xref: /freebsd/contrib/ldns/sha2.c (revision ab0b9f6b3073e6c4d1dfbf07444d7db67a189a96)
1 /*
2  * FILE:	sha2.c
3  * AUTHOR:	Aaron D. Gifford - http://www.aarongifford.com/
4  *
5  * Copyright (c) 2000-2001, Aaron D. Gifford
6  * All rights reserved.
7  *
8  * Modified by Jelte Jansen to fit in ldns, and not clash with any
9  * system-defined SHA code.
10  * Changes:
11  * - Renamed (external) functions and constants to fit ldns style
12  * - Removed _End and _Data functions
13  * - Added ldns_shaX(data, len, digest) convenience functions
14  * - Removed prototypes of _Transform functions and made those static
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the copyright holder nor the names of contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
41  */
42 
43 #include <ldns/config.h>
44 #include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
45 #include <assert.h>	/* assert() */
46 #include <ldns/sha2.h>
47 
48 /*
49  * ASSERT NOTE:
50  * Some sanity checking code is included using assert().  On my FreeBSD
51  * system, this additional code can be removed by compiling with NDEBUG
52  * defined.  Check your own systems manpage on assert() to see how to
53  * compile WITHOUT the sanity checking code on your system.
54  *
55  * UNROLLED TRANSFORM LOOP NOTE:
56  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57  * loop version for the hash transform rounds (defined using macros
58  * later in this file).  Either define on the command line, for example:
59  *
60  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61  *
62  * or define below:
63  *
64  *   #define SHA2_UNROLL_TRANSFORM
65  *
66  */
67 
68 
69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
70 /*
71  * BYTE_ORDER NOTE:
72  *
73  * Please make sure that your system defines BYTE_ORDER.  If your
74  * architecture is little-endian, make sure it also defines
75  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76  * equivilent.
77  *
78  * If your system does not define the above, then you can do so by
79  * hand like this:
80  *
81  *   #define LITTLE_ENDIAN 1234
82  *   #define BIG_ENDIAN    4321
83  *
84  * And for little-endian machines, add:
85  *
86  *   #define BYTE_ORDER LITTLE_ENDIAN
87  *
88  * Or for big-endian machines:
89  *
90  *   #define BYTE_ORDER BIG_ENDIAN
91  *
92  * The FreeBSD machine this was written on defines BYTE_ORDER
93  * appropriately by including <sys/types.h> (which in turn includes
94  * <machine/endian.h> where the appropriate definitions are actually
95  * made).
96  */
97 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99 #endif
100 
101 typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
102 typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
103 #ifdef S_SPLINT_S
104 typedef unsigned long long sha2_word64; /* lint 8 bytes */
105 #else
106 typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
107 #endif
108 
109 /*** SHA-256/384/512 Various Length Definitions ***********************/
110 /* NOTE: Most of these are in sha2.h */
111 #define ldns_sha256_SHORT_BLOCK_LENGTH	(LDNS_SHA256_BLOCK_LENGTH - 8)
112 #define ldns_sha384_SHORT_BLOCK_LENGTH	(LDNS_SHA384_BLOCK_LENGTH - 16)
113 #define ldns_sha512_SHORT_BLOCK_LENGTH	(LDNS_SHA512_BLOCK_LENGTH - 16)
114 
115 
116 /*** ENDIAN REVERSAL MACROS *******************************************/
117 #if BYTE_ORDER == LITTLE_ENDIAN
118 #define REVERSE32(w,x)	{ \
119 	sha2_word32 tmp = (w); \
120 	tmp = (tmp >> 16) | (tmp << 16); \
121 	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
122 }
123 #ifndef S_SPLINT_S
124 #define REVERSE64(w,x)	{ \
125 	sha2_word64 tmp = (w); \
126 	tmp = (tmp >> 32) | (tmp << 32); \
127 	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
128 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
129 	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
130 	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
131 }
132 #else /* splint */
133 #define REVERSE64(w,x) /* splint */
134 #endif /* splint */
135 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
136 
137 /*
138  * Macro for incrementally adding the unsigned 64-bit integer n to the
139  * unsigned 128-bit integer (represented using a two-element array of
140  * 64-bit words):
141  */
142 #define ADDINC128(w,n)	{ \
143 	(w)[0] += (sha2_word64)(n); \
144 	if ((w)[0] < (n)) { \
145 		(w)[1]++; \
146 	} \
147 }
148 #ifdef S_SPLINT_S
149 #undef ADDINC128
150 #define ADDINC128(w,n) /* splint */
151 #endif
152 
153 /*
154  * Macros for copying blocks of memory and for zeroing out ranges
155  * of memory.  Using these macros makes it easy to switch from
156  * using memset()/memcpy() and using bzero()/bcopy().
157  *
158  * Please define either SHA2_USE_MEMSET_MEMCPY or define
159  * SHA2_USE_BZERO_BCOPY depending on which function set you
160  * choose to use:
161  */
162 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
163 /* Default to memset()/memcpy() if no option is specified */
164 #define	SHA2_USE_MEMSET_MEMCPY	1
165 #endif
166 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
167 /* Abort with an error if BOTH options are defined */
168 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
169 #endif
170 
171 #ifdef SHA2_USE_MEMSET_MEMCPY
172 #define MEMSET_BZERO(p,l)	memset((p), 0, (l))
173 #define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
174 #endif
175 #ifdef SHA2_USE_BZERO_BCOPY
176 #define MEMSET_BZERO(p,l)	bzero((p), (l))
177 #define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
178 #endif
179 
180 
181 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
182 /*
183  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
184  *
185  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
186  *   S is a ROTATION) because the SHA-256/384/512 description document
187  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
188  *   same "backwards" definition.
189  */
190 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
191 #define R(b,x) 		((x) >> (b))
192 /* 32-bit Rotate-right (used in SHA-256): */
193 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
194 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
195 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
196 
197 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
198 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
199 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
200 
201 /* Four of six logical functions used in SHA-256: */
202 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
203 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
204 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
205 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
206 
207 /* Four of six logical functions used in SHA-384 and SHA-512: */
208 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
209 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
210 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
211 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
212 
213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214 /* Hash constant words K for SHA-256: */
215 static const sha2_word32 K256[64] = {
216 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
232 };
233 
234 /* initial hash value H for SHA-256: */
235 static const sha2_word32 ldns_sha256_initial_hash_value[8] = {
236 	0x6a09e667UL,
237 	0xbb67ae85UL,
238 	0x3c6ef372UL,
239 	0xa54ff53aUL,
240 	0x510e527fUL,
241 	0x9b05688cUL,
242 	0x1f83d9abUL,
243 	0x5be0cd19UL
244 };
245 
246 /* Hash constant words K for SHA-384 and SHA-512: */
247 static const sha2_word64 K512[80] = {
248 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
288 };
289 
290 /* initial hash value H for SHA-384 */
291 static const sha2_word64 sha384_initial_hash_value[8] = {
292 	0xcbbb9d5dc1059ed8ULL,
293 	0x629a292a367cd507ULL,
294 	0x9159015a3070dd17ULL,
295 	0x152fecd8f70e5939ULL,
296 	0x67332667ffc00b31ULL,
297 	0x8eb44a8768581511ULL,
298 	0xdb0c2e0d64f98fa7ULL,
299 	0x47b5481dbefa4fa4ULL
300 };
301 
302 /* initial hash value H for SHA-512 */
303 static const sha2_word64 sha512_initial_hash_value[8] = {
304 	0x6a09e667f3bcc908ULL,
305 	0xbb67ae8584caa73bULL,
306 	0x3c6ef372fe94f82bULL,
307 	0xa54ff53a5f1d36f1ULL,
308 	0x510e527fade682d1ULL,
309 	0x9b05688c2b3e6c1fULL,
310 	0x1f83d9abfb41bd6bULL,
311 	0x5be0cd19137e2179ULL
312 };
313 
314 /*** SHA-256: *********************************************************/
315 void ldns_sha256_init(ldns_sha256_CTX* context) {
316 	if (context == (ldns_sha256_CTX*)0) {
317 		return;
318 	}
319 	MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH);
320 	MEMSET_BZERO(context->buffer, LDNS_SHA256_BLOCK_LENGTH);
321 	context->bitcount = 0;
322 }
323 
324 #ifdef SHA2_UNROLL_TRANSFORM
325 
326 /* Unrolled SHA-256 round macros: */
327 
328 #if BYTE_ORDER == LITTLE_ENDIAN
329 
330 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
331 	REVERSE32(*data++, W256[j]); \
332 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
333              K256[j] + W256[j]; \
334 	(d) += T1; \
335 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
336 	j++
337 
338 
339 #else /* BYTE_ORDER == LITTLE_ENDIAN */
340 
341 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
342 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
343 	     K256[j] + (W256[j] = *data++); \
344 	(d) += T1; \
345 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346 	j++
347 
348 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
349 
350 #define ROUND256(a,b,c,d,e,f,g,h)	\
351 	s0 = W256[(j+1)&0x0f]; \
352 	s0 = sigma0_256(s0); \
353 	s1 = W256[(j+14)&0x0f]; \
354 	s1 = sigma1_256(s1); \
355 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
356 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
357 	(d) += T1; \
358 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
359 	j++
360 
361 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
362                                   const sha2_word32* data) {
363 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
364 	sha2_word32	T1, *W256;
365 	int		j;
366 
367 	W256 = (sha2_word32*)context->buffer;
368 
369 	/* initialize registers with the prev. intermediate value */
370 	a = context->state[0];
371 	b = context->state[1];
372 	c = context->state[2];
373 	d = context->state[3];
374 	e = context->state[4];
375 	f = context->state[5];
376 	g = context->state[6];
377 	h = context->state[7];
378 
379 	j = 0;
380 	do {
381 		/* Rounds 0 to 15 (unrolled): */
382 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
383 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
384 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
385 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
386 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
387 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
388 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
389 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
390 	} while (j < 16);
391 
392 	/* Now for the remaining rounds to 64: */
393 	do {
394 		ROUND256(a,b,c,d,e,f,g,h);
395 		ROUND256(h,a,b,c,d,e,f,g);
396 		ROUND256(g,h,a,b,c,d,e,f);
397 		ROUND256(f,g,h,a,b,c,d,e);
398 		ROUND256(e,f,g,h,a,b,c,d);
399 		ROUND256(d,e,f,g,h,a,b,c);
400 		ROUND256(c,d,e,f,g,h,a,b);
401 		ROUND256(b,c,d,e,f,g,h,a);
402 	} while (j < 64);
403 
404 	/* Compute the current intermediate hash value */
405 	context->state[0] += a;
406 	context->state[1] += b;
407 	context->state[2] += c;
408 	context->state[3] += d;
409 	context->state[4] += e;
410 	context->state[5] += f;
411 	context->state[6] += g;
412 	context->state[7] += h;
413 
414 	/* Clean up */
415 	a = b = c = d = e = f = g = h = T1 = 0;
416 }
417 
418 #else /* SHA2_UNROLL_TRANSFORM */
419 
420 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
421                                   const sha2_word32* data) {
422 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
423 	sha2_word32	T1, T2, *W256;
424 	int		j;
425 
426 	W256 = (sha2_word32*)context->buffer;
427 
428 	/* initialize registers with the prev. intermediate value */
429 	a = context->state[0];
430 	b = context->state[1];
431 	c = context->state[2];
432 	d = context->state[3];
433 	e = context->state[4];
434 	f = context->state[5];
435 	g = context->state[6];
436 	h = context->state[7];
437 
438 	j = 0;
439 	do {
440 #if BYTE_ORDER == LITTLE_ENDIAN
441 		/* Copy data while converting to host byte order */
442 		REVERSE32(*data++,W256[j]);
443 		/* Apply the SHA-256 compression function to update a..h */
444 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
445 #else /* BYTE_ORDER == LITTLE_ENDIAN */
446 		/* Apply the SHA-256 compression function to update a..h with copy */
447 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
448 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
449 		T2 = Sigma0_256(a) + Maj(a, b, c);
450 		h = g;
451 		g = f;
452 		f = e;
453 		e = d + T1;
454 		d = c;
455 		c = b;
456 		b = a;
457 		a = T1 + T2;
458 
459 		j++;
460 	} while (j < 16);
461 
462 	do {
463 		/* Part of the message block expansion: */
464 		s0 = W256[(j+1)&0x0f];
465 		s0 = sigma0_256(s0);
466 		s1 = W256[(j+14)&0x0f];
467 		s1 = sigma1_256(s1);
468 
469 		/* Apply the SHA-256 compression function to update a..h */
470 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
471 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
472 		T2 = Sigma0_256(a) + Maj(a, b, c);
473 		h = g;
474 		g = f;
475 		f = e;
476 		e = d + T1;
477 		d = c;
478 		c = b;
479 		b = a;
480 		a = T1 + T2;
481 
482 		j++;
483 	} while (j < 64);
484 
485 	/* Compute the current intermediate hash value */
486 	context->state[0] += a;
487 	context->state[1] += b;
488 	context->state[2] += c;
489 	context->state[3] += d;
490 	context->state[4] += e;
491 	context->state[5] += f;
492 	context->state[6] += g;
493 	context->state[7] += h;
494 
495 	/* Clean up */
496 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
497 }
498 
499 #endif /* SHA2_UNROLL_TRANSFORM */
500 
501 void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) {
502 	size_t freespace, usedspace;
503 
504 	if (len == 0) {
505 		/* Calling with no data is valid - we do nothing */
506 		return;
507 	}
508 
509 	/* Sanity check: */
510 	assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0);
511 
512 	usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
513 	if (usedspace > 0) {
514 		/* Calculate how much free space is available in the buffer */
515 		freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace;
516 
517 		if (len >= freespace) {
518 			/* Fill the buffer completely and process it */
519 			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
520 			context->bitcount += freespace << 3;
521 			len -= freespace;
522 			data += freespace;
523 			ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
524 		} else {
525 			/* The buffer is not yet full */
526 			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
527 			context->bitcount += len << 3;
528 			/* Clean up: */
529 			usedspace = freespace = 0;
530 			return;
531 		}
532 	}
533 	while (len >= LDNS_SHA256_BLOCK_LENGTH) {
534 		/* Process as many complete blocks as we can */
535 		ldns_sha256_Transform(context, (sha2_word32*)data);
536 		context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3;
537 		len -= LDNS_SHA256_BLOCK_LENGTH;
538 		data += LDNS_SHA256_BLOCK_LENGTH;
539 	}
540 	if (len > 0) {
541 		/* There's left-overs, so save 'em */
542 		MEMCPY_BCOPY(context->buffer, data, len);
543 		context->bitcount += len << 3;
544 	}
545 	/* Clean up: */
546 	usedspace = freespace = 0;
547 }
548 
549 void ldns_sha256_final(sha2_byte digest[], ldns_sha256_CTX* context) {
550 	sha2_word32	*d = (sha2_word32*)digest;
551 	size_t usedspace;
552 
553 	/* Sanity check: */
554 	assert(context != (ldns_sha256_CTX*)0);
555 
556 	/* If no digest buffer is passed, we don't bother doing this: */
557 	if (digest != (sha2_byte*)0) {
558 		usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
559 #if BYTE_ORDER == LITTLE_ENDIAN
560 		/* Convert FROM host byte order */
561 		REVERSE64(context->bitcount,context->bitcount);
562 #endif
563 		if (usedspace > 0) {
564 			/* Begin padding with a 1 bit: */
565 			context->buffer[usedspace++] = 0x80;
566 
567 			if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) {
568 				/* Set-up for the last transform: */
569 				MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace);
570 			} else {
571 				if (usedspace < LDNS_SHA256_BLOCK_LENGTH) {
572 					MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace);
573 				}
574 				/* Do second-to-last transform: */
575 				ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
576 
577 				/* And set-up for the last transform: */
578 				MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
579 			}
580 		} else {
581 			/* Set-up for the last transform: */
582 			MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
583 
584 			/* Begin padding with a 1 bit: */
585 			*context->buffer = 0x80;
586 		}
587 		/* Set the bit count: */
588 		*(sha2_word64*)&context->buffer[ldns_sha256_SHORT_BLOCK_LENGTH] = context->bitcount;
589 
590 		/* final transform: */
591 		ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
592 
593 #if BYTE_ORDER == LITTLE_ENDIAN
594 		{
595 			/* Convert TO host byte order */
596 			int	j;
597 			for (j = 0; j < 8; j++) {
598 				REVERSE32(context->state[j],context->state[j]);
599 				*d++ = context->state[j];
600 			}
601 		}
602 #else
603 		MEMCPY_BCOPY(d, context->state, LDNS_SHA256_DIGEST_LENGTH);
604 #endif
605 	}
606 
607 	/* Clean up state data: */
608 	MEMSET_BZERO(context, sizeof(ldns_sha256_CTX));
609 	usedspace = 0;
610 }
611 
612 unsigned char *
613 ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest)
614 {
615     ldns_sha256_CTX ctx;
616     ldns_sha256_init(&ctx);
617     ldns_sha256_update(&ctx, data, data_len);
618     ldns_sha256_final(digest, &ctx);
619     return digest;
620 }
621 
622 /*** SHA-512: *********************************************************/
623 void ldns_sha512_init(ldns_sha512_CTX* context) {
624 	if (context == (ldns_sha512_CTX*)0) {
625 		return;
626 	}
627 	MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
628 	MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH);
629 	context->bitcount[0] = context->bitcount[1] =  0;
630 }
631 
632 #ifdef SHA2_UNROLL_TRANSFORM
633 
634 /* Unrolled SHA-512 round macros: */
635 #if BYTE_ORDER == LITTLE_ENDIAN
636 
637 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
638 	REVERSE64(*data++, W512[j]); \
639 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
640              K512[j] + W512[j]; \
641 	(d) += T1, \
642 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
643 	j++
644 
645 
646 #else /* BYTE_ORDER == LITTLE_ENDIAN */
647 
648 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
649 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
650              K512[j] + (W512[j] = *data++); \
651 	(d) += T1; \
652 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
653 	j++
654 
655 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
656 
657 #define ROUND512(a,b,c,d,e,f,g,h)	\
658 	s0 = W512[(j+1)&0x0f]; \
659 	s0 = sigma0_512(s0); \
660 	s1 = W512[(j+14)&0x0f]; \
661 	s1 = sigma1_512(s1); \
662 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
663              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
664 	(d) += T1; \
665 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
666 	j++
667 
668 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
669                                   const sha2_word64* data) {
670 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
671 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
672 	int		j;
673 
674 	/* initialize registers with the prev. intermediate value */
675 	a = context->state[0];
676 	b = context->state[1];
677 	c = context->state[2];
678 	d = context->state[3];
679 	e = context->state[4];
680 	f = context->state[5];
681 	g = context->state[6];
682 	h = context->state[7];
683 
684 	j = 0;
685 	do {
686 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
687 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
688 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
689 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
690 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
691 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
692 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
693 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
694 	} while (j < 16);
695 
696 	/* Now for the remaining rounds up to 79: */
697 	do {
698 		ROUND512(a,b,c,d,e,f,g,h);
699 		ROUND512(h,a,b,c,d,e,f,g);
700 		ROUND512(g,h,a,b,c,d,e,f);
701 		ROUND512(f,g,h,a,b,c,d,e);
702 		ROUND512(e,f,g,h,a,b,c,d);
703 		ROUND512(d,e,f,g,h,a,b,c);
704 		ROUND512(c,d,e,f,g,h,a,b);
705 		ROUND512(b,c,d,e,f,g,h,a);
706 	} while (j < 80);
707 
708 	/* Compute the current intermediate hash value */
709 	context->state[0] += a;
710 	context->state[1] += b;
711 	context->state[2] += c;
712 	context->state[3] += d;
713 	context->state[4] += e;
714 	context->state[5] += f;
715 	context->state[6] += g;
716 	context->state[7] += h;
717 
718 	/* Clean up */
719 	a = b = c = d = e = f = g = h = T1 = 0;
720 }
721 
722 #else /* SHA2_UNROLL_TRANSFORM */
723 
724 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
725                                   const sha2_word64* data) {
726 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
727 	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
728 	int		j;
729 
730 	/* initialize registers with the prev. intermediate value */
731 	a = context->state[0];
732 	b = context->state[1];
733 	c = context->state[2];
734 	d = context->state[3];
735 	e = context->state[4];
736 	f = context->state[5];
737 	g = context->state[6];
738 	h = context->state[7];
739 
740 	j = 0;
741 	do {
742 #if BYTE_ORDER == LITTLE_ENDIAN
743 		/* Convert TO host byte order */
744 		REVERSE64(*data++, W512[j]);
745 		/* Apply the SHA-512 compression function to update a..h */
746 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
747 #else /* BYTE_ORDER == LITTLE_ENDIAN */
748 		/* Apply the SHA-512 compression function to update a..h with copy */
749 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
750 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
751 		T2 = Sigma0_512(a) + Maj(a, b, c);
752 		h = g;
753 		g = f;
754 		f = e;
755 		e = d + T1;
756 		d = c;
757 		c = b;
758 		b = a;
759 		a = T1 + T2;
760 
761 		j++;
762 	} while (j < 16);
763 
764 	do {
765 		/* Part of the message block expansion: */
766 		s0 = W512[(j+1)&0x0f];
767 		s0 = sigma0_512(s0);
768 		s1 = W512[(j+14)&0x0f];
769 		s1 =  sigma1_512(s1);
770 
771 		/* Apply the SHA-512 compression function to update a..h */
772 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
773 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
774 		T2 = Sigma0_512(a) + Maj(a, b, c);
775 		h = g;
776 		g = f;
777 		f = e;
778 		e = d + T1;
779 		d = c;
780 		c = b;
781 		b = a;
782 		a = T1 + T2;
783 
784 		j++;
785 	} while (j < 80);
786 
787 	/* Compute the current intermediate hash value */
788 	context->state[0] += a;
789 	context->state[1] += b;
790 	context->state[2] += c;
791 	context->state[3] += d;
792 	context->state[4] += e;
793 	context->state[5] += f;
794 	context->state[6] += g;
795 	context->state[7] += h;
796 
797 	/* Clean up */
798 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
799 }
800 
801 #endif /* SHA2_UNROLL_TRANSFORM */
802 
803 void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) {
804 	size_t freespace, usedspace;
805 
806 	if (len == 0) {
807 		/* Calling with no data is valid - we do nothing */
808 		return;
809 	}
810 
811 	/* Sanity check: */
812 	assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0);
813 
814 	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
815 	if (usedspace > 0) {
816 		/* Calculate how much free space is available in the buffer */
817 		freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace;
818 
819 		if (len >= freespace) {
820 			/* Fill the buffer completely and process it */
821 			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
822 			ADDINC128(context->bitcount, freespace << 3);
823 			len -= freespace;
824 			data += freespace;
825 			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
826 		} else {
827 			/* The buffer is not yet full */
828 			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
829 			ADDINC128(context->bitcount, len << 3);
830 			/* Clean up: */
831 			usedspace = freespace = 0;
832 			return;
833 		}
834 	}
835 	while (len >= LDNS_SHA512_BLOCK_LENGTH) {
836 		/* Process as many complete blocks as we can */
837 		ldns_sha512_Transform(context, (sha2_word64*)data);
838 		ADDINC128(context->bitcount, LDNS_SHA512_BLOCK_LENGTH << 3);
839 		len -= LDNS_SHA512_BLOCK_LENGTH;
840 		data += LDNS_SHA512_BLOCK_LENGTH;
841 	}
842 	if (len > 0) {
843 		/* There's left-overs, so save 'em */
844 		MEMCPY_BCOPY(context->buffer, data, len);
845 		ADDINC128(context->bitcount, len << 3);
846 	}
847 	/* Clean up: */
848 	usedspace = freespace = 0;
849 }
850 
851 static void ldns_sha512_Last(ldns_sha512_CTX* context) {
852 	size_t usedspace;
853 
854 	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
855 #if BYTE_ORDER == LITTLE_ENDIAN
856 	/* Convert FROM host byte order */
857 	REVERSE64(context->bitcount[0],context->bitcount[0]);
858 	REVERSE64(context->bitcount[1],context->bitcount[1]);
859 #endif
860 	if (usedspace > 0) {
861 		/* Begin padding with a 1 bit: */
862 		context->buffer[usedspace++] = 0x80;
863 
864 		if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) {
865 			/* Set-up for the last transform: */
866 			MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace);
867 		} else {
868 			if (usedspace < LDNS_SHA512_BLOCK_LENGTH) {
869 				MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace);
870 			}
871 			/* Do second-to-last transform: */
872 			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
873 
874 			/* And set-up for the last transform: */
875 			MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH - 2);
876 		}
877 	} else {
878 		/* Prepare for final transform: */
879 		MEMSET_BZERO(context->buffer, ldns_sha512_SHORT_BLOCK_LENGTH);
880 
881 		/* Begin padding with a 1 bit: */
882 		*context->buffer = 0x80;
883 	}
884 	/* Store the length of input data (in bits): */
885 	*(sha2_word64*)&context->buffer[ldns_sha512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
886 	*(sha2_word64*)&context->buffer[ldns_sha512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
887 
888 	/* final transform: */
889 	ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
890 }
891 
892 void ldns_sha512_final(sha2_byte digest[], ldns_sha512_CTX* context) {
893 	sha2_word64	*d = (sha2_word64*)digest;
894 
895 	/* Sanity check: */
896 	assert(context != (ldns_sha512_CTX*)0);
897 
898 	/* If no digest buffer is passed, we don't bother doing this: */
899 	if (digest != (sha2_byte*)0) {
900 		ldns_sha512_Last(context);
901 
902 		/* Save the hash data for output: */
903 #if BYTE_ORDER == LITTLE_ENDIAN
904 		{
905 			/* Convert TO host byte order */
906 			int	j;
907 			for (j = 0; j < 8; j++) {
908 				REVERSE64(context->state[j],context->state[j]);
909 				*d++ = context->state[j];
910 			}
911 		}
912 #else
913 		MEMCPY_BCOPY(d, context->state, LDNS_SHA512_DIGEST_LENGTH);
914 #endif
915 	}
916 
917 	/* Zero out state data */
918 	MEMSET_BZERO(context, sizeof(ldns_sha512_CTX));
919 }
920 
921 unsigned char *
922 ldns_sha512(unsigned char *data, unsigned int data_len, unsigned char *digest)
923 {
924     ldns_sha512_CTX ctx;
925     ldns_sha512_init(&ctx);
926     ldns_sha512_update(&ctx, data, data_len);
927     ldns_sha512_final(digest, &ctx);
928     return digest;
929 }
930 
931 /*** SHA-384: *********************************************************/
932 void ldns_sha384_init(ldns_sha384_CTX* context) {
933 	if (context == (ldns_sha384_CTX*)0) {
934 		return;
935 	}
936 	MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
937 	MEMSET_BZERO(context->buffer, LDNS_SHA384_BLOCK_LENGTH);
938 	context->bitcount[0] = context->bitcount[1] = 0;
939 }
940 
941 void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) {
942 	ldns_sha512_update((ldns_sha512_CTX*)context, data, len);
943 }
944 
945 void ldns_sha384_final(sha2_byte digest[], ldns_sha384_CTX* context) {
946 	sha2_word64	*d = (sha2_word64*)digest;
947 
948 	/* Sanity check: */
949 	assert(context != (ldns_sha384_CTX*)0);
950 
951 	/* If no digest buffer is passed, we don't bother doing this: */
952 	if (digest != (sha2_byte*)0) {
953 		ldns_sha512_Last((ldns_sha512_CTX*)context);
954 
955 		/* Save the hash data for output: */
956 #if BYTE_ORDER == LITTLE_ENDIAN
957 		{
958 			/* Convert TO host byte order */
959 			int	j;
960 			for (j = 0; j < 6; j++) {
961 				REVERSE64(context->state[j],context->state[j]);
962 				*d++ = context->state[j];
963 			}
964 		}
965 #else
966 		MEMCPY_BCOPY(d, context->state, LDNS_SHA384_DIGEST_LENGTH);
967 #endif
968 	}
969 
970 	/* Zero out state data */
971 	MEMSET_BZERO(context, sizeof(ldns_sha384_CTX));
972 }
973 
974 unsigned char *
975 ldns_sha384(unsigned char *data, unsigned int data_len, unsigned char *digest)
976 {
977     ldns_sha384_CTX ctx;
978     ldns_sha384_init(&ctx);
979     ldns_sha384_update(&ctx, data, data_len);
980     ldns_sha384_final(digest, &ctx);
981     return digest;
982 }
983