1 /* Myers diff algorithm implementation, invented by Eugene W. Myers [1]. 2 * Implementations of both the Myers Divide Et Impera (using linear space) 3 * and the canonical Myers algorithm (using quadratic space). */ 4 /* 5 * Copyright (c) 2020 Neels Hofmeyr <neels@hofmeyr.de> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <stdbool.h> 21 #include <stdint.h> 22 #include <stdlib.h> 23 #include <string.h> 24 #include <stdio.h> 25 #include <errno.h> 26 27 #include <arraylist.h> 28 #include <diff_main.h> 29 30 #include "diff_internal.h" 31 #include "diff_debug.h" 32 33 /* Myers' diff algorithm [1] is nicely explained in [2]. 34 * [1] http://www.xmailserver.org/diff2.pdf 35 * [2] https://blog.jcoglan.com/2017/02/12/the-myers-diff-algorithm-part-1/ ff. 36 * 37 * Myers approaches finding the smallest diff as a graph problem. 38 * The crux is that the original algorithm requires quadratic amount of memory: 39 * both sides' lengths added, and that squared. So if we're diffing lines of 40 * text, two files with 1000 lines each would blow up to a matrix of about 41 * 2000 * 2000 ints of state, about 16 Mb of RAM to figure out 2 kb of text. 42 * The solution is using Myers' "divide and conquer" extension algorithm, which 43 * does the original traversal from both ends of the files to reach a middle 44 * where these "snakes" touch, hence does not need to backtrace the traversal, 45 * and so gets away with only keeping a single column of that huge state matrix 46 * in memory. 47 */ 48 49 struct diff_box { 50 unsigned int left_start; 51 unsigned int left_end; 52 unsigned int right_start; 53 unsigned int right_end; 54 }; 55 56 /* If the two contents of a file are A B C D E and X B C Y, 57 * the Myers diff graph looks like: 58 * 59 * k0 k1 60 * \ \ 61 * k-1 0 1 2 3 4 5 62 * \ A B C D E 63 * 0 o-o-o-o-o-o 64 * X | | | | | | 65 * 1 o-o-o-o-o-o 66 * B | |\| | | | 67 * 2 o-o-o-o-o-o 68 * C | | |\| | | 69 * 3 o-o-o-o-o-o 70 * Y | | | | | |\ 71 * 4 o-o-o-o-o-o c1 72 * \ \ 73 * c-1 c0 74 * 75 * Moving right means delete an atom from the left-hand-side, 76 * Moving down means add an atom from the right-hand-side. 77 * Diagonals indicate identical atoms on both sides, the challenge is to use as 78 * many diagonals as possible. 79 * 80 * The original Myers algorithm walks all the way from the top left to the 81 * bottom right, remembers all steps, and then backtraces to find the shortest 82 * path. However, that requires keeping the entire graph in memory, which needs 83 * quadratic space. 84 * 85 * Myers adds a variant that uses linear space -- note, not linear time, only 86 * linear space: walk forward and backward, find a meeting point in the middle, 87 * and recurse on the two separate sections. This is called "divide and 88 * conquer". 89 * 90 * d: the step number, starting with 0, a.k.a. the distance from the starting 91 * point. 92 * k: relative index in the state array for the forward scan, indicating on 93 * which diagonal through the diff graph we currently are. 94 * c: relative index in the state array for the backward scan, indicating the 95 * diagonal number from the bottom up. 96 * 97 * The "divide and conquer" traversal through the Myers graph looks like this: 98 * 99 * | d= 0 1 2 3 2 1 0 100 * ----+-------------------------------------------- 101 * k= | c= 102 * 4 | 3 103 * | 104 * 3 | 3,0 5,2 2 105 * | / \ 106 * 2 | 2,0 5,3 1 107 * | / \ 108 * 1 | 1,0 4,3 >= 4,3 5,4<-- 0 109 * | / / \ / 110 * 0 | -->0,0 3,3 4,4 -1 111 * | \ / / 112 * -1 | 0,1 1,2 3,4 -2 113 * | \ / 114 * -2 | 0,2 -3 115 * | \ 116 * | 0,3 117 * | forward-> <-backward 118 * 119 * x,y pairs here are the coordinates in the Myers graph: 120 * x = atom index in left-side source, y = atom index in the right-side source. 121 * 122 * Only one forward column and one backward column are kept in mem, each need at 123 * most left.len + 1 + right.len items. Note that each d step occupies either 124 * the even or the odd items of a column: if e.g. the previous column is in the 125 * odd items, the next column is formed in the even items, without overwriting 126 * the previous column's results. 127 * 128 * Also note that from the diagonal index k and the x coordinate, the y 129 * coordinate can be derived: 130 * y = x - k 131 * Hence the state array only needs to keep the x coordinate, i.e. the position 132 * in the left-hand file, and the y coordinate, i.e. position in the right-hand 133 * file, is derived from the index in the state array. 134 * 135 * The two traces meet at 4,3, the first step (here found in the forward 136 * traversal) where a forward position is on or past a backward traced position 137 * on the same diagonal. 138 * 139 * This divides the problem space into: 140 * 141 * 0 1 2 3 4 5 142 * A B C D E 143 * 0 o-o-o-o-o 144 * X | | | | | 145 * 1 o-o-o-o-o 146 * B | |\| | | 147 * 2 o-o-o-o-o 148 * C | | |\| | 149 * 3 o-o-o-o-*-o *: forward and backward meet here 150 * Y | | 151 * 4 o-o 152 * 153 * Doing the same on each section lead to: 154 * 155 * 0 1 2 3 4 5 156 * A B C D E 157 * 0 o-o 158 * X | | 159 * 1 o-b b: backward d=1 first reaches here (sliding up the snake) 160 * B \ f: then forward d=2 reaches here (sliding down the snake) 161 * 2 o As result, the box from b to f is found to be identical; 162 * C \ leaving a top box from 0,0 to 1,1 and a bottom trivial 163 * 3 f-o tail 3,3 to 4,3. 164 * 165 * 3 o-* 166 * Y | 167 * 4 o *: forward and backward meet here 168 * 169 * and solving the last top left box gives: 170 * 171 * 0 1 2 3 4 5 172 * A B C D E -A 173 * 0 o-o +X 174 * X | B 175 * 1 o C 176 * B \ -D 177 * 2 o -E 178 * C \ +Y 179 * 3 o-o-o 180 * Y | 181 * 4 o 182 * 183 */ 184 185 #define xk_to_y(X, K) ((X) - (K)) 186 #define xc_to_y(X, C, DELTA) ((X) - (C) + (DELTA)) 187 #define k_to_c(K, DELTA) ((K) + (DELTA)) 188 #define c_to_k(C, DELTA) ((C) - (DELTA)) 189 190 /* Do one forwards step in the "divide and conquer" graph traversal. 191 * left: the left side to diff. 192 * right: the right side to diff against. 193 * kd_forward: the traversal state for forwards traversal, modified by this 194 * function. 195 * This is carried over between invocations with increasing d. 196 * kd_forward points at the center of the state array, allowing 197 * negative indexes. 198 * kd_backward: the traversal state for backwards traversal, to find a meeting 199 * point. 200 * Since forwards is done first, kd_backward will be valid for d - 201 * 1, not d. 202 * kd_backward points at the center of the state array, allowing 203 * negative indexes. 204 * d: Step or distance counter, indicating for what value of d the kd_forward 205 * should be populated. 206 * For d == 0, kd_forward[0] is initialized, i.e. the first invocation should 207 * be for d == 0. 208 * meeting_snake: resulting meeting point, if any. 209 * Return true when a meeting point has been identified. 210 */ 211 static int 212 diff_divide_myers_forward(bool *found_midpoint, 213 struct diff_data *left, struct diff_data *right, 214 int *kd_forward, int *kd_backward, int d, 215 struct diff_box *meeting_snake) 216 { 217 int delta = (int)right->atoms.len - (int)left->atoms.len; 218 int k; 219 int x; 220 int prev_x; 221 int prev_y; 222 int x_before_slide; 223 *found_midpoint = false; 224 225 for (k = d; k >= -d; k -= 2) { 226 if (k < -(int)right->atoms.len || k > (int)left->atoms.len) { 227 /* This diagonal is completely outside of the Myers 228 * graph, don't calculate it. */ 229 if (k < 0) { 230 /* We are traversing negatively, and already 231 * below the entire graph, nothing will come of 232 * this. */ 233 debug(" break\n"); 234 break; 235 } 236 debug(" continue\n"); 237 continue; 238 } 239 if (d == 0) { 240 /* This is the initializing step. There is no prev_k 241 * yet, get the initial x from the top left of the Myers 242 * graph. */ 243 x = 0; 244 prev_x = x; 245 prev_y = xk_to_y(x, k); 246 } 247 /* Favoring "-" lines first means favoring moving rightwards in 248 * the Myers graph. 249 * For this, all k should derive from k - 1, only the bottom 250 * most k derive from k + 1: 251 * 252 * | d= 0 1 2 253 * ----+---------------- 254 * k= | 255 * 2 | 2,0 <-- from prev_k = 2 - 1 = 1 256 * | / 257 * 1 | 1,0 258 * | / 259 * 0 | -->0,0 3,3 260 * | \\ / 261 * -1 | 0,1 <-- bottom most for d=1 from 262 * | \\ prev_k = -1 + 1 = 0 263 * -2 | 0,2 <-- bottom most for d=2 from 264 * prev_k = -2 + 1 = -1 265 * 266 * Except when a k + 1 from a previous run already means a 267 * further advancement in the graph. 268 * If k == d, there is no k + 1 and k - 1 is the only option. 269 * If k < d, use k + 1 in case that yields a larger x. Also use 270 * k + 1 if k - 1 is outside the graph. 271 */ 272 else if (k > -d 273 && (k == d 274 || (k - 1 >= -(int)right->atoms.len 275 && kd_forward[k - 1] >= kd_forward[k + 1]))) { 276 /* Advance from k - 1. 277 * From position prev_k, step to the right in the Myers 278 * graph: x += 1. 279 */ 280 int prev_k = k - 1; 281 prev_x = kd_forward[prev_k]; 282 prev_y = xk_to_y(prev_x, prev_k); 283 x = prev_x + 1; 284 } else { 285 /* The bottom most one. 286 * From position prev_k, step to the bottom in the Myers 287 * graph: y += 1. 288 * Incrementing y is achieved by decrementing k while 289 * keeping the same x. 290 * (since we're deriving y from y = x - k). 291 */ 292 int prev_k = k + 1; 293 prev_x = kd_forward[prev_k]; 294 prev_y = xk_to_y(prev_x, prev_k); 295 x = prev_x; 296 } 297 298 x_before_slide = x; 299 /* Slide down any snake that we might find here. */ 300 while (x < left->atoms.len && xk_to_y(x, k) < right->atoms.len) { 301 bool same; 302 int r = diff_atom_same(&same, 303 &left->atoms.head[x], 304 &right->atoms.head[ 305 xk_to_y(x, k)]); 306 if (r) 307 return r; 308 if (!same) 309 break; 310 x++; 311 } 312 kd_forward[k] = x; 313 #if 0 314 if (x_before_slide != x) { 315 debug(" down %d similar lines\n", x - x_before_slide); 316 } 317 318 #if DEBUG 319 { 320 int fi; 321 for (fi = d; fi >= k; fi--) { 322 debug("kd_forward[%d] = (%d, %d)\n", fi, 323 kd_forward[fi], kd_forward[fi] - fi); 324 } 325 } 326 #endif 327 #endif 328 329 if (x < 0 || x > left->atoms.len 330 || xk_to_y(x, k) < 0 || xk_to_y(x, k) > right->atoms.len) 331 continue; 332 333 /* Figured out a new forwards traversal, see if this has gone 334 * onto or even past a preceding backwards traversal. 335 * 336 * If the delta in length is odd, then d and backwards_d hit the 337 * same state indexes: 338 * | d= 0 1 2 1 0 339 * ----+---------------- ---------------- 340 * k= | c= 341 * 4 | 3 342 * | 343 * 3 | 2 344 * | same 345 * 2 | 2,0====5,3 1 346 * | / \ 347 * 1 | 1,0 5,4<-- 0 348 * | / / 349 * 0 | -->0,0 3,3====4,4 -1 350 * | \ / 351 * -1 | 0,1 -2 352 * | \ 353 * -2 | 0,2 -3 354 * | 355 * 356 * If the delta is even, they end up off-by-one, i.e. on 357 * different diagonals: 358 * 359 * | d= 0 1 2 1 0 360 * ----+---------------- ---------------- 361 * | c= 362 * 3 | 3 363 * | 364 * 2 | 2,0 off 2 365 * | / \\ 366 * 1 | 1,0 4,3 1 367 * | / // \ 368 * 0 | -->0,0 3,3 4,4<-- 0 369 * | \ / / 370 * -1 | 0,1 3,4 -1 371 * | \ // 372 * -2 | 0,2 -2 373 * | 374 * 375 * So in the forward path, we can only match up diagonals when 376 * the delta is odd. 377 */ 378 if ((delta & 1) == 0) 379 continue; 380 /* Forwards is done first, so the backwards one was still at 381 * d - 1. Can't do this for d == 0. */ 382 int backwards_d = d - 1; 383 if (backwards_d < 0) 384 continue; 385 386 /* If both sides have the same length, forward and backward 387 * start on the same diagonal, meaning the backwards state index 388 * c == k. 389 * As soon as the lengths are not the same, the backwards 390 * traversal starts on a different diagonal, and c = k shifted 391 * by the difference in length. 392 */ 393 int c = k_to_c(k, delta); 394 395 /* When the file sizes are very different, the traversal trees 396 * start on far distant diagonals. 397 * They don't necessarily meet straight on. See whether this 398 * forward value is on a diagonal that is also valid in 399 * kd_backward[], and match them if so. */ 400 if (c >= -backwards_d && c <= backwards_d) { 401 /* Current k is on a diagonal that exists in 402 * kd_backward[]. If the two x positions have met or 403 * passed (forward walked onto or past backward), then 404 * we've found a midpoint / a mid-box. 405 * 406 * When forwards and backwards traversals meet, the 407 * endpoints of the mid-snake are not the two points in 408 * kd_forward and kd_backward, but rather the section 409 * that was slid (if any) of the current 410 * forward/backward traversal only. 411 * 412 * For example: 413 * 414 * o 415 * \ 416 * o 417 * \ 418 * o 419 * \ 420 * o 421 * \ 422 * X o o 423 * | | | 424 * o-o-o o 425 * \| 426 * M 427 * \ 428 * o 429 * \ 430 * A o 431 * | | 432 * o-o-o 433 * 434 * The forward traversal reached M from the top and slid 435 * downwards to A. The backward traversal already 436 * reached X, which is not a straight line from M 437 * anymore, so picking a mid-snake from M to X would 438 * yield a mistake. 439 * 440 * The correct mid-snake is between M and A. M is where 441 * the forward traversal hit the diagonal that the 442 * backward traversal has already passed, and A is what 443 * it reaches when sliding down identical lines. 444 */ 445 int backward_x = kd_backward[c]; 446 if (x >= backward_x) { 447 if (x_before_slide != x) { 448 /* met after sliding up a mid-snake */ 449 *meeting_snake = (struct diff_box){ 450 .left_start = x_before_slide, 451 .left_end = x, 452 .right_start = xc_to_y(x_before_slide, 453 c, delta), 454 .right_end = xk_to_y(x, k), 455 }; 456 } else { 457 /* met after a side step, non-identical 458 * line. Mark that as box divider 459 * instead. This makes sure that 460 * myers_divide never returns the same 461 * box that came as input, avoiding 462 * "infinite" looping. */ 463 *meeting_snake = (struct diff_box){ 464 .left_start = prev_x, 465 .left_end = x, 466 .right_start = prev_y, 467 .right_end = xk_to_y(x, k), 468 }; 469 } 470 debug("HIT x=(%u,%u) - y=(%u,%u)\n", 471 meeting_snake->left_start, 472 meeting_snake->right_start, 473 meeting_snake->left_end, 474 meeting_snake->right_end); 475 debug_dump_myers_graph(left, right, NULL, 476 kd_forward, d, 477 kd_backward, d-1); 478 *found_midpoint = true; 479 return 0; 480 } 481 } 482 } 483 484 return 0; 485 } 486 487 /* Do one backwards step in the "divide and conquer" graph traversal. 488 * left: the left side to diff. 489 * right: the right side to diff against. 490 * kd_forward: the traversal state for forwards traversal, to find a meeting 491 * point. 492 * Since forwards is done first, after this, both kd_forward and 493 * kd_backward will be valid for d. 494 * kd_forward points at the center of the state array, allowing 495 * negative indexes. 496 * kd_backward: the traversal state for backwards traversal, to find a meeting 497 * point. 498 * This is carried over between invocations with increasing d. 499 * kd_backward points at the center of the state array, allowing 500 * negative indexes. 501 * d: Step or distance counter, indicating for what value of d the kd_backward 502 * should be populated. 503 * Before the first invocation, kd_backward[0] shall point at the bottom 504 * right of the Myers graph (left.len, right.len). 505 * The first invocation will be for d == 1. 506 * meeting_snake: resulting meeting point, if any. 507 * Return true when a meeting point has been identified. 508 */ 509 static int 510 diff_divide_myers_backward(bool *found_midpoint, 511 struct diff_data *left, struct diff_data *right, 512 int *kd_forward, int *kd_backward, int d, 513 struct diff_box *meeting_snake) 514 { 515 int delta = (int)right->atoms.len - (int)left->atoms.len; 516 int c; 517 int x; 518 int prev_x; 519 int prev_y; 520 int x_before_slide; 521 522 *found_midpoint = false; 523 524 for (c = d; c >= -d; c -= 2) { 525 if (c < -(int)left->atoms.len || c > (int)right->atoms.len) { 526 /* This diagonal is completely outside of the Myers 527 * graph, don't calculate it. */ 528 if (c < 0) { 529 /* We are traversing negatively, and already 530 * below the entire graph, nothing will come of 531 * this. */ 532 break; 533 } 534 continue; 535 } 536 if (d == 0) { 537 /* This is the initializing step. There is no prev_c 538 * yet, get the initial x from the bottom right of the 539 * Myers graph. */ 540 x = left->atoms.len; 541 prev_x = x; 542 prev_y = xc_to_y(x, c, delta); 543 } 544 /* Favoring "-" lines first means favoring moving rightwards in 545 * the Myers graph. 546 * For this, all c should derive from c - 1, only the bottom 547 * most c derive from c + 1: 548 * 549 * 2 1 0 550 * --------------------------------------------------- 551 * c= 552 * 3 553 * 554 * from prev_c = c - 1 --> 5,2 2 555 * \ 556 * 5,3 1 557 * \ 558 * 4,3 5,4<-- 0 559 * \ / 560 * bottom most for d=1 from c + 1 --> 4,4 -1 561 * / 562 * bottom most for d=2 --> 3,4 -2 563 * 564 * Except when a c + 1 from a previous run already means a 565 * further advancement in the graph. 566 * If c == d, there is no c + 1 and c - 1 is the only option. 567 * If c < d, use c + 1 in case that yields a larger x. 568 * Also use c + 1 if c - 1 is outside the graph. 569 */ 570 else if (c > -d && (c == d 571 || (c - 1 >= -(int)right->atoms.len 572 && kd_backward[c - 1] <= kd_backward[c + 1]))) { 573 /* A top one. 574 * From position prev_c, step upwards in the Myers 575 * graph: y -= 1. 576 * Decrementing y is achieved by incrementing c while 577 * keeping the same x. (since we're deriving y from 578 * y = x - c + delta). 579 */ 580 int prev_c = c - 1; 581 prev_x = kd_backward[prev_c]; 582 prev_y = xc_to_y(prev_x, prev_c, delta); 583 x = prev_x; 584 } else { 585 /* The bottom most one. 586 * From position prev_c, step to the left in the Myers 587 * graph: x -= 1. 588 */ 589 int prev_c = c + 1; 590 prev_x = kd_backward[prev_c]; 591 prev_y = xc_to_y(prev_x, prev_c, delta); 592 x = prev_x - 1; 593 } 594 595 /* Slide up any snake that we might find here (sections of 596 * identical lines on both sides). */ 597 #if 0 598 debug("c=%d x-1=%d Yb-1=%d-1=%d\n", c, x-1, xc_to_y(x, c, 599 delta), 600 xc_to_y(x, c, delta)-1); 601 if (x > 0) { 602 debug(" l="); 603 debug_dump_atom(left, right, &left->atoms.head[x-1]); 604 } 605 if (xc_to_y(x, c, delta) > 0) { 606 debug(" r="); 607 debug_dump_atom(right, left, 608 &right->atoms.head[xc_to_y(x, c, delta)-1]); 609 } 610 #endif 611 x_before_slide = x; 612 while (x > 0 && xc_to_y(x, c, delta) > 0) { 613 bool same; 614 int r = diff_atom_same(&same, 615 &left->atoms.head[x-1], 616 &right->atoms.head[ 617 xc_to_y(x, c, delta)-1]); 618 if (r) 619 return r; 620 if (!same) 621 break; 622 x--; 623 } 624 kd_backward[c] = x; 625 #if 0 626 if (x_before_slide != x) { 627 debug(" up %d similar lines\n", x_before_slide - x); 628 } 629 630 if (DEBUG) { 631 int fi; 632 for (fi = d; fi >= c; fi--) { 633 debug("kd_backward[%d] = (%d, %d)\n", 634 fi, 635 kd_backward[fi], 636 kd_backward[fi] - fi + delta); 637 } 638 } 639 #endif 640 641 if (x < 0 || x > left->atoms.len 642 || xc_to_y(x, c, delta) < 0 643 || xc_to_y(x, c, delta) > right->atoms.len) 644 continue; 645 646 /* Figured out a new backwards traversal, see if this has gone 647 * onto or even past a preceding forwards traversal. 648 * 649 * If the delta in length is even, then d and backwards_d hit 650 * the same state indexes -- note how this is different from in 651 * the forwards traversal, because now both d are the same: 652 * 653 * | d= 0 1 2 2 1 0 654 * ----+---------------- -------------------- 655 * k= | c= 656 * 4 | 657 * | 658 * 3 | 3 659 * | same 660 * 2 | 2,0====5,2 2 661 * | / \ 662 * 1 | 1,0 5,3 1 663 * | / / \ 664 * 0 | -->0,0 3,3====4,3 5,4<-- 0 665 * | \ / / 666 * -1 | 0,1 4,4 -1 667 * | \ 668 * -2 | 0,2 -2 669 * | 670 * -3 671 * If the delta is odd, they end up off-by-one, i.e. on 672 * different diagonals. 673 * So in the backward path, we can only match up diagonals when 674 * the delta is even. 675 */ 676 if ((delta & 1) != 0) 677 continue; 678 /* Forwards was done first, now both d are the same. */ 679 int forwards_d = d; 680 681 /* As soon as the lengths are not the same, the 682 * backwards traversal starts on a different diagonal, 683 * and c = k shifted by the difference in length. 684 */ 685 int k = c_to_k(c, delta); 686 687 /* When the file sizes are very different, the traversal trees 688 * start on far distant diagonals. 689 * They don't necessarily meet straight on. See whether this 690 * backward value is also on a valid diagonal in kd_forward[], 691 * and match them if so. */ 692 if (k >= -forwards_d && k <= forwards_d) { 693 /* Current c is on a diagonal that exists in 694 * kd_forward[]. If the two x positions have met or 695 * passed (backward walked onto or past forward), then 696 * we've found a midpoint / a mid-box. 697 * 698 * When forwards and backwards traversals meet, the 699 * endpoints of the mid-snake are not the two points in 700 * kd_forward and kd_backward, but rather the section 701 * that was slid (if any) of the current 702 * forward/backward traversal only. 703 * 704 * For example: 705 * 706 * o-o-o 707 * | | 708 * o A 709 * | \ 710 * o o 711 * \ 712 * M 713 * |\ 714 * o o-o-o 715 * | | | 716 * o o X 717 * \ 718 * o 719 * \ 720 * o 721 * \ 722 * o 723 * 724 * The backward traversal reached M from the bottom and 725 * slid upwards. The forward traversal already reached 726 * X, which is not a straight line from M anymore, so 727 * picking a mid-snake from M to X would yield a 728 * mistake. 729 * 730 * The correct mid-snake is between M and A. M is where 731 * the backward traversal hit the diagonal that the 732 * forwards traversal has already passed, and A is what 733 * it reaches when sliding up identical lines. 734 */ 735 736 int forward_x = kd_forward[k]; 737 if (forward_x >= x) { 738 if (x_before_slide != x) { 739 /* met after sliding down a mid-snake */ 740 *meeting_snake = (struct diff_box){ 741 .left_start = x, 742 .left_end = x_before_slide, 743 .right_start = xc_to_y(x, c, delta), 744 .right_end = xk_to_y(x_before_slide, k), 745 }; 746 } else { 747 /* met after a side step, non-identical 748 * line. Mark that as box divider 749 * instead. This makes sure that 750 * myers_divide never returns the same 751 * box that came as input, avoiding 752 * "infinite" looping. */ 753 *meeting_snake = (struct diff_box){ 754 .left_start = x, 755 .left_end = prev_x, 756 .right_start = xc_to_y(x, c, delta), 757 .right_end = prev_y, 758 }; 759 } 760 debug("HIT x=%u,%u - y=%u,%u\n", 761 meeting_snake->left_start, 762 meeting_snake->right_start, 763 meeting_snake->left_end, 764 meeting_snake->right_end); 765 debug_dump_myers_graph(left, right, NULL, 766 kd_forward, d, 767 kd_backward, d); 768 *found_midpoint = true; 769 return 0; 770 } 771 } 772 } 773 return 0; 774 } 775 776 /* Integer square root approximation */ 777 static int 778 shift_sqrt(int val) 779 { 780 int i; 781 for (i = 1; val > 0; val >>= 2) 782 i <<= 1; 783 return i; 784 } 785 786 #define DIFF_EFFORT_MIN 1024 787 788 /* Myers "Divide et Impera": tracing forwards from the start and backwards from 789 * the end to find a midpoint that divides the problem into smaller chunks. 790 * Requires only linear amounts of memory. */ 791 int 792 diff_algo_myers_divide(const struct diff_algo_config *algo_config, 793 struct diff_state *state) 794 { 795 int rc = ENOMEM; 796 struct diff_data *left = &state->left; 797 struct diff_data *right = &state->right; 798 int *kd_buf; 799 800 debug("\n** %s\n", __func__); 801 debug("left:\n"); 802 debug_dump(left); 803 debug("right:\n"); 804 debug_dump(right); 805 806 /* Allocate two columns of a Myers graph, one for the forward and one 807 * for the backward traversal. */ 808 unsigned int max = left->atoms.len + right->atoms.len; 809 size_t kd_len = max + 1; 810 size_t kd_buf_size = kd_len << 1; 811 812 if (state->kd_buf_size < kd_buf_size) { 813 kd_buf = reallocarray(state->kd_buf, kd_buf_size, 814 sizeof(int)); 815 if (!kd_buf) 816 return ENOMEM; 817 state->kd_buf = kd_buf; 818 state->kd_buf_size = kd_buf_size; 819 } else 820 kd_buf = state->kd_buf; 821 int i; 822 for (i = 0; i < kd_buf_size; i++) 823 kd_buf[i] = -1; 824 int *kd_forward = kd_buf; 825 int *kd_backward = kd_buf + kd_len; 826 int max_effort = shift_sqrt(max/2); 827 828 if (max_effort < DIFF_EFFORT_MIN) 829 max_effort = DIFF_EFFORT_MIN; 830 831 /* The 'k' axis in Myers spans positive and negative indexes, so point 832 * the kd to the middle. 833 * It is then possible to index from -max/2 .. max/2. */ 834 kd_forward += max/2; 835 kd_backward += max/2; 836 837 int d; 838 struct diff_box mid_snake = {}; 839 bool found_midpoint = false; 840 for (d = 0; d <= (max/2); d++) { 841 int r; 842 r = diff_divide_myers_forward(&found_midpoint, left, right, 843 kd_forward, kd_backward, d, 844 &mid_snake); 845 if (r) 846 return r; 847 if (found_midpoint) 848 break; 849 r = diff_divide_myers_backward(&found_midpoint, left, right, 850 kd_forward, kd_backward, d, 851 &mid_snake); 852 if (r) 853 return r; 854 if (found_midpoint) 855 break; 856 857 /* Limit the effort spent looking for a mid snake. If files have 858 * very few lines in common, the effort spent to find nice mid 859 * snakes is just not worth it, the diff result will still be 860 * essentially minus everything on the left, plus everything on 861 * the right, with a few useless matches here and there. */ 862 if (d > max_effort) { 863 /* pick the furthest reaching point from 864 * kd_forward and kd_backward, and use that as a 865 * midpoint, to not step into another diff algo 866 * recursion with unchanged box. */ 867 int delta = (int)right->atoms.len - (int)left->atoms.len; 868 int x = 0; 869 int y; 870 int i; 871 int best_forward_i = 0; 872 int best_forward_distance = 0; 873 int best_backward_i = 0; 874 int best_backward_distance = 0; 875 int distance; 876 int best_forward_x; 877 int best_forward_y; 878 int best_backward_x; 879 int best_backward_y; 880 881 debug("~~~ HIT d = %d > max_effort = %d\n", d, max_effort); 882 debug_dump_myers_graph(left, right, NULL, 883 kd_forward, d, 884 kd_backward, d); 885 886 for (i = d; i >= -d; i -= 2) { 887 if (i >= -(int)right->atoms.len && i <= (int)left->atoms.len) { 888 x = kd_forward[i]; 889 y = xk_to_y(x, i); 890 distance = x + y; 891 if (distance > best_forward_distance) { 892 best_forward_distance = distance; 893 best_forward_i = i; 894 } 895 } 896 897 if (i >= -(int)left->atoms.len && i <= (int)right->atoms.len) { 898 x = kd_backward[i]; 899 y = xc_to_y(x, i, delta); 900 distance = (right->atoms.len - x) 901 + (left->atoms.len - y); 902 if (distance >= best_backward_distance) { 903 best_backward_distance = distance; 904 best_backward_i = i; 905 } 906 } 907 } 908 909 /* The myers-divide didn't meet in the middle. We just 910 * figured out the places where the forward path 911 * advanced the most, and the backward path advanced the 912 * most. Just divide at whichever one of those two is better. 913 * 914 * o-o 915 * | 916 * o 917 * \ 918 * o 919 * \ 920 * F <-- cut here 921 * 922 * 923 * 924 * or here --> B 925 * \ 926 * o 927 * \ 928 * o 929 * | 930 * o-o 931 */ 932 best_forward_x = kd_forward[best_forward_i]; 933 best_forward_y = xk_to_y(best_forward_x, best_forward_i); 934 best_backward_x = kd_backward[best_backward_i]; 935 best_backward_y = xc_to_y(best_backward_x, best_backward_i, delta); 936 937 if (best_forward_distance >= best_backward_distance) { 938 x = best_forward_x; 939 y = best_forward_y; 940 } else { 941 x = best_backward_x; 942 y = best_backward_y; 943 } 944 945 debug("max_effort cut at x=%d y=%d\n", x, y); 946 if (x < 0 || y < 0 947 || x > left->atoms.len || y > right->atoms.len) 948 break; 949 950 found_midpoint = true; 951 mid_snake = (struct diff_box){ 952 .left_start = x, 953 .left_end = x, 954 .right_start = y, 955 .right_end = y, 956 }; 957 break; 958 } 959 } 960 961 if (!found_midpoint) { 962 /* Divide and conquer failed to find a meeting point. Use the 963 * fallback_algo defined in the algo_config (leave this to the 964 * caller). This is just paranoia/sanity, we normally should 965 * always find a midpoint. 966 */ 967 debug(" no midpoint \n"); 968 rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK; 969 goto return_rc; 970 } else { 971 debug(" mid snake L: %u to %u of %u R: %u to %u of %u\n", 972 mid_snake.left_start, mid_snake.left_end, left->atoms.len, 973 mid_snake.right_start, mid_snake.right_end, 974 right->atoms.len); 975 976 /* Section before the mid-snake. */ 977 debug("Section before the mid-snake\n"); 978 979 struct diff_atom *left_atom = &left->atoms.head[0]; 980 unsigned int left_section_len = mid_snake.left_start; 981 struct diff_atom *right_atom = &right->atoms.head[0]; 982 unsigned int right_section_len = mid_snake.right_start; 983 984 if (left_section_len && right_section_len) { 985 /* Record an unsolved chunk, the caller will apply 986 * inner_algo() on this chunk. */ 987 if (!diff_state_add_chunk(state, false, 988 left_atom, left_section_len, 989 right_atom, 990 right_section_len)) 991 goto return_rc; 992 } else if (left_section_len && !right_section_len) { 993 /* Only left atoms and none on the right, they form a 994 * "minus" chunk, then. */ 995 if (!diff_state_add_chunk(state, true, 996 left_atom, left_section_len, 997 right_atom, 0)) 998 goto return_rc; 999 } else if (!left_section_len && right_section_len) { 1000 /* No left atoms, only atoms on the right, they form a 1001 * "plus" chunk, then. */ 1002 if (!diff_state_add_chunk(state, true, 1003 left_atom, 0, 1004 right_atom, 1005 right_section_len)) 1006 goto return_rc; 1007 } 1008 /* else: left_section_len == 0 and right_section_len == 0, i.e. 1009 * nothing before the mid-snake. */ 1010 1011 if (mid_snake.left_end > mid_snake.left_start 1012 || mid_snake.right_end > mid_snake.right_start) { 1013 /* The midpoint is a section of identical data on both 1014 * sides, or a certain differing line: that section 1015 * immediately becomes a solved chunk. */ 1016 debug("the mid-snake\n"); 1017 if (!diff_state_add_chunk(state, true, 1018 &left->atoms.head[mid_snake.left_start], 1019 mid_snake.left_end - mid_snake.left_start, 1020 &right->atoms.head[mid_snake.right_start], 1021 mid_snake.right_end - mid_snake.right_start)) 1022 goto return_rc; 1023 } 1024 1025 /* Section after the mid-snake. */ 1026 debug("Section after the mid-snake\n"); 1027 debug(" left_end %u right_end %u\n", 1028 mid_snake.left_end, mid_snake.right_end); 1029 debug(" left_count %u right_count %u\n", 1030 left->atoms.len, right->atoms.len); 1031 left_atom = &left->atoms.head[mid_snake.left_end]; 1032 left_section_len = left->atoms.len - mid_snake.left_end; 1033 right_atom = &right->atoms.head[mid_snake.right_end]; 1034 right_section_len = right->atoms.len - mid_snake.right_end; 1035 1036 if (left_section_len && right_section_len) { 1037 /* Record an unsolved chunk, the caller will apply 1038 * inner_algo() on this chunk. */ 1039 if (!diff_state_add_chunk(state, false, 1040 left_atom, left_section_len, 1041 right_atom, 1042 right_section_len)) 1043 goto return_rc; 1044 } else if (left_section_len && !right_section_len) { 1045 /* Only left atoms and none on the right, they form a 1046 * "minus" chunk, then. */ 1047 if (!diff_state_add_chunk(state, true, 1048 left_atom, left_section_len, 1049 right_atom, 0)) 1050 goto return_rc; 1051 } else if (!left_section_len && right_section_len) { 1052 /* No left atoms, only atoms on the right, they form a 1053 * "plus" chunk, then. */ 1054 if (!diff_state_add_chunk(state, true, 1055 left_atom, 0, 1056 right_atom, 1057 right_section_len)) 1058 goto return_rc; 1059 } 1060 /* else: left_section_len == 0 and right_section_len == 0, i.e. 1061 * nothing after the mid-snake. */ 1062 } 1063 1064 rc = DIFF_RC_OK; 1065 1066 return_rc: 1067 debug("** END %s\n", __func__); 1068 return rc; 1069 } 1070 1071 /* Myers Diff tracing from the start all the way through to the end, requiring 1072 * quadratic amounts of memory. This can fail if the required space surpasses 1073 * algo_config->permitted_state_size. */ 1074 int 1075 diff_algo_myers(const struct diff_algo_config *algo_config, 1076 struct diff_state *state) 1077 { 1078 /* do a diff_divide_myers_forward() without a _backward(), so that it 1079 * walks forward across the entire files to reach the end. Keep each 1080 * run's state, and do a final backtrace. */ 1081 int rc = ENOMEM; 1082 struct diff_data *left = &state->left; 1083 struct diff_data *right = &state->right; 1084 int *kd_buf; 1085 1086 debug("\n** %s\n", __func__); 1087 debug("left:\n"); 1088 debug_dump(left); 1089 debug("right:\n"); 1090 debug_dump(right); 1091 debug_dump_myers_graph(left, right, NULL, NULL, 0, NULL, 0); 1092 1093 /* Allocate two columns of a Myers graph, one for the forward and one 1094 * for the backward traversal. */ 1095 unsigned int max = left->atoms.len + right->atoms.len; 1096 size_t kd_len = max + 1 + max; 1097 size_t kd_buf_size = kd_len * kd_len; 1098 size_t kd_state_size = kd_buf_size * sizeof(int); 1099 debug("state size: %zu\n", kd_state_size); 1100 if (kd_buf_size < kd_len /* overflow? */ 1101 || (SIZE_MAX / kd_len ) < kd_len 1102 || kd_state_size > algo_config->permitted_state_size) { 1103 debug("state size %zu > permitted_state_size %zu, use fallback_algo\n", 1104 kd_state_size, algo_config->permitted_state_size); 1105 return DIFF_RC_USE_DIFF_ALGO_FALLBACK; 1106 } 1107 1108 if (state->kd_buf_size < kd_buf_size) { 1109 kd_buf = reallocarray(state->kd_buf, kd_buf_size, 1110 sizeof(int)); 1111 if (!kd_buf) 1112 return ENOMEM; 1113 state->kd_buf = kd_buf; 1114 state->kd_buf_size = kd_buf_size; 1115 } else 1116 kd_buf = state->kd_buf; 1117 1118 int i; 1119 for (i = 0; i < kd_buf_size; i++) 1120 kd_buf[i] = -1; 1121 1122 /* The 'k' axis in Myers spans positive and negative indexes, so point 1123 * the kd to the middle. 1124 * It is then possible to index from -max .. max. */ 1125 int *kd_origin = kd_buf + max; 1126 int *kd_column = kd_origin; 1127 1128 int d; 1129 int backtrack_d = -1; 1130 int backtrack_k = 0; 1131 int k; 1132 int x, y; 1133 for (d = 0; d <= max; d++, kd_column += kd_len) { 1134 debug("-- %s d=%d\n", __func__, d); 1135 1136 for (k = d; k >= -d; k -= 2) { 1137 if (k < -(int)right->atoms.len 1138 || k > (int)left->atoms.len) { 1139 /* This diagonal is completely outside of the 1140 * Myers graph, don't calculate it. */ 1141 if (k < -(int)right->atoms.len) 1142 debug(" %d k <" 1143 " -(int)right->atoms.len %d\n", 1144 k, -(int)right->atoms.len); 1145 else 1146 debug(" %d k > left->atoms.len %d\n", k, 1147 left->atoms.len); 1148 if (k < 0) { 1149 /* We are traversing negatively, and 1150 * already below the entire graph, 1151 * nothing will come of this. */ 1152 debug(" break\n"); 1153 break; 1154 } 1155 debug(" continue\n"); 1156 continue; 1157 } 1158 1159 if (d == 0) { 1160 /* This is the initializing step. There is no 1161 * prev_k yet, get the initial x from the top 1162 * left of the Myers graph. */ 1163 x = 0; 1164 } else { 1165 int *kd_prev_column = kd_column - kd_len; 1166 1167 /* Favoring "-" lines first means favoring 1168 * moving rightwards in the Myers graph. 1169 * For this, all k should derive from k - 1, 1170 * only the bottom most k derive from k + 1: 1171 * 1172 * | d= 0 1 2 1173 * ----+---------------- 1174 * k= | 1175 * 2 | 2,0 <-- from 1176 * | / prev_k = 2 - 1 = 1 1177 * 1 | 1,0 1178 * | / 1179 * 0 | -->0,0 3,3 1180 * | \\ / 1181 * -1 | 0,1 <-- bottom most for d=1 1182 * | \\ from prev_k = -1+1 = 0 1183 * -2 | 0,2 <-- bottom most for 1184 * d=2 from 1185 * prev_k = -2+1 = -1 1186 * 1187 * Except when a k + 1 from a previous run 1188 * already means a further advancement in the 1189 * graph. 1190 * If k == d, there is no k + 1 and k - 1 is the 1191 * only option. 1192 * If k < d, use k + 1 in case that yields a 1193 * larger x. Also use k + 1 if k - 1 is outside 1194 * the graph. 1195 */ 1196 if (k > -d 1197 && (k == d 1198 || (k - 1 >= -(int)right->atoms.len 1199 && kd_prev_column[k - 1] 1200 >= kd_prev_column[k + 1]))) { 1201 /* Advance from k - 1. 1202 * From position prev_k, step to the 1203 * right in the Myers graph: x += 1. 1204 */ 1205 int prev_k = k - 1; 1206 int prev_x = kd_prev_column[prev_k]; 1207 x = prev_x + 1; 1208 } else { 1209 /* The bottom most one. 1210 * From position prev_k, step to the 1211 * bottom in the Myers graph: y += 1. 1212 * Incrementing y is achieved by 1213 * decrementing k while keeping the same 1214 * x. (since we're deriving y from y = 1215 * x - k). 1216 */ 1217 int prev_k = k + 1; 1218 int prev_x = kd_prev_column[prev_k]; 1219 x = prev_x; 1220 } 1221 } 1222 1223 /* Slide down any snake that we might find here. */ 1224 while (x < left->atoms.len 1225 && xk_to_y(x, k) < right->atoms.len) { 1226 bool same; 1227 int r = diff_atom_same(&same, 1228 &left->atoms.head[x], 1229 &right->atoms.head[ 1230 xk_to_y(x, k)]); 1231 if (r) 1232 return r; 1233 if (!same) 1234 break; 1235 x++; 1236 } 1237 kd_column[k] = x; 1238 1239 if (x == left->atoms.len 1240 && xk_to_y(x, k) == right->atoms.len) { 1241 /* Found a path */ 1242 backtrack_d = d; 1243 backtrack_k = k; 1244 debug("Reached the end at d = %d, k = %d\n", 1245 backtrack_d, backtrack_k); 1246 break; 1247 } 1248 } 1249 1250 if (backtrack_d >= 0) 1251 break; 1252 } 1253 1254 debug_dump_myers_graph(left, right, kd_origin, NULL, 0, NULL, 0); 1255 1256 /* backtrack. A matrix spanning from start to end of the file is ready: 1257 * 1258 * | d= 0 1 2 3 4 1259 * ----+--------------------------------- 1260 * k= | 1261 * 3 | 1262 * | 1263 * 2 | 2,0 1264 * | / 1265 * 1 | 1,0 4,3 1266 * | / / \ 1267 * 0 | -->0,0 3,3 4,4 --> backtrack_d = 4, backtrack_k = 0 1268 * | \ / \ 1269 * -1 | 0,1 3,4 1270 * | \ 1271 * -2 | 0,2 1272 * | 1273 * 1274 * From (4,4) backwards, find the previous position that is the largest, and remember it. 1275 * 1276 */ 1277 for (d = backtrack_d, k = backtrack_k; d >= 0; d--) { 1278 x = kd_column[k]; 1279 y = xk_to_y(x, k); 1280 1281 /* When the best position is identified, remember it for that 1282 * kd_column. 1283 * That kd_column is no longer needed otherwise, so just 1284 * re-purpose kd_column[0] = x and kd_column[1] = y, 1285 * so that there is no need to allocate more memory. 1286 */ 1287 kd_column[0] = x; 1288 kd_column[1] = y; 1289 debug("Backtrack d=%d: xy=(%d, %d)\n", 1290 d, kd_column[0], kd_column[1]); 1291 1292 /* Don't access memory before kd_buf */ 1293 if (d == 0) 1294 break; 1295 int *kd_prev_column = kd_column - kd_len; 1296 1297 /* When y == 0, backtracking downwards (k-1) is the only way. 1298 * When x == 0, backtracking upwards (k+1) is the only way. 1299 * 1300 * | d= 0 1 2 3 4 1301 * ----+--------------------------------- 1302 * k= | 1303 * 3 | 1304 * | ..y == 0 1305 * 2 | 2,0 1306 * | / 1307 * 1 | 1,0 4,3 1308 * | / / \ 1309 * 0 | -->0,0 3,3 4,4 --> backtrack_d = 4, 1310 * | \ / \ backtrack_k = 0 1311 * -1 | 0,1 3,4 1312 * | \ 1313 * -2 | 0,2__ 1314 * | x == 0 1315 */ 1316 if (y == 0 1317 || (x > 0 1318 && kd_prev_column[k - 1] >= kd_prev_column[k + 1])) { 1319 k = k - 1; 1320 debug("prev k=k-1=%d x=%d y=%d\n", 1321 k, kd_prev_column[k], 1322 xk_to_y(kd_prev_column[k], k)); 1323 } else { 1324 k = k + 1; 1325 debug("prev k=k+1=%d x=%d y=%d\n", 1326 k, kd_prev_column[k], 1327 xk_to_y(kd_prev_column[k], k)); 1328 } 1329 kd_column = kd_prev_column; 1330 } 1331 1332 /* Forwards again, this time recording the diff chunks. 1333 * Definitely start from 0,0. kd_column[0] may actually point to the 1334 * bottom of a snake starting at 0,0 */ 1335 x = 0; 1336 y = 0; 1337 1338 kd_column = kd_origin; 1339 for (d = 0; d <= backtrack_d; d++, kd_column += kd_len) { 1340 int next_x = kd_column[0]; 1341 int next_y = kd_column[1]; 1342 debug("Forward track from xy(%d,%d) to xy(%d,%d)\n", 1343 x, y, next_x, next_y); 1344 1345 struct diff_atom *left_atom = &left->atoms.head[x]; 1346 int left_section_len = next_x - x; 1347 struct diff_atom *right_atom = &right->atoms.head[y]; 1348 int right_section_len = next_y - y; 1349 1350 rc = ENOMEM; 1351 if (left_section_len && right_section_len) { 1352 /* This must be a snake slide. 1353 * Snake slides have a straight line leading into them 1354 * (except when starting at (0,0)). Find out whether the 1355 * lead-in is horizontal or vertical: 1356 * 1357 * left 1358 * ----------> 1359 * | 1360 * r| o-o o 1361 * i| \ | 1362 * g| o o 1363 * h| \ \ 1364 * t| o o 1365 * v 1366 * 1367 * If left_section_len > right_section_len, the lead-in 1368 * is horizontal, meaning first remove one atom from the 1369 * left before sliding down the snake. 1370 * If right_section_len > left_section_len, the lead-in 1371 * is vetical, so add one atom from the right before 1372 * sliding down the snake. */ 1373 if (left_section_len == right_section_len + 1) { 1374 if (!diff_state_add_chunk(state, true, 1375 left_atom, 1, 1376 right_atom, 0)) 1377 goto return_rc; 1378 left_atom++; 1379 left_section_len--; 1380 } else if (right_section_len == left_section_len + 1) { 1381 if (!diff_state_add_chunk(state, true, 1382 left_atom, 0, 1383 right_atom, 1)) 1384 goto return_rc; 1385 right_atom++; 1386 right_section_len--; 1387 } else if (left_section_len != right_section_len) { 1388 /* The numbers are making no sense. Should never 1389 * happen. */ 1390 rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK; 1391 goto return_rc; 1392 } 1393 1394 if (!diff_state_add_chunk(state, true, 1395 left_atom, left_section_len, 1396 right_atom, 1397 right_section_len)) 1398 goto return_rc; 1399 } else if (left_section_len && !right_section_len) { 1400 /* Only left atoms and none on the right, they form a 1401 * "minus" chunk, then. */ 1402 if (!diff_state_add_chunk(state, true, 1403 left_atom, left_section_len, 1404 right_atom, 0)) 1405 goto return_rc; 1406 } else if (!left_section_len && right_section_len) { 1407 /* No left atoms, only atoms on the right, they form a 1408 * "plus" chunk, then. */ 1409 if (!diff_state_add_chunk(state, true, 1410 left_atom, 0, 1411 right_atom, 1412 right_section_len)) 1413 goto return_rc; 1414 } 1415 1416 x = next_x; 1417 y = next_y; 1418 } 1419 1420 rc = DIFF_RC_OK; 1421 1422 return_rc: 1423 debug("** END %s rc=%d\n", __func__, rc); 1424 return rc; 1425 } 1426