xref: /freebsd/contrib/libarchive/libarchive/archive_read.c (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 /*-
2  * Copyright (c) 2003-2011 Tim Kientzle
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 /*
27  * This file contains the "essential" portions of the read API, that
28  * is, stuff that will probably always be used by any client that
29  * actually needs to read an archive.  Optional pieces have been, as
30  * far as possible, separated out into separate files to avoid
31  * needlessly bloating statically-linked clients.
32  */
33 
34 #include "archive_platform.h"
35 __FBSDID("$FreeBSD$");
36 
37 #ifdef HAVE_ERRNO_H
38 #include <errno.h>
39 #endif
40 #include <stdio.h>
41 #ifdef HAVE_STDLIB_H
42 #include <stdlib.h>
43 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47 #ifdef HAVE_UNISTD_H
48 #include <unistd.h>
49 #endif
50 
51 #include "archive.h"
52 #include "archive_entry.h"
53 #include "archive_private.h"
54 #include "archive_read_private.h"
55 
56 #define minimum(a, b) (a < b ? a : b)
57 
58 static int	choose_filters(struct archive_read *);
59 static int	choose_format(struct archive_read *);
60 static int	close_filters(struct archive_read *);
61 static int64_t	_archive_filter_bytes(struct archive *, int);
62 static int	_archive_filter_code(struct archive *, int);
63 static const char *_archive_filter_name(struct archive *, int);
64 static int  _archive_filter_count(struct archive *);
65 static int	_archive_read_close(struct archive *);
66 static int	_archive_read_data_block(struct archive *,
67 		    const void **, size_t *, int64_t *);
68 static int	_archive_read_free(struct archive *);
69 static int	_archive_read_next_header(struct archive *,
70 		    struct archive_entry **);
71 static int	_archive_read_next_header2(struct archive *,
72 		    struct archive_entry *);
73 static int64_t  advance_file_pointer(struct archive_read_filter *, int64_t);
74 
75 static const struct archive_vtable
76 archive_read_vtable = {
77 	.archive_filter_bytes = _archive_filter_bytes,
78 	.archive_filter_code = _archive_filter_code,
79 	.archive_filter_name = _archive_filter_name,
80 	.archive_filter_count = _archive_filter_count,
81 	.archive_read_data_block = _archive_read_data_block,
82 	.archive_read_next_header = _archive_read_next_header,
83 	.archive_read_next_header2 = _archive_read_next_header2,
84 	.archive_free = _archive_read_free,
85 	.archive_close = _archive_read_close,
86 };
87 
88 /*
89  * Allocate, initialize and return a struct archive object.
90  */
91 struct archive *
92 archive_read_new(void)
93 {
94 	struct archive_read *a;
95 
96 	a = (struct archive_read *)calloc(1, sizeof(*a));
97 	if (a == NULL)
98 		return (NULL);
99 	a->archive.magic = ARCHIVE_READ_MAGIC;
100 
101 	a->archive.state = ARCHIVE_STATE_NEW;
102 	a->entry = archive_entry_new2(&a->archive);
103 	a->archive.vtable = &archive_read_vtable;
104 
105 	a->passphrases.last = &a->passphrases.first;
106 
107 	return (&a->archive);
108 }
109 
110 /*
111  * Record the do-not-extract-to file. This belongs in archive_read_extract.c.
112  */
113 void
114 archive_read_extract_set_skip_file(struct archive *_a, la_int64_t d,
115     la_int64_t i)
116 {
117 	struct archive_read *a = (struct archive_read *)_a;
118 
119 	if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_MAGIC,
120 		ARCHIVE_STATE_ANY, "archive_read_extract_set_skip_file"))
121 		return;
122 	a->skip_file_set = 1;
123 	a->skip_file_dev = d;
124 	a->skip_file_ino = i;
125 }
126 
127 /*
128  * Open the archive
129  */
130 int
131 archive_read_open(struct archive *a, void *client_data,
132     archive_open_callback *client_opener, archive_read_callback *client_reader,
133     archive_close_callback *client_closer)
134 {
135 	/* Old archive_read_open() is just a thin shell around
136 	 * archive_read_open1. */
137 	archive_read_set_open_callback(a, client_opener);
138 	archive_read_set_read_callback(a, client_reader);
139 	archive_read_set_close_callback(a, client_closer);
140 	archive_read_set_callback_data(a, client_data);
141 	return archive_read_open1(a);
142 }
143 
144 
145 int
146 archive_read_open2(struct archive *a, void *client_data,
147     archive_open_callback *client_opener,
148     archive_read_callback *client_reader,
149     archive_skip_callback *client_skipper,
150     archive_close_callback *client_closer)
151 {
152 	/* Old archive_read_open2() is just a thin shell around
153 	 * archive_read_open1. */
154 	archive_read_set_callback_data(a, client_data);
155 	archive_read_set_open_callback(a, client_opener);
156 	archive_read_set_read_callback(a, client_reader);
157 	archive_read_set_skip_callback(a, client_skipper);
158 	archive_read_set_close_callback(a, client_closer);
159 	return archive_read_open1(a);
160 }
161 
162 static ssize_t
163 client_read_proxy(struct archive_read_filter *self, const void **buff)
164 {
165 	ssize_t r;
166 	r = (self->archive->client.reader)(&self->archive->archive,
167 	    self->data, buff);
168 	return (r);
169 }
170 
171 static int64_t
172 client_skip_proxy(struct archive_read_filter *self, int64_t request)
173 {
174 	if (request < 0)
175 		__archive_errx(1, "Negative skip requested.");
176 	if (request == 0)
177 		return 0;
178 
179 	if (self->archive->client.skipper != NULL) {
180 		/* Seek requests over 1GiB are broken down into
181 		 * multiple seeks.  This avoids overflows when the
182 		 * requests get passed through 32-bit arguments. */
183 		int64_t skip_limit = (int64_t)1 << 30;
184 		int64_t total = 0;
185 		for (;;) {
186 			int64_t get, ask = request;
187 			if (ask > skip_limit)
188 				ask = skip_limit;
189 			get = (self->archive->client.skipper)
190 				(&self->archive->archive, self->data, ask);
191 			total += get;
192 			if (get == 0 || get == request)
193 				return (total);
194 			if (get > request)
195 				return ARCHIVE_FATAL;
196 			request -= get;
197 		}
198 	} else if (self->archive->client.seeker != NULL
199 		&& request > 64 * 1024) {
200 		/* If the client provided a seeker but not a skipper,
201 		 * we can use the seeker to skip forward.
202 		 *
203 		 * Note: This isn't always a good idea.  The client
204 		 * skipper is allowed to skip by less than requested
205 		 * if it needs to maintain block alignment.  The
206 		 * seeker is not allowed to play such games, so using
207 		 * the seeker here may be a performance loss compared
208 		 * to just reading and discarding.  That's why we
209 		 * only do this for skips of over 64k.
210 		 */
211 		int64_t before = self->position;
212 		int64_t after = (self->archive->client.seeker)
213 		    (&self->archive->archive, self->data, request, SEEK_CUR);
214 		if (after != before + request)
215 			return ARCHIVE_FATAL;
216 		return after - before;
217 	}
218 	return 0;
219 }
220 
221 static int64_t
222 client_seek_proxy(struct archive_read_filter *self, int64_t offset, int whence)
223 {
224 	/* DO NOT use the skipper here!  If we transparently handled
225 	 * forward seek here by using the skipper, that will break
226 	 * other libarchive code that assumes a successful forward
227 	 * seek means it can also seek backwards.
228 	 */
229 	if (self->archive->client.seeker == NULL) {
230 		archive_set_error(&self->archive->archive, ARCHIVE_ERRNO_MISC,
231 		    "Current client reader does not support seeking a device");
232 		return (ARCHIVE_FAILED);
233 	}
234 	return (self->archive->client.seeker)(&self->archive->archive,
235 	    self->data, offset, whence);
236 }
237 
238 static int
239 read_client_close_proxy(struct archive_read *a)
240 {
241 	int r = ARCHIVE_OK, r2;
242 	unsigned int i;
243 
244 	if (a->client.closer == NULL)
245 		return (r);
246 	for (i = 0; i < a->client.nodes; i++)
247 	{
248 		r2 = (a->client.closer)
249 			((struct archive *)a, a->client.dataset[i].data);
250 		if (r > r2)
251 			r = r2;
252 	}
253 	return (r);
254 }
255 
256 static int
257 client_close_proxy(struct archive_read_filter *self)
258 {
259 	return read_client_close_proxy(self->archive);
260 }
261 
262 static int
263 client_open_proxy(struct archive_read_filter *self)
264 {
265   int r = ARCHIVE_OK;
266 	if (self->archive->client.opener != NULL)
267 		r = (self->archive->client.opener)(
268 		    (struct archive *)self->archive, self->data);
269 	return (r);
270 }
271 
272 static int
273 client_switch_proxy(struct archive_read_filter *self, unsigned int iindex)
274 {
275   int r1 = ARCHIVE_OK, r2 = ARCHIVE_OK;
276 	void *data2 = NULL;
277 
278 	/* Don't do anything if already in the specified data node */
279 	if (self->archive->client.cursor == iindex)
280 		return (ARCHIVE_OK);
281 
282 	self->archive->client.cursor = iindex;
283 	data2 = self->archive->client.dataset[self->archive->client.cursor].data;
284 	if (self->archive->client.switcher != NULL)
285 	{
286 		r1 = r2 = (self->archive->client.switcher)
287 			((struct archive *)self->archive, self->data, data2);
288 		self->data = data2;
289 	}
290 	else
291 	{
292 		/* Attempt to call close and open instead */
293 		if (self->archive->client.closer != NULL)
294 			r1 = (self->archive->client.closer)
295 				((struct archive *)self->archive, self->data);
296 		self->data = data2;
297 		r2 = client_open_proxy(self);
298 	}
299 	return (r1 < r2) ? r1 : r2;
300 }
301 
302 int
303 archive_read_set_open_callback(struct archive *_a,
304     archive_open_callback *client_opener)
305 {
306 	struct archive_read *a = (struct archive_read *)_a;
307 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
308 	    "archive_read_set_open_callback");
309 	a->client.opener = client_opener;
310 	return ARCHIVE_OK;
311 }
312 
313 int
314 archive_read_set_read_callback(struct archive *_a,
315     archive_read_callback *client_reader)
316 {
317 	struct archive_read *a = (struct archive_read *)_a;
318 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
319 	    "archive_read_set_read_callback");
320 	a->client.reader = client_reader;
321 	return ARCHIVE_OK;
322 }
323 
324 int
325 archive_read_set_skip_callback(struct archive *_a,
326     archive_skip_callback *client_skipper)
327 {
328 	struct archive_read *a = (struct archive_read *)_a;
329 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
330 	    "archive_read_set_skip_callback");
331 	a->client.skipper = client_skipper;
332 	return ARCHIVE_OK;
333 }
334 
335 int
336 archive_read_set_seek_callback(struct archive *_a,
337     archive_seek_callback *client_seeker)
338 {
339 	struct archive_read *a = (struct archive_read *)_a;
340 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
341 	    "archive_read_set_seek_callback");
342 	a->client.seeker = client_seeker;
343 	return ARCHIVE_OK;
344 }
345 
346 int
347 archive_read_set_close_callback(struct archive *_a,
348     archive_close_callback *client_closer)
349 {
350 	struct archive_read *a = (struct archive_read *)_a;
351 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
352 	    "archive_read_set_close_callback");
353 	a->client.closer = client_closer;
354 	return ARCHIVE_OK;
355 }
356 
357 int
358 archive_read_set_switch_callback(struct archive *_a,
359     archive_switch_callback *client_switcher)
360 {
361 	struct archive_read *a = (struct archive_read *)_a;
362 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
363 	    "archive_read_set_switch_callback");
364 	a->client.switcher = client_switcher;
365 	return ARCHIVE_OK;
366 }
367 
368 int
369 archive_read_set_callback_data(struct archive *_a, void *client_data)
370 {
371 	return archive_read_set_callback_data2(_a, client_data, 0);
372 }
373 
374 int
375 archive_read_set_callback_data2(struct archive *_a, void *client_data,
376     unsigned int iindex)
377 {
378 	struct archive_read *a = (struct archive_read *)_a;
379 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
380 	    "archive_read_set_callback_data2");
381 
382 	if (a->client.nodes == 0)
383 	{
384 		a->client.dataset = (struct archive_read_data_node *)
385 		    calloc(1, sizeof(*a->client.dataset));
386 		if (a->client.dataset == NULL)
387 		{
388 			archive_set_error(&a->archive, ENOMEM,
389 				"No memory.");
390 			return ARCHIVE_FATAL;
391 		}
392 		a->client.nodes = 1;
393 	}
394 
395 	if (iindex > a->client.nodes - 1)
396 	{
397 		archive_set_error(&a->archive, EINVAL,
398 			"Invalid index specified.");
399 		return ARCHIVE_FATAL;
400 	}
401 	a->client.dataset[iindex].data = client_data;
402 	a->client.dataset[iindex].begin_position = -1;
403 	a->client.dataset[iindex].total_size = -1;
404 	return ARCHIVE_OK;
405 }
406 
407 int
408 archive_read_add_callback_data(struct archive *_a, void *client_data,
409     unsigned int iindex)
410 {
411 	struct archive_read *a = (struct archive_read *)_a;
412 	void *p;
413 	unsigned int i;
414 
415 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
416 	    "archive_read_add_callback_data");
417 	if (iindex > a->client.nodes) {
418 		archive_set_error(&a->archive, EINVAL,
419 			"Invalid index specified.");
420 		return ARCHIVE_FATAL;
421 	}
422 	p = realloc(a->client.dataset, sizeof(*a->client.dataset)
423 		* (++(a->client.nodes)));
424 	if (p == NULL) {
425 		archive_set_error(&a->archive, ENOMEM,
426 			"No memory.");
427 		return ARCHIVE_FATAL;
428 	}
429 	a->client.dataset = (struct archive_read_data_node *)p;
430 	for (i = a->client.nodes - 1; i > iindex; i--) {
431 		a->client.dataset[i].data = a->client.dataset[i-1].data;
432 		a->client.dataset[i].begin_position = -1;
433 		a->client.dataset[i].total_size = -1;
434 	}
435 	a->client.dataset[iindex].data = client_data;
436 	a->client.dataset[iindex].begin_position = -1;
437 	a->client.dataset[iindex].total_size = -1;
438 	return ARCHIVE_OK;
439 }
440 
441 int
442 archive_read_append_callback_data(struct archive *_a, void *client_data)
443 {
444 	struct archive_read *a = (struct archive_read *)_a;
445 	return archive_read_add_callback_data(_a, client_data, a->client.nodes);
446 }
447 
448 int
449 archive_read_prepend_callback_data(struct archive *_a, void *client_data)
450 {
451 	return archive_read_add_callback_data(_a, client_data, 0);
452 }
453 
454 static const struct archive_read_filter_vtable
455 none_reader_vtable = {
456 	.read = client_read_proxy,
457 	.close = client_close_proxy,
458 };
459 
460 int
461 archive_read_open1(struct archive *_a)
462 {
463 	struct archive_read *a = (struct archive_read *)_a;
464 	struct archive_read_filter *filter, *tmp;
465 	int slot, e = ARCHIVE_OK;
466 
467 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
468 	    "archive_read_open");
469 	archive_clear_error(&a->archive);
470 
471 	if (a->client.reader == NULL) {
472 		archive_set_error(&a->archive, EINVAL,
473 		    "No reader function provided to archive_read_open");
474 		a->archive.state = ARCHIVE_STATE_FATAL;
475 		return (ARCHIVE_FATAL);
476 	}
477 
478 	/* Open data source. */
479 	if (a->client.opener != NULL) {
480 		e = (a->client.opener)(&a->archive, a->client.dataset[0].data);
481 		if (e != 0) {
482 			/* If the open failed, call the closer to clean up. */
483 			read_client_close_proxy(a);
484 			return (e);
485 		}
486 	}
487 
488 	filter = calloc(1, sizeof(*filter));
489 	if (filter == NULL)
490 		return (ARCHIVE_FATAL);
491 	filter->bidder = NULL;
492 	filter->upstream = NULL;
493 	filter->archive = a;
494 	filter->data = a->client.dataset[0].data;
495 	filter->vtable = &none_reader_vtable;
496 	filter->name = "none";
497 	filter->code = ARCHIVE_FILTER_NONE;
498 	filter->can_skip = 1;
499 	filter->can_seek = 1;
500 
501 	a->client.dataset[0].begin_position = 0;
502 	if (!a->filter || !a->bypass_filter_bidding)
503 	{
504 		a->filter = filter;
505 		/* Build out the input pipeline. */
506 		e = choose_filters(a);
507 		if (e < ARCHIVE_WARN) {
508 			a->archive.state = ARCHIVE_STATE_FATAL;
509 			return (ARCHIVE_FATAL);
510 		}
511 	}
512 	else
513 	{
514 		/* Need to add "NONE" type filter at the end of the filter chain */
515 		tmp = a->filter;
516 		while (tmp->upstream)
517 			tmp = tmp->upstream;
518 		tmp->upstream = filter;
519 	}
520 
521 	if (!a->format)
522 	{
523 		slot = choose_format(a);
524 		if (slot < 0) {
525 			close_filters(a);
526 			a->archive.state = ARCHIVE_STATE_FATAL;
527 			return (ARCHIVE_FATAL);
528 		}
529 		a->format = &(a->formats[slot]);
530 	}
531 
532 	a->archive.state = ARCHIVE_STATE_HEADER;
533 
534 	/* Ensure libarchive starts from the first node in a multivolume set */
535 	client_switch_proxy(a->filter, 0);
536 	return (e);
537 }
538 
539 /*
540  * Allow each registered stream transform to bid on whether
541  * it wants to handle this stream.  Repeat until we've finished
542  * building the pipeline.
543  */
544 
545 /* We won't build a filter pipeline with more stages than this. */
546 #define MAX_NUMBER_FILTERS 25
547 
548 static int
549 choose_filters(struct archive_read *a)
550 {
551 	int number_bidders, i, bid, best_bid, number_filters;
552 	struct archive_read_filter_bidder *bidder, *best_bidder;
553 	struct archive_read_filter *filter;
554 	ssize_t avail;
555 	int r;
556 
557 	for (number_filters = 0; number_filters < MAX_NUMBER_FILTERS; ++number_filters) {
558 		number_bidders = sizeof(a->bidders) / sizeof(a->bidders[0]);
559 
560 		best_bid = 0;
561 		best_bidder = NULL;
562 
563 		bidder = a->bidders;
564 		for (i = 0; i < number_bidders; i++, bidder++) {
565 			if (bidder->vtable == NULL)
566 				continue;
567 			bid = (bidder->vtable->bid)(bidder, a->filter);
568 			if (bid > best_bid) {
569 				best_bid = bid;
570 				best_bidder = bidder;
571 			}
572 		}
573 
574 		/* If no bidder, we're done. */
575 		if (best_bidder == NULL) {
576 			/* Verify the filter by asking it for some data. */
577 			__archive_read_filter_ahead(a->filter, 1, &avail);
578 			if (avail < 0) {
579 				__archive_read_free_filters(a);
580 				return (ARCHIVE_FATAL);
581 			}
582 			return (ARCHIVE_OK);
583 		}
584 
585 		filter
586 		    = (struct archive_read_filter *)calloc(1, sizeof(*filter));
587 		if (filter == NULL)
588 			return (ARCHIVE_FATAL);
589 		filter->bidder = best_bidder;
590 		filter->archive = a;
591 		filter->upstream = a->filter;
592 		a->filter = filter;
593 		r = (best_bidder->vtable->init)(a->filter);
594 		if (r != ARCHIVE_OK) {
595 			__archive_read_free_filters(a);
596 			return (ARCHIVE_FATAL);
597 		}
598 	}
599 	archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
600 	    "Input requires too many filters for decoding");
601 	return (ARCHIVE_FATAL);
602 }
603 
604 int
605 __archive_read_header(struct archive_read *a, struct archive_entry *entry)
606 {
607 	if (!a->filter->vtable->read_header)
608 		return (ARCHIVE_OK);
609 	return a->filter->vtable->read_header(a->filter, entry);
610 }
611 
612 /*
613  * Read header of next entry.
614  */
615 static int
616 _archive_read_next_header2(struct archive *_a, struct archive_entry *entry)
617 {
618 	struct archive_read *a = (struct archive_read *)_a;
619 	int r1 = ARCHIVE_OK, r2;
620 
621 	archive_check_magic(_a, ARCHIVE_READ_MAGIC,
622 	    ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
623 	    "archive_read_next_header");
624 
625 	archive_entry_clear(entry);
626 	archive_clear_error(&a->archive);
627 
628 	/*
629 	 * If client didn't consume entire data, skip any remainder
630 	 * (This is especially important for GNU incremental directories.)
631 	 */
632 	if (a->archive.state == ARCHIVE_STATE_DATA) {
633 		r1 = archive_read_data_skip(&a->archive);
634 		if (r1 == ARCHIVE_EOF)
635 			archive_set_error(&a->archive, EIO,
636 			    "Premature end-of-file.");
637 		if (r1 == ARCHIVE_EOF || r1 == ARCHIVE_FATAL) {
638 			a->archive.state = ARCHIVE_STATE_FATAL;
639 			return (ARCHIVE_FATAL);
640 		}
641 	}
642 
643 	/* Record start-of-header offset in uncompressed stream. */
644 	a->header_position = a->filter->position;
645 
646 	++_a->file_count;
647 	r2 = (a->format->read_header)(a, entry);
648 
649 	/*
650 	 * EOF and FATAL are persistent at this layer.  By
651 	 * modifying the state, we guarantee that future calls to
652 	 * read a header or read data will fail.
653 	 */
654 	switch (r2) {
655 	case ARCHIVE_EOF:
656 		a->archive.state = ARCHIVE_STATE_EOF;
657 		--_a->file_count;/* Revert a file counter. */
658 		break;
659 	case ARCHIVE_OK:
660 		a->archive.state = ARCHIVE_STATE_DATA;
661 		break;
662 	case ARCHIVE_WARN:
663 		a->archive.state = ARCHIVE_STATE_DATA;
664 		break;
665 	case ARCHIVE_RETRY:
666 		break;
667 	case ARCHIVE_FATAL:
668 		a->archive.state = ARCHIVE_STATE_FATAL;
669 		break;
670 	}
671 
672 	__archive_reset_read_data(&a->archive);
673 
674 	a->data_start_node = a->client.cursor;
675 	/* EOF always wins; otherwise return the worst error. */
676 	return (r2 < r1 || r2 == ARCHIVE_EOF) ? r2 : r1;
677 }
678 
679 static int
680 _archive_read_next_header(struct archive *_a, struct archive_entry **entryp)
681 {
682 	int ret;
683 	struct archive_read *a = (struct archive_read *)_a;
684 	*entryp = NULL;
685 	ret = _archive_read_next_header2(_a, a->entry);
686 	*entryp = a->entry;
687 	return ret;
688 }
689 
690 /*
691  * Allow each registered format to bid on whether it wants to handle
692  * the next entry.  Return index of winning bidder.
693  */
694 static int
695 choose_format(struct archive_read *a)
696 {
697 	int slots;
698 	int i;
699 	int bid, best_bid;
700 	int best_bid_slot;
701 
702 	slots = sizeof(a->formats) / sizeof(a->formats[0]);
703 	best_bid = -1;
704 	best_bid_slot = -1;
705 
706 	/* Set up a->format for convenience of bidders. */
707 	a->format = &(a->formats[0]);
708 	for (i = 0; i < slots; i++, a->format++) {
709 		if (a->format->bid) {
710 			bid = (a->format->bid)(a, best_bid);
711 			if (bid == ARCHIVE_FATAL)
712 				return (ARCHIVE_FATAL);
713 			if (a->filter->position != 0)
714 				__archive_read_seek(a, 0, SEEK_SET);
715 			if ((bid > best_bid) || (best_bid_slot < 0)) {
716 				best_bid = bid;
717 				best_bid_slot = i;
718 			}
719 		}
720 	}
721 
722 	/*
723 	 * There were no bidders; this is a serious programmer error
724 	 * and demands a quick and definitive abort.
725 	 */
726 	if (best_bid_slot < 0) {
727 		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
728 		    "No formats registered");
729 		return (ARCHIVE_FATAL);
730 	}
731 
732 	/*
733 	 * There were bidders, but no non-zero bids; this means we
734 	 * can't support this stream.
735 	 */
736 	if (best_bid < 1) {
737 		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
738 		    "Unrecognized archive format");
739 		return (ARCHIVE_FATAL);
740 	}
741 
742 	return (best_bid_slot);
743 }
744 
745 /*
746  * Return the file offset (within the uncompressed data stream) where
747  * the last header started.
748  */
749 la_int64_t
750 archive_read_header_position(struct archive *_a)
751 {
752 	struct archive_read *a = (struct archive_read *)_a;
753 	archive_check_magic(_a, ARCHIVE_READ_MAGIC,
754 	    ARCHIVE_STATE_ANY, "archive_read_header_position");
755 	return (a->header_position);
756 }
757 
758 /*
759  * Returns 1 if the archive contains at least one encrypted entry.
760  * If the archive format not support encryption at all
761  * ARCHIVE_READ_FORMAT_ENCRYPTION_UNSUPPORTED is returned.
762  * If for any other reason (e.g. not enough data read so far)
763  * we cannot say whether there are encrypted entries, then
764  * ARCHIVE_READ_FORMAT_ENCRYPTION_DONT_KNOW is returned.
765  * In general, this function will return values below zero when the
766  * reader is uncertain or totally incapable of encryption support.
767  * When this function returns 0 you can be sure that the reader
768  * supports encryption detection but no encrypted entries have
769  * been found yet.
770  *
771  * NOTE: If the metadata/header of an archive is also encrypted, you
772  * cannot rely on the number of encrypted entries. That is why this
773  * function does not return the number of encrypted entries but#
774  * just shows that there are some.
775  */
776 int
777 archive_read_has_encrypted_entries(struct archive *_a)
778 {
779 	struct archive_read *a = (struct archive_read *)_a;
780 	int format_supports_encryption = archive_read_format_capabilities(_a)
781 			& (ARCHIVE_READ_FORMAT_CAPS_ENCRYPT_DATA | ARCHIVE_READ_FORMAT_CAPS_ENCRYPT_METADATA);
782 
783 	if (!_a || !format_supports_encryption) {
784 		/* Format in general doesn't support encryption */
785 		return ARCHIVE_READ_FORMAT_ENCRYPTION_UNSUPPORTED;
786 	}
787 
788 	/* A reader potentially has read enough data now. */
789 	if (a->format && a->format->has_encrypted_entries) {
790 		return (a->format->has_encrypted_entries)(a);
791 	}
792 
793 	/* For any other reason we cannot say how many entries are there. */
794 	return ARCHIVE_READ_FORMAT_ENCRYPTION_DONT_KNOW;
795 }
796 
797 /*
798  * Returns a bitmask of capabilities that are supported by the archive format reader.
799  * If the reader has no special capabilities, ARCHIVE_READ_FORMAT_CAPS_NONE is returned.
800  */
801 int
802 archive_read_format_capabilities(struct archive *_a)
803 {
804 	struct archive_read *a = (struct archive_read *)_a;
805 	if (a && a->format && a->format->format_capabilties) {
806 		return (a->format->format_capabilties)(a);
807 	}
808 	return ARCHIVE_READ_FORMAT_CAPS_NONE;
809 }
810 
811 /*
812  * Read data from an archive entry, using a read(2)-style interface.
813  * This is a convenience routine that just calls
814  * archive_read_data_block and copies the results into the client
815  * buffer, filling any gaps with zero bytes.  Clients using this
816  * API can be completely ignorant of sparse-file issues; sparse files
817  * will simply be padded with nulls.
818  *
819  * DO NOT intermingle calls to this function and archive_read_data_block
820  * to read a single entry body.
821  */
822 la_ssize_t
823 archive_read_data(struct archive *_a, void *buff, size_t s)
824 {
825 	struct archive *a = (struct archive *)_a;
826 	char	*dest;
827 	const void *read_buf;
828 	size_t	 bytes_read;
829 	size_t	 len;
830 	int	 r;
831 
832 	bytes_read = 0;
833 	dest = (char *)buff;
834 
835 	while (s > 0) {
836 		if (a->read_data_offset == a->read_data_output_offset &&
837 		    a->read_data_remaining == 0) {
838 			read_buf = a->read_data_block;
839 			a->read_data_is_posix_read = 1;
840 			a->read_data_requested = s;
841 			r = archive_read_data_block(a, &read_buf,
842 			    &a->read_data_remaining, &a->read_data_offset);
843 			a->read_data_block = read_buf;
844 			if (r == ARCHIVE_EOF)
845 				return (bytes_read);
846 			/*
847 			 * Error codes are all negative, so the status
848 			 * return here cannot be confused with a valid
849 			 * byte count.  (ARCHIVE_OK is zero.)
850 			 */
851 			if (r < ARCHIVE_OK)
852 				return (r);
853 		}
854 
855 		if (a->read_data_offset < a->read_data_output_offset) {
856 			archive_set_error(a, ARCHIVE_ERRNO_FILE_FORMAT,
857 			    "Encountered out-of-order sparse blocks");
858 			return (ARCHIVE_RETRY);
859 		}
860 
861 		/* Compute the amount of zero padding needed. */
862 		if (a->read_data_output_offset + (int64_t)s <
863 		    a->read_data_offset) {
864 			len = s;
865 		} else if (a->read_data_output_offset <
866 		    a->read_data_offset) {
867 			len = (size_t)(a->read_data_offset -
868 			    a->read_data_output_offset);
869 		} else
870 			len = 0;
871 
872 		/* Add zeroes. */
873 		memset(dest, 0, len);
874 		s -= len;
875 		a->read_data_output_offset += len;
876 		dest += len;
877 		bytes_read += len;
878 
879 		/* Copy data if there is any space left. */
880 		if (s > 0) {
881 			len = a->read_data_remaining;
882 			if (len > s)
883 				len = s;
884 			if (len) {
885 				memcpy(dest, a->read_data_block, len);
886 				s -= len;
887 				a->read_data_block += len;
888 				a->read_data_remaining -= len;
889 				a->read_data_output_offset += len;
890 				a->read_data_offset += len;
891 				dest += len;
892 				bytes_read += len;
893 			}
894 		}
895 	}
896 	a->read_data_is_posix_read = 0;
897 	a->read_data_requested = 0;
898 	return (bytes_read);
899 }
900 
901 /*
902  * Reset the read_data_* variables, used for starting a new entry.
903  */
904 void __archive_reset_read_data(struct archive * a)
905 {
906 	a->read_data_output_offset = 0;
907 	a->read_data_remaining = 0;
908 	a->read_data_is_posix_read = 0;
909 	a->read_data_requested = 0;
910 
911    /* extra resets, from rar.c */
912    a->read_data_block = NULL;
913    a->read_data_offset = 0;
914 }
915 
916 /*
917  * Skip over all remaining data in this entry.
918  */
919 int
920 archive_read_data_skip(struct archive *_a)
921 {
922 	struct archive_read *a = (struct archive_read *)_a;
923 	int r;
924 	const void *buff;
925 	size_t size;
926 	int64_t offset;
927 
928 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_DATA,
929 	    "archive_read_data_skip");
930 
931 	if (a->format->read_data_skip != NULL)
932 		r = (a->format->read_data_skip)(a);
933 	else {
934 		while ((r = archive_read_data_block(&a->archive,
935 			    &buff, &size, &offset))
936 		    == ARCHIVE_OK)
937 			;
938 	}
939 
940 	if (r == ARCHIVE_EOF)
941 		r = ARCHIVE_OK;
942 
943 	a->archive.state = ARCHIVE_STATE_HEADER;
944 	return (r);
945 }
946 
947 la_int64_t
948 archive_seek_data(struct archive *_a, int64_t offset, int whence)
949 {
950 	struct archive_read *a = (struct archive_read *)_a;
951 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_DATA,
952 	    "archive_seek_data_block");
953 
954 	if (a->format->seek_data == NULL) {
955 		archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
956 		    "Internal error: "
957 		    "No format_seek_data_block function registered");
958 		return (ARCHIVE_FATAL);
959 	}
960 
961 	return (a->format->seek_data)(a, offset, whence);
962 }
963 
964 /*
965  * Read the next block of entry data from the archive.
966  * This is a zero-copy interface; the client receives a pointer,
967  * size, and file offset of the next available block of data.
968  *
969  * Returns ARCHIVE_OK if the operation is successful, ARCHIVE_EOF if
970  * the end of entry is encountered.
971  */
972 static int
973 _archive_read_data_block(struct archive *_a,
974     const void **buff, size_t *size, int64_t *offset)
975 {
976 	struct archive_read *a = (struct archive_read *)_a;
977 	archive_check_magic(_a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_DATA,
978 	    "archive_read_data_block");
979 
980 	if (a->format->read_data == NULL) {
981 		archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
982 		    "Internal error: "
983 		    "No format->read_data function registered");
984 		return (ARCHIVE_FATAL);
985 	}
986 
987 	return (a->format->read_data)(a, buff, size, offset);
988 }
989 
990 static int
991 close_filters(struct archive_read *a)
992 {
993 	struct archive_read_filter *f = a->filter;
994 	int r = ARCHIVE_OK;
995 	/* Close each filter in the pipeline. */
996 	while (f != NULL) {
997 		struct archive_read_filter *t = f->upstream;
998 		if (!f->closed && f->vtable != NULL) {
999 			int r1 = (f->vtable->close)(f);
1000 			f->closed = 1;
1001 			if (r1 < r)
1002 				r = r1;
1003 		}
1004 		free(f->buffer);
1005 		f->buffer = NULL;
1006 		f = t;
1007 	}
1008 	return r;
1009 }
1010 
1011 void
1012 __archive_read_free_filters(struct archive_read *a)
1013 {
1014 	/* Make sure filters are closed and their buffers are freed */
1015 	close_filters(a);
1016 
1017 	while (a->filter != NULL) {
1018 		struct archive_read_filter *t = a->filter->upstream;
1019 		free(a->filter);
1020 		a->filter = t;
1021 	}
1022 }
1023 
1024 /*
1025  * return the count of # of filters in use
1026  */
1027 static int
1028 _archive_filter_count(struct archive *_a)
1029 {
1030 	struct archive_read *a = (struct archive_read *)_a;
1031 	struct archive_read_filter *p = a->filter;
1032 	int count = 0;
1033 	while(p) {
1034 		count++;
1035 		p = p->upstream;
1036 	}
1037 	return count;
1038 }
1039 
1040 /*
1041  * Close the file and all I/O.
1042  */
1043 static int
1044 _archive_read_close(struct archive *_a)
1045 {
1046 	struct archive_read *a = (struct archive_read *)_a;
1047 	int r = ARCHIVE_OK, r1 = ARCHIVE_OK;
1048 
1049 	archive_check_magic(&a->archive, ARCHIVE_READ_MAGIC,
1050 	    ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close");
1051 	if (a->archive.state == ARCHIVE_STATE_CLOSED)
1052 		return (ARCHIVE_OK);
1053 	archive_clear_error(&a->archive);
1054 	a->archive.state = ARCHIVE_STATE_CLOSED;
1055 
1056 	/* TODO: Clean up the formatters. */
1057 
1058 	/* Release the filter objects. */
1059 	r1 = close_filters(a);
1060 	if (r1 < r)
1061 		r = r1;
1062 
1063 	return (r);
1064 }
1065 
1066 /*
1067  * Release memory and other resources.
1068  */
1069 static int
1070 _archive_read_free(struct archive *_a)
1071 {
1072 	struct archive_read *a = (struct archive_read *)_a;
1073 	struct archive_read_passphrase *p;
1074 	int i, n;
1075 	int slots;
1076 	int r = ARCHIVE_OK;
1077 
1078 	if (_a == NULL)
1079 		return (ARCHIVE_OK);
1080 	archive_check_magic(_a, ARCHIVE_READ_MAGIC,
1081 	    ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free");
1082 	if (a->archive.state != ARCHIVE_STATE_CLOSED
1083 	    && a->archive.state != ARCHIVE_STATE_FATAL)
1084 		r = archive_read_close(&a->archive);
1085 
1086 	/* Call cleanup functions registered by optional components. */
1087 	if (a->cleanup_archive_extract != NULL)
1088 		r = (a->cleanup_archive_extract)(a);
1089 
1090 	/* Cleanup format-specific data. */
1091 	slots = sizeof(a->formats) / sizeof(a->formats[0]);
1092 	for (i = 0; i < slots; i++) {
1093 		a->format = &(a->formats[i]);
1094 		if (a->formats[i].cleanup)
1095 			(a->formats[i].cleanup)(a);
1096 	}
1097 
1098 	/* Free the filters */
1099 	__archive_read_free_filters(a);
1100 
1101 	/* Release the bidder objects. */
1102 	n = sizeof(a->bidders)/sizeof(a->bidders[0]);
1103 	for (i = 0; i < n; i++) {
1104 		if (a->bidders[i].vtable == NULL ||
1105 		    a->bidders[i].vtable->free == NULL)
1106 			continue;
1107 		(a->bidders[i].vtable->free)(&a->bidders[i]);
1108 	}
1109 
1110 	/* Release passphrase list. */
1111 	p = a->passphrases.first;
1112 	while (p != NULL) {
1113 		struct archive_read_passphrase *np = p->next;
1114 
1115 		/* A passphrase should be cleaned. */
1116 		memset(p->passphrase, 0, strlen(p->passphrase));
1117 		free(p->passphrase);
1118 		free(p);
1119 		p = np;
1120 	}
1121 
1122 	archive_string_free(&a->archive.error_string);
1123 	archive_entry_free(a->entry);
1124 	a->archive.magic = 0;
1125 	__archive_clean(&a->archive);
1126 	free(a->client.dataset);
1127 	free(a);
1128 	return (r);
1129 }
1130 
1131 static struct archive_read_filter *
1132 get_filter(struct archive *_a, int n)
1133 {
1134 	struct archive_read *a = (struct archive_read *)_a;
1135 	struct archive_read_filter *f = a->filter;
1136 	/* We use n == -1 for 'the last filter', which is always the
1137 	 * client proxy. */
1138 	if (n == -1 && f != NULL) {
1139 		struct archive_read_filter *last = f;
1140 		f = f->upstream;
1141 		while (f != NULL) {
1142 			last = f;
1143 			f = f->upstream;
1144 		}
1145 		return (last);
1146 	}
1147 	if (n < 0)
1148 		return NULL;
1149 	while (n > 0 && f != NULL) {
1150 		f = f->upstream;
1151 		--n;
1152 	}
1153 	return (f);
1154 }
1155 
1156 static int
1157 _archive_filter_code(struct archive *_a, int n)
1158 {
1159 	struct archive_read_filter *f = get_filter(_a, n);
1160 	return f == NULL ? -1 : f->code;
1161 }
1162 
1163 static const char *
1164 _archive_filter_name(struct archive *_a, int n)
1165 {
1166 	struct archive_read_filter *f = get_filter(_a, n);
1167 	return f != NULL ? f->name : NULL;
1168 }
1169 
1170 static int64_t
1171 _archive_filter_bytes(struct archive *_a, int n)
1172 {
1173 	struct archive_read_filter *f = get_filter(_a, n);
1174 	return f == NULL ? -1 : f->position;
1175 }
1176 
1177 /*
1178  * Used internally by read format handlers to register their bid and
1179  * initialization functions.
1180  */
1181 int
1182 __archive_read_register_format(struct archive_read *a,
1183     void *format_data,
1184     const char *name,
1185     int (*bid)(struct archive_read *, int),
1186     int (*options)(struct archive_read *, const char *, const char *),
1187     int (*read_header)(struct archive_read *, struct archive_entry *),
1188     int (*read_data)(struct archive_read *, const void **, size_t *, int64_t *),
1189     int (*read_data_skip)(struct archive_read *),
1190     int64_t (*seek_data)(struct archive_read *, int64_t, int),
1191     int (*cleanup)(struct archive_read *),
1192     int (*format_capabilities)(struct archive_read *),
1193     int (*has_encrypted_entries)(struct archive_read *))
1194 {
1195 	int i, number_slots;
1196 
1197 	archive_check_magic(&a->archive,
1198 	    ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
1199 	    "__archive_read_register_format");
1200 
1201 	number_slots = sizeof(a->formats) / sizeof(a->formats[0]);
1202 
1203 	for (i = 0; i < number_slots; i++) {
1204 		if (a->formats[i].bid == bid)
1205 			return (ARCHIVE_WARN); /* We've already installed */
1206 		if (a->formats[i].bid == NULL) {
1207 			a->formats[i].bid = bid;
1208 			a->formats[i].options = options;
1209 			a->formats[i].read_header = read_header;
1210 			a->formats[i].read_data = read_data;
1211 			a->formats[i].read_data_skip = read_data_skip;
1212 			a->formats[i].seek_data = seek_data;
1213 			a->formats[i].cleanup = cleanup;
1214 			a->formats[i].data = format_data;
1215 			a->formats[i].name = name;
1216 			a->formats[i].format_capabilties = format_capabilities;
1217 			a->formats[i].has_encrypted_entries = has_encrypted_entries;
1218 			return (ARCHIVE_OK);
1219 		}
1220 	}
1221 
1222 	archive_set_error(&a->archive, ENOMEM,
1223 	    "Not enough slots for format registration");
1224 	return (ARCHIVE_FATAL);
1225 }
1226 
1227 /*
1228  * Used internally by decompression routines to register their bid and
1229  * initialization functions.
1230  */
1231 int
1232 __archive_read_register_bidder(struct archive_read *a,
1233 	void *bidder_data,
1234 	const char *name,
1235 	const struct archive_read_filter_bidder_vtable *vtable)
1236 {
1237 	struct archive_read_filter_bidder *bidder;
1238 	int i, number_slots;
1239 
1240 	archive_check_magic(&a->archive, ARCHIVE_READ_MAGIC,
1241 	    ARCHIVE_STATE_NEW, "__archive_read_register_bidder");
1242 
1243 	number_slots = sizeof(a->bidders) / sizeof(a->bidders[0]);
1244 
1245 	for (i = 0; i < number_slots; i++) {
1246 		if (a->bidders[i].vtable != NULL)
1247 			continue;
1248 		memset(a->bidders + i, 0, sizeof(a->bidders[0]));
1249 		bidder = (a->bidders + i);
1250 		bidder->data = bidder_data;
1251 		bidder->name = name;
1252 		bidder->vtable = vtable;
1253 		if (bidder->vtable->bid == NULL || bidder->vtable->init == NULL) {
1254 			archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
1255 					"Internal error: "
1256 					"no bid/init for filter bidder");
1257 			return (ARCHIVE_FATAL);
1258 		}
1259 
1260 		return (ARCHIVE_OK);
1261 	}
1262 
1263 	archive_set_error(&a->archive, ENOMEM,
1264 	    "Not enough slots for filter registration");
1265 	return (ARCHIVE_FATAL);
1266 }
1267 
1268 /*
1269  * The next section implements the peek/consume internal I/O
1270  * system used by archive readers.  This system allows simple
1271  * read-ahead for consumers while preserving zero-copy operation
1272  * most of the time.
1273  *
1274  * The two key operations:
1275  *  * The read-ahead function returns a pointer to a block of data
1276  *    that satisfies a minimum request.
1277  *  * The consume function advances the file pointer.
1278  *
1279  * In the ideal case, filters generate blocks of data
1280  * and __archive_read_ahead() just returns pointers directly into
1281  * those blocks.  Then __archive_read_consume() just bumps those
1282  * pointers.  Only if your request would span blocks does the I/O
1283  * layer use a copy buffer to provide you with a contiguous block of
1284  * data.
1285  *
1286  * A couple of useful idioms:
1287  *  * "I just want some data."  Ask for 1 byte and pay attention to
1288  *    the "number of bytes available" from __archive_read_ahead().
1289  *    Consume whatever you actually use.
1290  *  * "I want to output a large block of data."  As above, ask for 1 byte,
1291  *    emit all that's available (up to whatever limit you have), consume
1292  *    it all, then repeat until you're done.  This effectively means that
1293  *    you're passing along the blocks that came from your provider.
1294  *  * "I want to peek ahead by a large amount."  Ask for 4k or so, then
1295  *    double and repeat until you get an error or have enough.  Note
1296  *    that the I/O layer will likely end up expanding its copy buffer
1297  *    to fit your request, so use this technique cautiously.  This
1298  *    technique is used, for example, by some of the format tasting
1299  *    code that has uncertain look-ahead needs.
1300  */
1301 
1302 /*
1303  * Looks ahead in the input stream:
1304  *  * If 'avail' pointer is provided, that returns number of bytes available
1305  *    in the current buffer, which may be much larger than requested.
1306  *  * If end-of-file, *avail gets set to zero.
1307  *  * If error, *avail gets error code.
1308  *  * If request can be met, returns pointer to data.
1309  *  * If minimum request cannot be met, returns NULL.
1310  *
1311  * Note: If you just want "some data", ask for 1 byte and pay attention
1312  * to *avail, which will have the actual amount available.  If you
1313  * know exactly how many bytes you need, just ask for that and treat
1314  * a NULL return as an error.
1315  *
1316  * Important:  This does NOT move the file pointer.  See
1317  * __archive_read_consume() below.
1318  */
1319 const void *
1320 __archive_read_ahead(struct archive_read *a, size_t min, ssize_t *avail)
1321 {
1322 	return (__archive_read_filter_ahead(a->filter, min, avail));
1323 }
1324 
1325 const void *
1326 __archive_read_filter_ahead(struct archive_read_filter *filter,
1327     size_t min, ssize_t *avail)
1328 {
1329 	ssize_t bytes_read;
1330 	size_t tocopy;
1331 
1332 	if (filter->fatal) {
1333 		if (avail)
1334 			*avail = ARCHIVE_FATAL;
1335 		return (NULL);
1336 	}
1337 
1338 	/*
1339 	 * Keep pulling more data until we can satisfy the request.
1340 	 */
1341 	for (;;) {
1342 
1343 		/*
1344 		 * If we can satisfy from the copy buffer (and the
1345 		 * copy buffer isn't empty), we're done.  In particular,
1346 		 * note that min == 0 is a perfectly well-defined
1347 		 * request.
1348 		 */
1349 		if (filter->avail >= min && filter->avail > 0) {
1350 			if (avail != NULL)
1351 				*avail = filter->avail;
1352 			return (filter->next);
1353 		}
1354 
1355 		/*
1356 		 * We can satisfy directly from client buffer if everything
1357 		 * currently in the copy buffer is still in the client buffer.
1358 		 */
1359 		if (filter->client_total >= filter->client_avail + filter->avail
1360 		    && filter->client_avail + filter->avail >= min) {
1361 			/* "Roll back" to client buffer. */
1362 			filter->client_avail += filter->avail;
1363 			filter->client_next -= filter->avail;
1364 			/* Copy buffer is now empty. */
1365 			filter->avail = 0;
1366 			filter->next = filter->buffer;
1367 			/* Return data from client buffer. */
1368 			if (avail != NULL)
1369 				*avail = filter->client_avail;
1370 			return (filter->client_next);
1371 		}
1372 
1373 		/* Move data forward in copy buffer if necessary. */
1374 		if (filter->next > filter->buffer &&
1375 		    filter->next + min > filter->buffer + filter->buffer_size) {
1376 			if (filter->avail > 0)
1377 				memmove(filter->buffer, filter->next,
1378 				    filter->avail);
1379 			filter->next = filter->buffer;
1380 		}
1381 
1382 		/* If we've used up the client data, get more. */
1383 		if (filter->client_avail <= 0) {
1384 			if (filter->end_of_file) {
1385 				if (avail != NULL)
1386 					*avail = 0;
1387 				return (NULL);
1388 			}
1389 			bytes_read = (filter->vtable->read)(filter,
1390 			    &filter->client_buff);
1391 			if (bytes_read < 0) {		/* Read error. */
1392 				filter->client_total = filter->client_avail = 0;
1393 				filter->client_next =
1394 				    filter->client_buff = NULL;
1395 				filter->fatal = 1;
1396 				if (avail != NULL)
1397 					*avail = ARCHIVE_FATAL;
1398 				return (NULL);
1399 			}
1400 			if (bytes_read == 0) {
1401 				/* Check for another client object first */
1402 				if (filter->archive->client.cursor !=
1403 				      filter->archive->client.nodes - 1) {
1404 					if (client_switch_proxy(filter,
1405 					    filter->archive->client.cursor + 1)
1406 					    == ARCHIVE_OK)
1407 						continue;
1408 				}
1409 				/* Premature end-of-file. */
1410 				filter->client_total = filter->client_avail = 0;
1411 				filter->client_next =
1412 				    filter->client_buff = NULL;
1413 				filter->end_of_file = 1;
1414 				/* Return whatever we do have. */
1415 				if (avail != NULL)
1416 					*avail = filter->avail;
1417 				return (NULL);
1418 			}
1419 			filter->client_total = bytes_read;
1420 			filter->client_avail = filter->client_total;
1421 			filter->client_next = filter->client_buff;
1422 		} else {
1423 			/*
1424 			 * We can't satisfy the request from the copy
1425 			 * buffer or the existing client data, so we
1426 			 * need to copy more client data over to the
1427 			 * copy buffer.
1428 			 */
1429 
1430 			/* Ensure the buffer is big enough. */
1431 			if (min > filter->buffer_size) {
1432 				size_t s, t;
1433 				char *p;
1434 
1435 				/* Double the buffer; watch for overflow. */
1436 				s = t = filter->buffer_size;
1437 				if (s == 0)
1438 					s = min;
1439 				while (s < min) {
1440 					t *= 2;
1441 					if (t <= s) { /* Integer overflow! */
1442 						archive_set_error(
1443 						    &filter->archive->archive,
1444 						    ENOMEM,
1445 						    "Unable to allocate copy"
1446 						    " buffer");
1447 						filter->fatal = 1;
1448 						if (avail != NULL)
1449 							*avail = ARCHIVE_FATAL;
1450 						return (NULL);
1451 					}
1452 					s = t;
1453 				}
1454 				/* Now s >= min, so allocate a new buffer. */
1455 				p = (char *)malloc(s);
1456 				if (p == NULL) {
1457 					archive_set_error(
1458 						&filter->archive->archive,
1459 						ENOMEM,
1460 					    "Unable to allocate copy buffer");
1461 					filter->fatal = 1;
1462 					if (avail != NULL)
1463 						*avail = ARCHIVE_FATAL;
1464 					return (NULL);
1465 				}
1466 				/* Move data into newly-enlarged buffer. */
1467 				if (filter->avail > 0)
1468 					memmove(p, filter->next, filter->avail);
1469 				free(filter->buffer);
1470 				filter->next = filter->buffer = p;
1471 				filter->buffer_size = s;
1472 			}
1473 
1474 			/* We can add client data to copy buffer. */
1475 			/* First estimate: copy to fill rest of buffer. */
1476 			tocopy = (filter->buffer + filter->buffer_size)
1477 			    - (filter->next + filter->avail);
1478 			/* Don't waste time buffering more than we need to. */
1479 			if (tocopy + filter->avail > min)
1480 				tocopy = min - filter->avail;
1481 			/* Don't copy more than is available. */
1482 			if (tocopy > filter->client_avail)
1483 				tocopy = filter->client_avail;
1484 
1485 			memcpy(filter->next + filter->avail,
1486 			    filter->client_next, tocopy);
1487 			/* Remove this data from client buffer. */
1488 			filter->client_next += tocopy;
1489 			filter->client_avail -= tocopy;
1490 			/* add it to copy buffer. */
1491 			filter->avail += tocopy;
1492 		}
1493 	}
1494 }
1495 
1496 /*
1497  * Move the file pointer forward.
1498  */
1499 int64_t
1500 __archive_read_consume(struct archive_read *a, int64_t request)
1501 {
1502 	return (__archive_read_filter_consume(a->filter, request));
1503 }
1504 
1505 int64_t
1506 __archive_read_filter_consume(struct archive_read_filter * filter,
1507     int64_t request)
1508 {
1509 	int64_t skipped;
1510 
1511 	if (request < 0)
1512 		return ARCHIVE_FATAL;
1513 	if (request == 0)
1514 		return 0;
1515 
1516 	skipped = advance_file_pointer(filter, request);
1517 	if (skipped == request)
1518 		return (skipped);
1519 	/* We hit EOF before we satisfied the skip request. */
1520 	if (skipped < 0)  /* Map error code to 0 for error message below. */
1521 		skipped = 0;
1522 	archive_set_error(&filter->archive->archive,
1523 	    ARCHIVE_ERRNO_MISC,
1524 	    "Truncated input file (needed %jd bytes, only %jd available)",
1525 	    (intmax_t)request, (intmax_t)skipped);
1526 	return (ARCHIVE_FATAL);
1527 }
1528 
1529 /*
1530  * Advance the file pointer by the amount requested.
1531  * Returns the amount actually advanced, which may be less than the
1532  * request if EOF is encountered first.
1533  * Returns a negative value if there's an I/O error.
1534  */
1535 static int64_t
1536 advance_file_pointer(struct archive_read_filter *filter, int64_t request)
1537 {
1538 	int64_t bytes_skipped, total_bytes_skipped = 0;
1539 	ssize_t bytes_read;
1540 	size_t min;
1541 
1542 	if (filter->fatal)
1543 		return (-1);
1544 
1545 	/* Use up the copy buffer first. */
1546 	if (filter->avail > 0) {
1547 		min = (size_t)minimum(request, (int64_t)filter->avail);
1548 		filter->next += min;
1549 		filter->avail -= min;
1550 		request -= min;
1551 		filter->position += min;
1552 		total_bytes_skipped += min;
1553 	}
1554 
1555 	/* Then use up the client buffer. */
1556 	if (filter->client_avail > 0) {
1557 		min = (size_t)minimum(request, (int64_t)filter->client_avail);
1558 		filter->client_next += min;
1559 		filter->client_avail -= min;
1560 		request -= min;
1561 		filter->position += min;
1562 		total_bytes_skipped += min;
1563 	}
1564 	if (request == 0)
1565 		return (total_bytes_skipped);
1566 
1567 	/* If there's an optimized skip function, use it. */
1568 	if (filter->can_skip != 0) {
1569 		bytes_skipped = client_skip_proxy(filter, request);
1570 		if (bytes_skipped < 0) {	/* error */
1571 			filter->fatal = 1;
1572 			return (bytes_skipped);
1573 		}
1574 		filter->position += bytes_skipped;
1575 		total_bytes_skipped += bytes_skipped;
1576 		request -= bytes_skipped;
1577 		if (request == 0)
1578 			return (total_bytes_skipped);
1579 	}
1580 
1581 	/* Use ordinary reads as necessary to complete the request. */
1582 	for (;;) {
1583 		bytes_read = (filter->vtable->read)(filter, &filter->client_buff);
1584 		if (bytes_read < 0) {
1585 			filter->client_buff = NULL;
1586 			filter->fatal = 1;
1587 			return (bytes_read);
1588 		}
1589 
1590 		if (bytes_read == 0) {
1591 			if (filter->archive->client.cursor !=
1592 			      filter->archive->client.nodes - 1) {
1593 				if (client_switch_proxy(filter,
1594 				    filter->archive->client.cursor + 1)
1595 				    == ARCHIVE_OK)
1596 					continue;
1597 			}
1598 			filter->client_buff = NULL;
1599 			filter->end_of_file = 1;
1600 			return (total_bytes_skipped);
1601 		}
1602 
1603 		if (bytes_read >= request) {
1604 			filter->client_next =
1605 			    ((const char *)filter->client_buff) + request;
1606 			filter->client_avail = (size_t)(bytes_read - request);
1607 			filter->client_total = bytes_read;
1608 			total_bytes_skipped += request;
1609 			filter->position += request;
1610 			return (total_bytes_skipped);
1611 		}
1612 
1613 		filter->position += bytes_read;
1614 		total_bytes_skipped += bytes_read;
1615 		request -= bytes_read;
1616 	}
1617 }
1618 
1619 /**
1620  * Returns ARCHIVE_FAILED if seeking isn't supported.
1621  */
1622 int64_t
1623 __archive_read_seek(struct archive_read *a, int64_t offset, int whence)
1624 {
1625 	return __archive_read_filter_seek(a->filter, offset, whence);
1626 }
1627 
1628 int64_t
1629 __archive_read_filter_seek(struct archive_read_filter *filter, int64_t offset,
1630     int whence)
1631 {
1632 	struct archive_read_client *client;
1633 	int64_t r;
1634 	unsigned int cursor;
1635 
1636 	if (filter->closed || filter->fatal)
1637 		return (ARCHIVE_FATAL);
1638 	if (filter->can_seek == 0)
1639 		return (ARCHIVE_FAILED);
1640 
1641 	client = &(filter->archive->client);
1642 	switch (whence) {
1643 	case SEEK_CUR:
1644 		/* Adjust the offset and use SEEK_SET instead */
1645 		offset += filter->position;
1646 		__LA_FALLTHROUGH;
1647 	case SEEK_SET:
1648 		cursor = 0;
1649 		while (1)
1650 		{
1651 			if (client->dataset[cursor].begin_position < 0 ||
1652 			    client->dataset[cursor].total_size < 0 ||
1653 			    client->dataset[cursor].begin_position +
1654 			      client->dataset[cursor].total_size - 1 > offset ||
1655 			    cursor + 1 >= client->nodes)
1656 				break;
1657 			r = client->dataset[cursor].begin_position +
1658 				client->dataset[cursor].total_size;
1659 			client->dataset[++cursor].begin_position = r;
1660 		}
1661 		while (1) {
1662 			r = client_switch_proxy(filter, cursor);
1663 			if (r != ARCHIVE_OK)
1664 				return r;
1665 			if ((r = client_seek_proxy(filter, 0, SEEK_END)) < 0)
1666 				return r;
1667 			client->dataset[cursor].total_size = r;
1668 			if (client->dataset[cursor].begin_position +
1669 			    client->dataset[cursor].total_size - 1 > offset ||
1670 			    cursor + 1 >= client->nodes)
1671 				break;
1672 			r = client->dataset[cursor].begin_position +
1673 				client->dataset[cursor].total_size;
1674 			client->dataset[++cursor].begin_position = r;
1675 		}
1676 		offset -= client->dataset[cursor].begin_position;
1677 		if (offset < 0
1678 		    || offset > client->dataset[cursor].total_size)
1679 			return ARCHIVE_FATAL;
1680 		if ((r = client_seek_proxy(filter, offset, SEEK_SET)) < 0)
1681 			return r;
1682 		break;
1683 
1684 	case SEEK_END:
1685 		cursor = 0;
1686 		while (1) {
1687 			if (client->dataset[cursor].begin_position < 0 ||
1688 			    client->dataset[cursor].total_size < 0 ||
1689 			    cursor + 1 >= client->nodes)
1690 				break;
1691 			r = client->dataset[cursor].begin_position +
1692 				client->dataset[cursor].total_size;
1693 			client->dataset[++cursor].begin_position = r;
1694 		}
1695 		while (1) {
1696 			r = client_switch_proxy(filter, cursor);
1697 			if (r != ARCHIVE_OK)
1698 				return r;
1699 			if ((r = client_seek_proxy(filter, 0, SEEK_END)) < 0)
1700 				return r;
1701 			client->dataset[cursor].total_size = r;
1702 			r = client->dataset[cursor].begin_position +
1703 				client->dataset[cursor].total_size;
1704 			if (cursor + 1 >= client->nodes)
1705 				break;
1706 			client->dataset[++cursor].begin_position = r;
1707 		}
1708 		while (1) {
1709 			if (r + offset >=
1710 			    client->dataset[cursor].begin_position)
1711 				break;
1712 			offset += client->dataset[cursor].total_size;
1713 			if (cursor == 0)
1714 				break;
1715 			cursor--;
1716 			r = client->dataset[cursor].begin_position +
1717 				client->dataset[cursor].total_size;
1718 		}
1719 		offset = (r + offset) - client->dataset[cursor].begin_position;
1720 		if ((r = client_switch_proxy(filter, cursor)) != ARCHIVE_OK)
1721 			return r;
1722 		r = client_seek_proxy(filter, offset, SEEK_SET);
1723 		if (r < ARCHIVE_OK)
1724 			return r;
1725 		break;
1726 
1727 	default:
1728 		return (ARCHIVE_FATAL);
1729 	}
1730 	r += client->dataset[cursor].begin_position;
1731 
1732 	if (r >= 0) {
1733 		/*
1734 		 * Ouch.  Clearing the buffer like this hurts, especially
1735 		 * at bid time.  A lot of our efficiency at bid time comes
1736 		 * from having bidders reuse the data we've already read.
1737 		 *
1738 		 * TODO: If the seek request is in data we already
1739 		 * have, then don't call the seek callback.
1740 		 *
1741 		 * TODO: Zip seeks to end-of-file at bid time.  If
1742 		 * other formats also start doing this, we may need to
1743 		 * find a way for clients to fudge the seek offset to
1744 		 * a block boundary.
1745 		 *
1746 		 * Hmmm... If whence was SEEK_END, we know the file
1747 		 * size is (r - offset).  Can we use that to simplify
1748 		 * the TODO items above?
1749 		 */
1750 		filter->avail = filter->client_avail = 0;
1751 		filter->next = filter->buffer;
1752 		filter->position = r;
1753 		filter->end_of_file = 0;
1754 	}
1755 	return r;
1756 }
1757