xref: /freebsd/contrib/libcxxrt/guard.cc (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 /*
2  * Copyright 2010-2012 PathScale, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * 1. Redistributions of source code must retain the above copyright notice,
8  *    this list of conditions and the following disclaimer.
9  *
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
15  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
24  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /**
28  * guard.cc: Functions for thread-safe static initialisation.
29  *
30  * Static values in C++ can be initialised lazily their first use.  This file
31  * contains functions that are used to ensure that two threads attempting to
32  * initialize the same static do not call the constructor twice.  This is
33  * important because constructors can have side effects, so calling the
34  * constructor twice may be very bad.
35  *
36  * Statics that require initialisation are protected by a 64-bit value.  Any
37  * platform that can do 32-bit atomic test and set operations can use this
38  * value as a low-overhead lock.  Because statics (in most sane code) are
39  * accessed far more times than they are initialised, this lock implementation
40  * is heavily optimised towards the case where the static has already been
41  * initialised.
42  */
43 #include <stdint.h>
44 #include <stdlib.h>
45 #include <stdio.h>
46 #include <pthread.h>
47 #include <assert.h>
48 #include "atomic.h"
49 
50 // Older GCC doesn't define __LITTLE_ENDIAN__
51 #ifndef __LITTLE_ENDIAN__
52 	// If __BYTE_ORDER__ is defined, use that instead
53 #	ifdef __BYTE_ORDER__
54 #		if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
55 #			define __LITTLE_ENDIAN__
56 #		endif
57 	// x86 and ARM are the most common little-endian CPUs, so let's have a
58 	// special case for them (ARM is already special cased).  Assume everything
59 	// else is big endian.
60 #	elif defined(__x86_64) || defined(__i386)
61 #		define __LITTLE_ENDIAN__
62 #	endif
63 #endif
64 
65 
66 /*
67  * The least significant bit of the guard variable indicates that the object
68  * has been initialised, the most significant bit is used for a spinlock.
69  */
70 #ifdef __arm__
71 // ARM ABI - 32-bit guards.
72 typedef uint32_t guard_t;
73 typedef uint32_t guard_lock_t;
74 static const uint32_t LOCKED = static_cast<guard_t>(1) << 31;
75 static const uint32_t INITIALISED = 1;
76 #define LOCK_PART(guard) (guard)
77 #define INIT_PART(guard) (guard)
78 #elif defined(_LP64)
79 typedef uint64_t guard_t;
80 typedef uint64_t guard_lock_t;
81 #	if defined(__LITTLE_ENDIAN__)
82 static const guard_t LOCKED = static_cast<guard_t>(1) << 63;
83 static const guard_t INITIALISED = 1;
84 #	else
85 static const guard_t LOCKED = 1;
86 static const guard_t INITIALISED = static_cast<guard_t>(1) << 56;
87 #	endif
88 #define LOCK_PART(guard) (guard)
89 #define INIT_PART(guard) (guard)
90 #else
91 typedef uint32_t guard_lock_t;
92 #	if defined(__LITTLE_ENDIAN__)
93 typedef struct {
94 	uint32_t init_half;
95 	uint32_t lock_half;
96 } guard_t;
97 static const uint32_t LOCKED = static_cast<guard_lock_t>(1) << 31;
98 static const uint32_t INITIALISED = 1;
99 #	else
100 typedef struct {
101 	uint32_t init_half;
102 	uint32_t lock_half;
103 } guard_t;
104 static_assert(sizeof(guard_t) == sizeof(uint64_t), "");
105 static const uint32_t LOCKED = 1;
106 static const uint32_t INITIALISED = static_cast<guard_lock_t>(1) << 24;
107 #	endif
108 #define LOCK_PART(guard) (&(guard)->lock_half)
109 #define INIT_PART(guard) (&(guard)->init_half)
110 #endif
111 static const guard_lock_t INITIAL = 0;
112 
113 /**
114  * Acquires a lock on a guard, returning 0 if the object has already been
115  * initialised, and 1 if it has not.  If the object is already constructed then
116  * this function just needs to read a byte from memory and return.
117  */
118 extern "C" int __cxa_guard_acquire(volatile guard_t *guard_object)
119 {
120 	guard_lock_t old;
121 	// Not an atomic read, doesn't establish a happens-before relationship, but
122 	// if one is already established and we end up seeing an initialised state
123 	// then it's a fast path, otherwise we'll do something more expensive than
124 	// this test anyway...
125 	if (INITIALISED == *INIT_PART(guard_object))
126 		return 0;
127 	// Spin trying to do the initialisation
128 	for (;;)
129 	{
130 		// Loop trying to move the value of the guard from 0 (not
131 		// locked, not initialised) to the locked-uninitialised
132 		// position.
133 		old = __sync_val_compare_and_swap(LOCK_PART(guard_object),
134 		    INITIAL, LOCKED);
135 		if (old == INITIAL) {
136 			// Lock obtained.  If lock and init bit are
137 			// in separate words, check for init race.
138 			if (INIT_PART(guard_object) == LOCK_PART(guard_object))
139 				return 1;
140 			if (INITIALISED != *INIT_PART(guard_object))
141 				return 1;
142 
143 			// No need for a memory barrier here,
144 			// see first comment.
145 			*LOCK_PART(guard_object) = INITIAL;
146 			return 0;
147 		}
148 		// If lock and init bit are in the same word, check again
149 		// if we are done.
150 		if (INIT_PART(guard_object) == LOCK_PART(guard_object) &&
151 		    old == INITIALISED)
152 			return 0;
153 
154 		assert(old == LOCKED);
155 		// Another thread holds the lock.
156 		// If lock and init bit are in different words, check
157 		// if we are done before yielding and looping.
158 		if (INIT_PART(guard_object) != LOCK_PART(guard_object) &&
159 		    INITIALISED == *INIT_PART(guard_object))
160 			return 0;
161 		sched_yield();
162 	}
163 }
164 
165 /**
166  * Releases the lock without marking the object as initialised.  This function
167  * is called if initialising a static causes an exception to be thrown.
168  */
169 extern "C" void __cxa_guard_abort(volatile guard_t *guard_object)
170 {
171 	__attribute__((unused))
172 	bool reset = __sync_bool_compare_and_swap(LOCK_PART(guard_object),
173 	    LOCKED, INITIAL);
174 	assert(reset);
175 }
176 /**
177  * Releases the guard and marks the object as initialised.  This function is
178  * called after successful initialisation of a static.
179  */
180 extern "C" void __cxa_guard_release(volatile guard_t *guard_object)
181 {
182 	guard_lock_t old;
183 	if (INIT_PART(guard_object) == LOCK_PART(guard_object))
184 		old = LOCKED;
185 	else
186 		old = INITIAL;
187 	__attribute__((unused))
188 	bool reset = __sync_bool_compare_and_swap(INIT_PART(guard_object),
189 	    old, INITIALISED);
190 	assert(reset);
191 	if (INIT_PART(guard_object) != LOCK_PART(guard_object))
192 		*LOCK_PART(guard_object) = INITIAL;
193 }
194