xref: /freebsd/contrib/jemalloc/include/jemalloc/internal/rtree.h (revision 5bf5ca772c6de2d53344a78cf461447cc322ccea)
1 #ifndef JEMALLOC_INTERNAL_RTREE_H
2 #define JEMALLOC_INTERNAL_RTREE_H
3 
4 #include "jemalloc/internal/atomic.h"
5 #include "jemalloc/internal/mutex.h"
6 #include "jemalloc/internal/rtree_tsd.h"
7 #include "jemalloc/internal/size_classes.h"
8 #include "jemalloc/internal/tsd.h"
9 
10 /*
11  * This radix tree implementation is tailored to the singular purpose of
12  * associating metadata with extents that are currently owned by jemalloc.
13  *
14  *******************************************************************************
15  */
16 
17 /* Number of high insignificant bits. */
18 #define RTREE_NHIB ((1U << (LG_SIZEOF_PTR+3)) - LG_VADDR)
19 /* Number of low insigificant bits. */
20 #define RTREE_NLIB LG_PAGE
21 /* Number of significant bits. */
22 #define RTREE_NSB (LG_VADDR - RTREE_NLIB)
23 /* Number of levels in radix tree. */
24 #if RTREE_NSB <= 10
25 #  define RTREE_HEIGHT 1
26 #elif RTREE_NSB <= 36
27 #  define RTREE_HEIGHT 2
28 #elif RTREE_NSB <= 52
29 #  define RTREE_HEIGHT 3
30 #else
31 #  error Unsupported number of significant virtual address bits
32 #endif
33 /* Use compact leaf representation if virtual address encoding allows. */
34 #if RTREE_NHIB >= LG_CEIL_NSIZES
35 #  define RTREE_LEAF_COMPACT
36 #endif
37 
38 /* Needed for initialization only. */
39 #define RTREE_LEAFKEY_INVALID ((uintptr_t)1)
40 
41 typedef struct rtree_node_elm_s rtree_node_elm_t;
42 struct rtree_node_elm_s {
43 	atomic_p_t	child; /* (rtree_{node,leaf}_elm_t *) */
44 };
45 
46 struct rtree_leaf_elm_s {
47 #ifdef RTREE_LEAF_COMPACT
48 	/*
49 	 * Single pointer-width field containing all three leaf element fields.
50 	 * For example, on a 64-bit x64 system with 48 significant virtual
51 	 * memory address bits, the index, extent, and slab fields are packed as
52 	 * such:
53 	 *
54 	 * x: index
55 	 * e: extent
56 	 * b: slab
57 	 *
58 	 *   00000000 xxxxxxxx eeeeeeee [...] eeeeeeee eeee000b
59 	 */
60 	atomic_p_t	le_bits;
61 #else
62 	atomic_p_t	le_extent; /* (extent_t *) */
63 	atomic_u_t	le_szind; /* (szind_t) */
64 	atomic_b_t	le_slab; /* (bool) */
65 #endif
66 };
67 
68 typedef struct rtree_level_s rtree_level_t;
69 struct rtree_level_s {
70 	/* Number of key bits distinguished by this level. */
71 	unsigned		bits;
72 	/*
73 	 * Cumulative number of key bits distinguished by traversing to
74 	 * corresponding tree level.
75 	 */
76 	unsigned		cumbits;
77 };
78 
79 typedef struct rtree_s rtree_t;
80 struct rtree_s {
81 	malloc_mutex_t		init_lock;
82 	/* Number of elements based on rtree_levels[0].bits. */
83 #if RTREE_HEIGHT > 1
84 	rtree_node_elm_t	root[1U << (RTREE_NSB/RTREE_HEIGHT)];
85 #else
86 	rtree_leaf_elm_t	root[1U << (RTREE_NSB/RTREE_HEIGHT)];
87 #endif
88 };
89 
90 /*
91  * Split the bits into one to three partitions depending on number of
92  * significant bits.  It the number of bits does not divide evenly into the
93  * number of levels, place one remainder bit per level starting at the leaf
94  * level.
95  */
96 static const rtree_level_t rtree_levels[] = {
97 #if RTREE_HEIGHT == 1
98 	{RTREE_NSB, RTREE_NHIB + RTREE_NSB}
99 #elif RTREE_HEIGHT == 2
100 	{RTREE_NSB/2, RTREE_NHIB + RTREE_NSB/2},
101 	{RTREE_NSB/2 + RTREE_NSB%2, RTREE_NHIB + RTREE_NSB}
102 #elif RTREE_HEIGHT == 3
103 	{RTREE_NSB/3, RTREE_NHIB + RTREE_NSB/3},
104 	{RTREE_NSB/3 + RTREE_NSB%3/2,
105 	    RTREE_NHIB + RTREE_NSB/3*2 + RTREE_NSB%3/2},
106 	{RTREE_NSB/3 + RTREE_NSB%3 - RTREE_NSB%3/2, RTREE_NHIB + RTREE_NSB}
107 #else
108 #  error Unsupported rtree height
109 #endif
110 };
111 
112 bool rtree_new(rtree_t *rtree, bool zeroed);
113 
114 typedef rtree_node_elm_t *(rtree_node_alloc_t)(tsdn_t *, rtree_t *, size_t);
115 extern rtree_node_alloc_t *JET_MUTABLE rtree_node_alloc;
116 
117 typedef rtree_leaf_elm_t *(rtree_leaf_alloc_t)(tsdn_t *, rtree_t *, size_t);
118 extern rtree_leaf_alloc_t *JET_MUTABLE rtree_leaf_alloc;
119 
120 typedef void (rtree_node_dalloc_t)(tsdn_t *, rtree_t *, rtree_node_elm_t *);
121 extern rtree_node_dalloc_t *JET_MUTABLE rtree_node_dalloc;
122 
123 typedef void (rtree_leaf_dalloc_t)(tsdn_t *, rtree_t *, rtree_leaf_elm_t *);
124 extern rtree_leaf_dalloc_t *JET_MUTABLE rtree_leaf_dalloc;
125 #ifdef JEMALLOC_JET
126 void rtree_delete(tsdn_t *tsdn, rtree_t *rtree);
127 #endif
128 rtree_leaf_elm_t *rtree_leaf_elm_lookup_hard(tsdn_t *tsdn, rtree_t *rtree,
129     rtree_ctx_t *rtree_ctx, uintptr_t key, bool dependent, bool init_missing);
130 
131 JEMALLOC_ALWAYS_INLINE uintptr_t
132 rtree_leafkey(uintptr_t key) {
133 	unsigned ptrbits = ZU(1) << (LG_SIZEOF_PTR+3);
134 	unsigned cumbits = (rtree_levels[RTREE_HEIGHT-1].cumbits -
135 	    rtree_levels[RTREE_HEIGHT-1].bits);
136 	unsigned maskbits = ptrbits - cumbits;
137 	uintptr_t mask = ~((ZU(1) << maskbits) - 1);
138 	return (key & mask);
139 }
140 
141 JEMALLOC_ALWAYS_INLINE size_t
142 rtree_cache_direct_map(uintptr_t key) {
143 	unsigned ptrbits = ZU(1) << (LG_SIZEOF_PTR+3);
144 	unsigned cumbits = (rtree_levels[RTREE_HEIGHT-1].cumbits -
145 	    rtree_levels[RTREE_HEIGHT-1].bits);
146 	unsigned maskbits = ptrbits - cumbits;
147 	return (size_t)((key >> maskbits) & (RTREE_CTX_NCACHE - 1));
148 }
149 
150 JEMALLOC_ALWAYS_INLINE uintptr_t
151 rtree_subkey(uintptr_t key, unsigned level) {
152 	unsigned ptrbits = ZU(1) << (LG_SIZEOF_PTR+3);
153 	unsigned cumbits = rtree_levels[level].cumbits;
154 	unsigned shiftbits = ptrbits - cumbits;
155 	unsigned maskbits = rtree_levels[level].bits;
156 	uintptr_t mask = (ZU(1) << maskbits) - 1;
157 	return ((key >> shiftbits) & mask);
158 }
159 
160 /*
161  * Atomic getters.
162  *
163  * dependent: Reading a value on behalf of a pointer to a valid allocation
164  *            is guaranteed to be a clean read even without synchronization,
165  *            because the rtree update became visible in memory before the
166  *            pointer came into existence.
167  * !dependent: An arbitrary read, e.g. on behalf of ivsalloc(), may not be
168  *             dependent on a previous rtree write, which means a stale read
169  *             could result if synchronization were omitted here.
170  */
171 #  ifdef RTREE_LEAF_COMPACT
172 JEMALLOC_ALWAYS_INLINE uintptr_t
173 rtree_leaf_elm_bits_read(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
174     bool dependent) {
175 	return (uintptr_t)atomic_load_p(&elm->le_bits, dependent
176 	    ? ATOMIC_RELAXED : ATOMIC_ACQUIRE);
177 }
178 
179 JEMALLOC_ALWAYS_INLINE extent_t *
180 rtree_leaf_elm_bits_extent_get(uintptr_t bits) {
181 	/* Restore sign-extended high bits, mask slab bit. */
182 	return (extent_t *)((uintptr_t)((intptr_t)(bits << RTREE_NHIB) >>
183 	    RTREE_NHIB) & ~((uintptr_t)0x1));
184 }
185 
186 JEMALLOC_ALWAYS_INLINE szind_t
187 rtree_leaf_elm_bits_szind_get(uintptr_t bits) {
188 	return (szind_t)(bits >> LG_VADDR);
189 }
190 
191 JEMALLOC_ALWAYS_INLINE bool
192 rtree_leaf_elm_bits_slab_get(uintptr_t bits) {
193 	return (bool)(bits & (uintptr_t)0x1);
194 }
195 
196 #  endif
197 
198 JEMALLOC_ALWAYS_INLINE extent_t *
199 rtree_leaf_elm_extent_read(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
200     bool dependent) {
201 #ifdef RTREE_LEAF_COMPACT
202 	uintptr_t bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm, dependent);
203 	return rtree_leaf_elm_bits_extent_get(bits);
204 #else
205 	extent_t *extent = (extent_t *)atomic_load_p(&elm->le_extent, dependent
206 	    ? ATOMIC_RELAXED : ATOMIC_ACQUIRE);
207 	return extent;
208 #endif
209 }
210 
211 JEMALLOC_ALWAYS_INLINE szind_t
212 rtree_leaf_elm_szind_read(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
213     bool dependent) {
214 #ifdef RTREE_LEAF_COMPACT
215 	uintptr_t bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm, dependent);
216 	return rtree_leaf_elm_bits_szind_get(bits);
217 #else
218 	return (szind_t)atomic_load_u(&elm->le_szind, dependent ? ATOMIC_RELAXED
219 	    : ATOMIC_ACQUIRE);
220 #endif
221 }
222 
223 JEMALLOC_ALWAYS_INLINE bool
224 rtree_leaf_elm_slab_read(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
225     bool dependent) {
226 #ifdef RTREE_LEAF_COMPACT
227 	uintptr_t bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm, dependent);
228 	return rtree_leaf_elm_bits_slab_get(bits);
229 #else
230 	return atomic_load_b(&elm->le_slab, dependent ? ATOMIC_RELAXED :
231 	    ATOMIC_ACQUIRE);
232 #endif
233 }
234 
235 static inline void
236 rtree_leaf_elm_extent_write(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
237     extent_t *extent) {
238 #ifdef RTREE_LEAF_COMPACT
239 	uintptr_t old_bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm, true);
240 	uintptr_t bits = ((uintptr_t)rtree_leaf_elm_bits_szind_get(old_bits) <<
241 	    LG_VADDR) | ((uintptr_t)extent & (((uintptr_t)0x1 << LG_VADDR) - 1))
242 	    | ((uintptr_t)rtree_leaf_elm_bits_slab_get(old_bits));
243 	atomic_store_p(&elm->le_bits, (void *)bits, ATOMIC_RELEASE);
244 #else
245 	atomic_store_p(&elm->le_extent, extent, ATOMIC_RELEASE);
246 #endif
247 }
248 
249 static inline void
250 rtree_leaf_elm_szind_write(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
251     szind_t szind) {
252 	assert(szind <= NSIZES);
253 
254 #ifdef RTREE_LEAF_COMPACT
255 	uintptr_t old_bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm,
256 	    true);
257 	uintptr_t bits = ((uintptr_t)szind << LG_VADDR) |
258 	    ((uintptr_t)rtree_leaf_elm_bits_extent_get(old_bits) &
259 	    (((uintptr_t)0x1 << LG_VADDR) - 1)) |
260 	    ((uintptr_t)rtree_leaf_elm_bits_slab_get(old_bits));
261 	atomic_store_p(&elm->le_bits, (void *)bits, ATOMIC_RELEASE);
262 #else
263 	atomic_store_u(&elm->le_szind, szind, ATOMIC_RELEASE);
264 #endif
265 }
266 
267 static inline void
268 rtree_leaf_elm_slab_write(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
269      bool slab) {
270 #ifdef RTREE_LEAF_COMPACT
271 	uintptr_t old_bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm,
272 	    true);
273 	uintptr_t bits = ((uintptr_t)rtree_leaf_elm_bits_szind_get(old_bits) <<
274 	    LG_VADDR) | ((uintptr_t)rtree_leaf_elm_bits_extent_get(old_bits) &
275 	    (((uintptr_t)0x1 << LG_VADDR) - 1)) | ((uintptr_t)slab);
276 	atomic_store_p(&elm->le_bits, (void *)bits, ATOMIC_RELEASE);
277 #else
278 	atomic_store_b(&elm->le_slab, slab, ATOMIC_RELEASE);
279 #endif
280 }
281 
282 static inline void
283 rtree_leaf_elm_write(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
284     extent_t *extent, szind_t szind, bool slab) {
285 #ifdef RTREE_LEAF_COMPACT
286 	uintptr_t bits = ((uintptr_t)szind << LG_VADDR) |
287 	    ((uintptr_t)extent & (((uintptr_t)0x1 << LG_VADDR) - 1)) |
288 	    ((uintptr_t)slab);
289 	atomic_store_p(&elm->le_bits, (void *)bits, ATOMIC_RELEASE);
290 #else
291 	rtree_leaf_elm_slab_write(tsdn, rtree, elm, slab);
292 	rtree_leaf_elm_szind_write(tsdn, rtree, elm, szind);
293 	/*
294 	 * Write extent last, since the element is atomically considered valid
295 	 * as soon as the extent field is non-NULL.
296 	 */
297 	rtree_leaf_elm_extent_write(tsdn, rtree, elm, extent);
298 #endif
299 }
300 
301 static inline void
302 rtree_leaf_elm_szind_slab_update(tsdn_t *tsdn, rtree_t *rtree,
303     rtree_leaf_elm_t *elm, szind_t szind, bool slab) {
304 	assert(!slab || szind < NBINS);
305 
306 	/*
307 	 * The caller implicitly assures that it is the only writer to the szind
308 	 * and slab fields, and that the extent field cannot currently change.
309 	 */
310 	rtree_leaf_elm_slab_write(tsdn, rtree, elm, slab);
311 	rtree_leaf_elm_szind_write(tsdn, rtree, elm, szind);
312 }
313 
314 JEMALLOC_ALWAYS_INLINE rtree_leaf_elm_t *
315 rtree_leaf_elm_lookup(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
316     uintptr_t key, bool dependent, bool init_missing) {
317 	assert(key != 0);
318 	assert(!dependent || !init_missing);
319 
320 	size_t slot = rtree_cache_direct_map(key);
321 	uintptr_t leafkey = rtree_leafkey(key);
322 	assert(leafkey != RTREE_LEAFKEY_INVALID);
323 
324 	/* Fast path: L1 direct mapped cache. */
325 	if (likely(rtree_ctx->cache[slot].leafkey == leafkey)) {
326 		rtree_leaf_elm_t *leaf = rtree_ctx->cache[slot].leaf;
327 		assert(leaf != NULL);
328 		uintptr_t subkey = rtree_subkey(key, RTREE_HEIGHT-1);
329 		return &leaf[subkey];
330 	}
331 	/*
332 	 * Search the L2 LRU cache.  On hit, swap the matching element into the
333 	 * slot in L1 cache, and move the position in L2 up by 1.
334 	 */
335 #define RTREE_CACHE_CHECK_L2(i) do {					\
336 	if (likely(rtree_ctx->l2_cache[i].leafkey == leafkey)) {	\
337 		rtree_leaf_elm_t *leaf = rtree_ctx->l2_cache[i].leaf;	\
338 		assert(leaf != NULL);					\
339 		if (i > 0) {						\
340 			/* Bubble up by one. */				\
341 			rtree_ctx->l2_cache[i].leafkey =		\
342 				rtree_ctx->l2_cache[i - 1].leafkey;	\
343 			rtree_ctx->l2_cache[i].leaf =			\
344 				rtree_ctx->l2_cache[i - 1].leaf;	\
345 			rtree_ctx->l2_cache[i - 1].leafkey =		\
346 			    rtree_ctx->cache[slot].leafkey;		\
347 			rtree_ctx->l2_cache[i - 1].leaf =		\
348 			    rtree_ctx->cache[slot].leaf;		\
349 		} else {						\
350 			rtree_ctx->l2_cache[0].leafkey =		\
351 			    rtree_ctx->cache[slot].leafkey;		\
352 			rtree_ctx->l2_cache[0].leaf =			\
353 			    rtree_ctx->cache[slot].leaf;		\
354 		}							\
355 		rtree_ctx->cache[slot].leafkey = leafkey;		\
356 		rtree_ctx->cache[slot].leaf = leaf;			\
357 		uintptr_t subkey = rtree_subkey(key, RTREE_HEIGHT-1);	\
358 		return &leaf[subkey];					\
359 	}								\
360 } while (0)
361 	/* Check the first cache entry. */
362 	RTREE_CACHE_CHECK_L2(0);
363 	/* Search the remaining cache elements. */
364 	for (unsigned i = 1; i < RTREE_CTX_NCACHE_L2; i++) {
365 		RTREE_CACHE_CHECK_L2(i);
366 	}
367 #undef RTREE_CACHE_CHECK_L2
368 
369 	return rtree_leaf_elm_lookup_hard(tsdn, rtree, rtree_ctx, key,
370 	    dependent, init_missing);
371 }
372 
373 static inline bool
374 rtree_write(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx, uintptr_t key,
375     extent_t *extent, szind_t szind, bool slab) {
376 	/* Use rtree_clear() to set the extent to NULL. */
377 	assert(extent != NULL);
378 
379 	rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
380 	    key, false, true);
381 	if (elm == NULL) {
382 		return true;
383 	}
384 
385 	assert(rtree_leaf_elm_extent_read(tsdn, rtree, elm, false) == NULL);
386 	rtree_leaf_elm_write(tsdn, rtree, elm, extent, szind, slab);
387 
388 	return false;
389 }
390 
391 JEMALLOC_ALWAYS_INLINE rtree_leaf_elm_t *
392 rtree_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx, uintptr_t key,
393     bool dependent) {
394 	rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
395 	    key, dependent, false);
396 	if (!dependent && elm == NULL) {
397 		return NULL;
398 	}
399 	assert(elm != NULL);
400 	return elm;
401 }
402 
403 JEMALLOC_ALWAYS_INLINE extent_t *
404 rtree_extent_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
405     uintptr_t key, bool dependent) {
406 	rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key,
407 	    dependent);
408 	if (!dependent && elm == NULL) {
409 		return NULL;
410 	}
411 	return rtree_leaf_elm_extent_read(tsdn, rtree, elm, dependent);
412 }
413 
414 JEMALLOC_ALWAYS_INLINE szind_t
415 rtree_szind_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
416     uintptr_t key, bool dependent) {
417 	rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key,
418 	    dependent);
419 	if (!dependent && elm == NULL) {
420 		return NSIZES;
421 	}
422 	return rtree_leaf_elm_szind_read(tsdn, rtree, elm, dependent);
423 }
424 
425 /*
426  * rtree_slab_read() is intentionally omitted because slab is always read in
427  * conjunction with szind, which makes rtree_szind_slab_read() a better choice.
428  */
429 
430 JEMALLOC_ALWAYS_INLINE bool
431 rtree_extent_szind_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
432     uintptr_t key, bool dependent, extent_t **r_extent, szind_t *r_szind) {
433 	rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key,
434 	    dependent);
435 	if (!dependent && elm == NULL) {
436 		return true;
437 	}
438 	*r_extent = rtree_leaf_elm_extent_read(tsdn, rtree, elm, dependent);
439 	*r_szind = rtree_leaf_elm_szind_read(tsdn, rtree, elm, dependent);
440 	return false;
441 }
442 
443 JEMALLOC_ALWAYS_INLINE bool
444 rtree_szind_slab_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
445     uintptr_t key, bool dependent, szind_t *r_szind, bool *r_slab) {
446 	rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key,
447 	    dependent);
448 	if (!dependent && elm == NULL) {
449 		return true;
450 	}
451 	*r_szind = rtree_leaf_elm_szind_read(tsdn, rtree, elm, dependent);
452 	*r_slab = rtree_leaf_elm_slab_read(tsdn, rtree, elm, dependent);
453 	return false;
454 }
455 
456 static inline void
457 rtree_szind_slab_update(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
458     uintptr_t key, szind_t szind, bool slab) {
459 	assert(!slab || szind < NBINS);
460 
461 	rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key, true);
462 	rtree_leaf_elm_szind_slab_update(tsdn, rtree, elm, szind, slab);
463 }
464 
465 static inline void
466 rtree_clear(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
467     uintptr_t key) {
468 	rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key, true);
469 	assert(rtree_leaf_elm_extent_read(tsdn, rtree, elm, false) !=
470 	    NULL);
471 	rtree_leaf_elm_write(tsdn, rtree, elm, NULL, NSIZES, false);
472 }
473 
474 #endif /* JEMALLOC_INTERNAL_RTREE_H */
475