xref: /freebsd/contrib/jemalloc/src/ckh.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /*
2  *******************************************************************************
3  * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each
4  * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash
5  * functions are employed.  The original cuckoo hashing algorithm was described
6  * in:
7  *
8  *   Pagh, R., F.F. Rodler (2004) Cuckoo Hashing.  Journal of Algorithms
9  *     51(2):122-144.
10  *
11  * Generalization of cuckoo hashing was discussed in:
12  *
13  *   Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical
14  *     alternative to traditional hash tables.  In Proceedings of the 7th
15  *     Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA,
16  *     January 2006.
17  *
18  * This implementation uses precisely two hash functions because that is the
19  * fewest that can work, and supporting multiple hashes is an implementation
20  * burden.  Here is a reproduction of Figure 1 from Erlingsson et al. (2006)
21  * that shows approximate expected maximum load factors for various
22  * configurations:
23  *
24  *           |         #cells/bucket         |
25  *   #hashes |   1   |   2   |   4   |   8   |
26  *   --------+-------+-------+-------+-------+
27  *         1 | 0.006 | 0.006 | 0.03  | 0.12  |
28  *         2 | 0.49  | 0.86  |>0.93< |>0.96< |
29  *         3 | 0.91  | 0.97  | 0.98  | 0.999 |
30  *         4 | 0.97  | 0.99  | 0.999 |       |
31  *
32  * The number of cells per bucket is chosen such that a bucket fits in one cache
33  * line.  So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing,
34  * respectively.
35  *
36  ******************************************************************************/
37 #define	JEMALLOC_CKH_C_
38 #include "jemalloc/internal/jemalloc_internal.h"
39 
40 /******************************************************************************/
41 /* Function prototypes for non-inline static functions. */
42 
43 static bool	ckh_grow(ckh_t *ckh);
44 static void	ckh_shrink(ckh_t *ckh);
45 
46 /******************************************************************************/
47 
48 /*
49  * Search bucket for key and return the cell number if found; SIZE_T_MAX
50  * otherwise.
51  */
52 JEMALLOC_INLINE size_t
53 ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key)
54 {
55 	ckhc_t *cell;
56 	unsigned i;
57 
58 	for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
59 		cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
60 		if (cell->key != NULL && ckh->keycomp(key, cell->key))
61 			return ((bucket << LG_CKH_BUCKET_CELLS) + i);
62 	}
63 
64 	return (SIZE_T_MAX);
65 }
66 
67 /*
68  * Search table for key and return cell number if found; SIZE_T_MAX otherwise.
69  */
70 JEMALLOC_INLINE size_t
71 ckh_isearch(ckh_t *ckh, const void *key)
72 {
73 	size_t hash1, hash2, bucket, cell;
74 
75 	assert(ckh != NULL);
76 
77 	ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2);
78 
79 	/* Search primary bucket. */
80 	bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1);
81 	cell = ckh_bucket_search(ckh, bucket, key);
82 	if (cell != SIZE_T_MAX)
83 		return (cell);
84 
85 	/* Search secondary bucket. */
86 	bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1);
87 	cell = ckh_bucket_search(ckh, bucket, key);
88 	return (cell);
89 }
90 
91 JEMALLOC_INLINE bool
92 ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key,
93     const void *data)
94 {
95 	ckhc_t *cell;
96 	unsigned offset, i;
97 
98 	/*
99 	 * Cycle through the cells in the bucket, starting at a random position.
100 	 * The randomness avoids worst-case search overhead as buckets fill up.
101 	 */
102 	prng32(offset, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C);
103 	for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
104 		cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) +
105 		    ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))];
106 		if (cell->key == NULL) {
107 			cell->key = key;
108 			cell->data = data;
109 			ckh->count++;
110 			return (false);
111 		}
112 	}
113 
114 	return (true);
115 }
116 
117 /*
118  * No space is available in bucket.  Randomly evict an item, then try to find an
119  * alternate location for that item.  Iteratively repeat this
120  * eviction/relocation procedure until either success or detection of an
121  * eviction/relocation bucket cycle.
122  */
123 JEMALLOC_INLINE bool
124 ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey,
125     void const **argdata)
126 {
127 	const void *key, *data, *tkey, *tdata;
128 	ckhc_t *cell;
129 	size_t hash1, hash2, bucket, tbucket;
130 	unsigned i;
131 
132 	bucket = argbucket;
133 	key = *argkey;
134 	data = *argdata;
135 	while (true) {
136 		/*
137 		 * Choose a random item within the bucket to evict.  This is
138 		 * critical to correct function, because without (eventually)
139 		 * evicting all items within a bucket during iteration, it
140 		 * would be possible to get stuck in an infinite loop if there
141 		 * were an item for which both hashes indicated the same
142 		 * bucket.
143 		 */
144 		prng32(i, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C);
145 		cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
146 		assert(cell->key != NULL);
147 
148 		/* Swap cell->{key,data} and {key,data} (evict). */
149 		tkey = cell->key; tdata = cell->data;
150 		cell->key = key; cell->data = data;
151 		key = tkey; data = tdata;
152 
153 #ifdef CKH_COUNT
154 		ckh->nrelocs++;
155 #endif
156 
157 		/* Find the alternate bucket for the evicted item. */
158 		ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2);
159 		tbucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1);
160 		if (tbucket == bucket) {
161 			tbucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1);
162 			/*
163 			 * It may be that (tbucket == bucket) still, if the
164 			 * item's hashes both indicate this bucket.  However,
165 			 * we are guaranteed to eventually escape this bucket
166 			 * during iteration, assuming pseudo-random item
167 			 * selection (true randomness would make infinite
168 			 * looping a remote possibility).  The reason we can
169 			 * never get trapped forever is that there are two
170 			 * cases:
171 			 *
172 			 * 1) This bucket == argbucket, so we will quickly
173 			 *    detect an eviction cycle and terminate.
174 			 * 2) An item was evicted to this bucket from another,
175 			 *    which means that at least one item in this bucket
176 			 *    has hashes that indicate distinct buckets.
177 			 */
178 		}
179 		/* Check for a cycle. */
180 		if (tbucket == argbucket) {
181 			*argkey = key;
182 			*argdata = data;
183 			return (true);
184 		}
185 
186 		bucket = tbucket;
187 		if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
188 			return (false);
189 	}
190 }
191 
192 JEMALLOC_INLINE bool
193 ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata)
194 {
195 	size_t hash1, hash2, bucket;
196 	const void *key = *argkey;
197 	const void *data = *argdata;
198 
199 	ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2);
200 
201 	/* Try to insert in primary bucket. */
202 	bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1);
203 	if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
204 		return (false);
205 
206 	/* Try to insert in secondary bucket. */
207 	bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1);
208 	if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
209 		return (false);
210 
211 	/*
212 	 * Try to find a place for this item via iterative eviction/relocation.
213 	 */
214 	return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata));
215 }
216 
217 /*
218  * Try to rebuild the hash table from scratch by inserting all items from the
219  * old table into the new.
220  */
221 JEMALLOC_INLINE bool
222 ckh_rebuild(ckh_t *ckh, ckhc_t *aTab)
223 {
224 	size_t count, i, nins;
225 	const void *key, *data;
226 
227 	count = ckh->count;
228 	ckh->count = 0;
229 	for (i = nins = 0; nins < count; i++) {
230 		if (aTab[i].key != NULL) {
231 			key = aTab[i].key;
232 			data = aTab[i].data;
233 			if (ckh_try_insert(ckh, &key, &data)) {
234 				ckh->count = count;
235 				return (true);
236 			}
237 			nins++;
238 		}
239 	}
240 
241 	return (false);
242 }
243 
244 static bool
245 ckh_grow(ckh_t *ckh)
246 {
247 	bool ret;
248 	ckhc_t *tab, *ttab;
249 	size_t lg_curcells;
250 	unsigned lg_prevbuckets;
251 
252 #ifdef CKH_COUNT
253 	ckh->ngrows++;
254 #endif
255 
256 	/*
257 	 * It is possible (though unlikely, given well behaved hashes) that the
258 	 * table will have to be doubled more than once in order to create a
259 	 * usable table.
260 	 */
261 	lg_prevbuckets = ckh->lg_curbuckets;
262 	lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS;
263 	while (true) {
264 		size_t usize;
265 
266 		lg_curcells++;
267 		usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
268 		if (usize == 0) {
269 			ret = true;
270 			goto label_return;
271 		}
272 		tab = (ckhc_t *)ipalloc(usize, CACHELINE, true);
273 		if (tab == NULL) {
274 			ret = true;
275 			goto label_return;
276 		}
277 		/* Swap in new table. */
278 		ttab = ckh->tab;
279 		ckh->tab = tab;
280 		tab = ttab;
281 		ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
282 
283 		if (ckh_rebuild(ckh, tab) == false) {
284 			idalloc(tab);
285 			break;
286 		}
287 
288 		/* Rebuilding failed, so back out partially rebuilt table. */
289 		idalloc(ckh->tab);
290 		ckh->tab = tab;
291 		ckh->lg_curbuckets = lg_prevbuckets;
292 	}
293 
294 	ret = false;
295 label_return:
296 	return (ret);
297 }
298 
299 static void
300 ckh_shrink(ckh_t *ckh)
301 {
302 	ckhc_t *tab, *ttab;
303 	size_t lg_curcells, usize;
304 	unsigned lg_prevbuckets;
305 
306 	/*
307 	 * It is possible (though unlikely, given well behaved hashes) that the
308 	 * table rebuild will fail.
309 	 */
310 	lg_prevbuckets = ckh->lg_curbuckets;
311 	lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1;
312 	usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
313 	if (usize == 0)
314 		return;
315 	tab = (ckhc_t *)ipalloc(usize, CACHELINE, true);
316 	if (tab == NULL) {
317 		/*
318 		 * An OOM error isn't worth propagating, since it doesn't
319 		 * prevent this or future operations from proceeding.
320 		 */
321 		return;
322 	}
323 	/* Swap in new table. */
324 	ttab = ckh->tab;
325 	ckh->tab = tab;
326 	tab = ttab;
327 	ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
328 
329 	if (ckh_rebuild(ckh, tab) == false) {
330 		idalloc(tab);
331 #ifdef CKH_COUNT
332 		ckh->nshrinks++;
333 #endif
334 		return;
335 	}
336 
337 	/* Rebuilding failed, so back out partially rebuilt table. */
338 	idalloc(ckh->tab);
339 	ckh->tab = tab;
340 	ckh->lg_curbuckets = lg_prevbuckets;
341 #ifdef CKH_COUNT
342 	ckh->nshrinkfails++;
343 #endif
344 }
345 
346 bool
347 ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash, ckh_keycomp_t *keycomp)
348 {
349 	bool ret;
350 	size_t mincells, usize;
351 	unsigned lg_mincells;
352 
353 	assert(minitems > 0);
354 	assert(hash != NULL);
355 	assert(keycomp != NULL);
356 
357 #ifdef CKH_COUNT
358 	ckh->ngrows = 0;
359 	ckh->nshrinks = 0;
360 	ckh->nshrinkfails = 0;
361 	ckh->ninserts = 0;
362 	ckh->nrelocs = 0;
363 #endif
364 	ckh->prng_state = 42; /* Value doesn't really matter. */
365 	ckh->count = 0;
366 
367 	/*
368 	 * Find the minimum power of 2 that is large enough to fit aBaseCount
369 	 * entries.  We are using (2+,2) cuckoo hashing, which has an expected
370 	 * maximum load factor of at least ~0.86, so 0.75 is a conservative load
371 	 * factor that will typically allow 2^aLgMinItems to fit without ever
372 	 * growing the table.
373 	 */
374 	assert(LG_CKH_BUCKET_CELLS > 0);
375 	mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2;
376 	for (lg_mincells = LG_CKH_BUCKET_CELLS;
377 	    (ZU(1) << lg_mincells) < mincells;
378 	    lg_mincells++)
379 		; /* Do nothing. */
380 	ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
381 	ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
382 	ckh->hash = hash;
383 	ckh->keycomp = keycomp;
384 
385 	usize = sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE);
386 	if (usize == 0) {
387 		ret = true;
388 		goto label_return;
389 	}
390 	ckh->tab = (ckhc_t *)ipalloc(usize, CACHELINE, true);
391 	if (ckh->tab == NULL) {
392 		ret = true;
393 		goto label_return;
394 	}
395 
396 	ret = false;
397 label_return:
398 	return (ret);
399 }
400 
401 void
402 ckh_delete(ckh_t *ckh)
403 {
404 
405 	assert(ckh != NULL);
406 
407 #ifdef CKH_VERBOSE
408 	malloc_printf(
409 	    "%s(%p): ngrows: %"PRIu64", nshrinks: %"PRIu64","
410 	    " nshrinkfails: %"PRIu64", ninserts: %"PRIu64","
411 	    " nrelocs: %"PRIu64"\n", __func__, ckh,
412 	    (unsigned long long)ckh->ngrows,
413 	    (unsigned long long)ckh->nshrinks,
414 	    (unsigned long long)ckh->nshrinkfails,
415 	    (unsigned long long)ckh->ninserts,
416 	    (unsigned long long)ckh->nrelocs);
417 #endif
418 
419 	idalloc(ckh->tab);
420 #ifdef JEMALLOC_DEBUG
421 	memset(ckh, 0x5a, sizeof(ckh_t));
422 #endif
423 }
424 
425 size_t
426 ckh_count(ckh_t *ckh)
427 {
428 
429 	assert(ckh != NULL);
430 
431 	return (ckh->count);
432 }
433 
434 bool
435 ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data)
436 {
437 	size_t i, ncells;
438 
439 	for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets +
440 	    LG_CKH_BUCKET_CELLS)); i < ncells; i++) {
441 		if (ckh->tab[i].key != NULL) {
442 			if (key != NULL)
443 				*key = (void *)ckh->tab[i].key;
444 			if (data != NULL)
445 				*data = (void *)ckh->tab[i].data;
446 			*tabind = i + 1;
447 			return (false);
448 		}
449 	}
450 
451 	return (true);
452 }
453 
454 bool
455 ckh_insert(ckh_t *ckh, const void *key, const void *data)
456 {
457 	bool ret;
458 
459 	assert(ckh != NULL);
460 	assert(ckh_search(ckh, key, NULL, NULL));
461 
462 #ifdef CKH_COUNT
463 	ckh->ninserts++;
464 #endif
465 
466 	while (ckh_try_insert(ckh, &key, &data)) {
467 		if (ckh_grow(ckh)) {
468 			ret = true;
469 			goto label_return;
470 		}
471 	}
472 
473 	ret = false;
474 label_return:
475 	return (ret);
476 }
477 
478 bool
479 ckh_remove(ckh_t *ckh, const void *searchkey, void **key, void **data)
480 {
481 	size_t cell;
482 
483 	assert(ckh != NULL);
484 
485 	cell = ckh_isearch(ckh, searchkey);
486 	if (cell != SIZE_T_MAX) {
487 		if (key != NULL)
488 			*key = (void *)ckh->tab[cell].key;
489 		if (data != NULL)
490 			*data = (void *)ckh->tab[cell].data;
491 		ckh->tab[cell].key = NULL;
492 		ckh->tab[cell].data = NULL; /* Not necessary. */
493 
494 		ckh->count--;
495 		/* Try to halve the table if it is less than 1/4 full. */
496 		if (ckh->count < (ZU(1) << (ckh->lg_curbuckets
497 		    + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets
498 		    > ckh->lg_minbuckets) {
499 			/* Ignore error due to OOM. */
500 			ckh_shrink(ckh);
501 		}
502 
503 		return (false);
504 	}
505 
506 	return (true);
507 }
508 
509 bool
510 ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data)
511 {
512 	size_t cell;
513 
514 	assert(ckh != NULL);
515 
516 	cell = ckh_isearch(ckh, searchkey);
517 	if (cell != SIZE_T_MAX) {
518 		if (key != NULL)
519 			*key = (void *)ckh->tab[cell].key;
520 		if (data != NULL)
521 			*data = (void *)ckh->tab[cell].data;
522 		return (false);
523 	}
524 
525 	return (true);
526 }
527 
528 void
529 ckh_string_hash(const void *key, unsigned minbits, size_t *hash1, size_t *hash2)
530 {
531 	size_t ret1, ret2;
532 	uint64_t h;
533 
534 	assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64));
535 	assert(hash1 != NULL);
536 	assert(hash2 != NULL);
537 
538 	h = hash(key, strlen((const char *)key), UINT64_C(0x94122f335b332aea));
539 	if (minbits <= 32) {
540 		/*
541 		 * Avoid doing multiple hashes, since a single hash provides
542 		 * enough bits.
543 		 */
544 		ret1 = h & ZU(0xffffffffU);
545 		ret2 = h >> 32;
546 	} else {
547 		ret1 = h;
548 		ret2 = hash(key, strlen((const char *)key),
549 		    UINT64_C(0x8432a476666bbc13));
550 	}
551 
552 	*hash1 = ret1;
553 	*hash2 = ret2;
554 }
555 
556 bool
557 ckh_string_keycomp(const void *k1, const void *k2)
558 {
559 
560     assert(k1 != NULL);
561     assert(k2 != NULL);
562 
563     return (strcmp((char *)k1, (char *)k2) ? false : true);
564 }
565 
566 void
567 ckh_pointer_hash(const void *key, unsigned minbits, size_t *hash1,
568     size_t *hash2)
569 {
570 	size_t ret1, ret2;
571 	uint64_t h;
572 	union {
573 		const void	*v;
574 		uint64_t	i;
575 	} u;
576 
577 	assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64));
578 	assert(hash1 != NULL);
579 	assert(hash2 != NULL);
580 
581 	assert(sizeof(u.v) == sizeof(u.i));
582 #if (LG_SIZEOF_PTR != LG_SIZEOF_INT)
583 	u.i = 0;
584 #endif
585 	u.v = key;
586 	h = hash(&u.i, sizeof(u.i), UINT64_C(0xd983396e68886082));
587 	if (minbits <= 32) {
588 		/*
589 		 * Avoid doing multiple hashes, since a single hash provides
590 		 * enough bits.
591 		 */
592 		ret1 = h & ZU(0xffffffffU);
593 		ret2 = h >> 32;
594 	} else {
595 		assert(SIZEOF_PTR == 8);
596 		ret1 = h;
597 		ret2 = hash(&u.i, sizeof(u.i), UINT64_C(0x5e2be9aff8709a5d));
598 	}
599 
600 	*hash1 = ret1;
601 	*hash2 = ret2;
602 }
603 
604 bool
605 ckh_pointer_keycomp(const void *k1, const void *k2)
606 {
607 
608 	return ((k1 == k2) ? true : false);
609 }
610