xref: /freebsd/contrib/jemalloc/src/ckh.c (revision 257e70f1d5ee61037c8c59b116538d3b6b1427a2)
1 /*
2  *******************************************************************************
3  * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each
4  * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash
5  * functions are employed.  The original cuckoo hashing algorithm was described
6  * in:
7  *
8  *   Pagh, R., F.F. Rodler (2004) Cuckoo Hashing.  Journal of Algorithms
9  *     51(2):122-144.
10  *
11  * Generalization of cuckoo hashing was discussed in:
12  *
13  *   Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical
14  *     alternative to traditional hash tables.  In Proceedings of the 7th
15  *     Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA,
16  *     January 2006.
17  *
18  * This implementation uses precisely two hash functions because that is the
19  * fewest that can work, and supporting multiple hashes is an implementation
20  * burden.  Here is a reproduction of Figure 1 from Erlingsson et al. (2006)
21  * that shows approximate expected maximum load factors for various
22  * configurations:
23  *
24  *           |         #cells/bucket         |
25  *   #hashes |   1   |   2   |   4   |   8   |
26  *   --------+-------+-------+-------+-------+
27  *         1 | 0.006 | 0.006 | 0.03  | 0.12  |
28  *         2 | 0.49  | 0.86  |>0.93< |>0.96< |
29  *         3 | 0.91  | 0.97  | 0.98  | 0.999 |
30  *         4 | 0.97  | 0.99  | 0.999 |       |
31  *
32  * The number of cells per bucket is chosen such that a bucket fits in one cache
33  * line.  So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing,
34  * respectively.
35  *
36  ******************************************************************************/
37 #define JEMALLOC_CKH_C_
38 #include "jemalloc/internal/jemalloc_preamble.h"
39 
40 #include "jemalloc/internal/ckh.h"
41 
42 #include "jemalloc/internal/jemalloc_internal_includes.h"
43 
44 #include "jemalloc/internal/assert.h"
45 #include "jemalloc/internal/hash.h"
46 #include "jemalloc/internal/malloc_io.h"
47 #include "jemalloc/internal/prng.h"
48 #include "jemalloc/internal/util.h"
49 
50 /******************************************************************************/
51 /* Function prototypes for non-inline static functions. */
52 
53 static bool	ckh_grow(tsd_t *tsd, ckh_t *ckh);
54 static void	ckh_shrink(tsd_t *tsd, ckh_t *ckh);
55 
56 /******************************************************************************/
57 
58 /*
59  * Search bucket for key and return the cell number if found; SIZE_T_MAX
60  * otherwise.
61  */
62 static size_t
63 ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key) {
64 	ckhc_t *cell;
65 	unsigned i;
66 
67 	for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
68 		cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
69 		if (cell->key != NULL && ckh->keycomp(key, cell->key)) {
70 			return (bucket << LG_CKH_BUCKET_CELLS) + i;
71 		}
72 	}
73 
74 	return SIZE_T_MAX;
75 }
76 
77 /*
78  * Search table for key and return cell number if found; SIZE_T_MAX otherwise.
79  */
80 static size_t
81 ckh_isearch(ckh_t *ckh, const void *key) {
82 	size_t hashes[2], bucket, cell;
83 
84 	assert(ckh != NULL);
85 
86 	ckh->hash(key, hashes);
87 
88 	/* Search primary bucket. */
89 	bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
90 	cell = ckh_bucket_search(ckh, bucket, key);
91 	if (cell != SIZE_T_MAX) {
92 		return cell;
93 	}
94 
95 	/* Search secondary bucket. */
96 	bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
97 	cell = ckh_bucket_search(ckh, bucket, key);
98 	return cell;
99 }
100 
101 static bool
102 ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key,
103     const void *data) {
104 	ckhc_t *cell;
105 	unsigned offset, i;
106 
107 	/*
108 	 * Cycle through the cells in the bucket, starting at a random position.
109 	 * The randomness avoids worst-case search overhead as buckets fill up.
110 	 */
111 	offset = (unsigned)prng_lg_range_u64(&ckh->prng_state,
112 	    LG_CKH_BUCKET_CELLS);
113 	for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
114 		cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) +
115 		    ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))];
116 		if (cell->key == NULL) {
117 			cell->key = key;
118 			cell->data = data;
119 			ckh->count++;
120 			return false;
121 		}
122 	}
123 
124 	return true;
125 }
126 
127 /*
128  * No space is available in bucket.  Randomly evict an item, then try to find an
129  * alternate location for that item.  Iteratively repeat this
130  * eviction/relocation procedure until either success or detection of an
131  * eviction/relocation bucket cycle.
132  */
133 static bool
134 ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey,
135     void const **argdata) {
136 	const void *key, *data, *tkey, *tdata;
137 	ckhc_t *cell;
138 	size_t hashes[2], bucket, tbucket;
139 	unsigned i;
140 
141 	bucket = argbucket;
142 	key = *argkey;
143 	data = *argdata;
144 	while (true) {
145 		/*
146 		 * Choose a random item within the bucket to evict.  This is
147 		 * critical to correct function, because without (eventually)
148 		 * evicting all items within a bucket during iteration, it
149 		 * would be possible to get stuck in an infinite loop if there
150 		 * were an item for which both hashes indicated the same
151 		 * bucket.
152 		 */
153 		i = (unsigned)prng_lg_range_u64(&ckh->prng_state,
154 		    LG_CKH_BUCKET_CELLS);
155 		cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
156 		assert(cell->key != NULL);
157 
158 		/* Swap cell->{key,data} and {key,data} (evict). */
159 		tkey = cell->key; tdata = cell->data;
160 		cell->key = key; cell->data = data;
161 		key = tkey; data = tdata;
162 
163 #ifdef CKH_COUNT
164 		ckh->nrelocs++;
165 #endif
166 
167 		/* Find the alternate bucket for the evicted item. */
168 		ckh->hash(key, hashes);
169 		tbucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
170 		if (tbucket == bucket) {
171 			tbucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets)
172 			    - 1);
173 			/*
174 			 * It may be that (tbucket == bucket) still, if the
175 			 * item's hashes both indicate this bucket.  However,
176 			 * we are guaranteed to eventually escape this bucket
177 			 * during iteration, assuming pseudo-random item
178 			 * selection (true randomness would make infinite
179 			 * looping a remote possibility).  The reason we can
180 			 * never get trapped forever is that there are two
181 			 * cases:
182 			 *
183 			 * 1) This bucket == argbucket, so we will quickly
184 			 *    detect an eviction cycle and terminate.
185 			 * 2) An item was evicted to this bucket from another,
186 			 *    which means that at least one item in this bucket
187 			 *    has hashes that indicate distinct buckets.
188 			 */
189 		}
190 		/* Check for a cycle. */
191 		if (tbucket == argbucket) {
192 			*argkey = key;
193 			*argdata = data;
194 			return true;
195 		}
196 
197 		bucket = tbucket;
198 		if (!ckh_try_bucket_insert(ckh, bucket, key, data)) {
199 			return false;
200 		}
201 	}
202 }
203 
204 static bool
205 ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata) {
206 	size_t hashes[2], bucket;
207 	const void *key = *argkey;
208 	const void *data = *argdata;
209 
210 	ckh->hash(key, hashes);
211 
212 	/* Try to insert in primary bucket. */
213 	bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
214 	if (!ckh_try_bucket_insert(ckh, bucket, key, data)) {
215 		return false;
216 	}
217 
218 	/* Try to insert in secondary bucket. */
219 	bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
220 	if (!ckh_try_bucket_insert(ckh, bucket, key, data)) {
221 		return false;
222 	}
223 
224 	/*
225 	 * Try to find a place for this item via iterative eviction/relocation.
226 	 */
227 	return ckh_evict_reloc_insert(ckh, bucket, argkey, argdata);
228 }
229 
230 /*
231  * Try to rebuild the hash table from scratch by inserting all items from the
232  * old table into the new.
233  */
234 static bool
235 ckh_rebuild(ckh_t *ckh, ckhc_t *aTab) {
236 	size_t count, i, nins;
237 	const void *key, *data;
238 
239 	count = ckh->count;
240 	ckh->count = 0;
241 	for (i = nins = 0; nins < count; i++) {
242 		if (aTab[i].key != NULL) {
243 			key = aTab[i].key;
244 			data = aTab[i].data;
245 			if (ckh_try_insert(ckh, &key, &data)) {
246 				ckh->count = count;
247 				return true;
248 			}
249 			nins++;
250 		}
251 	}
252 
253 	return false;
254 }
255 
256 static bool
257 ckh_grow(tsd_t *tsd, ckh_t *ckh) {
258 	bool ret;
259 	ckhc_t *tab, *ttab;
260 	unsigned lg_prevbuckets, lg_curcells;
261 
262 #ifdef CKH_COUNT
263 	ckh->ngrows++;
264 #endif
265 
266 	/*
267 	 * It is possible (though unlikely, given well behaved hashes) that the
268 	 * table will have to be doubled more than once in order to create a
269 	 * usable table.
270 	 */
271 	lg_prevbuckets = ckh->lg_curbuckets;
272 	lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS;
273 	while (true) {
274 		size_t usize;
275 
276 		lg_curcells++;
277 		usize = sz_sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
278 		if (unlikely(usize == 0
279 		    || usize > SC_LARGE_MAXCLASS)) {
280 			ret = true;
281 			goto label_return;
282 		}
283 		tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE,
284 		    true, NULL, true, arena_ichoose(tsd, NULL));
285 		if (tab == NULL) {
286 			ret = true;
287 			goto label_return;
288 		}
289 		/* Swap in new table. */
290 		ttab = ckh->tab;
291 		ckh->tab = tab;
292 		tab = ttab;
293 		ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
294 
295 		if (!ckh_rebuild(ckh, tab)) {
296 			idalloctm(tsd_tsdn(tsd), tab, NULL, NULL, true, true);
297 			break;
298 		}
299 
300 		/* Rebuilding failed, so back out partially rebuilt table. */
301 		idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true);
302 		ckh->tab = tab;
303 		ckh->lg_curbuckets = lg_prevbuckets;
304 	}
305 
306 	ret = false;
307 label_return:
308 	return ret;
309 }
310 
311 static void
312 ckh_shrink(tsd_t *tsd, ckh_t *ckh) {
313 	ckhc_t *tab, *ttab;
314 	size_t usize;
315 	unsigned lg_prevbuckets, lg_curcells;
316 
317 	/*
318 	 * It is possible (though unlikely, given well behaved hashes) that the
319 	 * table rebuild will fail.
320 	 */
321 	lg_prevbuckets = ckh->lg_curbuckets;
322 	lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1;
323 	usize = sz_sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
324 	if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) {
325 		return;
326 	}
327 	tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true, NULL,
328 	    true, arena_ichoose(tsd, NULL));
329 	if (tab == NULL) {
330 		/*
331 		 * An OOM error isn't worth propagating, since it doesn't
332 		 * prevent this or future operations from proceeding.
333 		 */
334 		return;
335 	}
336 	/* Swap in new table. */
337 	ttab = ckh->tab;
338 	ckh->tab = tab;
339 	tab = ttab;
340 	ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
341 
342 	if (!ckh_rebuild(ckh, tab)) {
343 		idalloctm(tsd_tsdn(tsd), tab, NULL, NULL, true, true);
344 #ifdef CKH_COUNT
345 		ckh->nshrinks++;
346 #endif
347 		return;
348 	}
349 
350 	/* Rebuilding failed, so back out partially rebuilt table. */
351 	idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true);
352 	ckh->tab = tab;
353 	ckh->lg_curbuckets = lg_prevbuckets;
354 #ifdef CKH_COUNT
355 	ckh->nshrinkfails++;
356 #endif
357 }
358 
359 bool
360 ckh_new(tsd_t *tsd, ckh_t *ckh, size_t minitems, ckh_hash_t *hash,
361     ckh_keycomp_t *keycomp) {
362 	bool ret;
363 	size_t mincells, usize;
364 	unsigned lg_mincells;
365 
366 	assert(minitems > 0);
367 	assert(hash != NULL);
368 	assert(keycomp != NULL);
369 
370 #ifdef CKH_COUNT
371 	ckh->ngrows = 0;
372 	ckh->nshrinks = 0;
373 	ckh->nshrinkfails = 0;
374 	ckh->ninserts = 0;
375 	ckh->nrelocs = 0;
376 #endif
377 	ckh->prng_state = 42; /* Value doesn't really matter. */
378 	ckh->count = 0;
379 
380 	/*
381 	 * Find the minimum power of 2 that is large enough to fit minitems
382 	 * entries.  We are using (2+,2) cuckoo hashing, which has an expected
383 	 * maximum load factor of at least ~0.86, so 0.75 is a conservative load
384 	 * factor that will typically allow mincells items to fit without ever
385 	 * growing the table.
386 	 */
387 	assert(LG_CKH_BUCKET_CELLS > 0);
388 	mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2;
389 	for (lg_mincells = LG_CKH_BUCKET_CELLS;
390 	    (ZU(1) << lg_mincells) < mincells;
391 	    lg_mincells++) {
392 		/* Do nothing. */
393 	}
394 	ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
395 	ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
396 	ckh->hash = hash;
397 	ckh->keycomp = keycomp;
398 
399 	usize = sz_sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE);
400 	if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) {
401 		ret = true;
402 		goto label_return;
403 	}
404 	ckh->tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true,
405 	    NULL, true, arena_ichoose(tsd, NULL));
406 	if (ckh->tab == NULL) {
407 		ret = true;
408 		goto label_return;
409 	}
410 
411 	ret = false;
412 label_return:
413 	return ret;
414 }
415 
416 void
417 ckh_delete(tsd_t *tsd, ckh_t *ckh) {
418 	assert(ckh != NULL);
419 
420 #ifdef CKH_VERBOSE
421 	malloc_printf(
422 	    "%s(%p): ngrows: %"FMTu64", nshrinks: %"FMTu64","
423 	    " nshrinkfails: %"FMTu64", ninserts: %"FMTu64","
424 	    " nrelocs: %"FMTu64"\n", __func__, ckh,
425 	    (unsigned long long)ckh->ngrows,
426 	    (unsigned long long)ckh->nshrinks,
427 	    (unsigned long long)ckh->nshrinkfails,
428 	    (unsigned long long)ckh->ninserts,
429 	    (unsigned long long)ckh->nrelocs);
430 #endif
431 
432 	idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true);
433 	if (config_debug) {
434 		memset(ckh, JEMALLOC_FREE_JUNK, sizeof(ckh_t));
435 	}
436 }
437 
438 size_t
439 ckh_count(ckh_t *ckh) {
440 	assert(ckh != NULL);
441 
442 	return ckh->count;
443 }
444 
445 bool
446 ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data) {
447 	size_t i, ncells;
448 
449 	for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets +
450 	    LG_CKH_BUCKET_CELLS)); i < ncells; i++) {
451 		if (ckh->tab[i].key != NULL) {
452 			if (key != NULL) {
453 				*key = (void *)ckh->tab[i].key;
454 			}
455 			if (data != NULL) {
456 				*data = (void *)ckh->tab[i].data;
457 			}
458 			*tabind = i + 1;
459 			return false;
460 		}
461 	}
462 
463 	return true;
464 }
465 
466 bool
467 ckh_insert(tsd_t *tsd, ckh_t *ckh, const void *key, const void *data) {
468 	bool ret;
469 
470 	assert(ckh != NULL);
471 	assert(ckh_search(ckh, key, NULL, NULL));
472 
473 #ifdef CKH_COUNT
474 	ckh->ninserts++;
475 #endif
476 
477 	while (ckh_try_insert(ckh, &key, &data)) {
478 		if (ckh_grow(tsd, ckh)) {
479 			ret = true;
480 			goto label_return;
481 		}
482 	}
483 
484 	ret = false;
485 label_return:
486 	return ret;
487 }
488 
489 bool
490 ckh_remove(tsd_t *tsd, ckh_t *ckh, const void *searchkey, void **key,
491     void **data) {
492 	size_t cell;
493 
494 	assert(ckh != NULL);
495 
496 	cell = ckh_isearch(ckh, searchkey);
497 	if (cell != SIZE_T_MAX) {
498 		if (key != NULL) {
499 			*key = (void *)ckh->tab[cell].key;
500 		}
501 		if (data != NULL) {
502 			*data = (void *)ckh->tab[cell].data;
503 		}
504 		ckh->tab[cell].key = NULL;
505 		ckh->tab[cell].data = NULL; /* Not necessary. */
506 
507 		ckh->count--;
508 		/* Try to halve the table if it is less than 1/4 full. */
509 		if (ckh->count < (ZU(1) << (ckh->lg_curbuckets
510 		    + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets
511 		    > ckh->lg_minbuckets) {
512 			/* Ignore error due to OOM. */
513 			ckh_shrink(tsd, ckh);
514 		}
515 
516 		return false;
517 	}
518 
519 	return true;
520 }
521 
522 bool
523 ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data) {
524 	size_t cell;
525 
526 	assert(ckh != NULL);
527 
528 	cell = ckh_isearch(ckh, searchkey);
529 	if (cell != SIZE_T_MAX) {
530 		if (key != NULL) {
531 			*key = (void *)ckh->tab[cell].key;
532 		}
533 		if (data != NULL) {
534 			*data = (void *)ckh->tab[cell].data;
535 		}
536 		return false;
537 	}
538 
539 	return true;
540 }
541 
542 void
543 ckh_string_hash(const void *key, size_t r_hash[2]) {
544 	hash(key, strlen((const char *)key), 0x94122f33U, r_hash);
545 }
546 
547 bool
548 ckh_string_keycomp(const void *k1, const void *k2) {
549 	assert(k1 != NULL);
550 	assert(k2 != NULL);
551 
552 	return !strcmp((char *)k1, (char *)k2);
553 }
554 
555 void
556 ckh_pointer_hash(const void *key, size_t r_hash[2]) {
557 	union {
558 		const void	*v;
559 		size_t		i;
560 	} u;
561 
562 	assert(sizeof(u.v) == sizeof(u.i));
563 	u.v = key;
564 	hash(&u.i, sizeof(u.i), 0xd983396eU, r_hash);
565 }
566 
567 bool
568 ckh_pointer_keycomp(const void *k1, const void *k2) {
569 	return (k1 == k2);
570 }
571