1 /* 2 * Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu> 3 * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 #include "util-internal.h" 28 29 #ifdef _WIN32 30 #include <winsock2.h> 31 #include <windows.h> 32 #endif 33 34 #ifdef EVENT__HAVE_PTHREADS 35 #include <pthread.h> 36 #endif 37 38 #include "event2/event-config.h" 39 40 #include <sys/types.h> 41 #include <sys/stat.h> 42 #ifdef EVENT__HAVE_SYS_TIME_H 43 #include <sys/time.h> 44 #endif 45 #include <sys/queue.h> 46 #ifndef _WIN32 47 #include <sys/socket.h> 48 #include <sys/wait.h> 49 #include <signal.h> 50 #include <unistd.h> 51 #include <netdb.h> 52 #endif 53 #include <fcntl.h> 54 #include <signal.h> 55 #include <stdlib.h> 56 #include <stdio.h> 57 #include <string.h> 58 #include <errno.h> 59 #include <assert.h> 60 #include <ctype.h> 61 62 #include "event2/event.h" 63 #include "event2/event_struct.h" 64 #include "event2/event_compat.h" 65 #include "event2/tag.h" 66 #include "event2/buffer.h" 67 #include "event2/buffer_compat.h" 68 #include "event2/util.h" 69 #include "event-internal.h" 70 #include "evthread-internal.h" 71 #include "log-internal.h" 72 #include "time-internal.h" 73 74 #include "regress.h" 75 76 #ifndef _WIN32 77 #include "regress.gen.h" 78 #endif 79 80 evutil_socket_t pair[2]; 81 int test_ok; 82 int called; 83 struct event_base *global_base; 84 85 static char wbuf[4096]; 86 static char rbuf[4096]; 87 static int woff; 88 static int roff; 89 static int usepersist; 90 static struct timeval tset; 91 static struct timeval tcalled; 92 93 94 #define TEST1 "this is a test" 95 96 #ifdef _WIN32 97 #define write(fd,buf,len) send((fd),(buf),(int)(len),0) 98 #define read(fd,buf,len) recv((fd),(buf),(int)(len),0) 99 #endif 100 101 struct basic_cb_args 102 { 103 struct event_base *eb; 104 struct event *ev; 105 unsigned int callcount; 106 }; 107 108 static void 109 simple_read_cb(evutil_socket_t fd, short event, void *arg) 110 { 111 char buf[256]; 112 int len; 113 114 len = read(fd, buf, sizeof(buf)); 115 116 if (len) { 117 if (!called) { 118 if (event_add(arg, NULL) == -1) 119 exit(1); 120 } 121 } else if (called == 1) 122 test_ok = 1; 123 124 called++; 125 } 126 127 static void 128 basic_read_cb(evutil_socket_t fd, short event, void *data) 129 { 130 char buf[256]; 131 int len; 132 struct basic_cb_args *arg = data; 133 134 len = read(fd, buf, sizeof(buf)); 135 136 if (len < 0) { 137 tt_fail_perror("read (callback)"); 138 } else { 139 switch (arg->callcount++) { 140 case 0: /* first call: expect to read data; cycle */ 141 if (len > 0) 142 return; 143 144 tt_fail_msg("EOF before data read"); 145 break; 146 147 case 1: /* second call: expect EOF; stop */ 148 if (len > 0) 149 tt_fail_msg("not all data read on first cycle"); 150 break; 151 152 default: /* third call: should not happen */ 153 tt_fail_msg("too many cycles"); 154 } 155 } 156 157 event_del(arg->ev); 158 event_base_loopexit(arg->eb, NULL); 159 } 160 161 static void 162 dummy_read_cb(evutil_socket_t fd, short event, void *arg) 163 { 164 } 165 166 static void 167 simple_write_cb(evutil_socket_t fd, short event, void *arg) 168 { 169 int len; 170 171 len = write(fd, TEST1, strlen(TEST1) + 1); 172 if (len == -1) 173 test_ok = 0; 174 else 175 test_ok = 1; 176 } 177 178 static void 179 multiple_write_cb(evutil_socket_t fd, short event, void *arg) 180 { 181 struct event *ev = arg; 182 int len; 183 184 len = 128; 185 if (woff + len >= (int)sizeof(wbuf)) 186 len = sizeof(wbuf) - woff; 187 188 len = write(fd, wbuf + woff, len); 189 if (len == -1) { 190 fprintf(stderr, "%s: write\n", __func__); 191 if (usepersist) 192 event_del(ev); 193 return; 194 } 195 196 woff += len; 197 198 if (woff >= (int)sizeof(wbuf)) { 199 shutdown(fd, EVUTIL_SHUT_WR); 200 if (usepersist) 201 event_del(ev); 202 return; 203 } 204 205 if (!usepersist) { 206 if (event_add(ev, NULL) == -1) 207 exit(1); 208 } 209 } 210 211 static void 212 multiple_read_cb(evutil_socket_t fd, short event, void *arg) 213 { 214 struct event *ev = arg; 215 int len; 216 217 len = read(fd, rbuf + roff, sizeof(rbuf) - roff); 218 if (len == -1) 219 fprintf(stderr, "%s: read\n", __func__); 220 if (len <= 0) { 221 if (usepersist) 222 event_del(ev); 223 return; 224 } 225 226 roff += len; 227 if (!usepersist) { 228 if (event_add(ev, NULL) == -1) 229 exit(1); 230 } 231 } 232 233 static void 234 timeout_cb(evutil_socket_t fd, short event, void *arg) 235 { 236 evutil_gettimeofday(&tcalled, NULL); 237 } 238 239 struct both { 240 struct event ev; 241 int nread; 242 }; 243 244 static void 245 combined_read_cb(evutil_socket_t fd, short event, void *arg) 246 { 247 struct both *both = arg; 248 char buf[128]; 249 int len; 250 251 len = read(fd, buf, sizeof(buf)); 252 if (len == -1) 253 fprintf(stderr, "%s: read\n", __func__); 254 if (len <= 0) 255 return; 256 257 both->nread += len; 258 if (event_add(&both->ev, NULL) == -1) 259 exit(1); 260 } 261 262 static void 263 combined_write_cb(evutil_socket_t fd, short event, void *arg) 264 { 265 struct both *both = arg; 266 char buf[128]; 267 int len; 268 269 len = sizeof(buf); 270 if (len > both->nread) 271 len = both->nread; 272 273 memset(buf, 'q', len); 274 275 len = write(fd, buf, len); 276 if (len == -1) 277 fprintf(stderr, "%s: write\n", __func__); 278 if (len <= 0) { 279 shutdown(fd, EVUTIL_SHUT_WR); 280 return; 281 } 282 283 both->nread -= len; 284 if (event_add(&both->ev, NULL) == -1) 285 exit(1); 286 } 287 288 /* These macros used to replicate the work of the legacy test wrapper code */ 289 #define setup_test(x) do { \ 290 if (!in_legacy_test_wrapper) { \ 291 TT_FAIL(("Legacy test %s not wrapped properly", x)); \ 292 return; \ 293 } \ 294 } while (0) 295 #define cleanup_test() setup_test("cleanup") 296 297 static void 298 test_simpleread(void) 299 { 300 struct event ev; 301 302 /* Very simple read test */ 303 setup_test("Simple read: "); 304 305 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { 306 tt_fail_perror("write"); 307 } 308 309 shutdown(pair[0], EVUTIL_SHUT_WR); 310 311 event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev); 312 if (event_add(&ev, NULL) == -1) 313 exit(1); 314 event_dispatch(); 315 316 cleanup_test(); 317 } 318 319 static void 320 test_simplewrite(void) 321 { 322 struct event ev; 323 324 /* Very simple write test */ 325 setup_test("Simple write: "); 326 327 event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev); 328 if (event_add(&ev, NULL) == -1) 329 exit(1); 330 event_dispatch(); 331 332 cleanup_test(); 333 } 334 335 static void 336 simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg) 337 { 338 if (++called == 2) 339 test_ok = 1; 340 } 341 342 static void 343 test_simpleread_multiple(void) 344 { 345 struct event one, two; 346 347 /* Very simple read test */ 348 setup_test("Simple read to multiple evens: "); 349 350 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { 351 tt_fail_perror("write"); 352 } 353 354 shutdown(pair[0], EVUTIL_SHUT_WR); 355 356 event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL); 357 if (event_add(&one, NULL) == -1) 358 exit(1); 359 event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL); 360 if (event_add(&two, NULL) == -1) 361 exit(1); 362 event_dispatch(); 363 364 cleanup_test(); 365 } 366 367 static int have_closed = 0; 368 static int premature_event = 0; 369 static void 370 simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr) 371 { 372 evutil_socket_t **fds = ptr; 373 TT_BLATHER(("Closing")); 374 evutil_closesocket(*fds[0]); 375 evutil_closesocket(*fds[1]); 376 *fds[0] = -1; 377 *fds[1] = -1; 378 have_closed = 1; 379 } 380 381 static void 382 record_event_cb(evutil_socket_t s, short what, void *ptr) 383 { 384 short *whatp = ptr; 385 if (!have_closed) 386 premature_event = 1; 387 *whatp = what; 388 TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s)); 389 } 390 391 static void 392 test_simpleclose(void *ptr) 393 { 394 /* Test that a close of FD is detected as a read and as a write. */ 395 struct event_base *base = event_base_new(); 396 evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1}; 397 evutil_socket_t *to_close[2]; 398 struct event *rev=NULL, *wev=NULL, *closeev=NULL; 399 struct timeval tv; 400 short got_read_on_close = 0, got_write_on_close = 0; 401 char buf[1024]; 402 memset(buf, 99, sizeof(buf)); 403 #ifdef _WIN32 404 #define LOCAL_SOCKETPAIR_AF AF_INET 405 #else 406 #define LOCAL_SOCKETPAIR_AF AF_UNIX 407 #endif 408 if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0) 409 TT_DIE(("socketpair: %s", strerror(errno))); 410 if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0) 411 TT_DIE(("socketpair: %s", strerror(errno))); 412 if (evutil_make_socket_nonblocking(pair1[1]) < 0) 413 TT_DIE(("make_socket_nonblocking")); 414 if (evutil_make_socket_nonblocking(pair2[1]) < 0) 415 TT_DIE(("make_socket_nonblocking")); 416 417 /** Stuff pair2[1] full of data, until write fails */ 418 while (1) { 419 int r = write(pair2[1], buf, sizeof(buf)); 420 if (r<0) { 421 int err = evutil_socket_geterror(pair2[1]); 422 if (! EVUTIL_ERR_RW_RETRIABLE(err)) 423 TT_DIE(("write failed strangely: %s", 424 evutil_socket_error_to_string(err))); 425 break; 426 } 427 } 428 to_close[0] = &pair1[0]; 429 to_close[1] = &pair2[0]; 430 431 closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb, 432 to_close); 433 rev = event_new(base, pair1[1], EV_READ, record_event_cb, 434 &got_read_on_close); 435 TT_BLATHER(("Waiting for read on %d", (int)pair1[1])); 436 wev = event_new(base, pair2[1], EV_WRITE, record_event_cb, 437 &got_write_on_close); 438 TT_BLATHER(("Waiting for write on %d", (int)pair2[1])); 439 tv.tv_sec = 0; 440 tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make 441 * sure we get a read event. */ 442 event_add(closeev, &tv); 443 event_add(rev, NULL); 444 event_add(wev, NULL); 445 /* Don't let the test go on too long. */ 446 tv.tv_sec = 0; 447 tv.tv_usec = 200*1000; 448 event_base_loopexit(base, &tv); 449 event_base_loop(base, 0); 450 451 tt_int_op(got_read_on_close, ==, EV_READ); 452 tt_int_op(got_write_on_close, ==, EV_WRITE); 453 tt_int_op(premature_event, ==, 0); 454 455 end: 456 if (pair1[0] >= 0) 457 evutil_closesocket(pair1[0]); 458 if (pair1[1] >= 0) 459 evutil_closesocket(pair1[1]); 460 if (pair2[0] >= 0) 461 evutil_closesocket(pair2[0]); 462 if (pair2[1] >= 0) 463 evutil_closesocket(pair2[1]); 464 if (rev) 465 event_free(rev); 466 if (wev) 467 event_free(wev); 468 if (closeev) 469 event_free(closeev); 470 if (base) 471 event_base_free(base); 472 } 473 474 475 static void 476 test_multiple(void) 477 { 478 struct event ev, ev2; 479 int i; 480 481 /* Multiple read and write test */ 482 setup_test("Multiple read/write: "); 483 memset(rbuf, 0, sizeof(rbuf)); 484 for (i = 0; i < (int)sizeof(wbuf); i++) 485 wbuf[i] = i; 486 487 roff = woff = 0; 488 usepersist = 0; 489 490 event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev); 491 if (event_add(&ev, NULL) == -1) 492 exit(1); 493 event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2); 494 if (event_add(&ev2, NULL) == -1) 495 exit(1); 496 event_dispatch(); 497 498 if (roff == woff) 499 test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0; 500 501 cleanup_test(); 502 } 503 504 static void 505 test_persistent(void) 506 { 507 struct event ev, ev2; 508 int i; 509 510 /* Multiple read and write test with persist */ 511 setup_test("Persist read/write: "); 512 memset(rbuf, 0, sizeof(rbuf)); 513 for (i = 0; i < (int)sizeof(wbuf); i++) 514 wbuf[i] = i; 515 516 roff = woff = 0; 517 usepersist = 1; 518 519 event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev); 520 if (event_add(&ev, NULL) == -1) 521 exit(1); 522 event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2); 523 if (event_add(&ev2, NULL) == -1) 524 exit(1); 525 event_dispatch(); 526 527 if (roff == woff) 528 test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0; 529 530 cleanup_test(); 531 } 532 533 static void 534 test_combined(void) 535 { 536 struct both r1, r2, w1, w2; 537 538 setup_test("Combined read/write: "); 539 memset(&r1, 0, sizeof(r1)); 540 memset(&r2, 0, sizeof(r2)); 541 memset(&w1, 0, sizeof(w1)); 542 memset(&w2, 0, sizeof(w2)); 543 544 w1.nread = 4096; 545 w2.nread = 8192; 546 547 event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1); 548 event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1); 549 event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2); 550 event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2); 551 tt_assert(event_add(&r1.ev, NULL) != -1); 552 tt_assert(!event_add(&w1.ev, NULL)); 553 tt_assert(!event_add(&r2.ev, NULL)); 554 tt_assert(!event_add(&w2.ev, NULL)); 555 event_dispatch(); 556 557 if (r1.nread == 8192 && r2.nread == 4096) 558 test_ok = 1; 559 560 end: 561 cleanup_test(); 562 } 563 564 static void 565 test_simpletimeout(void) 566 { 567 struct timeval tv; 568 struct event ev; 569 570 setup_test("Simple timeout: "); 571 572 tv.tv_usec = 200*1000; 573 tv.tv_sec = 0; 574 evutil_timerclear(&tcalled); 575 evtimer_set(&ev, timeout_cb, NULL); 576 evtimer_add(&ev, &tv); 577 578 evutil_gettimeofday(&tset, NULL); 579 event_dispatch(); 580 test_timeval_diff_eq(&tset, &tcalled, 200); 581 582 test_ok = 1; 583 end: 584 cleanup_test(); 585 } 586 587 static void 588 periodic_timeout_cb(evutil_socket_t fd, short event, void *arg) 589 { 590 int *count = arg; 591 592 (*count)++; 593 if (*count == 6) { 594 /* call loopexit only once - on slow machines(?), it is 595 * apparently possible for this to get called twice. */ 596 test_ok = 1; 597 event_base_loopexit(global_base, NULL); 598 } 599 } 600 601 static void 602 test_persistent_timeout(void) 603 { 604 struct timeval tv; 605 struct event ev; 606 int count = 0; 607 608 evutil_timerclear(&tv); 609 tv.tv_usec = 10000; 610 611 event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST, 612 periodic_timeout_cb, &count); 613 event_add(&ev, &tv); 614 615 event_dispatch(); 616 617 event_del(&ev); 618 } 619 620 static void 621 test_persistent_timeout_jump(void *ptr) 622 { 623 struct basic_test_data *data = ptr; 624 struct event ev; 625 int count = 0; 626 struct timeval msec100 = { 0, 100 * 1000 }; 627 struct timeval msec50 = { 0, 50 * 1000 }; 628 struct timeval msec300 = { 0, 300 * 1000 }; 629 630 event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count); 631 event_add(&ev, &msec100); 632 /* Wait for a bit */ 633 evutil_usleep_(&msec300); 634 event_base_loopexit(data->base, &msec50); 635 event_base_dispatch(data->base); 636 tt_int_op(count, ==, 1); 637 638 end: 639 event_del(&ev); 640 } 641 642 struct persist_active_timeout_called { 643 int n; 644 short events[16]; 645 struct timeval tvs[16]; 646 }; 647 648 static void 649 activate_cb(evutil_socket_t fd, short event, void *arg) 650 { 651 struct event *ev = arg; 652 event_active(ev, EV_READ, 1); 653 } 654 655 static void 656 persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg) 657 { 658 struct persist_active_timeout_called *c = arg; 659 if (c->n < 15) { 660 c->events[c->n] = event; 661 evutil_gettimeofday(&c->tvs[c->n], NULL); 662 ++c->n; 663 } 664 } 665 666 static void 667 test_persistent_active_timeout(void *ptr) 668 { 669 struct timeval tv, tv2, tv_exit, start; 670 struct event ev; 671 struct persist_active_timeout_called res; 672 673 struct basic_test_data *data = ptr; 674 struct event_base *base = data->base; 675 676 memset(&res, 0, sizeof(res)); 677 678 tv.tv_sec = 0; 679 tv.tv_usec = 200 * 1000; 680 event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST, 681 persist_active_timeout_cb, &res); 682 event_add(&ev, &tv); 683 684 tv2.tv_sec = 0; 685 tv2.tv_usec = 100 * 1000; 686 event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2); 687 688 tv_exit.tv_sec = 0; 689 tv_exit.tv_usec = 600 * 1000; 690 event_base_loopexit(base, &tv_exit); 691 692 event_base_assert_ok_(base); 693 evutil_gettimeofday(&start, NULL); 694 695 event_base_dispatch(base); 696 event_base_assert_ok_(base); 697 698 tt_int_op(res.n, ==, 3); 699 tt_int_op(res.events[0], ==, EV_READ); 700 tt_int_op(res.events[1], ==, EV_TIMEOUT); 701 tt_int_op(res.events[2], ==, EV_TIMEOUT); 702 test_timeval_diff_eq(&start, &res.tvs[0], 100); 703 test_timeval_diff_eq(&start, &res.tvs[1], 300); 704 test_timeval_diff_eq(&start, &res.tvs[2], 500); 705 end: 706 event_del(&ev); 707 } 708 709 struct common_timeout_info { 710 struct event ev; 711 struct timeval called_at; 712 int which; 713 int count; 714 }; 715 716 static void 717 common_timeout_cb(evutil_socket_t fd, short event, void *arg) 718 { 719 struct common_timeout_info *ti = arg; 720 ++ti->count; 721 evutil_gettimeofday(&ti->called_at, NULL); 722 if (ti->count >= 4) 723 event_del(&ti->ev); 724 } 725 726 static void 727 test_common_timeout(void *ptr) 728 { 729 struct basic_test_data *data = ptr; 730 731 struct event_base *base = data->base; 732 int i; 733 struct common_timeout_info info[100]; 734 735 struct timeval start; 736 struct timeval tmp_100_ms = { 0, 100*1000 }; 737 struct timeval tmp_200_ms = { 0, 200*1000 }; 738 struct timeval tmp_5_sec = { 5, 0 }; 739 struct timeval tmp_5M_usec = { 0, 5*1000*1000 }; 740 741 const struct timeval *ms_100, *ms_200, *sec_5; 742 743 ms_100 = event_base_init_common_timeout(base, &tmp_100_ms); 744 ms_200 = event_base_init_common_timeout(base, &tmp_200_ms); 745 sec_5 = event_base_init_common_timeout(base, &tmp_5_sec); 746 tt_assert(ms_100); 747 tt_assert(ms_200); 748 tt_assert(sec_5); 749 tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms), 750 ==, ms_200); 751 tt_ptr_op(event_base_init_common_timeout(base, ms_200), ==, ms_200); 752 tt_ptr_op(event_base_init_common_timeout(base, &tmp_5M_usec), ==, sec_5); 753 tt_int_op(ms_100->tv_sec, ==, 0); 754 tt_int_op(ms_200->tv_sec, ==, 0); 755 tt_int_op(sec_5->tv_sec, ==, 5); 756 tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000); 757 tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000); 758 tt_int_op(sec_5->tv_usec, ==, 0|0x50200000); 759 760 memset(info, 0, sizeof(info)); 761 762 for (i=0; i<100; ++i) { 763 info[i].which = i; 764 event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST, 765 common_timeout_cb, &info[i]); 766 if (i % 2) { 767 if ((i%20)==1) { 768 /* Glass-box test: Make sure we survive the 769 * transition to non-common timeouts. It's 770 * a little tricky. */ 771 event_add(&info[i].ev, ms_200); 772 event_add(&info[i].ev, &tmp_100_ms); 773 } else if ((i%20)==3) { 774 /* Check heap-to-common too. */ 775 event_add(&info[i].ev, &tmp_200_ms); 776 event_add(&info[i].ev, ms_100); 777 } else if ((i%20)==5) { 778 /* Also check common-to-common. */ 779 event_add(&info[i].ev, ms_200); 780 event_add(&info[i].ev, ms_100); 781 } else { 782 event_add(&info[i].ev, ms_100); 783 } 784 } else { 785 event_add(&info[i].ev, ms_200); 786 } 787 } 788 789 event_base_assert_ok_(base); 790 evutil_gettimeofday(&start, NULL); 791 event_base_dispatch(base); 792 793 event_base_assert_ok_(base); 794 795 for (i=0; i<10; ++i) { 796 tt_int_op(info[i].count, ==, 4); 797 if (i % 2) { 798 test_timeval_diff_eq(&start, &info[i].called_at, 400); 799 } else { 800 test_timeval_diff_eq(&start, &info[i].called_at, 800); 801 } 802 } 803 804 /* Make sure we can free the base with some events in. */ 805 for (i=0; i<100; ++i) { 806 if (i % 2) { 807 event_add(&info[i].ev, ms_100); 808 } else { 809 event_add(&info[i].ev, ms_200); 810 } 811 } 812 813 end: 814 event_base_free(data->base); /* need to do this here before info is 815 * out-of-scope */ 816 data->base = NULL; 817 } 818 819 #ifndef _WIN32 820 821 #define current_base event_global_current_base_ 822 extern struct event_base *current_base; 823 824 static void 825 fork_signal_cb(evutil_socket_t fd, short events, void *arg) 826 { 827 event_del(arg); 828 } 829 830 int child_pair[2] = { -1, -1 }; 831 static void 832 simple_child_read_cb(evutil_socket_t fd, short event, void *arg) 833 { 834 char buf[256]; 835 int len; 836 837 len = read(fd, buf, sizeof(buf)); 838 if (write(child_pair[0], "", 1) < 0) 839 tt_fail_perror("write"); 840 841 if (len) { 842 if (!called) { 843 if (event_add(arg, NULL) == -1) 844 exit(1); 845 } 846 } else if (called == 1) 847 test_ok = 1; 848 849 called++; 850 } 851 static void 852 test_fork(void) 853 { 854 char c; 855 int status; 856 struct event ev, sig_ev, usr_ev, existing_ev; 857 pid_t pid; 858 int wait_flags = 0; 859 860 #ifdef EVENT__HAVE_WAITPID_WITH_WNOWAIT 861 wait_flags |= WNOWAIT; 862 #endif 863 864 setup_test("After fork: "); 865 866 { 867 if (evutil_socketpair(AF_UNIX, SOCK_STREAM, 0, child_pair) == -1) { 868 fprintf(stderr, "%s: socketpair\n", __func__); 869 exit(1); 870 } 871 872 if (evutil_make_socket_nonblocking(child_pair[0]) == -1) { 873 fprintf(stderr, "fcntl(O_NONBLOCK)"); 874 exit(1); 875 } 876 } 877 878 tt_assert(current_base); 879 evthread_make_base_notifiable(current_base); 880 881 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { 882 tt_fail_perror("write"); 883 } 884 885 event_set(&ev, pair[1], EV_READ, simple_child_read_cb, &ev); 886 if (event_add(&ev, NULL) == -1) 887 exit(1); 888 889 evsignal_set(&sig_ev, SIGCHLD, fork_signal_cb, &sig_ev); 890 evsignal_add(&sig_ev, NULL); 891 892 evsignal_set(&existing_ev, SIGUSR2, fork_signal_cb, &existing_ev); 893 evsignal_add(&existing_ev, NULL); 894 895 event_base_assert_ok_(current_base); 896 TT_BLATHER(("Before fork")); 897 if ((pid = regress_fork()) == 0) { 898 /* in the child */ 899 TT_BLATHER(("In child, before reinit")); 900 event_base_assert_ok_(current_base); 901 if (event_reinit(current_base) == -1) { 902 fprintf(stdout, "FAILED (reinit)\n"); 903 exit(1); 904 } 905 TT_BLATHER(("After reinit")); 906 event_base_assert_ok_(current_base); 907 TT_BLATHER(("After assert-ok")); 908 909 evsignal_del(&sig_ev); 910 911 evsignal_set(&usr_ev, SIGUSR1, fork_signal_cb, &usr_ev); 912 evsignal_add(&usr_ev, NULL); 913 raise(SIGUSR1); 914 raise(SIGUSR2); 915 916 called = 0; 917 918 event_dispatch(); 919 920 event_base_free(current_base); 921 922 /* we do not send an EOF; simple_read_cb requires an EOF 923 * to set test_ok. we just verify that the callback was 924 * called. */ 925 exit(test_ok != 0 || called != 2 ? -2 : 76); 926 } 927 928 /** wait until client read first message */ 929 if (read(child_pair[1], &c, 1) < 0) { 930 tt_fail_perror("read"); 931 } 932 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { 933 tt_fail_perror("write"); 934 } 935 936 TT_BLATHER(("Before waitpid")); 937 if (waitpid(pid, &status, wait_flags) == -1) { 938 perror("waitpid"); 939 exit(1); 940 } 941 TT_BLATHER(("After waitpid")); 942 943 if (WEXITSTATUS(status) != 76) { 944 fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status)); 945 exit(1); 946 } 947 948 /* test that the current event loop still works */ 949 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { 950 fprintf(stderr, "%s: write\n", __func__); 951 } 952 953 shutdown(pair[0], EVUTIL_SHUT_WR); 954 955 evsignal_set(&usr_ev, SIGUSR1, fork_signal_cb, &usr_ev); 956 evsignal_add(&usr_ev, NULL); 957 raise(SIGUSR1); 958 raise(SIGUSR2); 959 960 event_dispatch(); 961 962 evsignal_del(&sig_ev); 963 tt_int_op(test_ok, ==, 1); 964 965 end: 966 cleanup_test(); 967 if (child_pair[0] != -1) 968 evutil_closesocket(child_pair[0]); 969 if (child_pair[1] != -1) 970 evutil_closesocket(child_pair[1]); 971 } 972 973 #ifdef EVENT__HAVE_PTHREADS 974 static void* del_wait_thread(void *arg) 975 { 976 struct timeval tv_start, tv_end; 977 978 evutil_gettimeofday(&tv_start, NULL); 979 event_dispatch(); 980 evutil_gettimeofday(&tv_end, NULL); 981 982 test_timeval_diff_eq(&tv_start, &tv_end, 300); 983 984 end: 985 return NULL; 986 } 987 988 static void 989 del_wait_cb(evutil_socket_t fd, short event, void *arg) 990 { 991 struct timeval delay = { 0, 300*1000 }; 992 TT_BLATHER(("Sleeping")); 993 evutil_usleep_(&delay); 994 test_ok = 1; 995 } 996 997 static void 998 test_del_wait(void) 999 { 1000 struct event ev; 1001 pthread_t thread; 1002 1003 setup_test("event_del will wait: "); 1004 1005 event_set(&ev, pair[1], EV_READ, del_wait_cb, &ev); 1006 event_add(&ev, NULL); 1007 1008 pthread_create(&thread, NULL, del_wait_thread, NULL); 1009 1010 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { 1011 tt_fail_perror("write"); 1012 } 1013 1014 { 1015 struct timeval delay = { 0, 30*1000 }; 1016 evutil_usleep_(&delay); 1017 } 1018 1019 { 1020 struct timeval tv_start, tv_end; 1021 evutil_gettimeofday(&tv_start, NULL); 1022 event_del(&ev); 1023 evutil_gettimeofday(&tv_end, NULL); 1024 test_timeval_diff_eq(&tv_start, &tv_end, 270); 1025 } 1026 1027 pthread_join(thread, NULL); 1028 1029 end: 1030 ; 1031 } 1032 #endif 1033 1034 static void 1035 signal_cb_sa(int sig) 1036 { 1037 test_ok = 2; 1038 } 1039 1040 static void 1041 signal_cb(evutil_socket_t fd, short event, void *arg) 1042 { 1043 struct event *ev = arg; 1044 1045 evsignal_del(ev); 1046 test_ok = 1; 1047 } 1048 1049 static void 1050 test_simplesignal_impl(int find_reorder) 1051 { 1052 struct event ev; 1053 struct itimerval itv; 1054 1055 evsignal_set(&ev, SIGALRM, signal_cb, &ev); 1056 evsignal_add(&ev, NULL); 1057 /* find bugs in which operations are re-ordered */ 1058 if (find_reorder) { 1059 evsignal_del(&ev); 1060 evsignal_add(&ev, NULL); 1061 } 1062 1063 memset(&itv, 0, sizeof(itv)); 1064 itv.it_value.tv_sec = 0; 1065 itv.it_value.tv_usec = 100000; 1066 if (setitimer(ITIMER_REAL, &itv, NULL) == -1) 1067 goto skip_simplesignal; 1068 1069 event_dispatch(); 1070 skip_simplesignal: 1071 if (evsignal_del(&ev) == -1) 1072 test_ok = 0; 1073 1074 cleanup_test(); 1075 } 1076 1077 static void 1078 test_simplestsignal(void) 1079 { 1080 setup_test("Simplest one signal: "); 1081 test_simplesignal_impl(0); 1082 } 1083 1084 static void 1085 test_simplesignal(void) 1086 { 1087 setup_test("Simple signal: "); 1088 test_simplesignal_impl(1); 1089 } 1090 1091 static void 1092 test_multiplesignal(void) 1093 { 1094 struct event ev_one, ev_two; 1095 struct itimerval itv; 1096 1097 setup_test("Multiple signal: "); 1098 1099 evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one); 1100 evsignal_add(&ev_one, NULL); 1101 1102 evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two); 1103 evsignal_add(&ev_two, NULL); 1104 1105 memset(&itv, 0, sizeof(itv)); 1106 itv.it_value.tv_sec = 0; 1107 itv.it_value.tv_usec = 100000; 1108 if (setitimer(ITIMER_REAL, &itv, NULL) == -1) 1109 goto skip_simplesignal; 1110 1111 event_dispatch(); 1112 1113 skip_simplesignal: 1114 if (evsignal_del(&ev_one) == -1) 1115 test_ok = 0; 1116 if (evsignal_del(&ev_two) == -1) 1117 test_ok = 0; 1118 1119 cleanup_test(); 1120 } 1121 1122 static void 1123 test_immediatesignal(void) 1124 { 1125 struct event ev; 1126 1127 test_ok = 0; 1128 evsignal_set(&ev, SIGUSR1, signal_cb, &ev); 1129 evsignal_add(&ev, NULL); 1130 raise(SIGUSR1); 1131 event_loop(EVLOOP_NONBLOCK); 1132 evsignal_del(&ev); 1133 cleanup_test(); 1134 } 1135 1136 static void 1137 test_signal_dealloc(void) 1138 { 1139 /* make sure that evsignal_event is event_del'ed and pipe closed */ 1140 struct event ev; 1141 struct event_base *base = event_init(); 1142 evsignal_set(&ev, SIGUSR1, signal_cb, &ev); 1143 evsignal_add(&ev, NULL); 1144 evsignal_del(&ev); 1145 event_base_free(base); 1146 /* If we got here without asserting, we're fine. */ 1147 test_ok = 1; 1148 cleanup_test(); 1149 } 1150 1151 static void 1152 test_signal_pipeloss(void) 1153 { 1154 /* make sure that the base1 pipe is closed correctly. */ 1155 struct event_base *base1, *base2; 1156 int pipe1; 1157 test_ok = 0; 1158 base1 = event_init(); 1159 pipe1 = base1->sig.ev_signal_pair[0]; 1160 base2 = event_init(); 1161 event_base_free(base2); 1162 event_base_free(base1); 1163 if (close(pipe1) != -1 || errno!=EBADF) { 1164 /* fd must be closed, so second close gives -1, EBADF */ 1165 printf("signal pipe not closed. "); 1166 test_ok = 0; 1167 } else { 1168 test_ok = 1; 1169 } 1170 cleanup_test(); 1171 } 1172 1173 /* 1174 * make two bases to catch signals, use both of them. this only works 1175 * for event mechanisms that use our signal pipe trick. kqueue handles 1176 * signals internally, and all interested kqueues get all the signals. 1177 */ 1178 static void 1179 test_signal_switchbase(void) 1180 { 1181 struct event ev1, ev2; 1182 struct event_base *base1, *base2; 1183 int is_kqueue; 1184 test_ok = 0; 1185 base1 = event_init(); 1186 base2 = event_init(); 1187 is_kqueue = !strcmp(event_get_method(),"kqueue"); 1188 evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1); 1189 evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2); 1190 if (event_base_set(base1, &ev1) || 1191 event_base_set(base2, &ev2) || 1192 event_add(&ev1, NULL) || 1193 event_add(&ev2, NULL)) { 1194 fprintf(stderr, "%s: cannot set base, add\n", __func__); 1195 exit(1); 1196 } 1197 1198 tt_ptr_op(event_get_base(&ev1), ==, base1); 1199 tt_ptr_op(event_get_base(&ev2), ==, base2); 1200 1201 test_ok = 0; 1202 /* can handle signal before loop is called */ 1203 raise(SIGUSR1); 1204 event_base_loop(base2, EVLOOP_NONBLOCK); 1205 if (is_kqueue) { 1206 if (!test_ok) 1207 goto end; 1208 test_ok = 0; 1209 } 1210 event_base_loop(base1, EVLOOP_NONBLOCK); 1211 if (test_ok && !is_kqueue) { 1212 test_ok = 0; 1213 1214 /* set base1 to handle signals */ 1215 event_base_loop(base1, EVLOOP_NONBLOCK); 1216 raise(SIGUSR1); 1217 event_base_loop(base1, EVLOOP_NONBLOCK); 1218 event_base_loop(base2, EVLOOP_NONBLOCK); 1219 } 1220 end: 1221 event_base_free(base1); 1222 event_base_free(base2); 1223 cleanup_test(); 1224 } 1225 1226 /* 1227 * assert that a signal event removed from the event queue really is 1228 * removed - with no possibility of it's parent handler being fired. 1229 */ 1230 static void 1231 test_signal_assert(void) 1232 { 1233 struct event ev; 1234 struct event_base *base = event_init(); 1235 test_ok = 0; 1236 /* use SIGCONT so we don't kill ourselves when we signal to nowhere */ 1237 evsignal_set(&ev, SIGCONT, signal_cb, &ev); 1238 evsignal_add(&ev, NULL); 1239 /* 1240 * if evsignal_del() fails to reset the handler, it's current handler 1241 * will still point to evsig_handler(). 1242 */ 1243 evsignal_del(&ev); 1244 1245 raise(SIGCONT); 1246 #if 0 1247 /* only way to verify we were in evsig_handler() */ 1248 /* XXXX Now there's no longer a good way. */ 1249 if (base->sig.evsig_caught) 1250 test_ok = 0; 1251 else 1252 test_ok = 1; 1253 #else 1254 test_ok = 1; 1255 #endif 1256 1257 event_base_free(base); 1258 cleanup_test(); 1259 return; 1260 } 1261 1262 /* 1263 * assert that we restore our previous signal handler properly. 1264 */ 1265 static void 1266 test_signal_restore(void) 1267 { 1268 struct event ev; 1269 struct event_base *base = event_init(); 1270 #ifdef EVENT__HAVE_SIGACTION 1271 struct sigaction sa; 1272 #endif 1273 1274 test_ok = 0; 1275 #ifdef EVENT__HAVE_SIGACTION 1276 sa.sa_handler = signal_cb_sa; 1277 sa.sa_flags = 0x0; 1278 sigemptyset(&sa.sa_mask); 1279 if (sigaction(SIGUSR1, &sa, NULL) == -1) 1280 goto out; 1281 #else 1282 if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR) 1283 goto out; 1284 #endif 1285 evsignal_set(&ev, SIGUSR1, signal_cb, &ev); 1286 evsignal_add(&ev, NULL); 1287 evsignal_del(&ev); 1288 1289 raise(SIGUSR1); 1290 /* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */ 1291 if (test_ok != 2) 1292 test_ok = 0; 1293 out: 1294 event_base_free(base); 1295 cleanup_test(); 1296 return; 1297 } 1298 1299 static void 1300 signal_cb_swp(int sig, short event, void *arg) 1301 { 1302 called++; 1303 if (called < 5) 1304 raise(sig); 1305 else 1306 event_loopexit(NULL); 1307 } 1308 static void 1309 timeout_cb_swp(evutil_socket_t fd, short event, void *arg) 1310 { 1311 if (called == -1) { 1312 struct timeval tv = {5, 0}; 1313 1314 called = 0; 1315 evtimer_add((struct event *)arg, &tv); 1316 raise(SIGUSR1); 1317 return; 1318 } 1319 test_ok = 0; 1320 event_loopexit(NULL); 1321 } 1322 1323 static void 1324 test_signal_while_processing(void) 1325 { 1326 struct event_base *base = event_init(); 1327 struct event ev, ev_timer; 1328 struct timeval tv = {0, 0}; 1329 1330 setup_test("Receiving a signal while processing other signal: "); 1331 1332 called = -1; 1333 test_ok = 1; 1334 signal_set(&ev, SIGUSR1, signal_cb_swp, NULL); 1335 signal_add(&ev, NULL); 1336 evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer); 1337 evtimer_add(&ev_timer, &tv); 1338 event_dispatch(); 1339 1340 event_base_free(base); 1341 cleanup_test(); 1342 return; 1343 } 1344 #endif 1345 1346 static void 1347 test_free_active_base(void *ptr) 1348 { 1349 struct basic_test_data *data = ptr; 1350 struct event_base *base1; 1351 struct event ev1; 1352 1353 base1 = event_init(); 1354 if (base1) { 1355 event_assign(&ev1, base1, data->pair[1], EV_READ, 1356 dummy_read_cb, NULL); 1357 event_add(&ev1, NULL); 1358 event_base_free(base1); /* should not crash */ 1359 } else { 1360 tt_fail_msg("failed to create event_base for test"); 1361 } 1362 1363 base1 = event_init(); 1364 tt_assert(base1); 1365 event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL); 1366 event_active(&ev1, EV_READ, 1); 1367 event_base_free(base1); 1368 end: 1369 ; 1370 } 1371 1372 static void 1373 test_manipulate_active_events(void *ptr) 1374 { 1375 struct basic_test_data *data = ptr; 1376 struct event_base *base = data->base; 1377 struct event ev1; 1378 1379 event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL); 1380 1381 /* Make sure an active event is pending. */ 1382 event_active(&ev1, EV_READ, 1); 1383 tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL), 1384 ==, EV_READ); 1385 1386 /* Make sure that activating an event twice works. */ 1387 event_active(&ev1, EV_WRITE, 1); 1388 tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL), 1389 ==, EV_READ|EV_WRITE); 1390 1391 end: 1392 event_del(&ev1); 1393 } 1394 1395 static void 1396 event_selfarg_cb(evutil_socket_t fd, short event, void *arg) 1397 { 1398 struct event *ev = arg; 1399 struct event_base *base = event_get_base(ev); 1400 event_base_assert_ok_(base); 1401 event_base_loopexit(base, NULL); 1402 tt_want(ev == event_base_get_running_event(base)); 1403 } 1404 1405 static void 1406 test_event_new_selfarg(void *ptr) 1407 { 1408 struct basic_test_data *data = ptr; 1409 struct event_base *base = data->base; 1410 struct event *ev = event_new(base, -1, EV_READ, event_selfarg_cb, 1411 event_self_cbarg()); 1412 1413 event_active(ev, EV_READ, 1); 1414 event_base_dispatch(base); 1415 1416 event_free(ev); 1417 } 1418 1419 static void 1420 test_event_assign_selfarg(void *ptr) 1421 { 1422 struct basic_test_data *data = ptr; 1423 struct event_base *base = data->base; 1424 struct event ev; 1425 1426 event_assign(&ev, base, -1, EV_READ, event_selfarg_cb, 1427 event_self_cbarg()); 1428 event_active(&ev, EV_READ, 1); 1429 event_base_dispatch(base); 1430 } 1431 1432 static void 1433 test_event_base_get_num_events(void *ptr) 1434 { 1435 struct basic_test_data *data = ptr; 1436 struct event_base *base = data->base; 1437 struct event ev; 1438 int event_count_active; 1439 int event_count_virtual; 1440 int event_count_added; 1441 int event_count_active_virtual; 1442 int event_count_active_added; 1443 int event_count_virtual_added; 1444 int event_count_active_added_virtual; 1445 1446 struct timeval qsec = {0, 100000}; 1447 1448 event_assign(&ev, base, -1, EV_READ, event_selfarg_cb, 1449 event_self_cbarg()); 1450 1451 event_add(&ev, &qsec); 1452 event_count_active = event_base_get_num_events(base, 1453 EVENT_BASE_COUNT_ACTIVE); 1454 event_count_virtual = event_base_get_num_events(base, 1455 EVENT_BASE_COUNT_VIRTUAL); 1456 event_count_added = event_base_get_num_events(base, 1457 EVENT_BASE_COUNT_ADDED); 1458 event_count_active_virtual = event_base_get_num_events(base, 1459 EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL); 1460 event_count_active_added = event_base_get_num_events(base, 1461 EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED); 1462 event_count_virtual_added = event_base_get_num_events(base, 1463 EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED); 1464 event_count_active_added_virtual = event_base_get_num_events(base, 1465 EVENT_BASE_COUNT_ACTIVE| 1466 EVENT_BASE_COUNT_ADDED| 1467 EVENT_BASE_COUNT_VIRTUAL); 1468 tt_int_op(event_count_active, ==, 0); 1469 tt_int_op(event_count_virtual, ==, 0); 1470 /* libevent itself adds a timeout event, so the event_count is 2 here */ 1471 tt_int_op(event_count_added, ==, 2); 1472 tt_int_op(event_count_active_virtual, ==, 0); 1473 tt_int_op(event_count_active_added, ==, 2); 1474 tt_int_op(event_count_virtual_added, ==, 2); 1475 tt_int_op(event_count_active_added_virtual, ==, 2); 1476 1477 event_active(&ev, EV_READ, 1); 1478 event_count_active = event_base_get_num_events(base, 1479 EVENT_BASE_COUNT_ACTIVE); 1480 event_count_virtual = event_base_get_num_events(base, 1481 EVENT_BASE_COUNT_VIRTUAL); 1482 event_count_added = event_base_get_num_events(base, 1483 EVENT_BASE_COUNT_ADDED); 1484 event_count_active_virtual = event_base_get_num_events(base, 1485 EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL); 1486 event_count_active_added = event_base_get_num_events(base, 1487 EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED); 1488 event_count_virtual_added = event_base_get_num_events(base, 1489 EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED); 1490 event_count_active_added_virtual = event_base_get_num_events(base, 1491 EVENT_BASE_COUNT_ACTIVE| 1492 EVENT_BASE_COUNT_ADDED| 1493 EVENT_BASE_COUNT_VIRTUAL); 1494 tt_int_op(event_count_active, ==, 1); 1495 tt_int_op(event_count_virtual, ==, 0); 1496 tt_int_op(event_count_added, ==, 3); 1497 tt_int_op(event_count_active_virtual, ==, 1); 1498 tt_int_op(event_count_active_added, ==, 4); 1499 tt_int_op(event_count_virtual_added, ==, 3); 1500 tt_int_op(event_count_active_added_virtual, ==, 4); 1501 1502 event_base_loop(base, 0); 1503 event_count_active = event_base_get_num_events(base, 1504 EVENT_BASE_COUNT_ACTIVE); 1505 event_count_virtual = event_base_get_num_events(base, 1506 EVENT_BASE_COUNT_VIRTUAL); 1507 event_count_added = event_base_get_num_events(base, 1508 EVENT_BASE_COUNT_ADDED); 1509 event_count_active_virtual = event_base_get_num_events(base, 1510 EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL); 1511 event_count_active_added = event_base_get_num_events(base, 1512 EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED); 1513 event_count_virtual_added = event_base_get_num_events(base, 1514 EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED); 1515 event_count_active_added_virtual = event_base_get_num_events(base, 1516 EVENT_BASE_COUNT_ACTIVE| 1517 EVENT_BASE_COUNT_ADDED| 1518 EVENT_BASE_COUNT_VIRTUAL); 1519 tt_int_op(event_count_active, ==, 0); 1520 tt_int_op(event_count_virtual, ==, 0); 1521 tt_int_op(event_count_added, ==, 0); 1522 tt_int_op(event_count_active_virtual, ==, 0); 1523 tt_int_op(event_count_active_added, ==, 0); 1524 tt_int_op(event_count_virtual_added, ==, 0); 1525 tt_int_op(event_count_active_added_virtual, ==, 0); 1526 1527 event_base_add_virtual_(base); 1528 event_count_active = event_base_get_num_events(base, 1529 EVENT_BASE_COUNT_ACTIVE); 1530 event_count_virtual = event_base_get_num_events(base, 1531 EVENT_BASE_COUNT_VIRTUAL); 1532 event_count_added = event_base_get_num_events(base, 1533 EVENT_BASE_COUNT_ADDED); 1534 event_count_active_virtual = event_base_get_num_events(base, 1535 EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL); 1536 event_count_active_added = event_base_get_num_events(base, 1537 EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED); 1538 event_count_virtual_added = event_base_get_num_events(base, 1539 EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED); 1540 event_count_active_added_virtual = event_base_get_num_events(base, 1541 EVENT_BASE_COUNT_ACTIVE| 1542 EVENT_BASE_COUNT_ADDED| 1543 EVENT_BASE_COUNT_VIRTUAL); 1544 tt_int_op(event_count_active, ==, 0); 1545 tt_int_op(event_count_virtual, ==, 1); 1546 tt_int_op(event_count_added, ==, 0); 1547 tt_int_op(event_count_active_virtual, ==, 1); 1548 tt_int_op(event_count_active_added, ==, 0); 1549 tt_int_op(event_count_virtual_added, ==, 1); 1550 tt_int_op(event_count_active_added_virtual, ==, 1); 1551 1552 end: 1553 ; 1554 } 1555 1556 static void 1557 test_event_base_get_max_events(void *ptr) 1558 { 1559 struct basic_test_data *data = ptr; 1560 struct event_base *base = data->base; 1561 struct event ev; 1562 struct event ev2; 1563 int event_count_active; 1564 int event_count_virtual; 1565 int event_count_added; 1566 int event_count_active_virtual; 1567 int event_count_active_added; 1568 int event_count_virtual_added; 1569 int event_count_active_added_virtual; 1570 1571 struct timeval qsec = {0, 100000}; 1572 1573 event_assign(&ev, base, -1, EV_READ, event_selfarg_cb, 1574 event_self_cbarg()); 1575 event_assign(&ev2, base, -1, EV_READ, event_selfarg_cb, 1576 event_self_cbarg()); 1577 1578 event_add(&ev, &qsec); 1579 event_add(&ev2, &qsec); 1580 event_del(&ev2); 1581 1582 event_count_active = event_base_get_max_events(base, 1583 EVENT_BASE_COUNT_ACTIVE, 0); 1584 event_count_virtual = event_base_get_max_events(base, 1585 EVENT_BASE_COUNT_VIRTUAL, 0); 1586 event_count_added = event_base_get_max_events(base, 1587 EVENT_BASE_COUNT_ADDED, 0); 1588 event_count_active_virtual = event_base_get_max_events(base, 1589 EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0); 1590 event_count_active_added = event_base_get_max_events(base, 1591 EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0); 1592 event_count_virtual_added = event_base_get_max_events(base, 1593 EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0); 1594 event_count_active_added_virtual = event_base_get_max_events(base, 1595 EVENT_BASE_COUNT_ACTIVE | 1596 EVENT_BASE_COUNT_ADDED | 1597 EVENT_BASE_COUNT_VIRTUAL, 0); 1598 1599 tt_int_op(event_count_active, ==, 0); 1600 tt_int_op(event_count_virtual, ==, 0); 1601 /* libevent itself adds a timeout event, so the event_count is 4 here */ 1602 tt_int_op(event_count_added, ==, 4); 1603 tt_int_op(event_count_active_virtual, ==, 0); 1604 tt_int_op(event_count_active_added, ==, 4); 1605 tt_int_op(event_count_virtual_added, ==, 4); 1606 tt_int_op(event_count_active_added_virtual, ==, 4); 1607 1608 event_active(&ev, EV_READ, 1); 1609 event_count_active = event_base_get_max_events(base, 1610 EVENT_BASE_COUNT_ACTIVE, 0); 1611 event_count_virtual = event_base_get_max_events(base, 1612 EVENT_BASE_COUNT_VIRTUAL, 0); 1613 event_count_added = event_base_get_max_events(base, 1614 EVENT_BASE_COUNT_ADDED, 0); 1615 event_count_active_virtual = event_base_get_max_events(base, 1616 EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0); 1617 event_count_active_added = event_base_get_max_events(base, 1618 EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0); 1619 event_count_virtual_added = event_base_get_max_events(base, 1620 EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0); 1621 event_count_active_added_virtual = event_base_get_max_events(base, 1622 EVENT_BASE_COUNT_ACTIVE | 1623 EVENT_BASE_COUNT_ADDED | 1624 EVENT_BASE_COUNT_VIRTUAL, 0); 1625 1626 tt_int_op(event_count_active, ==, 1); 1627 tt_int_op(event_count_virtual, ==, 0); 1628 tt_int_op(event_count_added, ==, 4); 1629 tt_int_op(event_count_active_virtual, ==, 1); 1630 tt_int_op(event_count_active_added, ==, 5); 1631 tt_int_op(event_count_virtual_added, ==, 4); 1632 tt_int_op(event_count_active_added_virtual, ==, 5); 1633 1634 event_base_loop(base, 0); 1635 event_count_active = event_base_get_max_events(base, 1636 EVENT_BASE_COUNT_ACTIVE, 1); 1637 event_count_virtual = event_base_get_max_events(base, 1638 EVENT_BASE_COUNT_VIRTUAL, 1); 1639 event_count_added = event_base_get_max_events(base, 1640 EVENT_BASE_COUNT_ADDED, 1); 1641 event_count_active_virtual = event_base_get_max_events(base, 1642 EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0); 1643 event_count_active_added = event_base_get_max_events(base, 1644 EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0); 1645 event_count_virtual_added = event_base_get_max_events(base, 1646 EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0); 1647 event_count_active_added_virtual = event_base_get_max_events(base, 1648 EVENT_BASE_COUNT_ACTIVE | 1649 EVENT_BASE_COUNT_ADDED | 1650 EVENT_BASE_COUNT_VIRTUAL, 1); 1651 1652 tt_int_op(event_count_active, ==, 1); 1653 tt_int_op(event_count_virtual, ==, 0); 1654 tt_int_op(event_count_added, ==, 4); 1655 tt_int_op(event_count_active_virtual, ==, 0); 1656 tt_int_op(event_count_active_added, ==, 0); 1657 tt_int_op(event_count_virtual_added, ==, 0); 1658 tt_int_op(event_count_active_added_virtual, ==, 0); 1659 1660 event_count_active = event_base_get_max_events(base, 1661 EVENT_BASE_COUNT_ACTIVE, 0); 1662 event_count_virtual = event_base_get_max_events(base, 1663 EVENT_BASE_COUNT_VIRTUAL, 0); 1664 event_count_added = event_base_get_max_events(base, 1665 EVENT_BASE_COUNT_ADDED, 0); 1666 tt_int_op(event_count_active, ==, 0); 1667 tt_int_op(event_count_virtual, ==, 0); 1668 tt_int_op(event_count_added, ==, 0); 1669 1670 event_base_add_virtual_(base); 1671 event_count_active = event_base_get_max_events(base, 1672 EVENT_BASE_COUNT_ACTIVE, 0); 1673 event_count_virtual = event_base_get_max_events(base, 1674 EVENT_BASE_COUNT_VIRTUAL, 0); 1675 event_count_added = event_base_get_max_events(base, 1676 EVENT_BASE_COUNT_ADDED, 0); 1677 event_count_active_virtual = event_base_get_max_events(base, 1678 EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0); 1679 event_count_active_added = event_base_get_max_events(base, 1680 EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0); 1681 event_count_virtual_added = event_base_get_max_events(base, 1682 EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0); 1683 event_count_active_added_virtual = event_base_get_max_events(base, 1684 EVENT_BASE_COUNT_ACTIVE | 1685 EVENT_BASE_COUNT_ADDED | 1686 EVENT_BASE_COUNT_VIRTUAL, 0); 1687 1688 tt_int_op(event_count_active, ==, 0); 1689 tt_int_op(event_count_virtual, ==, 1); 1690 tt_int_op(event_count_added, ==, 0); 1691 tt_int_op(event_count_active_virtual, ==, 1); 1692 tt_int_op(event_count_active_added, ==, 0); 1693 tt_int_op(event_count_virtual_added, ==, 1); 1694 tt_int_op(event_count_active_added_virtual, ==, 1); 1695 1696 end: 1697 ; 1698 } 1699 1700 static void 1701 test_bad_assign(void *ptr) 1702 { 1703 struct event ev; 1704 int r; 1705 /* READ|SIGNAL is not allowed */ 1706 r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL); 1707 tt_int_op(r,==,-1); 1708 1709 end: 1710 ; 1711 } 1712 1713 static int reentrant_cb_run = 0; 1714 1715 static void 1716 bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr) 1717 { 1718 struct event_base *base = ptr; 1719 int r; 1720 reentrant_cb_run = 1; 1721 /* This reentrant call to event_base_loop should be detected and 1722 * should fail */ 1723 r = event_base_loop(base, 0); 1724 tt_int_op(r, ==, -1); 1725 end: 1726 ; 1727 } 1728 1729 static void 1730 test_bad_reentrant(void *ptr) 1731 { 1732 struct basic_test_data *data = ptr; 1733 struct event_base *base = data->base; 1734 struct event ev; 1735 int r; 1736 event_assign(&ev, base, -1, 1737 0, bad_reentrant_run_loop_cb, base); 1738 1739 event_active(&ev, EV_WRITE, 1); 1740 r = event_base_loop(base, 0); 1741 tt_int_op(r, ==, 1); 1742 tt_int_op(reentrant_cb_run, ==, 1); 1743 end: 1744 ; 1745 } 1746 1747 static int n_write_a_byte_cb=0; 1748 static int n_read_and_drain_cb=0; 1749 static int n_activate_other_event_cb=0; 1750 static void 1751 write_a_byte_cb(evutil_socket_t fd, short what, void *arg) 1752 { 1753 char buf[] = "x"; 1754 if (write(fd, buf, 1) == 1) 1755 ++n_write_a_byte_cb; 1756 } 1757 static void 1758 read_and_drain_cb(evutil_socket_t fd, short what, void *arg) 1759 { 1760 char buf[128]; 1761 int n; 1762 ++n_read_and_drain_cb; 1763 while ((n = read(fd, buf, sizeof(buf))) > 0) 1764 ; 1765 } 1766 1767 static void 1768 activate_other_event_cb(evutil_socket_t fd, short what, void *other_) 1769 { 1770 struct event *ev_activate = other_; 1771 ++n_activate_other_event_cb; 1772 event_active_later_(ev_activate, EV_READ); 1773 } 1774 1775 static void 1776 test_active_later(void *ptr) 1777 { 1778 struct basic_test_data *data = ptr; 1779 struct event *ev1 = NULL, *ev2 = NULL; 1780 struct event ev3, ev4; 1781 struct timeval qsec = {0, 100000}; 1782 ev1 = event_new(data->base, data->pair[0], EV_READ|EV_PERSIST, read_and_drain_cb, NULL); 1783 ev2 = event_new(data->base, data->pair[1], EV_WRITE|EV_PERSIST, write_a_byte_cb, NULL); 1784 event_assign(&ev3, data->base, -1, 0, activate_other_event_cb, &ev4); 1785 event_assign(&ev4, data->base, -1, 0, activate_other_event_cb, &ev3); 1786 event_add(ev1, NULL); 1787 event_add(ev2, NULL); 1788 event_active_later_(&ev3, EV_READ); 1789 1790 event_base_loopexit(data->base, &qsec); 1791 1792 event_base_loop(data->base, 0); 1793 1794 TT_BLATHER(("%d write calls, %d read calls, %d activate-other calls.", 1795 n_write_a_byte_cb, n_read_and_drain_cb, n_activate_other_event_cb)); 1796 event_del(&ev3); 1797 event_del(&ev4); 1798 1799 tt_int_op(n_write_a_byte_cb, ==, n_activate_other_event_cb); 1800 tt_int_op(n_write_a_byte_cb, >, 100); 1801 tt_int_op(n_read_and_drain_cb, >, 100); 1802 tt_int_op(n_activate_other_event_cb, >, 100); 1803 1804 event_active_later_(&ev4, EV_READ); 1805 event_active(&ev4, EV_READ, 1); /* This should make the event 1806 active immediately. */ 1807 tt_assert((ev4.ev_flags & EVLIST_ACTIVE) != 0); 1808 tt_assert((ev4.ev_flags & EVLIST_ACTIVE_LATER) == 0); 1809 1810 /* Now leave this one around, so that event_free sees it and removes 1811 * it. */ 1812 event_active_later_(&ev3, EV_READ); 1813 event_base_assert_ok_(data->base); 1814 1815 end: 1816 if (ev1) 1817 event_free(ev1); 1818 if (ev2) 1819 event_free(ev2); 1820 1821 event_base_free(data->base); 1822 data->base = NULL; 1823 } 1824 1825 1826 static void incr_arg_cb(evutil_socket_t fd, short what, void *arg) 1827 { 1828 int *intptr = arg; 1829 (void) fd; (void) what; 1830 ++*intptr; 1831 } 1832 static void remove_timers_cb(evutil_socket_t fd, short what, void *arg) 1833 { 1834 struct event **ep = arg; 1835 (void) fd; (void) what; 1836 event_remove_timer(ep[0]); 1837 event_remove_timer(ep[1]); 1838 } 1839 static void send_a_byte_cb(evutil_socket_t fd, short what, void *arg) 1840 { 1841 evutil_socket_t *sockp = arg; 1842 (void) fd; (void) what; 1843 (void) write(*sockp, "A", 1); 1844 } 1845 struct read_not_timeout_param 1846 { 1847 struct event **ev; 1848 int events; 1849 int count; 1850 }; 1851 static void read_not_timeout_cb(evutil_socket_t fd, short what, void *arg) 1852 { 1853 struct read_not_timeout_param *rntp = arg; 1854 char c; 1855 ev_ssize_t n; 1856 (void) fd; (void) what; 1857 n = read(fd, &c, 1); 1858 tt_int_op(n, ==, 1); 1859 rntp->events |= what; 1860 ++rntp->count; 1861 if(2 == rntp->count) event_del(rntp->ev[0]); 1862 end: 1863 ; 1864 } 1865 1866 static void 1867 test_event_remove_timeout(void *ptr) 1868 { 1869 struct basic_test_data *data = ptr; 1870 struct event_base *base = data->base; 1871 struct event *ev[5]; 1872 int ev1_fired=0; 1873 struct timeval ms25 = { 0, 25*1000 }, 1874 ms40 = { 0, 40*1000 }, 1875 ms75 = { 0, 75*1000 }, 1876 ms125 = { 0, 125*1000 }; 1877 struct read_not_timeout_param rntp = { ev, 0, 0 }; 1878 1879 event_base_assert_ok_(base); 1880 1881 ev[0] = event_new(base, data->pair[0], EV_READ|EV_PERSIST, 1882 read_not_timeout_cb, &rntp); 1883 ev[1] = evtimer_new(base, incr_arg_cb, &ev1_fired); 1884 ev[2] = evtimer_new(base, remove_timers_cb, ev); 1885 ev[3] = evtimer_new(base, send_a_byte_cb, &data->pair[1]); 1886 ev[4] = evtimer_new(base, send_a_byte_cb, &data->pair[1]); 1887 tt_assert(base); 1888 event_add(ev[2], &ms25); /* remove timers */ 1889 event_add(ev[4], &ms40); /* write to test if timer re-activates */ 1890 event_add(ev[0], &ms75); /* read */ 1891 event_add(ev[1], &ms75); /* timer */ 1892 event_add(ev[3], &ms125); /* timeout. */ 1893 event_base_assert_ok_(base); 1894 1895 event_base_dispatch(base); 1896 1897 tt_int_op(ev1_fired, ==, 0); 1898 tt_int_op(rntp.events, ==, EV_READ); 1899 1900 event_base_assert_ok_(base); 1901 end: 1902 event_free(ev[0]); 1903 event_free(ev[1]); 1904 event_free(ev[2]); 1905 event_free(ev[3]); 1906 event_free(ev[4]); 1907 } 1908 1909 static void 1910 test_event_base_new(void *ptr) 1911 { 1912 struct basic_test_data *data = ptr; 1913 struct event_base *base = 0; 1914 struct event ev1; 1915 struct basic_cb_args args; 1916 1917 int towrite = (int)strlen(TEST1)+1; 1918 int len = write(data->pair[0], TEST1, towrite); 1919 1920 if (len < 0) 1921 tt_abort_perror("initial write"); 1922 else if (len != towrite) 1923 tt_abort_printf(("initial write fell short (%d of %d bytes)", 1924 len, towrite)); 1925 1926 if (shutdown(data->pair[0], EVUTIL_SHUT_WR)) 1927 tt_abort_perror("initial write shutdown"); 1928 1929 base = event_base_new(); 1930 if (!base) 1931 tt_abort_msg("failed to create event base"); 1932 1933 args.eb = base; 1934 args.ev = &ev1; 1935 args.callcount = 0; 1936 event_assign(&ev1, base, data->pair[1], 1937 EV_READ|EV_PERSIST, basic_read_cb, &args); 1938 1939 if (event_add(&ev1, NULL)) 1940 tt_abort_perror("initial event_add"); 1941 1942 if (event_base_loop(base, 0)) 1943 tt_abort_msg("unsuccessful exit from event loop"); 1944 1945 end: 1946 if (base) 1947 event_base_free(base); 1948 } 1949 1950 static void 1951 test_loopexit(void) 1952 { 1953 struct timeval tv, tv_start, tv_end; 1954 struct event ev; 1955 1956 setup_test("Loop exit: "); 1957 1958 tv.tv_usec = 0; 1959 tv.tv_sec = 60*60*24; 1960 evtimer_set(&ev, timeout_cb, NULL); 1961 evtimer_add(&ev, &tv); 1962 1963 tv.tv_usec = 300*1000; 1964 tv.tv_sec = 0; 1965 event_loopexit(&tv); 1966 1967 evutil_gettimeofday(&tv_start, NULL); 1968 event_dispatch(); 1969 evutil_gettimeofday(&tv_end, NULL); 1970 1971 evtimer_del(&ev); 1972 1973 tt_assert(event_base_got_exit(global_base)); 1974 tt_assert(!event_base_got_break(global_base)); 1975 1976 test_timeval_diff_eq(&tv_start, &tv_end, 300); 1977 1978 test_ok = 1; 1979 end: 1980 cleanup_test(); 1981 } 1982 1983 static void 1984 test_loopexit_multiple(void) 1985 { 1986 struct timeval tv, tv_start, tv_end; 1987 struct event_base *base; 1988 1989 setup_test("Loop Multiple exit: "); 1990 1991 base = event_base_new(); 1992 1993 tv.tv_usec = 200*1000; 1994 tv.tv_sec = 0; 1995 event_base_loopexit(base, &tv); 1996 1997 tv.tv_usec = 0; 1998 tv.tv_sec = 3; 1999 event_base_loopexit(base, &tv); 2000 2001 evutil_gettimeofday(&tv_start, NULL); 2002 event_base_dispatch(base); 2003 evutil_gettimeofday(&tv_end, NULL); 2004 2005 tt_assert(event_base_got_exit(base)); 2006 tt_assert(!event_base_got_break(base)); 2007 2008 event_base_free(base); 2009 2010 test_timeval_diff_eq(&tv_start, &tv_end, 200); 2011 2012 test_ok = 1; 2013 2014 end: 2015 cleanup_test(); 2016 } 2017 2018 static void 2019 break_cb(evutil_socket_t fd, short events, void *arg) 2020 { 2021 test_ok = 1; 2022 event_loopbreak(); 2023 } 2024 2025 static void 2026 fail_cb(evutil_socket_t fd, short events, void *arg) 2027 { 2028 test_ok = 0; 2029 } 2030 2031 static void 2032 test_loopbreak(void) 2033 { 2034 struct event ev1, ev2; 2035 struct timeval tv; 2036 2037 setup_test("Loop break: "); 2038 2039 tv.tv_sec = 0; 2040 tv.tv_usec = 0; 2041 evtimer_set(&ev1, break_cb, NULL); 2042 evtimer_add(&ev1, &tv); 2043 evtimer_set(&ev2, fail_cb, NULL); 2044 evtimer_add(&ev2, &tv); 2045 2046 event_dispatch(); 2047 2048 tt_assert(!event_base_got_exit(global_base)); 2049 tt_assert(event_base_got_break(global_base)); 2050 2051 evtimer_del(&ev1); 2052 evtimer_del(&ev2); 2053 2054 end: 2055 cleanup_test(); 2056 } 2057 2058 static struct event *readd_test_event_last_added = NULL; 2059 static void 2060 re_add_read_cb(evutil_socket_t fd, short event, void *arg) 2061 { 2062 char buf[256]; 2063 struct event *ev_other = arg; 2064 ev_ssize_t n_read; 2065 2066 readd_test_event_last_added = ev_other; 2067 2068 n_read = read(fd, buf, sizeof(buf)); 2069 2070 if (n_read < 0) { 2071 tt_fail_perror("read"); 2072 event_base_loopbreak(event_get_base(ev_other)); 2073 return; 2074 } else { 2075 event_add(ev_other, NULL); 2076 ++test_ok; 2077 } 2078 } 2079 2080 static void 2081 test_nonpersist_readd(void) 2082 { 2083 struct event ev1, ev2; 2084 2085 setup_test("Re-add nonpersistent events: "); 2086 event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2); 2087 event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1); 2088 2089 if (write(pair[0], "Hello", 5) < 0) { 2090 tt_fail_perror("write(pair[0])"); 2091 } 2092 2093 if (write(pair[1], "Hello", 5) < 0) { 2094 tt_fail_perror("write(pair[1])\n"); 2095 } 2096 2097 if (event_add(&ev1, NULL) == -1 || 2098 event_add(&ev2, NULL) == -1) { 2099 test_ok = 0; 2100 } 2101 if (test_ok != 0) 2102 exit(1); 2103 event_loop(EVLOOP_ONCE); 2104 if (test_ok != 2) 2105 exit(1); 2106 /* At this point, we executed both callbacks. Whichever one got 2107 * called first added the second, but the second then immediately got 2108 * deleted before its callback was called. At this point, though, it 2109 * re-added the first. 2110 */ 2111 if (!readd_test_event_last_added) { 2112 test_ok = 0; 2113 } else if (readd_test_event_last_added == &ev1) { 2114 if (!event_pending(&ev1, EV_READ, NULL) || 2115 event_pending(&ev2, EV_READ, NULL)) 2116 test_ok = 0; 2117 } else { 2118 if (event_pending(&ev1, EV_READ, NULL) || 2119 !event_pending(&ev2, EV_READ, NULL)) 2120 test_ok = 0; 2121 } 2122 2123 event_del(&ev1); 2124 event_del(&ev2); 2125 2126 cleanup_test(); 2127 } 2128 2129 struct test_pri_event { 2130 struct event ev; 2131 int count; 2132 }; 2133 2134 static void 2135 test_priorities_cb(evutil_socket_t fd, short what, void *arg) 2136 { 2137 struct test_pri_event *pri = arg; 2138 struct timeval tv; 2139 2140 if (pri->count == 3) { 2141 event_loopexit(NULL); 2142 return; 2143 } 2144 2145 pri->count++; 2146 2147 evutil_timerclear(&tv); 2148 event_add(&pri->ev, &tv); 2149 } 2150 2151 static void 2152 test_priorities_impl(int npriorities) 2153 { 2154 struct test_pri_event one, two; 2155 struct timeval tv; 2156 2157 TT_BLATHER(("Testing Priorities %d: ", npriorities)); 2158 2159 event_base_priority_init(global_base, npriorities); 2160 2161 memset(&one, 0, sizeof(one)); 2162 memset(&two, 0, sizeof(two)); 2163 2164 timeout_set(&one.ev, test_priorities_cb, &one); 2165 if (event_priority_set(&one.ev, 0) == -1) { 2166 fprintf(stderr, "%s: failed to set priority", __func__); 2167 exit(1); 2168 } 2169 2170 timeout_set(&two.ev, test_priorities_cb, &two); 2171 if (event_priority_set(&two.ev, npriorities - 1) == -1) { 2172 fprintf(stderr, "%s: failed to set priority", __func__); 2173 exit(1); 2174 } 2175 2176 evutil_timerclear(&tv); 2177 2178 if (event_add(&one.ev, &tv) == -1) 2179 exit(1); 2180 if (event_add(&two.ev, &tv) == -1) 2181 exit(1); 2182 2183 event_dispatch(); 2184 2185 event_del(&one.ev); 2186 event_del(&two.ev); 2187 2188 if (npriorities == 1) { 2189 if (one.count == 3 && two.count == 3) 2190 test_ok = 1; 2191 } else if (npriorities == 2) { 2192 /* Two is called once because event_loopexit is priority 1 */ 2193 if (one.count == 3 && two.count == 1) 2194 test_ok = 1; 2195 } else { 2196 if (one.count == 3 && two.count == 0) 2197 test_ok = 1; 2198 } 2199 } 2200 2201 static void 2202 test_priorities(void) 2203 { 2204 test_priorities_impl(1); 2205 if (test_ok) 2206 test_priorities_impl(2); 2207 if (test_ok) 2208 test_priorities_impl(3); 2209 } 2210 2211 /* priority-active-inversion: activate a higher-priority event, and make sure 2212 * it keeps us from running a lower-priority event first. */ 2213 static int n_pai_calls = 0; 2214 static struct event pai_events[3]; 2215 2216 static void 2217 prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg) 2218 { 2219 int *call_order = arg; 2220 *call_order = n_pai_calls++; 2221 if (n_pai_calls == 1) { 2222 /* This should activate later, even though it shares a 2223 priority with us. */ 2224 event_active(&pai_events[1], EV_READ, 1); 2225 /* This should activate next, since its priority is higher, 2226 even though we activated it second. */ 2227 event_active(&pai_events[2], EV_TIMEOUT, 1); 2228 } 2229 } 2230 2231 static void 2232 test_priority_active_inversion(void *data_) 2233 { 2234 struct basic_test_data *data = data_; 2235 struct event_base *base = data->base; 2236 int call_order[3]; 2237 int i; 2238 tt_int_op(event_base_priority_init(base, 8), ==, 0); 2239 2240 n_pai_calls = 0; 2241 memset(call_order, 0, sizeof(call_order)); 2242 2243 for (i=0;i<3;++i) { 2244 event_assign(&pai_events[i], data->base, -1, 0, 2245 prio_active_inversion_cb, &call_order[i]); 2246 } 2247 2248 event_priority_set(&pai_events[0], 4); 2249 event_priority_set(&pai_events[1], 4); 2250 event_priority_set(&pai_events[2], 0); 2251 2252 event_active(&pai_events[0], EV_WRITE, 1); 2253 2254 event_base_dispatch(base); 2255 tt_int_op(n_pai_calls, ==, 3); 2256 tt_int_op(call_order[0], ==, 0); 2257 tt_int_op(call_order[1], ==, 2); 2258 tt_int_op(call_order[2], ==, 1); 2259 end: 2260 ; 2261 } 2262 2263 2264 static void 2265 test_multiple_cb(evutil_socket_t fd, short event, void *arg) 2266 { 2267 if (event & EV_READ) 2268 test_ok |= 1; 2269 else if (event & EV_WRITE) 2270 test_ok |= 2; 2271 } 2272 2273 static void 2274 test_multiple_events_for_same_fd(void) 2275 { 2276 struct event e1, e2; 2277 2278 setup_test("Multiple events for same fd: "); 2279 2280 event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL); 2281 event_add(&e1, NULL); 2282 event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL); 2283 event_add(&e2, NULL); 2284 event_loop(EVLOOP_ONCE); 2285 event_del(&e2); 2286 2287 if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) { 2288 tt_fail_perror("write"); 2289 } 2290 2291 event_loop(EVLOOP_ONCE); 2292 event_del(&e1); 2293 2294 if (test_ok != 3) 2295 test_ok = 0; 2296 2297 cleanup_test(); 2298 } 2299 2300 int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf); 2301 int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf); 2302 int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number); 2303 int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf); 2304 2305 static void 2306 read_once_cb(evutil_socket_t fd, short event, void *arg) 2307 { 2308 char buf[256]; 2309 int len; 2310 2311 len = read(fd, buf, sizeof(buf)); 2312 2313 if (called) { 2314 test_ok = 0; 2315 } else if (len) { 2316 /* Assumes global pair[0] can be used for writing */ 2317 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { 2318 tt_fail_perror("write"); 2319 test_ok = 0; 2320 } else { 2321 test_ok = 1; 2322 } 2323 } 2324 2325 called++; 2326 } 2327 2328 static void 2329 test_want_only_once(void) 2330 { 2331 struct event ev; 2332 struct timeval tv; 2333 2334 /* Very simple read test */ 2335 setup_test("Want read only once: "); 2336 2337 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { 2338 tt_fail_perror("write"); 2339 } 2340 2341 /* Setup the loop termination */ 2342 evutil_timerclear(&tv); 2343 tv.tv_usec = 300*1000; 2344 event_loopexit(&tv); 2345 2346 event_set(&ev, pair[1], EV_READ, read_once_cb, &ev); 2347 if (event_add(&ev, NULL) == -1) 2348 exit(1); 2349 event_dispatch(); 2350 2351 cleanup_test(); 2352 } 2353 2354 #define TEST_MAX_INT 6 2355 2356 static void 2357 evtag_int_test(void *ptr) 2358 { 2359 struct evbuffer *tmp = evbuffer_new(); 2360 ev_uint32_t integers[TEST_MAX_INT] = { 2361 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000 2362 }; 2363 ev_uint32_t integer; 2364 ev_uint64_t big_int; 2365 int i; 2366 2367 evtag_init(); 2368 2369 for (i = 0; i < TEST_MAX_INT; i++) { 2370 int oldlen, newlen; 2371 oldlen = (int)EVBUFFER_LENGTH(tmp); 2372 evtag_encode_int(tmp, integers[i]); 2373 newlen = (int)EVBUFFER_LENGTH(tmp); 2374 TT_BLATHER(("encoded 0x%08x with %d bytes", 2375 (unsigned)integers[i], newlen - oldlen)); 2376 big_int = integers[i]; 2377 big_int *= 1000000000; /* 1 billion */ 2378 evtag_encode_int64(tmp, big_int); 2379 } 2380 2381 for (i = 0; i < TEST_MAX_INT; i++) { 2382 tt_int_op(evtag_decode_int(&integer, tmp), !=, -1); 2383 tt_uint_op(integer, ==, integers[i]); 2384 tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1); 2385 tt_assert((big_int / 1000000000) == integers[i]); 2386 } 2387 2388 tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0); 2389 end: 2390 evbuffer_free(tmp); 2391 } 2392 2393 static void 2394 evtag_fuzz(void *ptr) 2395 { 2396 unsigned char buffer[4096]; 2397 struct evbuffer *tmp = evbuffer_new(); 2398 struct timeval tv; 2399 int i, j; 2400 2401 int not_failed = 0; 2402 2403 evtag_init(); 2404 2405 for (j = 0; j < 100; j++) { 2406 for (i = 0; i < (int)sizeof(buffer); i++) 2407 buffer[i] = test_weakrand(); 2408 evbuffer_drain(tmp, -1); 2409 evbuffer_add(tmp, buffer, sizeof(buffer)); 2410 2411 if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) 2412 not_failed++; 2413 } 2414 2415 /* The majority of decodes should fail */ 2416 tt_int_op(not_failed, <, 10); 2417 2418 /* Now insert some corruption into the tag length field */ 2419 evbuffer_drain(tmp, -1); 2420 evutil_timerclear(&tv); 2421 tv.tv_sec = 1; 2422 evtag_marshal_timeval(tmp, 0, &tv); 2423 evbuffer_add(tmp, buffer, sizeof(buffer)); 2424 2425 ((char *)EVBUFFER_DATA(tmp))[1] = '\xff'; 2426 if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) { 2427 tt_abort_msg("evtag_unmarshal_timeval should have failed"); 2428 } 2429 2430 end: 2431 evbuffer_free(tmp); 2432 } 2433 2434 static void 2435 evtag_tag_encoding(void *ptr) 2436 { 2437 struct evbuffer *tmp = evbuffer_new(); 2438 ev_uint32_t integers[TEST_MAX_INT] = { 2439 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000 2440 }; 2441 ev_uint32_t integer; 2442 int i; 2443 2444 evtag_init(); 2445 2446 for (i = 0; i < TEST_MAX_INT; i++) { 2447 int oldlen, newlen; 2448 oldlen = (int)EVBUFFER_LENGTH(tmp); 2449 evtag_encode_tag(tmp, integers[i]); 2450 newlen = (int)EVBUFFER_LENGTH(tmp); 2451 TT_BLATHER(("encoded 0x%08x with %d bytes", 2452 (unsigned)integers[i], newlen - oldlen)); 2453 } 2454 2455 for (i = 0; i < TEST_MAX_INT; i++) { 2456 tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1); 2457 tt_uint_op(integer, ==, integers[i]); 2458 } 2459 2460 tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0); 2461 2462 end: 2463 evbuffer_free(tmp); 2464 } 2465 2466 static void 2467 evtag_test_peek(void *ptr) 2468 { 2469 struct evbuffer *tmp = evbuffer_new(); 2470 ev_uint32_t u32; 2471 2472 evtag_marshal_int(tmp, 30, 0); 2473 evtag_marshal_string(tmp, 40, "Hello world"); 2474 2475 tt_int_op(evtag_peek(tmp, &u32), ==, 1); 2476 tt_int_op(u32, ==, 30); 2477 tt_int_op(evtag_peek_length(tmp, &u32), ==, 0); 2478 tt_int_op(u32, ==, 1+1+1); 2479 tt_int_op(evtag_consume(tmp), ==, 0); 2480 2481 tt_int_op(evtag_peek(tmp, &u32), ==, 1); 2482 tt_int_op(u32, ==, 40); 2483 tt_int_op(evtag_peek_length(tmp, &u32), ==, 0); 2484 tt_int_op(u32, ==, 1+1+11); 2485 tt_int_op(evtag_payload_length(tmp, &u32), ==, 0); 2486 tt_int_op(u32, ==, 11); 2487 2488 end: 2489 evbuffer_free(tmp); 2490 } 2491 2492 2493 static void 2494 test_methods(void *ptr) 2495 { 2496 const char **methods = event_get_supported_methods(); 2497 struct event_config *cfg = NULL; 2498 struct event_base *base = NULL; 2499 const char *backend; 2500 int n_methods = 0; 2501 2502 tt_assert(methods); 2503 2504 backend = methods[0]; 2505 while (*methods != NULL) { 2506 TT_BLATHER(("Support method: %s", *methods)); 2507 ++methods; 2508 ++n_methods; 2509 } 2510 2511 cfg = event_config_new(); 2512 assert(cfg != NULL); 2513 2514 tt_int_op(event_config_avoid_method(cfg, backend), ==, 0); 2515 event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV); 2516 2517 base = event_base_new_with_config(cfg); 2518 if (n_methods > 1) { 2519 tt_assert(base); 2520 tt_str_op(backend, !=, event_base_get_method(base)); 2521 } else { 2522 tt_assert(base == NULL); 2523 } 2524 2525 end: 2526 if (base) 2527 event_base_free(base); 2528 if (cfg) 2529 event_config_free(cfg); 2530 } 2531 2532 static void 2533 test_version(void *arg) 2534 { 2535 const char *vstr; 2536 ev_uint32_t vint; 2537 int major, minor, patch, n; 2538 2539 vstr = event_get_version(); 2540 vint = event_get_version_number(); 2541 2542 tt_assert(vstr); 2543 tt_assert(vint); 2544 2545 tt_str_op(vstr, ==, LIBEVENT_VERSION); 2546 tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER); 2547 2548 n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch); 2549 tt_assert(3 == n); 2550 tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8))); 2551 end: 2552 ; 2553 } 2554 2555 static void 2556 test_base_features(void *arg) 2557 { 2558 struct event_base *base = NULL; 2559 struct event_config *cfg = NULL; 2560 2561 cfg = event_config_new(); 2562 2563 tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET)); 2564 2565 base = event_base_new_with_config(cfg); 2566 if (base) { 2567 tt_int_op(EV_FEATURE_ET, ==, 2568 event_base_get_features(base) & EV_FEATURE_ET); 2569 } else { 2570 base = event_base_new(); 2571 tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET); 2572 } 2573 2574 end: 2575 if (base) 2576 event_base_free(base); 2577 if (cfg) 2578 event_config_free(cfg); 2579 } 2580 2581 #ifdef EVENT__HAVE_SETENV 2582 #define SETENV_OK 2583 #elif !defined(EVENT__HAVE_SETENV) && defined(EVENT__HAVE_PUTENV) 2584 static void setenv(const char *k, const char *v, int o_) 2585 { 2586 char b[256]; 2587 evutil_snprintf(b, sizeof(b), "%s=%s",k,v); 2588 putenv(b); 2589 } 2590 #define SETENV_OK 2591 #endif 2592 2593 #ifdef EVENT__HAVE_UNSETENV 2594 #define UNSETENV_OK 2595 #elif !defined(EVENT__HAVE_UNSETENV) && defined(EVENT__HAVE_PUTENV) 2596 static void unsetenv(const char *k) 2597 { 2598 char b[256]; 2599 evutil_snprintf(b, sizeof(b), "%s=",k); 2600 putenv(b); 2601 } 2602 #define UNSETENV_OK 2603 #endif 2604 2605 #if defined(SETENV_OK) && defined(UNSETENV_OK) 2606 static void 2607 methodname_to_envvar(const char *mname, char *buf, size_t buflen) 2608 { 2609 char *cp; 2610 evutil_snprintf(buf, buflen, "EVENT_NO%s", mname); 2611 for (cp = buf; *cp; ++cp) { 2612 *cp = EVUTIL_TOUPPER_(*cp); 2613 } 2614 } 2615 #endif 2616 2617 static void 2618 test_base_environ(void *arg) 2619 { 2620 struct event_base *base = NULL; 2621 struct event_config *cfg = NULL; 2622 2623 #if defined(SETENV_OK) && defined(UNSETENV_OK) 2624 const char **basenames; 2625 int i, n_methods=0; 2626 char varbuf[128]; 2627 const char *defaultname, *ignoreenvname; 2628 2629 /* See if unsetenv works before we rely on it. */ 2630 setenv("EVENT_NOWAFFLES", "1", 1); 2631 unsetenv("EVENT_NOWAFFLES"); 2632 if (getenv("EVENT_NOWAFFLES") != NULL) { 2633 #ifndef EVENT__HAVE_UNSETENV 2634 TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test")); 2635 #else 2636 TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test")); 2637 #endif 2638 tt_skip(); 2639 } 2640 2641 basenames = event_get_supported_methods(); 2642 for (i = 0; basenames[i]; ++i) { 2643 methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf)); 2644 unsetenv(varbuf); 2645 ++n_methods; 2646 } 2647 2648 base = event_base_new(); 2649 tt_assert(base); 2650 2651 defaultname = event_base_get_method(base); 2652 TT_BLATHER(("default is <%s>", defaultname)); 2653 event_base_free(base); 2654 base = NULL; 2655 2656 /* Can we disable the method with EVENT_NOfoo ? */ 2657 if (!strcmp(defaultname, "epoll (with changelist)")) { 2658 setenv("EVENT_NOEPOLL", "1", 1); 2659 ignoreenvname = "epoll"; 2660 } else { 2661 methodname_to_envvar(defaultname, varbuf, sizeof(varbuf)); 2662 setenv(varbuf, "1", 1); 2663 ignoreenvname = defaultname; 2664 } 2665 2666 /* Use an empty cfg rather than NULL so a failure doesn't exit() */ 2667 cfg = event_config_new(); 2668 base = event_base_new_with_config(cfg); 2669 event_config_free(cfg); 2670 cfg = NULL; 2671 if (n_methods == 1) { 2672 tt_assert(!base); 2673 } else { 2674 tt_assert(base); 2675 tt_str_op(defaultname, !=, event_base_get_method(base)); 2676 event_base_free(base); 2677 base = NULL; 2678 } 2679 2680 /* Can we disable looking at the environment with IGNORE_ENV ? */ 2681 cfg = event_config_new(); 2682 event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV); 2683 base = event_base_new_with_config(cfg); 2684 tt_assert(base); 2685 tt_str_op(ignoreenvname, ==, event_base_get_method(base)); 2686 #else 2687 tt_skip(); 2688 #endif 2689 2690 end: 2691 if (base) 2692 event_base_free(base); 2693 if (cfg) 2694 event_config_free(cfg); 2695 } 2696 2697 static void 2698 read_called_once_cb(evutil_socket_t fd, short event, void *arg) 2699 { 2700 tt_int_op(event, ==, EV_READ); 2701 called += 1; 2702 end: 2703 ; 2704 } 2705 2706 static void 2707 timeout_called_once_cb(evutil_socket_t fd, short event, void *arg) 2708 { 2709 tt_int_op(event, ==, EV_TIMEOUT); 2710 called += 100; 2711 end: 2712 ; 2713 } 2714 2715 static void 2716 immediate_called_twice_cb(evutil_socket_t fd, short event, void *arg) 2717 { 2718 tt_int_op(event, ==, EV_TIMEOUT); 2719 called += 1000; 2720 end: 2721 ; 2722 } 2723 2724 static void 2725 test_event_once(void *ptr) 2726 { 2727 struct basic_test_data *data = ptr; 2728 struct timeval tv; 2729 int r; 2730 2731 tv.tv_sec = 0; 2732 tv.tv_usec = 50*1000; 2733 called = 0; 2734 r = event_base_once(data->base, data->pair[0], EV_READ, 2735 read_called_once_cb, NULL, NULL); 2736 tt_int_op(r, ==, 0); 2737 r = event_base_once(data->base, -1, EV_TIMEOUT, 2738 timeout_called_once_cb, NULL, &tv); 2739 tt_int_op(r, ==, 0); 2740 r = event_base_once(data->base, -1, 0, NULL, NULL, NULL); 2741 tt_int_op(r, <, 0); 2742 r = event_base_once(data->base, -1, EV_TIMEOUT, 2743 immediate_called_twice_cb, NULL, NULL); 2744 tt_int_op(r, ==, 0); 2745 tv.tv_sec = 0; 2746 tv.tv_usec = 0; 2747 r = event_base_once(data->base, -1, EV_TIMEOUT, 2748 immediate_called_twice_cb, NULL, &tv); 2749 tt_int_op(r, ==, 0); 2750 2751 if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) { 2752 tt_fail_perror("write"); 2753 } 2754 2755 shutdown(data->pair[1], EVUTIL_SHUT_WR); 2756 2757 event_base_dispatch(data->base); 2758 2759 tt_int_op(called, ==, 2101); 2760 end: 2761 ; 2762 } 2763 2764 static void 2765 test_event_once_never(void *ptr) 2766 { 2767 struct basic_test_data *data = ptr; 2768 struct timeval tv; 2769 2770 /* Have one trigger in 10 seconds (don't worry, because) */ 2771 tv.tv_sec = 10; 2772 tv.tv_usec = 0; 2773 called = 0; 2774 event_base_once(data->base, -1, EV_TIMEOUT, 2775 timeout_called_once_cb, NULL, &tv); 2776 2777 /* But shut down the base in 75 msec. */ 2778 tv.tv_sec = 0; 2779 tv.tv_usec = 75*1000; 2780 event_base_loopexit(data->base, &tv); 2781 2782 event_base_dispatch(data->base); 2783 2784 tt_int_op(called, ==, 0); 2785 end: 2786 ; 2787 } 2788 2789 static void 2790 test_event_pending(void *ptr) 2791 { 2792 struct basic_test_data *data = ptr; 2793 struct event *r=NULL, *w=NULL, *t=NULL; 2794 struct timeval tv, now, tv2; 2795 2796 tv.tv_sec = 0; 2797 tv.tv_usec = 500 * 1000; 2798 r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb, 2799 NULL); 2800 w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb, 2801 NULL); 2802 t = evtimer_new(data->base, timeout_cb, NULL); 2803 2804 tt_assert(r); 2805 tt_assert(w); 2806 tt_assert(t); 2807 2808 evutil_gettimeofday(&now, NULL); 2809 event_add(r, NULL); 2810 event_add(t, &tv); 2811 2812 tt_assert( event_pending(r, EV_READ, NULL)); 2813 tt_assert(!event_pending(w, EV_WRITE, NULL)); 2814 tt_assert(!event_pending(r, EV_WRITE, NULL)); 2815 tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL)); 2816 tt_assert(!event_pending(r, EV_TIMEOUT, NULL)); 2817 tt_assert( event_pending(t, EV_TIMEOUT, NULL)); 2818 tt_assert( event_pending(t, EV_TIMEOUT, &tv2)); 2819 2820 tt_assert(evutil_timercmp(&tv2, &now, >)); 2821 2822 test_timeval_diff_eq(&now, &tv2, 500); 2823 2824 end: 2825 if (r) { 2826 event_del(r); 2827 event_free(r); 2828 } 2829 if (w) { 2830 event_del(w); 2831 event_free(w); 2832 } 2833 if (t) { 2834 event_del(t); 2835 event_free(t); 2836 } 2837 } 2838 2839 static void 2840 dfd_cb(evutil_socket_t fd, short e, void *data) 2841 { 2842 *(int*)data = (int)e; 2843 } 2844 2845 static void 2846 test_event_closed_fd_poll(void *arg) 2847 { 2848 struct timeval tv; 2849 struct event *e; 2850 struct basic_test_data *data = (struct basic_test_data *)arg; 2851 int i = 0; 2852 2853 if (strcmp(event_base_get_method(data->base), "poll")) { 2854 tinytest_set_test_skipped_(); 2855 return; 2856 } 2857 2858 e = event_new(data->base, data->pair[0], EV_READ, dfd_cb, &i); 2859 tt_assert(e); 2860 2861 tv.tv_sec = 0; 2862 tv.tv_usec = 500 * 1000; 2863 event_add(e, &tv); 2864 tt_assert(event_pending(e, EV_READ, NULL)); 2865 close(data->pair[0]); 2866 data->pair[0] = -1; /** avoids double-close */ 2867 event_base_loop(data->base, EVLOOP_ONCE); 2868 tt_int_op(i, ==, EV_READ); 2869 2870 end: 2871 if (e) { 2872 event_del(e); 2873 event_free(e); 2874 } 2875 } 2876 2877 #ifndef _WIN32 2878 /* You can't do this test on windows, since dup2 doesn't work on sockets */ 2879 2880 /* Regression test for our workaround for a fun epoll/linux related bug 2881 * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2) 2882 * will get you an EEXIST */ 2883 static void 2884 test_dup_fd(void *arg) 2885 { 2886 struct basic_test_data *data = arg; 2887 struct event_base *base = data->base; 2888 struct event *ev1=NULL, *ev2=NULL; 2889 int fd, dfd=-1; 2890 int ev1_got, ev2_got; 2891 2892 tt_int_op(write(data->pair[0], "Hello world", 2893 strlen("Hello world")), >, 0); 2894 fd = data->pair[1]; 2895 2896 dfd = dup(fd); 2897 tt_int_op(dfd, >=, 0); 2898 2899 ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got); 2900 ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got); 2901 ev1_got = ev2_got = 0; 2902 event_add(ev1, NULL); 2903 event_add(ev2, NULL); 2904 event_base_loop(base, EVLOOP_ONCE); 2905 tt_int_op(ev1_got, ==, EV_READ); 2906 tt_int_op(ev2_got, ==, EV_READ); 2907 2908 /* Now close and delete dfd then dispatch. We need to do the 2909 * dispatch here so that when we add it later, we think there 2910 * was an intermediate delete. */ 2911 close(dfd); 2912 event_del(ev2); 2913 ev1_got = ev2_got = 0; 2914 event_base_loop(base, EVLOOP_ONCE); 2915 tt_want_int_op(ev1_got, ==, EV_READ); 2916 tt_int_op(ev2_got, ==, 0); 2917 2918 /* Re-duplicate the fd. We need to get the same duplicated 2919 * value that we closed to provoke the epoll quirk. Also, we 2920 * need to change the events to write, or else the old lingering 2921 * read event will make the test pass whether the change was 2922 * successful or not. */ 2923 tt_int_op(dup2(fd, dfd), ==, dfd); 2924 event_free(ev2); 2925 ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got); 2926 event_add(ev2, NULL); 2927 ev1_got = ev2_got = 0; 2928 event_base_loop(base, EVLOOP_ONCE); 2929 tt_want_int_op(ev1_got, ==, EV_READ); 2930 tt_int_op(ev2_got, ==, EV_WRITE); 2931 2932 end: 2933 if (ev1) 2934 event_free(ev1); 2935 if (ev2) 2936 event_free(ev2); 2937 if (dfd >= 0) 2938 close(dfd); 2939 } 2940 #endif 2941 2942 #ifdef EVENT__DISABLE_MM_REPLACEMENT 2943 static void 2944 test_mm_functions(void *arg) 2945 { 2946 tinytest_set_test_skipped_(); 2947 } 2948 #else 2949 static int 2950 check_dummy_mem_ok(void *mem_) 2951 { 2952 char *mem = mem_; 2953 mem -= 16; 2954 return !memcmp(mem, "{[<guardedram>]}", 16); 2955 } 2956 2957 static void * 2958 dummy_malloc(size_t len) 2959 { 2960 char *mem = malloc(len+16); 2961 memcpy(mem, "{[<guardedram>]}", 16); 2962 return mem+16; 2963 } 2964 2965 static void * 2966 dummy_realloc(void *mem_, size_t len) 2967 { 2968 char *mem = mem_; 2969 if (!mem) 2970 return dummy_malloc(len); 2971 tt_want(check_dummy_mem_ok(mem_)); 2972 mem -= 16; 2973 mem = realloc(mem, len+16); 2974 return mem+16; 2975 } 2976 2977 static void 2978 dummy_free(void *mem_) 2979 { 2980 char *mem = mem_; 2981 tt_want(check_dummy_mem_ok(mem_)); 2982 mem -= 16; 2983 free(mem); 2984 } 2985 2986 static void 2987 test_mm_functions(void *arg) 2988 { 2989 struct event_base *b = NULL; 2990 struct event_config *cfg = NULL; 2991 event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free); 2992 cfg = event_config_new(); 2993 event_config_avoid_method(cfg, "Nonesuch"); 2994 b = event_base_new_with_config(cfg); 2995 tt_assert(b); 2996 tt_assert(check_dummy_mem_ok(b)); 2997 end: 2998 if (cfg) 2999 event_config_free(cfg); 3000 if (b) 3001 event_base_free(b); 3002 } 3003 #endif 3004 3005 static void 3006 many_event_cb(evutil_socket_t fd, short event, void *arg) 3007 { 3008 int *calledp = arg; 3009 *calledp += 1; 3010 } 3011 3012 static void 3013 test_many_events(void *arg) 3014 { 3015 /* Try 70 events that should all be ready at once. This will 3016 * exercise the "resize" code on most of the backends, and will make 3017 * sure that we can get past the 64-handle limit of some windows 3018 * functions. */ 3019 #define MANY 70 3020 3021 struct basic_test_data *data = arg; 3022 struct event_base *base = data->base; 3023 int one_at_a_time = data->setup_data != NULL; 3024 evutil_socket_t sock[MANY]; 3025 struct event *ev[MANY]; 3026 int called[MANY]; 3027 int i; 3028 int loopflags = EVLOOP_NONBLOCK, evflags=0; 3029 if (one_at_a_time) { 3030 loopflags |= EVLOOP_ONCE; 3031 evflags = EV_PERSIST; 3032 } 3033 3034 memset(sock, 0xff, sizeof(sock)); 3035 memset(ev, 0, sizeof(ev)); 3036 memset(called, 0, sizeof(called)); 3037 3038 for (i = 0; i < MANY; ++i) { 3039 /* We need an event that will hit the backend, and that will 3040 * be ready immediately. "Send a datagram" is an easy 3041 * instance of that. */ 3042 sock[i] = socket(AF_INET, SOCK_DGRAM, 0); 3043 tt_assert(sock[i] >= 0); 3044 called[i] = 0; 3045 ev[i] = event_new(base, sock[i], EV_WRITE|evflags, 3046 many_event_cb, &called[i]); 3047 event_add(ev[i], NULL); 3048 if (one_at_a_time) 3049 event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE); 3050 } 3051 3052 event_base_loop(base, loopflags); 3053 3054 for (i = 0; i < MANY; ++i) { 3055 if (one_at_a_time) 3056 tt_int_op(called[i], ==, MANY - i + 1); 3057 else 3058 tt_int_op(called[i], ==, 1); 3059 } 3060 3061 end: 3062 for (i = 0; i < MANY; ++i) { 3063 if (ev[i]) 3064 event_free(ev[i]); 3065 if (sock[i] >= 0) 3066 evutil_closesocket(sock[i]); 3067 } 3068 #undef MANY 3069 } 3070 3071 static void 3072 test_struct_event_size(void *arg) 3073 { 3074 tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event)); 3075 end: 3076 ; 3077 } 3078 3079 static void 3080 test_get_assignment(void *arg) 3081 { 3082 struct basic_test_data *data = arg; 3083 struct event_base *base = data->base; 3084 struct event *ev1 = NULL; 3085 const char *str = "foo"; 3086 3087 struct event_base *b; 3088 evutil_socket_t s; 3089 short what; 3090 event_callback_fn cb; 3091 void *cb_arg; 3092 3093 ev1 = event_new(base, data->pair[1], EV_READ, dummy_read_cb, (void*)str); 3094 event_get_assignment(ev1, &b, &s, &what, &cb, &cb_arg); 3095 3096 tt_ptr_op(b, ==, base); 3097 tt_int_op(s, ==, data->pair[1]); 3098 tt_int_op(what, ==, EV_READ); 3099 tt_ptr_op(cb, ==, dummy_read_cb); 3100 tt_ptr_op(cb_arg, ==, str); 3101 3102 /* Now make sure this doesn't crash. */ 3103 event_get_assignment(ev1, NULL, NULL, NULL, NULL, NULL); 3104 3105 end: 3106 if (ev1) 3107 event_free(ev1); 3108 } 3109 3110 struct foreach_helper { 3111 int count; 3112 const struct event *ev; 3113 }; 3114 3115 static int 3116 foreach_count_cb(const struct event_base *base, const struct event *ev, void *arg) 3117 { 3118 struct foreach_helper *h = event_get_callback_arg(ev); 3119 struct timeval *tv = arg; 3120 if (event_get_callback(ev) != timeout_cb) 3121 return 0; 3122 tt_ptr_op(event_get_base(ev), ==, base); 3123 tt_int_op(tv->tv_sec, ==, 10); 3124 h->ev = ev; 3125 h->count++; 3126 return 0; 3127 end: 3128 return -1; 3129 } 3130 3131 static int 3132 foreach_find_cb(const struct event_base *base, const struct event *ev, void *arg) 3133 { 3134 const struct event **ev_out = arg; 3135 struct foreach_helper *h = event_get_callback_arg(ev); 3136 if (event_get_callback(ev) != timeout_cb) 3137 return 0; 3138 if (h->count == 99) { 3139 *ev_out = ev; 3140 return 101; 3141 } 3142 return 0; 3143 } 3144 3145 static void 3146 test_event_foreach(void *arg) 3147 { 3148 struct basic_test_data *data = arg; 3149 struct event_base *base = data->base; 3150 struct event *ev[5]; 3151 struct foreach_helper visited[5]; 3152 int i; 3153 struct timeval ten_sec = {10,0}; 3154 const struct event *ev_found = NULL; 3155 3156 for (i = 0; i < 5; ++i) { 3157 visited[i].count = 0; 3158 visited[i].ev = NULL; 3159 ev[i] = event_new(base, -1, 0, timeout_cb, &visited[i]); 3160 } 3161 3162 tt_int_op(-1, ==, event_base_foreach_event(NULL, foreach_count_cb, NULL)); 3163 tt_int_op(-1, ==, event_base_foreach_event(base, NULL, NULL)); 3164 3165 event_add(ev[0], &ten_sec); 3166 event_add(ev[1], &ten_sec); 3167 event_active(ev[1], EV_TIMEOUT, 1); 3168 event_active(ev[2], EV_TIMEOUT, 1); 3169 event_add(ev[3], &ten_sec); 3170 /* Don't touch ev[4]. */ 3171 3172 tt_int_op(0, ==, event_base_foreach_event(base, foreach_count_cb, 3173 &ten_sec)); 3174 tt_int_op(1, ==, visited[0].count); 3175 tt_int_op(1, ==, visited[1].count); 3176 tt_int_op(1, ==, visited[2].count); 3177 tt_int_op(1, ==, visited[3].count); 3178 tt_ptr_op(ev[0], ==, visited[0].ev); 3179 tt_ptr_op(ev[1], ==, visited[1].ev); 3180 tt_ptr_op(ev[2], ==, visited[2].ev); 3181 tt_ptr_op(ev[3], ==, visited[3].ev); 3182 3183 visited[2].count = 99; 3184 tt_int_op(101, ==, event_base_foreach_event(base, foreach_find_cb, 3185 &ev_found)); 3186 tt_ptr_op(ev_found, ==, ev[2]); 3187 3188 end: 3189 for (i=0; i<5; ++i) { 3190 event_free(ev[i]); 3191 } 3192 } 3193 3194 static struct event_base *cached_time_base = NULL; 3195 static int cached_time_reset = 0; 3196 static int cached_time_sleep = 0; 3197 static void 3198 cache_time_cb(evutil_socket_t fd, short what, void *arg) 3199 { 3200 struct timeval *tv = arg; 3201 tt_int_op(0, ==, event_base_gettimeofday_cached(cached_time_base, tv)); 3202 if (cached_time_sleep) { 3203 struct timeval delay = { 0, 30*1000 }; 3204 evutil_usleep_(&delay); 3205 } 3206 if (cached_time_reset) { 3207 event_base_update_cache_time(cached_time_base); 3208 } 3209 end: 3210 ; 3211 } 3212 3213 static void 3214 test_gettimeofday_cached(void *arg) 3215 { 3216 struct basic_test_data *data = arg; 3217 struct event_config *cfg = NULL; 3218 struct event_base *base = NULL; 3219 struct timeval tv1, tv2, tv3, now; 3220 struct event *ev1=NULL, *ev2=NULL, *ev3=NULL; 3221 int cached_time_disable = strstr(data->setup_data, "disable") != NULL; 3222 3223 cfg = event_config_new(); 3224 if (cached_time_disable) { 3225 event_config_set_flag(cfg, EVENT_BASE_FLAG_NO_CACHE_TIME); 3226 } 3227 cached_time_base = base = event_base_new_with_config(cfg); 3228 tt_assert(base); 3229 3230 /* Try gettimeofday_cached outside of an event loop. */ 3231 evutil_gettimeofday(&now, NULL); 3232 tt_int_op(0, ==, event_base_gettimeofday_cached(NULL, &tv1)); 3233 tt_int_op(0, ==, event_base_gettimeofday_cached(base, &tv2)); 3234 tt_int_op(timeval_msec_diff(&tv1, &tv2), <, 10); 3235 tt_int_op(timeval_msec_diff(&tv1, &now), <, 10); 3236 3237 cached_time_reset = strstr(data->setup_data, "reset") != NULL; 3238 cached_time_sleep = strstr(data->setup_data, "sleep") != NULL; 3239 3240 ev1 = event_new(base, -1, 0, cache_time_cb, &tv1); 3241 ev2 = event_new(base, -1, 0, cache_time_cb, &tv2); 3242 ev3 = event_new(base, -1, 0, cache_time_cb, &tv3); 3243 3244 event_active(ev1, EV_TIMEOUT, 1); 3245 event_active(ev2, EV_TIMEOUT, 1); 3246 event_active(ev3, EV_TIMEOUT, 1); 3247 3248 event_base_dispatch(base); 3249 3250 if (cached_time_reset && cached_time_sleep) { 3251 tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10); 3252 tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10); 3253 } else if (cached_time_disable && cached_time_sleep) { 3254 tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10); 3255 tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10); 3256 } else if (! cached_time_disable) { 3257 tt_assert(evutil_timercmp(&tv1, &tv2, ==)); 3258 tt_assert(evutil_timercmp(&tv2, &tv3, ==)); 3259 } 3260 3261 end: 3262 if (ev1) 3263 event_free(ev1); 3264 if (ev2) 3265 event_free(ev2); 3266 if (ev3) 3267 event_free(ev3); 3268 if (base) 3269 event_base_free(base); 3270 if (cfg) 3271 event_config_free(cfg); 3272 } 3273 3274 static void 3275 tabf_cb(evutil_socket_t fd, short what, void *arg) 3276 { 3277 int *ptr = arg; 3278 *ptr = what; 3279 *ptr += 0x10000; 3280 } 3281 3282 static void 3283 test_active_by_fd(void *arg) 3284 { 3285 struct basic_test_data *data = arg; 3286 struct event_base *base = data->base; 3287 struct event *ev1 = NULL, *ev2 = NULL, *ev3 = NULL, *ev4 = NULL; 3288 int e1,e2,e3,e4; 3289 #ifndef _WIN32 3290 struct event *evsig = NULL; 3291 int es; 3292 #endif 3293 struct timeval tenmin = { 600, 0 }; 3294 3295 /* Ensure no crash on nonexistent FD. */ 3296 event_base_active_by_fd(base, 1000, EV_READ); 3297 3298 /* Ensure no crash on bogus FD. */ 3299 event_base_active_by_fd(base, -1, EV_READ); 3300 3301 /* Ensure no crash on nonexistent/bogus signal. */ 3302 event_base_active_by_signal(base, 1000); 3303 event_base_active_by_signal(base, -1); 3304 3305 event_base_assert_ok_(base); 3306 3307 e1 = e2 = e3 = e4 = 0; 3308 ev1 = event_new(base, data->pair[0], EV_READ, tabf_cb, &e1); 3309 ev2 = event_new(base, data->pair[0], EV_WRITE, tabf_cb, &e2); 3310 ev3 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e3); 3311 ev4 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e4); 3312 tt_assert(ev1); 3313 tt_assert(ev2); 3314 tt_assert(ev3); 3315 tt_assert(ev4); 3316 #ifndef _WIN32 3317 evsig = event_new(base, SIGHUP, EV_SIGNAL, tabf_cb, &es); 3318 tt_assert(evsig); 3319 event_add(evsig, &tenmin); 3320 #endif 3321 3322 event_add(ev1, &tenmin); 3323 event_add(ev2, NULL); 3324 event_add(ev3, NULL); 3325 event_add(ev4, &tenmin); 3326 3327 3328 event_base_assert_ok_(base); 3329 3330 /* Trigger 2, 3, 4 */ 3331 event_base_active_by_fd(base, data->pair[0], EV_WRITE); 3332 event_base_active_by_fd(base, data->pair[1], EV_READ); 3333 #ifndef _WIN32 3334 event_base_active_by_signal(base, SIGHUP); 3335 #endif 3336 3337 event_base_assert_ok_(base); 3338 3339 event_base_loop(base, EVLOOP_ONCE); 3340 3341 tt_int_op(e1, ==, 0); 3342 tt_int_op(e2, ==, EV_WRITE | 0x10000); 3343 tt_int_op(e3, ==, EV_READ | 0x10000); 3344 /* Mask out EV_WRITE here, since it could be genuinely writeable. */ 3345 tt_int_op((e4 & ~EV_WRITE), ==, EV_READ | 0x10000); 3346 #ifndef _WIN32 3347 tt_int_op(es, ==, EV_SIGNAL | 0x10000); 3348 #endif 3349 3350 end: 3351 if (ev1) 3352 event_free(ev1); 3353 if (ev2) 3354 event_free(ev2); 3355 if (ev3) 3356 event_free(ev3); 3357 if (ev4) 3358 event_free(ev4); 3359 #ifndef _WIN32 3360 if (evsig) 3361 event_free(evsig); 3362 #endif 3363 } 3364 3365 struct testcase_t main_testcases[] = { 3366 /* Some converted-over tests */ 3367 { "methods", test_methods, TT_FORK, NULL, NULL }, 3368 { "version", test_version, 0, NULL, NULL }, 3369 BASIC(base_features, TT_FORK|TT_NO_LOGS), 3370 { "base_environ", test_base_environ, TT_FORK, NULL, NULL }, 3371 3372 BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR), 3373 BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR), 3374 3375 BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE), 3376 BASIC(event_new_selfarg, TT_FORK|TT_NEED_BASE), 3377 BASIC(event_assign_selfarg, TT_FORK|TT_NEED_BASE), 3378 BASIC(event_base_get_num_events, TT_FORK|TT_NEED_BASE), 3379 BASIC(event_base_get_max_events, TT_FORK|TT_NEED_BASE), 3380 3381 BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS), 3382 BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS), 3383 BASIC(active_later, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR), 3384 BASIC(event_remove_timeout, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR), 3385 3386 /* These are still using the old API */ 3387 LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE), 3388 { "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL }, 3389 { "persistent_active_timeout", test_persistent_active_timeout, 3390 TT_FORK|TT_NEED_BASE, &basic_setup, NULL }, 3391 LEGACY(priorities, TT_FORK|TT_NEED_BASE), 3392 BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE), 3393 { "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE, 3394 &basic_setup, NULL }, 3395 3396 /* These legacy tests may not all need all of these flags. */ 3397 LEGACY(simpleread, TT_ISOLATED), 3398 LEGACY(simpleread_multiple, TT_ISOLATED), 3399 LEGACY(simplewrite, TT_ISOLATED), 3400 { "simpleclose", test_simpleclose, TT_FORK, &basic_setup, 3401 NULL }, 3402 LEGACY(multiple, TT_ISOLATED), 3403 LEGACY(persistent, TT_ISOLATED), 3404 LEGACY(combined, TT_ISOLATED), 3405 LEGACY(simpletimeout, TT_ISOLATED), 3406 LEGACY(loopbreak, TT_ISOLATED), 3407 LEGACY(loopexit, TT_ISOLATED), 3408 LEGACY(loopexit_multiple, TT_ISOLATED), 3409 LEGACY(nonpersist_readd, TT_ISOLATED), 3410 LEGACY(multiple_events_for_same_fd, TT_ISOLATED), 3411 LEGACY(want_only_once, TT_ISOLATED), 3412 { "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL }, 3413 { "event_once_never", test_event_once_never, TT_ISOLATED, &basic_setup, NULL }, 3414 { "event_pending", test_event_pending, TT_ISOLATED, &basic_setup, 3415 NULL }, 3416 { "event_closed_fd_poll", test_event_closed_fd_poll, TT_ISOLATED, &basic_setup, 3417 NULL }, 3418 3419 #ifndef _WIN32 3420 { "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL }, 3421 #endif 3422 { "mm_functions", test_mm_functions, TT_FORK, NULL, NULL }, 3423 { "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL }, 3424 { "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 }, 3425 3426 { "struct_event_size", test_struct_event_size, 0, NULL, NULL }, 3427 BASIC(get_assignment, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR), 3428 3429 BASIC(event_foreach, TT_FORK|TT_NEED_BASE), 3430 { "gettimeofday_cached", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"" }, 3431 { "gettimeofday_cached_sleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep" }, 3432 { "gettimeofday_cached_reset", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep reset" }, 3433 { "gettimeofday_cached_disabled", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep disable" }, 3434 { "gettimeofday_cached_disabled_nosleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"disable" }, 3435 3436 BASIC(active_by_fd, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR), 3437 3438 #ifndef _WIN32 3439 LEGACY(fork, TT_ISOLATED), 3440 #endif 3441 #ifdef EVENT__HAVE_PTHREADS 3442 /** TODO: support win32 */ 3443 LEGACY(del_wait, TT_ISOLATED|TT_NEED_THREADS), 3444 #endif 3445 3446 END_OF_TESTCASES 3447 }; 3448 3449 struct testcase_t evtag_testcases[] = { 3450 { "int", evtag_int_test, TT_FORK, NULL, NULL }, 3451 { "fuzz", evtag_fuzz, TT_FORK, NULL, NULL }, 3452 { "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL }, 3453 { "peek", evtag_test_peek, 0, NULL, NULL }, 3454 3455 END_OF_TESTCASES 3456 }; 3457 3458 struct testcase_t signal_testcases[] = { 3459 #ifndef _WIN32 3460 LEGACY(simplestsignal, TT_ISOLATED), 3461 LEGACY(simplesignal, TT_ISOLATED), 3462 LEGACY(multiplesignal, TT_ISOLATED), 3463 LEGACY(immediatesignal, TT_ISOLATED), 3464 LEGACY(signal_dealloc, TT_ISOLATED), 3465 LEGACY(signal_pipeloss, TT_ISOLATED), 3466 LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS), 3467 LEGACY(signal_restore, TT_ISOLATED), 3468 LEGACY(signal_assert, TT_ISOLATED), 3469 LEGACY(signal_while_processing, TT_ISOLATED), 3470 #endif 3471 END_OF_TESTCASES 3472 }; 3473 3474