xref: /freebsd/contrib/ldns/sha2.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*
2  * FILE:	sha2.c
3  * AUTHOR:	Aaron D. Gifford - http://www.aarongifford.com/
4  *
5  * Copyright (c) 2000-2001, Aaron D. Gifford
6  * All rights reserved.
7  *
8  * Modified by Jelte Jansen to fit in ldns, and not clash with any
9  * system-defined SHA code.
10  * Changes:
11  * - Renamed (external) functions and constants to fit ldns style
12  * - Removed _End and _Data functions
13  * - Added ldns_shaX(data, len, digest) convenience functions
14  * - Removed prototypes of _Transform functions and made those static
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the copyright holder nor the names of contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
41  */
42 
43 #include <ldns/config.h>
44 #include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
45 #include <assert.h>	/* assert() */
46 #include <ldns/sha2.h>
47 
48 /*
49  * ASSERT NOTE:
50  * Some sanity checking code is included using assert().  On my FreeBSD
51  * system, this additional code can be removed by compiling with NDEBUG
52  * defined.  Check your own systems manpage on assert() to see how to
53  * compile WITHOUT the sanity checking code on your system.
54  *
55  * UNROLLED TRANSFORM LOOP NOTE:
56  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57  * loop version for the hash transform rounds (defined using macros
58  * later in this file).  Either define on the command line, for example:
59  *
60  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61  *
62  * or define below:
63  *
64  *   #define SHA2_UNROLL_TRANSFORM
65  *
66  */
67 
68 
69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
70 /*
71  * BYTE_ORDER NOTE:
72  *
73  * Please make sure that your system defines BYTE_ORDER.  If your
74  * architecture is little-endian, make sure it also defines
75  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76  * equivalent.
77  *
78  * If your system does not define the above, then you can do so by
79  * hand like this:
80  *
81  *   #define LITTLE_ENDIAN 1234
82  *   #define BIG_ENDIAN    4321
83  *
84  * And for little-endian machines, add:
85  *
86  *   #define BYTE_ORDER LITTLE_ENDIAN
87  *
88  * Or for big-endian machines:
89  *
90  *   #define BYTE_ORDER BIG_ENDIAN
91  *
92  * The FreeBSD machine this was written on defines BYTE_ORDER
93  * appropriately by including <sys/types.h> (which in turn includes
94  * <machine/endian.h> where the appropriate definitions are actually
95  * made).
96  */
97 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99 #endif
100 
101 typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
102 typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
103 #ifdef S_SPLINT_S
104 typedef unsigned long long sha2_word64; /* lint 8 bytes */
105 #else
106 typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
107 #endif
108 
109 /*** SHA-256/384/512 Various Length Definitions ***********************/
110 /* NOTE: Most of these are in sha2.h */
111 #define ldns_sha256_SHORT_BLOCK_LENGTH	(LDNS_SHA256_BLOCK_LENGTH - 8)
112 #define ldns_sha384_SHORT_BLOCK_LENGTH	(LDNS_SHA384_BLOCK_LENGTH - 16)
113 #define ldns_sha512_SHORT_BLOCK_LENGTH	(LDNS_SHA512_BLOCK_LENGTH - 16)
114 
115 
116 /*** ENDIAN REVERSAL MACROS *******************************************/
117 #if BYTE_ORDER == LITTLE_ENDIAN
118 #define REVERSE32(w,x)	{ \
119 	sha2_word32 tmp = (w); \
120 	tmp = (tmp >> 16) | (tmp << 16); \
121 	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
122 }
123 #ifndef S_SPLINT_S
124 #define REVERSE64(w,x)	{ \
125 	sha2_word64 tmp = (w); \
126 	tmp = (tmp >> 32) | (tmp << 32); \
127 	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
128 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
129 	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
130 	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
131 }
132 #else /* splint */
133 #define REVERSE64(w,x) /* splint */
134 #endif /* splint */
135 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
136 
137 /*
138  * Macro for incrementally adding the unsigned 64-bit integer n to the
139  * unsigned 128-bit integer (represented using a two-element array of
140  * 64-bit words):
141  */
142 #define ADDINC128(w,n)	{ \
143 	(w)[0] += (sha2_word64)(n); \
144 	if ((w)[0] < (n)) { \
145 		(w)[1]++; \
146 	} \
147 }
148 #ifdef S_SPLINT_S
149 #undef ADDINC128
150 #define ADDINC128(w,n) /* splint */
151 #endif
152 
153 /*
154  * Macros for copying blocks of memory and for zeroing out ranges
155  * of memory.  Using these macros makes it easy to switch from
156  * using memset()/memcpy() and using bzero()/bcopy().
157  *
158  * Please define either SHA2_USE_MEMSET_MEMCPY or define
159  * SHA2_USE_BZERO_BCOPY depending on which function set you
160  * choose to use:
161  */
162 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
163 /* Default to memset()/memcpy() if no option is specified */
164 #define	SHA2_USE_MEMSET_MEMCPY	1
165 #endif
166 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
167 /* Abort with an error if BOTH options are defined */
168 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
169 #endif
170 
171 #ifdef SHA2_USE_MEMSET_MEMCPY
172 #define MEMSET_BZERO(p,l)	memset((p), 0, (l))
173 #define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
174 #endif
175 #ifdef SHA2_USE_BZERO_BCOPY
176 #define MEMSET_BZERO(p,l)	bzero((p), (l))
177 #define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
178 #endif
179 
180 
181 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
182 /*
183  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
184  *
185  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
186  *   S is a ROTATION) because the SHA-256/384/512 description document
187  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
188  *   same "backwards" definition.
189  */
190 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
191 #define R(b,x) 		((x) >> (b))
192 /* 32-bit Rotate-right (used in SHA-256): */
193 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
194 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
195 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
196 
197 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
198 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
199 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
200 
201 /* Four of six logical functions used in SHA-256: */
202 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
203 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
204 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
205 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
206 
207 /* Four of six logical functions used in SHA-384 and SHA-512: */
208 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
209 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
210 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
211 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
212 
213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214 /* Hash constant words K for SHA-256: */
215 static const sha2_word32 K256[64] = {
216 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
232 };
233 
234 /* initial hash value H for SHA-256: */
235 static const sha2_word32 ldns_sha256_initial_hash_value[8] = {
236 	0x6a09e667UL,
237 	0xbb67ae85UL,
238 	0x3c6ef372UL,
239 	0xa54ff53aUL,
240 	0x510e527fUL,
241 	0x9b05688cUL,
242 	0x1f83d9abUL,
243 	0x5be0cd19UL
244 };
245 
246 /* Hash constant words K for SHA-384 and SHA-512: */
247 static const sha2_word64 K512[80] = {
248 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
288 };
289 
290 /* initial hash value H for SHA-384 */
291 static const sha2_word64 sha384_initial_hash_value[8] = {
292 	0xcbbb9d5dc1059ed8ULL,
293 	0x629a292a367cd507ULL,
294 	0x9159015a3070dd17ULL,
295 	0x152fecd8f70e5939ULL,
296 	0x67332667ffc00b31ULL,
297 	0x8eb44a8768581511ULL,
298 	0xdb0c2e0d64f98fa7ULL,
299 	0x47b5481dbefa4fa4ULL
300 };
301 
302 /* initial hash value H for SHA-512 */
303 static const sha2_word64 sha512_initial_hash_value[8] = {
304 	0x6a09e667f3bcc908ULL,
305 	0xbb67ae8584caa73bULL,
306 	0x3c6ef372fe94f82bULL,
307 	0xa54ff53a5f1d36f1ULL,
308 	0x510e527fade682d1ULL,
309 	0x9b05688c2b3e6c1fULL,
310 	0x1f83d9abfb41bd6bULL,
311 	0x5be0cd19137e2179ULL
312 };
313 
314 /*** SHA-256: *********************************************************/
315 void ldns_sha256_init(ldns_sha256_CTX* context) {
316 	if (context == (ldns_sha256_CTX*)0) {
317 		return;
318 	}
319 	MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH);
320 	MEMSET_BZERO(context->buffer, LDNS_SHA256_BLOCK_LENGTH);
321 	context->bitcount = 0;
322 }
323 
324 #ifdef SHA2_UNROLL_TRANSFORM
325 
326 /* Unrolled SHA-256 round macros: */
327 
328 #if BYTE_ORDER == LITTLE_ENDIAN
329 
330 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
331 	REVERSE32(*data++, W256[j]); \
332 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
333              K256[j] + W256[j]; \
334 	(d) += T1; \
335 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
336 	j++
337 
338 
339 #else /* BYTE_ORDER == LITTLE_ENDIAN */
340 
341 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
342 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
343 	     K256[j] + (W256[j] = *data++); \
344 	(d) += T1; \
345 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346 	j++
347 
348 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
349 
350 #define ROUND256(a,b,c,d,e,f,g,h)	\
351 	s0 = W256[(j+1)&0x0f]; \
352 	s0 = sigma0_256(s0); \
353 	s1 = W256[(j+14)&0x0f]; \
354 	s1 = sigma1_256(s1); \
355 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
356 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
357 	(d) += T1; \
358 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
359 	j++
360 
361 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
362                                   const sha2_word32* data) {
363 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
364 	sha2_word32	T1, *W256;
365 	int		j;
366 
367 	W256 = (sha2_word32*)context->buffer;
368 
369 	/* initialize registers with the prev. intermediate value */
370 	a = context->state[0];
371 	b = context->state[1];
372 	c = context->state[2];
373 	d = context->state[3];
374 	e = context->state[4];
375 	f = context->state[5];
376 	g = context->state[6];
377 	h = context->state[7];
378 
379 	j = 0;
380 	do {
381 		/* Rounds 0 to 15 (unrolled): */
382 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
383 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
384 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
385 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
386 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
387 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
388 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
389 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
390 	} while (j < 16);
391 
392 	/* Now for the remaining rounds to 64: */
393 	do {
394 		ROUND256(a,b,c,d,e,f,g,h);
395 		ROUND256(h,a,b,c,d,e,f,g);
396 		ROUND256(g,h,a,b,c,d,e,f);
397 		ROUND256(f,g,h,a,b,c,d,e);
398 		ROUND256(e,f,g,h,a,b,c,d);
399 		ROUND256(d,e,f,g,h,a,b,c);
400 		ROUND256(c,d,e,f,g,h,a,b);
401 		ROUND256(b,c,d,e,f,g,h,a);
402 	} while (j < 64);
403 
404 	/* Compute the current intermediate hash value */
405 	context->state[0] += a;
406 	context->state[1] += b;
407 	context->state[2] += c;
408 	context->state[3] += d;
409 	context->state[4] += e;
410 	context->state[5] += f;
411 	context->state[6] += g;
412 	context->state[7] += h;
413 
414 	/* Clean up */
415 	a = b = c = d = e = f = g = h = T1 = 0;
416 }
417 
418 #else /* SHA2_UNROLL_TRANSFORM */
419 
420 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
421                                   const sha2_word32* data) {
422 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
423 	sha2_word32	T1, T2, *W256;
424 	int		j;
425 
426 	W256 = (sha2_word32*)context->buffer;
427 
428 	/* initialize registers with the prev. intermediate value */
429 	a = context->state[0];
430 	b = context->state[1];
431 	c = context->state[2];
432 	d = context->state[3];
433 	e = context->state[4];
434 	f = context->state[5];
435 	g = context->state[6];
436 	h = context->state[7];
437 
438 	j = 0;
439 	do {
440 #if BYTE_ORDER == LITTLE_ENDIAN
441 		/* Copy data while converting to host byte order */
442 		REVERSE32(*data++,W256[j]);
443 		/* Apply the SHA-256 compression function to update a..h */
444 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
445 #else /* BYTE_ORDER == LITTLE_ENDIAN */
446 		/* Apply the SHA-256 compression function to update a..h with copy */
447 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
448 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
449 		T2 = Sigma0_256(a) + Maj(a, b, c);
450 		h = g;
451 		g = f;
452 		f = e;
453 		e = d + T1;
454 		d = c;
455 		c = b;
456 		b = a;
457 		a = T1 + T2;
458 
459 		j++;
460 	} while (j < 16);
461 
462 	do {
463 		/* Part of the message block expansion: */
464 		s0 = W256[(j+1)&0x0f];
465 		s0 = sigma0_256(s0);
466 		s1 = W256[(j+14)&0x0f];
467 		s1 = sigma1_256(s1);
468 
469 		/* Apply the SHA-256 compression function to update a..h */
470 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
471 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
472 		T2 = Sigma0_256(a) + Maj(a, b, c);
473 		h = g;
474 		g = f;
475 		f = e;
476 		e = d + T1;
477 		d = c;
478 		c = b;
479 		b = a;
480 		a = T1 + T2;
481 
482 		j++;
483 	} while (j < 64);
484 
485 	/* Compute the current intermediate hash value */
486 	context->state[0] += a;
487 	context->state[1] += b;
488 	context->state[2] += c;
489 	context->state[3] += d;
490 	context->state[4] += e;
491 	context->state[5] += f;
492 	context->state[6] += g;
493 	context->state[7] += h;
494 
495 	/* Clean up */
496 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
497 	(void)a;
498 }
499 
500 #endif /* SHA2_UNROLL_TRANSFORM */
501 
502 void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) {
503 	size_t freespace, usedspace;
504 
505 	if (len == 0) {
506 		/* Calling with no data is valid - we do nothing */
507 		return;
508 	}
509 
510 	/* Sanity check: */
511 	assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0);
512 
513 	usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
514 	if (usedspace > 0) {
515 		/* Calculate how much free space is available in the buffer */
516 		freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace;
517 
518 		if (len >= freespace) {
519 			/* Fill the buffer completely and process it */
520 			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
521 			context->bitcount += freespace << 3;
522 			len -= freespace;
523 			data += freespace;
524 			ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
525 		} else {
526 			/* The buffer is not yet full */
527 			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
528 			context->bitcount += len << 3;
529 			/* Clean up: */
530 			usedspace = freespace = 0;
531 			(void)usedspace;
532 			return;
533 		}
534 	}
535 	while (len >= LDNS_SHA256_BLOCK_LENGTH) {
536 		/* Process as many complete blocks as we can */
537 		ldns_sha256_Transform(context, (sha2_word32*)data);
538 		context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3;
539 		len -= LDNS_SHA256_BLOCK_LENGTH;
540 		data += LDNS_SHA256_BLOCK_LENGTH;
541 	}
542 	if (len > 0) {
543 		/* There's left-overs, so save 'em */
544 		MEMCPY_BCOPY(context->buffer, data, len);
545 		context->bitcount += len << 3;
546 	}
547 	/* Clean up: */
548 	usedspace = freespace = 0;
549 	(void)usedspace;
550 }
551 
552 typedef union _ldns_sha2_buffer_union {
553         uint8_t*  theChars;
554         uint64_t* theLongs;
555 } ldns_sha2_buffer_union;
556 
557 void ldns_sha256_final(sha2_byte digest[LDNS_SHA256_DIGEST_LENGTH], ldns_sha256_CTX* context) {
558 	sha2_word32	*d = (sha2_word32*)digest;
559 	size_t usedspace;
560 	ldns_sha2_buffer_union cast_var;
561 
562 	/* Sanity check: */
563 	assert(context != (ldns_sha256_CTX*)0);
564 
565 	/* If no digest buffer is passed, we don't bother doing this: */
566 	if (digest != (sha2_byte*)0) {
567 		usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
568 #if BYTE_ORDER == LITTLE_ENDIAN
569 		/* Convert FROM host byte order */
570 		REVERSE64(context->bitcount,context->bitcount);
571 #endif
572 		if (usedspace > 0) {
573 			/* Begin padding with a 1 bit: */
574 			context->buffer[usedspace++] = 0x80;
575 
576 			if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) {
577 				/* Set-up for the last transform: */
578 				MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace);
579 			} else {
580 				if (usedspace < LDNS_SHA256_BLOCK_LENGTH) {
581 					MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace);
582 				}
583 				/* Do second-to-last transform: */
584 				ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
585 
586 				/* And set-up for the last transform: */
587 				MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
588 			}
589 		} else {
590 			/* Set-up for the last transform: */
591 			MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
592 
593 			/* Begin padding with a 1 bit: */
594 			*context->buffer = 0x80;
595 		}
596 		/* Set the bit count: */
597 		cast_var.theChars = context->buffer;
598 		cast_var.theLongs[ldns_sha256_SHORT_BLOCK_LENGTH / 8] = context->bitcount;
599 
600 		/* final transform: */
601 		ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
602 
603 #if BYTE_ORDER == LITTLE_ENDIAN
604 		{
605 			/* Convert TO host byte order */
606 			int	j;
607 			for (j = 0; j < 8; j++) {
608 				REVERSE32(context->state[j],context->state[j]);
609 				*d++ = context->state[j];
610 			}
611 		}
612 #else
613 		MEMCPY_BCOPY(d, context->state, LDNS_SHA256_DIGEST_LENGTH);
614 #endif
615 	}
616 
617 	/* Clean up state data: */
618 	MEMSET_BZERO(context, sizeof(ldns_sha256_CTX));
619 	usedspace = 0;
620 	(void)usedspace;
621 }
622 
623 unsigned char *
624 ldns_sha256(const unsigned char *data, unsigned int data_len, unsigned char *digest)
625 {
626     ldns_sha256_CTX ctx;
627     ldns_sha256_init(&ctx);
628     ldns_sha256_update(&ctx, data, data_len);
629     ldns_sha256_final(digest, &ctx);
630     return digest;
631 }
632 
633 /*** SHA-512: *********************************************************/
634 void ldns_sha512_init(ldns_sha512_CTX* context) {
635 	if (context == (ldns_sha512_CTX*)0) {
636 		return;
637 	}
638 	MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
639 	MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH);
640 	context->bitcount[0] = context->bitcount[1] =  0;
641 }
642 
643 #ifdef SHA2_UNROLL_TRANSFORM
644 
645 /* Unrolled SHA-512 round macros: */
646 #if BYTE_ORDER == LITTLE_ENDIAN
647 
648 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
649 	REVERSE64(*data++, W512[j]); \
650 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
651              K512[j] + W512[j]; \
652 	(d) += T1, \
653 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
654 	j++
655 
656 
657 #else /* BYTE_ORDER == LITTLE_ENDIAN */
658 
659 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
660 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
661              K512[j] + (W512[j] = *data++); \
662 	(d) += T1; \
663 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
664 	j++
665 
666 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
667 
668 #define ROUND512(a,b,c,d,e,f,g,h)	\
669 	s0 = W512[(j+1)&0x0f]; \
670 	s0 = sigma0_512(s0); \
671 	s1 = W512[(j+14)&0x0f]; \
672 	s1 = sigma1_512(s1); \
673 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
674              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
675 	(d) += T1; \
676 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
677 	j++
678 
679 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
680                                   const sha2_word64* data) {
681 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
682 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
683 	int		j;
684 
685 	/* initialize registers with the prev. intermediate value */
686 	a = context->state[0];
687 	b = context->state[1];
688 	c = context->state[2];
689 	d = context->state[3];
690 	e = context->state[4];
691 	f = context->state[5];
692 	g = context->state[6];
693 	h = context->state[7];
694 
695 	j = 0;
696 	do {
697 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
698 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
699 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
700 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
701 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
702 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
703 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
704 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
705 	} while (j < 16);
706 
707 	/* Now for the remaining rounds up to 79: */
708 	do {
709 		ROUND512(a,b,c,d,e,f,g,h);
710 		ROUND512(h,a,b,c,d,e,f,g);
711 		ROUND512(g,h,a,b,c,d,e,f);
712 		ROUND512(f,g,h,a,b,c,d,e);
713 		ROUND512(e,f,g,h,a,b,c,d);
714 		ROUND512(d,e,f,g,h,a,b,c);
715 		ROUND512(c,d,e,f,g,h,a,b);
716 		ROUND512(b,c,d,e,f,g,h,a);
717 	} while (j < 80);
718 
719 	/* Compute the current intermediate hash value */
720 	context->state[0] += a;
721 	context->state[1] += b;
722 	context->state[2] += c;
723 	context->state[3] += d;
724 	context->state[4] += e;
725 	context->state[5] += f;
726 	context->state[6] += g;
727 	context->state[7] += h;
728 
729 	/* Clean up */
730 	a = b = c = d = e = f = g = h = T1 = 0;
731 }
732 
733 #else /* SHA2_UNROLL_TRANSFORM */
734 
735 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
736                                   const sha2_word64* data) {
737 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
738 	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
739 	int		j;
740 
741 	/* initialize registers with the prev. intermediate value */
742 	a = context->state[0];
743 	b = context->state[1];
744 	c = context->state[2];
745 	d = context->state[3];
746 	e = context->state[4];
747 	f = context->state[5];
748 	g = context->state[6];
749 	h = context->state[7];
750 
751 	j = 0;
752 	do {
753 #if BYTE_ORDER == LITTLE_ENDIAN
754 		/* Convert TO host byte order */
755 		REVERSE64(*data++, W512[j]);
756 		/* Apply the SHA-512 compression function to update a..h */
757 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
758 #else /* BYTE_ORDER == LITTLE_ENDIAN */
759 		/* Apply the SHA-512 compression function to update a..h with copy */
760 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
761 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
762 		T2 = Sigma0_512(a) + Maj(a, b, c);
763 		h = g;
764 		g = f;
765 		f = e;
766 		e = d + T1;
767 		d = c;
768 		c = b;
769 		b = a;
770 		a = T1 + T2;
771 
772 		j++;
773 	} while (j < 16);
774 
775 	do {
776 		/* Part of the message block expansion: */
777 		s0 = W512[(j+1)&0x0f];
778 		s0 = sigma0_512(s0);
779 		s1 = W512[(j+14)&0x0f];
780 		s1 =  sigma1_512(s1);
781 
782 		/* Apply the SHA-512 compression function to update a..h */
783 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
784 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
785 		T2 = Sigma0_512(a) + Maj(a, b, c);
786 		h = g;
787 		g = f;
788 		f = e;
789 		e = d + T1;
790 		d = c;
791 		c = b;
792 		b = a;
793 		a = T1 + T2;
794 
795 		j++;
796 	} while (j < 80);
797 
798 	/* Compute the current intermediate hash value */
799 	context->state[0] += a;
800 	context->state[1] += b;
801 	context->state[2] += c;
802 	context->state[3] += d;
803 	context->state[4] += e;
804 	context->state[5] += f;
805 	context->state[6] += g;
806 	context->state[7] += h;
807 
808 	/* Clean up */
809 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
810 	(void)a;
811 }
812 
813 #endif /* SHA2_UNROLL_TRANSFORM */
814 
815 void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) {
816 	size_t freespace, usedspace;
817 
818 	if (len == 0) {
819 		/* Calling with no data is valid - we do nothing */
820 		return;
821 	}
822 
823 	/* Sanity check: */
824 	assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0);
825 
826 	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
827 	if (usedspace > 0) {
828 		/* Calculate how much free space is available in the buffer */
829 		freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace;
830 
831 		if (len >= freespace) {
832 			/* Fill the buffer completely and process it */
833 			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
834 			ADDINC128(context->bitcount, freespace << 3);
835 			len -= freespace;
836 			data += freespace;
837 			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
838 		} else {
839 			/* The buffer is not yet full */
840 			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
841 			ADDINC128(context->bitcount, len << 3);
842 			/* Clean up: */
843 			usedspace = freespace = 0;
844 			(void)usedspace;
845 			return;
846 		}
847 	}
848 	while (len >= LDNS_SHA512_BLOCK_LENGTH) {
849 		/* Process as many complete blocks as we can */
850 		ldns_sha512_Transform(context, (sha2_word64*)data);
851 		ADDINC128(context->bitcount, LDNS_SHA512_BLOCK_LENGTH << 3);
852 		len -= LDNS_SHA512_BLOCK_LENGTH;
853 		data += LDNS_SHA512_BLOCK_LENGTH;
854 	}
855 	if (len > 0) {
856 		/* There's left-overs, so save 'em */
857 		MEMCPY_BCOPY(context->buffer, data, len);
858 		ADDINC128(context->bitcount, len << 3);
859 	}
860 	/* Clean up: */
861 	usedspace = freespace = 0;
862 	(void)usedspace;
863 }
864 
865 static void ldns_sha512_Last(ldns_sha512_CTX* context) {
866 	size_t usedspace;
867 	ldns_sha2_buffer_union cast_var;
868 
869 	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
870 #if BYTE_ORDER == LITTLE_ENDIAN
871 	/* Convert FROM host byte order */
872 	REVERSE64(context->bitcount[0],context->bitcount[0]);
873 	REVERSE64(context->bitcount[1],context->bitcount[1]);
874 #endif
875 	if (usedspace > 0) {
876 		/* Begin padding with a 1 bit: */
877 		context->buffer[usedspace++] = 0x80;
878 
879 		if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) {
880 			/* Set-up for the last transform: */
881 			MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace);
882 		} else {
883 			if (usedspace < LDNS_SHA512_BLOCK_LENGTH) {
884 				MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace);
885 			}
886 			/* Do second-to-last transform: */
887 			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
888 
889 			/* And set-up for the last transform: */
890 			MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH - 2);
891 		}
892 	} else {
893 		/* Prepare for final transform: */
894 		MEMSET_BZERO(context->buffer, ldns_sha512_SHORT_BLOCK_LENGTH);
895 
896 		/* Begin padding with a 1 bit: */
897 		*context->buffer = 0x80;
898 	}
899 	/* Store the length of input data (in bits): */
900 	cast_var.theChars = context->buffer;
901 	cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8] = context->bitcount[1];
902 	cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
903 
904 	/* final transform: */
905 	ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
906 }
907 
908 void ldns_sha512_final(sha2_byte digest[LDNS_SHA512_DIGEST_LENGTH], ldns_sha512_CTX* context) {
909 	sha2_word64	*d = (sha2_word64*)digest;
910 
911 	/* Sanity check: */
912 	assert(context != (ldns_sha512_CTX*)0);
913 
914 	/* If no digest buffer is passed, we don't bother doing this: */
915 	if (digest != (sha2_byte*)0) {
916 		ldns_sha512_Last(context);
917 
918 		/* Save the hash data for output: */
919 #if BYTE_ORDER == LITTLE_ENDIAN
920 		{
921 			/* Convert TO host byte order */
922 			int	j;
923 			for (j = 0; j < 8; j++) {
924 				REVERSE64(context->state[j],context->state[j]);
925 				*d++ = context->state[j];
926 			}
927 		}
928 #else
929 		MEMCPY_BCOPY(d, context->state, LDNS_SHA512_DIGEST_LENGTH);
930 #endif
931 	}
932 
933 	/* Zero out state data */
934 	MEMSET_BZERO(context, sizeof(ldns_sha512_CTX));
935 }
936 
937 unsigned char *
938 ldns_sha512(const unsigned char *data, unsigned int data_len, unsigned char *digest)
939 {
940     ldns_sha512_CTX ctx;
941     ldns_sha512_init(&ctx);
942     ldns_sha512_update(&ctx, data, data_len);
943     ldns_sha512_final(digest, &ctx);
944     return digest;
945 }
946 
947 /*** SHA-384: *********************************************************/
948 void ldns_sha384_init(ldns_sha384_CTX* context) {
949 	if (context == (ldns_sha384_CTX*)0) {
950 		return;
951 	}
952 	MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
953 	MEMSET_BZERO(context->buffer, LDNS_SHA384_BLOCK_LENGTH);
954 	context->bitcount[0] = context->bitcount[1] = 0;
955 }
956 
957 void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) {
958 	ldns_sha512_update((ldns_sha512_CTX*)context, data, len);
959 }
960 
961 void ldns_sha384_final(sha2_byte digest[LDNS_SHA384_DIGEST_LENGTH], ldns_sha384_CTX* context) {
962 	sha2_word64	*d = (sha2_word64*)digest;
963 
964 	/* Sanity check: */
965 	assert(context != (ldns_sha384_CTX*)0);
966 
967 	/* If no digest buffer is passed, we don't bother doing this: */
968 	if (digest != (sha2_byte*)0) {
969 		ldns_sha512_Last((ldns_sha512_CTX*)context);
970 
971 		/* Save the hash data for output: */
972 #if BYTE_ORDER == LITTLE_ENDIAN
973 		{
974 			/* Convert TO host byte order */
975 			int	j;
976 			for (j = 0; j < 6; j++) {
977 				REVERSE64(context->state[j],context->state[j]);
978 				*d++ = context->state[j];
979 			}
980 		}
981 #else
982 		MEMCPY_BCOPY(d, context->state, LDNS_SHA384_DIGEST_LENGTH);
983 #endif
984 	}
985 
986 	/* Zero out state data */
987 	MEMSET_BZERO(context, sizeof(ldns_sha384_CTX));
988 }
989 
990 unsigned char *
991 ldns_sha384(const unsigned char *data, unsigned int data_len, unsigned char *digest)
992 {
993     ldns_sha384_CTX ctx;
994     ldns_sha384_init(&ctx);
995     ldns_sha384_update(&ctx, data, data_len);
996     ldns_sha384_final(digest, &ctx);
997     return digest;
998 }
999