1 /* 2 ******************************************************************************* 3 * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each 4 * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash 5 * functions are employed. The original cuckoo hashing algorithm was described 6 * in: 7 * 8 * Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms 9 * 51(2):122-144. 10 * 11 * Generalization of cuckoo hashing was discussed in: 12 * 13 * Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical 14 * alternative to traditional hash tables. In Proceedings of the 7th 15 * Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA, 16 * January 2006. 17 * 18 * This implementation uses precisely two hash functions because that is the 19 * fewest that can work, and supporting multiple hashes is an implementation 20 * burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006) 21 * that shows approximate expected maximum load factors for various 22 * configurations: 23 * 24 * | #cells/bucket | 25 * #hashes | 1 | 2 | 4 | 8 | 26 * --------+-------+-------+-------+-------+ 27 * 1 | 0.006 | 0.006 | 0.03 | 0.12 | 28 * 2 | 0.49 | 0.86 |>0.93< |>0.96< | 29 * 3 | 0.91 | 0.97 | 0.98 | 0.999 | 30 * 4 | 0.97 | 0.99 | 0.999 | | 31 * 32 * The number of cells per bucket is chosen such that a bucket fits in one cache 33 * line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing, 34 * respectively. 35 * 36 ******************************************************************************/ 37 #define JEMALLOC_CKH_C_ 38 #include "jemalloc/internal/jemalloc_internal.h" 39 40 /******************************************************************************/ 41 /* Function prototypes for non-inline static functions. */ 42 43 static bool ckh_grow(ckh_t *ckh); 44 static void ckh_shrink(ckh_t *ckh); 45 46 /******************************************************************************/ 47 48 /* 49 * Search bucket for key and return the cell number if found; SIZE_T_MAX 50 * otherwise. 51 */ 52 JEMALLOC_INLINE size_t 53 ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key) 54 { 55 ckhc_t *cell; 56 unsigned i; 57 58 for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { 59 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; 60 if (cell->key != NULL && ckh->keycomp(key, cell->key)) 61 return ((bucket << LG_CKH_BUCKET_CELLS) + i); 62 } 63 64 return (SIZE_T_MAX); 65 } 66 67 /* 68 * Search table for key and return cell number if found; SIZE_T_MAX otherwise. 69 */ 70 JEMALLOC_INLINE size_t 71 ckh_isearch(ckh_t *ckh, const void *key) 72 { 73 size_t hash1, hash2, bucket, cell; 74 75 assert(ckh != NULL); 76 77 ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2); 78 79 /* Search primary bucket. */ 80 bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1); 81 cell = ckh_bucket_search(ckh, bucket, key); 82 if (cell != SIZE_T_MAX) 83 return (cell); 84 85 /* Search secondary bucket. */ 86 bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1); 87 cell = ckh_bucket_search(ckh, bucket, key); 88 return (cell); 89 } 90 91 JEMALLOC_INLINE bool 92 ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key, 93 const void *data) 94 { 95 ckhc_t *cell; 96 unsigned offset, i; 97 98 /* 99 * Cycle through the cells in the bucket, starting at a random position. 100 * The randomness avoids worst-case search overhead as buckets fill up. 101 */ 102 prng32(offset, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C); 103 for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { 104 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + 105 ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))]; 106 if (cell->key == NULL) { 107 cell->key = key; 108 cell->data = data; 109 ckh->count++; 110 return (false); 111 } 112 } 113 114 return (true); 115 } 116 117 /* 118 * No space is available in bucket. Randomly evict an item, then try to find an 119 * alternate location for that item. Iteratively repeat this 120 * eviction/relocation procedure until either success or detection of an 121 * eviction/relocation bucket cycle. 122 */ 123 JEMALLOC_INLINE bool 124 ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey, 125 void const **argdata) 126 { 127 const void *key, *data, *tkey, *tdata; 128 ckhc_t *cell; 129 size_t hash1, hash2, bucket, tbucket; 130 unsigned i; 131 132 bucket = argbucket; 133 key = *argkey; 134 data = *argdata; 135 while (true) { 136 /* 137 * Choose a random item within the bucket to evict. This is 138 * critical to correct function, because without (eventually) 139 * evicting all items within a bucket during iteration, it 140 * would be possible to get stuck in an infinite loop if there 141 * were an item for which both hashes indicated the same 142 * bucket. 143 */ 144 prng32(i, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C); 145 cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; 146 assert(cell->key != NULL); 147 148 /* Swap cell->{key,data} and {key,data} (evict). */ 149 tkey = cell->key; tdata = cell->data; 150 cell->key = key; cell->data = data; 151 key = tkey; data = tdata; 152 153 #ifdef CKH_COUNT 154 ckh->nrelocs++; 155 #endif 156 157 /* Find the alternate bucket for the evicted item. */ 158 ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2); 159 tbucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1); 160 if (tbucket == bucket) { 161 tbucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1); 162 /* 163 * It may be that (tbucket == bucket) still, if the 164 * item's hashes both indicate this bucket. However, 165 * we are guaranteed to eventually escape this bucket 166 * during iteration, assuming pseudo-random item 167 * selection (true randomness would make infinite 168 * looping a remote possibility). The reason we can 169 * never get trapped forever is that there are two 170 * cases: 171 * 172 * 1) This bucket == argbucket, so we will quickly 173 * detect an eviction cycle and terminate. 174 * 2) An item was evicted to this bucket from another, 175 * which means that at least one item in this bucket 176 * has hashes that indicate distinct buckets. 177 */ 178 } 179 /* Check for a cycle. */ 180 if (tbucket == argbucket) { 181 *argkey = key; 182 *argdata = data; 183 return (true); 184 } 185 186 bucket = tbucket; 187 if (ckh_try_bucket_insert(ckh, bucket, key, data) == false) 188 return (false); 189 } 190 } 191 192 JEMALLOC_INLINE bool 193 ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata) 194 { 195 size_t hash1, hash2, bucket; 196 const void *key = *argkey; 197 const void *data = *argdata; 198 199 ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2); 200 201 /* Try to insert in primary bucket. */ 202 bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1); 203 if (ckh_try_bucket_insert(ckh, bucket, key, data) == false) 204 return (false); 205 206 /* Try to insert in secondary bucket. */ 207 bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1); 208 if (ckh_try_bucket_insert(ckh, bucket, key, data) == false) 209 return (false); 210 211 /* 212 * Try to find a place for this item via iterative eviction/relocation. 213 */ 214 return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata)); 215 } 216 217 /* 218 * Try to rebuild the hash table from scratch by inserting all items from the 219 * old table into the new. 220 */ 221 JEMALLOC_INLINE bool 222 ckh_rebuild(ckh_t *ckh, ckhc_t *aTab) 223 { 224 size_t count, i, nins; 225 const void *key, *data; 226 227 count = ckh->count; 228 ckh->count = 0; 229 for (i = nins = 0; nins < count; i++) { 230 if (aTab[i].key != NULL) { 231 key = aTab[i].key; 232 data = aTab[i].data; 233 if (ckh_try_insert(ckh, &key, &data)) { 234 ckh->count = count; 235 return (true); 236 } 237 nins++; 238 } 239 } 240 241 return (false); 242 } 243 244 static bool 245 ckh_grow(ckh_t *ckh) 246 { 247 bool ret; 248 ckhc_t *tab, *ttab; 249 size_t lg_curcells; 250 unsigned lg_prevbuckets; 251 252 #ifdef CKH_COUNT 253 ckh->ngrows++; 254 #endif 255 256 /* 257 * It is possible (though unlikely, given well behaved hashes) that the 258 * table will have to be doubled more than once in order to create a 259 * usable table. 260 */ 261 lg_prevbuckets = ckh->lg_curbuckets; 262 lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS; 263 while (true) { 264 size_t usize; 265 266 lg_curcells++; 267 usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE); 268 if (usize == 0) { 269 ret = true; 270 goto label_return; 271 } 272 tab = (ckhc_t *)ipalloc(usize, CACHELINE, true); 273 if (tab == NULL) { 274 ret = true; 275 goto label_return; 276 } 277 /* Swap in new table. */ 278 ttab = ckh->tab; 279 ckh->tab = tab; 280 tab = ttab; 281 ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; 282 283 if (ckh_rebuild(ckh, tab) == false) { 284 idalloc(tab); 285 break; 286 } 287 288 /* Rebuilding failed, so back out partially rebuilt table. */ 289 idalloc(ckh->tab); 290 ckh->tab = tab; 291 ckh->lg_curbuckets = lg_prevbuckets; 292 } 293 294 ret = false; 295 label_return: 296 return (ret); 297 } 298 299 static void 300 ckh_shrink(ckh_t *ckh) 301 { 302 ckhc_t *tab, *ttab; 303 size_t lg_curcells, usize; 304 unsigned lg_prevbuckets; 305 306 /* 307 * It is possible (though unlikely, given well behaved hashes) that the 308 * table rebuild will fail. 309 */ 310 lg_prevbuckets = ckh->lg_curbuckets; 311 lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1; 312 usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE); 313 if (usize == 0) 314 return; 315 tab = (ckhc_t *)ipalloc(usize, CACHELINE, true); 316 if (tab == NULL) { 317 /* 318 * An OOM error isn't worth propagating, since it doesn't 319 * prevent this or future operations from proceeding. 320 */ 321 return; 322 } 323 /* Swap in new table. */ 324 ttab = ckh->tab; 325 ckh->tab = tab; 326 tab = ttab; 327 ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; 328 329 if (ckh_rebuild(ckh, tab) == false) { 330 idalloc(tab); 331 #ifdef CKH_COUNT 332 ckh->nshrinks++; 333 #endif 334 return; 335 } 336 337 /* Rebuilding failed, so back out partially rebuilt table. */ 338 idalloc(ckh->tab); 339 ckh->tab = tab; 340 ckh->lg_curbuckets = lg_prevbuckets; 341 #ifdef CKH_COUNT 342 ckh->nshrinkfails++; 343 #endif 344 } 345 346 bool 347 ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash, ckh_keycomp_t *keycomp) 348 { 349 bool ret; 350 size_t mincells, usize; 351 unsigned lg_mincells; 352 353 assert(minitems > 0); 354 assert(hash != NULL); 355 assert(keycomp != NULL); 356 357 #ifdef CKH_COUNT 358 ckh->ngrows = 0; 359 ckh->nshrinks = 0; 360 ckh->nshrinkfails = 0; 361 ckh->ninserts = 0; 362 ckh->nrelocs = 0; 363 #endif 364 ckh->prng_state = 42; /* Value doesn't really matter. */ 365 ckh->count = 0; 366 367 /* 368 * Find the minimum power of 2 that is large enough to fit aBaseCount 369 * entries. We are using (2+,2) cuckoo hashing, which has an expected 370 * maximum load factor of at least ~0.86, so 0.75 is a conservative load 371 * factor that will typically allow 2^aLgMinItems to fit without ever 372 * growing the table. 373 */ 374 assert(LG_CKH_BUCKET_CELLS > 0); 375 mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2; 376 for (lg_mincells = LG_CKH_BUCKET_CELLS; 377 (ZU(1) << lg_mincells) < mincells; 378 lg_mincells++) 379 ; /* Do nothing. */ 380 ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; 381 ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; 382 ckh->hash = hash; 383 ckh->keycomp = keycomp; 384 385 usize = sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE); 386 if (usize == 0) { 387 ret = true; 388 goto label_return; 389 } 390 ckh->tab = (ckhc_t *)ipalloc(usize, CACHELINE, true); 391 if (ckh->tab == NULL) { 392 ret = true; 393 goto label_return; 394 } 395 396 ret = false; 397 label_return: 398 return (ret); 399 } 400 401 void 402 ckh_delete(ckh_t *ckh) 403 { 404 405 assert(ckh != NULL); 406 407 #ifdef CKH_VERBOSE 408 malloc_printf( 409 "%s(%p): ngrows: %"PRIu64", nshrinks: %"PRIu64"," 410 " nshrinkfails: %"PRIu64", ninserts: %"PRIu64"," 411 " nrelocs: %"PRIu64"\n", __func__, ckh, 412 (unsigned long long)ckh->ngrows, 413 (unsigned long long)ckh->nshrinks, 414 (unsigned long long)ckh->nshrinkfails, 415 (unsigned long long)ckh->ninserts, 416 (unsigned long long)ckh->nrelocs); 417 #endif 418 419 idalloc(ckh->tab); 420 #ifdef JEMALLOC_DEBUG 421 memset(ckh, 0x5a, sizeof(ckh_t)); 422 #endif 423 } 424 425 size_t 426 ckh_count(ckh_t *ckh) 427 { 428 429 assert(ckh != NULL); 430 431 return (ckh->count); 432 } 433 434 bool 435 ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data) 436 { 437 size_t i, ncells; 438 439 for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets + 440 LG_CKH_BUCKET_CELLS)); i < ncells; i++) { 441 if (ckh->tab[i].key != NULL) { 442 if (key != NULL) 443 *key = (void *)ckh->tab[i].key; 444 if (data != NULL) 445 *data = (void *)ckh->tab[i].data; 446 *tabind = i + 1; 447 return (false); 448 } 449 } 450 451 return (true); 452 } 453 454 bool 455 ckh_insert(ckh_t *ckh, const void *key, const void *data) 456 { 457 bool ret; 458 459 assert(ckh != NULL); 460 assert(ckh_search(ckh, key, NULL, NULL)); 461 462 #ifdef CKH_COUNT 463 ckh->ninserts++; 464 #endif 465 466 while (ckh_try_insert(ckh, &key, &data)) { 467 if (ckh_grow(ckh)) { 468 ret = true; 469 goto label_return; 470 } 471 } 472 473 ret = false; 474 label_return: 475 return (ret); 476 } 477 478 bool 479 ckh_remove(ckh_t *ckh, const void *searchkey, void **key, void **data) 480 { 481 size_t cell; 482 483 assert(ckh != NULL); 484 485 cell = ckh_isearch(ckh, searchkey); 486 if (cell != SIZE_T_MAX) { 487 if (key != NULL) 488 *key = (void *)ckh->tab[cell].key; 489 if (data != NULL) 490 *data = (void *)ckh->tab[cell].data; 491 ckh->tab[cell].key = NULL; 492 ckh->tab[cell].data = NULL; /* Not necessary. */ 493 494 ckh->count--; 495 /* Try to halve the table if it is less than 1/4 full. */ 496 if (ckh->count < (ZU(1) << (ckh->lg_curbuckets 497 + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets 498 > ckh->lg_minbuckets) { 499 /* Ignore error due to OOM. */ 500 ckh_shrink(ckh); 501 } 502 503 return (false); 504 } 505 506 return (true); 507 } 508 509 bool 510 ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data) 511 { 512 size_t cell; 513 514 assert(ckh != NULL); 515 516 cell = ckh_isearch(ckh, searchkey); 517 if (cell != SIZE_T_MAX) { 518 if (key != NULL) 519 *key = (void *)ckh->tab[cell].key; 520 if (data != NULL) 521 *data = (void *)ckh->tab[cell].data; 522 return (false); 523 } 524 525 return (true); 526 } 527 528 void 529 ckh_string_hash(const void *key, unsigned minbits, size_t *hash1, size_t *hash2) 530 { 531 size_t ret1, ret2; 532 uint64_t h; 533 534 assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64)); 535 assert(hash1 != NULL); 536 assert(hash2 != NULL); 537 538 h = hash(key, strlen((const char *)key), UINT64_C(0x94122f335b332aea)); 539 if (minbits <= 32) { 540 /* 541 * Avoid doing multiple hashes, since a single hash provides 542 * enough bits. 543 */ 544 ret1 = h & ZU(0xffffffffU); 545 ret2 = h >> 32; 546 } else { 547 ret1 = h; 548 ret2 = hash(key, strlen((const char *)key), 549 UINT64_C(0x8432a476666bbc13)); 550 } 551 552 *hash1 = ret1; 553 *hash2 = ret2; 554 } 555 556 bool 557 ckh_string_keycomp(const void *k1, const void *k2) 558 { 559 560 assert(k1 != NULL); 561 assert(k2 != NULL); 562 563 return (strcmp((char *)k1, (char *)k2) ? false : true); 564 } 565 566 void 567 ckh_pointer_hash(const void *key, unsigned minbits, size_t *hash1, 568 size_t *hash2) 569 { 570 size_t ret1, ret2; 571 uint64_t h; 572 union { 573 const void *v; 574 uint64_t i; 575 } u; 576 577 assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64)); 578 assert(hash1 != NULL); 579 assert(hash2 != NULL); 580 581 assert(sizeof(u.v) == sizeof(u.i)); 582 #if (LG_SIZEOF_PTR != LG_SIZEOF_INT) 583 u.i = 0; 584 #endif 585 u.v = key; 586 h = hash(&u.i, sizeof(u.i), UINT64_C(0xd983396e68886082)); 587 if (minbits <= 32) { 588 /* 589 * Avoid doing multiple hashes, since a single hash provides 590 * enough bits. 591 */ 592 ret1 = h & ZU(0xffffffffU); 593 ret2 = h >> 32; 594 } else { 595 assert(SIZEOF_PTR == 8); 596 ret1 = h; 597 ret2 = hash(&u.i, sizeof(u.i), UINT64_C(0x5e2be9aff8709a5d)); 598 } 599 600 *hash1 = ret1; 601 *hash2 = ret2; 602 } 603 604 bool 605 ckh_pointer_keycomp(const void *k1, const void *k2) 606 { 607 608 return ((k1 == k2) ? true : false); 609 } 610