1 /* 2 * FILE: sha2.c 3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/ 4 * 5 * Copyright (c) 2000-2001, Aaron D. Gifford 6 * All rights reserved. 7 * 8 * Modified by Jelte Jansen to fit in ldns, and not clash with any 9 * system-defined SHA code. 10 * Changes: 11 * - Renamed (external) functions and constants to fit ldns style 12 * - Removed _End and _Data functions 13 * - Added ldns_shaX(data, len, digest) convenience functions 14 * - Removed prototypes of _Transform functions and made those static 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the copyright holder nor the names of contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 41 */ 42 43 #include <ldns/config.h> 44 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ 45 #include <assert.h> /* assert() */ 46 #include <ldns/sha2.h> 47 48 /* 49 * ASSERT NOTE: 50 * Some sanity checking code is included using assert(). On my FreeBSD 51 * system, this additional code can be removed by compiling with NDEBUG 52 * defined. Check your own systems manpage on assert() to see how to 53 * compile WITHOUT the sanity checking code on your system. 54 * 55 * UNROLLED TRANSFORM LOOP NOTE: 56 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 57 * loop version for the hash transform rounds (defined using macros 58 * later in this file). Either define on the command line, for example: 59 * 60 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 61 * 62 * or define below: 63 * 64 * #define SHA2_UNROLL_TRANSFORM 65 * 66 */ 67 68 69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/ 70 /* 71 * BYTE_ORDER NOTE: 72 * 73 * Please make sure that your system defines BYTE_ORDER. If your 74 * architecture is little-endian, make sure it also defines 75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 76 * equivilent. 77 * 78 * If your system does not define the above, then you can do so by 79 * hand like this: 80 * 81 * #define LITTLE_ENDIAN 1234 82 * #define BIG_ENDIAN 4321 83 * 84 * And for little-endian machines, add: 85 * 86 * #define BYTE_ORDER LITTLE_ENDIAN 87 * 88 * Or for big-endian machines: 89 * 90 * #define BYTE_ORDER BIG_ENDIAN 91 * 92 * The FreeBSD machine this was written on defines BYTE_ORDER 93 * appropriately by including <sys/types.h> (which in turn includes 94 * <machine/endian.h> where the appropriate definitions are actually 95 * made). 96 */ 97 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 98 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 99 #endif 100 101 typedef uint8_t sha2_byte; /* Exactly 1 byte */ 102 typedef uint32_t sha2_word32; /* Exactly 4 bytes */ 103 #ifdef S_SPLINT_S 104 typedef unsigned long long sha2_word64; /* lint 8 bytes */ 105 #else 106 typedef uint64_t sha2_word64; /* Exactly 8 bytes */ 107 #endif 108 109 /*** SHA-256/384/512 Various Length Definitions ***********************/ 110 /* NOTE: Most of these are in sha2.h */ 111 #define ldns_sha256_SHORT_BLOCK_LENGTH (LDNS_SHA256_BLOCK_LENGTH - 8) 112 #define ldns_sha384_SHORT_BLOCK_LENGTH (LDNS_SHA384_BLOCK_LENGTH - 16) 113 #define ldns_sha512_SHORT_BLOCK_LENGTH (LDNS_SHA512_BLOCK_LENGTH - 16) 114 115 116 /*** ENDIAN REVERSAL MACROS *******************************************/ 117 #if BYTE_ORDER == LITTLE_ENDIAN 118 #define REVERSE32(w,x) { \ 119 sha2_word32 tmp = (w); \ 120 tmp = (tmp >> 16) | (tmp << 16); \ 121 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ 122 } 123 #ifndef S_SPLINT_S 124 #define REVERSE64(w,x) { \ 125 sha2_word64 tmp = (w); \ 126 tmp = (tmp >> 32) | (tmp << 32); \ 127 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ 128 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ 129 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ 130 ((tmp & 0x0000ffff0000ffffULL) << 16); \ 131 } 132 #else /* splint */ 133 #define REVERSE64(w,x) /* splint */ 134 #endif /* splint */ 135 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 136 137 /* 138 * Macro for incrementally adding the unsigned 64-bit integer n to the 139 * unsigned 128-bit integer (represented using a two-element array of 140 * 64-bit words): 141 */ 142 #define ADDINC128(w,n) { \ 143 (w)[0] += (sha2_word64)(n); \ 144 if ((w)[0] < (n)) { \ 145 (w)[1]++; \ 146 } \ 147 } 148 #ifdef S_SPLINT_S 149 #undef ADDINC128 150 #define ADDINC128(w,n) /* splint */ 151 #endif 152 153 /* 154 * Macros for copying blocks of memory and for zeroing out ranges 155 * of memory. Using these macros makes it easy to switch from 156 * using memset()/memcpy() and using bzero()/bcopy(). 157 * 158 * Please define either SHA2_USE_MEMSET_MEMCPY or define 159 * SHA2_USE_BZERO_BCOPY depending on which function set you 160 * choose to use: 161 */ 162 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) 163 /* Default to memset()/memcpy() if no option is specified */ 164 #define SHA2_USE_MEMSET_MEMCPY 1 165 #endif 166 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) 167 /* Abort with an error if BOTH options are defined */ 168 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! 169 #endif 170 171 #ifdef SHA2_USE_MEMSET_MEMCPY 172 #define MEMSET_BZERO(p,l) memset((p), 0, (l)) 173 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) 174 #endif 175 #ifdef SHA2_USE_BZERO_BCOPY 176 #define MEMSET_BZERO(p,l) bzero((p), (l)) 177 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) 178 #endif 179 180 181 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 182 /* 183 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 184 * 185 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 186 * S is a ROTATION) because the SHA-256/384/512 description document 187 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 188 * same "backwards" definition. 189 */ 190 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ 191 #define R(b,x) ((x) >> (b)) 192 /* 32-bit Rotate-right (used in SHA-256): */ 193 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 194 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 195 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 196 197 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ 198 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 199 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 200 201 /* Four of six logical functions used in SHA-256: */ 202 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 203 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 204 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 205 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 206 207 /* Four of six logical functions used in SHA-384 and SHA-512: */ 208 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 209 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 210 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 211 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 212 213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 214 /* Hash constant words K for SHA-256: */ 215 static const sha2_word32 K256[64] = { 216 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 217 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 218 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 219 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 220 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 221 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 222 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 223 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 224 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 225 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 226 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 227 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 228 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 229 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 230 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 231 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 232 }; 233 234 /* initial hash value H for SHA-256: */ 235 static const sha2_word32 ldns_sha256_initial_hash_value[8] = { 236 0x6a09e667UL, 237 0xbb67ae85UL, 238 0x3c6ef372UL, 239 0xa54ff53aUL, 240 0x510e527fUL, 241 0x9b05688cUL, 242 0x1f83d9abUL, 243 0x5be0cd19UL 244 }; 245 246 /* Hash constant words K for SHA-384 and SHA-512: */ 247 static const sha2_word64 K512[80] = { 248 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 249 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 250 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 251 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 252 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 253 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 254 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 255 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 256 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 257 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 258 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 259 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 260 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 261 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 262 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 263 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 264 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 265 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 266 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 267 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 268 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 269 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 270 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 271 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 272 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 273 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 274 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 275 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 276 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 277 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 278 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 279 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 280 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 281 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 282 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 283 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 284 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 285 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 286 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 287 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 288 }; 289 290 /* initial hash value H for SHA-384 */ 291 static const sha2_word64 sha384_initial_hash_value[8] = { 292 0xcbbb9d5dc1059ed8ULL, 293 0x629a292a367cd507ULL, 294 0x9159015a3070dd17ULL, 295 0x152fecd8f70e5939ULL, 296 0x67332667ffc00b31ULL, 297 0x8eb44a8768581511ULL, 298 0xdb0c2e0d64f98fa7ULL, 299 0x47b5481dbefa4fa4ULL 300 }; 301 302 /* initial hash value H for SHA-512 */ 303 static const sha2_word64 sha512_initial_hash_value[8] = { 304 0x6a09e667f3bcc908ULL, 305 0xbb67ae8584caa73bULL, 306 0x3c6ef372fe94f82bULL, 307 0xa54ff53a5f1d36f1ULL, 308 0x510e527fade682d1ULL, 309 0x9b05688c2b3e6c1fULL, 310 0x1f83d9abfb41bd6bULL, 311 0x5be0cd19137e2179ULL 312 }; 313 314 /*** SHA-256: *********************************************************/ 315 void ldns_sha256_init(ldns_sha256_CTX* context) { 316 if (context == (ldns_sha256_CTX*)0) { 317 return; 318 } 319 MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH); 320 MEMSET_BZERO(context->buffer, LDNS_SHA256_BLOCK_LENGTH); 321 context->bitcount = 0; 322 } 323 324 #ifdef SHA2_UNROLL_TRANSFORM 325 326 /* Unrolled SHA-256 round macros: */ 327 328 #if BYTE_ORDER == LITTLE_ENDIAN 329 330 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ 331 REVERSE32(*data++, W256[j]); \ 332 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ 333 K256[j] + W256[j]; \ 334 (d) += T1; \ 335 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 336 j++ 337 338 339 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 340 341 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ 342 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ 343 K256[j] + (W256[j] = *data++); \ 344 (d) += T1; \ 345 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 346 j++ 347 348 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 349 350 #define ROUND256(a,b,c,d,e,f,g,h) \ 351 s0 = W256[(j+1)&0x0f]; \ 352 s0 = sigma0_256(s0); \ 353 s1 = W256[(j+14)&0x0f]; \ 354 s1 = sigma1_256(s1); \ 355 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ 356 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 357 (d) += T1; \ 358 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 359 j++ 360 361 static void ldns_sha256_Transform(ldns_sha256_CTX* context, 362 const sha2_word32* data) { 363 sha2_word32 a, b, c, d, e, f, g, h, s0, s1; 364 sha2_word32 T1, *W256; 365 int j; 366 367 W256 = (sha2_word32*)context->buffer; 368 369 /* initialize registers with the prev. intermediate value */ 370 a = context->state[0]; 371 b = context->state[1]; 372 c = context->state[2]; 373 d = context->state[3]; 374 e = context->state[4]; 375 f = context->state[5]; 376 g = context->state[6]; 377 h = context->state[7]; 378 379 j = 0; 380 do { 381 /* Rounds 0 to 15 (unrolled): */ 382 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 383 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 384 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 385 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 386 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 387 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 388 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 389 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 390 } while (j < 16); 391 392 /* Now for the remaining rounds to 64: */ 393 do { 394 ROUND256(a,b,c,d,e,f,g,h); 395 ROUND256(h,a,b,c,d,e,f,g); 396 ROUND256(g,h,a,b,c,d,e,f); 397 ROUND256(f,g,h,a,b,c,d,e); 398 ROUND256(e,f,g,h,a,b,c,d); 399 ROUND256(d,e,f,g,h,a,b,c); 400 ROUND256(c,d,e,f,g,h,a,b); 401 ROUND256(b,c,d,e,f,g,h,a); 402 } while (j < 64); 403 404 /* Compute the current intermediate hash value */ 405 context->state[0] += a; 406 context->state[1] += b; 407 context->state[2] += c; 408 context->state[3] += d; 409 context->state[4] += e; 410 context->state[5] += f; 411 context->state[6] += g; 412 context->state[7] += h; 413 414 /* Clean up */ 415 a = b = c = d = e = f = g = h = T1 = 0; 416 } 417 418 #else /* SHA2_UNROLL_TRANSFORM */ 419 420 static void ldns_sha256_Transform(ldns_sha256_CTX* context, 421 const sha2_word32* data) { 422 sha2_word32 a, b, c, d, e, f, g, h, s0, s1; 423 sha2_word32 T1, T2, *W256; 424 int j; 425 426 W256 = (sha2_word32*)context->buffer; 427 428 /* initialize registers with the prev. intermediate value */ 429 a = context->state[0]; 430 b = context->state[1]; 431 c = context->state[2]; 432 d = context->state[3]; 433 e = context->state[4]; 434 f = context->state[5]; 435 g = context->state[6]; 436 h = context->state[7]; 437 438 j = 0; 439 do { 440 #if BYTE_ORDER == LITTLE_ENDIAN 441 /* Copy data while converting to host byte order */ 442 REVERSE32(*data++,W256[j]); 443 /* Apply the SHA-256 compression function to update a..h */ 444 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 445 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 446 /* Apply the SHA-256 compression function to update a..h with copy */ 447 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); 448 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 449 T2 = Sigma0_256(a) + Maj(a, b, c); 450 h = g; 451 g = f; 452 f = e; 453 e = d + T1; 454 d = c; 455 c = b; 456 b = a; 457 a = T1 + T2; 458 459 j++; 460 } while (j < 16); 461 462 do { 463 /* Part of the message block expansion: */ 464 s0 = W256[(j+1)&0x0f]; 465 s0 = sigma0_256(s0); 466 s1 = W256[(j+14)&0x0f]; 467 s1 = sigma1_256(s1); 468 469 /* Apply the SHA-256 compression function to update a..h */ 470 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 471 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 472 T2 = Sigma0_256(a) + Maj(a, b, c); 473 h = g; 474 g = f; 475 f = e; 476 e = d + T1; 477 d = c; 478 c = b; 479 b = a; 480 a = T1 + T2; 481 482 j++; 483 } while (j < 64); 484 485 /* Compute the current intermediate hash value */ 486 context->state[0] += a; 487 context->state[1] += b; 488 context->state[2] += c; 489 context->state[3] += d; 490 context->state[4] += e; 491 context->state[5] += f; 492 context->state[6] += g; 493 context->state[7] += h; 494 495 /* Clean up */ 496 a = b = c = d = e = f = g = h = T1 = T2 = 0; 497 } 498 499 #endif /* SHA2_UNROLL_TRANSFORM */ 500 501 void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) { 502 size_t freespace, usedspace; 503 504 if (len == 0) { 505 /* Calling with no data is valid - we do nothing */ 506 return; 507 } 508 509 /* Sanity check: */ 510 assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0); 511 512 usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH; 513 if (usedspace > 0) { 514 /* Calculate how much free space is available in the buffer */ 515 freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace; 516 517 if (len >= freespace) { 518 /* Fill the buffer completely and process it */ 519 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); 520 context->bitcount += freespace << 3; 521 len -= freespace; 522 data += freespace; 523 ldns_sha256_Transform(context, (sha2_word32*)context->buffer); 524 } else { 525 /* The buffer is not yet full */ 526 MEMCPY_BCOPY(&context->buffer[usedspace], data, len); 527 context->bitcount += len << 3; 528 /* Clean up: */ 529 usedspace = freespace = 0; 530 return; 531 } 532 } 533 while (len >= LDNS_SHA256_BLOCK_LENGTH) { 534 /* Process as many complete blocks as we can */ 535 ldns_sha256_Transform(context, (sha2_word32*)data); 536 context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3; 537 len -= LDNS_SHA256_BLOCK_LENGTH; 538 data += LDNS_SHA256_BLOCK_LENGTH; 539 } 540 if (len > 0) { 541 /* There's left-overs, so save 'em */ 542 MEMCPY_BCOPY(context->buffer, data, len); 543 context->bitcount += len << 3; 544 } 545 /* Clean up: */ 546 usedspace = freespace = 0; 547 } 548 549 void ldns_sha256_final(sha2_byte digest[], ldns_sha256_CTX* context) { 550 sha2_word32 *d = (sha2_word32*)digest; 551 size_t usedspace; 552 553 /* Sanity check: */ 554 assert(context != (ldns_sha256_CTX*)0); 555 556 /* If no digest buffer is passed, we don't bother doing this: */ 557 if (digest != (sha2_byte*)0) { 558 usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH; 559 #if BYTE_ORDER == LITTLE_ENDIAN 560 /* Convert FROM host byte order */ 561 REVERSE64(context->bitcount,context->bitcount); 562 #endif 563 if (usedspace > 0) { 564 /* Begin padding with a 1 bit: */ 565 context->buffer[usedspace++] = 0x80; 566 567 if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) { 568 /* Set-up for the last transform: */ 569 MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace); 570 } else { 571 if (usedspace < LDNS_SHA256_BLOCK_LENGTH) { 572 MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace); 573 } 574 /* Do second-to-last transform: */ 575 ldns_sha256_Transform(context, (sha2_word32*)context->buffer); 576 577 /* And set-up for the last transform: */ 578 MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH); 579 } 580 } else { 581 /* Set-up for the last transform: */ 582 MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH); 583 584 /* Begin padding with a 1 bit: */ 585 *context->buffer = 0x80; 586 } 587 /* Set the bit count: */ 588 *(sha2_word64*)&context->buffer[ldns_sha256_SHORT_BLOCK_LENGTH] = context->bitcount; 589 590 /* final transform: */ 591 ldns_sha256_Transform(context, (sha2_word32*)context->buffer); 592 593 #if BYTE_ORDER == LITTLE_ENDIAN 594 { 595 /* Convert TO host byte order */ 596 int j; 597 for (j = 0; j < 8; j++) { 598 REVERSE32(context->state[j],context->state[j]); 599 *d++ = context->state[j]; 600 } 601 } 602 #else 603 MEMCPY_BCOPY(d, context->state, LDNS_SHA256_DIGEST_LENGTH); 604 #endif 605 } 606 607 /* Clean up state data: */ 608 MEMSET_BZERO(context, sizeof(ldns_sha256_CTX)); 609 usedspace = 0; 610 } 611 612 unsigned char * 613 ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest) 614 { 615 ldns_sha256_CTX ctx; 616 ldns_sha256_init(&ctx); 617 ldns_sha256_update(&ctx, data, data_len); 618 ldns_sha256_final(digest, &ctx); 619 return digest; 620 } 621 622 /*** SHA-512: *********************************************************/ 623 void ldns_sha512_init(ldns_sha512_CTX* context) { 624 if (context == (ldns_sha512_CTX*)0) { 625 return; 626 } 627 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH); 628 MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH); 629 context->bitcount[0] = context->bitcount[1] = 0; 630 } 631 632 #ifdef SHA2_UNROLL_TRANSFORM 633 634 /* Unrolled SHA-512 round macros: */ 635 #if BYTE_ORDER == LITTLE_ENDIAN 636 637 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 638 REVERSE64(*data++, W512[j]); \ 639 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ 640 K512[j] + W512[j]; \ 641 (d) += T1, \ 642 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ 643 j++ 644 645 646 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 647 648 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 649 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ 650 K512[j] + (W512[j] = *data++); \ 651 (d) += T1; \ 652 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 653 j++ 654 655 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 656 657 #define ROUND512(a,b,c,d,e,f,g,h) \ 658 s0 = W512[(j+1)&0x0f]; \ 659 s0 = sigma0_512(s0); \ 660 s1 = W512[(j+14)&0x0f]; \ 661 s1 = sigma1_512(s1); \ 662 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ 663 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 664 (d) += T1; \ 665 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 666 j++ 667 668 static void ldns_sha512_Transform(ldns_sha512_CTX* context, 669 const sha2_word64* data) { 670 sha2_word64 a, b, c, d, e, f, g, h, s0, s1; 671 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer; 672 int j; 673 674 /* initialize registers with the prev. intermediate value */ 675 a = context->state[0]; 676 b = context->state[1]; 677 c = context->state[2]; 678 d = context->state[3]; 679 e = context->state[4]; 680 f = context->state[5]; 681 g = context->state[6]; 682 h = context->state[7]; 683 684 j = 0; 685 do { 686 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 687 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 688 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 689 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 690 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 691 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 692 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 693 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 694 } while (j < 16); 695 696 /* Now for the remaining rounds up to 79: */ 697 do { 698 ROUND512(a,b,c,d,e,f,g,h); 699 ROUND512(h,a,b,c,d,e,f,g); 700 ROUND512(g,h,a,b,c,d,e,f); 701 ROUND512(f,g,h,a,b,c,d,e); 702 ROUND512(e,f,g,h,a,b,c,d); 703 ROUND512(d,e,f,g,h,a,b,c); 704 ROUND512(c,d,e,f,g,h,a,b); 705 ROUND512(b,c,d,e,f,g,h,a); 706 } while (j < 80); 707 708 /* Compute the current intermediate hash value */ 709 context->state[0] += a; 710 context->state[1] += b; 711 context->state[2] += c; 712 context->state[3] += d; 713 context->state[4] += e; 714 context->state[5] += f; 715 context->state[6] += g; 716 context->state[7] += h; 717 718 /* Clean up */ 719 a = b = c = d = e = f = g = h = T1 = 0; 720 } 721 722 #else /* SHA2_UNROLL_TRANSFORM */ 723 724 static void ldns_sha512_Transform(ldns_sha512_CTX* context, 725 const sha2_word64* data) { 726 sha2_word64 a, b, c, d, e, f, g, h, s0, s1; 727 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; 728 int j; 729 730 /* initialize registers with the prev. intermediate value */ 731 a = context->state[0]; 732 b = context->state[1]; 733 c = context->state[2]; 734 d = context->state[3]; 735 e = context->state[4]; 736 f = context->state[5]; 737 g = context->state[6]; 738 h = context->state[7]; 739 740 j = 0; 741 do { 742 #if BYTE_ORDER == LITTLE_ENDIAN 743 /* Convert TO host byte order */ 744 REVERSE64(*data++, W512[j]); 745 /* Apply the SHA-512 compression function to update a..h */ 746 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 747 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 748 /* Apply the SHA-512 compression function to update a..h with copy */ 749 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); 750 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 751 T2 = Sigma0_512(a) + Maj(a, b, c); 752 h = g; 753 g = f; 754 f = e; 755 e = d + T1; 756 d = c; 757 c = b; 758 b = a; 759 a = T1 + T2; 760 761 j++; 762 } while (j < 16); 763 764 do { 765 /* Part of the message block expansion: */ 766 s0 = W512[(j+1)&0x0f]; 767 s0 = sigma0_512(s0); 768 s1 = W512[(j+14)&0x0f]; 769 s1 = sigma1_512(s1); 770 771 /* Apply the SHA-512 compression function to update a..h */ 772 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 773 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 774 T2 = Sigma0_512(a) + Maj(a, b, c); 775 h = g; 776 g = f; 777 f = e; 778 e = d + T1; 779 d = c; 780 c = b; 781 b = a; 782 a = T1 + T2; 783 784 j++; 785 } while (j < 80); 786 787 /* Compute the current intermediate hash value */ 788 context->state[0] += a; 789 context->state[1] += b; 790 context->state[2] += c; 791 context->state[3] += d; 792 context->state[4] += e; 793 context->state[5] += f; 794 context->state[6] += g; 795 context->state[7] += h; 796 797 /* Clean up */ 798 a = b = c = d = e = f = g = h = T1 = T2 = 0; 799 } 800 801 #endif /* SHA2_UNROLL_TRANSFORM */ 802 803 void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) { 804 size_t freespace, usedspace; 805 806 if (len == 0) { 807 /* Calling with no data is valid - we do nothing */ 808 return; 809 } 810 811 /* Sanity check: */ 812 assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0); 813 814 usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH; 815 if (usedspace > 0) { 816 /* Calculate how much free space is available in the buffer */ 817 freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace; 818 819 if (len >= freespace) { 820 /* Fill the buffer completely and process it */ 821 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); 822 ADDINC128(context->bitcount, freespace << 3); 823 len -= freespace; 824 data += freespace; 825 ldns_sha512_Transform(context, (sha2_word64*)context->buffer); 826 } else { 827 /* The buffer is not yet full */ 828 MEMCPY_BCOPY(&context->buffer[usedspace], data, len); 829 ADDINC128(context->bitcount, len << 3); 830 /* Clean up: */ 831 usedspace = freespace = 0; 832 return; 833 } 834 } 835 while (len >= LDNS_SHA512_BLOCK_LENGTH) { 836 /* Process as many complete blocks as we can */ 837 ldns_sha512_Transform(context, (sha2_word64*)data); 838 ADDINC128(context->bitcount, LDNS_SHA512_BLOCK_LENGTH << 3); 839 len -= LDNS_SHA512_BLOCK_LENGTH; 840 data += LDNS_SHA512_BLOCK_LENGTH; 841 } 842 if (len > 0) { 843 /* There's left-overs, so save 'em */ 844 MEMCPY_BCOPY(context->buffer, data, len); 845 ADDINC128(context->bitcount, len << 3); 846 } 847 /* Clean up: */ 848 usedspace = freespace = 0; 849 } 850 851 static void ldns_sha512_Last(ldns_sha512_CTX* context) { 852 size_t usedspace; 853 854 usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH; 855 #if BYTE_ORDER == LITTLE_ENDIAN 856 /* Convert FROM host byte order */ 857 REVERSE64(context->bitcount[0],context->bitcount[0]); 858 REVERSE64(context->bitcount[1],context->bitcount[1]); 859 #endif 860 if (usedspace > 0) { 861 /* Begin padding with a 1 bit: */ 862 context->buffer[usedspace++] = 0x80; 863 864 if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) { 865 /* Set-up for the last transform: */ 866 MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace); 867 } else { 868 if (usedspace < LDNS_SHA512_BLOCK_LENGTH) { 869 MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace); 870 } 871 /* Do second-to-last transform: */ 872 ldns_sha512_Transform(context, (sha2_word64*)context->buffer); 873 874 /* And set-up for the last transform: */ 875 MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH - 2); 876 } 877 } else { 878 /* Prepare for final transform: */ 879 MEMSET_BZERO(context->buffer, ldns_sha512_SHORT_BLOCK_LENGTH); 880 881 /* Begin padding with a 1 bit: */ 882 *context->buffer = 0x80; 883 } 884 /* Store the length of input data (in bits): */ 885 *(sha2_word64*)&context->buffer[ldns_sha512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; 886 *(sha2_word64*)&context->buffer[ldns_sha512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0]; 887 888 /* final transform: */ 889 ldns_sha512_Transform(context, (sha2_word64*)context->buffer); 890 } 891 892 void ldns_sha512_final(sha2_byte digest[], ldns_sha512_CTX* context) { 893 sha2_word64 *d = (sha2_word64*)digest; 894 895 /* Sanity check: */ 896 assert(context != (ldns_sha512_CTX*)0); 897 898 /* If no digest buffer is passed, we don't bother doing this: */ 899 if (digest != (sha2_byte*)0) { 900 ldns_sha512_Last(context); 901 902 /* Save the hash data for output: */ 903 #if BYTE_ORDER == LITTLE_ENDIAN 904 { 905 /* Convert TO host byte order */ 906 int j; 907 for (j = 0; j < 8; j++) { 908 REVERSE64(context->state[j],context->state[j]); 909 *d++ = context->state[j]; 910 } 911 } 912 #else 913 MEMCPY_BCOPY(d, context->state, LDNS_SHA512_DIGEST_LENGTH); 914 #endif 915 } 916 917 /* Zero out state data */ 918 MEMSET_BZERO(context, sizeof(ldns_sha512_CTX)); 919 } 920 921 unsigned char * 922 ldns_sha512(unsigned char *data, unsigned int data_len, unsigned char *digest) 923 { 924 ldns_sha512_CTX ctx; 925 ldns_sha512_init(&ctx); 926 ldns_sha512_update(&ctx, data, data_len); 927 ldns_sha512_final(digest, &ctx); 928 return digest; 929 } 930 931 /*** SHA-384: *********************************************************/ 932 void ldns_sha384_init(ldns_sha384_CTX* context) { 933 if (context == (ldns_sha384_CTX*)0) { 934 return; 935 } 936 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH); 937 MEMSET_BZERO(context->buffer, LDNS_SHA384_BLOCK_LENGTH); 938 context->bitcount[0] = context->bitcount[1] = 0; 939 } 940 941 void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) { 942 ldns_sha512_update((ldns_sha512_CTX*)context, data, len); 943 } 944 945 void ldns_sha384_final(sha2_byte digest[], ldns_sha384_CTX* context) { 946 sha2_word64 *d = (sha2_word64*)digest; 947 948 /* Sanity check: */ 949 assert(context != (ldns_sha384_CTX*)0); 950 951 /* If no digest buffer is passed, we don't bother doing this: */ 952 if (digest != (sha2_byte*)0) { 953 ldns_sha512_Last((ldns_sha512_CTX*)context); 954 955 /* Save the hash data for output: */ 956 #if BYTE_ORDER == LITTLE_ENDIAN 957 { 958 /* Convert TO host byte order */ 959 int j; 960 for (j = 0; j < 6; j++) { 961 REVERSE64(context->state[j],context->state[j]); 962 *d++ = context->state[j]; 963 } 964 } 965 #else 966 MEMCPY_BCOPY(d, context->state, LDNS_SHA384_DIGEST_LENGTH); 967 #endif 968 } 969 970 /* Zero out state data */ 971 MEMSET_BZERO(context, sizeof(ldns_sha384_CTX)); 972 } 973 974 unsigned char * 975 ldns_sha384(unsigned char *data, unsigned int data_len, unsigned char *digest) 976 { 977 ldns_sha384_CTX ctx; 978 ldns_sha384_init(&ctx); 979 ldns_sha384_update(&ctx, data, data_len); 980 ldns_sha384_final(digest, &ctx); 981 return digest; 982 } 983