xref: /freebsd/contrib/libcxxrt/dwarf_eh.h (revision 3416500aef140042c64bc149cb1ec6620483bc44)
1 /*
2  * Copyright 2010-2011 PathScale, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * 1. Redistributions of source code must retain the above copyright notice,
8  *    this list of conditions and the following disclaimer.
9  *
10  * 2. Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
15  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
24  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 /**
27  * dwarf_eh.h - Defines some helper functions for parsing DWARF exception
28  * handling tables.
29  *
30  * This file contains various helper functions that are independent of the
31  * language-specific code.  It can be used in any personality function for the
32  * Itanium ABI.
33  */
34 #include <assert.h>
35 
36 // TODO: Factor out Itanium / ARM differences.  We probably want an itanium.h
37 // and arm.h that can be included by this file depending on the target ABI.
38 
39 // _GNU_SOURCE must be defined for unwind.h to expose some of the functions
40 // that we want.  If it isn't, then we define it and undefine it to make sure
41 // that it doesn't impact the rest of the program.
42 #ifndef _GNU_SOURCE
43 #	define _GNU_SOURCE 1
44 #	include "unwind.h"
45 #	undef _GNU_SOURCE
46 #else
47 #	include "unwind.h"
48 #endif
49 
50 #include <stdint.h>
51 
52 /// Type used for pointers into DWARF data
53 typedef unsigned char *dw_eh_ptr_t;
54 
55 // Flag indicating a signed quantity
56 #define DW_EH_PE_signed 0x08
57 /// DWARF data encoding types.
58 enum dwarf_data_encoding
59 {
60 	/// Absolute pointer value
61 	DW_EH_PE_absptr   = 0x00,
62 	/// Unsigned, little-endian, base 128-encoded (variable length).
63 	DW_EH_PE_uleb128 = 0x01,
64 	/// Unsigned 16-bit integer.
65 	DW_EH_PE_udata2  = 0x02,
66 	/// Unsigned 32-bit integer.
67 	DW_EH_PE_udata4  = 0x03,
68 	/// Unsigned 64-bit integer.
69 	DW_EH_PE_udata8  = 0x04,
70 	/// Signed, little-endian, base 128-encoded (variable length)
71 	DW_EH_PE_sleb128 = DW_EH_PE_uleb128 | DW_EH_PE_signed,
72 	/// Signed 16-bit integer.
73 	DW_EH_PE_sdata2  = DW_EH_PE_udata2 | DW_EH_PE_signed,
74 	/// Signed 32-bit integer.
75 	DW_EH_PE_sdata4  = DW_EH_PE_udata4 | DW_EH_PE_signed,
76 	/// Signed 32-bit integer.
77 	DW_EH_PE_sdata8  = DW_EH_PE_udata8 | DW_EH_PE_signed
78 };
79 
80 /**
81  * Returns the encoding for a DWARF EH table entry.  The encoding is stored in
82  * the low four of an octet.  The high four bits store the addressing mode.
83  */
84 static inline enum dwarf_data_encoding get_encoding(unsigned char x)
85 {
86 	return static_cast<enum dwarf_data_encoding>(x & 0xf);
87 }
88 
89 /**
90  * DWARF addressing mode constants.  When reading a pointer value from a DWARF
91  * exception table, you must know how it is stored and what the addressing mode
92  * is.  The low four bits tell you the encoding, allowing you to decode a
93  * number.  The high four bits tell you the addressing mode, allowing you to
94  * turn that number into an address in memory.
95  */
96 enum dwarf_data_relative
97 {
98 	/// Value is omitted
99 	DW_EH_PE_omit     = 0xff,
100 	/// Value relative to program counter
101 	DW_EH_PE_pcrel    = 0x10,
102 	/// Value relative to the text segment
103 	DW_EH_PE_textrel  = 0x20,
104 	/// Value relative to the data segment
105 	DW_EH_PE_datarel  = 0x30,
106 	/// Value relative to the start of the function
107 	DW_EH_PE_funcrel  = 0x40,
108 	/// Aligned pointer (Not supported yet - are they actually used?)
109 	DW_EH_PE_aligned  = 0x50,
110 	/// Pointer points to address of real value
111 	DW_EH_PE_indirect = 0x80
112 };
113 /**
114  * Returns the addressing mode component of this encoding.
115  */
116 static inline enum dwarf_data_relative get_base(unsigned char x)
117 {
118 	return static_cast<enum dwarf_data_relative>(x & 0x70);
119 }
120 /**
121  * Returns whether an encoding represents an indirect address.
122  */
123 static int is_indirect(unsigned char x)
124 {
125 	return ((x & DW_EH_PE_indirect) == DW_EH_PE_indirect);
126 }
127 
128 /**
129  * Returns the size of a fixed-size encoding.  This function will abort if
130  * called with a value that is not a fixed-size encoding.
131  */
132 static inline int dwarf_size_of_fixed_size_field(unsigned char type)
133 {
134 	switch (get_encoding(type))
135 	{
136 		default: abort();
137 		case DW_EH_PE_sdata2:
138 		case DW_EH_PE_udata2: return 2;
139 		case DW_EH_PE_sdata4:
140 		case DW_EH_PE_udata4: return 4;
141 		case DW_EH_PE_sdata8:
142 		case DW_EH_PE_udata8: return 8;
143 		case DW_EH_PE_absptr: return sizeof(void*);
144 	}
145 }
146 
147 /**
148  * Read an unsigned, little-endian, base-128, DWARF value.  Updates *data to
149  * point to the end of the value.  Stores the number of bits read in the value
150  * pointed to by b, allowing you to determine the value of the highest bit, and
151  * therefore the sign of a signed value.
152  *
153  * This function is not intended to be called directly.  Use read_sleb128() or
154  * read_uleb128() for reading signed and unsigned versions, respectively.
155  */
156 static uint64_t read_leb128(dw_eh_ptr_t *data, int *b)
157 {
158 	uint64_t uleb = 0;
159 	unsigned int bit = 0;
160 	unsigned char digit = 0;
161 	// We have to read at least one octet, and keep reading until we get to one
162 	// with the high bit unset
163 	do
164 	{
165 		// This check is a bit too strict - we should also check the highest
166 		// bit of the digit.
167 		assert(bit < sizeof(uint64_t) * 8);
168 		// Get the base 128 digit
169 		digit = (**data) & 0x7f;
170 		// Add it to the current value
171 		uleb += digit << bit;
172 		// Increase the shift value
173 		bit += 7;
174 		// Proceed to the next octet
175 		(*data)++;
176 		// Terminate when we reach a value that does not have the high bit set
177 		// (i.e. which was not modified when we mask it with 0x7f)
178 	} while ((*(*data - 1)) != digit);
179 	*b = bit;
180 
181 	return uleb;
182 }
183 
184 /**
185  * Reads an unsigned little-endian base-128 value starting at the address
186  * pointed to by *data.  Updates *data to point to the next byte after the end
187  * of the variable-length value.
188  */
189 static int64_t read_uleb128(dw_eh_ptr_t *data)
190 {
191 	int b;
192 	return read_leb128(data, &b);
193 }
194 
195 /**
196  * Reads a signed little-endian base-128 value starting at the address pointed
197  * to by *data.  Updates *data to point to the next byte after the end of the
198  * variable-length value.
199  */
200 static int64_t read_sleb128(dw_eh_ptr_t *data)
201 {
202 	int bits;
203 	// Read as if it's signed
204 	uint64_t uleb = read_leb128(data, &bits);
205 	// If the most significant bit read is 1, then we need to sign extend it
206 	if ((uleb >> (bits-1)) == 1)
207 	{
208 		// Sign extend by setting all bits in front of it to 1
209 		uleb |= static_cast<int64_t>(-1) << bits;
210 	}
211 	return static_cast<int64_t>(uleb);
212 }
213 /**
214  * Reads a value using the specified encoding from the address pointed to by
215  * *data.  Updates the value of *data to point to the next byte after the end
216  * of the data.
217  */
218 static uint64_t read_value(char encoding, dw_eh_ptr_t *data)
219 {
220 	enum dwarf_data_encoding type = get_encoding(encoding);
221 	switch (type)
222 	{
223 		// Read fixed-length types
224 #define READ(dwarf, type) \
225 		case dwarf:\
226 		{\
227 			type t;\
228 			memcpy(&t, *data, sizeof t);\
229 			*data += sizeof t;\
230 			return static_cast<uint64_t>(t);\
231 		}
232 		READ(DW_EH_PE_udata2, uint16_t)
233 		READ(DW_EH_PE_udata4, uint32_t)
234 		READ(DW_EH_PE_udata8, uint64_t)
235 		READ(DW_EH_PE_sdata2, int16_t)
236 		READ(DW_EH_PE_sdata4, int32_t)
237 		READ(DW_EH_PE_sdata8, int64_t)
238 		READ(DW_EH_PE_absptr, intptr_t)
239 #undef READ
240 		// Read variable-length types
241 		case DW_EH_PE_sleb128:
242 			return read_sleb128(data);
243 		case DW_EH_PE_uleb128:
244 			return read_uleb128(data);
245 		default: abort();
246 	}
247 }
248 
249 /**
250  * Resolves an indirect value.  This expects an unwind context, an encoding, a
251  * decoded value, and the start of the region as arguments.  The returned value
252  * is a pointer to the address identified by the encoded value.
253  *
254  * If the encoding does not specify an indirect value, then this returns v.
255  */
256 static uint64_t resolve_indirect_value(_Unwind_Context *c,
257                                        unsigned char encoding,
258                                        int64_t v,
259                                        dw_eh_ptr_t start)
260 {
261 	switch (get_base(encoding))
262 	{
263 		case DW_EH_PE_pcrel:
264 			v += reinterpret_cast<uint64_t>(start);
265 			break;
266 		case DW_EH_PE_textrel:
267 			v += static_cast<uint64_t>(static_cast<uintptr_t>(_Unwind_GetTextRelBase(c)));
268 			break;
269 		case DW_EH_PE_datarel:
270 			v += static_cast<uint64_t>(static_cast<uintptr_t>(_Unwind_GetDataRelBase(c)));
271 			break;
272 		case DW_EH_PE_funcrel:
273 			v += static_cast<uint64_t>(static_cast<uintptr_t>(_Unwind_GetRegionStart(c)));
274 		default:
275 			break;
276 	}
277 	// If this is an indirect value, then it is really the address of the real
278 	// value
279 	// TODO: Check whether this should really always be a pointer - it seems to
280 	// be a GCC extensions, so not properly documented...
281 	if (is_indirect(encoding))
282 	{
283 		v = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(*reinterpret_cast<void**>(v)));
284 	}
285 	return v;
286 }
287 
288 
289 /**
290  * Reads an encoding and a value, updating *data to point to the next byte.
291  */
292 static inline void read_value_with_encoding(_Unwind_Context *context,
293                                             dw_eh_ptr_t *data,
294                                             uint64_t *out)
295 {
296 	dw_eh_ptr_t start = *data;
297 	unsigned char encoding = *((*data)++);
298 	// If this value is omitted, skip it and don't touch the output value
299 	if (encoding == DW_EH_PE_omit) { return; }
300 
301 	*out = read_value(encoding, data);
302 	*out = resolve_indirect_value(context, encoding, *out, start);
303 }
304 
305 /**
306  * Structure storing a decoded language-specific data area.  Use parse_lsda()
307  * to generate an instance of this structure from the address returned by the
308  * generic unwind library.
309  *
310  * You should not need to inspect the fields of this structure directly if you
311  * are just using this header.  The structure stores the locations of the
312  * various tables used for unwinding exceptions and is used by the functions
313  * for reading values from these tables.
314  */
315 struct dwarf_eh_lsda
316 {
317 	/// The start of the region.  This is a cache of the value returned by
318 	/// _Unwind_GetRegionStart().
319 	dw_eh_ptr_t region_start;
320 	/// The start of the landing pads table.
321 	dw_eh_ptr_t landing_pads;
322 	/// The start of the type table.
323 	dw_eh_ptr_t type_table;
324 	/// The encoding used for entries in the type tables.
325 	unsigned char type_table_encoding;
326 	/// The location of the call-site table.
327 	dw_eh_ptr_t call_site_table;
328 	/// The location of the action table.
329 	dw_eh_ptr_t action_table;
330 	/// The encoding used for entries in the call-site table.
331 	unsigned char callsite_encoding;
332 };
333 
334 /**
335  * Parse the header on the language-specific data area and return a structure
336  * containing the addresses and encodings of the various tables.
337  */
338 static inline struct dwarf_eh_lsda parse_lsda(_Unwind_Context *context,
339                                               unsigned char *data)
340 {
341 	struct dwarf_eh_lsda lsda;
342 
343 	lsda.region_start = reinterpret_cast<dw_eh_ptr_t>(_Unwind_GetRegionStart(context));
344 
345 	// If the landing pads are relative to anything other than the start of
346 	// this region, find out where.  This is @LPStart in the spec, although the
347 	// encoding that GCC uses does not quite match the spec.
348 	uint64_t v = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(lsda.region_start));
349 	read_value_with_encoding(context, &data, &v);
350 	lsda.landing_pads = reinterpret_cast<dw_eh_ptr_t>(static_cast<uintptr_t>(v));
351 
352 	// If there is a type table, find out where it is.  This is @TTBase in the
353 	// spec.  Note: we find whether there is a type table pointer by checking
354 	// whether the leading byte is DW_EH_PE_omit (0xff), which is not what the
355 	// spec says, but does seem to be how G++ indicates this.
356 	lsda.type_table = 0;
357 	lsda.type_table_encoding = *data++;
358 	if (lsda.type_table_encoding != DW_EH_PE_omit)
359 	{
360 		v = read_uleb128(&data);
361 		dw_eh_ptr_t type_table = data;
362 		type_table += v;
363 		lsda.type_table = type_table;
364 		//lsda.type_table = (uintptr_t*)(data + v);
365 	}
366 #if defined(__arm__) && !defined(__ARM_DWARF_EH__)
367 	lsda.type_table_encoding = (DW_EH_PE_pcrel | DW_EH_PE_indirect);
368 #endif
369 
370 	lsda.callsite_encoding = static_cast<enum dwarf_data_encoding>(*(data++));
371 
372 	// Action table is immediately after the call site table
373 	lsda.action_table = data;
374 	uintptr_t callsite_size = static_cast<uintptr_t>(read_uleb128(&data));
375 	lsda.action_table = data + callsite_size;
376 	// Call site table is immediately after the header
377 	lsda.call_site_table = static_cast<dw_eh_ptr_t>(data);
378 
379 
380 	return lsda;
381 }
382 
383 /**
384  * Structure representing an action to be performed while unwinding.  This
385  * contains the address that should be unwound to and the action record that
386  * provoked this action.
387  */
388 struct dwarf_eh_action
389 {
390 	/**
391 	 * The address that this action directs should be the new program counter
392 	 * value after unwinding.
393 	 */
394 	dw_eh_ptr_t landing_pad;
395 	/// The address of the action record.
396 	dw_eh_ptr_t action_record;
397 };
398 
399 /**
400  * Look up the landing pad that corresponds to the current invoke.
401  * Returns true if record exists.  The context is provided by the generic
402  * unwind library and the lsda should be the result of a call to parse_lsda().
403  *
404  * The action record is returned via the result parameter.
405  */
406 static bool dwarf_eh_find_callsite(struct _Unwind_Context *context,
407                                    struct dwarf_eh_lsda *lsda,
408                                    struct dwarf_eh_action *result)
409 {
410 	result->action_record = 0;
411 	result->landing_pad = 0;
412 	// The current instruction pointer offset within the region
413 	uint64_t ip = _Unwind_GetIP(context) - _Unwind_GetRegionStart(context);
414 	unsigned char *callsite_table = static_cast<unsigned char*>(lsda->call_site_table);
415 
416 	while (callsite_table <= lsda->action_table)
417 	{
418 		// Once again, the layout deviates from the spec.
419 		uint64_t call_site_start, call_site_size, landing_pad, action;
420 		call_site_start = read_value(lsda->callsite_encoding, &callsite_table);
421 		call_site_size = read_value(lsda->callsite_encoding, &callsite_table);
422 
423 		// Call site entries are sorted, so if we find a call site that's after
424 		// the current instruction pointer then there is no action associated
425 		// with this call and we should unwind straight through this frame
426 		// without doing anything.
427 		if (call_site_start > ip) { break; }
428 
429 		// Read the address of the landing pad and the action from the call
430 		// site table.
431 		landing_pad = read_value(lsda->callsite_encoding, &callsite_table);
432 		action = read_uleb128(&callsite_table);
433 
434 		// We should not include the call_site_start (beginning of the region)
435 		// address in the ip range. For each call site:
436 		//
437 		// address1: call proc
438 		// address2: next instruction
439 		//
440 		// The call stack contains address2 and not address1, address1 can be
441 		// at the end of another EH region.
442 		if (call_site_start < ip && ip <= call_site_start + call_site_size)
443 		{
444 			if (action)
445 			{
446 				// Action records are 1-biased so both no-record and zeroth
447 				// record can be stored.
448 				result->action_record = lsda->action_table + action - 1;
449 			}
450 			// No landing pad means keep unwinding.
451 			if (landing_pad)
452 			{
453 				// Landing pad is the offset from the value in the header
454 				result->landing_pad = lsda->landing_pads + landing_pad;
455 			}
456 			return true;
457 		}
458 	}
459 	return false;
460 }
461 
462 /// Defines an exception class from 8 bytes (endian independent)
463 #define EXCEPTION_CLASS(a,b,c,d,e,f,g,h) \
464 	((static_cast<uint64_t>(a) << 56) +\
465 	 (static_cast<uint64_t>(b) << 48) +\
466 	 (static_cast<uint64_t>(c) << 40) +\
467 	 (static_cast<uint64_t>(d) << 32) +\
468 	 (static_cast<uint64_t>(e) << 24) +\
469 	 (static_cast<uint64_t>(f) << 16) +\
470 	 (static_cast<uint64_t>(g) << 8) +\
471 	 (static_cast<uint64_t>(h)))
472 
473 #define GENERIC_EXCEPTION_CLASS(e,f,g,h) \
474 	 (static_cast<uint32_t>(e) << 24) +\
475 	 (static_cast<uint32_t>(f) << 16) +\
476 	 (static_cast<uint32_t>(g) << 8) +\
477 	 (static_cast<uint32_t>(h))
478