_ll != -1) {
2216 		/*
2217 		 * The 4 bytes at an offset of 4 from the beginning of
2218 		 * the AVS header are the length of the AVS header.
2219 		 * That field is big-endian.
2220 		 */
2221 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2222 		s1->s.k = 4;
2223 
2224 		/*
2225 		 * Now allocate a register to hold that value and store
2226 		 * it.
2227 		 */
2228 		s2 = new_stmt(BPF_ST);
2229 		s2->s.k = reg_off_ll;
2230 		sappend(s1, s2);
2231 
2232 		/*
2233 		 * Now move it into the X register.
2234 		 */
2235 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2236 		sappend(s1, s2);
2237 
2238 		return (s1);
2239 	} else
2240 		return (NULL);
2241 }
2242 
2243 static struct slist *
2244 gen_load_radiotap_llprefixlen()
2245 {
2246 	struct slist *s1, *s2;
2247 
2248 	/*
2249 	 * Generate code to load the length of the radiotap header into
2250 	 * the register assigned to hold that length, if one has been
2251 	 * assigned.  (If one hasn't been assigned, no code we've
2252 	 * generated uses that prefix, so we don't need to generate any
2253 	 * code to load it.)
2254 	 */
2255 	if (reg_off_ll != -1) {
2256 		/*
2257 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2258 		 * of the radiotap header are the length of the radiotap
2259 		 * header; unfortunately, it's little-endian, so we have
2260 		 * to load it a byte at a time and construct the value.
2261 		 */
2262 
2263 		/*
2264 		 * Load the high-order byte, at an offset of 3, shift it
2265 		 * left a byte, and put the result in the X register.
2266 		 */
2267 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2268 		s1->s.k = 3;
2269 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2270 		sappend(s1, s2);
2271 		s2->s.k = 8;
2272 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2273 		sappend(s1, s2);
2274 
2275 		/*
2276 		 * Load the next byte, at an offset of 2, and OR the
2277 		 * value from the X register into it.
2278 		 */
2279 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2280 		sappend(s1, s2);
2281 		s2->s.k = 2;
2282 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2283 		sappend(s1, s2);
2284 
2285 		/*
2286 		 * Now allocate a register to hold that value and store
2287 		 * it.
2288 		 */
2289 		s2 = new_stmt(BPF_ST);
2290 		s2->s.k = reg_off_ll;
2291 		sappend(s1, s2);
2292 
2293 		/*
2294 		 * Now move it into the X register.
2295 		 */
2296 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2297 		sappend(s1, s2);
2298 
2299 		return (s1);
2300 	} else
2301 		return (NULL);
2302 }
2303 
2304 /*
2305  * At the moment we treat PPI as normal Radiotap encoded
2306  * packets. The difference is in the function that generates
2307  * the code at the beginning to compute the header length.
2308  * Since this code generator of PPI supports bare 802.11
2309  * encapsulation only (i.e. the encapsulated DLT should be
2310  * DLT_IEEE802_11) we generate code to check for this too;
2311  * that's done in finish_parse().
2312  */
2313 static struct slist *
2314 gen_load_ppi_llprefixlen()
2315 {
2316 	struct slist *s1, *s2;
2317 
2318 	/*
2319 	 * Generate code to load the length of the radiotap header
2320 	 * into the register assigned to hold that length, if one has
2321 	 * been assigned.
2322 	 */
2323 	if (reg_off_ll != -1) {
2324 		/*
2325 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2326 		 * of the radiotap header are the length of the radiotap
2327 		 * header; unfortunately, it's little-endian, so we have
2328 		 * to load it a byte at a time and construct the value.
2329 		 */
2330 
2331 		/*
2332 		 * Load the high-order byte, at an offset of 3, shift it
2333 		 * left a byte, and put the result in the X register.
2334 		 */
2335 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2336 		s1->s.k = 3;
2337 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2338 		sappend(s1, s2);
2339 		s2->s.k = 8;
2340 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2341 		sappend(s1, s2);
2342 
2343 		/*
2344 		 * Load the next byte, at an offset of 2, and OR the
2345 		 * value from the X register into it.
2346 		 */
2347 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2348 		sappend(s1, s2);
2349 		s2->s.k = 2;
2350 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2351 		sappend(s1, s2);
2352 
2353 		/*
2354 		 * Now allocate a register to hold that value and store
2355 		 * it.
2356 		 */
2357 		s2 = new_stmt(BPF_ST);
2358 		s2->s.k = reg_off_ll;
2359 		sappend(s1, s2);
2360 
2361 		/*
2362 		 * Now move it into the X register.
2363 		 */
2364 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2365 		sappend(s1, s2);
2366 
2367 		return (s1);
2368 	} else
2369 		return (NULL);
2370 }
2371 
2372 /*
2373  * Load a value relative to the beginning of the link-layer header after the 802.11
2374  * header, i.e. LLC_SNAP.
2375  * The link-layer header doesn't necessarily begin at the beginning
2376  * of the packet data; there might be a variable-length prefix containing
2377  * radio information.
2378  */
2379 static struct slist *
2380 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2381 {
2382 	struct slist *s2;
2383 	struct slist *sjset_data_frame_1;
2384 	struct slist *sjset_data_frame_2;
2385 	struct slist *sjset_qos;
2386 	struct slist *sjset_radiotap_flags;
2387 	struct slist *sjset_radiotap_tsft;
2388 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2389 	struct slist *s_roundup;
2390 
2391 	if (reg_off_macpl == -1) {
2392 		/*
2393 		 * No register has been assigned to the offset of
2394 		 * the MAC-layer payload, which means nobody needs
2395 		 * it; don't bother computing it - just return
2396 		 * what we already have.
2397 		 */
2398 		return (s);
2399 	}
2400 
2401 	/*
2402 	 * This code is not compatible with the optimizer, as
2403 	 * we are generating jmp instructions within a normal
2404 	 * slist of instructions
2405 	 */
2406 	no_optimize = 1;
2407 
2408 	/*
2409 	 * If "s" is non-null, it has code to arrange that the X register
2410 	 * contains the length of the prefix preceding the link-layer
2411 	 * header.
2412 	 *
2413 	 * Otherwise, the length of the prefix preceding the link-layer
2414 	 * header is "off_ll".
2415 	 */
2416 	if (s == NULL) {
2417 		/*
2418 		 * There is no variable-length header preceding the
2419 		 * link-layer header.
2420 		 *
2421 		 * Load the length of the fixed-length prefix preceding
2422 		 * the link-layer header (if any) into the X register,
2423 		 * and store it in the reg_off_macpl register.
2424 		 * That length is off_ll.
2425 		 */
2426 		s = new_stmt(BPF_LDX|BPF_IMM);
2427 		s->s.k = off_ll;
2428 	}
2429 
2430 	/*
2431 	 * The X register contains the offset of the beginning of the
2432 	 * link-layer header; add 24, which is the minimum length
2433 	 * of the MAC header for a data frame, to that, and store it
2434 	 * in reg_off_macpl, and then load the Frame Control field,
2435 	 * which is at the offset in the X register, with an indexed load.
2436 	 */
2437 	s2 = new_stmt(BPF_MISC|BPF_TXA);
2438 	sappend(s, s2);
2439 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2440 	s2->s.k = 24;
2441 	sappend(s, s2);
2442 	s2 = new_stmt(BPF_ST);
2443 	s2->s.k = reg_off_macpl;
2444 	sappend(s, s2);
2445 
2446 	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2447 	s2->s.k = 0;
2448 	sappend(s, s2);
2449 
2450 	/*
2451 	 * Check the Frame Control field to see if this is a data frame;
2452 	 * a data frame has the 0x08 bit (b3) in that field set and the
2453 	 * 0x04 bit (b2) clear.
2454 	 */
2455 	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2456 	sjset_data_frame_1->s.k = 0x08;
2457 	sappend(s, sjset_data_frame_1);
2458 
2459 	/*
2460 	 * If b3 is set, test b2, otherwise go to the first statement of
2461 	 * the rest of the program.
2462 	 */
2463 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2464 	sjset_data_frame_2->s.k = 0x04;
2465 	sappend(s, sjset_data_frame_2);
2466 	sjset_data_frame_1->s.jf = snext;
2467 
2468 	/*
2469 	 * If b2 is not set, this is a data frame; test the QoS bit.
2470 	 * Otherwise, go to the first statement of the rest of the
2471 	 * program.
2472 	 */
2473 	sjset_data_frame_2->s.jt = snext;
2474 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2475 	sjset_qos->s.k = 0x80;	/* QoS bit */
2476 	sappend(s, sjset_qos);
2477 
2478 	/*
2479 	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2480 	 * field.
2481 	 * Otherwise, go to the first statement of the rest of the
2482 	 * program.
2483 	 */
2484 	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2485 	s2->s.k = reg_off_macpl;
2486 	sappend(s, s2);
2487 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2488 	s2->s.k = 2;
2489 	sappend(s, s2);
2490 	s2 = new_stmt(BPF_ST);
2491 	s2->s.k = reg_off_macpl;
2492 	sappend(s, s2);
2493 
2494 	/*
2495 	 * If we have a radiotap header, look at it to see whether
2496 	 * there's Atheros padding between the MAC-layer header
2497 	 * and the payload.
2498 	 *
2499 	 * Note: all of the fields in the radiotap header are
2500 	 * little-endian, so we byte-swap all of the values
2501 	 * we test against, as they will be loaded as big-endian
2502 	 * values.
2503 	 */
2504 	if (linktype == DLT_IEEE802_11_RADIO) {
2505 		/*
2506 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2507 		 * in the presence flag?
2508 		 */
2509 		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2510 		s2->s.k = 4;
2511 		sappend(s, s2);
2512 
2513 		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2514 		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2515 		sappend(s, sjset_radiotap_flags);
2516 
2517 		/*
2518 		 * If not, skip all of this.
2519 		 */
2520 		sjset_radiotap_flags->s.jf = snext;
2521 
2522 		/*
2523 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2524 		 */
2525 		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2526 		    new_stmt(JMP(BPF_JSET));
2527 		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2528 		sappend(s, sjset_radiotap_tsft);
2529 
2530 		/*
2531 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2532 		 * at an offset of 16 from the beginning of the raw packet
2533 		 * data (8 bytes for the radiotap header and 8 bytes for
2534 		 * the TSFT field).
2535 		 *
2536 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2537 		 * is set.
2538 		 */
2539 		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2540 		s2->s.k = 16;
2541 		sappend(s, s2);
2542 
2543 		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2544 		sjset_tsft_datapad->s.k = 0x20;
2545 		sappend(s, sjset_tsft_datapad);
2546 
2547 		/*
2548 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2549 		 * at an offset of 8 from the beginning of the raw packet
2550 		 * data (8 bytes for the radiotap header).
2551 		 *
2552 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2553 		 * is set.
2554 		 */
2555 		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2556 		s2->s.k = 8;
2557 		sappend(s, s2);
2558 
2559 		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2560 		sjset_notsft_datapad->s.k = 0x20;
2561 		sappend(s, sjset_notsft_datapad);
2562 
2563 		/*
2564 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2565 		 * set, round the length of the 802.11 header to
2566 		 * a multiple of 4.  Do that by adding 3 and then
2567 		 * dividing by and multiplying by 4, which we do by
2568 		 * ANDing with ~3.
2569 		 */
2570 		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2571 		s_roundup->s.k = reg_off_macpl;
2572 		sappend(s, s_roundup);
2573 		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2574 		s2->s.k = 3;
2575 		sappend(s, s2);
2576 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2577 		s2->s.k = ~3;
2578 		sappend(s, s2);
2579 		s2 = new_stmt(BPF_ST);
2580 		s2->s.k = reg_off_macpl;
2581 		sappend(s, s2);
2582 
2583 		sjset_tsft_datapad->s.jt = s_roundup;
2584 		sjset_tsft_datapad->s.jf = snext;
2585 		sjset_notsft_datapad->s.jt = s_roundup;
2586 		sjset_notsft_datapad->s.jf = snext;
2587 	} else
2588 		sjset_qos->s.jf = snext;
2589 
2590 	return s;
2591 }
2592 
2593 static void
2594 insert_compute_vloffsets(b)
2595 	struct block *b;
2596 {
2597 	struct slist *s;
2598 
2599 	/*
2600 	 * For link-layer types that have a variable-length header
2601 	 * preceding the link-layer header, generate code to load
2602 	 * the offset of the link-layer header into the register
2603 	 * assigned to that offset, if any.
2604 	 */
2605 	switch (linktype) {
2606 
2607 	case DLT_PRISM_HEADER:
2608 		s = gen_load_prism_llprefixlen();
2609 		break;
2610 
2611 	case DLT_IEEE802_11_RADIO_AVS:
2612 		s = gen_load_avs_llprefixlen();
2613 		break;
2614 
2615 	case DLT_IEEE802_11_RADIO:
2616 		s = gen_load_radiotap_llprefixlen();
2617 		break;
2618 
2619 	case DLT_PPI:
2620 		s = gen_load_ppi_llprefixlen();
2621 		break;
2622 
2623 	default:
2624 		s = NULL;
2625 		break;
2626 	}
2627 
2628 	/*
2629 	 * For link-layer types that have a variable-length link-layer
2630 	 * header, generate code to load the offset of the MAC-layer
2631 	 * payload into the register assigned to that offset, if any.
2632 	 */
2633 	switch (linktype) {
2634 
2635 	case DLT_IEEE802_11:
2636 	case DLT_PRISM_HEADER:
2637 	case DLT_IEEE802_11_RADIO_AVS:
2638 	case DLT_IEEE802_11_RADIO:
2639 	case DLT_PPI:
2640 		s = gen_load_802_11_header_len(s, b->stmts);
2641 		break;
2642 	}
2643 
2644 	/*
2645 	 * If we have any offset-loading code, append all the
2646 	 * existing statements in the block to those statements,
2647 	 * and make the resulting list the list of statements
2648 	 * for the block.
2649 	 */
2650 	if (s != NULL) {
2651 		sappend(s, b->stmts);
2652 		b->stmts = s;
2653 	}
2654 }
2655 
2656 static struct block *
2657 gen_ppi_dlt_check(void)
2658 {
2659 	struct slist *s_load_dlt;
2660 	struct block *b;
2661 
2662 	if (linktype == DLT_PPI)
2663 	{
2664 		/* Create the statements that check for the DLT
2665 		 */
2666 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2667 		s_load_dlt->s.k = 4;
2668 
2669 		b = new_block(JMP(BPF_JEQ));
2670 
2671 		b->stmts = s_load_dlt;
2672 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2673 	}
2674 	else
2675 	{
2676 		b = NULL;
2677 	}
2678 
2679 	return b;
2680 }
2681 
2682 static struct slist *
2683 gen_prism_llprefixlen(void)
2684 {
2685 	struct slist *s;
2686 
2687 	if (reg_off_ll == -1) {
2688 		/*
2689 		 * We haven't yet assigned a register for the length
2690 		 * of the radio header; allocate one.
2691 		 */
2692 		reg_off_ll = alloc_reg();
2693 	}
2694 
2695 	/*
2696 	 * Load the register containing the radio length
2697 	 * into the X register.
2698 	 */
2699 	s = new_stmt(BPF_LDX|BPF_MEM);
2700 	s->s.k = reg_off_ll;
2701 	return s;
2702 }
2703 
2704 static struct slist *
2705 gen_avs_llprefixlen(void)
2706 {
2707 	struct slist *s;
2708 
2709 	if (reg_off_ll == -1) {
2710 		/*
2711 		 * We haven't yet assigned a register for the length
2712 		 * of the AVS header; allocate one.
2713 		 */
2714 		reg_off_ll = alloc_reg();
2715 	}
2716 
2717 	/*
2718 	 * Load the register containing the AVS length
2719 	 * into the X register.
2720 	 */
2721 	s = new_stmt(BPF_LDX|BPF_MEM);
2722 	s->s.k = reg_off_ll;
2723 	return s;
2724 }
2725 
2726 static struct slist *
2727 gen_radiotap_llprefixlen(void)
2728 {
2729 	struct slist *s;
2730 
2731 	if (reg_off_ll == -1) {
2732 		/*
2733 		 * We haven't yet assigned a register for the length
2734 		 * of the radiotap header; allocate one.
2735 		 */
2736 		reg_off_ll = alloc_reg();
2737 	}
2738 
2739 	/*
2740 	 * Load the register containing the radiotap length
2741 	 * into the X register.
2742 	 */
2743 	s = new_stmt(BPF_LDX|BPF_MEM);
2744 	s->s.k = reg_off_ll;
2745 	return s;
2746 }
2747 
2748 /*
2749  * At the moment we treat PPI as normal Radiotap encoded
2750  * packets. The difference is in the function that generates
2751  * the code at the beginning to compute the header length.
2752  * Since this code generator of PPI supports bare 802.11
2753  * encapsulation only (i.e. the encapsulated DLT should be
2754  * DLT_IEEE802_11) we generate code to check for this too.
2755  */
2756 static struct slist *
2757 gen_ppi_llprefixlen(void)
2758 {
2759 	struct slist *s;
2760 
2761 	if (reg_off_ll == -1) {
2762 		/*
2763 		 * We haven't yet assigned a register for the length
2764 		 * of the radiotap header; allocate one.
2765 		 */
2766 		reg_off_ll = alloc_reg();
2767 	}
2768 
2769 	/*
2770 	 * Load the register containing the PPI length
2771 	 * into the X register.
2772 	 */
2773 	s = new_stmt(BPF_LDX|BPF_MEM);
2774 	s->s.k = reg_off_ll;
2775 	return s;
2776 }
2777 
2778 /*
2779  * Generate code to compute the link-layer header length, if necessary,
2780  * putting it into the X register, and to return either a pointer to a
2781  * "struct slist" for the list of statements in that code, or NULL if
2782  * no code is necessary.
2783  */
2784 static struct slist *
2785 gen_llprefixlen(void)
2786 {
2787 	switch (linktype) {
2788 
2789 	case DLT_PRISM_HEADER:
2790 		return gen_prism_llprefixlen();
2791 
2792 	case DLT_IEEE802_11_RADIO_AVS:
2793 		return gen_avs_llprefixlen();
2794 
2795 	case DLT_IEEE802_11_RADIO:
2796 		return gen_radiotap_llprefixlen();
2797 
2798 	case DLT_PPI:
2799 		return gen_ppi_llprefixlen();
2800 
2801 	default:
2802 		return NULL;
2803 	}
2804 }
2805 
2806 /*
2807  * Generate code to load the register containing the offset of the
2808  * MAC-layer payload into the X register; if no register for that offset
2809  * has been allocated, allocate it first.
2810  */
2811 static struct slist *
2812 gen_off_macpl(void)
2813 {
2814 	struct slist *s;
2815 
2816 	if (off_macpl_is_variable) {
2817 		if (reg_off_macpl == -1) {
2818 			/*
2819 			 * We haven't yet assigned a register for the offset
2820 			 * of the MAC-layer payload; allocate one.
2821 			 */
2822 			reg_off_macpl = alloc_reg();
2823 		}
2824 
2825 		/*
2826 		 * Load the register containing the offset of the MAC-layer
2827 		 * payload into the X register.
2828 		 */
2829 		s = new_stmt(BPF_LDX|BPF_MEM);
2830 		s->s.k = reg_off_macpl;
2831 		return s;
2832 	} else {
2833 		/*
2834 		 * That offset isn't variable, so we don't need to
2835 		 * generate any code.
2836 		 */
2837 		return NULL;
2838 	}
2839 }
2840 
2841 /*
2842  * Map an Ethernet type to the equivalent PPP type.
2843  */
2844 static int
2845 ethertype_to_ppptype(proto)
2846 	int proto;
2847 {
2848 	switch (proto) {
2849 
2850 	case ETHERTYPE_IP:
2851 		proto = PPP_IP;
2852 		break;
2853 
2854 	case ETHERTYPE_IPV6:
2855 		proto = PPP_IPV6;
2856 		break;
2857 
2858 	case ETHERTYPE_DN:
2859 		proto = PPP_DECNET;
2860 		break;
2861 
2862 	case ETHERTYPE_ATALK:
2863 		proto = PPP_APPLE;
2864 		break;
2865 
2866 	case ETHERTYPE_NS:
2867 		proto = PPP_NS;
2868 		break;
2869 
2870 	case LLCSAP_ISONS:
2871 		proto = PPP_OSI;
2872 		break;
2873 
2874 	case LLCSAP_8021D:
2875 		/*
2876 		 * I'm assuming the "Bridging PDU"s that go
2877 		 * over PPP are Spanning Tree Protocol
2878 		 * Bridging PDUs.
2879 		 */
2880 		proto = PPP_BRPDU;
2881 		break;
2882 
2883 	case LLCSAP_IPX:
2884 		proto = PPP_IPX;
2885 		break;
2886 	}
2887 	return (proto);
2888 }
2889 
2890 /*
2891  * Generate code to match a particular packet type by matching the
2892  * link-layer type field or fields in the 802.2 LLC header.
2893  *
2894  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2895  * value, if <= ETHERMTU.
2896  */
2897 static struct block *
2898 gen_linktype(proto)
2899 	register int proto;
2900 {
2901 	struct block *b0, *b1, *b2;
2902 
2903 	/* are we checking MPLS-encapsulated packets? */
2904 	if (label_stack_depth > 0) {
2905 		switch (proto) {
2906 		case ETHERTYPE_IP:
2907 		case PPP_IP:
2908 			/* FIXME add other L3 proto IDs */
2909 			return gen_mpls_linktype(Q_IP);
2910 
2911 		case ETHERTYPE_IPV6:
2912 		case PPP_IPV6:
2913 			/* FIXME add other L3 proto IDs */
2914 			return gen_mpls_linktype(Q_IPV6);
2915 
2916 		default:
2917 			bpf_error("unsupported protocol over mpls");
2918 			/* NOTREACHED */
2919 		}
2920 	}
2921 
2922 	/*
2923 	 * Are we testing PPPoE packets?
2924 	 */
2925 	if (is_pppoes) {
2926 		/*
2927 		 * The PPPoE session header is part of the
2928 		 * MAC-layer payload, so all references
2929 		 * should be relative to the beginning of
2930 		 * that payload.
2931 		 */
2932 
2933 		/*
2934 		 * We use Ethernet protocol types inside libpcap;
2935 		 * map them to the corresponding PPP protocol types.
2936 		 */
2937 		proto = ethertype_to_ppptype(proto);
2938 		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2939 	}
2940 
2941 	switch (linktype) {
2942 
2943 	case DLT_EN10MB:
2944 	case DLT_NETANALYZER:
2945 	case DLT_NETANALYZER_TRANSPARENT:
2946 		return gen_ether_linktype(proto);
2947 		/*NOTREACHED*/
2948 		break;
2949 
2950 	case DLT_C_HDLC:
2951 		switch (proto) {
2952 
2953 		case LLCSAP_ISONS:
2954 			proto = (proto << 8 | LLCSAP_ISONS);
2955 			/* fall through */
2956 
2957 		default:
2958 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2959 			    (bpf_int32)proto);
2960 			/*NOTREACHED*/
2961 			break;
2962 		}
2963 		break;
2964 
2965 	case DLT_IEEE802_11:
2966 	case DLT_PRISM_HEADER:
2967 	case DLT_IEEE802_11_RADIO_AVS:
2968 	case DLT_IEEE802_11_RADIO:
2969 	case DLT_PPI:
2970 		/*
2971 		 * Check that we have a data frame.
2972 		 */
2973 		b0 = gen_check_802_11_data_frame();
2974 
2975 		/*
2976 		 * Now check for the specified link-layer type.
2977 		 */
2978 		b1 = gen_llc_linktype(proto);
2979 		gen_and(b0, b1);
2980 		return b1;
2981 		/*NOTREACHED*/
2982 		break;
2983 
2984 	case DLT_FDDI:
2985 		/*
2986 		 * XXX - check for asynchronous frames, as per RFC 1103.
2987 		 */
2988 		return gen_llc_linktype(proto);
2989 		/*NOTREACHED*/
2990 		break;
2991 
2992 	case DLT_IEEE802:
2993 		/*
2994 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2995 		 */
2996 		return gen_llc_linktype(proto);
2997 		/*NOTREACHED*/
2998 		break;
2999 
3000 	case DLT_ATM_RFC1483:
3001 	case DLT_ATM_CLIP:
3002 	case DLT_IP_OVER_FC:
3003 		return gen_llc_linktype(proto);
3004 		/*NOTREACHED*/
3005 		break;
3006 
3007 	case DLT_SUNATM:
3008 		/*
3009 		 * If "is_lane" is set, check for a LANE-encapsulated
3010 		 * version of this protocol, otherwise check for an
3011 		 * LLC-encapsulated version of this protocol.
3012 		 *
3013 		 * We assume LANE means Ethernet, not Token Ring.
3014 		 */
3015 		if (is_lane) {
3016 			/*
3017 			 * Check that the packet doesn't begin with an
3018 			 * LE Control marker.  (We've already generated
3019 			 * a test for LANE.)
3020 			 */
3021 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3022 			    0xFF00);
3023 			gen_not(b0);
3024 
3025 			/*
3026 			 * Now generate an Ethernet test.
3027 			 */
3028 			b1 = gen_ether_linktype(proto);
3029 			gen_and(b0, b1);
3030 			return b1;
3031 		} else {
3032 			/*
3033 			 * Check for LLC encapsulation and then check the
3034 			 * protocol.
3035 			 */
3036 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3037 			b1 = gen_llc_linktype(proto);
3038 			gen_and(b0, b1);
3039 			return b1;
3040 		}
3041 		/*NOTREACHED*/
3042 		break;
3043 
3044 	case DLT_LINUX_SLL:
3045 		return gen_linux_sll_linktype(proto);
3046 		/*NOTREACHED*/
3047 		break;
3048 
3049 	case DLT_SLIP:
3050 	case DLT_SLIP_BSDOS:
3051 	case DLT_RAW:
3052 		/*
3053 		 * These types don't provide any type field; packets
3054 		 * are always IPv4 or IPv6.
3055 		 *
3056 		 * XXX - for IPv4, check for a version number of 4, and,
3057 		 * for IPv6, check for a version number of 6?
3058 		 */
3059 		switch (proto) {
3060 
3061 		case ETHERTYPE_IP:
3062 			/* Check for a version number of 4. */
3063 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3064 
3065 		case ETHERTYPE_IPV6:
3066 			/* Check for a version number of 6. */
3067 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3068 
3069 		default:
3070 			return gen_false();		/* always false */
3071 		}
3072 		/*NOTREACHED*/
3073 		break;
3074 
3075 	case DLT_IPV4:
3076 		/*
3077 		 * Raw IPv4, so no type field.
3078 		 */
3079 		if (proto == ETHERTYPE_IP)
3080 			return gen_true();		/* always true */
3081 
3082 		/* Checking for something other than IPv4; always false */
3083 		return gen_false();
3084 		/*NOTREACHED*/
3085 		break;
3086 
3087 	case DLT_IPV6:
3088 		/*
3089 		 * Raw IPv6, so no type field.
3090 		 */
3091 		if (proto == ETHERTYPE_IPV6)
3092 			return gen_true();		/* always true */
3093 
3094 		/* Checking for something other than IPv6; always false */
3095 		return gen_false();
3096 		/*NOTREACHED*/
3097 		break;
3098 
3099 	case DLT_PPP:
3100 	case DLT_PPP_PPPD:
3101 	case DLT_PPP_SERIAL:
3102 	case DLT_PPP_ETHER:
3103 		/*
3104 		 * We use Ethernet protocol types inside libpcap;
3105 		 * map them to the corresponding PPP protocol types.
3106 		 */
3107 		proto = ethertype_to_ppptype(proto);
3108 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3109 		/*NOTREACHED*/
3110 		break;
3111 
3112 	case DLT_PPP_BSDOS:
3113 		/*
3114 		 * We use Ethernet protocol types inside libpcap;
3115 		 * map them to the corresponding PPP protocol types.
3116 		 */
3117 		switch (proto) {
3118 
3119 		case ETHERTYPE_IP:
3120 			/*
3121 			 * Also check for Van Jacobson-compressed IP.
3122 			 * XXX - do this for other forms of PPP?
3123 			 */
3124 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3125 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3126 			gen_or(b0, b1);
3127 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3128 			gen_or(b1, b0);
3129 			return b0;
3130 
3131 		default:
3132 			proto = ethertype_to_ppptype(proto);
3133 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3134 				(bpf_int32)proto);
3135 		}
3136 		/*NOTREACHED*/
3137 		break;
3138 
3139 	case DLT_NULL:
3140 	case DLT_LOOP:
3141 	case DLT_ENC:
3142 		/*
3143 		 * For DLT_NULL, the link-layer header is a 32-bit
3144 		 * word containing an AF_ value in *host* byte order,
3145 		 * and for DLT_ENC, the link-layer header begins
3146 		 * with a 32-bit work containing an AF_ value in
3147 		 * host byte order.
3148 		 *
3149 		 * In addition, if we're reading a saved capture file,
3150 		 * the host byte order in the capture may not be the
3151 		 * same as the host byte order on this machine.
3152 		 *
3153 		 * For DLT_LOOP, the link-layer header is a 32-bit
3154 		 * word containing an AF_ value in *network* byte order.
3155 		 *
3156 		 * XXX - AF_ values may, unfortunately, be platform-
3157 		 * dependent; for example, FreeBSD's AF_INET6 is 24
3158 		 * whilst NetBSD's and OpenBSD's is 26.
3159 		 *
3160 		 * This means that, when reading a capture file, just
3161 		 * checking for our AF_INET6 value won't work if the
3162 		 * capture file came from another OS.
3163 		 */
3164 		switch (proto) {
3165 
3166 		case ETHERTYPE_IP:
3167 			proto = AF_INET;
3168 			break;
3169 
3170 #ifdef INET6
3171 		case ETHERTYPE_IPV6:
3172 			proto = AF_INET6;
3173 			break;
3174 #endif
3175 
3176 		default:
3177 			/*
3178 			 * Not a type on which we support filtering.
3179 			 * XXX - support those that have AF_ values
3180 			 * #defined on this platform, at least?
3181 			 */
3182 			return gen_false();
3183 		}
3184 
3185 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3186 			/*
3187 			 * The AF_ value is in host byte order, but
3188 			 * the BPF interpreter will convert it to
3189 			 * network byte order.
3190 			 *
3191 			 * If this is a save file, and it's from a
3192 			 * machine with the opposite byte order to
3193 			 * ours, we byte-swap the AF_ value.
3194 			 *
3195 			 * Then we run it through "htonl()", and
3196 			 * generate code to compare against the result.
3197 			 */
3198 			if (bpf_pcap->sf.rfile != NULL &&
3199 			    bpf_pcap->sf.swapped)
3200 				proto = SWAPLONG(proto);
3201 			proto = htonl(proto);
3202 		}
3203 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3204 
3205 #ifdef HAVE_NET_PFVAR_H
3206 	case DLT_PFLOG:
3207 		/*
3208 		 * af field is host byte order in contrast to the rest of
3209 		 * the packet.
3210 		 */
3211 		if (proto == ETHERTYPE_IP)
3212 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3213 			    BPF_B, (bpf_int32)AF_INET));
3214 		else if (proto == ETHERTYPE_IPV6)
3215 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3216 			    BPF_B, (bpf_int32)AF_INET6));
3217 		else
3218 			return gen_false();
3219 		/*NOTREACHED*/
3220 		break;
3221 #endif /* HAVE_NET_PFVAR_H */
3222 
3223 	case DLT_ARCNET:
3224 	case DLT_ARCNET_LINUX:
3225 		/*
3226 		 * XXX should we check for first fragment if the protocol
3227 		 * uses PHDS?
3228 		 */
3229 		switch (proto) {
3230 
3231 		default:
3232 			return gen_false();
3233 
3234 		case ETHERTYPE_IPV6:
3235 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3236 				(bpf_int32)ARCTYPE_INET6));
3237 
3238 		case ETHERTYPE_IP:
3239 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3240 				     (bpf_int32)ARCTYPE_IP);
3241 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3242 				     (bpf_int32)ARCTYPE_IP_OLD);
3243 			gen_or(b0, b1);
3244 			return (b1);
3245 
3246 		case ETHERTYPE_ARP:
3247 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3248 				     (bpf_int32)ARCTYPE_ARP);
3249 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3250 				     (bpf_int32)ARCTYPE_ARP_OLD);
3251 			gen_or(b0, b1);
3252 			return (b1);
3253 
3254 		case ETHERTYPE_REVARP:
3255 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3256 					(bpf_int32)ARCTYPE_REVARP));
3257 
3258 		case ETHERTYPE_ATALK:
3259 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3260 					(bpf_int32)ARCTYPE_ATALK));
3261 		}
3262 		/*NOTREACHED*/
3263 		break;
3264 
3265 	case DLT_LTALK:
3266 		switch (proto) {
3267 		case ETHERTYPE_ATALK:
3268 			return gen_true();
3269 		default:
3270 			return gen_false();
3271 		}
3272 		/*NOTREACHED*/
3273 		break;
3274 
3275 	case DLT_FRELAY:
3276 		/*
3277 		 * XXX - assumes a 2-byte Frame Relay header with
3278 		 * DLCI and flags.  What if the address is longer?
3279 		 */
3280 		switch (proto) {
3281 
3282 		case ETHERTYPE_IP:
3283 			/*
3284 			 * Check for the special NLPID for IP.
3285 			 */
3286 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3287 
3288 		case ETHERTYPE_IPV6:
3289 			/*
3290 			 * Check for the special NLPID for IPv6.
3291 			 */
3292 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3293 
3294 		case LLCSAP_ISONS:
3295 			/*
3296 			 * Check for several OSI protocols.
3297 			 *
3298 			 * Frame Relay packets typically have an OSI
3299 			 * NLPID at the beginning; we check for each
3300 			 * of them.
3301 			 *
3302 			 * What we check for is the NLPID and a frame
3303 			 * control field of UI, i.e. 0x03 followed
3304 			 * by the NLPID.
3305 			 */
3306 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3307 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3308 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3309 			gen_or(b1, b2);
3310 			gen_or(b0, b2);
3311 			return b2;
3312 
3313 		default:
3314 			return gen_false();
3315 		}
3316 		/*NOTREACHED*/
3317 		break;
3318 
3319 	case DLT_MFR:
3320 		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3321 
3322         case DLT_JUNIPER_MFR:
3323         case DLT_JUNIPER_MLFR:
3324         case DLT_JUNIPER_MLPPP:
3325 	case DLT_JUNIPER_ATM1:
3326 	case DLT_JUNIPER_ATM2:
3327 	case DLT_JUNIPER_PPPOE:
3328 	case DLT_JUNIPER_PPPOE_ATM:
3329         case DLT_JUNIPER_GGSN:
3330         case DLT_JUNIPER_ES:
3331         case DLT_JUNIPER_MONITOR:
3332         case DLT_JUNIPER_SERVICES:
3333         case DLT_JUNIPER_ETHER:
3334         case DLT_JUNIPER_PPP:
3335         case DLT_JUNIPER_FRELAY:
3336         case DLT_JUNIPER_CHDLC:
3337         case DLT_JUNIPER_VP:
3338         case DLT_JUNIPER_ST:
3339         case DLT_JUNIPER_ISM:
3340         case DLT_JUNIPER_VS:
3341         case DLT_JUNIPER_SRX_E2E:
3342         case DLT_JUNIPER_FIBRECHANNEL:
3343 	case DLT_JUNIPER_ATM_CEMIC:
3344 
3345 		/* just lets verify the magic number for now -
3346 		 * on ATM we may have up to 6 different encapsulations on the wire
3347 		 * and need a lot of heuristics to figure out that the payload
3348 		 * might be;
3349 		 *
3350 		 * FIXME encapsulation specific BPF_ filters
3351 		 */
3352 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3353 
3354 	case DLT_IPNET:
3355 		return gen_ipnet_linktype(proto);
3356 
3357 	case DLT_LINUX_IRDA:
3358 		bpf_error("IrDA link-layer type filtering not implemented");
3359 
3360 	case DLT_DOCSIS:
3361 		bpf_error("DOCSIS link-layer type filtering not implemented");
3362 
3363 	case DLT_MTP2:
3364 	case DLT_MTP2_WITH_PHDR:
3365 		bpf_error("MTP2 link-layer type filtering not implemented");
3366 
3367 	case DLT_ERF:
3368 		bpf_error("ERF link-layer type filtering not implemented");
3369 
3370 	case DLT_PFSYNC:
3371 		bpf_error("PFSYNC link-layer type filtering not implemented");
3372 
3373 	case DLT_LINUX_LAPD:
3374 		bpf_error("LAPD link-layer type filtering not implemented");
3375 
3376 	case DLT_USB:
3377 	case DLT_USB_LINUX:
3378 	case DLT_USB_LINUX_MMAPPED:
3379 		bpf_error("USB link-layer type filtering not implemented");
3380 
3381 	case DLT_BLUETOOTH_HCI_H4:
3382 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3383 		bpf_error("Bluetooth link-layer type filtering not implemented");
3384 
3385 	case DLT_CAN20B:
3386 	case DLT_CAN_SOCKETCAN:
3387 		bpf_error("CAN link-layer type filtering not implemented");
3388 
3389 	case DLT_IEEE802_15_4:
3390 	case DLT_IEEE802_15_4_LINUX:
3391 	case DLT_IEEE802_15_4_NONASK_PHY:
3392 	case DLT_IEEE802_15_4_NOFCS:
3393 		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3394 
3395 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3396 		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3397 
3398 	case DLT_SITA:
3399 		bpf_error("SITA link-layer type filtering not implemented");
3400 
3401 	case DLT_RAIF1:
3402 		bpf_error("RAIF1 link-layer type filtering not implemented");
3403 
3404 	case DLT_IPMB:
3405 		bpf_error("IPMB link-layer type filtering not implemented");
3406 
3407 	case DLT_AX25_KISS:
3408 		bpf_error("AX.25 link-layer type filtering not implemented");
3409 	}
3410 
3411 	/*
3412 	 * All the types that have no encapsulation should either be
3413 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3414 	 * all packets are IP packets, or should be handled in some
3415 	 * special case, if none of them are (if some are and some
3416 	 * aren't, the lack of encapsulation is a problem, as we'd
3417 	 * have to find some other way of determining the packet type).
3418 	 *
3419 	 * Therefore, if "off_linktype" is -1, there's an error.
3420 	 */
3421 	if (off_linktype == (u_int)-1)
3422 		abort();
3423 
3424 	/*
3425 	 * Any type not handled above should always have an Ethernet
3426 	 * type at an offset of "off_linktype".
3427 	 */
3428 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3429 }
3430 
3431 /*
3432  * Check for an LLC SNAP packet with a given organization code and
3433  * protocol type; we check the entire contents of the 802.2 LLC and
3434  * snap headers, checking for DSAP and SSAP of SNAP and a control
3435  * field of 0x03 in the LLC header, and for the specified organization
3436  * code and protocol type in the SNAP header.
3437  */
3438 static struct block *
3439 gen_snap(orgcode, ptype)
3440 	bpf_u_int32 orgcode;
3441 	bpf_u_int32 ptype;
3442 {
3443 	u_char snapblock[8];
3444 
3445 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3446 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3447 	snapblock[2] = 0x03;		/* control = UI */
3448 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3449 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3450 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3451 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3452 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3453 	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3454 }
3455 
3456 /*
3457  * Generate code to match a particular packet type, for link-layer types
3458  * using 802.2 LLC headers.
3459  *
3460  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3461  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3462  *
3463  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3464  * value, if <= ETHERMTU.  We use that to determine whether to
3465  * match the DSAP or both DSAP and LSAP or to check the OUI and
3466  * protocol ID in a SNAP header.
3467  */
3468 static struct block *
3469 gen_llc_linktype(proto)
3470 	int proto;
3471 {
3472 	/*
3473 	 * XXX - handle token-ring variable-length header.
3474 	 */
3475 	switch (proto) {
3476 
3477 	case LLCSAP_IP:
3478 	case LLCSAP_ISONS:
3479 	case LLCSAP_NETBEUI:
3480 		/*
3481 		 * XXX - should we check both the DSAP and the
3482 		 * SSAP, like this, or should we check just the
3483 		 * DSAP, as we do for other types <= ETHERMTU
3484 		 * (i.e., other SAP values)?
3485 		 */
3486 		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3487 			     ((proto << 8) | proto));
3488 
3489 	case LLCSAP_IPX:
3490 		/*
3491 		 * XXX - are there ever SNAP frames for IPX on
3492 		 * non-Ethernet 802.x networks?
3493 		 */
3494 		return gen_cmp(OR_MACPL, 0, BPF_B,
3495 		    (bpf_int32)LLCSAP_IPX);
3496 
3497 	case ETHERTYPE_ATALK:
3498 		/*
3499 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3500 		 * SNAP packets with an organization code of
3501 		 * 0x080007 (Apple, for Appletalk) and a protocol
3502 		 * type of ETHERTYPE_ATALK (Appletalk).
3503 		 *
3504 		 * XXX - check for an organization code of
3505 		 * encapsulated Ethernet as well?
3506 		 */
3507 		return gen_snap(0x080007, ETHERTYPE_ATALK);
3508 
3509 	default:
3510 		/*
3511 		 * XXX - we don't have to check for IPX 802.3
3512 		 * here, but should we check for the IPX Ethertype?
3513 		 */
3514 		if (proto <= ETHERMTU) {
3515 			/*
3516 			 * This is an LLC SAP value, so check
3517 			 * the DSAP.
3518 			 */
3519 			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3520 		} else {
3521 			/*
3522 			 * This is an Ethernet type; we assume that it's
3523 			 * unlikely that it'll appear in the right place
3524 			 * at random, and therefore check only the
3525 			 * location that would hold the Ethernet type
3526 			 * in a SNAP frame with an organization code of
3527 			 * 0x000000 (encapsulated Ethernet).
3528 			 *
3529 			 * XXX - if we were to check for the SNAP DSAP and
3530 			 * LSAP, as per XXX, and were also to check for an
3531 			 * organization code of 0x000000 (encapsulated
3532 			 * Ethernet), we'd do
3533 			 *
3534 			 *	return gen_snap(0x000000, proto);
3535 			 *
3536 			 * here; for now, we don't, as per the above.
3537 			 * I don't know whether it's worth the extra CPU
3538 			 * time to do the right check or not.
3539 			 */
3540 			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3541 		}
3542 	}
3543 }
3544 
3545 static struct block *
3546 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3547 	bpf_u_int32 addr;
3548 	bpf_u_int32 mask;
3549 	int dir, proto;
3550 	u_int src_off, dst_off;
3551 {
3552 	struct block *b0, *b1;
3553 	u_int offset;
3554 
3555 	switch (dir) {
3556 
3557 	case Q_SRC:
3558 		offset = src_off;
3559 		break;
3560 
3561 	case Q_DST:
3562 		offset = dst_off;
3563 		break;
3564 
3565 	case Q_AND:
3566 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3567 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3568 		gen_and(b0, b1);
3569 		return b1;
3570 
3571 	case Q_OR:
3572 	case Q_DEFAULT:
3573 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3574 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3575 		gen_or(b0, b1);
3576 		return b1;
3577 
3578 	default:
3579 		abort();
3580 	}
3581 	b0 = gen_linktype(proto);
3582 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3583 	gen_and(b0, b1);
3584 	return b1;
3585 }
3586 
3587 #ifdef INET6
3588 static struct block *
3589 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3590 	struct in6_addr *addr;
3591 	struct in6_addr *mask;
3592 	int dir, proto;
3593 	u_int src_off, dst_off;
3594 {
3595 	struct block *b0, *b1;
3596 	u_int offset;
3597 	u_int32_t *a, *m;
3598 
3599 	switch (dir) {
3600 
3601 	case Q_SRC:
3602 		offset = src_off;
3603 		break;
3604 
3605 	case Q_DST:
3606 		offset = dst_off;
3607 		break;
3608 
3609 	case Q_AND:
3610 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3611 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3612 		gen_and(b0, b1);
3613 		return b1;
3614 
3615 	case Q_OR:
3616 	case Q_DEFAULT:
3617 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3618 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3619 		gen_or(b0, b1);
3620 		return b1;
3621 
3622 	default:
3623 		abort();
3624 	}
3625 	/* this order is important */
3626 	a = (u_int32_t *)addr;
3627 	m = (u_int32_t *)mask;
3628 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3629 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3630 	gen_and(b0, b1);
3631 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3632 	gen_and(b0, b1);
3633 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3634 	gen_and(b0, b1);
3635 	b0 = gen_linktype(proto);
3636 	gen_and(b0, b1);
3637 	return b1;
3638 }
3639 #endif
3640 
3641 static struct block *
3642 gen_ehostop(eaddr, dir)
3643 	register const u_char *eaddr;
3644 	register int dir;
3645 {
3646 	register struct block *b0, *b1;
3647 
3648 	switch (dir) {
3649 	case Q_SRC:
3650 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3651 
3652 	case Q_DST:
3653 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3654 
3655 	case Q_AND:
3656 		b0 = gen_ehostop(eaddr, Q_SRC);
3657 		b1 = gen_ehostop(eaddr, Q_DST);
3658 		gen_and(b0, b1);
3659 		return b1;
3660 
3661 	case Q_DEFAULT:
3662 	case Q_OR:
3663 		b0 = gen_ehostop(eaddr, Q_SRC);
3664 		b1 = gen_ehostop(eaddr, Q_DST);
3665 		gen_or(b0, b1);
3666 		return b1;
3667 
3668 	case Q_ADDR1:
3669 		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3670 		break;
3671 
3672 	case Q_ADDR2:
3673 		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3674 		break;
3675 
3676 	case Q_ADDR3:
3677 		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3678 		break;
3679 
3680 	case Q_ADDR4:
3681 		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3682 		break;
3683 
3684 	case Q_RA:
3685 		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3686 		break;
3687 
3688 	case Q_TA:
3689 		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3690 		break;
3691 	}
3692 	abort();
3693 	/* NOTREACHED */
3694 }
3695 
3696 /*
3697  * Like gen_ehostop, but for DLT_FDDI
3698  */
3699 static struct block *
3700 gen_fhostop(eaddr, dir)
3701 	register const u_char *eaddr;
3702 	register int dir;
3703 {
3704 	struct block *b0, *b1;
3705 
3706 	switch (dir) {
3707 	case Q_SRC:
3708 #ifdef PCAP_FDDIPAD
3709 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3710 #else
3711 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3712 #endif
3713 
3714 	case Q_DST:
3715 #ifdef PCAP_FDDIPAD
3716 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3717 #else
3718 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3719 #endif
3720 
3721 	case Q_AND:
3722 		b0 = gen_fhostop(eaddr, Q_SRC);
3723 		b1 = gen_fhostop(eaddr, Q_DST);
3724 		gen_and(b0, b1);
3725 		return b1;
3726 
3727 	case Q_DEFAULT:
3728 	case Q_OR:
3729 		b0 = gen_fhostop(eaddr, Q_SRC);
3730 		b1 = gen_fhostop(eaddr, Q_DST);
3731 		gen_or(b0, b1);
3732 		return b1;
3733 
3734 	case Q_ADDR1:
3735 		bpf_error("'addr1' is only supported on 802.11");
3736 		break;
3737 
3738 	case Q_ADDR2:
3739 		bpf_error("'addr2' is only supported on 802.11");
3740 		break;
3741 
3742 	case Q_ADDR3:
3743 		bpf_error("'addr3' is only supported on 802.11");
3744 		break;
3745 
3746 	case Q_ADDR4:
3747 		bpf_error("'addr4' is only supported on 802.11");
3748 		break;
3749 
3750 	case Q_RA:
3751 		bpf_error("'ra' is only supported on 802.11");
3752 		break;
3753 
3754 	case Q_TA:
3755 		bpf_error("'ta' is only supported on 802.11");
3756 		break;
3757 	}
3758 	abort();
3759 	/* NOTREACHED */
3760 }
3761 
3762 /*
3763  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3764  */
3765 static struct block *
3766 gen_thostop(eaddr, dir)
3767 	register const u_char *eaddr;
3768 	register int dir;
3769 {
3770 	register struct block *b0, *b1;
3771 
3772 	switch (dir) {
3773 	case Q_SRC:
3774 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3775 
3776 	case Q_DST:
3777 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3778 
3779 	case Q_AND:
3780 		b0 = gen_thostop(eaddr, Q_SRC);
3781 		b1 = gen_thostop(eaddr, Q_DST);
3782 		gen_and(b0, b1);
3783 		return b1;
3784 
3785 	case Q_DEFAULT:
3786 	case Q_OR:
3787 		b0 = gen_thostop(eaddr, Q_SRC);
3788 		b1 = gen_thostop(eaddr, Q_DST);
3789 		gen_or(b0, b1);
3790 		return b1;
3791 
3792 	case Q_ADDR1:
3793 		bpf_error("'addr1' is only supported on 802.11");
3794 		break;
3795 
3796 	case Q_ADDR2:
3797 		bpf_error("'addr2' is only supported on 802.11");
3798 		break;
3799 
3800 	case Q_ADDR3:
3801 		bpf_error("'addr3' is only supported on 802.11");
3802 		break;
3803 
3804 	case Q_ADDR4:
3805 		bpf_error("'addr4' is only supported on 802.11");
3806 		break;
3807 
3808 	case Q_RA:
3809 		bpf_error("'ra' is only supported on 802.11");
3810 		break;
3811 
3812 	case Q_TA:
3813 		bpf_error("'ta' is only supported on 802.11");
3814 		break;
3815 	}
3816 	abort();
3817 	/* NOTREACHED */
3818 }
3819 
3820 /*
3821  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3822  * various 802.11 + radio headers.
3823  */
3824 static struct block *
3825 gen_wlanhostop(eaddr, dir)
3826 	register const u_char *eaddr;
3827 	register int dir;
3828 {
3829 	register struct block *b0, *b1, *b2;
3830 	register struct slist *s;
3831 
3832 #ifdef ENABLE_WLAN_FILTERING_PATCH
3833 	/*
3834 	 * TODO GV 20070613
3835 	 * We need to disable the optimizer because the optimizer is buggy
3836 	 * and wipes out some LD instructions generated by the below
3837 	 * code to validate the Frame Control bits
3838 	 */
3839 	no_optimize = 1;
3840 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3841 
3842 	switch (dir) {
3843 	case Q_SRC:
3844 		/*
3845 		 * Oh, yuk.
3846 		 *
3847 		 *	For control frames, there is no SA.
3848 		 *
3849 		 *	For management frames, SA is at an
3850 		 *	offset of 10 from the beginning of
3851 		 *	the packet.
3852 		 *
3853 		 *	For data frames, SA is at an offset
3854 		 *	of 10 from the beginning of the packet
3855 		 *	if From DS is clear, at an offset of
3856 		 *	16 from the beginning of the packet
3857 		 *	if From DS is set and To DS is clear,
3858 		 *	and an offset of 24 from the beginning
3859 		 *	of the packet if From DS is set and To DS
3860 		 *	is set.
3861 		 */
3862 
3863 		/*
3864 		 * Generate the tests to be done for data frames
3865 		 * with From DS set.
3866 		 *
3867 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3868 		 */
3869 		s = gen_load_a(OR_LINK, 1, BPF_B);
3870 		b1 = new_block(JMP(BPF_JSET));
3871 		b1->s.k = 0x01;	/* To DS */
3872 		b1->stmts = s;
3873 
3874 		/*
3875 		 * If To DS is set, the SA is at 24.
3876 		 */
3877 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3878 		gen_and(b1, b0);
3879 
3880 		/*
3881 		 * Now, check for To DS not set, i.e. check
3882 		 * "!(link[1] & 0x01)".
3883 		 */
3884 		s = gen_load_a(OR_LINK, 1, BPF_B);
3885 		b2 = new_block(JMP(BPF_JSET));
3886 		b2->s.k = 0x01;	/* To DS */
3887 		b2->stmts = s;
3888 		gen_not(b2);
3889 
3890 		/*
3891 		 * If To DS is not set, the SA is at 16.
3892 		 */
3893 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3894 		gen_and(b2, b1);
3895 
3896 		/*
3897 		 * Now OR together the last two checks.  That gives
3898 		 * the complete set of checks for data frames with
3899 		 * From DS set.
3900 		 */
3901 		gen_or(b1, b0);
3902 
3903 		/*
3904 		 * Now check for From DS being set, and AND that with
3905 		 * the ORed-together checks.
3906 		 */
3907 		s = gen_load_a(OR_LINK, 1, BPF_B);
3908 		b1 = new_block(JMP(BPF_JSET));
3909 		b1->s.k = 0x02;	/* From DS */
3910 		b1->stmts = s;
3911 		gen_and(b1, b0);
3912 
3913 		/*
3914 		 * Now check for data frames with From DS not set.
3915 		 */
3916 		s = gen_load_a(OR_LINK, 1, BPF_B);
3917 		b2 = new_block(JMP(BPF_JSET));
3918 		b2->s.k = 0x02;	/* From DS */
3919 		b2->stmts = s;
3920 		gen_not(b2);
3921 
3922 		/*
3923 		 * If From DS isn't set, the SA is at 10.
3924 		 */
3925 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3926 		gen_and(b2, b1);
3927 
3928 		/*
3929 		 * Now OR together the checks for data frames with
3930 		 * From DS not set and for data frames with From DS
3931 		 * set; that gives the checks done for data frames.
3932 		 */
3933 		gen_or(b1, b0);
3934 
3935 		/*
3936 		 * Now check for a data frame.
3937 		 * I.e, check "link[0] & 0x08".
3938 		 */
3939 		s = gen_load_a(OR_LINK, 0, BPF_B);
3940 		b1 = new_block(JMP(BPF_JSET));
3941 		b1->s.k = 0x08;
3942 		b1->stmts = s;
3943 
3944 		/*
3945 		 * AND that with the checks done for data frames.
3946 		 */
3947 		gen_and(b1, b0);
3948 
3949 		/*
3950 		 * If the high-order bit of the type value is 0, this
3951 		 * is a management frame.
3952 		 * I.e, check "!(link[0] & 0x08)".
3953 		 */
3954 		s = gen_load_a(OR_LINK, 0, BPF_B);
3955 		b2 = new_block(JMP(BPF_JSET));
3956 		b2->s.k = 0x08;
3957 		b2->stmts = s;
3958 		gen_not(b2);
3959 
3960 		/*
3961 		 * For management frames, the SA is at 10.
3962 		 */
3963 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3964 		gen_and(b2, b1);
3965 
3966 		/*
3967 		 * OR that with the checks done for data frames.
3968 		 * That gives the checks done for management and
3969 		 * data frames.
3970 		 */
3971 		gen_or(b1, b0);
3972 
3973 		/*
3974 		 * If the low-order bit of the type value is 1,
3975 		 * this is either a control frame or a frame
3976 		 * with a reserved type, and thus not a
3977 		 * frame with an SA.
3978 		 *
3979 		 * I.e., check "!(link[0] & 0x04)".
3980 		 */
3981 		s = gen_load_a(OR_LINK, 0, BPF_B);
3982 		b1 = new_block(JMP(BPF_JSET));
3983 		b1->s.k = 0x04;
3984 		b1->stmts = s;
3985 		gen_not(b1);
3986 
3987 		/*
3988 		 * AND that with the checks for data and management
3989 		 * frames.
3990 		 */
3991 		gen_and(b1, b0);
3992 		return b0;
3993 
3994 	case Q_DST:
3995 		/*
3996 		 * Oh, yuk.
3997 		 *
3998 		 *	For control frames, there is no DA.
3999 		 *
4000 		 *	For management frames, DA is at an
4001 		 *	offset of 4 from the beginning of
4002 		 *	the packet.
4003 		 *
4004 		 *	For data frames, DA is at an offset
4005 		 *	of 4 from the beginning of the packet
4006 		 *	if To DS is clear and at an offset of
4007 		 *	16 from the beginning of the packet
4008 		 *	if To DS is set.
4009 		 */
4010 
4011 		/*
4012 		 * Generate the tests to be done for data frames.
4013 		 *
4014 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4015 		 */
4016 		s = gen_load_a(OR_LINK, 1, BPF_B);
4017 		b1 = new_block(JMP(BPF_JSET));
4018 		b1->s.k = 0x01;	/* To DS */
4019 		b1->stmts = s;
4020 
4021 		/*
4022 		 * If To DS is set, the DA is at 16.
4023 		 */
4024 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4025 		gen_and(b1, b0);
4026 
4027 		/*
4028 		 * Now, check for To DS not set, i.e. check
4029 		 * "!(link[1] & 0x01)".
4030 		 */
4031 		s = gen_load_a(OR_LINK, 1, BPF_B);
4032 		b2 = new_block(JMP(BPF_JSET));
4033 		b2->s.k = 0x01;	/* To DS */
4034 		b2->stmts = s;
4035 		gen_not(b2);
4036 
4037 		/*
4038 		 * If To DS is not set, the DA is at 4.
4039 		 */
4040 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4041 		gen_and(b2, b1);
4042 
4043 		/*
4044 		 * Now OR together the last two checks.  That gives
4045 		 * the complete set of checks for data frames.
4046 		 */
4047 		gen_or(b1, b0);
4048 
4049 		/*
4050 		 * Now check for a data frame.
4051 		 * I.e, check "link[0] & 0x08".
4052 		 */
4053 		s = gen_load_a(OR_LINK, 0, BPF_B);
4054 		b1 = new_block(JMP(BPF_JSET));
4055 		b1->s.k = 0x08;
4056 		b1->stmts = s;
4057 
4058 		/*
4059 		 * AND that with the checks done for data frames.
4060 		 */
4061 		gen_and(b1, b0);
4062 
4063 		/*
4064 		 * If the high-order bit of the type value is 0, this
4065 		 * is a management frame.
4066 		 * I.e, check "!(link[0] & 0x08)".
4067 		 */
4068 		s = gen_load_a(OR_LINK, 0, BPF_B);
4069 		b2 = new_block(JMP(BPF_JSET));
4070 		b2->s.k = 0x08;
4071 		b2->stmts = s;
4072 		gen_not(b2);
4073 
4074 		/*
4075 		 * For management frames, the DA is at 4.
4076 		 */
4077 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4078 		gen_and(b2, b1);
4079 
4080 		/*
4081 		 * OR that with the checks done for data frames.
4082 		 * That gives the checks done for management and
4083 		 * data frames.
4084 		 */
4085 		gen_or(b1, b0);
4086 
4087 		/*
4088 		 * If the low-order bit of the type value is 1,
4089 		 * this is either a control frame or a frame
4090 		 * with a reserved type, and thus not a
4091 		 * frame with an SA.
4092 		 *
4093 		 * I.e., check "!(link[0] & 0x04)".
4094 		 */
4095 		s = gen_load_a(OR_LINK, 0, BPF_B);
4096 		b1 = new_block(JMP(BPF_JSET));
4097 		b1->s.k = 0x04;
4098 		b1->stmts = s;
4099 		gen_not(b1);
4100 
4101 		/*
4102 		 * AND that with the checks for data and management
4103 		 * frames.
4104 		 */
4105 		gen_and(b1, b0);
4106 		return b0;
4107 
4108 	case Q_RA:
4109 		/*
4110 		 * Not present in management frames; addr1 in other
4111 		 * frames.
4112 		 */
4113 
4114 		/*
4115 		 * If the high-order bit of the type value is 0, this
4116 		 * is a management frame.
4117 		 * I.e, check "(link[0] & 0x08)".
4118 		 */
4119 		s = gen_load_a(OR_LINK, 0, BPF_B);
4120 		b1 = new_block(JMP(BPF_JSET));
4121 		b1->s.k = 0x08;
4122 		b1->stmts = s;
4123 
4124 		/*
4125 		 * Check addr1.
4126 		 */
4127 		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4128 
4129 		/*
4130 		 * AND that with the check of addr1.
4131 		 */
4132 		gen_and(b1, b0);
4133 		return (b0);
4134 
4135 	case Q_TA:
4136 		/*
4137 		 * Not present in management frames; addr2, if present,
4138 		 * in other frames.
4139 		 */
4140 
4141 		/*
4142 		 * Not present in CTS or ACK control frames.
4143 		 */
4144 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4145 			IEEE80211_FC0_TYPE_MASK);
4146 		gen_not(b0);
4147 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4148 			IEEE80211_FC0_SUBTYPE_MASK);
4149 		gen_not(b1);
4150 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4151 			IEEE80211_FC0_SUBTYPE_MASK);
4152 		gen_not(b2);
4153 		gen_and(b1, b2);
4154 		gen_or(b0, b2);
4155 
4156 		/*
4157 		 * If the high-order bit of the type value is 0, this
4158 		 * is a management frame.
4159 		 * I.e, check "(link[0] & 0x08)".
4160 		 */
4161 		s = gen_load_a(OR_LINK, 0, BPF_B);
4162 		b1 = new_block(JMP(BPF_JSET));
4163 		b1->s.k = 0x08;
4164 		b1->stmts = s;
4165 
4166 		/*
4167 		 * AND that with the check for frames other than
4168 		 * CTS and ACK frames.
4169 		 */
4170 		gen_and(b1, b2);
4171 
4172 		/*
4173 		 * Check addr2.
4174 		 */
4175 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4176 		gen_and(b2, b1);
4177 		return b1;
4178 
4179 	/*
4180 	 * XXX - add BSSID keyword?
4181 	 */
4182 	case Q_ADDR1:
4183 		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4184 
4185 	case Q_ADDR2:
4186 		/*
4187 		 * Not present in CTS or ACK control frames.
4188 		 */
4189 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4190 			IEEE80211_FC0_TYPE_MASK);
4191 		gen_not(b0);
4192 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4193 			IEEE80211_FC0_SUBTYPE_MASK);
4194 		gen_not(b1);
4195 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4196 			IEEE80211_FC0_SUBTYPE_MASK);
4197 		gen_not(b2);
4198 		gen_and(b1, b2);
4199 		gen_or(b0, b2);
4200 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4201 		gen_and(b2, b1);
4202 		return b1;
4203 
4204 	case Q_ADDR3:
4205 		/*
4206 		 * Not present in control frames.
4207 		 */
4208 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4209 			IEEE80211_FC0_TYPE_MASK);
4210 		gen_not(b0);
4211 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4212 		gen_and(b0, b1);
4213 		return b1;
4214 
4215 	case Q_ADDR4:
4216 		/*
4217 		 * Present only if the direction mask has both "From DS"
4218 		 * and "To DS" set.  Neither control frames nor management
4219 		 * frames should have both of those set, so we don't
4220 		 * check the frame type.
4221 		 */
4222 		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4223 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4224 		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4225 		gen_and(b0, b1);
4226 		return b1;
4227 
4228 	case Q_AND:
4229 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4230 		b1 = gen_wlanhostop(eaddr, Q_DST);
4231 		gen_and(b0, b1);
4232 		return b1;
4233 
4234 	case Q_DEFAULT:
4235 	case Q_OR:
4236 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4237 		b1 = gen_wlanhostop(eaddr, Q_DST);
4238 		gen_or(b0, b1);
4239 		return b1;
4240 	}
4241 	abort();
4242 	/* NOTREACHED */
4243 }
4244 
4245 /*
4246  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4247  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4248  * as the RFC states.)
4249  */
4250 static struct block *
4251 gen_ipfchostop(eaddr, dir)
4252 	register const u_char *eaddr;
4253 	register int dir;
4254 {
4255 	register struct block *b0, *b1;
4256 
4257 	switch (dir) {
4258 	case Q_SRC:
4259 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4260 
4261 	case Q_DST:
4262 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4263 
4264 	case Q_AND:
4265 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4266 		b1 = gen_ipfchostop(eaddr, Q_DST);
4267 		gen_and(b0, b1);
4268 		return b1;
4269 
4270 	case Q_DEFAULT:
4271 	case Q_OR:
4272 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4273 		b1 = gen_ipfchostop(eaddr, Q_DST);
4274 		gen_or(b0, b1);
4275 		return b1;
4276 
4277 	case Q_ADDR1:
4278 		bpf_error("'addr1' is only supported on 802.11");
4279 		break;
4280 
4281 	case Q_ADDR2:
4282 		bpf_error("'addr2' is only supported on 802.11");
4283 		break;
4284 
4285 	case Q_ADDR3:
4286 		bpf_error("'addr3' is only supported on 802.11");
4287 		break;
4288 
4289 	case Q_ADDR4:
4290 		bpf_error("'addr4' is only supported on 802.11");
4291 		break;
4292 
4293 	case Q_RA:
4294 		bpf_error("'ra' is only supported on 802.11");
4295 		break;
4296 
4297 	case Q_TA:
4298 		bpf_error("'ta' is only supported on 802.11");
4299 		break;
4300 	}
4301 	abort();
4302 	/* NOTREACHED */
4303 }
4304 
4305 /*
4306  * This is quite tricky because there may be pad bytes in front of the
4307  * DECNET header, and then there are two possible data packet formats that
4308  * carry both src and dst addresses, plus 5 packet types in a format that
4309  * carries only the src node, plus 2 types that use a different format and
4310  * also carry just the src node.
4311  *
4312  * Yuck.
4313  *
4314  * Instead of doing those all right, we just look for data packets with
4315  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4316  * will require a lot more hacking.
4317  *
4318  * To add support for filtering on DECNET "areas" (network numbers)
4319  * one would want to add a "mask" argument to this routine.  That would
4320  * make the filter even more inefficient, although one could be clever
4321  * and not generate masking instructions if the mask is 0xFFFF.
4322  */
4323 static struct block *
4324 gen_dnhostop(addr, dir)
4325 	bpf_u_int32 addr;
4326 	int dir;
4327 {
4328 	struct block *b0, *b1, *b2, *tmp;
4329 	u_int offset_lh;	/* offset if long header is received */
4330 	u_int offset_sh;	/* offset if short header is received */
4331 
4332 	switch (dir) {
4333 
4334 	case Q_DST:
4335 		offset_sh = 1;	/* follows flags */
4336 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4337 		break;
4338 
4339 	case Q_SRC:
4340 		offset_sh = 3;	/* follows flags, dstnode */
4341 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4342 		break;
4343 
4344 	case Q_AND:
4345 		/* Inefficient because we do our Calvinball dance twice */
4346 		b0 = gen_dnhostop(addr, Q_SRC);
4347 		b1 = gen_dnhostop(addr, Q_DST);
4348 		gen_and(b0, b1);
4349 		return b1;
4350 
4351 	case Q_OR:
4352 	case Q_DEFAULT:
4353 		/* Inefficient because we do our Calvinball dance twice */
4354 		b0 = gen_dnhostop(addr, Q_SRC);
4355 		b1 = gen_dnhostop(addr, Q_DST);
4356 		gen_or(b0, b1);
4357 		return b1;
4358 
4359 	case Q_ISO:
4360 		bpf_error("ISO host filtering not implemented");
4361 
4362 	default:
4363 		abort();
4364 	}
4365 	b0 = gen_linktype(ETHERTYPE_DN);
4366 	/* Check for pad = 1, long header case */
4367 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4368 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4369 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4370 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4371 	gen_and(tmp, b1);
4372 	/* Check for pad = 0, long header case */
4373 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4374 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4375 	gen_and(tmp, b2);
4376 	gen_or(b2, b1);
4377 	/* Check for pad = 1, short header case */
4378 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4379 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4380 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4381 	gen_and(tmp, b2);
4382 	gen_or(b2, b1);
4383 	/* Check for pad = 0, short header case */
4384 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4385 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4386 	gen_and(tmp, b2);
4387 	gen_or(b2, b1);
4388 
4389 	/* Combine with test for linktype */
4390 	gen_and(b0, b1);
4391 	return b1;
4392 }
4393 
4394 /*
4395  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4396  * test the bottom-of-stack bit, and then check the version number
4397  * field in the IP header.
4398  */
4399 static struct block *
4400 gen_mpls_linktype(proto)
4401 	int proto;
4402 {
4403 	struct block *b0, *b1;
4404 
4405         switch (proto) {
4406 
4407         case Q_IP:
4408                 /* match the bottom-of-stack bit */
4409                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4410                 /* match the IPv4 version number */
4411                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4412                 gen_and(b0, b1);
4413                 return b1;
4414 
4415        case Q_IPV6:
4416                 /* match the bottom-of-stack bit */
4417                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4418                 /* match the IPv4 version number */
4419                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4420                 gen_and(b0, b1);
4421                 return b1;
4422 
4423        default:
4424                 abort();
4425         }
4426 }
4427 
4428 static struct block *
4429 gen_host(addr, mask, proto, dir, type)
4430 	bpf_u_int32 addr;
4431 	bpf_u_int32 mask;
4432 	int proto;
4433 	int dir;
4434 	int type;
4435 {
4436 	struct block *b0, *b1;
4437 	const char *typestr;
4438 
4439 	if (type == Q_NET)
4440 		typestr = "net";
4441 	else
4442 		typestr = "host";
4443 
4444 	switch (proto) {
4445 
4446 	case Q_DEFAULT:
4447 		b0 = gen_host(addr, mask, Q_IP, dir, type);
4448 		/*
4449 		 * Only check for non-IPv4 addresses if we're not
4450 		 * checking MPLS-encapsulated packets.
4451 		 */
4452 		if (label_stack_depth == 0) {
4453 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4454 			gen_or(b0, b1);
4455 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4456 			gen_or(b1, b0);
4457 		}
4458 		return b0;
4459 
4460 	case Q_IP:
4461 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4462 
4463 	case Q_RARP:
4464 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4465 
4466 	case Q_ARP:
4467 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4468 
4469 	case Q_TCP:
4470 		bpf_error("'tcp' modifier applied to %s", typestr);
4471 
4472 	case Q_SCTP:
4473 		bpf_error("'sctp' modifier applied to %s", typestr);
4474 
4475 	case Q_UDP:
4476 		bpf_error("'udp' modifier applied to %s", typestr);
4477 
4478 	case Q_ICMP:
4479 		bpf_error("'icmp' modifier applied to %s", typestr);
4480 
4481 	case Q_IGMP:
4482 		bpf_error("'igmp' modifier applied to %s", typestr);
4483 
4484 	case Q_IGRP:
4485 		bpf_error("'igrp' modifier applied to %s", typestr);
4486 
4487 	case Q_PIM:
4488 		bpf_error("'pim' modifier applied to %s", typestr);
4489 
4490 	case Q_VRRP:
4491 		bpf_error("'vrrp' modifier applied to %s", typestr);
4492 
4493 	case Q_CARP:
4494 		bpf_error("'carp' modifier applied to %s", typestr);
4495 
4496 	case Q_ATALK:
4497 		bpf_error("ATALK host filtering not implemented");
4498 
4499 	case Q_AARP:
4500 		bpf_error("AARP host filtering not implemented");
4501 
4502 	case Q_DECNET:
4503 		return gen_dnhostop(addr, dir);
4504 
4505 	case Q_SCA:
4506 		bpf_error("SCA host filtering not implemented");
4507 
4508 	case Q_LAT:
4509 		bpf_error("LAT host filtering not implemented");
4510 
4511 	case Q_MOPDL:
4512 		bpf_error("MOPDL host filtering not implemented");
4513 
4514 	case Q_MOPRC:
4515 		bpf_error("MOPRC host filtering not implemented");
4516 
4517 	case Q_IPV6:
4518 		bpf_error("'ip6' modifier applied to ip host");
4519 
4520 	case Q_ICMPV6:
4521 		bpf_error("'icmp6' modifier applied to %s", typestr);
4522 
4523 	case Q_AH:
4524 		bpf_error("'ah' modifier applied to %s", typestr);
4525 
4526 	case Q_ESP:
4527 		bpf_error("'esp' modifier applied to %s", typestr);
4528 
4529 	case Q_ISO:
4530 		bpf_error("ISO host filtering not implemented");
4531 
4532 	case Q_ESIS:
4533 		bpf_error("'esis' modifier applied to %s", typestr);
4534 
4535 	case Q_ISIS:
4536 		bpf_error("'isis' modifier applied to %s", typestr);
4537 
4538 	case Q_CLNP:
4539 		bpf_error("'clnp' modifier applied to %s", typestr);
4540 
4541 	case Q_STP:
4542 		bpf_error("'stp' modifier applied to %s", typestr);
4543 
4544 	case Q_IPX:
4545 		bpf_error("IPX host filtering not implemented");
4546 
4547 	case Q_NETBEUI:
4548 		bpf_error("'netbeui' modifier applied to %s", typestr);
4549 
4550 	case Q_RADIO:
4551 		bpf_error("'radio' modifier applied to %s", typestr);
4552 
4553 	default:
4554 		abort();
4555 	}
4556 	/* NOTREACHED */
4557 }
4558 
4559 #ifdef INET6
4560 static struct block *
4561 gen_host6(addr, mask, proto, dir, type)
4562 	struct in6_addr *addr;
4563 	struct in6_addr *mask;
4564 	int proto;
4565 	int dir;
4566 	int type;
4567 {
4568 	const char *typestr;
4569 
4570 	if (type == Q_NET)
4571 		typestr = "net";
4572 	else
4573 		typestr = "host";
4574 
4575 	switch (proto) {
4576 
4577 	case Q_DEFAULT:
4578 		return gen_host6(addr, mask, Q_IPV6, dir, type);
4579 
4580 	case Q_IP:
4581 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4582 
4583 	case Q_RARP:
4584 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4585 
4586 	case Q_ARP:
4587 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4588 
4589 	case Q_SCTP:
4590 		bpf_error("'sctp' modifier applied to %s", typestr);
4591 
4592 	case Q_TCP:
4593 		bpf_error("'tcp' modifier applied to %s", typestr);
4594 
4595 	case Q_UDP:
4596 		bpf_error("'udp' modifier applied to %s", typestr);
4597 
4598 	case Q_ICMP:
4599 		bpf_error("'icmp' modifier applied to %s", typestr);
4600 
4601 	case Q_IGMP:
4602 		bpf_error("'igmp' modifier applied to %s", typestr);
4603 
4604 	case Q_IGRP:
4605 		bpf_error("'igrp' modifier applied to %s", typestr);
4606 
4607 	case Q_PIM:
4608 		bpf_error("'pim' modifier applied to %s", typestr);
4609 
4610 	case Q_VRRP:
4611 		bpf_error("'vrrp' modifier applied to %s", typestr);
4612 
4613 	case Q_CARP:
4614 		bpf_error("'carp' modifier applied to %s", typestr);
4615 
4616 	case Q_ATALK:
4617 		bpf_error("ATALK host filtering not implemented");
4618 
4619 	case Q_AARP:
4620 		bpf_error("AARP host filtering not implemented");
4621 
4622 	case Q_DECNET:
4623 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4624 
4625 	case Q_SCA:
4626 		bpf_error("SCA host filtering not implemented");
4627 
4628 	case Q_LAT:
4629 		bpf_error("LAT host filtering not implemented");
4630 
4631 	case Q_MOPDL:
4632 		bpf_error("MOPDL host filtering not implemented");
4633 
4634 	case Q_MOPRC:
4635 		bpf_error("MOPRC host filtering not implemented");
4636 
4637 	case Q_IPV6:
4638 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4639 
4640 	case Q_ICMPV6:
4641 		bpf_error("'icmp6' modifier applied to %s", typestr);
4642 
4643 	case Q_AH:
4644 		bpf_error("'ah' modifier applied to %s", typestr);
4645 
4646 	case Q_ESP:
4647 		bpf_error("'esp' modifier applied to %s", typestr);
4648 
4649 	case Q_ISO:
4650 		bpf_error("ISO host filtering not implemented");
4651 
4652 	case Q_ESIS:
4653 		bpf_error("'esis' modifier applied to %s", typestr);
4654 
4655 	case Q_ISIS:
4656 		bpf_error("'isis' modifier applied to %s", typestr);
4657 
4658 	case Q_CLNP:
4659 		bpf_error("'clnp' modifier applied to %s", typestr);
4660 
4661 	case Q_STP:
4662 		bpf_error("'stp' modifier applied to %s", typestr);
4663 
4664 	case Q_IPX:
4665 		bpf_error("IPX host filtering not implemented");
4666 
4667 	case Q_NETBEUI:
4668 		bpf_error("'netbeui' modifier applied to %s", typestr);
4669 
4670 	case Q_RADIO:
4671 		bpf_error("'radio' modifier applied to %s", typestr);
4672 
4673 	default:
4674 		abort();
4675 	}
4676 	/* NOTREACHED */
4677 }
4678 #endif
4679 
4680 #ifndef INET6
4681 static struct block *
4682 gen_gateway(eaddr, alist, proto, dir)
4683 	const u_char *eaddr;
4684 	bpf_u_int32 **alist;
4685 	int proto;
4686 	int dir;
4687 {
4688 	struct block *b0, *b1, *tmp;
4689 
4690 	if (dir != 0)
4691 		bpf_error("direction applied to 'gateway'");
4692 
4693 	switch (proto) {
4694 	case Q_DEFAULT:
4695 	case Q_IP:
4696 	case Q_ARP:
4697 	case Q_RARP:
4698 		switch (linktype) {
4699 		case DLT_EN10MB:
4700 		case DLT_NETANALYZER:
4701 		case DLT_NETANALYZER_TRANSPARENT:
4702 			b0 = gen_ehostop(eaddr, Q_OR);
4703 			break;
4704 		case DLT_FDDI:
4705 			b0 = gen_fhostop(eaddr, Q_OR);
4706 			break;
4707 		case DLT_IEEE802:
4708 			b0 = gen_thostop(eaddr, Q_OR);
4709 			break;
4710 		case DLT_IEEE802_11:
4711 		case DLT_PRISM_HEADER:
4712 		case DLT_IEEE802_11_RADIO_AVS:
4713 		case DLT_IEEE802_11_RADIO:
4714 		case DLT_PPI:
4715 			b0 = gen_wlanhostop(eaddr, Q_OR);
4716 			break;
4717 		case DLT_SUNATM:
4718 			if (!is_lane)
4719 				bpf_error(
4720 				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4721 			/*
4722 			 * Check that the packet doesn't begin with an
4723 			 * LE Control marker.  (We've already generated
4724 			 * a test for LANE.)
4725 			 */
4726 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4727 			    BPF_H, 0xFF00);
4728 			gen_not(b1);
4729 
4730 			/*
4731 			 * Now check the MAC address.
4732 			 */
4733 			b0 = gen_ehostop(eaddr, Q_OR);
4734 			gen_and(b1, b0);
4735 			break;
4736 		case DLT_IP_OVER_FC:
4737 			b0 = gen_ipfchostop(eaddr, Q_OR);
4738 			break;
4739 		default:
4740 			bpf_error(
4741 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4742 		}
4743 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4744 		while (*alist) {
4745 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4746 			    Q_HOST);
4747 			gen_or(b1, tmp);
4748 			b1 = tmp;
4749 		}
4750 		gen_not(b1);
4751 		gen_and(b0, b1);
4752 		return b1;
4753 	}
4754 	bpf_error("illegal modifier of 'gateway'");
4755 	/* NOTREACHED */
4756 }
4757 #endif
4758 
4759 struct block *
4760 gen_proto_abbrev(proto)
4761 	int proto;
4762 {
4763 	struct block *b0;
4764 	struct block *b1;
4765 
4766 	switch (proto) {
4767 
4768 	case Q_SCTP:
4769 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4770 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4771 		gen_or(b0, b1);
4772 		break;
4773 
4774 	case Q_TCP:
4775 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4776 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4777 		gen_or(b0, b1);
4778 		break;
4779 
4780 	case Q_UDP:
4781 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4782 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4783 		gen_or(b0, b1);
4784 		break;
4785 
4786 	case Q_ICMP:
4787 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4788 		break;
4789 
4790 #ifndef	IPPROTO_IGMP
4791 #define	IPPROTO_IGMP	2
4792 #endif
4793 
4794 	case Q_IGMP:
4795 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4796 		break;
4797 
4798 #ifndef	IPPROTO_IGRP
4799 #define	IPPROTO_IGRP	9
4800 #endif
4801 	case Q_IGRP:
4802 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4803 		break;
4804 
4805 #ifndef IPPROTO_PIM
4806 #define IPPROTO_PIM	103
4807 #endif
4808 
4809 	case Q_PIM:
4810 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4811 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4812 		gen_or(b0, b1);
4813 		break;
4814 
4815 #ifndef IPPROTO_VRRP
4816 #define IPPROTO_VRRP	112
4817 #endif
4818 
4819 	case Q_VRRP:
4820 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4821 		break;
4822 
4823 #ifndef IPPROTO_CARP
4824 #define IPPROTO_CARP	112
4825 #endif
4826 
4827 	case Q_CARP:
4828 		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4829 		break;
4830 
4831 	case Q_IP:
4832 		b1 =  gen_linktype(ETHERTYPE_IP);
4833 		break;
4834 
4835 	case Q_ARP:
4836 		b1 =  gen_linktype(ETHERTYPE_ARP);
4837 		break;
4838 
4839 	case Q_RARP:
4840 		b1 =  gen_linktype(ETHERTYPE_REVARP);
4841 		break;
4842 
4843 	case Q_LINK:
4844 		bpf_error("link layer applied in wrong context");
4845 
4846 	case Q_ATALK:
4847 		b1 =  gen_linktype(ETHERTYPE_ATALK);
4848 		break;
4849 
4850 	case Q_AARP:
4851 		b1 =  gen_linktype(ETHERTYPE_AARP);
4852 		break;
4853 
4854 	case Q_DECNET:
4855 		b1 =  gen_linktype(ETHERTYPE_DN);
4856 		break;
4857 
4858 	case Q_SCA:
4859 		b1 =  gen_linktype(ETHERTYPE_SCA);
4860 		break;
4861 
4862 	case Q_LAT:
4863 		b1 =  gen_linktype(ETHERTYPE_LAT);
4864 		break;
4865 
4866 	case Q_MOPDL:
4867 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4868 		break;
4869 
4870 	case Q_MOPRC:
4871 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4872 		break;
4873 
4874 	case Q_IPV6:
4875 		b1 = gen_linktype(ETHERTYPE_IPV6);
4876 		break;
4877 
4878 #ifndef IPPROTO_ICMPV6
4879 #define IPPROTO_ICMPV6	58
4880 #endif
4881 	case Q_ICMPV6:
4882 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4883 		break;
4884 
4885 #ifndef IPPROTO_AH
4886 #define IPPROTO_AH	51
4887 #endif
4888 	case Q_AH:
4889 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4890 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4891 		gen_or(b0, b1);
4892 		break;
4893 
4894 #ifndef IPPROTO_ESP
4895 #define IPPROTO_ESP	50
4896 #endif
4897 	case Q_ESP:
4898 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4899 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4900 		gen_or(b0, b1);
4901 		break;
4902 
4903 	case Q_ISO:
4904 		b1 = gen_linktype(LLCSAP_ISONS);
4905 		break;
4906 
4907 	case Q_ESIS:
4908 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4909 		break;
4910 
4911 	case Q_ISIS:
4912 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4913 		break;
4914 
4915 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4916 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4917 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4918 		gen_or(b0, b1);
4919 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4920 		gen_or(b0, b1);
4921 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4922 		gen_or(b0, b1);
4923 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4924 		gen_or(b0, b1);
4925 		break;
4926 
4927 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4928 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4929 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4930 		gen_or(b0, b1);
4931 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4932 		gen_or(b0, b1);
4933 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4934 		gen_or(b0, b1);
4935 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4936 		gen_or(b0, b1);
4937 		break;
4938 
4939 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4940 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4941 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4942 		gen_or(b0, b1);
4943 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4944 		gen_or(b0, b1);
4945 		break;
4946 
4947 	case Q_ISIS_LSP:
4948 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4949 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4950 		gen_or(b0, b1);
4951 		break;
4952 
4953 	case Q_ISIS_SNP:
4954 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4955 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4956 		gen_or(b0, b1);
4957 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4958 		gen_or(b0, b1);
4959 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4960 		gen_or(b0, b1);
4961 		break;
4962 
4963 	case Q_ISIS_CSNP:
4964 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4965 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4966 		gen_or(b0, b1);
4967 		break;
4968 
4969 	case Q_ISIS_PSNP:
4970 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4971 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4972 		gen_or(b0, b1);
4973 		break;
4974 
4975 	case Q_CLNP:
4976 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4977 		break;
4978 
4979 	case Q_STP:
4980 		b1 = gen_linktype(LLCSAP_8021D);
4981 		break;
4982 
4983 	case Q_IPX:
4984 		b1 = gen_linktype(LLCSAP_IPX);
4985 		break;
4986 
4987 	case Q_NETBEUI:
4988 		b1 = gen_linktype(LLCSAP_NETBEUI);
4989 		break;
4990 
4991 	case Q_RADIO:
4992 		bpf_error("'radio' is not a valid protocol type");
4993 
4994 	default:
4995 		abort();
4996 	}
4997 	return b1;
4998 }
4999 
5000 static struct block *
5001 gen_ipfrag()
5002 {
5003 	struct slist *s;
5004 	struct block *b;
5005 
5006 	/* not IPv4 frag other than the first frag */
5007 	s = gen_load_a(OR_NET, 6, BPF_H);
5008 	b = new_block(JMP(BPF_JSET));
5009 	b->s.k = 0x1fff;
5010 	b->stmts = s;
5011 	gen_not(b);
5012 
5013 	return b;
5014 }
5015 
5016 /*
5017  * Generate a comparison to a port value in the transport-layer header
5018  * at the specified offset from the beginning of that header.
5019  *
5020  * XXX - this handles a variable-length prefix preceding the link-layer
5021  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5022  * variable-length link-layer headers (such as Token Ring or 802.11
5023  * headers).
5024  */
5025 static struct block *
5026 gen_portatom(off, v)
5027 	int off;
5028 	bpf_int32 v;
5029 {
5030 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5031 }
5032 
5033 static struct block *
5034 gen_portatom6(off, v)
5035 	int off;
5036 	bpf_int32 v;
5037 {
5038 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5039 }
5040 
5041 struct block *
5042 gen_portop(port, proto, dir)
5043 	int port, proto, dir;
5044 {
5045 	struct block *b0, *b1, *tmp;
5046 
5047 	/* ip proto 'proto' and not a fragment other than the first fragment */
5048 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5049 	b0 = gen_ipfrag();
5050 	gen_and(tmp, b0);
5051 
5052 	switch (dir) {
5053 	case Q_SRC:
5054 		b1 = gen_portatom(0, (bpf_int32)port);
5055 		break;
5056 
5057 	case Q_DST:
5058 		b1 = gen_portatom(2, (bpf_int32)port);
5059 		break;
5060 
5061 	case Q_OR:
5062 	case Q_DEFAULT:
5063 		tmp = gen_portatom(0, (bpf_int32)port);
5064 		b1 = gen_portatom(2, (bpf_int32)port);
5065 		gen_or(tmp, b1);
5066 		break;
5067 
5068 	case Q_AND:
5069 		tmp = gen_portatom(0, (bpf_int32)port);
5070 		b1 = gen_portatom(2, (bpf_int32)port);
5071 		gen_and(tmp, b1);
5072 		break;
5073 
5074 	default:
5075 		abort();
5076 	}
5077 	gen_and(b0, b1);
5078 
5079 	return b1;
5080 }
5081 
5082 static struct block *
5083 gen_port(port, ip_proto, dir)
5084 	int port;
5085 	int ip_proto;
5086 	int dir;
5087 {
5088 	struct block *b0, *b1, *tmp;
5089 
5090 	/*
5091 	 * ether proto ip
5092 	 *
5093 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5094 	 * not LLC encapsulation with LLCSAP_IP.
5095 	 *
5096 	 * For IEEE 802 networks - which includes 802.5 token ring
5097 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5098 	 * says that SNAP encapsulation is used, not LLC encapsulation
5099 	 * with LLCSAP_IP.
5100 	 *
5101 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5102 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5103 	 * encapsulation with LLCSAP_IP.
5104 	 *
5105 	 * So we always check for ETHERTYPE_IP.
5106 	 */
5107 	b0 =  gen_linktype(ETHERTYPE_IP);
5108 
5109 	switch (ip_proto) {
5110 	case IPPROTO_UDP:
5111 	case IPPROTO_TCP:
5112 	case IPPROTO_SCTP:
5113 		b1 = gen_portop(port, ip_proto, dir);
5114 		break;
5115 
5116 	case PROTO_UNDEF:
5117 		tmp = gen_portop(port, IPPROTO_TCP, dir);
5118 		b1 = gen_portop(port, IPPROTO_UDP, dir);
5119 		gen_or(tmp, b1);
5120 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5121 		gen_or(tmp, b1);
5122 		break;
5123 
5124 	default:
5125 		abort();
5126 	}
5127 	gen_and(b0, b1);
5128 	return b1;
5129 }
5130 
5131 struct block *
5132 gen_portop6(port, proto, dir)
5133 	int port, proto, dir;
5134 {
5135 	struct block *b0, *b1, *tmp;
5136 
5137 	/* ip6 proto 'proto' */
5138 	/* XXX - catch the first fragment of a fragmented packet? */
5139 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5140 
5141 	switch (dir) {
5142 	case Q_SRC:
5143 		b1 = gen_portatom6(0, (bpf_int32)port);
5144 		break;
5145 
5146 	case Q_DST:
5147 		b1 = gen_portatom6(2, (bpf_int32)port);
5148 		break;
5149 
5150 	case Q_OR:
5151 	case Q_DEFAULT:
5152 		tmp = gen_portatom6(0, (bpf_int32)port);
5153 		b1 = gen_portatom6(2, (bpf_int32)port);
5154 		gen_or(tmp, b1);
5155 		break;
5156 
5157 	case Q_AND:
5158 		tmp = gen_portatom6(0, (bpf_int32)port);
5159 		b1 = gen_portatom6(2, (bpf_int32)port);
5160 		gen_and(tmp, b1);
5161 		break;
5162 
5163 	default:
5164 		abort();
5165 	}
5166 	gen_and(b0, b1);
5167 
5168 	return b1;
5169 }
5170 
5171 static struct block *
5172 gen_port6(port, ip_proto, dir)
5173 	int port;
5174 	int ip_proto;
5175 	int dir;
5176 {
5177 	struct block *b0, *b1, *tmp;
5178 
5179 	/* link proto ip6 */
5180 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5181 
5182 	switch (ip_proto) {
5183 	case IPPROTO_UDP:
5184 	case IPPROTO_TCP:
5185 	case IPPROTO_SCTP:
5186 		b1 = gen_portop6(port, ip_proto, dir);
5187 		break;
5188 
5189 	case PROTO_UNDEF:
5190 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5191 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5192 		gen_or(tmp, b1);
5193 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5194 		gen_or(tmp, b1);
5195 		break;
5196 
5197 	default:
5198 		abort();
5199 	}
5200 	gen_and(b0, b1);
5201 	return b1;
5202 }
5203 
5204 /* gen_portrange code */
5205 static struct block *
5206 gen_portrangeatom(off, v1, v2)
5207 	int off;
5208 	bpf_int32 v1, v2;
5209 {
5210 	struct block *b1, *b2;
5211 
5212 	if (v1 > v2) {
5213 		/*
5214 		 * Reverse the order of the ports, so v1 is the lower one.
5215 		 */
5216 		bpf_int32 vtemp;
5217 
5218 		vtemp = v1;
5219 		v1 = v2;
5220 		v2 = vtemp;
5221 	}
5222 
5223 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5224 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5225 
5226 	gen_and(b1, b2);
5227 
5228 	return b2;
5229 }
5230 
5231 struct block *
5232 gen_portrangeop(port1, port2, proto, dir)
5233 	int port1, port2;
5234 	int proto;
5235 	int dir;
5236 {
5237 	struct block *b0, *b1, *tmp;
5238 
5239 	/* ip proto 'proto' and not a fragment other than the first fragment */
5240 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5241 	b0 = gen_ipfrag();
5242 	gen_and(tmp, b0);
5243 
5244 	switch (dir) {
5245 	case Q_SRC:
5246 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5247 		break;
5248 
5249 	case Q_DST:
5250 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5251 		break;
5252 
5253 	case Q_OR:
5254 	case Q_DEFAULT:
5255 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5256 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5257 		gen_or(tmp, b1);
5258 		break;
5259 
5260 	case Q_AND:
5261 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5262 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5263 		gen_and(tmp, b1);
5264 		break;
5265 
5266 	default:
5267 		abort();
5268 	}
5269 	gen_and(b0, b1);
5270 
5271 	return b1;
5272 }
5273 
5274 static struct block *
5275 gen_portrange(port1, port2, ip_proto, dir)
5276 	int port1, port2;
5277 	int ip_proto;
5278 	int dir;
5279 {
5280 	struct block *b0, *b1, *tmp;
5281 
5282 	/* link proto ip */
5283 	b0 =  gen_linktype(ETHERTYPE_IP);
5284 
5285 	switch (ip_proto) {
5286 	case IPPROTO_UDP:
5287 	case IPPROTO_TCP:
5288 	case IPPROTO_SCTP:
5289 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5290 		break;
5291 
5292 	case PROTO_UNDEF:
5293 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5294 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5295 		gen_or(tmp, b1);
5296 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5297 		gen_or(tmp, b1);
5298 		break;
5299 
5300 	default:
5301 		abort();
5302 	}
5303 	gen_and(b0, b1);
5304 	return b1;
5305 }
5306 
5307 static struct block *
5308 gen_portrangeatom6(off, v1, v2)
5309 	int off;
5310 	bpf_int32 v1, v2;
5311 {
5312 	struct block *b1, *b2;
5313 
5314 	if (v1 > v2) {
5315 		/*
5316 		 * Reverse the order of the ports, so v1 is the lower one.
5317 		 */
5318 		bpf_int32 vtemp;
5319 
5320 		vtemp = v1;
5321 		v1 = v2;
5322 		v2 = vtemp;
5323 	}
5324 
5325 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5326 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5327 
5328 	gen_and(b1, b2);
5329 
5330 	return b2;
5331 }
5332 
5333 struct block *
5334 gen_portrangeop6(port1, port2, proto, dir)
5335 	int port1, port2;
5336 	int proto;
5337 	int dir;
5338 {
5339 	struct block *b0, *b1, *tmp;
5340 
5341 	/* ip6 proto 'proto' */
5342 	/* XXX - catch the first fragment of a fragmented packet? */
5343 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5344 
5345 	switch (dir) {
5346 	case Q_SRC:
5347 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5348 		break;
5349 
5350 	case Q_DST:
5351 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5352 		break;
5353 
5354 	case Q_OR:
5355 	case Q_DEFAULT:
5356 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5357 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5358 		gen_or(tmp, b1);
5359 		break;
5360 
5361 	case Q_AND:
5362 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5363 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5364 		gen_and(tmp, b1);
5365 		break;
5366 
5367 	default:
5368 		abort();
5369 	}
5370 	gen_and(b0, b1);
5371 
5372 	return b1;
5373 }
5374 
5375 static struct block *
5376 gen_portrange6(port1, port2, ip_proto, dir)
5377 	int port1, port2;
5378 	int ip_proto;
5379 	int dir;
5380 {
5381 	struct block *b0, *b1, *tmp;
5382 
5383 	/* link proto ip6 */
5384 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5385 
5386 	switch (ip_proto) {
5387 	case IPPROTO_UDP:
5388 	case IPPROTO_TCP:
5389 	case IPPROTO_SCTP:
5390 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5391 		break;
5392 
5393 	case PROTO_UNDEF:
5394 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5395 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5396 		gen_or(tmp, b1);
5397 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5398 		gen_or(tmp, b1);
5399 		break;
5400 
5401 	default:
5402 		abort();
5403 	}
5404 	gen_and(b0, b1);
5405 	return b1;
5406 }
5407 
5408 static int
5409 lookup_proto(name, proto)
5410 	register const char *name;
5411 	register int proto;
5412 {
5413 	register int v;
5414 
5415 	switch (proto) {
5416 
5417 	case Q_DEFAULT:
5418 	case Q_IP:
5419 	case Q_IPV6:
5420 		v = pcap_nametoproto(name);
5421 		if (v == PROTO_UNDEF)
5422 			bpf_error("unknown ip proto '%s'", name);
5423 		break;
5424 
5425 	case Q_LINK:
5426 		/* XXX should look up h/w protocol type based on linktype */
5427 		v = pcap_nametoeproto(name);
5428 		if (v == PROTO_UNDEF) {
5429 			v = pcap_nametollc(name);
5430 			if (v == PROTO_UNDEF)
5431 				bpf_error("unknown ether proto '%s'", name);
5432 		}
5433 		break;
5434 
5435 	case Q_ISO:
5436 		if (strcmp(name, "esis") == 0)
5437 			v = ISO9542_ESIS;
5438 		else if (strcmp(name, "isis") == 0)
5439 			v = ISO10589_ISIS;
5440 		else if (strcmp(name, "clnp") == 0)
5441 			v = ISO8473_CLNP;
5442 		else
5443 			bpf_error("unknown osi proto '%s'", name);
5444 		break;
5445 
5446 	default:
5447 		v = PROTO_UNDEF;
5448 		break;
5449 	}
5450 	return v;
5451 }
5452 
5453 #if 0
5454 struct stmt *
5455 gen_joinsp(s, n)
5456 	struct stmt **s;
5457 	int n;
5458 {
5459 	return NULL;
5460 }
5461 #endif
5462 
5463 static struct block *
5464 gen_protochain(v, proto, dir)
5465 	int v;
5466 	int proto;
5467 	int dir;
5468 {
5469 #ifdef NO_PROTOCHAIN
5470 	return gen_proto(v, proto, dir);
5471 #else
5472 	struct block *b0, *b;
5473 	struct slist *s[100];
5474 	int fix2, fix3, fix4, fix5;
5475 	int ahcheck, again, end;
5476 	int i, max;
5477 	int reg2 = alloc_reg();
5478 
5479 	memset(s, 0, sizeof(s));
5480 	fix2 = fix3 = fix4 = fix5 = 0;
5481 
5482 	switch (proto) {
5483 	case Q_IP:
5484 	case Q_IPV6:
5485 		break;
5486 	case Q_DEFAULT:
5487 		b0 = gen_protochain(v, Q_IP, dir);
5488 		b = gen_protochain(v, Q_IPV6, dir);
5489 		gen_or(b0, b);
5490 		return b;
5491 	default:
5492 		bpf_error("bad protocol applied for 'protochain'");
5493 		/*NOTREACHED*/
5494 	}
5495 
5496 	/*
5497 	 * We don't handle variable-length prefixes before the link-layer
5498 	 * header, or variable-length link-layer headers, here yet.
5499 	 * We might want to add BPF instructions to do the protochain
5500 	 * work, to simplify that and, on platforms that have a BPF
5501 	 * interpreter with the new instructions, let the filtering
5502 	 * be done in the kernel.  (We already require a modified BPF
5503 	 * engine to do the protochain stuff, to support backward
5504 	 * branches, and backward branch support is unlikely to appear
5505 	 * in kernel BPF engines.)
5506 	 */
5507 	switch (linktype) {
5508 
5509 	case DLT_IEEE802_11:
5510 	case DLT_PRISM_HEADER:
5511 	case DLT_IEEE802_11_RADIO_AVS:
5512 	case DLT_IEEE802_11_RADIO:
5513 	case DLT_PPI:
5514 		bpf_error("'protochain' not supported with 802.11");
5515 	}
5516 
5517 	no_optimize = 1; /*this code is not compatible with optimzer yet */
5518 
5519 	/*
5520 	 * s[0] is a dummy entry to protect other BPF insn from damage
5521 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5522 	 * hard to find interdependency made by jump table fixup.
5523 	 */
5524 	i = 0;
5525 	s[i] = new_stmt(0);	/*dummy*/
5526 	i++;
5527 
5528 	switch (proto) {
5529 	case Q_IP:
5530 		b0 = gen_linktype(ETHERTYPE_IP);
5531 
5532 		/* A = ip->ip_p */
5533 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5534 		s[i]->s.k = off_macpl + off_nl + 9;
5535 		i++;
5536 		/* X = ip->ip_hl << 2 */
5537 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5538 		s[i]->s.k = off_macpl + off_nl;
5539 		i++;
5540 		break;
5541 
5542 	case Q_IPV6:
5543 		b0 = gen_linktype(ETHERTYPE_IPV6);
5544 
5545 		/* A = ip6->ip_nxt */
5546 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5547 		s[i]->s.k = off_macpl + off_nl + 6;
5548 		i++;
5549 		/* X = sizeof(struct ip6_hdr) */
5550 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5551 		s[i]->s.k = 40;
5552 		i++;
5553 		break;
5554 
5555 	default:
5556 		bpf_error("unsupported proto to gen_protochain");
5557 		/*NOTREACHED*/
5558 	}
5559 
5560 	/* again: if (A == v) goto end; else fall through; */
5561 	again = i;
5562 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5563 	s[i]->s.k = v;
5564 	s[i]->s.jt = NULL;		/*later*/
5565 	s[i]->s.jf = NULL;		/*update in next stmt*/
5566 	fix5 = i;
5567 	i++;
5568 
5569 #ifndef IPPROTO_NONE
5570 #define IPPROTO_NONE	59
5571 #endif
5572 	/* if (A == IPPROTO_NONE) goto end */
5573 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5574 	s[i]->s.jt = NULL;	/*later*/
5575 	s[i]->s.jf = NULL;	/*update in next stmt*/
5576 	s[i]->s.k = IPPROTO_NONE;
5577 	s[fix5]->s.jf = s[i];
5578 	fix2 = i;
5579 	i++;
5580 
5581 	if (proto == Q_IPV6) {
5582 		int v6start, v6end, v6advance, j;
5583 
5584 		v6start = i;
5585 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5586 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5587 		s[i]->s.jt = NULL;	/*later*/
5588 		s[i]->s.jf = NULL;	/*update in next stmt*/
5589 		s[i]->s.k = IPPROTO_HOPOPTS;
5590 		s[fix2]->s.jf = s[i];
5591 		i++;
5592 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5593 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5594 		s[i]->s.jt = NULL;	/*later*/
5595 		s[i]->s.jf = NULL;	/*update in next stmt*/
5596 		s[i]->s.k = IPPROTO_DSTOPTS;
5597 		i++;
5598 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5599 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5600 		s[i]->s.jt = NULL;	/*later*/
5601 		s[i]->s.jf = NULL;	/*update in next stmt*/
5602 		s[i]->s.k = IPPROTO_ROUTING;
5603 		i++;
5604 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5605 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5606 		s[i]->s.jt = NULL;	/*later*/
5607 		s[i]->s.jf = NULL;	/*later*/
5608 		s[i]->s.k = IPPROTO_FRAGMENT;
5609 		fix3 = i;
5610 		v6end = i;
5611 		i++;
5612 
5613 		/* v6advance: */
5614 		v6advance = i;
5615 
5616 		/*
5617 		 * in short,
5618 		 * A = P[X + packet head];
5619 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5620 		 */
5621 		/* A = P[X + packet head] */
5622 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5623 		s[i]->s.k = off_macpl + off_nl;
5624 		i++;
5625 		/* MEM[reg2] = A */
5626 		s[i] = new_stmt(BPF_ST);
5627 		s[i]->s.k = reg2;
5628 		i++;
5629 		/* A = P[X + packet head + 1]; */
5630 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5631 		s[i]->s.k = off_macpl + off_nl + 1;
5632 		i++;
5633 		/* A += 1 */
5634 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5635 		s[i]->s.k = 1;
5636 		i++;
5637 		/* A *= 8 */
5638 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5639 		s[i]->s.k = 8;
5640 		i++;
5641 		/* A += X */
5642 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5643 		s[i]->s.k = 0;
5644 		i++;
5645 		/* X = A; */
5646 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5647 		i++;
5648 		/* A = MEM[reg2] */
5649 		s[i] = new_stmt(BPF_LD|BPF_MEM);
5650 		s[i]->s.k = reg2;
5651 		i++;
5652 
5653 		/* goto again; (must use BPF_JA for backward jump) */
5654 		s[i] = new_stmt(BPF_JMP|BPF_JA);
5655 		s[i]->s.k = again - i - 1;
5656 		s[i - 1]->s.jf = s[i];
5657 		i++;
5658 
5659 		/* fixup */
5660 		for (j = v6start; j <= v6end; j++)
5661 			s[j]->s.jt = s[v6advance];
5662 	} else {
5663 		/* nop */
5664 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5665 		s[i]->s.k = 0;
5666 		s[fix2]->s.jf = s[i];
5667 		i++;
5668 	}
5669 
5670 	/* ahcheck: */
5671 	ahcheck = i;
5672 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5673 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5674 	s[i]->s.jt = NULL;	/*later*/
5675 	s[i]->s.jf = NULL;	/*later*/
5676 	s[i]->s.k = IPPROTO_AH;
5677 	if (fix3)
5678 		s[fix3]->s.jf = s[ahcheck];
5679 	fix4 = i;
5680 	i++;
5681 
5682 	/*
5683 	 * in short,
5684 	 * A = P[X];
5685 	 * X = X + (P[X + 1] + 2) * 4;
5686 	 */
5687 	/* A = X */
5688 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5689 	i++;
5690 	/* A = P[X + packet head]; */
5691 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5692 	s[i]->s.k = off_macpl + off_nl;
5693 	i++;
5694 	/* MEM[reg2] = A */
5695 	s[i] = new_stmt(BPF_ST);
5696 	s[i]->s.k = reg2;
5697 	i++;
5698 	/* A = X */
5699 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5700 	i++;
5701 	/* A += 1 */
5702 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5703 	s[i]->s.k = 1;
5704 	i++;
5705 	/* X = A */
5706 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5707 	i++;
5708 	/* A = P[X + packet head] */
5709 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5710 	s[i]->s.k = off_macpl + off_nl;
5711 	i++;
5712 	/* A += 2 */
5713 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5714 	s[i]->s.k = 2;
5715 	i++;
5716 	/* A *= 4 */
5717 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5718 	s[i]->s.k = 4;
5719 	i++;
5720 	/* X = A; */
5721 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5722 	i++;
5723 	/* A = MEM[reg2] */
5724 	s[i] = new_stmt(BPF_LD|BPF_MEM);
5725 	s[i]->s.k = reg2;
5726 	i++;
5727 
5728 	/* goto again; (must use BPF_JA for backward jump) */
5729 	s[i] = new_stmt(BPF_JMP|BPF_JA);
5730 	s[i]->s.k = again - i - 1;
5731 	i++;
5732 
5733 	/* end: nop */
5734 	end = i;
5735 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5736 	s[i]->s.k = 0;
5737 	s[fix2]->s.jt = s[end];
5738 	s[fix4]->s.jf = s[end];
5739 	s[fix5]->s.jt = s[end];
5740 	i++;
5741 
5742 	/*
5743 	 * make slist chain
5744 	 */
5745 	max = i;
5746 	for (i = 0; i < max - 1; i++)
5747 		s[i]->next = s[i + 1];
5748 	s[max - 1]->next = NULL;
5749 
5750 	/*
5751 	 * emit final check
5752 	 */
5753 	b = new_block(JMP(BPF_JEQ));
5754 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5755 	b->s.k = v;
5756 
5757 	free_reg(reg2);
5758 
5759 	gen_and(b0, b);
5760 	return b;
5761 #endif
5762 }
5763 
5764 static struct block *
5765 gen_check_802_11_data_frame()
5766 {
5767 	struct slist *s;
5768 	struct block *b0, *b1;
5769 
5770 	/*
5771 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5772 	 * and the 0x04 bit (b2) clear.
5773 	 */
5774 	s = gen_load_a(OR_LINK, 0, BPF_B);
5775 	b0 = new_block(JMP(BPF_JSET));
5776 	b0->s.k = 0x08;
5777 	b0->stmts = s;
5778 
5779 	s = gen_load_a(OR_LINK, 0, BPF_B);
5780 	b1 = new_block(JMP(BPF_JSET));
5781 	b1->s.k = 0x04;
5782 	b1->stmts = s;
5783 	gen_not(b1);
5784 
5785 	gen_and(b1, b0);
5786 
5787 	return b0;
5788 }
5789 
5790 /*
5791  * Generate code that checks whether the packet is a packet for protocol
5792  * <proto> and whether the type field in that protocol's header has
5793  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5794  * IP packet and checks the protocol number in the IP header against <v>.
5795  *
5796  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5797  * against Q_IP and Q_IPV6.
5798  */
5799 static struct block *
5800 gen_proto(v, proto, dir)
5801 	int v;
5802 	int proto;
5803 	int dir;
5804 {
5805 	struct block *b0, *b1;
5806 #ifndef CHASE_CHAIN
5807 	struct block *b2;
5808 #endif
5809 
5810 	if (dir != Q_DEFAULT)
5811 		bpf_error("direction applied to 'proto'");
5812 
5813 	switch (proto) {
5814 	case Q_DEFAULT:
5815 		b0 = gen_proto(v, Q_IP, dir);
5816 		b1 = gen_proto(v, Q_IPV6, dir);
5817 		gen_or(b0, b1);
5818 		return b1;
5819 
5820 	case Q_IP:
5821 		/*
5822 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5823 		 * not LLC encapsulation with LLCSAP_IP.
5824 		 *
5825 		 * For IEEE 802 networks - which includes 802.5 token ring
5826 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5827 		 * says that SNAP encapsulation is used, not LLC encapsulation
5828 		 * with LLCSAP_IP.
5829 		 *
5830 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5831 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5832 		 * encapsulation with LLCSAP_IP.
5833 		 *
5834 		 * So we always check for ETHERTYPE_IP.
5835 		 */
5836 		b0 = gen_linktype(ETHERTYPE_IP);
5837 #ifndef CHASE_CHAIN
5838 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5839 #else
5840 		b1 = gen_protochain(v, Q_IP);
5841 #endif
5842 		gen_and(b0, b1);
5843 		return b1;
5844 
5845 	case Q_ISO:
5846 		switch (linktype) {
5847 
5848 		case DLT_FRELAY:
5849 			/*
5850 			 * Frame Relay packets typically have an OSI
5851 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5852 			 * generates code to check for all the OSI
5853 			 * NLPIDs, so calling it and then adding a check
5854 			 * for the particular NLPID for which we're
5855 			 * looking is bogus, as we can just check for
5856 			 * the NLPID.
5857 			 *
5858 			 * What we check for is the NLPID and a frame
5859 			 * control field value of UI, i.e. 0x03 followed
5860 			 * by the NLPID.
5861 			 *
5862 			 * XXX - assumes a 2-byte Frame Relay header with
5863 			 * DLCI and flags.  What if the address is longer?
5864 			 *
5865 			 * XXX - what about SNAP-encapsulated frames?
5866 			 */
5867 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5868 			/*NOTREACHED*/
5869 			break;
5870 
5871 		case DLT_C_HDLC:
5872 			/*
5873 			 * Cisco uses an Ethertype lookalike - for OSI,
5874 			 * it's 0xfefe.
5875 			 */
5876 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5877 			/* OSI in C-HDLC is stuffed with a fudge byte */
5878 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5879 			gen_and(b0, b1);
5880 			return b1;
5881 
5882 		default:
5883 			b0 = gen_linktype(LLCSAP_ISONS);
5884 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5885 			gen_and(b0, b1);
5886 			return b1;
5887 		}
5888 
5889 	case Q_ISIS:
5890 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5891 		/*
5892 		 * 4 is the offset of the PDU type relative to the IS-IS
5893 		 * header.
5894 		 */
5895 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5896 		gen_and(b0, b1);
5897 		return b1;
5898 
5899 	case Q_ARP:
5900 		bpf_error("arp does not encapsulate another protocol");
5901 		/* NOTREACHED */
5902 
5903 	case Q_RARP:
5904 		bpf_error("rarp does not encapsulate another protocol");
5905 		/* NOTREACHED */
5906 
5907 	case Q_ATALK:
5908 		bpf_error("atalk encapsulation is not specifiable");
5909 		/* NOTREACHED */
5910 
5911 	case Q_DECNET:
5912 		bpf_error("decnet encapsulation is not specifiable");
5913 		/* NOTREACHED */
5914 
5915 	case Q_SCA:
5916 		bpf_error("sca does not encapsulate another protocol");
5917 		/* NOTREACHED */
5918 
5919 	case Q_LAT:
5920 		bpf_error("lat does not encapsulate another protocol");
5921 		/* NOTREACHED */
5922 
5923 	case Q_MOPRC:
5924 		bpf_error("moprc does not encapsulate another protocol");
5925 		/* NOTREACHED */
5926 
5927 	case Q_MOPDL:
5928 		bpf_error("mopdl does not encapsulate another protocol");
5929 		/* NOTREACHED */
5930 
5931 	case Q_LINK:
5932 		return gen_linktype(v);
5933 
5934 	case Q_UDP:
5935 		bpf_error("'udp proto' is bogus");
5936 		/* NOTREACHED */
5937 
5938 	case Q_TCP:
5939 		bpf_error("'tcp proto' is bogus");
5940 		/* NOTREACHED */
5941 
5942 	case Q_SCTP:
5943 		bpf_error("'sctp proto' is bogus");
5944 		/* NOTREACHED */
5945 
5946 	case Q_ICMP:
5947 		bpf_error("'icmp proto' is bogus");
5948 		/* NOTREACHED */
5949 
5950 	case Q_IGMP:
5951 		bpf_error("'igmp proto' is bogus");
5952 		/* NOTREACHED */
5953 
5954 	case Q_IGRP:
5955 		bpf_error("'igrp proto' is bogus");
5956 		/* NOTREACHED */
5957 
5958 	case Q_PIM:
5959 		bpf_error("'pim proto' is bogus");
5960 		/* NOTREACHED */
5961 
5962 	case Q_VRRP:
5963 		bpf_error("'vrrp proto' is bogus");
5964 		/* NOTREACHED */
5965 
5966 	case Q_CARP:
5967 		bpf_error("'carp proto' is bogus");
5968 		/* NOTREACHED */
5969 
5970 	case Q_IPV6:
5971 		b0 = gen_linktype(ETHERTYPE_IPV6);
5972 #ifndef CHASE_CHAIN
5973 		/*
5974 		 * Also check for a fragment header before the final
5975 		 * header.
5976 		 */
5977 		b2 = gen_cmp(OR_NET, 6, BPF_B, IPPROTO_FRAGMENT);
5978 		b1 = gen_cmp(OR_NET, 40, BPF_B, (bpf_int32)v);
5979 		gen_and(b2, b1);
5980 		b2 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5981 		gen_or(b2, b1);
5982 #else
5983 		b1 = gen_protochain(v, Q_IPV6);
5984 #endif
5985 		gen_and(b0, b1);
5986 		return b1;
5987 
5988 	case Q_ICMPV6:
5989 		bpf_error("'icmp6 proto' is bogus");
5990 
5991 	case Q_AH:
5992 		bpf_error("'ah proto' is bogus");
5993 
5994 	case Q_ESP:
5995 		bpf_error("'ah proto' is bogus");
5996 
5997 	case Q_STP:
5998 		bpf_error("'stp proto' is bogus");
5999 
6000 	case Q_IPX:
6001 		bpf_error("'ipx proto' is bogus");
6002 
6003 	case Q_NETBEUI:
6004 		bpf_error("'netbeui proto' is bogus");
6005 
6006 	case Q_RADIO:
6007 		bpf_error("'radio proto' is bogus");
6008 
6009 	default:
6010 		abort();
6011 		/* NOTREACHED */
6012 	}
6013 	/* NOTREACHED */
6014 }
6015 
6016 struct block *
6017 gen_scode(name, q)
6018 	register const char *name;
6019 	struct qual q;
6020 {
6021 	int proto = q.proto;
6022 	int dir = q.dir;
6023 	int tproto;
6024 	u_char *eaddr;
6025 	bpf_u_int32 mask, addr;
6026 #ifndef INET6
6027 	bpf_u_int32 **alist;
6028 #else
6029 	int tproto6;
6030 	struct sockaddr_in *sin4;
6031 	struct sockaddr_in6 *sin6;
6032 	struct addrinfo *res, *res0;
6033 	struct in6_addr mask128;
6034 #endif /*INET6*/
6035 	struct block *b, *tmp;
6036 	int port, real_proto;
6037 	int port1, port2;
6038 
6039 	switch (q.addr) {
6040 
6041 	case Q_NET:
6042 		addr = pcap_nametonetaddr(name);
6043 		if (addr == 0)
6044 			bpf_error("unknown network '%s'", name);
6045 		/* Left justify network addr and calculate its network mask */
6046 		mask = 0xffffffff;
6047 		while (addr && (addr & 0xff000000) == 0) {
6048 			addr <<= 8;
6049 			mask <<= 8;
6050 		}
6051 		return gen_host(addr, mask, proto, dir, q.addr);
6052 
6053 	case Q_DEFAULT:
6054 	case Q_HOST:
6055 		if (proto == Q_LINK) {
6056 			switch (linktype) {
6057 
6058 			case DLT_EN10MB:
6059 			case DLT_NETANALYZER:
6060 			case DLT_NETANALYZER_TRANSPARENT:
6061 				eaddr = pcap_ether_hostton(name);
6062 				if (eaddr == NULL)
6063 					bpf_error(
6064 					    "unknown ether host '%s'", name);
6065 				b = gen_ehostop(eaddr, dir);
6066 				free(eaddr);
6067 				return b;
6068 
6069 			case DLT_FDDI:
6070 				eaddr = pcap_ether_hostton(name);
6071 				if (eaddr == NULL)
6072 					bpf_error(
6073 					    "unknown FDDI host '%s'", name);
6074 				b = gen_fhostop(eaddr, dir);
6075 				free(eaddr);
6076 				return b;
6077 
6078 			case DLT_IEEE802:
6079 				eaddr = pcap_ether_hostton(name);
6080 				if (eaddr == NULL)
6081 					bpf_error(
6082 					    "unknown token ring host '%s'", name);
6083 				b = gen_thostop(eaddr, dir);
6084 				free(eaddr);
6085 				return b;
6086 
6087 			case DLT_IEEE802_11:
6088 			case DLT_PRISM_HEADER:
6089 			case DLT_IEEE802_11_RADIO_AVS:
6090 			case DLT_IEEE802_11_RADIO:
6091 			case DLT_PPI:
6092 				eaddr = pcap_ether_hostton(name);
6093 				if (eaddr == NULL)
6094 					bpf_error(
6095 					    "unknown 802.11 host '%s'", name);
6096 				b = gen_wlanhostop(eaddr, dir);
6097 				free(eaddr);
6098 				return b;
6099 
6100 			case DLT_IP_OVER_FC:
6101 				eaddr = pcap_ether_hostton(name);
6102 				if (eaddr == NULL)
6103 					bpf_error(
6104 					    "unknown Fibre Channel host '%s'", name);
6105 				b = gen_ipfchostop(eaddr, dir);
6106 				free(eaddr);
6107 				return b;
6108 
6109 			case DLT_SUNATM:
6110 				if (!is_lane)
6111 					break;
6112 
6113 				/*
6114 				 * Check that the packet doesn't begin
6115 				 * with an LE Control marker.  (We've
6116 				 * already generated a test for LANE.)
6117 				 */
6118 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6119 				    BPF_H, 0xFF00);
6120 				gen_not(tmp);
6121 
6122 				eaddr = pcap_ether_hostton(name);
6123 				if (eaddr == NULL)
6124 					bpf_error(
6125 					    "unknown ether host '%s'", name);
6126 				b = gen_ehostop(eaddr, dir);
6127 				gen_and(tmp, b);
6128 				free(eaddr);
6129 				return b;
6130 			}
6131 
6132 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6133 		} else if (proto == Q_DECNET) {
6134 			unsigned short dn_addr = __pcap_nametodnaddr(name);
6135 			/*
6136 			 * I don't think DECNET hosts can be multihomed, so
6137 			 * there is no need to build up a list of addresses
6138 			 */
6139 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6140 		} else {
6141 #ifndef INET6
6142 			alist = pcap_nametoaddr(name);
6143 			if (alist == NULL || *alist == NULL)
6144 				bpf_error("unknown host '%s'", name);
6145 			tproto = proto;
6146 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6147 				tproto = Q_IP;
6148 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6149 			while (*alist) {
6150 				tmp = gen_host(**alist++, 0xffffffff,
6151 					       tproto, dir, q.addr);
6152 				gen_or(b, tmp);
6153 				b = tmp;
6154 			}
6155 			return b;
6156 #else
6157 			memset(&mask128, 0xff, sizeof(mask128));
6158 			res0 = res = pcap_nametoaddrinfo(name);
6159 			if (res == NULL)
6160 				bpf_error("unknown host '%s'", name);
6161 			ai = res;
6162 			b = tmp = NULL;
6163 			tproto = tproto6 = proto;
6164 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6165 				tproto = Q_IP;
6166 				tproto6 = Q_IPV6;
6167 			}
6168 			for (res = res0; res; res = res->ai_next) {
6169 				switch (res->ai_family) {
6170 				case AF_INET:
6171 					if (tproto == Q_IPV6)
6172 						continue;
6173 
6174 					sin4 = (struct sockaddr_in *)
6175 						res->ai_addr;
6176 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6177 						0xffffffff, tproto, dir, q.addr);
6178 					break;
6179 				case AF_INET6:
6180 					if (tproto6 == Q_IP)
6181 						continue;
6182 
6183 					sin6 = (struct sockaddr_in6 *)
6184 						res->ai_addr;
6185 					tmp = gen_host6(&sin6->sin6_addr,
6186 						&mask128, tproto6, dir, q.addr);
6187 					break;
6188 				default:
6189 					continue;
6190 				}
6191 				if (b)
6192 					gen_or(b, tmp);
6193 				b = tmp;
6194 			}
6195 			ai = NULL;
6196 			freeaddrinfo(res0);
6197 			if (b == NULL) {
6198 				bpf_error("unknown host '%s'%s", name,
6199 				    (proto == Q_DEFAULT)
6200 					? ""
6201 					: " for specified address family");
6202 			}
6203 			return b;
6204 #endif /*INET6*/
6205 		}
6206 
6207 	case Q_PORT:
6208 		if (proto != Q_DEFAULT &&
6209 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6210 			bpf_error("illegal qualifier of 'port'");
6211 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6212 			bpf_error("unknown port '%s'", name);
6213 		if (proto == Q_UDP) {
6214 			if (real_proto == IPPROTO_TCP)
6215 				bpf_error("port '%s' is tcp", name);
6216 			else if (real_proto == IPPROTO_SCTP)
6217 				bpf_error("port '%s' is sctp", name);
6218 			else
6219 				/* override PROTO_UNDEF */
6220 				real_proto = IPPROTO_UDP;
6221 		}
6222 		if (proto == Q_TCP) {
6223 			if (real_proto == IPPROTO_UDP)
6224 				bpf_error("port '%s' is udp", name);
6225 
6226 			else if (real_proto == IPPROTO_SCTP)
6227 				bpf_error("port '%s' is sctp", name);
6228 			else
6229 				/* override PROTO_UNDEF */
6230 				real_proto = IPPROTO_TCP;
6231 		}
6232 		if (proto == Q_SCTP) {
6233 			if (real_proto == IPPROTO_UDP)
6234 				bpf_error("port '%s' is udp", name);
6235 
6236 			else if (real_proto == IPPROTO_TCP)
6237 				bpf_error("port '%s' is tcp", name);
6238 			else
6239 				/* override PROTO_UNDEF */
6240 				real_proto = IPPROTO_SCTP;
6241 		}
6242 		if (port < 0)
6243 			bpf_error("illegal port number %d < 0", port);
6244 		if (port > 65535)
6245 			bpf_error("illegal port number %d > 65535", port);
6246 		b = gen_port(port, real_proto, dir);
6247 		gen_or(gen_port6(port, real_proto, dir), b);
6248 		return b;
6249 
6250 	case Q_PORTRANGE:
6251 		if (proto != Q_DEFAULT &&
6252 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6253 			bpf_error("illegal qualifier of 'portrange'");
6254 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6255 			bpf_error("unknown port in range '%s'", name);
6256 		if (proto == Q_UDP) {
6257 			if (real_proto == IPPROTO_TCP)
6258 				bpf_error("port in range '%s' is tcp", name);
6259 			else if (real_proto == IPPROTO_SCTP)
6260 				bpf_error("port in range '%s' is sctp", name);
6261 			else
6262 				/* override PROTO_UNDEF */
6263 				real_proto = IPPROTO_UDP;
6264 		}
6265 		if (proto == Q_TCP) {
6266 			if (real_proto == IPPROTO_UDP)
6267 				bpf_error("port in range '%s' is udp", name);
6268 			else if (real_proto == IPPROTO_SCTP)
6269 				bpf_error("port in range '%s' is sctp", name);
6270 			else
6271 				/* override PROTO_UNDEF */
6272 				real_proto = IPPROTO_TCP;
6273 		}
6274 		if (proto == Q_SCTP) {
6275 			if (real_proto == IPPROTO_UDP)
6276 				bpf_error("port in range '%s' is udp", name);
6277 			else if (real_proto == IPPROTO_TCP)
6278 				bpf_error("port in range '%s' is tcp", name);
6279 			else
6280 				/* override PROTO_UNDEF */
6281 				real_proto = IPPROTO_SCTP;
6282 		}
6283 		if (port1 < 0)
6284 			bpf_error("illegal port number %d < 0", port1);
6285 		if (port1 > 65535)
6286 			bpf_error("illegal port number %d > 65535", port1);
6287 		if (port2 < 0)
6288 			bpf_error("illegal port number %d < 0", port2);
6289 		if (port2 > 65535)
6290 			bpf_error("illegal port number %d > 65535", port2);
6291 
6292 		b = gen_portrange(port1, port2, real_proto, dir);
6293 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6294 		return b;
6295 
6296 	case Q_GATEWAY:
6297 #ifndef INET6
6298 		eaddr = pcap_ether_hostton(name);
6299 		if (eaddr == NULL)
6300 			bpf_error("unknown ether host: %s", name);
6301 
6302 		alist = pcap_nametoaddr(name);
6303 		if (alist == NULL || *alist == NULL)
6304 			bpf_error("unknown host '%s'", name);
6305 		b = gen_gateway(eaddr, alist, proto, dir);
6306 		free(eaddr);
6307 		return b;
6308 #else
6309 		bpf_error("'gateway' not supported in this configuration");
6310 #endif /*INET6*/
6311 
6312 	case Q_PROTO:
6313 		real_proto = lookup_proto(name, proto);
6314 		if (real_proto >= 0)
6315 			return gen_proto(real_proto, proto, dir);
6316 		else
6317 			bpf_error("unknown protocol: %s", name);
6318 
6319 	case Q_PROTOCHAIN:
6320 		real_proto = lookup_proto(name, proto);
6321 		if (real_proto >= 0)
6322 			return gen_protochain(real_proto, proto, dir);
6323 		else
6324 			bpf_error("unknown protocol: %s", name);
6325 
6326 	case Q_UNDEF:
6327 		syntax();
6328 		/* NOTREACHED */
6329 	}
6330 	abort();
6331 	/* NOTREACHED */
6332 }
6333 
6334 struct block *
6335 gen_mcode(s1, s2, masklen, q)
6336 	register const char *s1, *s2;
6337 	register int masklen;
6338 	struct qual q;
6339 {
6340 	register int nlen, mlen;
6341 	bpf_u_int32 n, m;
6342 
6343 	nlen = __pcap_atoin(s1, &n);
6344 	/* Promote short ipaddr */
6345 	n <<= 32 - nlen;
6346 
6347 	if (s2 != NULL) {
6348 		mlen = __pcap_atoin(s2, &m);
6349 		/* Promote short ipaddr */
6350 		m <<= 32 - mlen;
6351 		if ((n & ~m) != 0)
6352 			bpf_error("non-network bits set in \"%s mask %s\"",
6353 			    s1, s2);
6354 	} else {
6355 		/* Convert mask len to mask */
6356 		if (masklen > 32)
6357 			bpf_error("mask length must be <= 32");
6358 		if (masklen == 0) {
6359 			/*
6360 			 * X << 32 is not guaranteed by C to be 0; it's
6361 			 * undefined.
6362 			 */
6363 			m = 0;
6364 		} else
6365 			m = 0xffffffff << (32 - masklen);
6366 		if ((n & ~m) != 0)
6367 			bpf_error("non-network bits set in \"%s/%d\"",
6368 			    s1, masklen);
6369 	}
6370 
6371 	switch (q.addr) {
6372 
6373 	case Q_NET:
6374 		return gen_host(n, m, q.proto, q.dir, q.addr);
6375 
6376 	default:
6377 		bpf_error("Mask syntax for networks only");
6378 		/* NOTREACHED */
6379 	}
6380 	/* NOTREACHED */
6381 	return NULL;
6382 }
6383 
6384 struct block *
6385 gen_ncode(s, v, q)
6386 	register const char *s;
6387 	bpf_u_int32 v;
6388 	struct qual q;
6389 {
6390 	bpf_u_int32 mask;
6391 	int proto = q.proto;
6392 	int dir = q.dir;
6393 	register int vlen;
6394 
6395 	if (s == NULL)
6396 		vlen = 32;
6397 	else if (q.proto == Q_DECNET)
6398 		vlen = __pcap_atodn(s, &v);
6399 	else
6400 		vlen = __pcap_atoin(s, &v);
6401 
6402 	switch (q.addr) {
6403 
6404 	case Q_DEFAULT:
6405 	case Q_HOST:
6406 	case Q_NET:
6407 		if (proto == Q_DECNET)
6408 			return gen_host(v, 0, proto, dir, q.addr);
6409 		else if (proto == Q_LINK) {
6410 			bpf_error("illegal link layer address");
6411 		} else {
6412 			mask = 0xffffffff;
6413 			if (s == NULL && q.addr == Q_NET) {
6414 				/* Promote short net number */
6415 				while (v && (v & 0xff000000) == 0) {
6416 					v <<= 8;
6417 					mask <<= 8;
6418 				}
6419 			} else {
6420 				/* Promote short ipaddr */
6421 				v <<= 32 - vlen;
6422 				mask <<= 32 - vlen;
6423 			}
6424 			return gen_host(v, mask, proto, dir, q.addr);
6425 		}
6426 
6427 	case Q_PORT:
6428 		if (proto == Q_UDP)
6429 			proto = IPPROTO_UDP;
6430 		else if (proto == Q_TCP)
6431 			proto = IPPROTO_TCP;
6432 		else if (proto == Q_SCTP)
6433 			proto = IPPROTO_SCTP;
6434 		else if (proto == Q_DEFAULT)
6435 			proto = PROTO_UNDEF;
6436 		else
6437 			bpf_error("illegal qualifier of 'port'");
6438 
6439 		if (v > 65535)
6440 			bpf_error("illegal port number %u > 65535", v);
6441 
6442 	    {
6443 		struct block *b;
6444 		b = gen_port((int)v, proto, dir);
6445 		gen_or(gen_port6((int)v, proto, dir), b);
6446 		return b;
6447 	    }
6448 
6449 	case Q_PORTRANGE:
6450 		if (proto == Q_UDP)
6451 			proto = IPPROTO_UDP;
6452 		else if (proto == Q_TCP)
6453 			proto = IPPROTO_TCP;
6454 		else if (proto == Q_SCTP)
6455 			proto = IPPROTO_SCTP;
6456 		else if (proto == Q_DEFAULT)
6457 			proto = PROTO_UNDEF;
6458 		else
6459 			bpf_error("illegal qualifier of 'portrange'");
6460 
6461 		if (v > 65535)
6462 			bpf_error("illegal port number %u > 65535", v);
6463 
6464 	    {
6465 		struct block *b;
6466 		b = gen_portrange((int)v, (int)v, proto, dir);
6467 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6468 		return b;
6469 	    }
6470 
6471 	case Q_GATEWAY:
6472 		bpf_error("'gateway' requires a name");
6473 		/* NOTREACHED */
6474 
6475 	case Q_PROTO:
6476 		return gen_proto((int)v, proto, dir);
6477 
6478 	case Q_PROTOCHAIN:
6479 		return gen_protochain((int)v, proto, dir);
6480 
6481 	case Q_UNDEF:
6482 		syntax();
6483 		/* NOTREACHED */
6484 
6485 	default:
6486 		abort();
6487 		/* NOTREACHED */
6488 	}
6489 	/* NOTREACHED */
6490 }
6491 
6492 #ifdef INET6
6493 struct block *
6494 gen_mcode6(s1, s2, masklen, q)
6495 	register const char *s1, *s2;
6496 	register int masklen;
6497 	struct qual q;
6498 {
6499 	struct addrinfo *res;
6500 	struct in6_addr *addr;
6501 	struct in6_addr mask;
6502 	struct block *b;
6503 	u_int32_t *a, *m;
6504 
6505 	if (s2)
6506 		bpf_error("no mask %s supported", s2);
6507 
6508 	res = pcap_nametoaddrinfo(s1);
6509 	if (!res)
6510 		bpf_error("invalid ip6 address %s", s1);
6511 	ai = res;
6512 	if (res->ai_next)
6513 		bpf_error("%s resolved to multiple address", s1);
6514 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6515 
6516 	if (sizeof(mask) * 8 < masklen)
6517 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6518 	memset(&mask, 0, sizeof(mask));
6519 	memset(&mask, 0xff, masklen / 8);
6520 	if (masklen % 8) {
6521 		mask.s6_addr[masklen / 8] =
6522 			(0xff << (8 - masklen % 8)) & 0xff;
6523 	}
6524 
6525 	a = (u_int32_t *)addr;
6526 	m = (u_int32_t *)&mask;
6527 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6528 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6529 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6530 	}
6531 
6532 	switch (q.addr) {
6533 
6534 	case Q_DEFAULT:
6535 	case Q_HOST:
6536 		if (masklen != 128)
6537 			bpf_error("Mask syntax for networks only");
6538 		/* FALLTHROUGH */
6539 
6540 	case Q_NET:
6541 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6542 		ai = NULL;
6543 		freeaddrinfo(res);
6544 		return b;
6545 
6546 	default:
6547 		bpf_error("invalid qualifier against IPv6 address");
6548 		/* NOTREACHED */
6549 	}
6550 	return NULL;
6551 }
6552 #endif /*INET6*/
6553 
6554 struct block *
6555 gen_ecode(eaddr, q)
6556 	register const u_char *eaddr;
6557 	struct qual q;
6558 {
6559 	struct block *b, *tmp;
6560 
6561 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6562 		switch (linktype) {
6563 		case DLT_EN10MB:
6564 		case DLT_NETANALYZER:
6565 		case DLT_NETANALYZER_TRANSPARENT:
6566 			return gen_ehostop(eaddr, (int)q.dir);
6567 		case DLT_FDDI:
6568 			return gen_fhostop(eaddr, (int)q.dir);
6569 		case DLT_IEEE802:
6570 			return gen_thostop(eaddr, (int)q.dir);
6571 		case DLT_IEEE802_11:
6572 		case DLT_PRISM_HEADER:
6573 		case DLT_IEEE802_11_RADIO_AVS:
6574 		case DLT_IEEE802_11_RADIO:
6575 		case DLT_PPI:
6576 			return gen_wlanhostop(eaddr, (int)q.dir);
6577 		case DLT_SUNATM:
6578 			if (is_lane) {
6579 				/*
6580 				 * Check that the packet doesn't begin with an
6581 				 * LE Control marker.  (We've already generated
6582 				 * a test for LANE.)
6583 				 */
6584 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6585 					0xFF00);
6586 				gen_not(tmp);
6587 
6588 				/*
6589 				 * Now check the MAC address.
6590 				 */
6591 				b = gen_ehostop(eaddr, (int)q.dir);
6592 				gen_and(tmp, b);
6593 				return b;
6594 			}
6595 			break;
6596 		case DLT_IP_OVER_FC:
6597 			return gen_ipfchostop(eaddr, (int)q.dir);
6598 		default:
6599 			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6600 			break;
6601 		}
6602 	}
6603 	bpf_error("ethernet address used in non-ether expression");
6604 	/* NOTREACHED */
6605 	return NULL;
6606 }
6607 
6608 void
6609 sappend(s0, s1)
6610 	struct slist *s0, *s1;
6611 {
6612 	/*
6613 	 * This is definitely not the best way to do this, but the
6614 	 * lists will rarely get long.
6615 	 */
6616 	while (s0->next)
6617 		s0 = s0->next;
6618 	s0->next = s1;
6619 }
6620 
6621 static struct slist *
6622 xfer_to_x(a)
6623 	struct arth *a;
6624 {
6625 	struct slist *s;
6626 
6627 	s = new_stmt(BPF_LDX|BPF_MEM);
6628 	s->s.k = a->regno;
6629 	return s;
6630 }
6631 
6632 static struct slist *
6633 xfer_to_a(a)
6634 	struct arth *a;
6635 {
6636 	struct slist *s;
6637 
6638 	s = new_stmt(BPF_LD|BPF_MEM);
6639 	s->s.k = a->regno;
6640 	return s;
6641 }
6642 
6643 /*
6644  * Modify "index" to use the value stored into its register as an
6645  * offset relative to the beginning of the header for the protocol
6646  * "proto", and allocate a register and put an item "size" bytes long
6647  * (1, 2, or 4) at that offset into that register, making it the register
6648  * for "index".
6649  */
6650 struct arth *
6651 gen_load(proto, inst, size)
6652 	int proto;
6653 	struct arth *inst;
6654 	int size;
6655 {
6656 	struct slist *s, *tmp;
6657 	struct block *b;
6658 	int regno = alloc_reg();
6659 
6660 	free_reg(inst->regno);
6661 	switch (size) {
6662 
6663 	default:
6664 		bpf_error("data size must be 1, 2, or 4");
6665 
6666 	case 1:
6667 		size = BPF_B;
6668 		break;
6669 
6670 	case 2:
6671 		size = BPF_H;
6672 		break;
6673 
6674 	case 4:
6675 		size = BPF_W;
6676 		break;
6677 	}
6678 	switch (proto) {
6679 	default:
6680 		bpf_error("unsupported index operation");
6681 
6682 	case Q_RADIO:
6683 		/*
6684 		 * The offset is relative to the beginning of the packet
6685 		 * data, if we have a radio header.  (If we don't, this
6686 		 * is an error.)
6687 		 */
6688 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6689 		    linktype != DLT_IEEE802_11_RADIO &&
6690 		    linktype != DLT_PRISM_HEADER)
6691 			bpf_error("radio information not present in capture");
6692 
6693 		/*
6694 		 * Load into the X register the offset computed into the
6695 		 * register specified by "index".
6696 		 */
6697 		s = xfer_to_x(inst);
6698 
6699 		/*
6700 		 * Load the item at that offset.
6701 		 */
6702 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6703 		sappend(s, tmp);
6704 		sappend(inst->s, s);
6705 		break;
6706 
6707 	case Q_LINK:
6708 		/*
6709 		 * The offset is relative to the beginning of
6710 		 * the link-layer header.
6711 		 *
6712 		 * XXX - what about ATM LANE?  Should the index be
6713 		 * relative to the beginning of the AAL5 frame, so
6714 		 * that 0 refers to the beginning of the LE Control
6715 		 * field, or relative to the beginning of the LAN
6716 		 * frame, so that 0 refers, for Ethernet LANE, to
6717 		 * the beginning of the destination address?
6718 		 */
6719 		s = gen_llprefixlen();
6720 
6721 		/*
6722 		 * If "s" is non-null, it has code to arrange that the
6723 		 * X register contains the length of the prefix preceding
6724 		 * the link-layer header.  Add to it the offset computed
6725 		 * into the register specified by "index", and move that
6726 		 * into the X register.  Otherwise, just load into the X
6727 		 * register the offset computed into the register specified
6728 		 * by "index".
6729 		 */
6730 		if (s != NULL) {
6731 			sappend(s, xfer_to_a(inst));
6732 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6733 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6734 		} else
6735 			s = xfer_to_x(inst);
6736 
6737 		/*
6738 		 * Load the item at the sum of the offset we've put in the
6739 		 * X register and the offset of the start of the link
6740 		 * layer header (which is 0 if the radio header is
6741 		 * variable-length; that header length is what we put
6742 		 * into the X register and then added to the index).
6743 		 */
6744 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6745 		tmp->s.k = off_ll;
6746 		sappend(s, tmp);
6747 		sappend(inst->s, s);
6748 		break;
6749 
6750 	case Q_IP:
6751 	case Q_ARP:
6752 	case Q_RARP:
6753 	case Q_ATALK:
6754 	case Q_DECNET:
6755 	case Q_SCA:
6756 	case Q_LAT:
6757 	case Q_MOPRC:
6758 	case Q_MOPDL:
6759 	case Q_IPV6:
6760 		/*
6761 		 * The offset is relative to the beginning of
6762 		 * the network-layer header.
6763 		 * XXX - are there any cases where we want
6764 		 * off_nl_nosnap?
6765 		 */
6766 		s = gen_off_macpl();
6767 
6768 		/*
6769 		 * If "s" is non-null, it has code to arrange that the
6770 		 * X register contains the offset of the MAC-layer
6771 		 * payload.  Add to it the offset computed into the
6772 		 * register specified by "index", and move that into
6773 		 * the X register.  Otherwise, just load into the X
6774 		 * register the offset computed into the register specified
6775 		 * by "index".
6776 		 */
6777 		if (s != NULL) {
6778 			sappend(s, xfer_to_a(inst));
6779 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6780 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6781 		} else
6782 			s = xfer_to_x(inst);
6783 
6784 		/*
6785 		 * Load the item at the sum of the offset we've put in the
6786 		 * X register, the offset of the start of the network
6787 		 * layer header from the beginning of the MAC-layer
6788 		 * payload, and the purported offset of the start of the
6789 		 * MAC-layer payload (which might be 0 if there's a
6790 		 * variable-length prefix before the link-layer header
6791 		 * or the link-layer header itself is variable-length;
6792 		 * the variable-length offset of the start of the
6793 		 * MAC-layer payload is what we put into the X register
6794 		 * and then added to the index).
6795 		 */
6796 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6797 		tmp->s.k = off_macpl + off_nl;
6798 		sappend(s, tmp);
6799 		sappend(inst->s, s);
6800 
6801 		/*
6802 		 * Do the computation only if the packet contains
6803 		 * the protocol in question.
6804 		 */
6805 		b = gen_proto_abbrev(proto);
6806 		if (inst->b)
6807 			gen_and(inst->b, b);
6808 		inst->b = b;
6809 		break;
6810 
6811 	case Q_SCTP:
6812 	case Q_TCP:
6813 	case Q_UDP:
6814 	case Q_ICMP:
6815 	case Q_IGMP:
6816 	case Q_IGRP:
6817 	case Q_PIM:
6818 	case Q_VRRP:
6819 	case Q_CARP:
6820 		/*
6821 		 * The offset is relative to the beginning of
6822 		 * the transport-layer header.
6823 		 *
6824 		 * Load the X register with the length of the IPv4 header
6825 		 * (plus the offset of the link-layer header, if it's
6826 		 * a variable-length header), in bytes.
6827 		 *
6828 		 * XXX - are there any cases where we want
6829 		 * off_nl_nosnap?
6830 		 * XXX - we should, if we're built with
6831 		 * IPv6 support, generate code to load either
6832 		 * IPv4, IPv6, or both, as appropriate.
6833 		 */
6834 		s = gen_loadx_iphdrlen();
6835 
6836 		/*
6837 		 * The X register now contains the sum of the length
6838 		 * of any variable-length header preceding the link-layer
6839 		 * header, any variable-length link-layer header, and the
6840 		 * length of the network-layer header.
6841 		 *
6842 		 * Load into the A register the offset relative to
6843 		 * the beginning of the transport layer header,
6844 		 * add the X register to that, move that to the
6845 		 * X register, and load with an offset from the
6846 		 * X register equal to the offset of the network
6847 		 * layer header relative to the beginning of
6848 		 * the MAC-layer payload plus the fixed-length
6849 		 * portion of the offset of the MAC-layer payload
6850 		 * from the beginning of the raw packet data.
6851 		 */
6852 		sappend(s, xfer_to_a(inst));
6853 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6854 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6855 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6856 		tmp->s.k = off_macpl + off_nl;
6857 		sappend(inst->s, s);
6858 
6859 		/*
6860 		 * Do the computation only if the packet contains
6861 		 * the protocol in question - which is true only
6862 		 * if this is an IP datagram and is the first or
6863 		 * only fragment of that datagram.
6864 		 */
6865 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6866 		if (inst->b)
6867 			gen_and(inst->b, b);
6868 		gen_and(gen_proto_abbrev(Q_IP), b);
6869 		inst->b = b;
6870 		break;
6871 	case Q_ICMPV6:
6872 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6873 		/*NOTREACHED*/
6874 	}
6875 	inst->regno = regno;
6876 	s = new_stmt(BPF_ST);
6877 	s->s.k = regno;
6878 	sappend(inst->s, s);
6879 
6880 	return inst;
6881 }
6882 
6883 struct block *
6884 gen_relation(code, a0, a1, reversed)
6885 	int code;
6886 	struct arth *a0, *a1;
6887 	int reversed;
6888 {
6889 	struct slist *s0, *s1, *s2;
6890 	struct block *b, *tmp;
6891 
6892 	s0 = xfer_to_x(a1);
6893 	s1 = xfer_to_a(a0);
6894 	if (code == BPF_JEQ) {
6895 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6896 		b = new_block(JMP(code));
6897 		sappend(s1, s2);
6898 	}
6899 	else
6900 		b = new_block(BPF_JMP|code|BPF_X);
6901 	if (reversed)
6902 		gen_not(b);
6903 
6904 	sappend(s0, s1);
6905 	sappend(a1->s, s0);
6906 	sappend(a0->s, a1->s);
6907 
6908 	b->stmts = a0->s;
6909 
6910 	free_reg(a0->regno);
6911 	free_reg(a1->regno);
6912 
6913 	/* 'and' together protocol checks */
6914 	if (a0->b) {
6915 		if (a1->b) {
6916 			gen_and(a0->b, tmp = a1->b);
6917 		}
6918 		else
6919 			tmp = a0->b;
6920 	} else
6921 		tmp = a1->b;
6922 
6923 	if (tmp)
6924 		gen_and(tmp, b);
6925 
6926 	return b;
6927 }
6928 
6929 struct arth *
6930 gen_loadlen()
6931 {
6932 	int regno = alloc_reg();
6933 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6934 	struct slist *s;
6935 
6936 	s = new_stmt(BPF_LD|BPF_LEN);
6937 	s->next = new_stmt(BPF_ST);
6938 	s->next->s.k = regno;
6939 	a->s = s;
6940 	a->regno = regno;
6941 
6942 	return a;
6943 }
6944 
6945 struct arth *
6946 gen_loadi(val)
6947 	int val;
6948 {
6949 	struct arth *a;
6950 	struct slist *s;
6951 	int reg;
6952 
6953 	a = (struct arth *)newchunk(sizeof(*a));
6954 
6955 	reg = alloc_reg();
6956 
6957 	s = new_stmt(BPF_LD|BPF_IMM);
6958 	s->s.k = val;
6959 	s->next = new_stmt(BPF_ST);
6960 	s->next->s.k = reg;
6961 	a->s = s;
6962 	a->regno = reg;
6963 
6964 	return a;
6965 }
6966 
6967 struct arth *
6968 gen_neg(a)
6969 	struct arth *a;
6970 {
6971 	struct slist *s;
6972 
6973 	s = xfer_to_a(a);
6974 	sappend(a->s, s);
6975 	s = new_stmt(BPF_ALU|BPF_NEG);
6976 	s->s.k = 0;
6977 	sappend(a->s, s);
6978 	s = new_stmt(BPF_ST);
6979 	s->s.k = a->regno;
6980 	sappend(a->s, s);
6981 
6982 	return a;
6983 }
6984 
6985 struct arth *
6986 gen_arth(code, a0, a1)
6987 	int code;
6988 	struct arth *a0, *a1;
6989 {
6990 	struct slist *s0, *s1, *s2;
6991 
6992 	s0 = xfer_to_x(a1);
6993 	s1 = xfer_to_a(a0);
6994 	s2 = new_stmt(BPF_ALU|BPF_X|code);
6995 
6996 	sappend(s1, s2);
6997 	sappend(s0, s1);
6998 	sappend(a1->s, s0);
6999 	sappend(a0->s, a1->s);
7000 
7001 	free_reg(a0->regno);
7002 	free_reg(a1->regno);
7003 
7004 	s0 = new_stmt(BPF_ST);
7005 	a0->regno = s0->s.k = alloc_reg();
7006 	sappend(a0->s, s0);
7007 
7008 	return a0;
7009 }
7010 
7011 /*
7012  * Here we handle simple allocation of the scratch registers.
7013  * If too many registers are alloc'd, the allocator punts.
7014  */
7015 static int regused[BPF_MEMWORDS];
7016 static int curreg;
7017 
7018 /*
7019  * Initialize the table of used registers and the current register.
7020  */
7021 static void
7022 init_regs()
7023 {
7024 	curreg = 0;
7025 	memset(regused, 0, sizeof regused);
7026 }
7027 
7028 /*
7029  * Return the next free register.
7030  */
7031 static int
7032 alloc_reg()
7033 {
7034 	int n = BPF_MEMWORDS;
7035 
7036 	while (--n >= 0) {
7037 		if (regused[curreg])
7038 			curreg = (curreg + 1) % BPF_MEMWORDS;
7039 		else {
7040 			regused[curreg] = 1;
7041 			return curreg;
7042 		}
7043 	}
7044 	bpf_error("too many registers needed to evaluate expression");
7045 	/* NOTREACHED */
7046 	return 0;
7047 }
7048 
7049 /*
7050  * Return a register to the table so it can
7051  * be used later.
7052  */
7053 static void
7054 free_reg(n)
7055 	int n;
7056 {
7057 	regused[n] = 0;
7058 }
7059 
7060 static struct block *
7061 gen_len(jmp, n)
7062 	int jmp, n;
7063 {
7064 	struct slist *s;
7065 	struct block *b;
7066 
7067 	s = new_stmt(BPF_LD|BPF_LEN);
7068 	b = new_block(JMP(jmp));
7069 	b->stmts = s;
7070 	b->s.k = n;
7071 
7072 	return b;
7073 }
7074 
7075 struct block *
7076 gen_greater(n)
7077 	int n;
7078 {
7079 	return gen_len(BPF_JGE, n);
7080 }
7081 
7082 /*
7083  * Actually, this is less than or equal.
7084  */
7085 struct block *
7086 gen_less(n)
7087 	int n;
7088 {
7089 	struct block *b;
7090 
7091 	b = gen_len(BPF_JGT, n);
7092 	gen_not(b);
7093 
7094 	return b;
7095 }
7096 
7097 /*
7098  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7099  * the beginning of the link-layer header.
7100  * XXX - that means you can't test values in the radiotap header, but
7101  * as that header is difficult if not impossible to parse generally
7102  * without a loop, that might not be a severe problem.  A new keyword
7103  * "radio" could be added for that, although what you'd really want
7104  * would be a way of testing particular radio header values, which
7105  * would generate code appropriate to the radio header in question.
7106  */
7107 struct block *
7108 gen_byteop(op, idx, val)
7109 	int op, idx, val;
7110 {
7111 	struct block *b;
7112 	struct slist *s;
7113 
7114 	switch (op) {
7115 	default:
7116 		abort();
7117 
7118 	case '=':
7119 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7120 
7121 	case '<':
7122 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7123 		return b;
7124 
7125 	case '>':
7126 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7127 		return b;
7128 
7129 	case '|':
7130 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7131 		break;
7132 
7133 	case '&':
7134 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7135 		break;
7136 	}
7137 	s->s.k = val;
7138 	b = new_block(JMP(BPF_JEQ));
7139 	b->stmts = s;
7140 	gen_not(b);
7141 
7142 	return b;
7143 }
7144 
7145 static u_char abroadcast[] = { 0x0 };
7146 
7147 struct block *
7148 gen_broadcast(proto)
7149 	int proto;
7150 {
7151 	bpf_u_int32 hostmask;
7152 	struct block *b0, *b1, *b2;
7153 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7154 
7155 	switch (proto) {
7156 
7157 	case Q_DEFAULT:
7158 	case Q_LINK:
7159 		switch (linktype) {
7160 		case DLT_ARCNET:
7161 		case DLT_ARCNET_LINUX:
7162 			return gen_ahostop(abroadcast, Q_DST);
7163 		case DLT_EN10MB:
7164 		case DLT_NETANALYZER:
7165 		case DLT_NETANALYZER_TRANSPARENT:
7166 			return gen_ehostop(ebroadcast, Q_DST);
7167 		case DLT_FDDI:
7168 			return gen_fhostop(ebroadcast, Q_DST);
7169 		case DLT_IEEE802:
7170 			return gen_thostop(ebroadcast, Q_DST);
7171 		case DLT_IEEE802_11:
7172 		case DLT_PRISM_HEADER:
7173 		case DLT_IEEE802_11_RADIO_AVS:
7174 		case DLT_IEEE802_11_RADIO:
7175 		case DLT_PPI:
7176 			return gen_wlanhostop(ebroadcast, Q_DST);
7177 		case DLT_IP_OVER_FC:
7178 			return gen_ipfchostop(ebroadcast, Q_DST);
7179 		case DLT_SUNATM:
7180 			if (is_lane) {
7181 				/*
7182 				 * Check that the packet doesn't begin with an
7183 				 * LE Control marker.  (We've already generated
7184 				 * a test for LANE.)
7185 				 */
7186 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7187 				    BPF_H, 0xFF00);
7188 				gen_not(b1);
7189 
7190 				/*
7191 				 * Now check the MAC address.
7192 				 */
7193 				b0 = gen_ehostop(ebroadcast, Q_DST);
7194 				gen_and(b1, b0);
7195 				return b0;
7196 			}
7197 			break;
7198 		default:
7199 			bpf_error("not a broadcast link");
7200 		}
7201 		break;
7202 
7203 	case Q_IP:
7204 		/*
7205 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7206 		 * as an indication that we don't know the netmask, and fail
7207 		 * in that case.
7208 		 */
7209 		if (netmask == PCAP_NETMASK_UNKNOWN)
7210 			bpf_error("netmask not known, so 'ip broadcast' not supported");
7211 		b0 = gen_linktype(ETHERTYPE_IP);
7212 		hostmask = ~netmask;
7213 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7214 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7215 			      (bpf_int32)(~0 & hostmask), hostmask);
7216 		gen_or(b1, b2);
7217 		gen_and(b0, b2);
7218 		return b2;
7219 	}
7220 	bpf_error("only link-layer/IP broadcast filters supported");
7221 	/* NOTREACHED */
7222 	return NULL;
7223 }
7224 
7225 /*
7226  * Generate code to test the low-order bit of a MAC address (that's
7227  * the bottom bit of the *first* byte).
7228  */
7229 static struct block *
7230 gen_mac_multicast(offset)
7231 	int offset;
7232 {
7233 	register struct block *b0;
7234 	register struct slist *s;
7235 
7236 	/* link[offset] & 1 != 0 */
7237 	s = gen_load_a(OR_LINK, offset, BPF_B);
7238 	b0 = new_block(JMP(BPF_JSET));
7239 	b0->s.k = 1;
7240 	b0->stmts = s;
7241 	return b0;
7242 }
7243 
7244 struct block *
7245 gen_multicast(proto)
7246 	int proto;
7247 {
7248 	register struct block *b0, *b1, *b2;
7249 	register struct slist *s;
7250 
7251 	switch (proto) {
7252 
7253 	case Q_DEFAULT:
7254 	case Q_LINK:
7255 		switch (linktype) {
7256 		case DLT_ARCNET:
7257 		case DLT_ARCNET_LINUX:
7258 			/* all ARCnet multicasts use the same address */
7259 			return gen_ahostop(abroadcast, Q_DST);
7260 		case DLT_EN10MB:
7261 		case DLT_NETANALYZER:
7262 		case DLT_NETANALYZER_TRANSPARENT:
7263 			/* ether[0] & 1 != 0 */
7264 			return gen_mac_multicast(0);
7265 		case DLT_FDDI:
7266 			/*
7267 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7268 			 *
7269 			 * XXX - was that referring to bit-order issues?
7270 			 */
7271 			/* fddi[1] & 1 != 0 */
7272 			return gen_mac_multicast(1);
7273 		case DLT_IEEE802:
7274 			/* tr[2] & 1 != 0 */
7275 			return gen_mac_multicast(2);
7276 		case DLT_IEEE802_11:
7277 		case DLT_PRISM_HEADER:
7278 		case DLT_IEEE802_11_RADIO_AVS:
7279 		case DLT_IEEE802_11_RADIO:
7280 		case DLT_PPI:
7281 			/*
7282 			 * Oh, yuk.
7283 			 *
7284 			 *	For control frames, there is no DA.
7285 			 *
7286 			 *	For management frames, DA is at an
7287 			 *	offset of 4 from the beginning of
7288 			 *	the packet.
7289 			 *
7290 			 *	For data frames, DA is at an offset
7291 			 *	of 4 from the beginning of the packet
7292 			 *	if To DS is clear and at an offset of
7293 			 *	16 from the beginning of the packet
7294 			 *	if To DS is set.
7295 			 */
7296 
7297 			/*
7298 			 * Generate the tests to be done for data frames.
7299 			 *
7300 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7301 			 */
7302 			s = gen_load_a(OR_LINK, 1, BPF_B);
7303 			b1 = new_block(JMP(BPF_JSET));
7304 			b1->s.k = 0x01;	/* To DS */
7305 			b1->stmts = s;
7306 
7307 			/*
7308 			 * If To DS is set, the DA is at 16.
7309 			 */
7310 			b0 = gen_mac_multicast(16);
7311 			gen_and(b1, b0);
7312 
7313 			/*
7314 			 * Now, check for To DS not set, i.e. check
7315 			 * "!(link[1] & 0x01)".
7316 			 */
7317 			s = gen_load_a(OR_LINK, 1, BPF_B);
7318 			b2 = new_block(JMP(BPF_JSET));
7319 			b2->s.k = 0x01;	/* To DS */
7320 			b2->stmts = s;
7321 			gen_not(b2);
7322 
7323 			/*
7324 			 * If To DS is not set, the DA is at 4.
7325 			 */
7326 			b1 = gen_mac_multicast(4);
7327 			gen_and(b2, b1);
7328 
7329 			/*
7330 			 * Now OR together the last two checks.  That gives
7331 			 * the complete set of checks for data frames.
7332 			 */
7333 			gen_or(b1, b0);
7334 
7335 			/*
7336 			 * Now check for a data frame.
7337 			 * I.e, check "link[0] & 0x08".
7338 			 */
7339 			s = gen_load_a(OR_LINK, 0, BPF_B);
7340 			b1 = new_block(JMP(BPF_JSET));
7341 			b1->s.k = 0x08;
7342 			b1->stmts = s;
7343 
7344 			/*
7345 			 * AND that with the checks done for data frames.
7346 			 */
7347 			gen_and(b1, b0);
7348 
7349 			/*
7350 			 * If the high-order bit of the type value is 0, this
7351 			 * is a management frame.
7352 			 * I.e, check "!(link[0] & 0x08)".
7353 			 */
7354 			s = gen_load_a(OR_LINK, 0, BPF_B);
7355 			b2 = new_block(JMP(BPF_JSET));
7356 			b2->s.k = 0x08;
7357 			b2->stmts = s;
7358 			gen_not(b2);
7359 
7360 			/*
7361 			 * For management frames, the DA is at 4.
7362 			 */
7363 			b1 = gen_mac_multicast(4);
7364 			gen_and(b2, b1);
7365 
7366 			/*
7367 			 * OR that with the checks done for data frames.
7368 			 * That gives the checks done for management and
7369 			 * data frames.
7370 			 */
7371 			gen_or(b1, b0);
7372 
7373 			/*
7374 			 * If the low-order bit of the type value is 1,
7375 			 * this is either a control frame or a frame
7376 			 * with a reserved type, and thus not a
7377 			 * frame with an SA.
7378 			 *
7379 			 * I.e., check "!(link[0] & 0x04)".
7380 			 */
7381 			s = gen_load_a(OR_LINK, 0, BPF_B);
7382 			b1 = new_block(JMP(BPF_JSET));
7383 			b1->s.k = 0x04;
7384 			b1->stmts = s;
7385 			gen_not(b1);
7386 
7387 			/*
7388 			 * AND that with the checks for data and management
7389 			 * frames.
7390 			 */
7391 			gen_and(b1, b0);
7392 			return b0;
7393 		case DLT_IP_OVER_FC:
7394 			b0 = gen_mac_multicast(2);
7395 			return b0;
7396 		case DLT_SUNATM:
7397 			if (is_lane) {
7398 				/*
7399 				 * Check that the packet doesn't begin with an
7400 				 * LE Control marker.  (We've already generated
7401 				 * a test for LANE.)
7402 				 */
7403 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7404 				    BPF_H, 0xFF00);
7405 				gen_not(b1);
7406 
7407 				/* ether[off_mac] & 1 != 0 */
7408 				b0 = gen_mac_multicast(off_mac);
7409 				gen_and(b1, b0);
7410 				return b0;
7411 			}
7412 			break;
7413 		default:
7414 			break;
7415 		}
7416 		/* Link not known to support multicasts */
7417 		break;
7418 
7419 	case Q_IP:
7420 		b0 = gen_linktype(ETHERTYPE_IP);
7421 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7422 		gen_and(b0, b1);
7423 		return b1;
7424 
7425 	case Q_IPV6:
7426 		b0 = gen_linktype(ETHERTYPE_IPV6);
7427 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7428 		gen_and(b0, b1);
7429 		return b1;
7430 	}
7431 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7432 	/* NOTREACHED */
7433 	return NULL;
7434 }
7435 
7436 /*
7437  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7438  * Outbound traffic is sent by this machine, while inbound traffic is
7439  * sent by a remote machine (and may include packets destined for a
7440  * unicast or multicast link-layer address we are not subscribing to).
7441  * These are the same definitions implemented by pcap_setdirection().
7442  * Capturing only unicast traffic destined for this host is probably
7443  * better accomplished using a higher-layer filter.
7444  */
7445 struct block *
7446 gen_inbound(dir)
7447 	int dir;
7448 {
7449 	register struct block *b0;
7450 
7451 	/*
7452 	 * Only some data link types support inbound/outbound qualifiers.
7453 	 */
7454 	switch (linktype) {
7455 	case DLT_SLIP:
7456 		b0 = gen_relation(BPF_JEQ,
7457 			  gen_load(Q_LINK, gen_loadi(0), 1),
7458 			  gen_loadi(0),
7459 			  dir);
7460 		break;
7461 
7462 	case DLT_IPNET:
7463 		if (dir) {
7464 			/* match outgoing packets */
7465 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7466 		} else {
7467 			/* match incoming packets */
7468 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7469 		}
7470 		break;
7471 
7472 	case DLT_LINUX_SLL:
7473 		/* match outgoing packets */
7474 		b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7475 		if (!dir) {
7476 			/* to filter on inbound traffic, invert the match */
7477 			gen_not(b0);
7478 		}
7479 		break;
7480 
7481 #ifdef HAVE_NET_PFVAR_H
7482 	case DLT_PFLOG:
7483 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7484 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7485 		break;
7486 #endif
7487 
7488 	case DLT_PPP_PPPD:
7489 		if (dir) {
7490 			/* match outgoing packets */
7491 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7492 		} else {
7493 			/* match incoming packets */
7494 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7495 		}
7496 		break;
7497 
7498         case DLT_JUNIPER_MFR:
7499         case DLT_JUNIPER_MLFR:
7500         case DLT_JUNIPER_MLPPP:
7501 	case DLT_JUNIPER_ATM1:
7502 	case DLT_JUNIPER_ATM2:
7503 	case DLT_JUNIPER_PPPOE:
7504 	case DLT_JUNIPER_PPPOE_ATM:
7505         case DLT_JUNIPER_GGSN:
7506         case DLT_JUNIPER_ES:
7507         case DLT_JUNIPER_MONITOR:
7508         case DLT_JUNIPER_SERVICES:
7509         case DLT_JUNIPER_ETHER:
7510         case DLT_JUNIPER_PPP:
7511         case DLT_JUNIPER_FRELAY:
7512         case DLT_JUNIPER_CHDLC:
7513         case DLT_JUNIPER_VP:
7514         case DLT_JUNIPER_ST:
7515         case DLT_JUNIPER_ISM:
7516         case DLT_JUNIPER_VS:
7517         case DLT_JUNIPER_SRX_E2E:
7518         case DLT_JUNIPER_FIBRECHANNEL:
7519 	case DLT_JUNIPER_ATM_CEMIC:
7520 
7521 		/* juniper flags (including direction) are stored
7522 		 * the byte after the 3-byte magic number */
7523 		if (dir) {
7524 			/* match outgoing packets */
7525 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7526 		} else {
7527 			/* match incoming packets */
7528 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7529 		}
7530 		break;
7531 
7532 	default:
7533 		/*
7534 		 * If we have packet meta-data indicating a direction,
7535 		 * check it, otherwise give up as this link-layer type
7536 		 * has nothing in the packet data.
7537 		 */
7538 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7539 		/*
7540 		 * We infer that this is Linux with PF_PACKET support.
7541 		 * If this is a *live* capture, we can look at
7542 		 * special meta-data in the filter expression;
7543 		 * if it's a savefile, we can't.
7544 		 */
7545 		if (bpf_pcap->sf.rfile != NULL) {
7546 			/* We have a FILE *, so this is a savefile */
7547 			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7548 			    linktype);
7549 			b0 = NULL;
7550 			/* NOTREACHED */
7551 		}
7552 		/* match outgoing packets */
7553 		b0 = gen_cmp(OR_LINK, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7554 		             PACKET_OUTGOING);
7555 		if (!dir) {
7556 			/* to filter on inbound traffic, invert the match */
7557 			gen_not(b0);
7558 		}
7559 #else /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7560 		bpf_error("inbound/outbound not supported on linktype %d",
7561 		    linktype);
7562 		b0 = NULL;
7563 		/* NOTREACHED */
7564 #endif /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7565 	}
7566 	return (b0);
7567 }
7568 
7569 #ifdef HAVE_NET_PFVAR_H
7570 /* PF firewall log matched interface */
7571 struct block *
7572 gen_pf_ifname(const char *ifname)
7573 {
7574 	struct block *b0;
7575 	u_int len, off;
7576 
7577 	if (linktype != DLT_PFLOG) {
7578 		bpf_error("ifname supported only on PF linktype");
7579 		/* NOTREACHED */
7580 	}
7581 	len = sizeof(((struct pfloghdr *)0)->ifname);
7582 	off = offsetof(struct pfloghdr, ifname);
7583 	if (strlen(ifname) >= len) {
7584 		bpf_error("ifname interface names can only be %d characters",
7585 		    len-1);
7586 		/* NOTREACHED */
7587 	}
7588 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7589 	return (b0);
7590 }
7591 
7592 /* PF firewall log ruleset name */
7593 struct block *
7594 gen_pf_ruleset(char *ruleset)
7595 {
7596 	struct block *b0;
7597 
7598 	if (linktype != DLT_PFLOG) {
7599 		bpf_error("ruleset supported only on PF linktype");
7600 		/* NOTREACHED */
7601 	}
7602 
7603 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7604 		bpf_error("ruleset names can only be %ld characters",
7605 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7606 		/* NOTREACHED */
7607 	}
7608 
7609 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7610 	    strlen(ruleset), (const u_char *)ruleset);
7611 	return (b0);
7612 }
7613 
7614 /* PF firewall log rule number */
7615 struct block *
7616 gen_pf_rnr(int rnr)
7617 {
7618 	struct block *b0;
7619 
7620 	if (linktype != DLT_PFLOG) {
7621 		bpf_error("rnr supported only on PF linktype");
7622 		/* NOTREACHED */
7623 	}
7624 
7625 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7626 		 (bpf_int32)rnr);
7627 	return (b0);
7628 }
7629 
7630 /* PF firewall log sub-rule number */
7631 struct block *
7632 gen_pf_srnr(int srnr)
7633 {
7634 	struct block *b0;
7635 
7636 	if (linktype != DLT_PFLOG) {
7637 		bpf_error("srnr supported only on PF linktype");
7638 		/* NOTREACHED */
7639 	}
7640 
7641 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7642 	    (bpf_int32)srnr);
7643 	return (b0);
7644 }
7645 
7646 /* PF firewall log reason code */
7647 struct block *
7648 gen_pf_reason(int reason)
7649 {
7650 	struct block *b0;
7651 
7652 	if (linktype != DLT_PFLOG) {
7653 		bpf_error("reason supported only on PF linktype");
7654 		/* NOTREACHED */
7655 	}
7656 
7657 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7658 	    (bpf_int32)reason);
7659 	return (b0);
7660 }
7661 
7662 /* PF firewall log action */
7663 struct block *
7664 gen_pf_action(int action)
7665 {
7666 	struct block *b0;
7667 
7668 	if (linktype != DLT_PFLOG) {
7669 		bpf_error("action supported only on PF linktype");
7670 		/* NOTREACHED */
7671 	}
7672 
7673 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7674 	    (bpf_int32)action);
7675 	return (b0);
7676 }
7677 #else /* !HAVE_NET_PFVAR_H */
7678 struct block *
7679 gen_pf_ifname(const char *ifname)
7680 {
7681 	bpf_error("libpcap was compiled without pf support");
7682 	/* NOTREACHED */
7683 	return (NULL);
7684 }
7685 
7686 struct block *
7687 gen_pf_ruleset(char *ruleset)
7688 {
7689 	bpf_error("libpcap was compiled on a machine without pf support");
7690 	/* NOTREACHED */
7691 	return (NULL);
7692 }
7693 
7694 struct block *
7695 gen_pf_rnr(int rnr)
7696 {
7697 	bpf_error("libpcap was compiled on a machine without pf support");
7698 	/* NOTREACHED */
7699 	return (NULL);
7700 }
7701 
7702 struct block *
7703 gen_pf_srnr(int srnr)
7704 {
7705 	bpf_error("libpcap was compiled on a machine without pf support");
7706 	/* NOTREACHED */
7707 	return (NULL);
7708 }
7709 
7710 struct block *
7711 gen_pf_reason(int reason)
7712 {
7713 	bpf_error("libpcap was compiled on a machine without pf support");
7714 	/* NOTREACHED */
7715 	return (NULL);
7716 }
7717 
7718 struct block *
7719 gen_pf_action(int action)
7720 {
7721 	bpf_error("libpcap was compiled on a machine without pf support");
7722 	/* NOTREACHED */
7723 	return (NULL);
7724 }
7725 #endif /* HAVE_NET_PFVAR_H */
7726 
7727 /* IEEE 802.11 wireless header */
7728 struct block *
7729 gen_p80211_type(int type, int mask)
7730 {
7731 	struct block *b0;
7732 
7733 	switch (linktype) {
7734 
7735 	case DLT_IEEE802_11:
7736 	case DLT_PRISM_HEADER:
7737 	case DLT_IEEE802_11_RADIO_AVS:
7738 	case DLT_IEEE802_11_RADIO:
7739 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7740 		    (bpf_int32)mask);
7741 		break;
7742 
7743 	default:
7744 		bpf_error("802.11 link-layer types supported only on 802.11");
7745 		/* NOTREACHED */
7746 	}
7747 
7748 	return (b0);
7749 }
7750 
7751 struct block *
7752 gen_p80211_fcdir(int fcdir)
7753 {
7754 	struct block *b0;
7755 
7756 	switch (linktype) {
7757 
7758 	case DLT_IEEE802_11:
7759 	case DLT_PRISM_HEADER:
7760 	case DLT_IEEE802_11_RADIO_AVS:
7761 	case DLT_IEEE802_11_RADIO:
7762 		break;
7763 
7764 	default:
7765 		bpf_error("frame direction supported only with 802.11 headers");
7766 		/* NOTREACHED */
7767 	}
7768 
7769 	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7770 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7771 
7772 	return (b0);
7773 }
7774 
7775 struct block *
7776 gen_acode(eaddr, q)
7777 	register const u_char *eaddr;
7778 	struct qual q;
7779 {
7780 	switch (linktype) {
7781 
7782 	case DLT_ARCNET:
7783 	case DLT_ARCNET_LINUX:
7784 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7785 		    q.proto == Q_LINK)
7786 			return (gen_ahostop(eaddr, (int)q.dir));
7787 		else {
7788 			bpf_error("ARCnet address used in non-arc expression");
7789 			/* NOTREACHED */
7790 		}
7791 		break;
7792 
7793 	default:
7794 		bpf_error("aid supported only on ARCnet");
7795 		/* NOTREACHED */
7796 	}
7797 	bpf_error("ARCnet address used in non-arc expression");
7798 	/* NOTREACHED */
7799 	return NULL;
7800 }
7801 
7802 static struct block *
7803 gen_ahostop(eaddr, dir)
7804 	register const u_char *eaddr;
7805 	register int dir;
7806 {
7807 	register struct block *b0, *b1;
7808 
7809 	switch (dir) {
7810 	/* src comes first, different from Ethernet */
7811 	case Q_SRC:
7812 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7813 
7814 	case Q_DST:
7815 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7816 
7817 	case Q_AND:
7818 		b0 = gen_ahostop(eaddr, Q_SRC);
7819 		b1 = gen_ahostop(eaddr, Q_DST);
7820 		gen_and(b0, b1);
7821 		return b1;
7822 
7823 	case Q_DEFAULT:
7824 	case Q_OR:
7825 		b0 = gen_ahostop(eaddr, Q_SRC);
7826 		b1 = gen_ahostop(eaddr, Q_DST);
7827 		gen_or(b0, b1);
7828 		return b1;
7829 
7830 	case Q_ADDR1:
7831 		bpf_error("'addr1' is only supported on 802.11");
7832 		break;
7833 
7834 	case Q_ADDR2:
7835 		bpf_error("'addr2' is only supported on 802.11");
7836 		break;
7837 
7838 	case Q_ADDR3:
7839 		bpf_error("'addr3' is only supported on 802.11");
7840 		break;
7841 
7842 	case Q_ADDR4:
7843 		bpf_error("'addr4' is only supported on 802.11");
7844 		break;
7845 
7846 	case Q_RA:
7847 		bpf_error("'ra' is only supported on 802.11");
7848 		break;
7849 
7850 	case Q_TA:
7851 		bpf_error("'ta' is only supported on 802.11");
7852 		break;
7853 	}
7854 	abort();
7855 	/* NOTREACHED */
7856 }
7857 
7858 /*
7859  * support IEEE 802.1Q VLAN trunk over ethernet
7860  */
7861 struct block *
7862 gen_vlan(vlan_num)
7863 	int vlan_num;
7864 {
7865 	struct	block	*b0, *b1;
7866 
7867 	/* can't check for VLAN-encapsulated packets inside MPLS */
7868 	if (label_stack_depth > 0)
7869 		bpf_error("no VLAN match after MPLS");
7870 
7871 	/*
7872 	 * Check for a VLAN packet, and then change the offsets to point
7873 	 * to the type and data fields within the VLAN packet.  Just
7874 	 * increment the offsets, so that we can support a hierarchy, e.g.
7875 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7876 	 * VLAN 100.
7877 	 *
7878 	 * XXX - this is a bit of a kludge.  If we were to split the
7879 	 * compiler into a parser that parses an expression and
7880 	 * generates an expression tree, and a code generator that
7881 	 * takes an expression tree (which could come from our
7882 	 * parser or from some other parser) and generates BPF code,
7883 	 * we could perhaps make the offsets parameters of routines
7884 	 * and, in the handler for an "AND" node, pass to subnodes
7885 	 * other than the VLAN node the adjusted offsets.
7886 	 *
7887 	 * This would mean that "vlan" would, instead of changing the
7888 	 * behavior of *all* tests after it, change only the behavior
7889 	 * of tests ANDed with it.  That would change the documented
7890 	 * semantics of "vlan", which might break some expressions.
7891 	 * However, it would mean that "(vlan and ip) or ip" would check
7892 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7893 	 * checking only for VLAN-encapsulated IP, so that could still
7894 	 * be considered worth doing; it wouldn't break expressions
7895 	 * that are of the form "vlan and ..." or "vlan N and ...",
7896 	 * which I suspect are the most common expressions involving
7897 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7898 	 * would really want, now, as all the "or ..." tests would
7899 	 * be done assuming a VLAN, even though the "or" could be viewed
7900 	 * as meaning "or, if this isn't a VLAN packet...".
7901 	 */
7902 	orig_nl = off_nl;
7903 
7904 	switch (linktype) {
7905 
7906 	case DLT_EN10MB:
7907 	case DLT_NETANALYZER:
7908 	case DLT_NETANALYZER_TRANSPARENT:
7909 		/* check for VLAN, including QinQ */
7910 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7911 		    (bpf_int32)ETHERTYPE_8021Q);
7912 		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7913 		    (bpf_int32)ETHERTYPE_8021QINQ);
7914 		gen_or(b0,b1);
7915 		b0 = b1;
7916 
7917 		/* If a specific VLAN is requested, check VLAN id */
7918 		if (vlan_num >= 0) {
7919 			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7920 			    (bpf_int32)vlan_num, 0x0fff);
7921 			gen_and(b0, b1);
7922 			b0 = b1;
7923 		}
7924 
7925 		off_macpl += 4;
7926 		off_linktype += 4;
7927 #if 0
7928 		off_nl_nosnap += 4;
7929 		off_nl += 4;
7930 #endif
7931 		break;
7932 
7933 	default:
7934 		bpf_error("no VLAN support for data link type %d",
7935 		      linktype);
7936 		/*NOTREACHED*/
7937 	}
7938 
7939 	return (b0);
7940 }
7941 
7942 /*
7943  * support for MPLS
7944  */
7945 struct block *
7946 gen_mpls(label_num)
7947 	int label_num;
7948 {
7949 	struct	block	*b0,*b1;
7950 
7951 	/*
7952 	 * Change the offsets to point to the type and data fields within
7953 	 * the MPLS packet.  Just increment the offsets, so that we
7954 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7955 	 * capture packets with an outer label of 100000 and an inner
7956 	 * label of 1024.
7957 	 *
7958 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7959 	 */
7960         orig_nl = off_nl;
7961 
7962         if (label_stack_depth > 0) {
7963             /* just match the bottom-of-stack bit clear */
7964             b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7965         } else {
7966             /*
7967              * Indicate that we're checking MPLS-encapsulated headers,
7968              * to make sure higher level code generators don't try to
7969              * match against IP-related protocols such as Q_ARP, Q_RARP
7970              * etc.
7971              */
7972             switch (linktype) {
7973 
7974             case DLT_C_HDLC: /* fall through */
7975             case DLT_EN10MB:
7976             case DLT_NETANALYZER:
7977             case DLT_NETANALYZER_TRANSPARENT:
7978                     b0 = gen_linktype(ETHERTYPE_MPLS);
7979                     break;
7980 
7981             case DLT_PPP:
7982                     b0 = gen_linktype(PPP_MPLS_UCAST);
7983                     break;
7984 
7985                     /* FIXME add other DLT_s ...
7986                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
7987                      * leave it for now */
7988 
7989             default:
7990                     bpf_error("no MPLS support for data link type %d",
7991                           linktype);
7992                     b0 = NULL;
7993                     /*NOTREACHED*/
7994                     break;
7995             }
7996         }
7997 
7998 	/* If a specific MPLS label is requested, check it */
7999 	if (label_num >= 0) {
8000 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8001 		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8002 		    0xfffff000); /* only compare the first 20 bits */
8003 		gen_and(b0, b1);
8004 		b0 = b1;
8005 	}
8006 
8007         off_nl_nosnap += 4;
8008         off_nl += 4;
8009         label_stack_depth++;
8010 	return (b0);
8011 }
8012 
8013 /*
8014  * Support PPPOE discovery and session.
8015  */
8016 struct block *
8017 gen_pppoed()
8018 {
8019 	/* check for PPPoE discovery */
8020 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8021 }
8022 
8023 struct block *
8024 gen_pppoes()
8025 {
8026 	struct block *b0;
8027 
8028 	/*
8029 	 * Test against the PPPoE session link-layer type.
8030 	 */
8031 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8032 
8033 	/*
8034 	 * Change the offsets to point to the type and data fields within
8035 	 * the PPP packet, and note that this is PPPoE rather than
8036 	 * raw PPP.
8037 	 *
8038 	 * XXX - this is a bit of a kludge.  If we were to split the
8039 	 * compiler into a parser that parses an expression and
8040 	 * generates an expression tree, and a code generator that
8041 	 * takes an expression tree (which could come from our
8042 	 * parser or from some other parser) and generates BPF code,
8043 	 * we could perhaps make the offsets parameters of routines
8044 	 * and, in the handler for an "AND" node, pass to subnodes
8045 	 * other than the PPPoE node the adjusted offsets.
8046 	 *
8047 	 * This would mean that "pppoes" would, instead of changing the
8048 	 * behavior of *all* tests after it, change only the behavior
8049 	 * of tests ANDed with it.  That would change the documented
8050 	 * semantics of "pppoes", which might break some expressions.
8051 	 * However, it would mean that "(pppoes and ip) or ip" would check
8052 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8053 	 * checking only for VLAN-encapsulated IP, so that could still
8054 	 * be considered worth doing; it wouldn't break expressions
8055 	 * that are of the form "pppoes and ..." which I suspect are the
8056 	 * most common expressions involving "pppoes".  "pppoes or ..."
8057 	 * doesn't necessarily do what the user would really want, now,
8058 	 * as all the "or ..." tests would be done assuming PPPoE, even
8059 	 * though the "or" could be viewed as meaning "or, if this isn't
8060 	 * a PPPoE packet...".
8061 	 */
8062 	orig_linktype = off_linktype;	/* save original values */
8063 	orig_nl = off_nl;
8064 	is_pppoes = 1;
8065 
8066 	/*
8067 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8068 	 * PPPoE header, followed by a PPP packet.
8069 	 *
8070 	 * There is no HDLC encapsulation for the PPP packet (it's
8071 	 * encapsulated in PPPoES instead), so the link-layer type
8072 	 * starts at the first byte of the PPP packet.  For PPPoE,
8073 	 * that offset is relative to the beginning of the total
8074 	 * link-layer payload, including any 802.2 LLC header, so
8075 	 * it's 6 bytes past off_nl.
8076 	 */
8077 	off_linktype = off_nl + 6;
8078 
8079 	/*
8080 	 * The network-layer offsets are relative to the beginning
8081 	 * of the MAC-layer payload; that's past the 6-byte
8082 	 * PPPoE header and the 2-byte PPP header.
8083 	 */
8084 	off_nl = 6+2;
8085 	off_nl_nosnap = 6+2;
8086 
8087 	return b0;
8088 }
8089 
8090 struct block *
8091 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8092 	int atmfield;
8093 	bpf_int32 jvalue;
8094 	bpf_u_int32 jtype;
8095 	int reverse;
8096 {
8097 	struct block *b0;
8098 
8099 	switch (atmfield) {
8100 
8101 	case A_VPI:
8102 		if (!is_atm)
8103 			bpf_error("'vpi' supported only on raw ATM");
8104 		if (off_vpi == (u_int)-1)
8105 			abort();
8106 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8107 		    reverse, jvalue);
8108 		break;
8109 
8110 	case A_VCI:
8111 		if (!is_atm)
8112 			bpf_error("'vci' supported only on raw ATM");
8113 		if (off_vci == (u_int)-1)
8114 			abort();
8115 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8116 		    reverse, jvalue);
8117 		break;
8118 
8119 	case A_PROTOTYPE:
8120 		if (off_proto == (u_int)-1)
8121 			abort();	/* XXX - this isn't on FreeBSD */
8122 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8123 		    reverse, jvalue);
8124 		break;
8125 
8126 	case A_MSGTYPE:
8127 		if (off_payload == (u_int)-1)
8128 			abort();
8129 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8130 		    0xffffffff, jtype, reverse, jvalue);
8131 		break;
8132 
8133 	case A_CALLREFTYPE:
8134 		if (!is_atm)
8135 			bpf_error("'callref' supported only on raw ATM");
8136 		if (off_proto == (u_int)-1)
8137 			abort();
8138 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8139 		    jtype, reverse, jvalue);
8140 		break;
8141 
8142 	default:
8143 		abort();
8144 	}
8145 	return b0;
8146 }
8147 
8148 struct block *
8149 gen_atmtype_abbrev(type)
8150 	int type;
8151 {
8152 	struct block *b0, *b1;
8153 
8154 	switch (type) {
8155 
8156 	case A_METAC:
8157 		/* Get all packets in Meta signalling Circuit */
8158 		if (!is_atm)
8159 			bpf_error("'metac' supported only on raw ATM");
8160 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8161 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8162 		gen_and(b0, b1);
8163 		break;
8164 
8165 	case A_BCC:
8166 		/* Get all packets in Broadcast Circuit*/
8167 		if (!is_atm)
8168 			bpf_error("'bcc' supported only on raw ATM");
8169 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8170 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8171 		gen_and(b0, b1);
8172 		break;
8173 
8174 	case A_OAMF4SC:
8175 		/* Get all cells in Segment OAM F4 circuit*/
8176 		if (!is_atm)
8177 			bpf_error("'oam4sc' supported only on raw ATM");
8178 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8179 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8180 		gen_and(b0, b1);
8181 		break;
8182 
8183 	case A_OAMF4EC:
8184 		/* Get all cells in End-to-End OAM F4 Circuit*/
8185 		if (!is_atm)
8186 			bpf_error("'oam4ec' supported only on raw ATM");
8187 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8188 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8189 		gen_and(b0, b1);
8190 		break;
8191 
8192 	case A_SC:
8193 		/*  Get all packets in connection Signalling Circuit */
8194 		if (!is_atm)
8195 			bpf_error("'sc' supported only on raw ATM");
8196 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8197 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8198 		gen_and(b0, b1);
8199 		break;
8200 
8201 	case A_ILMIC:
8202 		/* Get all packets in ILMI Circuit */
8203 		if (!is_atm)
8204 			bpf_error("'ilmic' supported only on raw ATM");
8205 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8206 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8207 		gen_and(b0, b1);
8208 		break;
8209 
8210 	case A_LANE:
8211 		/* Get all LANE packets */
8212 		if (!is_atm)
8213 			bpf_error("'lane' supported only on raw ATM");
8214 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8215 
8216 		/*
8217 		 * Arrange that all subsequent tests assume LANE
8218 		 * rather than LLC-encapsulated packets, and set
8219 		 * the offsets appropriately for LANE-encapsulated
8220 		 * Ethernet.
8221 		 *
8222 		 * "off_mac" is the offset of the Ethernet header,
8223 		 * which is 2 bytes past the ATM pseudo-header
8224 		 * (skipping the pseudo-header and 2-byte LE Client
8225 		 * field).  The other offsets are Ethernet offsets
8226 		 * relative to "off_mac".
8227 		 */
8228 		is_lane = 1;
8229 		off_mac = off_payload + 2;	/* MAC header */
8230 		off_linktype = off_mac + 12;
8231 		off_macpl = off_mac + 14;	/* Ethernet */
8232 		off_nl = 0;			/* Ethernet II */
8233 		off_nl_nosnap = 3;		/* 802.3+802.2 */
8234 		break;
8235 
8236 	case A_LLC:
8237 		/* Get all LLC-encapsulated packets */
8238 		if (!is_atm)
8239 			bpf_error("'llc' supported only on raw ATM");
8240 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8241 		is_lane = 0;
8242 		break;
8243 
8244 	default:
8245 		abort();
8246 	}
8247 	return b1;
8248 }
8249 
8250 /*
8251  * Filtering for MTP2 messages based on li value
8252  * FISU, length is null
8253  * LSSU, length is 1 or 2
8254  * MSU, length is 3 or more
8255  */
8256 struct block *
8257 gen_mtp2type_abbrev(type)
8258 	int type;
8259 {
8260 	struct block *b0, *b1;
8261 
8262 	switch (type) {
8263 
8264 	case M_FISU:
8265 		if ( (linktype != DLT_MTP2) &&
8266 		     (linktype != DLT_ERF) &&
8267 		     (linktype != DLT_MTP2_WITH_PHDR) )
8268 			bpf_error("'fisu' supported only on MTP2");
8269 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8270 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8271 		break;
8272 
8273 	case M_LSSU:
8274 		if ( (linktype != DLT_MTP2) &&
8275 		     (linktype != DLT_ERF) &&
8276 		     (linktype != DLT_MTP2_WITH_PHDR) )
8277 			bpf_error("'lssu' supported only on MTP2");
8278 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8279 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8280 		gen_and(b1, b0);
8281 		break;
8282 
8283 	case M_MSU:
8284 		if ( (linktype != DLT_MTP2) &&
8285 		     (linktype != DLT_ERF) &&
8286 		     (linktype != DLT_MTP2_WITH_PHDR) )
8287 			bpf_error("'msu' supported only on MTP2");
8288 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8289 		break;
8290 
8291 	default:
8292 		abort();
8293 	}
8294 	return b0;
8295 }
8296 
8297 struct block *
8298 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8299 	int mtp3field;
8300 	bpf_u_int32 jvalue;
8301 	bpf_u_int32 jtype;
8302 	int reverse;
8303 {
8304 	struct block *b0;
8305 	bpf_u_int32 val1 , val2 , val3;
8306 
8307 	switch (mtp3field) {
8308 
8309 	case M_SIO:
8310 		if (off_sio == (u_int)-1)
8311 			bpf_error("'sio' supported only on SS7");
8312 		/* sio coded on 1 byte so max value 255 */
8313 		if(jvalue > 255)
8314 		        bpf_error("sio value %u too big; max value = 255",
8315 		            jvalue);
8316 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8317 		    (u_int)jtype, reverse, (u_int)jvalue);
8318 		break;
8319 
8320         case M_OPC:
8321 	        if (off_opc == (u_int)-1)
8322 			bpf_error("'opc' supported only on SS7");
8323 		/* opc coded on 14 bits so max value 16383 */
8324 		if (jvalue > 16383)
8325 		        bpf_error("opc value %u too big; max value = 16383",
8326 		            jvalue);
8327 		/* the following instructions are made to convert jvalue
8328 		 * to the form used to write opc in an ss7 message*/
8329 		val1 = jvalue & 0x00003c00;
8330 		val1 = val1 >>10;
8331 		val2 = jvalue & 0x000003fc;
8332 		val2 = val2 <<6;
8333 		val3 = jvalue & 0x00000003;
8334 		val3 = val3 <<22;
8335 		jvalue = val1 + val2 + val3;
8336 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8337 		    (u_int)jtype, reverse, (u_int)jvalue);
8338 		break;
8339 
8340 	case M_DPC:
8341 	        if (off_dpc == (u_int)-1)
8342 			bpf_error("'dpc' supported only on SS7");
8343 		/* dpc coded on 14 bits so max value 16383 */
8344 		if (jvalue > 16383)
8345 		        bpf_error("dpc value %u too big; max value = 16383",
8346 		            jvalue);
8347 		/* the following instructions are made to convert jvalue
8348 		 * to the forme used to write dpc in an ss7 message*/
8349 		val1 = jvalue & 0x000000ff;
8350 		val1 = val1 << 24;
8351 		val2 = jvalue & 0x00003f00;
8352 		val2 = val2 << 8;
8353 		jvalue = val1 + val2;
8354 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8355 		    (u_int)jtype, reverse, (u_int)jvalue);
8356 		break;
8357 
8358 	case M_SLS:
8359 	        if (off_sls == (u_int)-1)
8360 			bpf_error("'sls' supported only on SS7");
8361 		/* sls coded on 4 bits so max value 15 */
8362 		if (jvalue > 15)
8363 		         bpf_error("sls value %u too big; max value = 15",
8364 		             jvalue);
8365 		/* the following instruction is made to convert jvalue
8366 		 * to the forme used to write sls in an ss7 message*/
8367 		jvalue = jvalue << 4;
8368 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8369 		    (u_int)jtype,reverse, (u_int)jvalue);
8370 		break;
8371 
8372 	default:
8373 		abort();
8374 	}
8375 	return b0;
8376 }
8377 
8378 static struct block *
8379 gen_msg_abbrev(type)
8380 	int type;
8381 {
8382 	struct block *b1;
8383 
8384 	/*
8385 	 * Q.2931 signalling protocol messages for handling virtual circuits
8386 	 * establishment and teardown
8387 	 */
8388 	switch (type) {
8389 
8390 	case A_SETUP:
8391 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8392 		break;
8393 
8394 	case A_CALLPROCEED:
8395 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8396 		break;
8397 
8398 	case A_CONNECT:
8399 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8400 		break;
8401 
8402 	case A_CONNECTACK:
8403 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8404 		break;
8405 
8406 	case A_RELEASE:
8407 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8408 		break;
8409 
8410 	case A_RELEASE_DONE:
8411 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8412 		break;
8413 
8414 	default:
8415 		abort();
8416 	}
8417 	return b1;
8418 }
8419 
8420 struct block *
8421 gen_atmmulti_abbrev(type)
8422 	int type;
8423 {
8424 	struct block *b0, *b1;
8425 
8426 	switch (type) {
8427 
8428 	case A_OAM:
8429 		if (!is_atm)
8430 			bpf_error("'oam' supported only on raw ATM");
8431 		b1 = gen_atmmulti_abbrev(A_OAMF4);
8432 		break;
8433 
8434 	case A_OAMF4:
8435 		if (!is_atm)
8436 			bpf_error("'oamf4' supported only on raw ATM");
8437 		/* OAM F4 type */
8438 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8439 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8440 		gen_or(b0, b1);
8441 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8442 		gen_and(b0, b1);
8443 		break;
8444 
8445 	case A_CONNECTMSG:
8446 		/*
8447 		 * Get Q.2931 signalling messages for switched
8448 		 * virtual connection
8449 		 */
8450 		if (!is_atm)
8451 			bpf_error("'connectmsg' supported only on raw ATM");
8452 		b0 = gen_msg_abbrev(A_SETUP);
8453 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8454 		gen_or(b0, b1);
8455 		b0 = gen_msg_abbrev(A_CONNECT);
8456 		gen_or(b0, b1);
8457 		b0 = gen_msg_abbrev(A_CONNECTACK);
8458 		gen_or(b0, b1);
8459 		b0 = gen_msg_abbrev(A_RELEASE);
8460 		gen_or(b0, b1);
8461 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8462 		gen_or(b0, b1);
8463 		b0 = gen_atmtype_abbrev(A_SC);
8464 		gen_and(b0, b1);
8465 		break;
8466 
8467 	case A_METACONNECT:
8468 		if (!is_atm)
8469 			bpf_error("'metaconnect' supported only on raw ATM");
8470 		b0 = gen_msg_abbrev(A_SETUP);
8471 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8472 		gen_or(b0, b1);
8473 		b0 = gen_msg_abbrev(A_CONNECT);
8474 		gen_or(b0, b1);
8475 		b0 = gen_msg_abbrev(A_RELEASE);
8476 		gen_or(b0, b1);
8477 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8478 		gen_or(b0, b1);
8479 		b0 = gen_atmtype_abbrev(A_METAC);
8480 		gen_and(b0, b1);
8481 		break;
8482 
8483 	default:
8484 		abort();
8485 	}
8486 	return b1;
8487 }
8488