xref: /freebsd/contrib/libevent/event.c (revision 1fa4ddcc6de6a0c46416f719a5b7efa1169f51ce)
1 /*
2  * Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu>
3  * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include "event2/event-config.h"
28 #include "evconfig-private.h"
29 
30 #ifdef _WIN32
31 #include <winsock2.h>
32 #define WIN32_LEAN_AND_MEAN
33 #include <windows.h>
34 #undef WIN32_LEAN_AND_MEAN
35 #endif
36 #include <sys/types.h>
37 #if !defined(_WIN32) && defined(EVENT__HAVE_SYS_TIME_H)
38 #include <sys/time.h>
39 #endif
40 #include <sys/queue.h>
41 #ifdef EVENT__HAVE_SYS_SOCKET_H
42 #include <sys/socket.h>
43 #endif
44 #include <stdio.h>
45 #include <stdlib.h>
46 #ifdef EVENT__HAVE_UNISTD_H
47 #include <unistd.h>
48 #endif
49 #include <ctype.h>
50 #include <errno.h>
51 #include <signal.h>
52 #include <string.h>
53 #include <time.h>
54 #include <limits.h>
55 #ifdef EVENT__HAVE_FCNTL_H
56 #include <fcntl.h>
57 #endif
58 
59 #include "event2/event.h"
60 #include "event2/event_struct.h"
61 #include "event2/event_compat.h"
62 #include "event-internal.h"
63 #include "defer-internal.h"
64 #include "evthread-internal.h"
65 #include "event2/thread.h"
66 #include "event2/util.h"
67 #include "log-internal.h"
68 #include "evmap-internal.h"
69 #include "iocp-internal.h"
70 #include "changelist-internal.h"
71 #define HT_NO_CACHE_HASH_VALUES
72 #include "ht-internal.h"
73 #include "util-internal.h"
74 
75 
76 #ifdef EVENT__HAVE_WORKING_KQUEUE
77 #include "kqueue-internal.h"
78 #endif
79 
80 #ifdef EVENT__HAVE_EVENT_PORTS
81 extern const struct eventop evportops;
82 #endif
83 #ifdef EVENT__HAVE_SELECT
84 extern const struct eventop selectops;
85 #endif
86 #ifdef EVENT__HAVE_POLL
87 extern const struct eventop pollops;
88 #endif
89 #ifdef EVENT__HAVE_EPOLL
90 extern const struct eventop epollops;
91 #endif
92 #ifdef EVENT__HAVE_WORKING_KQUEUE
93 extern const struct eventop kqops;
94 #endif
95 #ifdef EVENT__HAVE_DEVPOLL
96 extern const struct eventop devpollops;
97 #endif
98 #ifdef _WIN32
99 extern const struct eventop win32ops;
100 #endif
101 
102 /* Array of backends in order of preference. */
103 static const struct eventop *eventops[] = {
104 #ifdef EVENT__HAVE_EVENT_PORTS
105 	&evportops,
106 #endif
107 #ifdef EVENT__HAVE_WORKING_KQUEUE
108 	&kqops,
109 #endif
110 #ifdef EVENT__HAVE_EPOLL
111 	&epollops,
112 #endif
113 #ifdef EVENT__HAVE_DEVPOLL
114 	&devpollops,
115 #endif
116 #ifdef EVENT__HAVE_POLL
117 	&pollops,
118 #endif
119 #ifdef EVENT__HAVE_SELECT
120 	&selectops,
121 #endif
122 #ifdef _WIN32
123 	&win32ops,
124 #endif
125 	NULL
126 };
127 
128 /* Global state; deprecated */
129 EVENT2_EXPORT_SYMBOL
130 struct event_base *event_global_current_base_ = NULL;
131 #define current_base event_global_current_base_
132 
133 /* Global state */
134 
135 static void *event_self_cbarg_ptr_ = NULL;
136 
137 /* Prototypes */
138 static void	event_queue_insert_active(struct event_base *, struct event_callback *);
139 static void	event_queue_insert_active_later(struct event_base *, struct event_callback *);
140 static void	event_queue_insert_timeout(struct event_base *, struct event *);
141 static void	event_queue_insert_inserted(struct event_base *, struct event *);
142 static void	event_queue_remove_active(struct event_base *, struct event_callback *);
143 static void	event_queue_remove_active_later(struct event_base *, struct event_callback *);
144 static void	event_queue_remove_timeout(struct event_base *, struct event *);
145 static void	event_queue_remove_inserted(struct event_base *, struct event *);
146 static void event_queue_make_later_events_active(struct event_base *base);
147 
148 static int evthread_make_base_notifiable_nolock_(struct event_base *base);
149 static int event_del_(struct event *ev, int blocking);
150 
151 #ifdef USE_REINSERT_TIMEOUT
152 /* This code seems buggy; only turn it on if we find out what the trouble is. */
153 static void	event_queue_reinsert_timeout(struct event_base *,struct event *, int was_common, int is_common, int old_timeout_idx);
154 #endif
155 
156 static int	event_haveevents(struct event_base *);
157 
158 static int	event_process_active(struct event_base *);
159 
160 static int	timeout_next(struct event_base *, struct timeval **);
161 static void	timeout_process(struct event_base *);
162 
163 static inline void	event_signal_closure(struct event_base *, struct event *ev);
164 static inline void	event_persist_closure(struct event_base *, struct event *ev);
165 
166 static int	evthread_notify_base(struct event_base *base);
167 
168 static void insert_common_timeout_inorder(struct common_timeout_list *ctl,
169     struct event *ev);
170 
171 #ifndef EVENT__DISABLE_DEBUG_MODE
172 /* These functions implement a hashtable of which 'struct event *' structures
173  * have been setup or added.  We don't want to trust the content of the struct
174  * event itself, since we're trying to work through cases where an event gets
175  * clobbered or freed.  Instead, we keep a hashtable indexed by the pointer.
176  */
177 
178 struct event_debug_entry {
179 	HT_ENTRY(event_debug_entry) node;
180 	const struct event *ptr;
181 	unsigned added : 1;
182 };
183 
184 static inline unsigned
185 hash_debug_entry(const struct event_debug_entry *e)
186 {
187 	/* We need to do this silliness to convince compilers that we
188 	 * honestly mean to cast e->ptr to an integer, and discard any
189 	 * part of it that doesn't fit in an unsigned.
190 	 */
191 	unsigned u = (unsigned) ((ev_uintptr_t) e->ptr);
192 	/* Our hashtable implementation is pretty sensitive to low bits,
193 	 * and every struct event is over 64 bytes in size, so we can
194 	 * just say >>6. */
195 	return (u >> 6);
196 }
197 
198 static inline int
199 eq_debug_entry(const struct event_debug_entry *a,
200     const struct event_debug_entry *b)
201 {
202 	return a->ptr == b->ptr;
203 }
204 
205 int event_debug_mode_on_ = 0;
206 
207 
208 #if !defined(EVENT__DISABLE_THREAD_SUPPORT) && !defined(EVENT__DISABLE_DEBUG_MODE)
209 /**
210  * @brief debug mode variable which is set for any function/structure that needs
211  *        to be shared across threads (if thread support is enabled).
212  *
213  *        When and if evthreads are initialized, this variable will be evaluated,
214  *        and if set to something other than zero, this means the evthread setup
215  *        functions were called out of order.
216  *
217  *        See: "Locks and threading" in the documentation.
218  */
219 int event_debug_created_threadable_ctx_ = 0;
220 #endif
221 
222 /* Set if it's too late to enable event_debug_mode. */
223 static int event_debug_mode_too_late = 0;
224 #ifndef EVENT__DISABLE_THREAD_SUPPORT
225 static void *event_debug_map_lock_ = NULL;
226 #endif
227 static HT_HEAD(event_debug_map, event_debug_entry) global_debug_map =
228 	HT_INITIALIZER();
229 
230 HT_PROTOTYPE(event_debug_map, event_debug_entry, node, hash_debug_entry,
231     eq_debug_entry)
232 HT_GENERATE(event_debug_map, event_debug_entry, node, hash_debug_entry,
233     eq_debug_entry, 0.5, mm_malloc, mm_realloc, mm_free)
234 
235 /* record that ev is now setup (that is, ready for an add) */
236 static void event_debug_note_setup_(const struct event *ev)
237 {
238 	struct event_debug_entry *dent, find;
239 
240 	if (!event_debug_mode_on_)
241 		goto out;
242 
243 	find.ptr = ev;
244 	EVLOCK_LOCK(event_debug_map_lock_, 0);
245 	dent = HT_FIND(event_debug_map, &global_debug_map, &find);
246 	if (dent) {
247 		dent->added = 0;
248 	} else {
249 		dent = mm_malloc(sizeof(*dent));
250 		if (!dent)
251 			event_err(1,
252 			    "Out of memory in debugging code");
253 		dent->ptr = ev;
254 		dent->added = 0;
255 		HT_INSERT(event_debug_map, &global_debug_map, dent);
256 	}
257 	EVLOCK_UNLOCK(event_debug_map_lock_, 0);
258 
259 out:
260 	event_debug_mode_too_late = 1;
261 }
262 /* record that ev is no longer setup */
263 static void event_debug_note_teardown_(const struct event *ev)
264 {
265 	struct event_debug_entry *dent, find;
266 
267 	if (!event_debug_mode_on_)
268 		goto out;
269 
270 	find.ptr = ev;
271 	EVLOCK_LOCK(event_debug_map_lock_, 0);
272 	dent = HT_REMOVE(event_debug_map, &global_debug_map, &find);
273 	if (dent)
274 		mm_free(dent);
275 	EVLOCK_UNLOCK(event_debug_map_lock_, 0);
276 
277 out:
278 	event_debug_mode_too_late = 1;
279 }
280 /* Macro: record that ev is now added */
281 static void event_debug_note_add_(const struct event *ev)
282 {
283 	struct event_debug_entry *dent,find;
284 
285 	if (!event_debug_mode_on_)
286 		goto out;
287 
288 	find.ptr = ev;
289 	EVLOCK_LOCK(event_debug_map_lock_, 0);
290 	dent = HT_FIND(event_debug_map, &global_debug_map, &find);
291 	if (dent) {
292 		dent->added = 1;
293 	} else {
294 		event_errx(EVENT_ERR_ABORT_,
295 		    "%s: noting an add on a non-setup event %p"
296 		    " (events: 0x%x, fd: "EV_SOCK_FMT
297 		    ", flags: 0x%x)",
298 		    __func__, ev, ev->ev_events,
299 		    EV_SOCK_ARG(ev->ev_fd), ev->ev_flags);
300 	}
301 	EVLOCK_UNLOCK(event_debug_map_lock_, 0);
302 
303 out:
304 	event_debug_mode_too_late = 1;
305 }
306 /* record that ev is no longer added */
307 static void event_debug_note_del_(const struct event *ev)
308 {
309 	struct event_debug_entry *dent, find;
310 
311 	if (!event_debug_mode_on_)
312 		goto out;
313 
314 	find.ptr = ev;
315 	EVLOCK_LOCK(event_debug_map_lock_, 0);
316 	dent = HT_FIND(event_debug_map, &global_debug_map, &find);
317 	if (dent) {
318 		dent->added = 0;
319 	} else {
320 		event_errx(EVENT_ERR_ABORT_,
321 		    "%s: noting a del on a non-setup event %p"
322 		    " (events: 0x%x, fd: "EV_SOCK_FMT
323 		    ", flags: 0x%x)",
324 		    __func__, ev, ev->ev_events,
325 		    EV_SOCK_ARG(ev->ev_fd), ev->ev_flags);
326 	}
327 	EVLOCK_UNLOCK(event_debug_map_lock_, 0);
328 
329 out:
330 	event_debug_mode_too_late = 1;
331 }
332 /* assert that ev is setup (i.e., okay to add or inspect) */
333 static void event_debug_assert_is_setup_(const struct event *ev)
334 {
335 	struct event_debug_entry *dent, find;
336 
337 	if (!event_debug_mode_on_)
338 		return;
339 
340 	find.ptr = ev;
341 	EVLOCK_LOCK(event_debug_map_lock_, 0);
342 	dent = HT_FIND(event_debug_map, &global_debug_map, &find);
343 	if (!dent) {
344 		event_errx(EVENT_ERR_ABORT_,
345 		    "%s called on a non-initialized event %p"
346 		    " (events: 0x%x, fd: "EV_SOCK_FMT
347 		    ", flags: 0x%x)",
348 		    __func__, ev, ev->ev_events,
349 		    EV_SOCK_ARG(ev->ev_fd), ev->ev_flags);
350 	}
351 	EVLOCK_UNLOCK(event_debug_map_lock_, 0);
352 }
353 /* assert that ev is not added (i.e., okay to tear down or set up again) */
354 static void event_debug_assert_not_added_(const struct event *ev)
355 {
356 	struct event_debug_entry *dent, find;
357 
358 	if (!event_debug_mode_on_)
359 		return;
360 
361 	find.ptr = ev;
362 	EVLOCK_LOCK(event_debug_map_lock_, 0);
363 	dent = HT_FIND(event_debug_map, &global_debug_map, &find);
364 	if (dent && dent->added) {
365 		event_errx(EVENT_ERR_ABORT_,
366 		    "%s called on an already added event %p"
367 		    " (events: 0x%x, fd: "EV_SOCK_FMT", "
368 		    "flags: 0x%x)",
369 		    __func__, ev, ev->ev_events,
370 		    EV_SOCK_ARG(ev->ev_fd), ev->ev_flags);
371 	}
372 	EVLOCK_UNLOCK(event_debug_map_lock_, 0);
373 }
374 static void event_debug_assert_socket_nonblocking_(evutil_socket_t fd)
375 {
376 	if (!event_debug_mode_on_)
377 		return;
378 	if (fd < 0)
379 		return;
380 
381 #ifndef _WIN32
382 	{
383 		int flags;
384 		if ((flags = fcntl(fd, F_GETFL, NULL)) >= 0) {
385 			EVUTIL_ASSERT(flags & O_NONBLOCK);
386 		}
387 	}
388 #endif
389 }
390 #else
391 static void event_debug_note_setup_(const struct event *ev) { (void)ev; }
392 static void event_debug_note_teardown_(const struct event *ev) { (void)ev; }
393 static void event_debug_note_add_(const struct event *ev) { (void)ev; }
394 static void event_debug_note_del_(const struct event *ev) { (void)ev; }
395 static void event_debug_assert_is_setup_(const struct event *ev) { (void)ev; }
396 static void event_debug_assert_not_added_(const struct event *ev) { (void)ev; }
397 static void event_debug_assert_socket_nonblocking_(evutil_socket_t fd) { (void)fd; }
398 #endif
399 
400 #define EVENT_BASE_ASSERT_LOCKED(base)		\
401 	EVLOCK_ASSERT_LOCKED((base)->th_base_lock)
402 
403 /* How often (in seconds) do we check for changes in wall clock time relative
404  * to monotonic time?  Set this to -1 for 'never.' */
405 #define CLOCK_SYNC_INTERVAL 5
406 
407 /** Set 'tp' to the current time according to 'base'.  We must hold the lock
408  * on 'base'.  If there is a cached time, return it.  Otherwise, use
409  * clock_gettime or gettimeofday as appropriate to find out the right time.
410  * Return 0 on success, -1 on failure.
411  */
412 static int
413 gettime(struct event_base *base, struct timeval *tp)
414 {
415 	EVENT_BASE_ASSERT_LOCKED(base);
416 
417 	if (base->tv_cache.tv_sec) {
418 		*tp = base->tv_cache;
419 		return (0);
420 	}
421 
422 	if (evutil_gettime_monotonic_(&base->monotonic_timer, tp) == -1) {
423 		return -1;
424 	}
425 
426 	if (base->last_updated_clock_diff + CLOCK_SYNC_INTERVAL
427 	    < tp->tv_sec) {
428 		struct timeval tv;
429 		evutil_gettimeofday(&tv,NULL);
430 		evutil_timersub(&tv, tp, &base->tv_clock_diff);
431 		base->last_updated_clock_diff = tp->tv_sec;
432 	}
433 
434 	return 0;
435 }
436 
437 int
438 event_base_gettimeofday_cached(struct event_base *base, struct timeval *tv)
439 {
440 	int r;
441 	if (!base) {
442 		base = current_base;
443 		if (!current_base)
444 			return evutil_gettimeofday(tv, NULL);
445 	}
446 
447 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
448 	if (base->tv_cache.tv_sec == 0) {
449 		r = evutil_gettimeofday(tv, NULL);
450 	} else {
451 		evutil_timeradd(&base->tv_cache, &base->tv_clock_diff, tv);
452 		r = 0;
453 	}
454 	EVBASE_RELEASE_LOCK(base, th_base_lock);
455 	return r;
456 }
457 
458 /** Make 'base' have no current cached time. */
459 static inline void
460 clear_time_cache(struct event_base *base)
461 {
462 	base->tv_cache.tv_sec = 0;
463 }
464 
465 /** Replace the cached time in 'base' with the current time. */
466 static inline void
467 update_time_cache(struct event_base *base)
468 {
469 	base->tv_cache.tv_sec = 0;
470 	if (!(base->flags & EVENT_BASE_FLAG_NO_CACHE_TIME))
471 	    gettime(base, &base->tv_cache);
472 }
473 
474 int
475 event_base_update_cache_time(struct event_base *base)
476 {
477 
478 	if (!base) {
479 		base = current_base;
480 		if (!current_base)
481 			return -1;
482 	}
483 
484 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
485 	if (base->running_loop)
486 		update_time_cache(base);
487 	EVBASE_RELEASE_LOCK(base, th_base_lock);
488 	return 0;
489 }
490 
491 static inline struct event *
492 event_callback_to_event(struct event_callback *evcb)
493 {
494 	EVUTIL_ASSERT((evcb->evcb_flags & EVLIST_INIT));
495 	return EVUTIL_UPCAST(evcb, struct event, ev_evcallback);
496 }
497 
498 static inline struct event_callback *
499 event_to_event_callback(struct event *ev)
500 {
501 	return &ev->ev_evcallback;
502 }
503 
504 struct event_base *
505 event_init(void)
506 {
507 	struct event_base *base = event_base_new_with_config(NULL);
508 
509 	if (base == NULL) {
510 		event_errx(1, "%s: Unable to construct event_base", __func__);
511 		return NULL;
512 	}
513 
514 	current_base = base;
515 
516 	return (base);
517 }
518 
519 struct event_base *
520 event_base_new(void)
521 {
522 	struct event_base *base = NULL;
523 	struct event_config *cfg = event_config_new();
524 	if (cfg) {
525 		base = event_base_new_with_config(cfg);
526 		event_config_free(cfg);
527 	}
528 	return base;
529 }
530 
531 /** Return true iff 'method' is the name of a method that 'cfg' tells us to
532  * avoid. */
533 static int
534 event_config_is_avoided_method(const struct event_config *cfg,
535     const char *method)
536 {
537 	struct event_config_entry *entry;
538 
539 	TAILQ_FOREACH(entry, &cfg->entries, next) {
540 		if (entry->avoid_method != NULL &&
541 		    strcmp(entry->avoid_method, method) == 0)
542 			return (1);
543 	}
544 
545 	return (0);
546 }
547 
548 /** Return true iff 'method' is disabled according to the environment. */
549 static int
550 event_is_method_disabled(const char *name)
551 {
552 	char environment[64];
553 	int i;
554 
555 	evutil_snprintf(environment, sizeof(environment), "EVENT_NO%s", name);
556 	for (i = 8; environment[i] != '\0'; ++i)
557 		environment[i] = EVUTIL_TOUPPER_(environment[i]);
558 	/* Note that evutil_getenv_() ignores the environment entirely if
559 	 * we're setuid */
560 	return (evutil_getenv_(environment) != NULL);
561 }
562 
563 int
564 event_base_get_features(const struct event_base *base)
565 {
566 	return base->evsel->features;
567 }
568 
569 void
570 event_enable_debug_mode(void)
571 {
572 #ifndef EVENT__DISABLE_DEBUG_MODE
573 	if (event_debug_mode_on_)
574 		event_errx(1, "%s was called twice!", __func__);
575 	if (event_debug_mode_too_late)
576 		event_errx(1, "%s must be called *before* creating any events "
577 		    "or event_bases",__func__);
578 
579 	event_debug_mode_on_ = 1;
580 
581 	HT_INIT(event_debug_map, &global_debug_map);
582 #endif
583 }
584 
585 void
586 event_disable_debug_mode(void)
587 {
588 #ifndef EVENT__DISABLE_DEBUG_MODE
589 	struct event_debug_entry **ent, *victim;
590 
591 	EVLOCK_LOCK(event_debug_map_lock_, 0);
592 	for (ent = HT_START(event_debug_map, &global_debug_map); ent; ) {
593 		victim = *ent;
594 		ent = HT_NEXT_RMV(event_debug_map, &global_debug_map, ent);
595 		mm_free(victim);
596 	}
597 	HT_CLEAR(event_debug_map, &global_debug_map);
598 	EVLOCK_UNLOCK(event_debug_map_lock_ , 0);
599 
600 	event_debug_mode_on_  = 0;
601 #endif
602 }
603 
604 struct event_base *
605 event_base_new_with_config(const struct event_config *cfg)
606 {
607 	int i;
608 	struct event_base *base;
609 	int should_check_environment;
610 
611 #ifndef EVENT__DISABLE_DEBUG_MODE
612 	event_debug_mode_too_late = 1;
613 #endif
614 
615 	if ((base = mm_calloc(1, sizeof(struct event_base))) == NULL) {
616 		event_warn("%s: calloc", __func__);
617 		return NULL;
618 	}
619 
620 	if (cfg)
621 		base->flags = cfg->flags;
622 
623 	should_check_environment =
624 	    !(cfg && (cfg->flags & EVENT_BASE_FLAG_IGNORE_ENV));
625 
626 	{
627 		struct timeval tmp;
628 		int precise_time =
629 		    cfg && (cfg->flags & EVENT_BASE_FLAG_PRECISE_TIMER);
630 		int flags;
631 		if (should_check_environment && !precise_time) {
632 			precise_time = evutil_getenv_("EVENT_PRECISE_TIMER") != NULL;
633 			if (precise_time) {
634 				base->flags |= EVENT_BASE_FLAG_PRECISE_TIMER;
635 			}
636 		}
637 		flags = precise_time ? EV_MONOT_PRECISE : 0;
638 		evutil_configure_monotonic_time_(&base->monotonic_timer, flags);
639 
640 		gettime(base, &tmp);
641 	}
642 
643 	min_heap_ctor_(&base->timeheap);
644 
645 	base->sig.ev_signal_pair[0] = -1;
646 	base->sig.ev_signal_pair[1] = -1;
647 	base->th_notify_fd[0] = -1;
648 	base->th_notify_fd[1] = -1;
649 
650 	TAILQ_INIT(&base->active_later_queue);
651 
652 	evmap_io_initmap_(&base->io);
653 	evmap_signal_initmap_(&base->sigmap);
654 	event_changelist_init_(&base->changelist);
655 
656 	base->evbase = NULL;
657 
658 	if (cfg) {
659 		memcpy(&base->max_dispatch_time,
660 		    &cfg->max_dispatch_interval, sizeof(struct timeval));
661 		base->limit_callbacks_after_prio =
662 		    cfg->limit_callbacks_after_prio;
663 	} else {
664 		base->max_dispatch_time.tv_sec = -1;
665 		base->limit_callbacks_after_prio = 1;
666 	}
667 	if (cfg && cfg->max_dispatch_callbacks >= 0) {
668 		base->max_dispatch_callbacks = cfg->max_dispatch_callbacks;
669 	} else {
670 		base->max_dispatch_callbacks = INT_MAX;
671 	}
672 	if (base->max_dispatch_callbacks == INT_MAX &&
673 	    base->max_dispatch_time.tv_sec == -1)
674 		base->limit_callbacks_after_prio = INT_MAX;
675 
676 	for (i = 0; eventops[i] && !base->evbase; i++) {
677 		if (cfg != NULL) {
678 			/* determine if this backend should be avoided */
679 			if (event_config_is_avoided_method(cfg,
680 				eventops[i]->name))
681 				continue;
682 			if ((eventops[i]->features & cfg->require_features)
683 			    != cfg->require_features)
684 				continue;
685 		}
686 
687 		/* also obey the environment variables */
688 		if (should_check_environment &&
689 		    event_is_method_disabled(eventops[i]->name))
690 			continue;
691 
692 		base->evsel = eventops[i];
693 
694 		base->evbase = base->evsel->init(base);
695 	}
696 
697 	if (base->evbase == NULL) {
698 		event_warnx("%s: no event mechanism available",
699 		    __func__);
700 		base->evsel = NULL;
701 		event_base_free(base);
702 		return NULL;
703 	}
704 
705 	if (evutil_getenv_("EVENT_SHOW_METHOD"))
706 		event_msgx("libevent using: %s", base->evsel->name);
707 
708 	/* allocate a single active event queue */
709 	if (event_base_priority_init(base, 1) < 0) {
710 		event_base_free(base);
711 		return NULL;
712 	}
713 
714 	/* prepare for threading */
715 
716 #if !defined(EVENT__DISABLE_THREAD_SUPPORT) && !defined(EVENT__DISABLE_DEBUG_MODE)
717 	event_debug_created_threadable_ctx_ = 1;
718 #endif
719 
720 #ifndef EVENT__DISABLE_THREAD_SUPPORT
721 	if (EVTHREAD_LOCKING_ENABLED() &&
722 	    (!cfg || !(cfg->flags & EVENT_BASE_FLAG_NOLOCK))) {
723 		int r;
724 		EVTHREAD_ALLOC_LOCK(base->th_base_lock, 0);
725 		EVTHREAD_ALLOC_COND(base->current_event_cond);
726 		r = evthread_make_base_notifiable(base);
727 		if (r<0) {
728 			event_warnx("%s: Unable to make base notifiable.", __func__);
729 			event_base_free(base);
730 			return NULL;
731 		}
732 	}
733 #endif
734 
735 #ifdef _WIN32
736 	if (cfg && (cfg->flags & EVENT_BASE_FLAG_STARTUP_IOCP))
737 		event_base_start_iocp_(base, cfg->n_cpus_hint);
738 #endif
739 
740 	return (base);
741 }
742 
743 int
744 event_base_start_iocp_(struct event_base *base, int n_cpus)
745 {
746 #ifdef _WIN32
747 	if (base->iocp)
748 		return 0;
749 	base->iocp = event_iocp_port_launch_(n_cpus);
750 	if (!base->iocp) {
751 		event_warnx("%s: Couldn't launch IOCP", __func__);
752 		return -1;
753 	}
754 	return 0;
755 #else
756 	return -1;
757 #endif
758 }
759 
760 void
761 event_base_stop_iocp_(struct event_base *base)
762 {
763 #ifdef _WIN32
764 	int rv;
765 
766 	if (!base->iocp)
767 		return;
768 	rv = event_iocp_shutdown_(base->iocp, -1);
769 	EVUTIL_ASSERT(rv >= 0);
770 	base->iocp = NULL;
771 #endif
772 }
773 
774 static int
775 event_base_cancel_single_callback_(struct event_base *base,
776     struct event_callback *evcb,
777     int run_finalizers)
778 {
779 	int result = 0;
780 
781 	if (evcb->evcb_flags & EVLIST_INIT) {
782 		struct event *ev = event_callback_to_event(evcb);
783 		if (!(ev->ev_flags & EVLIST_INTERNAL)) {
784 			event_del_(ev, EVENT_DEL_EVEN_IF_FINALIZING);
785 			result = 1;
786 		}
787 	} else {
788 		EVBASE_ACQUIRE_LOCK(base, th_base_lock);
789 		event_callback_cancel_nolock_(base, evcb, 1);
790 		EVBASE_RELEASE_LOCK(base, th_base_lock);
791 		result = 1;
792 	}
793 
794 	if (run_finalizers && (evcb->evcb_flags & EVLIST_FINALIZING)) {
795 		switch (evcb->evcb_closure) {
796 		case EV_CLOSURE_EVENT_FINALIZE:
797 		case EV_CLOSURE_EVENT_FINALIZE_FREE: {
798 			struct event *ev = event_callback_to_event(evcb);
799 			ev->ev_evcallback.evcb_cb_union.evcb_evfinalize(ev, ev->ev_arg);
800 			if (evcb->evcb_closure == EV_CLOSURE_EVENT_FINALIZE_FREE)
801 				mm_free(ev);
802 			break;
803 		}
804 		case EV_CLOSURE_CB_FINALIZE:
805 			evcb->evcb_cb_union.evcb_cbfinalize(evcb, evcb->evcb_arg);
806 			break;
807 		default:
808 			break;
809 		}
810 	}
811 	return result;
812 }
813 
814 static int event_base_free_queues_(struct event_base *base, int run_finalizers)
815 {
816 	int deleted = 0, i;
817 
818 	for (i = 0; i < base->nactivequeues; ++i) {
819 		struct event_callback *evcb, *next;
820 		for (evcb = TAILQ_FIRST(&base->activequeues[i]); evcb; ) {
821 			next = TAILQ_NEXT(evcb, evcb_active_next);
822 			deleted += event_base_cancel_single_callback_(base, evcb, run_finalizers);
823 			evcb = next;
824 		}
825 	}
826 
827 	{
828 		struct event_callback *evcb;
829 		while ((evcb = TAILQ_FIRST(&base->active_later_queue))) {
830 			deleted += event_base_cancel_single_callback_(base, evcb, run_finalizers);
831 		}
832 	}
833 
834 	return deleted;
835 }
836 
837 static void
838 event_base_free_(struct event_base *base, int run_finalizers)
839 {
840 	int i, n_deleted=0;
841 	struct event *ev;
842 	/* XXXX grab the lock? If there is contention when one thread frees
843 	 * the base, then the contending thread will be very sad soon. */
844 
845 	/* event_base_free(NULL) is how to free the current_base if we
846 	 * made it with event_init and forgot to hold a reference to it. */
847 	if (base == NULL && current_base)
848 		base = current_base;
849 	/* Don't actually free NULL. */
850 	if (base == NULL) {
851 		event_warnx("%s: no base to free", __func__);
852 		return;
853 	}
854 	/* XXX(niels) - check for internal events first */
855 
856 #ifdef _WIN32
857 	event_base_stop_iocp_(base);
858 #endif
859 
860 	/* threading fds if we have them */
861 	if (base->th_notify_fd[0] != -1) {
862 		event_del(&base->th_notify);
863 		EVUTIL_CLOSESOCKET(base->th_notify_fd[0]);
864 		if (base->th_notify_fd[1] != -1)
865 			EVUTIL_CLOSESOCKET(base->th_notify_fd[1]);
866 		base->th_notify_fd[0] = -1;
867 		base->th_notify_fd[1] = -1;
868 		event_debug_unassign(&base->th_notify);
869 	}
870 
871 	/* Delete all non-internal events. */
872 	evmap_delete_all_(base);
873 
874 	while ((ev = min_heap_top_(&base->timeheap)) != NULL) {
875 		event_del(ev);
876 		++n_deleted;
877 	}
878 	for (i = 0; i < base->n_common_timeouts; ++i) {
879 		struct common_timeout_list *ctl =
880 		    base->common_timeout_queues[i];
881 		event_del(&ctl->timeout_event); /* Internal; doesn't count */
882 		event_debug_unassign(&ctl->timeout_event);
883 		for (ev = TAILQ_FIRST(&ctl->events); ev; ) {
884 			struct event *next = TAILQ_NEXT(ev,
885 			    ev_timeout_pos.ev_next_with_common_timeout);
886 			if (!(ev->ev_flags & EVLIST_INTERNAL)) {
887 				event_del(ev);
888 				++n_deleted;
889 			}
890 			ev = next;
891 		}
892 		mm_free(ctl);
893 	}
894 	if (base->common_timeout_queues)
895 		mm_free(base->common_timeout_queues);
896 
897 	for (;;) {
898 		/* For finalizers we can register yet another finalizer out from
899 		 * finalizer, and iff finalizer will be in active_later_queue we can
900 		 * add finalizer to activequeues, and we will have events in
901 		 * activequeues after this function returns, which is not what we want
902 		 * (we even have an assertion for this).
903 		 *
904 		 * A simple case is bufferevent with underlying (i.e. filters).
905 		 */
906 		int i = event_base_free_queues_(base, run_finalizers);
907 		event_debug(("%s: %d events freed", __func__, i));
908 		if (!i) {
909 			break;
910 		}
911 		n_deleted += i;
912 	}
913 
914 	if (n_deleted)
915 		event_debug(("%s: %d events were still set in base",
916 			__func__, n_deleted));
917 
918 	while (LIST_FIRST(&base->once_events)) {
919 		struct event_once *eonce = LIST_FIRST(&base->once_events);
920 		LIST_REMOVE(eonce, next_once);
921 		mm_free(eonce);
922 	}
923 
924 	if (base->evsel != NULL && base->evsel->dealloc != NULL)
925 		base->evsel->dealloc(base);
926 
927 	for (i = 0; i < base->nactivequeues; ++i)
928 		EVUTIL_ASSERT(TAILQ_EMPTY(&base->activequeues[i]));
929 
930 	EVUTIL_ASSERT(min_heap_empty_(&base->timeheap));
931 	min_heap_dtor_(&base->timeheap);
932 
933 	mm_free(base->activequeues);
934 
935 	evmap_io_clear_(&base->io);
936 	evmap_signal_clear_(&base->sigmap);
937 	event_changelist_freemem_(&base->changelist);
938 
939 	EVTHREAD_FREE_LOCK(base->th_base_lock, 0);
940 	EVTHREAD_FREE_COND(base->current_event_cond);
941 
942 	/* If we're freeing current_base, there won't be a current_base. */
943 	if (base == current_base)
944 		current_base = NULL;
945 	mm_free(base);
946 }
947 
948 void
949 event_base_free_nofinalize(struct event_base *base)
950 {
951 	event_base_free_(base, 0);
952 }
953 
954 void
955 event_base_free(struct event_base *base)
956 {
957 	event_base_free_(base, 1);
958 }
959 
960 /* Fake eventop; used to disable the backend temporarily inside event_reinit
961  * so that we can call event_del() on an event without telling the backend.
962  */
963 static int
964 nil_backend_del(struct event_base *b, evutil_socket_t fd, short old,
965     short events, void *fdinfo)
966 {
967 	return 0;
968 }
969 const struct eventop nil_eventop = {
970 	"nil",
971 	NULL, /* init: unused. */
972 	NULL, /* add: unused. */
973 	nil_backend_del, /* del: used, so needs to be killed. */
974 	NULL, /* dispatch: unused. */
975 	NULL, /* dealloc: unused. */
976 	0, 0, 0
977 };
978 
979 /* reinitialize the event base after a fork */
980 int
981 event_reinit(struct event_base *base)
982 {
983 	const struct eventop *evsel;
984 	int res = 0;
985 	int was_notifiable = 0;
986 	int had_signal_added = 0;
987 
988 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
989 
990 	evsel = base->evsel;
991 
992 	/* check if this event mechanism requires reinit on the backend */
993 	if (evsel->need_reinit) {
994 		/* We're going to call event_del() on our notify events (the
995 		 * ones that tell about signals and wakeup events).  But we
996 		 * don't actually want to tell the backend to change its
997 		 * state, since it might still share some resource (a kqueue,
998 		 * an epoll fd) with the parent process, and we don't want to
999 		 * delete the fds from _that_ backend, we temporarily stub out
1000 		 * the evsel with a replacement.
1001 		 */
1002 		base->evsel = &nil_eventop;
1003 	}
1004 
1005 	/* We need to re-create a new signal-notification fd and a new
1006 	 * thread-notification fd.  Otherwise, we'll still share those with
1007 	 * the parent process, which would make any notification sent to them
1008 	 * get received by one or both of the event loops, more or less at
1009 	 * random.
1010 	 */
1011 	if (base->sig.ev_signal_added) {
1012 		event_del_nolock_(&base->sig.ev_signal, EVENT_DEL_AUTOBLOCK);
1013 		event_debug_unassign(&base->sig.ev_signal);
1014 		memset(&base->sig.ev_signal, 0, sizeof(base->sig.ev_signal));
1015 		had_signal_added = 1;
1016 		base->sig.ev_signal_added = 0;
1017 	}
1018 	if (base->sig.ev_signal_pair[0] != -1)
1019 		EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[0]);
1020 	if (base->sig.ev_signal_pair[1] != -1)
1021 		EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[1]);
1022 	if (base->th_notify_fn != NULL) {
1023 		was_notifiable = 1;
1024 		base->th_notify_fn = NULL;
1025 	}
1026 	if (base->th_notify_fd[0] != -1) {
1027 		event_del_nolock_(&base->th_notify, EVENT_DEL_AUTOBLOCK);
1028 		EVUTIL_CLOSESOCKET(base->th_notify_fd[0]);
1029 		if (base->th_notify_fd[1] != -1)
1030 			EVUTIL_CLOSESOCKET(base->th_notify_fd[1]);
1031 		base->th_notify_fd[0] = -1;
1032 		base->th_notify_fd[1] = -1;
1033 		event_debug_unassign(&base->th_notify);
1034 	}
1035 
1036 	/* Replace the original evsel. */
1037         base->evsel = evsel;
1038 
1039 	if (evsel->need_reinit) {
1040 		/* Reconstruct the backend through brute-force, so that we do
1041 		 * not share any structures with the parent process. For some
1042 		 * backends, this is necessary: epoll and kqueue, for
1043 		 * instance, have events associated with a kernel
1044 		 * structure. If didn't reinitialize, we'd share that
1045 		 * structure with the parent process, and any changes made by
1046 		 * the parent would affect our backend's behavior (and vice
1047 		 * versa).
1048 		 */
1049 		if (base->evsel->dealloc != NULL)
1050 			base->evsel->dealloc(base);
1051 		base->evbase = evsel->init(base);
1052 		if (base->evbase == NULL) {
1053 			event_errx(1,
1054 			   "%s: could not reinitialize event mechanism",
1055 			   __func__);
1056 			res = -1;
1057 			goto done;
1058 		}
1059 
1060 		/* Empty out the changelist (if any): we are starting from a
1061 		 * blank slate. */
1062 		event_changelist_freemem_(&base->changelist);
1063 
1064 		/* Tell the event maps to re-inform the backend about all
1065 		 * pending events. This will make the signal notification
1066 		 * event get re-created if necessary. */
1067 		if (evmap_reinit_(base) < 0)
1068 			res = -1;
1069 	} else {
1070 		res = evsig_init_(base);
1071 		if (res == 0 && had_signal_added) {
1072 			res = event_add_nolock_(&base->sig.ev_signal, NULL, 0);
1073 			if (res == 0)
1074 				base->sig.ev_signal_added = 1;
1075 		}
1076 	}
1077 
1078 	/* If we were notifiable before, and nothing just exploded, become
1079 	 * notifiable again. */
1080 	if (was_notifiable && res == 0)
1081 		res = evthread_make_base_notifiable_nolock_(base);
1082 
1083 done:
1084 	EVBASE_RELEASE_LOCK(base, th_base_lock);
1085 	return (res);
1086 }
1087 
1088 /* Get the monotonic time for this event_base' timer */
1089 int
1090 event_gettime_monotonic(struct event_base *base, struct timeval *tv)
1091 {
1092   int rv = -1;
1093 
1094   if (base && tv) {
1095     EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1096     rv = evutil_gettime_monotonic_(&(base->monotonic_timer), tv);
1097     EVBASE_RELEASE_LOCK(base, th_base_lock);
1098   }
1099 
1100   return rv;
1101 }
1102 
1103 const char **
1104 event_get_supported_methods(void)
1105 {
1106 	static const char **methods = NULL;
1107 	const struct eventop **method;
1108 	const char **tmp;
1109 	int i = 0, k;
1110 
1111 	/* count all methods */
1112 	for (method = &eventops[0]; *method != NULL; ++method) {
1113 		++i;
1114 	}
1115 
1116 	/* allocate one more than we need for the NULL pointer */
1117 	tmp = mm_calloc((i + 1), sizeof(char *));
1118 	if (tmp == NULL)
1119 		return (NULL);
1120 
1121 	/* populate the array with the supported methods */
1122 	for (k = 0, i = 0; eventops[k] != NULL; ++k) {
1123 		tmp[i++] = eventops[k]->name;
1124 	}
1125 	tmp[i] = NULL;
1126 
1127 	if (methods != NULL)
1128 		mm_free((char**)methods);
1129 
1130 	methods = tmp;
1131 
1132 	return (methods);
1133 }
1134 
1135 struct event_config *
1136 event_config_new(void)
1137 {
1138 	struct event_config *cfg = mm_calloc(1, sizeof(*cfg));
1139 
1140 	if (cfg == NULL)
1141 		return (NULL);
1142 
1143 	TAILQ_INIT(&cfg->entries);
1144 	cfg->max_dispatch_interval.tv_sec = -1;
1145 	cfg->max_dispatch_callbacks = INT_MAX;
1146 	cfg->limit_callbacks_after_prio = 1;
1147 
1148 	return (cfg);
1149 }
1150 
1151 static void
1152 event_config_entry_free(struct event_config_entry *entry)
1153 {
1154 	if (entry->avoid_method != NULL)
1155 		mm_free((char *)entry->avoid_method);
1156 	mm_free(entry);
1157 }
1158 
1159 void
1160 event_config_free(struct event_config *cfg)
1161 {
1162 	struct event_config_entry *entry;
1163 
1164 	while ((entry = TAILQ_FIRST(&cfg->entries)) != NULL) {
1165 		TAILQ_REMOVE(&cfg->entries, entry, next);
1166 		event_config_entry_free(entry);
1167 	}
1168 	mm_free(cfg);
1169 }
1170 
1171 int
1172 event_config_set_flag(struct event_config *cfg, int flag)
1173 {
1174 	if (!cfg)
1175 		return -1;
1176 	cfg->flags |= flag;
1177 	return 0;
1178 }
1179 
1180 int
1181 event_config_avoid_method(struct event_config *cfg, const char *method)
1182 {
1183 	struct event_config_entry *entry = mm_malloc(sizeof(*entry));
1184 	if (entry == NULL)
1185 		return (-1);
1186 
1187 	if ((entry->avoid_method = mm_strdup(method)) == NULL) {
1188 		mm_free(entry);
1189 		return (-1);
1190 	}
1191 
1192 	TAILQ_INSERT_TAIL(&cfg->entries, entry, next);
1193 
1194 	return (0);
1195 }
1196 
1197 int
1198 event_config_require_features(struct event_config *cfg,
1199     int features)
1200 {
1201 	if (!cfg)
1202 		return (-1);
1203 	cfg->require_features = features;
1204 	return (0);
1205 }
1206 
1207 int
1208 event_config_set_num_cpus_hint(struct event_config *cfg, int cpus)
1209 {
1210 	if (!cfg)
1211 		return (-1);
1212 	cfg->n_cpus_hint = cpus;
1213 	return (0);
1214 }
1215 
1216 int
1217 event_config_set_max_dispatch_interval(struct event_config *cfg,
1218     const struct timeval *max_interval, int max_callbacks, int min_priority)
1219 {
1220 	if (max_interval)
1221 		memcpy(&cfg->max_dispatch_interval, max_interval,
1222 		    sizeof(struct timeval));
1223 	else
1224 		cfg->max_dispatch_interval.tv_sec = -1;
1225 	cfg->max_dispatch_callbacks =
1226 	    max_callbacks >= 0 ? max_callbacks : INT_MAX;
1227 	if (min_priority < 0)
1228 		min_priority = 0;
1229 	cfg->limit_callbacks_after_prio = min_priority;
1230 	return (0);
1231 }
1232 
1233 int
1234 event_priority_init(int npriorities)
1235 {
1236 	return event_base_priority_init(current_base, npriorities);
1237 }
1238 
1239 int
1240 event_base_priority_init(struct event_base *base, int npriorities)
1241 {
1242 	int i, r;
1243 	r = -1;
1244 
1245 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1246 
1247 	if (N_ACTIVE_CALLBACKS(base) || npriorities < 1
1248 	    || npriorities >= EVENT_MAX_PRIORITIES)
1249 		goto err;
1250 
1251 	if (npriorities == base->nactivequeues)
1252 		goto ok;
1253 
1254 	if (base->nactivequeues) {
1255 		mm_free(base->activequeues);
1256 		base->nactivequeues = 0;
1257 	}
1258 
1259 	/* Allocate our priority queues */
1260 	base->activequeues = (struct evcallback_list *)
1261 	  mm_calloc(npriorities, sizeof(struct evcallback_list));
1262 	if (base->activequeues == NULL) {
1263 		event_warn("%s: calloc", __func__);
1264 		goto err;
1265 	}
1266 	base->nactivequeues = npriorities;
1267 
1268 	for (i = 0; i < base->nactivequeues; ++i) {
1269 		TAILQ_INIT(&base->activequeues[i]);
1270 	}
1271 
1272 ok:
1273 	r = 0;
1274 err:
1275 	EVBASE_RELEASE_LOCK(base, th_base_lock);
1276 	return (r);
1277 }
1278 
1279 int
1280 event_base_get_npriorities(struct event_base *base)
1281 {
1282 
1283 	int n;
1284 	if (base == NULL)
1285 		base = current_base;
1286 
1287 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1288 	n = base->nactivequeues;
1289 	EVBASE_RELEASE_LOCK(base, th_base_lock);
1290 	return (n);
1291 }
1292 
1293 int
1294 event_base_get_num_events(struct event_base *base, unsigned int type)
1295 {
1296 	int r = 0;
1297 
1298 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1299 
1300 	if (type & EVENT_BASE_COUNT_ACTIVE)
1301 		r += base->event_count_active;
1302 
1303 	if (type & EVENT_BASE_COUNT_VIRTUAL)
1304 		r += base->virtual_event_count;
1305 
1306 	if (type & EVENT_BASE_COUNT_ADDED)
1307 		r += base->event_count;
1308 
1309 	EVBASE_RELEASE_LOCK(base, th_base_lock);
1310 
1311 	return r;
1312 }
1313 
1314 int
1315 event_base_get_max_events(struct event_base *base, unsigned int type, int clear)
1316 {
1317 	int r = 0;
1318 
1319 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1320 
1321 	if (type & EVENT_BASE_COUNT_ACTIVE) {
1322 		r += base->event_count_active_max;
1323 		if (clear)
1324 			base->event_count_active_max = 0;
1325 	}
1326 
1327 	if (type & EVENT_BASE_COUNT_VIRTUAL) {
1328 		r += base->virtual_event_count_max;
1329 		if (clear)
1330 			base->virtual_event_count_max = 0;
1331 	}
1332 
1333 	if (type & EVENT_BASE_COUNT_ADDED) {
1334 		r += base->event_count_max;
1335 		if (clear)
1336 			base->event_count_max = 0;
1337 	}
1338 
1339 	EVBASE_RELEASE_LOCK(base, th_base_lock);
1340 
1341 	return r;
1342 }
1343 
1344 /* Returns true iff we're currently watching any events. */
1345 static int
1346 event_haveevents(struct event_base *base)
1347 {
1348 	/* Caller must hold th_base_lock */
1349 	return (base->virtual_event_count > 0 || base->event_count > 0);
1350 }
1351 
1352 /* "closure" function called when processing active signal events */
1353 static inline void
1354 event_signal_closure(struct event_base *base, struct event *ev)
1355 {
1356 	short ncalls;
1357 	int should_break;
1358 
1359 	/* Allows deletes to work */
1360 	ncalls = ev->ev_ncalls;
1361 	if (ncalls != 0)
1362 		ev->ev_pncalls = &ncalls;
1363 	EVBASE_RELEASE_LOCK(base, th_base_lock);
1364 	while (ncalls) {
1365 		ncalls--;
1366 		ev->ev_ncalls = ncalls;
1367 		if (ncalls == 0)
1368 			ev->ev_pncalls = NULL;
1369 		(*ev->ev_callback)(ev->ev_fd, ev->ev_res, ev->ev_arg);
1370 
1371 		EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1372 		should_break = base->event_break;
1373 		EVBASE_RELEASE_LOCK(base, th_base_lock);
1374 
1375 		if (should_break) {
1376 			if (ncalls != 0)
1377 				ev->ev_pncalls = NULL;
1378 			return;
1379 		}
1380 	}
1381 }
1382 
1383 /* Common timeouts are special timeouts that are handled as queues rather than
1384  * in the minheap.  This is more efficient than the minheap if we happen to
1385  * know that we're going to get several thousands of timeout events all with
1386  * the same timeout value.
1387  *
1388  * Since all our timeout handling code assumes timevals can be copied,
1389  * assigned, etc, we can't use "magic pointer" to encode these common
1390  * timeouts.  Searching through a list to see if every timeout is common could
1391  * also get inefficient.  Instead, we take advantage of the fact that tv_usec
1392  * is 32 bits long, but only uses 20 of those bits (since it can never be over
1393  * 999999.)  We use the top bits to encode 4 bites of magic number, and 8 bits
1394  * of index into the event_base's aray of common timeouts.
1395  */
1396 
1397 #define MICROSECONDS_MASK       COMMON_TIMEOUT_MICROSECONDS_MASK
1398 #define COMMON_TIMEOUT_IDX_MASK 0x0ff00000
1399 #define COMMON_TIMEOUT_IDX_SHIFT 20
1400 #define COMMON_TIMEOUT_MASK     0xf0000000
1401 #define COMMON_TIMEOUT_MAGIC    0x50000000
1402 
1403 #define COMMON_TIMEOUT_IDX(tv) \
1404 	(((tv)->tv_usec & COMMON_TIMEOUT_IDX_MASK)>>COMMON_TIMEOUT_IDX_SHIFT)
1405 
1406 /** Return true iff if 'tv' is a common timeout in 'base' */
1407 static inline int
1408 is_common_timeout(const struct timeval *tv,
1409     const struct event_base *base)
1410 {
1411 	int idx;
1412 	if ((tv->tv_usec & COMMON_TIMEOUT_MASK) != COMMON_TIMEOUT_MAGIC)
1413 		return 0;
1414 	idx = COMMON_TIMEOUT_IDX(tv);
1415 	return idx < base->n_common_timeouts;
1416 }
1417 
1418 /* True iff tv1 and tv2 have the same common-timeout index, or if neither
1419  * one is a common timeout. */
1420 static inline int
1421 is_same_common_timeout(const struct timeval *tv1, const struct timeval *tv2)
1422 {
1423 	return (tv1->tv_usec & ~MICROSECONDS_MASK) ==
1424 	    (tv2->tv_usec & ~MICROSECONDS_MASK);
1425 }
1426 
1427 /** Requires that 'tv' is a common timeout.  Return the corresponding
1428  * common_timeout_list. */
1429 static inline struct common_timeout_list *
1430 get_common_timeout_list(struct event_base *base, const struct timeval *tv)
1431 {
1432 	return base->common_timeout_queues[COMMON_TIMEOUT_IDX(tv)];
1433 }
1434 
1435 #if 0
1436 static inline int
1437 common_timeout_ok(const struct timeval *tv,
1438     struct event_base *base)
1439 {
1440 	const struct timeval *expect =
1441 	    &get_common_timeout_list(base, tv)->duration;
1442 	return tv->tv_sec == expect->tv_sec &&
1443 	    tv->tv_usec == expect->tv_usec;
1444 }
1445 #endif
1446 
1447 /* Add the timeout for the first event in given common timeout list to the
1448  * event_base's minheap. */
1449 static void
1450 common_timeout_schedule(struct common_timeout_list *ctl,
1451     const struct timeval *now, struct event *head)
1452 {
1453 	struct timeval timeout = head->ev_timeout;
1454 	timeout.tv_usec &= MICROSECONDS_MASK;
1455 	event_add_nolock_(&ctl->timeout_event, &timeout, 1);
1456 }
1457 
1458 /* Callback: invoked when the timeout for a common timeout queue triggers.
1459  * This means that (at least) the first event in that queue should be run,
1460  * and the timeout should be rescheduled if there are more events. */
1461 static void
1462 common_timeout_callback(evutil_socket_t fd, short what, void *arg)
1463 {
1464 	struct timeval now;
1465 	struct common_timeout_list *ctl = arg;
1466 	struct event_base *base = ctl->base;
1467 	struct event *ev = NULL;
1468 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1469 	gettime(base, &now);
1470 	while (1) {
1471 		ev = TAILQ_FIRST(&ctl->events);
1472 		if (!ev || ev->ev_timeout.tv_sec > now.tv_sec ||
1473 		    (ev->ev_timeout.tv_sec == now.tv_sec &&
1474 			(ev->ev_timeout.tv_usec&MICROSECONDS_MASK) > now.tv_usec))
1475 			break;
1476 		event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
1477 		event_active_nolock_(ev, EV_TIMEOUT, 1);
1478 	}
1479 	if (ev)
1480 		common_timeout_schedule(ctl, &now, ev);
1481 	EVBASE_RELEASE_LOCK(base, th_base_lock);
1482 }
1483 
1484 #define MAX_COMMON_TIMEOUTS 256
1485 
1486 const struct timeval *
1487 event_base_init_common_timeout(struct event_base *base,
1488     const struct timeval *duration)
1489 {
1490 	int i;
1491 	struct timeval tv;
1492 	const struct timeval *result=NULL;
1493 	struct common_timeout_list *new_ctl;
1494 
1495 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1496 	if (duration->tv_usec > 1000000) {
1497 		memcpy(&tv, duration, sizeof(struct timeval));
1498 		if (is_common_timeout(duration, base))
1499 			tv.tv_usec &= MICROSECONDS_MASK;
1500 		tv.tv_sec += tv.tv_usec / 1000000;
1501 		tv.tv_usec %= 1000000;
1502 		duration = &tv;
1503 	}
1504 	for (i = 0; i < base->n_common_timeouts; ++i) {
1505 		const struct common_timeout_list *ctl =
1506 		    base->common_timeout_queues[i];
1507 		if (duration->tv_sec == ctl->duration.tv_sec &&
1508 		    duration->tv_usec ==
1509 		    (ctl->duration.tv_usec & MICROSECONDS_MASK)) {
1510 			EVUTIL_ASSERT(is_common_timeout(&ctl->duration, base));
1511 			result = &ctl->duration;
1512 			goto done;
1513 		}
1514 	}
1515 	if (base->n_common_timeouts == MAX_COMMON_TIMEOUTS) {
1516 		event_warnx("%s: Too many common timeouts already in use; "
1517 		    "we only support %d per event_base", __func__,
1518 		    MAX_COMMON_TIMEOUTS);
1519 		goto done;
1520 	}
1521 	if (base->n_common_timeouts_allocated == base->n_common_timeouts) {
1522 		int n = base->n_common_timeouts < 16 ? 16 :
1523 		    base->n_common_timeouts*2;
1524 		struct common_timeout_list **newqueues =
1525 		    mm_realloc(base->common_timeout_queues,
1526 			n*sizeof(struct common_timeout_queue *));
1527 		if (!newqueues) {
1528 			event_warn("%s: realloc",__func__);
1529 			goto done;
1530 		}
1531 		base->n_common_timeouts_allocated = n;
1532 		base->common_timeout_queues = newqueues;
1533 	}
1534 	new_ctl = mm_calloc(1, sizeof(struct common_timeout_list));
1535 	if (!new_ctl) {
1536 		event_warn("%s: calloc",__func__);
1537 		goto done;
1538 	}
1539 	TAILQ_INIT(&new_ctl->events);
1540 	new_ctl->duration.tv_sec = duration->tv_sec;
1541 	new_ctl->duration.tv_usec =
1542 	    duration->tv_usec | COMMON_TIMEOUT_MAGIC |
1543 	    (base->n_common_timeouts << COMMON_TIMEOUT_IDX_SHIFT);
1544 	evtimer_assign(&new_ctl->timeout_event, base,
1545 	    common_timeout_callback, new_ctl);
1546 	new_ctl->timeout_event.ev_flags |= EVLIST_INTERNAL;
1547 	event_priority_set(&new_ctl->timeout_event, 0);
1548 	new_ctl->base = base;
1549 	base->common_timeout_queues[base->n_common_timeouts++] = new_ctl;
1550 	result = &new_ctl->duration;
1551 
1552 done:
1553 	if (result)
1554 		EVUTIL_ASSERT(is_common_timeout(result, base));
1555 
1556 	EVBASE_RELEASE_LOCK(base, th_base_lock);
1557 	return result;
1558 }
1559 
1560 /* Closure function invoked when we're activating a persistent event. */
1561 static inline void
1562 event_persist_closure(struct event_base *base, struct event *ev)
1563 {
1564 	void (*evcb_callback)(evutil_socket_t, short, void *);
1565 
1566         // Other fields of *ev that must be stored before executing
1567         evutil_socket_t evcb_fd;
1568         short evcb_res;
1569         void *evcb_arg;
1570 
1571 	/* reschedule the persistent event if we have a timeout. */
1572 	if (ev->ev_io_timeout.tv_sec || ev->ev_io_timeout.tv_usec) {
1573 		/* If there was a timeout, we want it to run at an interval of
1574 		 * ev_io_timeout after the last time it was _scheduled_ for,
1575 		 * not ev_io_timeout after _now_.  If it fired for another
1576 		 * reason, though, the timeout ought to start ticking _now_. */
1577 		struct timeval run_at, relative_to, delay, now;
1578 		ev_uint32_t usec_mask = 0;
1579 		EVUTIL_ASSERT(is_same_common_timeout(&ev->ev_timeout,
1580 			&ev->ev_io_timeout));
1581 		gettime(base, &now);
1582 		if (is_common_timeout(&ev->ev_timeout, base)) {
1583 			delay = ev->ev_io_timeout;
1584 			usec_mask = delay.tv_usec & ~MICROSECONDS_MASK;
1585 			delay.tv_usec &= MICROSECONDS_MASK;
1586 			if (ev->ev_res & EV_TIMEOUT) {
1587 				relative_to = ev->ev_timeout;
1588 				relative_to.tv_usec &= MICROSECONDS_MASK;
1589 			} else {
1590 				relative_to = now;
1591 			}
1592 		} else {
1593 			delay = ev->ev_io_timeout;
1594 			if (ev->ev_res & EV_TIMEOUT) {
1595 				relative_to = ev->ev_timeout;
1596 			} else {
1597 				relative_to = now;
1598 			}
1599 		}
1600 		evutil_timeradd(&relative_to, &delay, &run_at);
1601 		if (evutil_timercmp(&run_at, &now, <)) {
1602 			/* Looks like we missed at least one invocation due to
1603 			 * a clock jump, not running the event loop for a
1604 			 * while, really slow callbacks, or
1605 			 * something. Reschedule relative to now.
1606 			 */
1607 			evutil_timeradd(&now, &delay, &run_at);
1608 		}
1609 		run_at.tv_usec |= usec_mask;
1610 		event_add_nolock_(ev, &run_at, 1);
1611 	}
1612 
1613 	// Save our callback before we release the lock
1614 	evcb_callback = ev->ev_callback;
1615         evcb_fd = ev->ev_fd;
1616         evcb_res = ev->ev_res;
1617         evcb_arg = ev->ev_arg;
1618 
1619 	// Release the lock
1620  	EVBASE_RELEASE_LOCK(base, th_base_lock);
1621 
1622 	// Execute the callback
1623         (evcb_callback)(evcb_fd, evcb_res, evcb_arg);
1624 }
1625 
1626 /*
1627   Helper for event_process_active to process all the events in a single queue,
1628   releasing the lock as we go.  This function requires that the lock be held
1629   when it's invoked.  Returns -1 if we get a signal or an event_break that
1630   means we should stop processing any active events now.  Otherwise returns
1631   the number of non-internal event_callbacks that we processed.
1632 */
1633 static int
1634 event_process_active_single_queue(struct event_base *base,
1635     struct evcallback_list *activeq,
1636     int max_to_process, const struct timeval *endtime)
1637 {
1638 	struct event_callback *evcb;
1639 	int count = 0;
1640 
1641 	EVUTIL_ASSERT(activeq != NULL);
1642 
1643 	for (evcb = TAILQ_FIRST(activeq); evcb; evcb = TAILQ_FIRST(activeq)) {
1644 		struct event *ev=NULL;
1645 		if (evcb->evcb_flags & EVLIST_INIT) {
1646 			ev = event_callback_to_event(evcb);
1647 
1648 			if (ev->ev_events & EV_PERSIST || ev->ev_flags & EVLIST_FINALIZING)
1649 				event_queue_remove_active(base, evcb);
1650 			else
1651 				event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
1652 			event_debug((
1653 			    "event_process_active: event: %p, %s%s%scall %p",
1654 			    ev,
1655 			    ev->ev_res & EV_READ ? "EV_READ " : " ",
1656 			    ev->ev_res & EV_WRITE ? "EV_WRITE " : " ",
1657 			    ev->ev_res & EV_CLOSED ? "EV_CLOSED " : " ",
1658 			    ev->ev_callback));
1659 		} else {
1660 			event_queue_remove_active(base, evcb);
1661 			event_debug(("event_process_active: event_callback %p, "
1662 				"closure %d, call %p",
1663 				evcb, evcb->evcb_closure, evcb->evcb_cb_union.evcb_callback));
1664 		}
1665 
1666 		if (!(evcb->evcb_flags & EVLIST_INTERNAL))
1667 			++count;
1668 
1669 
1670 		base->current_event = evcb;
1671 #ifndef EVENT__DISABLE_THREAD_SUPPORT
1672 		base->current_event_waiters = 0;
1673 #endif
1674 
1675 		switch (evcb->evcb_closure) {
1676 		case EV_CLOSURE_EVENT_SIGNAL:
1677 			EVUTIL_ASSERT(ev != NULL);
1678 			event_signal_closure(base, ev);
1679 			break;
1680 		case EV_CLOSURE_EVENT_PERSIST:
1681 			EVUTIL_ASSERT(ev != NULL);
1682 			event_persist_closure(base, ev);
1683 			break;
1684 		case EV_CLOSURE_EVENT: {
1685 			void (*evcb_callback)(evutil_socket_t, short, void *);
1686 			short res;
1687 			EVUTIL_ASSERT(ev != NULL);
1688 			evcb_callback = *ev->ev_callback;
1689 			res = ev->ev_res;
1690 			EVBASE_RELEASE_LOCK(base, th_base_lock);
1691 			evcb_callback(ev->ev_fd, res, ev->ev_arg);
1692 		}
1693 		break;
1694 		case EV_CLOSURE_CB_SELF: {
1695 			void (*evcb_selfcb)(struct event_callback *, void *) = evcb->evcb_cb_union.evcb_selfcb;
1696 			EVBASE_RELEASE_LOCK(base, th_base_lock);
1697 			evcb_selfcb(evcb, evcb->evcb_arg);
1698 		}
1699 		break;
1700 		case EV_CLOSURE_EVENT_FINALIZE:
1701 		case EV_CLOSURE_EVENT_FINALIZE_FREE: {
1702 			void (*evcb_evfinalize)(struct event *, void *);
1703 			int evcb_closure = evcb->evcb_closure;
1704 			EVUTIL_ASSERT(ev != NULL);
1705 			base->current_event = NULL;
1706 			evcb_evfinalize = ev->ev_evcallback.evcb_cb_union.evcb_evfinalize;
1707 			EVUTIL_ASSERT((evcb->evcb_flags & EVLIST_FINALIZING));
1708 			EVBASE_RELEASE_LOCK(base, th_base_lock);
1709 			event_debug_note_teardown_(ev);
1710 			evcb_evfinalize(ev, ev->ev_arg);
1711 			if (evcb_closure == EV_CLOSURE_EVENT_FINALIZE_FREE)
1712 				mm_free(ev);
1713 		}
1714 		break;
1715 		case EV_CLOSURE_CB_FINALIZE: {
1716 			void (*evcb_cbfinalize)(struct event_callback *, void *) = evcb->evcb_cb_union.evcb_cbfinalize;
1717 			base->current_event = NULL;
1718 			EVUTIL_ASSERT((evcb->evcb_flags & EVLIST_FINALIZING));
1719 			EVBASE_RELEASE_LOCK(base, th_base_lock);
1720 			evcb_cbfinalize(evcb, evcb->evcb_arg);
1721 		}
1722 		break;
1723 		default:
1724 			EVUTIL_ASSERT(0);
1725 		}
1726 
1727 		EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1728 		base->current_event = NULL;
1729 #ifndef EVENT__DISABLE_THREAD_SUPPORT
1730 		if (base->current_event_waiters) {
1731 			base->current_event_waiters = 0;
1732 			EVTHREAD_COND_BROADCAST(base->current_event_cond);
1733 		}
1734 #endif
1735 
1736 		if (base->event_break)
1737 			return -1;
1738 		if (count >= max_to_process)
1739 			return count;
1740 		if (count && endtime) {
1741 			struct timeval now;
1742 			update_time_cache(base);
1743 			gettime(base, &now);
1744 			if (evutil_timercmp(&now, endtime, >=))
1745 				return count;
1746 		}
1747 		if (base->event_continue)
1748 			break;
1749 	}
1750 	return count;
1751 }
1752 
1753 /*
1754  * Active events are stored in priority queues.  Lower priorities are always
1755  * process before higher priorities.  Low priority events can starve high
1756  * priority ones.
1757  */
1758 
1759 static int
1760 event_process_active(struct event_base *base)
1761 {
1762 	/* Caller must hold th_base_lock */
1763 	struct evcallback_list *activeq = NULL;
1764 	int i, c = 0;
1765 	const struct timeval *endtime;
1766 	struct timeval tv;
1767 	const int maxcb = base->max_dispatch_callbacks;
1768 	const int limit_after_prio = base->limit_callbacks_after_prio;
1769 	if (base->max_dispatch_time.tv_sec >= 0) {
1770 		update_time_cache(base);
1771 		gettime(base, &tv);
1772 		evutil_timeradd(&base->max_dispatch_time, &tv, &tv);
1773 		endtime = &tv;
1774 	} else {
1775 		endtime = NULL;
1776 	}
1777 
1778 	for (i = 0; i < base->nactivequeues; ++i) {
1779 		if (TAILQ_FIRST(&base->activequeues[i]) != NULL) {
1780 			base->event_running_priority = i;
1781 			activeq = &base->activequeues[i];
1782 			if (i < limit_after_prio)
1783 				c = event_process_active_single_queue(base, activeq,
1784 				    INT_MAX, NULL);
1785 			else
1786 				c = event_process_active_single_queue(base, activeq,
1787 				    maxcb, endtime);
1788 			if (c < 0) {
1789 				goto done;
1790 			} else if (c > 0)
1791 				break; /* Processed a real event; do not
1792 					* consider lower-priority events */
1793 			/* If we get here, all of the events we processed
1794 			 * were internal.  Continue. */
1795 		}
1796 	}
1797 
1798 done:
1799 	base->event_running_priority = -1;
1800 
1801 	return c;
1802 }
1803 
1804 /*
1805  * Wait continuously for events.  We exit only if no events are left.
1806  */
1807 
1808 int
1809 event_dispatch(void)
1810 {
1811 	return (event_loop(0));
1812 }
1813 
1814 int
1815 event_base_dispatch(struct event_base *event_base)
1816 {
1817 	return (event_base_loop(event_base, 0));
1818 }
1819 
1820 const char *
1821 event_base_get_method(const struct event_base *base)
1822 {
1823 	EVUTIL_ASSERT(base);
1824 	return (base->evsel->name);
1825 }
1826 
1827 /** Callback: used to implement event_base_loopexit by telling the event_base
1828  * that it's time to exit its loop. */
1829 static void
1830 event_loopexit_cb(evutil_socket_t fd, short what, void *arg)
1831 {
1832 	struct event_base *base = arg;
1833 	base->event_gotterm = 1;
1834 }
1835 
1836 int
1837 event_loopexit(const struct timeval *tv)
1838 {
1839 	return (event_once(-1, EV_TIMEOUT, event_loopexit_cb,
1840 		    current_base, tv));
1841 }
1842 
1843 int
1844 event_base_loopexit(struct event_base *event_base, const struct timeval *tv)
1845 {
1846 	return (event_base_once(event_base, -1, EV_TIMEOUT, event_loopexit_cb,
1847 		    event_base, tv));
1848 }
1849 
1850 int
1851 event_loopbreak(void)
1852 {
1853 	return (event_base_loopbreak(current_base));
1854 }
1855 
1856 int
1857 event_base_loopbreak(struct event_base *event_base)
1858 {
1859 	int r = 0;
1860 	if (event_base == NULL)
1861 		return (-1);
1862 
1863 	EVBASE_ACQUIRE_LOCK(event_base, th_base_lock);
1864 	event_base->event_break = 1;
1865 
1866 	if (EVBASE_NEED_NOTIFY(event_base)) {
1867 		r = evthread_notify_base(event_base);
1868 	} else {
1869 		r = (0);
1870 	}
1871 	EVBASE_RELEASE_LOCK(event_base, th_base_lock);
1872 	return r;
1873 }
1874 
1875 int
1876 event_base_loopcontinue(struct event_base *event_base)
1877 {
1878 	int r = 0;
1879 	if (event_base == NULL)
1880 		return (-1);
1881 
1882 	EVBASE_ACQUIRE_LOCK(event_base, th_base_lock);
1883 	event_base->event_continue = 1;
1884 
1885 	if (EVBASE_NEED_NOTIFY(event_base)) {
1886 		r = evthread_notify_base(event_base);
1887 	} else {
1888 		r = (0);
1889 	}
1890 	EVBASE_RELEASE_LOCK(event_base, th_base_lock);
1891 	return r;
1892 }
1893 
1894 int
1895 event_base_got_break(struct event_base *event_base)
1896 {
1897 	int res;
1898 	EVBASE_ACQUIRE_LOCK(event_base, th_base_lock);
1899 	res = event_base->event_break;
1900 	EVBASE_RELEASE_LOCK(event_base, th_base_lock);
1901 	return res;
1902 }
1903 
1904 int
1905 event_base_got_exit(struct event_base *event_base)
1906 {
1907 	int res;
1908 	EVBASE_ACQUIRE_LOCK(event_base, th_base_lock);
1909 	res = event_base->event_gotterm;
1910 	EVBASE_RELEASE_LOCK(event_base, th_base_lock);
1911 	return res;
1912 }
1913 
1914 /* not thread safe */
1915 
1916 int
1917 event_loop(int flags)
1918 {
1919 	return event_base_loop(current_base, flags);
1920 }
1921 
1922 int
1923 event_base_loop(struct event_base *base, int flags)
1924 {
1925 	const struct eventop *evsel = base->evsel;
1926 	struct timeval tv;
1927 	struct timeval *tv_p;
1928 	int res, done, retval = 0;
1929 
1930 	/* Grab the lock.  We will release it inside evsel.dispatch, and again
1931 	 * as we invoke user callbacks. */
1932 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
1933 
1934 	if (base->running_loop) {
1935 		event_warnx("%s: reentrant invocation.  Only one event_base_loop"
1936 		    " can run on each event_base at once.", __func__);
1937 		EVBASE_RELEASE_LOCK(base, th_base_lock);
1938 		return -1;
1939 	}
1940 
1941 	base->running_loop = 1;
1942 
1943 	clear_time_cache(base);
1944 
1945 	if (base->sig.ev_signal_added && base->sig.ev_n_signals_added)
1946 		evsig_set_base_(base);
1947 
1948 	done = 0;
1949 
1950 #ifndef EVENT__DISABLE_THREAD_SUPPORT
1951 	base->th_owner_id = EVTHREAD_GET_ID();
1952 #endif
1953 
1954 	base->event_gotterm = base->event_break = 0;
1955 
1956 	while (!done) {
1957 		base->event_continue = 0;
1958 		base->n_deferreds_queued = 0;
1959 
1960 		/* Terminate the loop if we have been asked to */
1961 		if (base->event_gotterm) {
1962 			break;
1963 		}
1964 
1965 		if (base->event_break) {
1966 			break;
1967 		}
1968 
1969 		tv_p = &tv;
1970 		if (!N_ACTIVE_CALLBACKS(base) && !(flags & EVLOOP_NONBLOCK)) {
1971 			timeout_next(base, &tv_p);
1972 		} else {
1973 			/*
1974 			 * if we have active events, we just poll new events
1975 			 * without waiting.
1976 			 */
1977 			evutil_timerclear(&tv);
1978 		}
1979 
1980 		/* If we have no events, we just exit */
1981 		if (0==(flags&EVLOOP_NO_EXIT_ON_EMPTY) &&
1982 		    !event_haveevents(base) && !N_ACTIVE_CALLBACKS(base)) {
1983 			event_debug(("%s: no events registered.", __func__));
1984 			retval = 1;
1985 			goto done;
1986 		}
1987 
1988 		event_queue_make_later_events_active(base);
1989 
1990 		clear_time_cache(base);
1991 
1992 		res = evsel->dispatch(base, tv_p);
1993 
1994 		if (res == -1) {
1995 			event_debug(("%s: dispatch returned unsuccessfully.",
1996 				__func__));
1997 			retval = -1;
1998 			goto done;
1999 		}
2000 
2001 		update_time_cache(base);
2002 
2003 		timeout_process(base);
2004 
2005 		if (N_ACTIVE_CALLBACKS(base)) {
2006 			int n = event_process_active(base);
2007 			if ((flags & EVLOOP_ONCE)
2008 			    && N_ACTIVE_CALLBACKS(base) == 0
2009 			    && n != 0)
2010 				done = 1;
2011 		} else if (flags & EVLOOP_NONBLOCK)
2012 			done = 1;
2013 	}
2014 	event_debug(("%s: asked to terminate loop.", __func__));
2015 
2016 done:
2017 	clear_time_cache(base);
2018 	base->running_loop = 0;
2019 
2020 	EVBASE_RELEASE_LOCK(base, th_base_lock);
2021 
2022 	return (retval);
2023 }
2024 
2025 /* One-time callback to implement event_base_once: invokes the user callback,
2026  * then deletes the allocated storage */
2027 static void
2028 event_once_cb(evutil_socket_t fd, short events, void *arg)
2029 {
2030 	struct event_once *eonce = arg;
2031 
2032 	(*eonce->cb)(fd, events, eonce->arg);
2033 	EVBASE_ACQUIRE_LOCK(eonce->ev.ev_base, th_base_lock);
2034 	LIST_REMOVE(eonce, next_once);
2035 	EVBASE_RELEASE_LOCK(eonce->ev.ev_base, th_base_lock);
2036 	event_debug_unassign(&eonce->ev);
2037 	mm_free(eonce);
2038 }
2039 
2040 /* not threadsafe, event scheduled once. */
2041 int
2042 event_once(evutil_socket_t fd, short events,
2043     void (*callback)(evutil_socket_t, short, void *),
2044     void *arg, const struct timeval *tv)
2045 {
2046 	return event_base_once(current_base, fd, events, callback, arg, tv);
2047 }
2048 
2049 /* Schedules an event once */
2050 int
2051 event_base_once(struct event_base *base, evutil_socket_t fd, short events,
2052     void (*callback)(evutil_socket_t, short, void *),
2053     void *arg, const struct timeval *tv)
2054 {
2055 	struct event_once *eonce;
2056 	int res = 0;
2057 	int activate = 0;
2058 
2059 	if (!base)
2060 		return (-1);
2061 
2062 	/* We cannot support signals that just fire once, or persistent
2063 	 * events. */
2064 	if (events & (EV_SIGNAL|EV_PERSIST))
2065 		return (-1);
2066 
2067 	if ((eonce = mm_calloc(1, sizeof(struct event_once))) == NULL)
2068 		return (-1);
2069 
2070 	eonce->cb = callback;
2071 	eonce->arg = arg;
2072 
2073 	if ((events & (EV_TIMEOUT|EV_SIGNAL|EV_READ|EV_WRITE|EV_CLOSED)) == EV_TIMEOUT) {
2074 		evtimer_assign(&eonce->ev, base, event_once_cb, eonce);
2075 
2076 		if (tv == NULL || ! evutil_timerisset(tv)) {
2077 			/* If the event is going to become active immediately,
2078 			 * don't put it on the timeout queue.  This is one
2079 			 * idiom for scheduling a callback, so let's make
2080 			 * it fast (and order-preserving). */
2081 			activate = 1;
2082 		}
2083 	} else if (events & (EV_READ|EV_WRITE|EV_CLOSED)) {
2084 		events &= EV_READ|EV_WRITE|EV_CLOSED;
2085 
2086 		event_assign(&eonce->ev, base, fd, events, event_once_cb, eonce);
2087 	} else {
2088 		/* Bad event combination */
2089 		mm_free(eonce);
2090 		return (-1);
2091 	}
2092 
2093 	if (res == 0) {
2094 		EVBASE_ACQUIRE_LOCK(base, th_base_lock);
2095 		if (activate)
2096 			event_active_nolock_(&eonce->ev, EV_TIMEOUT, 1);
2097 		else
2098 			res = event_add_nolock_(&eonce->ev, tv, 0);
2099 
2100 		if (res != 0) {
2101 			mm_free(eonce);
2102 			return (res);
2103 		} else {
2104 			LIST_INSERT_HEAD(&base->once_events, eonce, next_once);
2105 		}
2106 		EVBASE_RELEASE_LOCK(base, th_base_lock);
2107 	}
2108 
2109 	return (0);
2110 }
2111 
2112 int
2113 event_assign(struct event *ev, struct event_base *base, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg)
2114 {
2115 	if (!base)
2116 		base = current_base;
2117 	if (arg == &event_self_cbarg_ptr_)
2118 		arg = ev;
2119 
2120 	if (!(events & EV_SIGNAL))
2121 		event_debug_assert_socket_nonblocking_(fd);
2122 	event_debug_assert_not_added_(ev);
2123 
2124 	ev->ev_base = base;
2125 
2126 	ev->ev_callback = callback;
2127 	ev->ev_arg = arg;
2128 	ev->ev_fd = fd;
2129 	ev->ev_events = events;
2130 	ev->ev_res = 0;
2131 	ev->ev_flags = EVLIST_INIT;
2132 	ev->ev_ncalls = 0;
2133 	ev->ev_pncalls = NULL;
2134 
2135 	if (events & EV_SIGNAL) {
2136 		if ((events & (EV_READ|EV_WRITE|EV_CLOSED)) != 0) {
2137 			event_warnx("%s: EV_SIGNAL is not compatible with "
2138 			    "EV_READ, EV_WRITE or EV_CLOSED", __func__);
2139 			return -1;
2140 		}
2141 		ev->ev_closure = EV_CLOSURE_EVENT_SIGNAL;
2142 	} else {
2143 		if (events & EV_PERSIST) {
2144 			evutil_timerclear(&ev->ev_io_timeout);
2145 			ev->ev_closure = EV_CLOSURE_EVENT_PERSIST;
2146 		} else {
2147 			ev->ev_closure = EV_CLOSURE_EVENT;
2148 		}
2149 	}
2150 
2151 	min_heap_elem_init_(ev);
2152 
2153 	if (base != NULL) {
2154 		/* by default, we put new events into the middle priority */
2155 		ev->ev_pri = base->nactivequeues / 2;
2156 	}
2157 
2158 	event_debug_note_setup_(ev);
2159 
2160 	return 0;
2161 }
2162 
2163 int
2164 event_base_set(struct event_base *base, struct event *ev)
2165 {
2166 	/* Only innocent events may be assigned to a different base */
2167 	if (ev->ev_flags != EVLIST_INIT)
2168 		return (-1);
2169 
2170 	event_debug_assert_is_setup_(ev);
2171 
2172 	ev->ev_base = base;
2173 	ev->ev_pri = base->nactivequeues/2;
2174 
2175 	return (0);
2176 }
2177 
2178 void
2179 event_set(struct event *ev, evutil_socket_t fd, short events,
2180 	  void (*callback)(evutil_socket_t, short, void *), void *arg)
2181 {
2182 	int r;
2183 	r = event_assign(ev, current_base, fd, events, callback, arg);
2184 	EVUTIL_ASSERT(r == 0);
2185 }
2186 
2187 void *
2188 event_self_cbarg(void)
2189 {
2190 	return &event_self_cbarg_ptr_;
2191 }
2192 
2193 struct event *
2194 event_base_get_running_event(struct event_base *base)
2195 {
2196 	struct event *ev = NULL;
2197 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
2198 	if (EVBASE_IN_THREAD(base)) {
2199 		struct event_callback *evcb = base->current_event;
2200 		if (evcb->evcb_flags & EVLIST_INIT)
2201 			ev = event_callback_to_event(evcb);
2202 	}
2203 	EVBASE_RELEASE_LOCK(base, th_base_lock);
2204 	return ev;
2205 }
2206 
2207 struct event *
2208 event_new(struct event_base *base, evutil_socket_t fd, short events, void (*cb)(evutil_socket_t, short, void *), void *arg)
2209 {
2210 	struct event *ev;
2211 	ev = mm_malloc(sizeof(struct event));
2212 	if (ev == NULL)
2213 		return (NULL);
2214 	if (event_assign(ev, base, fd, events, cb, arg) < 0) {
2215 		mm_free(ev);
2216 		return (NULL);
2217 	}
2218 
2219 	return (ev);
2220 }
2221 
2222 void
2223 event_free(struct event *ev)
2224 {
2225 	/* This is disabled, so that events which have been finalized be a
2226 	 * valid target for event_free(). That's */
2227 	// event_debug_assert_is_setup_(ev);
2228 
2229 	/* make sure that this event won't be coming back to haunt us. */
2230 	event_del(ev);
2231 	event_debug_note_teardown_(ev);
2232 	mm_free(ev);
2233 
2234 }
2235 
2236 void
2237 event_debug_unassign(struct event *ev)
2238 {
2239 	event_debug_assert_not_added_(ev);
2240 	event_debug_note_teardown_(ev);
2241 
2242 	ev->ev_flags &= ~EVLIST_INIT;
2243 }
2244 
2245 #define EVENT_FINALIZE_FREE_ 0x10000
2246 static int
2247 event_finalize_nolock_(struct event_base *base, unsigned flags, struct event *ev, event_finalize_callback_fn cb)
2248 {
2249 	ev_uint8_t closure = (flags & EVENT_FINALIZE_FREE_) ?
2250 	    EV_CLOSURE_EVENT_FINALIZE_FREE : EV_CLOSURE_EVENT_FINALIZE;
2251 
2252 	event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
2253 	ev->ev_closure = closure;
2254 	ev->ev_evcallback.evcb_cb_union.evcb_evfinalize = cb;
2255 	event_active_nolock_(ev, EV_FINALIZE, 1);
2256 	ev->ev_flags |= EVLIST_FINALIZING;
2257 	return 0;
2258 }
2259 
2260 static int
2261 event_finalize_impl_(unsigned flags, struct event *ev, event_finalize_callback_fn cb)
2262 {
2263 	int r;
2264 	struct event_base *base = ev->ev_base;
2265 	if (EVUTIL_FAILURE_CHECK(!base)) {
2266 		event_warnx("%s: event has no event_base set.", __func__);
2267 		return -1;
2268 	}
2269 
2270 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
2271 	r = event_finalize_nolock_(base, flags, ev, cb);
2272 	EVBASE_RELEASE_LOCK(base, th_base_lock);
2273 	return r;
2274 }
2275 
2276 int
2277 event_finalize(unsigned flags, struct event *ev, event_finalize_callback_fn cb)
2278 {
2279 	return event_finalize_impl_(flags, ev, cb);
2280 }
2281 
2282 int
2283 event_free_finalize(unsigned flags, struct event *ev, event_finalize_callback_fn cb)
2284 {
2285 	return event_finalize_impl_(flags|EVENT_FINALIZE_FREE_, ev, cb);
2286 }
2287 
2288 void
2289 event_callback_finalize_nolock_(struct event_base *base, unsigned flags, struct event_callback *evcb, void (*cb)(struct event_callback *, void *))
2290 {
2291 	struct event *ev = NULL;
2292 	if (evcb->evcb_flags & EVLIST_INIT) {
2293 		ev = event_callback_to_event(evcb);
2294 		event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
2295 	} else {
2296 		event_callback_cancel_nolock_(base, evcb, 0); /*XXX can this fail?*/
2297 	}
2298 
2299 	evcb->evcb_closure = EV_CLOSURE_CB_FINALIZE;
2300 	evcb->evcb_cb_union.evcb_cbfinalize = cb;
2301 	event_callback_activate_nolock_(base, evcb); /* XXX can this really fail?*/
2302 	evcb->evcb_flags |= EVLIST_FINALIZING;
2303 }
2304 
2305 void
2306 event_callback_finalize_(struct event_base *base, unsigned flags, struct event_callback *evcb, void (*cb)(struct event_callback *, void *))
2307 {
2308 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
2309 	event_callback_finalize_nolock_(base, flags, evcb, cb);
2310 	EVBASE_RELEASE_LOCK(base, th_base_lock);
2311 }
2312 
2313 /** Internal: Finalize all of the n_cbs callbacks in evcbs.  The provided
2314  * callback will be invoked on *one of them*, after they have *all* been
2315  * finalized. */
2316 int
2317 event_callback_finalize_many_(struct event_base *base, int n_cbs, struct event_callback **evcbs, void (*cb)(struct event_callback *, void *))
2318 {
2319 	int n_pending = 0, i;
2320 
2321 	if (base == NULL)
2322 		base = current_base;
2323 
2324 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
2325 
2326 	event_debug(("%s: %d events finalizing", __func__, n_cbs));
2327 
2328 	/* At most one can be currently executing; the rest we just
2329 	 * cancel... But we always make sure that the finalize callback
2330 	 * runs. */
2331 	for (i = 0; i < n_cbs; ++i) {
2332 		struct event_callback *evcb = evcbs[i];
2333 		if (evcb == base->current_event) {
2334 			event_callback_finalize_nolock_(base, 0, evcb, cb);
2335 			++n_pending;
2336 		} else {
2337 			event_callback_cancel_nolock_(base, evcb, 0);
2338 		}
2339 	}
2340 
2341 	if (n_pending == 0) {
2342 		/* Just do the first one. */
2343 		event_callback_finalize_nolock_(base, 0, evcbs[0], cb);
2344 	}
2345 
2346 	EVBASE_RELEASE_LOCK(base, th_base_lock);
2347 	return 0;
2348 }
2349 
2350 /*
2351  * Set's the priority of an event - if an event is already scheduled
2352  * changing the priority is going to fail.
2353  */
2354 
2355 int
2356 event_priority_set(struct event *ev, int pri)
2357 {
2358 	event_debug_assert_is_setup_(ev);
2359 
2360 	if (ev->ev_flags & EVLIST_ACTIVE)
2361 		return (-1);
2362 	if (pri < 0 || pri >= ev->ev_base->nactivequeues)
2363 		return (-1);
2364 
2365 	ev->ev_pri = pri;
2366 
2367 	return (0);
2368 }
2369 
2370 /*
2371  * Checks if a specific event is pending or scheduled.
2372  */
2373 
2374 int
2375 event_pending(const struct event *ev, short event, struct timeval *tv)
2376 {
2377 	int flags = 0;
2378 
2379 	if (EVUTIL_FAILURE_CHECK(ev->ev_base == NULL)) {
2380 		event_warnx("%s: event has no event_base set.", __func__);
2381 		return 0;
2382 	}
2383 
2384 	EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
2385 	event_debug_assert_is_setup_(ev);
2386 
2387 	if (ev->ev_flags & EVLIST_INSERTED)
2388 		flags |= (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL));
2389 	if (ev->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))
2390 		flags |= ev->ev_res;
2391 	if (ev->ev_flags & EVLIST_TIMEOUT)
2392 		flags |= EV_TIMEOUT;
2393 
2394 	event &= (EV_TIMEOUT|EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL);
2395 
2396 	/* See if there is a timeout that we should report */
2397 	if (tv != NULL && (flags & event & EV_TIMEOUT)) {
2398 		struct timeval tmp = ev->ev_timeout;
2399 		tmp.tv_usec &= MICROSECONDS_MASK;
2400 		/* correctly remamp to real time */
2401 		evutil_timeradd(&ev->ev_base->tv_clock_diff, &tmp, tv);
2402 	}
2403 
2404 	EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
2405 
2406 	return (flags & event);
2407 }
2408 
2409 int
2410 event_initialized(const struct event *ev)
2411 {
2412 	if (!(ev->ev_flags & EVLIST_INIT))
2413 		return 0;
2414 
2415 	return 1;
2416 }
2417 
2418 void
2419 event_get_assignment(const struct event *event, struct event_base **base_out, evutil_socket_t *fd_out, short *events_out, event_callback_fn *callback_out, void **arg_out)
2420 {
2421 	event_debug_assert_is_setup_(event);
2422 
2423 	if (base_out)
2424 		*base_out = event->ev_base;
2425 	if (fd_out)
2426 		*fd_out = event->ev_fd;
2427 	if (events_out)
2428 		*events_out = event->ev_events;
2429 	if (callback_out)
2430 		*callback_out = event->ev_callback;
2431 	if (arg_out)
2432 		*arg_out = event->ev_arg;
2433 }
2434 
2435 size_t
2436 event_get_struct_event_size(void)
2437 {
2438 	return sizeof(struct event);
2439 }
2440 
2441 evutil_socket_t
2442 event_get_fd(const struct event *ev)
2443 {
2444 	event_debug_assert_is_setup_(ev);
2445 	return ev->ev_fd;
2446 }
2447 
2448 struct event_base *
2449 event_get_base(const struct event *ev)
2450 {
2451 	event_debug_assert_is_setup_(ev);
2452 	return ev->ev_base;
2453 }
2454 
2455 short
2456 event_get_events(const struct event *ev)
2457 {
2458 	event_debug_assert_is_setup_(ev);
2459 	return ev->ev_events;
2460 }
2461 
2462 event_callback_fn
2463 event_get_callback(const struct event *ev)
2464 {
2465 	event_debug_assert_is_setup_(ev);
2466 	return ev->ev_callback;
2467 }
2468 
2469 void *
2470 event_get_callback_arg(const struct event *ev)
2471 {
2472 	event_debug_assert_is_setup_(ev);
2473 	return ev->ev_arg;
2474 }
2475 
2476 int
2477 event_get_priority(const struct event *ev)
2478 {
2479 	event_debug_assert_is_setup_(ev);
2480 	return ev->ev_pri;
2481 }
2482 
2483 int
2484 event_add(struct event *ev, const struct timeval *tv)
2485 {
2486 	int res;
2487 
2488 	if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
2489 		event_warnx("%s: event has no event_base set.", __func__);
2490 		return -1;
2491 	}
2492 
2493 	EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
2494 
2495 	res = event_add_nolock_(ev, tv, 0);
2496 
2497 	EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
2498 
2499 	return (res);
2500 }
2501 
2502 /* Helper callback: wake an event_base from another thread.  This version
2503  * works by writing a byte to one end of a socketpair, so that the event_base
2504  * listening on the other end will wake up as the corresponding event
2505  * triggers */
2506 static int
2507 evthread_notify_base_default(struct event_base *base)
2508 {
2509 	char buf[1];
2510 	int r;
2511 	buf[0] = (char) 0;
2512 #ifdef _WIN32
2513 	r = send(base->th_notify_fd[1], buf, 1, 0);
2514 #else
2515 	r = write(base->th_notify_fd[1], buf, 1);
2516 #endif
2517 	return (r < 0 && ! EVUTIL_ERR_IS_EAGAIN(errno)) ? -1 : 0;
2518 }
2519 
2520 #ifdef EVENT__HAVE_EVENTFD
2521 /* Helper callback: wake an event_base from another thread.  This version
2522  * assumes that you have a working eventfd() implementation. */
2523 static int
2524 evthread_notify_base_eventfd(struct event_base *base)
2525 {
2526 	ev_uint64_t msg = 1;
2527 	int r;
2528 	do {
2529 		r = write(base->th_notify_fd[0], (void*) &msg, sizeof(msg));
2530 	} while (r < 0 && errno == EAGAIN);
2531 
2532 	return (r < 0) ? -1 : 0;
2533 }
2534 #endif
2535 
2536 
2537 /** Tell the thread currently running the event_loop for base (if any) that it
2538  * needs to stop waiting in its dispatch function (if it is) and process all
2539  * active callbacks. */
2540 static int
2541 evthread_notify_base(struct event_base *base)
2542 {
2543 	EVENT_BASE_ASSERT_LOCKED(base);
2544 	if (!base->th_notify_fn)
2545 		return -1;
2546 	if (base->is_notify_pending)
2547 		return 0;
2548 	base->is_notify_pending = 1;
2549 	return base->th_notify_fn(base);
2550 }
2551 
2552 /* Implementation function to remove a timeout on a currently pending event.
2553  */
2554 int
2555 event_remove_timer_nolock_(struct event *ev)
2556 {
2557 	struct event_base *base = ev->ev_base;
2558 
2559 	EVENT_BASE_ASSERT_LOCKED(base);
2560 	event_debug_assert_is_setup_(ev);
2561 
2562 	event_debug(("event_remove_timer_nolock: event: %p", ev));
2563 
2564 	/* If it's not pending on a timeout, we don't need to do anything. */
2565 	if (ev->ev_flags & EVLIST_TIMEOUT) {
2566 		event_queue_remove_timeout(base, ev);
2567 		evutil_timerclear(&ev->ev_.ev_io.ev_timeout);
2568 	}
2569 
2570 	return (0);
2571 }
2572 
2573 int
2574 event_remove_timer(struct event *ev)
2575 {
2576 	int res;
2577 
2578 	if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
2579 		event_warnx("%s: event has no event_base set.", __func__);
2580 		return -1;
2581 	}
2582 
2583 	EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
2584 
2585 	res = event_remove_timer_nolock_(ev);
2586 
2587 	EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
2588 
2589 	return (res);
2590 }
2591 
2592 /* Implementation function to add an event.  Works just like event_add,
2593  * except: 1) it requires that we have the lock.  2) if tv_is_absolute is set,
2594  * we treat tv as an absolute time, not as an interval to add to the current
2595  * time */
2596 int
2597 event_add_nolock_(struct event *ev, const struct timeval *tv,
2598     int tv_is_absolute)
2599 {
2600 	struct event_base *base = ev->ev_base;
2601 	int res = 0;
2602 	int notify = 0;
2603 
2604 	EVENT_BASE_ASSERT_LOCKED(base);
2605 	event_debug_assert_is_setup_(ev);
2606 
2607 	event_debug((
2608 		 "event_add: event: %p (fd "EV_SOCK_FMT"), %s%s%s%scall %p",
2609 		 ev,
2610 		 EV_SOCK_ARG(ev->ev_fd),
2611 		 ev->ev_events & EV_READ ? "EV_READ " : " ",
2612 		 ev->ev_events & EV_WRITE ? "EV_WRITE " : " ",
2613 		 ev->ev_events & EV_CLOSED ? "EV_CLOSED " : " ",
2614 		 tv ? "EV_TIMEOUT " : " ",
2615 		 ev->ev_callback));
2616 
2617 	EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL));
2618 
2619 	if (ev->ev_flags & EVLIST_FINALIZING) {
2620 		/* XXXX debug */
2621 		return (-1);
2622 	}
2623 
2624 	/*
2625 	 * prepare for timeout insertion further below, if we get a
2626 	 * failure on any step, we should not change any state.
2627 	 */
2628 	if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) {
2629 		if (min_heap_reserve_(&base->timeheap,
2630 			1 + min_heap_size_(&base->timeheap)) == -1)
2631 			return (-1);  /* ENOMEM == errno */
2632 	}
2633 
2634 	/* If the main thread is currently executing a signal event's
2635 	 * callback, and we are not the main thread, then we want to wait
2636 	 * until the callback is done before we mess with the event, or else
2637 	 * we can race on ev_ncalls and ev_pncalls below. */
2638 #ifndef EVENT__DISABLE_THREAD_SUPPORT
2639 	if (base->current_event == event_to_event_callback(ev) &&
2640 	    (ev->ev_events & EV_SIGNAL)
2641 	    && !EVBASE_IN_THREAD(base)) {
2642 		++base->current_event_waiters;
2643 		EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock);
2644 	}
2645 #endif
2646 
2647 	if ((ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED|EV_SIGNAL)) &&
2648 	    !(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) {
2649 		if (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED))
2650 			res = evmap_io_add_(base, ev->ev_fd, ev);
2651 		else if (ev->ev_events & EV_SIGNAL)
2652 			res = evmap_signal_add_(base, (int)ev->ev_fd, ev);
2653 		if (res != -1)
2654 			event_queue_insert_inserted(base, ev);
2655 		if (res == 1) {
2656 			/* evmap says we need to notify the main thread. */
2657 			notify = 1;
2658 			res = 0;
2659 		}
2660 	}
2661 
2662 	/*
2663 	 * we should change the timeout state only if the previous event
2664 	 * addition succeeded.
2665 	 */
2666 	if (res != -1 && tv != NULL) {
2667 		struct timeval now;
2668 		int common_timeout;
2669 #ifdef USE_REINSERT_TIMEOUT
2670 		int was_common;
2671 		int old_timeout_idx;
2672 #endif
2673 
2674 		/*
2675 		 * for persistent timeout events, we remember the
2676 		 * timeout value and re-add the event.
2677 		 *
2678 		 * If tv_is_absolute, this was already set.
2679 		 */
2680 		if (ev->ev_closure == EV_CLOSURE_EVENT_PERSIST && !tv_is_absolute)
2681 			ev->ev_io_timeout = *tv;
2682 
2683 #ifndef USE_REINSERT_TIMEOUT
2684 		if (ev->ev_flags & EVLIST_TIMEOUT) {
2685 			event_queue_remove_timeout(base, ev);
2686 		}
2687 #endif
2688 
2689 		/* Check if it is active due to a timeout.  Rescheduling
2690 		 * this timeout before the callback can be executed
2691 		 * removes it from the active list. */
2692 		if ((ev->ev_flags & EVLIST_ACTIVE) &&
2693 		    (ev->ev_res & EV_TIMEOUT)) {
2694 			if (ev->ev_events & EV_SIGNAL) {
2695 				/* See if we are just active executing
2696 				 * this event in a loop
2697 				 */
2698 				if (ev->ev_ncalls && ev->ev_pncalls) {
2699 					/* Abort loop */
2700 					*ev->ev_pncalls = 0;
2701 				}
2702 			}
2703 
2704 			event_queue_remove_active(base, event_to_event_callback(ev));
2705 		}
2706 
2707 		gettime(base, &now);
2708 
2709 		common_timeout = is_common_timeout(tv, base);
2710 #ifdef USE_REINSERT_TIMEOUT
2711 		was_common = is_common_timeout(&ev->ev_timeout, base);
2712 		old_timeout_idx = COMMON_TIMEOUT_IDX(&ev->ev_timeout);
2713 #endif
2714 
2715 		if (tv_is_absolute) {
2716 			ev->ev_timeout = *tv;
2717 		} else if (common_timeout) {
2718 			struct timeval tmp = *tv;
2719 			tmp.tv_usec &= MICROSECONDS_MASK;
2720 			evutil_timeradd(&now, &tmp, &ev->ev_timeout);
2721 			ev->ev_timeout.tv_usec |=
2722 			    (tv->tv_usec & ~MICROSECONDS_MASK);
2723 		} else {
2724 			evutil_timeradd(&now, tv, &ev->ev_timeout);
2725 		}
2726 
2727 		event_debug((
2728 			 "event_add: event %p, timeout in %d seconds %d useconds, call %p",
2729 			 ev, (int)tv->tv_sec, (int)tv->tv_usec, ev->ev_callback));
2730 
2731 #ifdef USE_REINSERT_TIMEOUT
2732 		event_queue_reinsert_timeout(base, ev, was_common, common_timeout, old_timeout_idx);
2733 #else
2734 		event_queue_insert_timeout(base, ev);
2735 #endif
2736 
2737 		if (common_timeout) {
2738 			struct common_timeout_list *ctl =
2739 			    get_common_timeout_list(base, &ev->ev_timeout);
2740 			if (ev == TAILQ_FIRST(&ctl->events)) {
2741 				common_timeout_schedule(ctl, &now, ev);
2742 			}
2743 		} else {
2744 			struct event* top = NULL;
2745 			/* See if the earliest timeout is now earlier than it
2746 			 * was before: if so, we will need to tell the main
2747 			 * thread to wake up earlier than it would otherwise.
2748 			 * We double check the timeout of the top element to
2749 			 * handle time distortions due to system suspension.
2750 			 */
2751 			if (min_heap_elt_is_top_(ev))
2752 				notify = 1;
2753 			else if ((top = min_heap_top_(&base->timeheap)) != NULL &&
2754 					 evutil_timercmp(&top->ev_timeout, &now, <))
2755 				notify = 1;
2756 		}
2757 	}
2758 
2759 	/* if we are not in the right thread, we need to wake up the loop */
2760 	if (res != -1 && notify && EVBASE_NEED_NOTIFY(base))
2761 		evthread_notify_base(base);
2762 
2763 	event_debug_note_add_(ev);
2764 
2765 	return (res);
2766 }
2767 
2768 static int
2769 event_del_(struct event *ev, int blocking)
2770 {
2771 	int res;
2772 	struct event_base *base = ev->ev_base;
2773 
2774 	if (EVUTIL_FAILURE_CHECK(!base)) {
2775 		event_warnx("%s: event has no event_base set.", __func__);
2776 		return -1;
2777 	}
2778 
2779 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
2780 	res = event_del_nolock_(ev, blocking);
2781 	EVBASE_RELEASE_LOCK(base, th_base_lock);
2782 
2783 	return (res);
2784 }
2785 
2786 int
2787 event_del(struct event *ev)
2788 {
2789 	return event_del_(ev, EVENT_DEL_AUTOBLOCK);
2790 }
2791 
2792 int
2793 event_del_block(struct event *ev)
2794 {
2795 	return event_del_(ev, EVENT_DEL_BLOCK);
2796 }
2797 
2798 int
2799 event_del_noblock(struct event *ev)
2800 {
2801 	return event_del_(ev, EVENT_DEL_NOBLOCK);
2802 }
2803 
2804 /** Helper for event_del: always called with th_base_lock held.
2805  *
2806  * "blocking" must be one of the EVENT_DEL_{BLOCK, NOBLOCK, AUTOBLOCK,
2807  * EVEN_IF_FINALIZING} values. See those for more information.
2808  */
2809 int
2810 event_del_nolock_(struct event *ev, int blocking)
2811 {
2812 	struct event_base *base;
2813 	int res = 0, notify = 0;
2814 
2815 	event_debug(("event_del: %p (fd "EV_SOCK_FMT"), callback %p",
2816 		ev, EV_SOCK_ARG(ev->ev_fd), ev->ev_callback));
2817 
2818 	/* An event without a base has not been added */
2819 	if (ev->ev_base == NULL)
2820 		return (-1);
2821 
2822 	EVENT_BASE_ASSERT_LOCKED(ev->ev_base);
2823 
2824 	if (blocking != EVENT_DEL_EVEN_IF_FINALIZING) {
2825 		if (ev->ev_flags & EVLIST_FINALIZING) {
2826 			/* XXXX Debug */
2827 			return 0;
2828 		}
2829 	}
2830 
2831 	base = ev->ev_base;
2832 
2833 	EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL));
2834 
2835 	/* See if we are just active executing this event in a loop */
2836 	if (ev->ev_events & EV_SIGNAL) {
2837 		if (ev->ev_ncalls && ev->ev_pncalls) {
2838 			/* Abort loop */
2839 			*ev->ev_pncalls = 0;
2840 		}
2841 	}
2842 
2843 	if (ev->ev_flags & EVLIST_TIMEOUT) {
2844 		/* NOTE: We never need to notify the main thread because of a
2845 		 * deleted timeout event: all that could happen if we don't is
2846 		 * that the dispatch loop might wake up too early.  But the
2847 		 * point of notifying the main thread _is_ to wake up the
2848 		 * dispatch loop early anyway, so we wouldn't gain anything by
2849 		 * doing it.
2850 		 */
2851 		event_queue_remove_timeout(base, ev);
2852 	}
2853 
2854 	if (ev->ev_flags & EVLIST_ACTIVE)
2855 		event_queue_remove_active(base, event_to_event_callback(ev));
2856 	else if (ev->ev_flags & EVLIST_ACTIVE_LATER)
2857 		event_queue_remove_active_later(base, event_to_event_callback(ev));
2858 
2859 	if (ev->ev_flags & EVLIST_INSERTED) {
2860 		event_queue_remove_inserted(base, ev);
2861 		if (ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED))
2862 			res = evmap_io_del_(base, ev->ev_fd, ev);
2863 		else
2864 			res = evmap_signal_del_(base, (int)ev->ev_fd, ev);
2865 		if (res == 1) {
2866 			/* evmap says we need to notify the main thread. */
2867 			notify = 1;
2868 			res = 0;
2869 		}
2870 		/* If we do not have events, let's notify event base so it can
2871 		 * exit without waiting */
2872 		if (!event_haveevents(base) && !N_ACTIVE_CALLBACKS(base))
2873 			notify = 1;
2874 	}
2875 
2876 	/* if we are not in the right thread, we need to wake up the loop */
2877 	if (res != -1 && notify && EVBASE_NEED_NOTIFY(base))
2878 		evthread_notify_base(base);
2879 
2880 	event_debug_note_del_(ev);
2881 
2882 	/* If the main thread is currently executing this event's callback,
2883 	 * and we are not the main thread, then we want to wait until the
2884 	 * callback is done before returning. That way, when this function
2885 	 * returns, it will be safe to free the user-supplied argument.
2886 	 */
2887 #ifndef EVENT__DISABLE_THREAD_SUPPORT
2888 	if (blocking != EVENT_DEL_NOBLOCK &&
2889 	    base->current_event == event_to_event_callback(ev) &&
2890 	    !EVBASE_IN_THREAD(base) &&
2891 	    (blocking == EVENT_DEL_BLOCK || !(ev->ev_events & EV_FINALIZE))) {
2892 		++base->current_event_waiters;
2893 		EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock);
2894 	}
2895 #endif
2896 
2897 	return (res);
2898 }
2899 
2900 void
2901 event_active(struct event *ev, int res, short ncalls)
2902 {
2903 	if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
2904 		event_warnx("%s: event has no event_base set.", __func__);
2905 		return;
2906 	}
2907 
2908 	EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
2909 
2910 	event_debug_assert_is_setup_(ev);
2911 
2912 	event_active_nolock_(ev, res, ncalls);
2913 
2914 	EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
2915 }
2916 
2917 
2918 void
2919 event_active_nolock_(struct event *ev, int res, short ncalls)
2920 {
2921 	struct event_base *base;
2922 
2923 	event_debug(("event_active: %p (fd "EV_SOCK_FMT"), res %d, callback %p",
2924 		ev, EV_SOCK_ARG(ev->ev_fd), (int)res, ev->ev_callback));
2925 
2926 	base = ev->ev_base;
2927 	EVENT_BASE_ASSERT_LOCKED(base);
2928 
2929 	if (ev->ev_flags & EVLIST_FINALIZING) {
2930 		/* XXXX debug */
2931 		return;
2932 	}
2933 
2934 	switch ((ev->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) {
2935 	default:
2936 	case EVLIST_ACTIVE|EVLIST_ACTIVE_LATER:
2937 		EVUTIL_ASSERT(0);
2938 		break;
2939 	case EVLIST_ACTIVE:
2940 		/* We get different kinds of events, add them together */
2941 		ev->ev_res |= res;
2942 		return;
2943 	case EVLIST_ACTIVE_LATER:
2944 		ev->ev_res |= res;
2945 		break;
2946 	case 0:
2947 		ev->ev_res = res;
2948 		break;
2949 	}
2950 
2951 	if (ev->ev_pri < base->event_running_priority)
2952 		base->event_continue = 1;
2953 
2954 	if (ev->ev_events & EV_SIGNAL) {
2955 #ifndef EVENT__DISABLE_THREAD_SUPPORT
2956 		if (base->current_event == event_to_event_callback(ev) &&
2957 		    !EVBASE_IN_THREAD(base)) {
2958 			++base->current_event_waiters;
2959 			EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock);
2960 		}
2961 #endif
2962 		ev->ev_ncalls = ncalls;
2963 		ev->ev_pncalls = NULL;
2964 	}
2965 
2966 	event_callback_activate_nolock_(base, event_to_event_callback(ev));
2967 }
2968 
2969 void
2970 event_active_later_(struct event *ev, int res)
2971 {
2972 	EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
2973 	event_active_later_nolock_(ev, res);
2974 	EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);
2975 }
2976 
2977 void
2978 event_active_later_nolock_(struct event *ev, int res)
2979 {
2980 	struct event_base *base = ev->ev_base;
2981 	EVENT_BASE_ASSERT_LOCKED(base);
2982 
2983 	if (ev->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) {
2984 		/* We get different kinds of events, add them together */
2985 		ev->ev_res |= res;
2986 		return;
2987 	}
2988 
2989 	ev->ev_res = res;
2990 
2991 	event_callback_activate_later_nolock_(base, event_to_event_callback(ev));
2992 }
2993 
2994 int
2995 event_callback_activate_(struct event_base *base,
2996     struct event_callback *evcb)
2997 {
2998 	int r;
2999 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3000 	r = event_callback_activate_nolock_(base, evcb);
3001 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3002 	return r;
3003 }
3004 
3005 int
3006 event_callback_activate_nolock_(struct event_base *base,
3007     struct event_callback *evcb)
3008 {
3009 	int r = 1;
3010 
3011 	if (evcb->evcb_flags & EVLIST_FINALIZING)
3012 		return 0;
3013 
3014 	switch (evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) {
3015 	default:
3016 		EVUTIL_ASSERT(0);
3017 		EVUTIL_FALLTHROUGH;
3018 	case EVLIST_ACTIVE_LATER:
3019 		event_queue_remove_active_later(base, evcb);
3020 		r = 0;
3021 		break;
3022 	case EVLIST_ACTIVE:
3023 		return 0;
3024 	case 0:
3025 		break;
3026 	}
3027 
3028 	event_queue_insert_active(base, evcb);
3029 
3030 	if (EVBASE_NEED_NOTIFY(base))
3031 		evthread_notify_base(base);
3032 
3033 	return r;
3034 }
3035 
3036 int
3037 event_callback_activate_later_nolock_(struct event_base *base,
3038     struct event_callback *evcb)
3039 {
3040 	if (evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))
3041 		return 0;
3042 
3043 	event_queue_insert_active_later(base, evcb);
3044 	if (EVBASE_NEED_NOTIFY(base))
3045 		evthread_notify_base(base);
3046 	return 1;
3047 }
3048 
3049 void
3050 event_callback_init_(struct event_base *base,
3051     struct event_callback *cb)
3052 {
3053 	memset(cb, 0, sizeof(*cb));
3054 	cb->evcb_pri = base->nactivequeues - 1;
3055 }
3056 
3057 int
3058 event_callback_cancel_(struct event_base *base,
3059     struct event_callback *evcb)
3060 {
3061 	int r;
3062 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3063 	r = event_callback_cancel_nolock_(base, evcb, 0);
3064 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3065 	return r;
3066 }
3067 
3068 int
3069 event_callback_cancel_nolock_(struct event_base *base,
3070     struct event_callback *evcb, int even_if_finalizing)
3071 {
3072 	if ((evcb->evcb_flags & EVLIST_FINALIZING) && !even_if_finalizing)
3073 		return 0;
3074 
3075 	if (evcb->evcb_flags & EVLIST_INIT)
3076 		return event_del_nolock_(event_callback_to_event(evcb),
3077 		    even_if_finalizing ? EVENT_DEL_EVEN_IF_FINALIZING : EVENT_DEL_AUTOBLOCK);
3078 
3079 	switch ((evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER))) {
3080 	default:
3081 	case EVLIST_ACTIVE|EVLIST_ACTIVE_LATER:
3082 		EVUTIL_ASSERT(0);
3083 		break;
3084 	case EVLIST_ACTIVE:
3085 		/* We get different kinds of events, add them together */
3086 		event_queue_remove_active(base, evcb);
3087 		return 0;
3088 	case EVLIST_ACTIVE_LATER:
3089 		event_queue_remove_active_later(base, evcb);
3090 		break;
3091 	case 0:
3092 		break;
3093 	}
3094 
3095 	return 0;
3096 }
3097 
3098 void
3099 event_deferred_cb_init_(struct event_callback *cb, ev_uint8_t priority, deferred_cb_fn fn, void *arg)
3100 {
3101 	memset(cb, 0, sizeof(*cb));
3102 	cb->evcb_cb_union.evcb_selfcb = fn;
3103 	cb->evcb_arg = arg;
3104 	cb->evcb_pri = priority;
3105 	cb->evcb_closure = EV_CLOSURE_CB_SELF;
3106 }
3107 
3108 void
3109 event_deferred_cb_set_priority_(struct event_callback *cb, ev_uint8_t priority)
3110 {
3111 	cb->evcb_pri = priority;
3112 }
3113 
3114 void
3115 event_deferred_cb_cancel_(struct event_base *base, struct event_callback *cb)
3116 {
3117 	if (!base)
3118 		base = current_base;
3119 	event_callback_cancel_(base, cb);
3120 }
3121 
3122 #define MAX_DEFERREDS_QUEUED 32
3123 int
3124 event_deferred_cb_schedule_(struct event_base *base, struct event_callback *cb)
3125 {
3126 	int r = 1;
3127 	if (!base)
3128 		base = current_base;
3129 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3130 	if (base->n_deferreds_queued > MAX_DEFERREDS_QUEUED) {
3131 		r = event_callback_activate_later_nolock_(base, cb);
3132 	} else {
3133 		r = event_callback_activate_nolock_(base, cb);
3134 		if (r) {
3135 			++base->n_deferreds_queued;
3136 		}
3137 	}
3138 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3139 	return r;
3140 }
3141 
3142 static int
3143 timeout_next(struct event_base *base, struct timeval **tv_p)
3144 {
3145 	/* Caller must hold th_base_lock */
3146 	struct timeval now;
3147 	struct event *ev;
3148 	struct timeval *tv = *tv_p;
3149 	int res = 0;
3150 
3151 	ev = min_heap_top_(&base->timeheap);
3152 
3153 	if (ev == NULL) {
3154 		/* if no time-based events are active wait for I/O */
3155 		*tv_p = NULL;
3156 		goto out;
3157 	}
3158 
3159 	if (gettime(base, &now) == -1) {
3160 		res = -1;
3161 		goto out;
3162 	}
3163 
3164 	if (evutil_timercmp(&ev->ev_timeout, &now, <=)) {
3165 		evutil_timerclear(tv);
3166 		goto out;
3167 	}
3168 
3169 	evutil_timersub(&ev->ev_timeout, &now, tv);
3170 
3171 	EVUTIL_ASSERT(tv->tv_sec >= 0);
3172 	EVUTIL_ASSERT(tv->tv_usec >= 0);
3173 	event_debug(("timeout_next: event: %p, in %d seconds, %d useconds", ev, (int)tv->tv_sec, (int)tv->tv_usec));
3174 
3175 out:
3176 	return (res);
3177 }
3178 
3179 /* Activate every event whose timeout has elapsed. */
3180 static void
3181 timeout_process(struct event_base *base)
3182 {
3183 	/* Caller must hold lock. */
3184 	struct timeval now;
3185 	struct event *ev;
3186 
3187 	if (min_heap_empty_(&base->timeheap)) {
3188 		return;
3189 	}
3190 
3191 	gettime(base, &now);
3192 
3193 	while ((ev = min_heap_top_(&base->timeheap))) {
3194 		if (evutil_timercmp(&ev->ev_timeout, &now, >))
3195 			break;
3196 
3197 		/* delete this event from the I/O queues */
3198 		event_del_nolock_(ev, EVENT_DEL_NOBLOCK);
3199 
3200 		event_debug(("timeout_process: event: %p, call %p",
3201 			 ev, ev->ev_callback));
3202 		event_active_nolock_(ev, EV_TIMEOUT, 1);
3203 	}
3204 }
3205 
3206 #ifndef MAX
3207 #define MAX(a,b) (((a)>(b))?(a):(b))
3208 #endif
3209 
3210 #define MAX_EVENT_COUNT(var, v) var = MAX(var, v)
3211 
3212 /* These are a fancy way to spell
3213      if (~flags & EVLIST_INTERNAL)
3214          base->event_count--/++;
3215 */
3216 #define DECR_EVENT_COUNT(base,flags) \
3217 	((base)->event_count -= !((flags) & EVLIST_INTERNAL))
3218 #define INCR_EVENT_COUNT(base,flags) do {					\
3219 	((base)->event_count += !((flags) & EVLIST_INTERNAL));			\
3220 	MAX_EVENT_COUNT((base)->event_count_max, (base)->event_count);		\
3221 } while (0)
3222 
3223 static void
3224 event_queue_remove_inserted(struct event_base *base, struct event *ev)
3225 {
3226 	EVENT_BASE_ASSERT_LOCKED(base);
3227 	if (EVUTIL_FAILURE_CHECK(!(ev->ev_flags & EVLIST_INSERTED))) {
3228 		event_errx(1, "%s: %p(fd "EV_SOCK_FMT") not on queue %x", __func__,
3229 		    ev, EV_SOCK_ARG(ev->ev_fd), EVLIST_INSERTED);
3230 		return;
3231 	}
3232 	DECR_EVENT_COUNT(base, ev->ev_flags);
3233 	ev->ev_flags &= ~EVLIST_INSERTED;
3234 }
3235 static void
3236 event_queue_remove_active(struct event_base *base, struct event_callback *evcb)
3237 {
3238 	EVENT_BASE_ASSERT_LOCKED(base);
3239 	if (EVUTIL_FAILURE_CHECK(!(evcb->evcb_flags & EVLIST_ACTIVE))) {
3240 		event_errx(1, "%s: %p not on queue %x", __func__,
3241 			   evcb, EVLIST_ACTIVE);
3242 		return;
3243 	}
3244 	DECR_EVENT_COUNT(base, evcb->evcb_flags);
3245 	evcb->evcb_flags &= ~EVLIST_ACTIVE;
3246 	base->event_count_active--;
3247 
3248 	TAILQ_REMOVE(&base->activequeues[evcb->evcb_pri],
3249 	    evcb, evcb_active_next);
3250 }
3251 static void
3252 event_queue_remove_active_later(struct event_base *base, struct event_callback *evcb)
3253 {
3254 	EVENT_BASE_ASSERT_LOCKED(base);
3255 	if (EVUTIL_FAILURE_CHECK(!(evcb->evcb_flags & EVLIST_ACTIVE_LATER))) {
3256 		event_errx(1, "%s: %p not on queue %x", __func__,
3257 			   evcb, EVLIST_ACTIVE_LATER);
3258 		return;
3259 	}
3260 	DECR_EVENT_COUNT(base, evcb->evcb_flags);
3261 	evcb->evcb_flags &= ~EVLIST_ACTIVE_LATER;
3262 	base->event_count_active--;
3263 
3264 	TAILQ_REMOVE(&base->active_later_queue, evcb, evcb_active_next);
3265 }
3266 static void
3267 event_queue_remove_timeout(struct event_base *base, struct event *ev)
3268 {
3269 	EVENT_BASE_ASSERT_LOCKED(base);
3270 	if (EVUTIL_FAILURE_CHECK(!(ev->ev_flags & EVLIST_TIMEOUT))) {
3271 		event_errx(1, "%s: %p(fd "EV_SOCK_FMT") not on queue %x", __func__,
3272 		    ev, EV_SOCK_ARG(ev->ev_fd), EVLIST_TIMEOUT);
3273 		return;
3274 	}
3275 	DECR_EVENT_COUNT(base, ev->ev_flags);
3276 	ev->ev_flags &= ~EVLIST_TIMEOUT;
3277 
3278 	if (is_common_timeout(&ev->ev_timeout, base)) {
3279 		struct common_timeout_list *ctl =
3280 		    get_common_timeout_list(base, &ev->ev_timeout);
3281 		TAILQ_REMOVE(&ctl->events, ev,
3282 		    ev_timeout_pos.ev_next_with_common_timeout);
3283 	} else {
3284 		min_heap_erase_(&base->timeheap, ev);
3285 	}
3286 }
3287 
3288 #ifdef USE_REINSERT_TIMEOUT
3289 /* Remove and reinsert 'ev' into the timeout queue. */
3290 static void
3291 event_queue_reinsert_timeout(struct event_base *base, struct event *ev,
3292     int was_common, int is_common, int old_timeout_idx)
3293 {
3294 	struct common_timeout_list *ctl;
3295 	if (!(ev->ev_flags & EVLIST_TIMEOUT)) {
3296 		event_queue_insert_timeout(base, ev);
3297 		return;
3298 	}
3299 
3300 	switch ((was_common<<1) | is_common) {
3301 	case 3: /* Changing from one common timeout to another */
3302 		ctl = base->common_timeout_queues[old_timeout_idx];
3303 		TAILQ_REMOVE(&ctl->events, ev,
3304 		    ev_timeout_pos.ev_next_with_common_timeout);
3305 		ctl = get_common_timeout_list(base, &ev->ev_timeout);
3306 		insert_common_timeout_inorder(ctl, ev);
3307 		break;
3308 	case 2: /* Was common; is no longer common */
3309 		ctl = base->common_timeout_queues[old_timeout_idx];
3310 		TAILQ_REMOVE(&ctl->events, ev,
3311 		    ev_timeout_pos.ev_next_with_common_timeout);
3312 		min_heap_push_(&base->timeheap, ev);
3313 		break;
3314 	case 1: /* Wasn't common; has become common. */
3315 		min_heap_erase_(&base->timeheap, ev);
3316 		ctl = get_common_timeout_list(base, &ev->ev_timeout);
3317 		insert_common_timeout_inorder(ctl, ev);
3318 		break;
3319 	case 0: /* was in heap; is still on heap. */
3320 		min_heap_adjust_(&base->timeheap, ev);
3321 		break;
3322 	default:
3323 		EVUTIL_ASSERT(0); /* unreachable */
3324 		break;
3325 	}
3326 }
3327 #endif
3328 
3329 /* Add 'ev' to the common timeout list in 'ev'. */
3330 static void
3331 insert_common_timeout_inorder(struct common_timeout_list *ctl,
3332     struct event *ev)
3333 {
3334 	struct event *e;
3335 	/* By all logic, we should just be able to append 'ev' to the end of
3336 	 * ctl->events, since the timeout on each 'ev' is set to {the common
3337 	 * timeout} + {the time when we add the event}, and so the events
3338 	 * should arrive in order of their timeeouts.  But just in case
3339 	 * there's some wacky threading issue going on, we do a search from
3340 	 * the end of 'ev' to find the right insertion point.
3341 	 */
3342 	TAILQ_FOREACH_REVERSE(e, &ctl->events,
3343 	    event_list, ev_timeout_pos.ev_next_with_common_timeout) {
3344 		/* This timercmp is a little sneaky, since both ev and e have
3345 		 * magic values in tv_usec.  Fortunately, they ought to have
3346 		 * the _same_ magic values in tv_usec.  Let's assert for that.
3347 		 */
3348 		EVUTIL_ASSERT(
3349 			is_same_common_timeout(&e->ev_timeout, &ev->ev_timeout));
3350 		if (evutil_timercmp(&ev->ev_timeout, &e->ev_timeout, >=)) {
3351 			TAILQ_INSERT_AFTER(&ctl->events, e, ev,
3352 			    ev_timeout_pos.ev_next_with_common_timeout);
3353 			return;
3354 		}
3355 	}
3356 	TAILQ_INSERT_HEAD(&ctl->events, ev,
3357 	    ev_timeout_pos.ev_next_with_common_timeout);
3358 }
3359 
3360 static void
3361 event_queue_insert_inserted(struct event_base *base, struct event *ev)
3362 {
3363 	EVENT_BASE_ASSERT_LOCKED(base);
3364 
3365 	if (EVUTIL_FAILURE_CHECK(ev->ev_flags & EVLIST_INSERTED)) {
3366 		event_errx(1, "%s: %p(fd "EV_SOCK_FMT") already inserted", __func__,
3367 		    ev, EV_SOCK_ARG(ev->ev_fd));
3368 		return;
3369 	}
3370 
3371 	INCR_EVENT_COUNT(base, ev->ev_flags);
3372 
3373 	ev->ev_flags |= EVLIST_INSERTED;
3374 }
3375 
3376 static void
3377 event_queue_insert_active(struct event_base *base, struct event_callback *evcb)
3378 {
3379 	EVENT_BASE_ASSERT_LOCKED(base);
3380 
3381 	if (evcb->evcb_flags & EVLIST_ACTIVE) {
3382 		/* Double insertion is possible for active events */
3383 		return;
3384 	}
3385 
3386 	INCR_EVENT_COUNT(base, evcb->evcb_flags);
3387 
3388 	evcb->evcb_flags |= EVLIST_ACTIVE;
3389 
3390 	base->event_count_active++;
3391 	MAX_EVENT_COUNT(base->event_count_active_max, base->event_count_active);
3392 	EVUTIL_ASSERT(evcb->evcb_pri < base->nactivequeues);
3393 	TAILQ_INSERT_TAIL(&base->activequeues[evcb->evcb_pri],
3394 	    evcb, evcb_active_next);
3395 }
3396 
3397 static void
3398 event_queue_insert_active_later(struct event_base *base, struct event_callback *evcb)
3399 {
3400 	EVENT_BASE_ASSERT_LOCKED(base);
3401 	if (evcb->evcb_flags & (EVLIST_ACTIVE_LATER|EVLIST_ACTIVE)) {
3402 		/* Double insertion is possible */
3403 		return;
3404 	}
3405 
3406 	INCR_EVENT_COUNT(base, evcb->evcb_flags);
3407 	evcb->evcb_flags |= EVLIST_ACTIVE_LATER;
3408 	base->event_count_active++;
3409 	MAX_EVENT_COUNT(base->event_count_active_max, base->event_count_active);
3410 	EVUTIL_ASSERT(evcb->evcb_pri < base->nactivequeues);
3411 	TAILQ_INSERT_TAIL(&base->active_later_queue, evcb, evcb_active_next);
3412 }
3413 
3414 static void
3415 event_queue_insert_timeout(struct event_base *base, struct event *ev)
3416 {
3417 	EVENT_BASE_ASSERT_LOCKED(base);
3418 
3419 	if (EVUTIL_FAILURE_CHECK(ev->ev_flags & EVLIST_TIMEOUT)) {
3420 		event_errx(1, "%s: %p(fd "EV_SOCK_FMT") already on timeout", __func__,
3421 		    ev, EV_SOCK_ARG(ev->ev_fd));
3422 		return;
3423 	}
3424 
3425 	INCR_EVENT_COUNT(base, ev->ev_flags);
3426 
3427 	ev->ev_flags |= EVLIST_TIMEOUT;
3428 
3429 	if (is_common_timeout(&ev->ev_timeout, base)) {
3430 		struct common_timeout_list *ctl =
3431 		    get_common_timeout_list(base, &ev->ev_timeout);
3432 		insert_common_timeout_inorder(ctl, ev);
3433 	} else {
3434 		min_heap_push_(&base->timeheap, ev);
3435 	}
3436 }
3437 
3438 static void
3439 event_queue_make_later_events_active(struct event_base *base)
3440 {
3441 	struct event_callback *evcb;
3442 	EVENT_BASE_ASSERT_LOCKED(base);
3443 
3444 	while ((evcb = TAILQ_FIRST(&base->active_later_queue))) {
3445 		TAILQ_REMOVE(&base->active_later_queue, evcb, evcb_active_next);
3446 		evcb->evcb_flags = (evcb->evcb_flags & ~EVLIST_ACTIVE_LATER) | EVLIST_ACTIVE;
3447 		EVUTIL_ASSERT(evcb->evcb_pri < base->nactivequeues);
3448 		TAILQ_INSERT_TAIL(&base->activequeues[evcb->evcb_pri], evcb, evcb_active_next);
3449 		base->n_deferreds_queued += (evcb->evcb_closure == EV_CLOSURE_CB_SELF);
3450 	}
3451 }
3452 
3453 /* Functions for debugging */
3454 
3455 const char *
3456 event_get_version(void)
3457 {
3458 	return (EVENT__VERSION);
3459 }
3460 
3461 ev_uint32_t
3462 event_get_version_number(void)
3463 {
3464 	return (EVENT__NUMERIC_VERSION);
3465 }
3466 
3467 /*
3468  * No thread-safe interface needed - the information should be the same
3469  * for all threads.
3470  */
3471 
3472 const char *
3473 event_get_method(void)
3474 {
3475 	return (current_base->evsel->name);
3476 }
3477 
3478 #ifndef EVENT__DISABLE_MM_REPLACEMENT
3479 static void *(*mm_malloc_fn_)(size_t sz) = NULL;
3480 static void *(*mm_realloc_fn_)(void *p, size_t sz) = NULL;
3481 static void (*mm_free_fn_)(void *p) = NULL;
3482 
3483 void *
3484 event_mm_malloc_(size_t sz)
3485 {
3486 	if (sz == 0)
3487 		return NULL;
3488 
3489 	if (mm_malloc_fn_)
3490 		return mm_malloc_fn_(sz);
3491 	else
3492 		return malloc(sz);
3493 }
3494 
3495 void *
3496 event_mm_calloc_(size_t count, size_t size)
3497 {
3498 	if (count == 0 || size == 0)
3499 		return NULL;
3500 
3501 	if (mm_malloc_fn_) {
3502 		size_t sz = count * size;
3503 		void *p = NULL;
3504 		if (count > EV_SIZE_MAX / size)
3505 			goto error;
3506 		p = mm_malloc_fn_(sz);
3507 		if (p)
3508 			return memset(p, 0, sz);
3509 	} else {
3510 		void *p = calloc(count, size);
3511 #ifdef _WIN32
3512 		/* Windows calloc doesn't reliably set ENOMEM */
3513 		if (p == NULL)
3514 			goto error;
3515 #endif
3516 		return p;
3517 	}
3518 
3519 error:
3520 	errno = ENOMEM;
3521 	return NULL;
3522 }
3523 
3524 char *
3525 event_mm_strdup_(const char *str)
3526 {
3527 	if (!str) {
3528 		errno = EINVAL;
3529 		return NULL;
3530 	}
3531 
3532 	if (mm_malloc_fn_) {
3533 		size_t ln = strlen(str);
3534 		void *p = NULL;
3535 		if (ln == EV_SIZE_MAX)
3536 			goto error;
3537 		p = mm_malloc_fn_(ln+1);
3538 		if (p)
3539 			return memcpy(p, str, ln+1);
3540 	} else
3541 #ifdef _WIN32
3542 		return _strdup(str);
3543 #else
3544 		return strdup(str);
3545 #endif
3546 
3547 error:
3548 	errno = ENOMEM;
3549 	return NULL;
3550 }
3551 
3552 void *
3553 event_mm_realloc_(void *ptr, size_t sz)
3554 {
3555 	if (mm_realloc_fn_)
3556 		return mm_realloc_fn_(ptr, sz);
3557 	else
3558 		return realloc(ptr, sz);
3559 }
3560 
3561 void
3562 event_mm_free_(void *ptr)
3563 {
3564 	if (mm_free_fn_)
3565 		mm_free_fn_(ptr);
3566 	else
3567 		free(ptr);
3568 }
3569 
3570 void
3571 event_set_mem_functions(void *(*malloc_fn)(size_t sz),
3572 			void *(*realloc_fn)(void *ptr, size_t sz),
3573 			void (*free_fn)(void *ptr))
3574 {
3575 	mm_malloc_fn_ = malloc_fn;
3576 	mm_realloc_fn_ = realloc_fn;
3577 	mm_free_fn_ = free_fn;
3578 }
3579 #endif
3580 
3581 #ifdef EVENT__HAVE_EVENTFD
3582 static void
3583 evthread_notify_drain_eventfd(evutil_socket_t fd, short what, void *arg)
3584 {
3585 	ev_uint64_t msg;
3586 	ev_ssize_t r;
3587 	struct event_base *base = arg;
3588 
3589 	r = read(fd, (void*) &msg, sizeof(msg));
3590 	if (r<0 && errno != EAGAIN) {
3591 		event_sock_warn(fd, "Error reading from eventfd");
3592 	}
3593 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3594 	base->is_notify_pending = 0;
3595 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3596 }
3597 #endif
3598 
3599 static void
3600 evthread_notify_drain_default(evutil_socket_t fd, short what, void *arg)
3601 {
3602 	unsigned char buf[1024];
3603 	struct event_base *base = arg;
3604 #ifdef _WIN32
3605 	while (recv(fd, (char*)buf, sizeof(buf), 0) > 0)
3606 		;
3607 #else
3608 	while (read(fd, (char*)buf, sizeof(buf)) > 0)
3609 		;
3610 #endif
3611 
3612 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3613 	base->is_notify_pending = 0;
3614 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3615 }
3616 
3617 int
3618 evthread_make_base_notifiable(struct event_base *base)
3619 {
3620 	int r;
3621 	if (!base)
3622 		return -1;
3623 
3624 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3625 	r = evthread_make_base_notifiable_nolock_(base);
3626 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3627 	return r;
3628 }
3629 
3630 static int
3631 evthread_make_base_notifiable_nolock_(struct event_base *base)
3632 {
3633 	void (*cb)(evutil_socket_t, short, void *);
3634 	int (*notify)(struct event_base *);
3635 
3636 	if (base->th_notify_fn != NULL) {
3637 		/* The base is already notifiable: we're doing fine. */
3638 		return 0;
3639 	}
3640 
3641 #if defined(EVENT__HAVE_WORKING_KQUEUE)
3642 	if (base->evsel == &kqops && event_kq_add_notify_event_(base) == 0) {
3643 		base->th_notify_fn = event_kq_notify_base_;
3644 		/* No need to add an event here; the backend can wake
3645 		 * itself up just fine. */
3646 		return 0;
3647 	}
3648 #endif
3649 
3650 #ifdef EVENT__HAVE_EVENTFD
3651 	base->th_notify_fd[0] = evutil_eventfd_(0,
3652 	    EVUTIL_EFD_CLOEXEC|EVUTIL_EFD_NONBLOCK);
3653 	if (base->th_notify_fd[0] >= 0) {
3654 		base->th_notify_fd[1] = -1;
3655 		notify = evthread_notify_base_eventfd;
3656 		cb = evthread_notify_drain_eventfd;
3657 	} else
3658 #endif
3659 	if (evutil_make_internal_pipe_(base->th_notify_fd) == 0) {
3660 		notify = evthread_notify_base_default;
3661 		cb = evthread_notify_drain_default;
3662 	} else {
3663 		return -1;
3664 	}
3665 
3666 	base->th_notify_fn = notify;
3667 
3668 	/* prepare an event that we can use for wakeup */
3669 	event_assign(&base->th_notify, base, base->th_notify_fd[0],
3670 				 EV_READ|EV_PERSIST, cb, base);
3671 
3672 	/* we need to mark this as internal event */
3673 	base->th_notify.ev_flags |= EVLIST_INTERNAL;
3674 	event_priority_set(&base->th_notify, 0);
3675 
3676 	return event_add_nolock_(&base->th_notify, NULL, 0);
3677 }
3678 
3679 int
3680 event_base_foreach_event_nolock_(struct event_base *base,
3681     event_base_foreach_event_cb fn, void *arg)
3682 {
3683 	int r, i;
3684 	unsigned u;
3685 	struct event *ev;
3686 
3687 	/* Start out with all the EVLIST_INSERTED events. */
3688 	if ((r = evmap_foreach_event_(base, fn, arg)))
3689 		return r;
3690 
3691 	/* Okay, now we deal with those events that have timeouts and are in
3692 	 * the min-heap. */
3693 	for (u = 0; u < base->timeheap.n; ++u) {
3694 		ev = base->timeheap.p[u];
3695 		if (ev->ev_flags & EVLIST_INSERTED) {
3696 			/* we already processed this one */
3697 			continue;
3698 		}
3699 		if ((r = fn(base, ev, arg)))
3700 			return r;
3701 	}
3702 
3703 	/* Now for the events in one of the timeout queues.
3704 	 * the min-heap. */
3705 	for (i = 0; i < base->n_common_timeouts; ++i) {
3706 		struct common_timeout_list *ctl =
3707 		    base->common_timeout_queues[i];
3708 		TAILQ_FOREACH(ev, &ctl->events,
3709 		    ev_timeout_pos.ev_next_with_common_timeout) {
3710 			if (ev->ev_flags & EVLIST_INSERTED) {
3711 				/* we already processed this one */
3712 				continue;
3713 			}
3714 			if ((r = fn(base, ev, arg)))
3715 				return r;
3716 		}
3717 	}
3718 
3719 	/* Finally, we deal wit all the active events that we haven't touched
3720 	 * yet. */
3721 	for (i = 0; i < base->nactivequeues; ++i) {
3722 		struct event_callback *evcb;
3723 		TAILQ_FOREACH(evcb, &base->activequeues[i], evcb_active_next) {
3724 			if ((evcb->evcb_flags & (EVLIST_INIT|EVLIST_INSERTED|EVLIST_TIMEOUT)) != EVLIST_INIT) {
3725 				/* This isn't an event (evlist_init clear), or
3726 				 * we already processed it. (inserted or
3727 				 * timeout set */
3728 				continue;
3729 			}
3730 			ev = event_callback_to_event(evcb);
3731 			if ((r = fn(base, ev, arg)))
3732 				return r;
3733 		}
3734 	}
3735 
3736 	return 0;
3737 }
3738 
3739 /* Helper for event_base_dump_events: called on each event in the event base;
3740  * dumps only the inserted events. */
3741 static int
3742 dump_inserted_event_fn(const struct event_base *base, const struct event *e, void *arg)
3743 {
3744 	FILE *output = arg;
3745 	const char *gloss = (e->ev_events & EV_SIGNAL) ?
3746 	    "sig" : "fd ";
3747 
3748 	if (! (e->ev_flags & (EVLIST_INSERTED|EVLIST_TIMEOUT)))
3749 		return 0;
3750 
3751 	fprintf(output, "  %p [%s "EV_SOCK_FMT"]%s%s%s%s%s%s%s",
3752 	    (void*)e, gloss, EV_SOCK_ARG(e->ev_fd),
3753 	    (e->ev_events&EV_READ)?" Read":"",
3754 	    (e->ev_events&EV_WRITE)?" Write":"",
3755 	    (e->ev_events&EV_CLOSED)?" EOF":"",
3756 	    (e->ev_events&EV_SIGNAL)?" Signal":"",
3757 	    (e->ev_events&EV_PERSIST)?" Persist":"",
3758 	    (e->ev_events&EV_ET)?" ET":"",
3759 	    (e->ev_flags&EVLIST_INTERNAL)?" Internal":"");
3760 	if (e->ev_flags & EVLIST_TIMEOUT) {
3761 		struct timeval tv;
3762 		tv.tv_sec = e->ev_timeout.tv_sec;
3763 		tv.tv_usec = e->ev_timeout.tv_usec & MICROSECONDS_MASK;
3764 		evutil_timeradd(&tv, &base->tv_clock_diff, &tv);
3765 		fprintf(output, " Timeout=%ld.%06d",
3766 		    (long)tv.tv_sec, (int)(tv.tv_usec & MICROSECONDS_MASK));
3767 	}
3768 	fputc('\n', output);
3769 
3770 	return 0;
3771 }
3772 
3773 /* Helper for event_base_dump_events: called on each event in the event base;
3774  * dumps only the active events. */
3775 static int
3776 dump_active_event_fn(const struct event_base *base, const struct event *e, void *arg)
3777 {
3778 	FILE *output = arg;
3779 	const char *gloss = (e->ev_events & EV_SIGNAL) ?
3780 	    "sig" : "fd ";
3781 
3782 	if (! (e->ev_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)))
3783 		return 0;
3784 
3785 	fprintf(output, "  %p [%s "EV_SOCK_FMT", priority=%d]%s%s%s%s%s active%s%s\n",
3786 	    (void*)e, gloss, EV_SOCK_ARG(e->ev_fd), e->ev_pri,
3787 	    (e->ev_res&EV_READ)?" Read":"",
3788 	    (e->ev_res&EV_WRITE)?" Write":"",
3789 	    (e->ev_res&EV_CLOSED)?" EOF":"",
3790 	    (e->ev_res&EV_SIGNAL)?" Signal":"",
3791 	    (e->ev_res&EV_TIMEOUT)?" Timeout":"",
3792 	    (e->ev_flags&EVLIST_INTERNAL)?" [Internal]":"",
3793 	    (e->ev_flags&EVLIST_ACTIVE_LATER)?" [NextTime]":"");
3794 
3795 	return 0;
3796 }
3797 
3798 int
3799 event_base_foreach_event(struct event_base *base,
3800     event_base_foreach_event_cb fn, void *arg)
3801 {
3802 	int r;
3803 	if ((!fn) || (!base)) {
3804 		return -1;
3805 	}
3806 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3807 	r = event_base_foreach_event_nolock_(base, fn, arg);
3808 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3809 	return r;
3810 }
3811 
3812 
3813 void
3814 event_base_dump_events(struct event_base *base, FILE *output)
3815 {
3816 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3817 	fprintf(output, "Inserted events:\n");
3818 	event_base_foreach_event_nolock_(base, dump_inserted_event_fn, output);
3819 
3820 	fprintf(output, "Active events:\n");
3821 	event_base_foreach_event_nolock_(base, dump_active_event_fn, output);
3822 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3823 }
3824 
3825 void
3826 event_base_active_by_fd(struct event_base *base, evutil_socket_t fd, short events)
3827 {
3828 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3829 
3830 	/* Activate any non timer events */
3831 	if (!(events & EV_TIMEOUT)) {
3832 		evmap_io_active_(base, fd, events & (EV_READ|EV_WRITE|EV_CLOSED));
3833 	} else {
3834 		/* If we want to activate timer events, loop and activate each event with
3835 		 * the same fd in both the timeheap and common timeouts list */
3836 		int i;
3837 		unsigned u;
3838 		struct event *ev;
3839 
3840 		for (u = 0; u < base->timeheap.n; ++u) {
3841 			ev = base->timeheap.p[u];
3842 			if (ev->ev_fd == fd) {
3843 				event_active_nolock_(ev, EV_TIMEOUT, 1);
3844 			}
3845 		}
3846 
3847 		for (i = 0; i < base->n_common_timeouts; ++i) {
3848 			struct common_timeout_list *ctl = base->common_timeout_queues[i];
3849 			TAILQ_FOREACH(ev, &ctl->events,
3850 				ev_timeout_pos.ev_next_with_common_timeout) {
3851 				if (ev->ev_fd == fd) {
3852 					event_active_nolock_(ev, EV_TIMEOUT, 1);
3853 				}
3854 			}
3855 		}
3856 	}
3857 
3858 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3859 }
3860 
3861 void
3862 event_base_active_by_signal(struct event_base *base, int sig)
3863 {
3864 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3865 	evmap_signal_active_(base, sig, 1);
3866 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3867 }
3868 
3869 
3870 void
3871 event_base_add_virtual_(struct event_base *base)
3872 {
3873 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3874 	base->virtual_event_count++;
3875 	MAX_EVENT_COUNT(base->virtual_event_count_max, base->virtual_event_count);
3876 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3877 }
3878 
3879 void
3880 event_base_del_virtual_(struct event_base *base)
3881 {
3882 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3883 	EVUTIL_ASSERT(base->virtual_event_count > 0);
3884 	base->virtual_event_count--;
3885 	if (base->virtual_event_count == 0 && EVBASE_NEED_NOTIFY(base))
3886 		evthread_notify_base(base);
3887 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3888 }
3889 
3890 static void
3891 event_free_debug_globals_locks(void)
3892 {
3893 #ifndef EVENT__DISABLE_THREAD_SUPPORT
3894 #ifndef EVENT__DISABLE_DEBUG_MODE
3895 	if (event_debug_map_lock_ != NULL) {
3896 		EVTHREAD_FREE_LOCK(event_debug_map_lock_, 0);
3897 		event_debug_map_lock_ = NULL;
3898 		evthreadimpl_disable_lock_debugging_();
3899 	}
3900 #endif /* EVENT__DISABLE_DEBUG_MODE */
3901 #endif /* EVENT__DISABLE_THREAD_SUPPORT */
3902 	return;
3903 }
3904 
3905 static void
3906 event_free_debug_globals(void)
3907 {
3908 	event_free_debug_globals_locks();
3909 }
3910 
3911 static void
3912 event_free_evsig_globals(void)
3913 {
3914 	evsig_free_globals_();
3915 }
3916 
3917 static void
3918 event_free_evutil_globals(void)
3919 {
3920 	evutil_free_globals_();
3921 }
3922 
3923 static void
3924 event_free_globals(void)
3925 {
3926 	event_free_debug_globals();
3927 	event_free_evsig_globals();
3928 	event_free_evutil_globals();
3929 }
3930 
3931 void
3932 libevent_global_shutdown(void)
3933 {
3934 	event_disable_debug_mode();
3935 	event_free_globals();
3936 }
3937 
3938 #ifndef EVENT__DISABLE_THREAD_SUPPORT
3939 int
3940 event_global_setup_locks_(const int enable_locks)
3941 {
3942 #ifndef EVENT__DISABLE_DEBUG_MODE
3943 	EVTHREAD_SETUP_GLOBAL_LOCK(event_debug_map_lock_, 0);
3944 #endif
3945 	if (evsig_global_setup_locks_(enable_locks) < 0)
3946 		return -1;
3947 	if (evutil_global_setup_locks_(enable_locks) < 0)
3948 		return -1;
3949 	if (evutil_secure_rng_global_setup_locks_(enable_locks) < 0)
3950 		return -1;
3951 	return 0;
3952 }
3953 #endif
3954 
3955 void
3956 event_base_assert_ok_(struct event_base *base)
3957 {
3958 	EVBASE_ACQUIRE_LOCK(base, th_base_lock);
3959 	event_base_assert_ok_nolock_(base);
3960 	EVBASE_RELEASE_LOCK(base, th_base_lock);
3961 }
3962 
3963 void
3964 event_base_assert_ok_nolock_(struct event_base *base)
3965 {
3966 	int i;
3967 	int count;
3968 
3969 	/* First do checks on the per-fd and per-signal lists */
3970 	evmap_check_integrity_(base);
3971 
3972 	/* Check the heap property */
3973 	for (i = 1; i < (int)base->timeheap.n; ++i) {
3974 		int parent = (i - 1) / 2;
3975 		struct event *ev, *p_ev;
3976 		ev = base->timeheap.p[i];
3977 		p_ev = base->timeheap.p[parent];
3978 		EVUTIL_ASSERT(ev->ev_flags & EVLIST_TIMEOUT);
3979 		EVUTIL_ASSERT(evutil_timercmp(&p_ev->ev_timeout, &ev->ev_timeout, <=));
3980 		EVUTIL_ASSERT(ev->ev_timeout_pos.min_heap_idx == i);
3981 	}
3982 
3983 	/* Check that the common timeouts are fine */
3984 	for (i = 0; i < base->n_common_timeouts; ++i) {
3985 		struct common_timeout_list *ctl = base->common_timeout_queues[i];
3986 		struct event *last=NULL, *ev;
3987 
3988 		EVUTIL_ASSERT_TAILQ_OK(&ctl->events, event, ev_timeout_pos.ev_next_with_common_timeout);
3989 
3990 		TAILQ_FOREACH(ev, &ctl->events, ev_timeout_pos.ev_next_with_common_timeout) {
3991 			if (last)
3992 				EVUTIL_ASSERT(evutil_timercmp(&last->ev_timeout, &ev->ev_timeout, <=));
3993 			EVUTIL_ASSERT(ev->ev_flags & EVLIST_TIMEOUT);
3994 			EVUTIL_ASSERT(is_common_timeout(&ev->ev_timeout,base));
3995 			EVUTIL_ASSERT(COMMON_TIMEOUT_IDX(&ev->ev_timeout) == i);
3996 			last = ev;
3997 		}
3998 	}
3999 
4000 	/* Check the active queues. */
4001 	count = 0;
4002 	for (i = 0; i < base->nactivequeues; ++i) {
4003 		struct event_callback *evcb;
4004 		EVUTIL_ASSERT_TAILQ_OK(&base->activequeues[i], event_callback, evcb_active_next);
4005 		TAILQ_FOREACH(evcb, &base->activequeues[i], evcb_active_next) {
4006 			EVUTIL_ASSERT((evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) == EVLIST_ACTIVE);
4007 			EVUTIL_ASSERT(evcb->evcb_pri == i);
4008 			++count;
4009 		}
4010 	}
4011 
4012 	{
4013 		struct event_callback *evcb;
4014 		TAILQ_FOREACH(evcb, &base->active_later_queue, evcb_active_next) {
4015 			EVUTIL_ASSERT((evcb->evcb_flags & (EVLIST_ACTIVE|EVLIST_ACTIVE_LATER)) == EVLIST_ACTIVE_LATER);
4016 			++count;
4017 		}
4018 	}
4019 	EVUTIL_ASSERT(count == base->event_count_active);
4020 }
4021