xref: /freebsd/contrib/googletest/googlemock/test/gmock-actions_test.cc (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // This file tests the built-in actions.
33 
34 #include "gmock/gmock-actions.h"
35 
36 #include <algorithm>
37 #include <functional>
38 #include <iterator>
39 #include <memory>
40 #include <sstream>
41 #include <string>
42 #include <tuple>
43 #include <type_traits>
44 #include <utility>
45 #include <vector>
46 
47 #include "gmock/gmock.h"
48 #include "gmock/internal/gmock-port.h"
49 #include "gtest/gtest-spi.h"
50 #include "gtest/gtest.h"
51 #include "gtest/internal/gtest-port.h"
52 
53 // Silence C4100 (unreferenced formal parameter) and C4503 (decorated name
54 // length exceeded) for MSVC.
55 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100 4503)
56 #if defined(_MSC_VER) && (_MSC_VER == 1900)
57 // and silence C4800 (C4800: 'int *const ': forcing value
58 // to bool 'true' or 'false') for MSVC 15
59 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800)
60 #endif
61 
62 namespace testing {
63 namespace {
64 
65 using ::testing::internal::BuiltInDefaultValue;
66 
67 TEST(TypeTraits, Negation) {
68   // Direct use with std types.
69   static_assert(std::is_base_of<std::false_type,
70                                 internal::negation<std::true_type>>::value,
71                 "");
72 
73   static_assert(std::is_base_of<std::true_type,
74                                 internal::negation<std::false_type>>::value,
75                 "");
76 
77   // With other types that fit the requirement of a value member that is
78   // convertible to bool.
79   static_assert(std::is_base_of<
80                     std::true_type,
81                     internal::negation<std::integral_constant<int, 0>>>::value,
82                 "");
83 
84   static_assert(std::is_base_of<
85                     std::false_type,
86                     internal::negation<std::integral_constant<int, 1>>>::value,
87                 "");
88 
89   static_assert(std::is_base_of<
90                     std::false_type,
91                     internal::negation<std::integral_constant<int, -1>>>::value,
92                 "");
93 }
94 
95 // Weird false/true types that aren't actually bool constants (but should still
96 // be legal according to [meta.logical] because `bool(T::value)` is valid), are
97 // distinct from std::false_type and std::true_type, and are distinct from other
98 // instantiations of the same template.
99 //
100 // These let us check finicky details mandated by the standard like
101 // "std::conjunction should evaluate to a type that inherits from the first
102 // false-y input".
103 template <int>
104 struct MyFalse : std::integral_constant<int, 0> {};
105 
106 template <int>
107 struct MyTrue : std::integral_constant<int, -1> {};
108 
109 TEST(TypeTraits, Conjunction) {
110   // Base case: always true.
111   static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value,
112                 "");
113 
114   // One predicate: inherits from that predicate, regardless of value.
115   static_assert(
116       std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value,
117       "");
118 
119   static_assert(
120       std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, "");
121 
122   // Multiple predicates, with at least one false: inherits from that one.
123   static_assert(
124       std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
125                                                         MyTrue<2>>>::value,
126       "");
127 
128   static_assert(
129       std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
130                                                         MyFalse<2>>>::value,
131       "");
132 
133   // Short circuiting: in the case above, additional predicates need not even
134   // define a value member.
135   struct Empty {};
136   static_assert(
137       std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
138                                                         Empty>>::value,
139       "");
140 
141   // All predicates true: inherits from the last.
142   static_assert(
143       std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>,
144                                                        MyTrue<2>>>::value,
145       "");
146 }
147 
148 TEST(TypeTraits, Disjunction) {
149   // Base case: always false.
150   static_assert(
151       std::is_base_of<std::false_type, internal::disjunction<>>::value, "");
152 
153   // One predicate: inherits from that predicate, regardless of value.
154   static_assert(
155       std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value,
156       "");
157 
158   static_assert(
159       std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, "");
160 
161   // Multiple predicates, with at least one true: inherits from that one.
162   static_assert(
163       std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
164                                                        MyFalse<2>>>::value,
165       "");
166 
167   static_assert(
168       std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
169                                                        MyTrue<2>>>::value,
170       "");
171 
172   // Short circuiting: in the case above, additional predicates need not even
173   // define a value member.
174   struct Empty {};
175   static_assert(
176       std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
177                                                        Empty>>::value,
178       "");
179 
180   // All predicates false: inherits from the last.
181   static_assert(
182       std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>,
183                                                         MyFalse<2>>>::value,
184       "");
185 }
186 
187 TEST(TypeTraits, IsInvocableRV) {
188   struct C {
189     int operator()() const { return 0; }
190     void operator()(int) & {}
191     std::string operator()(int) && { return ""; };
192   };
193 
194   // The first overload is callable for const and non-const rvalues and lvalues.
195   // It can be used to obtain an int, cv void, or anything int is convertible
196   // to.
197   static_assert(internal::is_callable_r<int, C>::value, "");
198   static_assert(internal::is_callable_r<int, C&>::value, "");
199   static_assert(internal::is_callable_r<int, const C>::value, "");
200   static_assert(internal::is_callable_r<int, const C&>::value, "");
201 
202   static_assert(internal::is_callable_r<void, C>::value, "");
203   static_assert(internal::is_callable_r<const volatile void, C>::value, "");
204   static_assert(internal::is_callable_r<char, C>::value, "");
205 
206   // It's possible to provide an int. If it's given to an lvalue, the result is
207   // void. Otherwise it is std::string (which is also treated as allowed for a
208   // void result type).
209   static_assert(internal::is_callable_r<void, C&, int>::value, "");
210   static_assert(!internal::is_callable_r<int, C&, int>::value, "");
211   static_assert(!internal::is_callable_r<std::string, C&, int>::value, "");
212   static_assert(!internal::is_callable_r<void, const C&, int>::value, "");
213 
214   static_assert(internal::is_callable_r<std::string, C, int>::value, "");
215   static_assert(internal::is_callable_r<void, C, int>::value, "");
216   static_assert(!internal::is_callable_r<int, C, int>::value, "");
217 
218   // It's not possible to provide other arguments.
219   static_assert(!internal::is_callable_r<void, C, std::string>::value, "");
220   static_assert(!internal::is_callable_r<void, C, int, int>::value, "");
221 
222   // In C++17 and above, where it's guaranteed that functions can return
223   // non-moveable objects, everything should work fine for non-moveable rsult
224   // types too.
225 #if defined(GTEST_INTERNAL_CPLUSPLUS_LANG) && \
226     GTEST_INTERNAL_CPLUSPLUS_LANG >= 201703L
227   {
228     struct NonMoveable {
229       NonMoveable() = default;
230       NonMoveable(NonMoveable&&) = delete;
231     };
232 
233     static_assert(!std::is_move_constructible_v<NonMoveable>);
234 
235     struct Callable {
236       NonMoveable operator()() { return NonMoveable(); }
237     };
238 
239     static_assert(internal::is_callable_r<NonMoveable, Callable>::value);
240     static_assert(internal::is_callable_r<void, Callable>::value);
241     static_assert(
242         internal::is_callable_r<const volatile void, Callable>::value);
243 
244     static_assert(!internal::is_callable_r<int, Callable>::value);
245     static_assert(!internal::is_callable_r<NonMoveable, Callable, int>::value);
246   }
247 #endif  // C++17 and above
248 
249   // Nothing should choke when we try to call other arguments besides directly
250   // callable objects, but they should not show up as callable.
251   static_assert(!internal::is_callable_r<void, int>::value, "");
252   static_assert(!internal::is_callable_r<void, void (C::*)()>::value, "");
253   static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, "");
254 }
255 
256 // Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
257 TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
258   EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr);
259   EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr);
260   EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr);
261 }
262 
263 // Tests that BuiltInDefaultValue<T*>::Exists() return true.
264 TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
265   EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
266   EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
267   EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
268 }
269 
270 // Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
271 // built-in numeric type.
272 TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
273   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
274   EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
275   EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
276 #if GMOCK_WCHAR_T_IS_NATIVE_
277 #if !defined(__WCHAR_UNSIGNED__)
278   EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
279 #else
280   EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get());
281 #endif
282 #endif
283   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get());  // NOLINT
284   EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get());     // NOLINT
285   EXPECT_EQ(0, BuiltInDefaultValue<short>::Get());            // NOLINT
286   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
287   EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
288   EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
289   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get());       // NOLINT
290   EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get());          // NOLINT
291   EXPECT_EQ(0, BuiltInDefaultValue<long>::Get());                 // NOLINT
292   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get());  // NOLINT
293   EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get());     // NOLINT
294   EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get());            // NOLINT
295   EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
296   EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
297 }
298 
299 // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
300 // built-in numeric type.
301 TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
302   EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
303   EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
304   EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
305 #if GMOCK_WCHAR_T_IS_NATIVE_
306   EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
307 #endif
308   EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists());  // NOLINT
309   EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists());    // NOLINT
310   EXPECT_TRUE(BuiltInDefaultValue<short>::Exists());           // NOLINT
311   EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
312   EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
313   EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
314   EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists());       // NOLINT
315   EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists());         // NOLINT
316   EXPECT_TRUE(BuiltInDefaultValue<long>::Exists());                // NOLINT
317   EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists());  // NOLINT
318   EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists());    // NOLINT
319   EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists());           // NOLINT
320   EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
321   EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
322 }
323 
324 // Tests that BuiltInDefaultValue<bool>::Get() returns false.
325 TEST(BuiltInDefaultValueTest, IsFalseForBool) {
326   EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
327 }
328 
329 // Tests that BuiltInDefaultValue<bool>::Exists() returns true.
330 TEST(BuiltInDefaultValueTest, BoolExists) {
331   EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
332 }
333 
334 // Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
335 // string type.
336 TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
337   EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get());
338 }
339 
340 // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
341 // string type.
342 TEST(BuiltInDefaultValueTest, ExistsForString) {
343   EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists());
344 }
345 
346 // Tests that BuiltInDefaultValue<const T>::Get() returns the same
347 // value as BuiltInDefaultValue<T>::Get() does.
348 TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
349   EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
350   EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
351   EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr);
352   EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
353 }
354 
355 // A type that's default constructible.
356 class MyDefaultConstructible {
357  public:
358   MyDefaultConstructible() : value_(42) {}
359 
360   int value() const { return value_; }
361 
362  private:
363   int value_;
364 };
365 
366 // A type that's not default constructible.
367 class MyNonDefaultConstructible {
368  public:
369   // Does not have a default ctor.
370   explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
371 
372   int value() const { return value_; }
373 
374  private:
375   int value_;
376 };
377 
378 TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
379   EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
380 }
381 
382 TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
383   EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
384 }
385 
386 TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
387   EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
388 }
389 
390 // Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
391 TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
392   EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, "");
393   EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, "");
394 }
395 
396 TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
397   EXPECT_DEATH_IF_SUPPORTED(
398       { BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, "");
399 }
400 
401 // Tests that DefaultValue<T>::IsSet() is false initially.
402 TEST(DefaultValueTest, IsInitiallyUnset) {
403   EXPECT_FALSE(DefaultValue<int>::IsSet());
404   EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
405   EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
406 }
407 
408 // Tests that DefaultValue<T> can be set and then unset.
409 TEST(DefaultValueTest, CanBeSetAndUnset) {
410   EXPECT_TRUE(DefaultValue<int>::Exists());
411   EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
412 
413   DefaultValue<int>::Set(1);
414   DefaultValue<const MyNonDefaultConstructible>::Set(
415       MyNonDefaultConstructible(42));
416 
417   EXPECT_EQ(1, DefaultValue<int>::Get());
418   EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
419 
420   EXPECT_TRUE(DefaultValue<int>::Exists());
421   EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
422 
423   DefaultValue<int>::Clear();
424   DefaultValue<const MyNonDefaultConstructible>::Clear();
425 
426   EXPECT_FALSE(DefaultValue<int>::IsSet());
427   EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
428 
429   EXPECT_TRUE(DefaultValue<int>::Exists());
430   EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
431 }
432 
433 // Tests that DefaultValue<T>::Get() returns the
434 // BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
435 // false.
436 TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
437   EXPECT_FALSE(DefaultValue<int>::IsSet());
438   EXPECT_TRUE(DefaultValue<int>::Exists());
439   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
440   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
441 
442   EXPECT_EQ(0, DefaultValue<int>::Get());
443 
444   EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
445                             "");
446 }
447 
448 TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
449   EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
450   EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr);
451   DefaultValue<std::unique_ptr<int>>::SetFactory(
452       [] { return std::make_unique<int>(42); });
453   EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
454   std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
455   EXPECT_EQ(42, *i);
456 }
457 
458 // Tests that DefaultValue<void>::Get() returns void.
459 TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); }
460 
461 // Tests using DefaultValue with a reference type.
462 
463 // Tests that DefaultValue<T&>::IsSet() is false initially.
464 TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
465   EXPECT_FALSE(DefaultValue<int&>::IsSet());
466   EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
467   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
468 }
469 
470 // Tests that DefaultValue<T&>::Exists is false initially.
471 TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
472   EXPECT_FALSE(DefaultValue<int&>::Exists());
473   EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
474   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
475 }
476 
477 // Tests that DefaultValue<T&> can be set and then unset.
478 TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
479   int n = 1;
480   DefaultValue<const int&>::Set(n);
481   MyNonDefaultConstructible x(42);
482   DefaultValue<MyNonDefaultConstructible&>::Set(x);
483 
484   EXPECT_TRUE(DefaultValue<const int&>::Exists());
485   EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
486 
487   EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
488   EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
489 
490   DefaultValue<const int&>::Clear();
491   DefaultValue<MyNonDefaultConstructible&>::Clear();
492 
493   EXPECT_FALSE(DefaultValue<const int&>::Exists());
494   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
495 
496   EXPECT_FALSE(DefaultValue<const int&>::IsSet());
497   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
498 }
499 
500 // Tests that DefaultValue<T&>::Get() returns the
501 // BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
502 // false.
503 TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
504   EXPECT_FALSE(DefaultValue<int&>::IsSet());
505   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
506 
507   EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, "");
508   EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
509                             "");
510 }
511 
512 // Tests that ActionInterface can be implemented by defining the
513 // Perform method.
514 
515 typedef int MyGlobalFunction(bool, int);
516 
517 class MyActionImpl : public ActionInterface<MyGlobalFunction> {
518  public:
519   int Perform(const std::tuple<bool, int>& args) override {
520     return std::get<0>(args) ? std::get<1>(args) : 0;
521   }
522 };
523 
524 TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
525   MyActionImpl my_action_impl;
526   (void)my_action_impl;
527 }
528 
529 TEST(ActionInterfaceTest, MakeAction) {
530   Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
531 
532   // When exercising the Perform() method of Action<F>, we must pass
533   // it a tuple whose size and type are compatible with F's argument
534   // types.  For example, if F is int(), then Perform() takes a
535   // 0-tuple; if F is void(bool, int), then Perform() takes a
536   // std::tuple<bool, int>, and so on.
537   EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
538 }
539 
540 // Tests that Action<F> can be constructed from a pointer to
541 // ActionInterface<F>.
542 TEST(ActionTest, CanBeConstructedFromActionInterface) {
543   Action<MyGlobalFunction> action(new MyActionImpl);
544 }
545 
546 // Tests that Action<F> delegates actual work to ActionInterface<F>.
547 TEST(ActionTest, DelegatesWorkToActionInterface) {
548   const Action<MyGlobalFunction> action(new MyActionImpl);
549 
550   EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
551   EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1)));
552 }
553 
554 // Tests that Action<F> can be copied.
555 TEST(ActionTest, IsCopyable) {
556   Action<MyGlobalFunction> a1(new MyActionImpl);
557   Action<MyGlobalFunction> a2(a1);  // Tests the copy constructor.
558 
559   // a1 should continue to work after being copied from.
560   EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
561   EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
562 
563   // a2 should work like the action it was copied from.
564   EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
565   EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
566 
567   a2 = a1;  // Tests the assignment operator.
568 
569   // a1 should continue to work after being copied from.
570   EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
571   EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
572 
573   // a2 should work like the action it was copied from.
574   EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
575   EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
576 }
577 
578 // Tests that an Action<From> object can be converted to a
579 // compatible Action<To> object.
580 
581 class IsNotZero : public ActionInterface<bool(int)> {  // NOLINT
582  public:
583   bool Perform(const std::tuple<int>& arg) override {
584     return std::get<0>(arg) != 0;
585   }
586 };
587 
588 TEST(ActionTest, CanBeConvertedToOtherActionType) {
589   const Action<bool(int)> a1(new IsNotZero);           // NOLINT
590   const Action<int(char)> a2 = Action<int(char)>(a1);  // NOLINT
591   EXPECT_EQ(1, a2.Perform(std::make_tuple('a')));
592   EXPECT_EQ(0, a2.Perform(std::make_tuple('\0')));
593 }
594 
595 // The following two classes are for testing MakePolymorphicAction().
596 
597 // Implements a polymorphic action that returns the second of the
598 // arguments it receives.
599 class ReturnSecondArgumentAction {
600  public:
601   // We want to verify that MakePolymorphicAction() can work with a
602   // polymorphic action whose Perform() method template is either
603   // const or not.  This lets us verify the non-const case.
604   template <typename Result, typename ArgumentTuple>
605   Result Perform(const ArgumentTuple& args) {
606     return std::get<1>(args);
607   }
608 };
609 
610 // Implements a polymorphic action that can be used in a nullary
611 // function to return 0.
612 class ReturnZeroFromNullaryFunctionAction {
613  public:
614   // For testing that MakePolymorphicAction() works when the
615   // implementation class' Perform() method template takes only one
616   // template parameter.
617   //
618   // We want to verify that MakePolymorphicAction() can work with a
619   // polymorphic action whose Perform() method template is either
620   // const or not.  This lets us verify the const case.
621   template <typename Result>
622   Result Perform(const std::tuple<>&) const {
623     return 0;
624   }
625 };
626 
627 // These functions verify that MakePolymorphicAction() returns a
628 // PolymorphicAction<T> where T is the argument's type.
629 
630 PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
631   return MakePolymorphicAction(ReturnSecondArgumentAction());
632 }
633 
634 PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
635 ReturnZeroFromNullaryFunction() {
636   return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
637 }
638 
639 // Tests that MakePolymorphicAction() turns a polymorphic action
640 // implementation class into a polymorphic action.
641 TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
642   Action<int(bool, int, double)> a1 = ReturnSecondArgument();  // NOLINT
643   EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0)));
644 }
645 
646 // Tests that MakePolymorphicAction() works when the implementation
647 // class' Perform() method template has only one template parameter.
648 TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
649   Action<int()> a1 = ReturnZeroFromNullaryFunction();
650   EXPECT_EQ(0, a1.Perform(std::make_tuple()));
651 
652   Action<void*()> a2 = ReturnZeroFromNullaryFunction();
653   EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr);
654 }
655 
656 // Tests that Return() works as an action for void-returning
657 // functions.
658 TEST(ReturnTest, WorksForVoid) {
659   const Action<void(int)> ret = Return();  // NOLINT
660   return ret.Perform(std::make_tuple(1));
661 }
662 
663 // Tests that Return(v) returns v.
664 TEST(ReturnTest, ReturnsGivenValue) {
665   Action<int()> ret = Return(1);  // NOLINT
666   EXPECT_EQ(1, ret.Perform(std::make_tuple()));
667 
668   ret = Return(-5);
669   EXPECT_EQ(-5, ret.Perform(std::make_tuple()));
670 }
671 
672 // Tests that Return("string literal") works.
673 TEST(ReturnTest, AcceptsStringLiteral) {
674   Action<const char*()> a1 = Return("Hello");
675   EXPECT_STREQ("Hello", a1.Perform(std::make_tuple()));
676 
677   Action<std::string()> a2 = Return("world");
678   EXPECT_EQ("world", a2.Perform(std::make_tuple()));
679 }
680 
681 // Return(x) should work fine when the mock function's return type is a
682 // reference-like wrapper for decltype(x), as when x is a std::string and the
683 // mock function returns std::string_view.
684 TEST(ReturnTest, SupportsReferenceLikeReturnType) {
685   // A reference wrapper for std::vector<int>, implicitly convertible from it.
686   struct Result {
687     const std::vector<int>* v;
688     Result(const std::vector<int>& vec) : v(&vec) {}  // NOLINT
689   };
690 
691   // Set up an action for a mock function that returns the reference wrapper
692   // type, initializing it with an actual vector.
693   //
694   // The returned wrapper should be initialized with a copy of that vector
695   // that's embedded within the action itself (which should stay alive as long
696   // as the mock object is alive), rather than e.g. a reference to the temporary
697   // we feed to Return. This should work fine both for WillOnce and
698   // WillRepeatedly.
699   MockFunction<Result()> mock;
700   EXPECT_CALL(mock, Call)
701       .WillOnce(Return(std::vector<int>{17, 19, 23}))
702       .WillRepeatedly(Return(std::vector<int>{29, 31, 37}));
703 
704   EXPECT_THAT(mock.AsStdFunction()(),
705               Field(&Result::v, Pointee(ElementsAre(17, 19, 23))));
706 
707   EXPECT_THAT(mock.AsStdFunction()(),
708               Field(&Result::v, Pointee(ElementsAre(29, 31, 37))));
709 }
710 
711 TEST(ReturnTest, PrefersConversionOperator) {
712   // Define types In and Out such that:
713   //
714   //  *  In is implicitly convertible to Out.
715   //  *  Out also has an explicit constructor from In.
716   //
717   struct In;
718   struct Out {
719     int x;
720 
721     explicit Out(const int val) : x(val) {}
722     explicit Out(const In&) : x(0) {}
723   };
724 
725   struct In {
726     operator Out() const { return Out{19}; }  // NOLINT
727   };
728 
729   // Assumption check: the C++ language rules are such that a function that
730   // returns Out which uses In a return statement will use the implicit
731   // conversion path rather than the explicit constructor.
732   EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19));
733 
734   // Return should work the same way: if the mock function's return type is Out
735   // and we feed Return an In value, then the Out should be created through the
736   // implicit conversion path rather than the explicit constructor.
737   MockFunction<Out()> mock;
738   EXPECT_CALL(mock, Call).WillOnce(Return(In()));
739   EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19));
740 }
741 
742 // It should be possible to use Return(R) with a mock function result type U
743 // that is convertible from const R& but *not* R (such as
744 // std::reference_wrapper). This should work for both WillOnce and
745 // WillRepeatedly.
746 TEST(ReturnTest, ConversionRequiresConstLvalueReference) {
747   using R = int;
748   using U = std::reference_wrapper<const int>;
749 
750   static_assert(std::is_convertible<const R&, U>::value, "");
751   static_assert(!std::is_convertible<R, U>::value, "");
752 
753   MockFunction<U()> mock;
754   EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19));
755 
756   EXPECT_EQ(17, mock.AsStdFunction()());
757   EXPECT_EQ(19, mock.AsStdFunction()());
758 }
759 
760 // Return(x) should not be usable with a mock function result type that's
761 // implicitly convertible from decltype(x) but requires a non-const lvalue
762 // reference to the input. It doesn't make sense for the conversion operator to
763 // modify the input.
764 TEST(ReturnTest, ConversionRequiresMutableLvalueReference) {
765   // Set up a type that is implicitly convertible from std::string&, but not
766   // std::string&& or `const std::string&`.
767   //
768   // Avoid asserting about conversion from std::string on MSVC, which seems to
769   // implement std::is_convertible incorrectly in this case.
770   struct S {
771     S(std::string&) {}  // NOLINT
772   };
773 
774   static_assert(std::is_convertible<std::string&, S>::value, "");
775 #ifndef _MSC_VER
776   static_assert(!std::is_convertible<std::string&&, S>::value, "");
777 #endif
778   static_assert(!std::is_convertible<const std::string&, S>::value, "");
779 
780   // It shouldn't be possible to use the result of Return(std::string) in a
781   // context where an S is needed.
782   //
783   // Here too we disable the assertion for MSVC, since its incorrect
784   // implementation of is_convertible causes our SFINAE to be wrong.
785   using RA = decltype(Return(std::string()));
786 
787   static_assert(!std::is_convertible<RA, Action<S()>>::value, "");
788 #ifndef _MSC_VER
789   static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, "");
790 #endif
791 }
792 
793 TEST(ReturnTest, MoveOnlyResultType) {
794   // Return should support move-only result types when used with WillOnce.
795   {
796     MockFunction<std::unique_ptr<int>()> mock;
797     EXPECT_CALL(mock, Call)
798         // NOLINTNEXTLINE
799         .WillOnce(Return(std::unique_ptr<int>(new int(17))));
800 
801     EXPECT_THAT(mock.AsStdFunction()(), Pointee(17));
802   }
803 
804   // The result of Return should not be convertible to Action (so it can't be
805   // used with WillRepeatedly).
806   static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())),
807                                      Action<std::unique_ptr<int>()>>::value,
808                 "");
809 }
810 
811 // Tests that Return(v) is covariant.
812 
813 struct Base {
814   bool operator==(const Base&) { return true; }
815 };
816 
817 struct Derived : public Base {
818   bool operator==(const Derived&) { return true; }
819 };
820 
821 TEST(ReturnTest, IsCovariant) {
822   Base base;
823   Derived derived;
824   Action<Base*()> ret = Return(&base);
825   EXPECT_EQ(&base, ret.Perform(std::make_tuple()));
826 
827   ret = Return(&derived);
828   EXPECT_EQ(&derived, ret.Perform(std::make_tuple()));
829 }
830 
831 // Tests that the type of the value passed into Return is converted into T
832 // when the action is cast to Action<T(...)> rather than when the action is
833 // performed. See comments on testing::internal::ReturnAction in
834 // gmock-actions.h for more information.
835 class FromType {
836  public:
837   explicit FromType(bool* is_converted) : converted_(is_converted) {}
838   bool* converted() const { return converted_; }
839 
840  private:
841   bool* const converted_;
842 };
843 
844 class ToType {
845  public:
846   // Must allow implicit conversion due to use in ImplicitCast_<T>.
847   ToType(const FromType& x) { *x.converted() = true; }  // NOLINT
848 };
849 
850 TEST(ReturnTest, ConvertsArgumentWhenConverted) {
851   bool converted = false;
852   FromType x(&converted);
853   Action<ToType()> action(Return(x));
854   EXPECT_TRUE(converted) << "Return must convert its argument in its own "
855                          << "conversion operator.";
856   converted = false;
857   action.Perform(std::tuple<>());
858   EXPECT_FALSE(converted) << "Action must NOT convert its argument "
859                           << "when performed.";
860 }
861 
862 // Tests that ReturnNull() returns NULL in a pointer-returning function.
863 TEST(ReturnNullTest, WorksInPointerReturningFunction) {
864   const Action<int*()> a1 = ReturnNull();
865   EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
866 
867   const Action<const char*(bool)> a2 = ReturnNull();  // NOLINT
868   EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr);
869 }
870 
871 // Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
872 // functions.
873 TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
874   const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
875   EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
876 
877   const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
878   EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr);
879 }
880 
881 // Tests that ReturnRef(v) works for reference types.
882 TEST(ReturnRefTest, WorksForReference) {
883   const int n = 0;
884   const Action<const int&(bool)> ret = ReturnRef(n);  // NOLINT
885 
886   EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true)));
887 }
888 
889 // Tests that ReturnRef(v) is covariant.
890 TEST(ReturnRefTest, IsCovariant) {
891   Base base;
892   Derived derived;
893   Action<Base&()> a = ReturnRef(base);
894   EXPECT_EQ(&base, &a.Perform(std::make_tuple()));
895 
896   a = ReturnRef(derived);
897   EXPECT_EQ(&derived, &a.Perform(std::make_tuple()));
898 }
899 
900 template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))>
901 bool CanCallReturnRef(T&&) {
902   return true;
903 }
904 bool CanCallReturnRef(Unused) { return false; }
905 
906 // Tests that ReturnRef(v) is working with non-temporaries (T&)
907 TEST(ReturnRefTest, WorksForNonTemporary) {
908   int scalar_value = 123;
909   EXPECT_TRUE(CanCallReturnRef(scalar_value));
910 
911   std::string non_scalar_value("ABC");
912   EXPECT_TRUE(CanCallReturnRef(non_scalar_value));
913 
914   const int const_scalar_value{321};
915   EXPECT_TRUE(CanCallReturnRef(const_scalar_value));
916 
917   const std::string const_non_scalar_value("CBA");
918   EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value));
919 }
920 
921 // Tests that ReturnRef(v) is not working with temporaries (T&&)
922 TEST(ReturnRefTest, DoesNotWorkForTemporary) {
923   auto scalar_value = []() -> int { return 123; };
924   EXPECT_FALSE(CanCallReturnRef(scalar_value()));
925 
926   auto non_scalar_value = []() -> std::string { return "ABC"; };
927   EXPECT_FALSE(CanCallReturnRef(non_scalar_value()));
928 
929   // cannot use here callable returning "const scalar type",
930   // because such const for scalar return type is ignored
931   EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321)));
932 
933   auto const_non_scalar_value = []() -> const std::string { return "CBA"; };
934   EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value()));
935 }
936 
937 // Tests that ReturnRefOfCopy(v) works for reference types.
938 TEST(ReturnRefOfCopyTest, WorksForReference) {
939   int n = 42;
940   const Action<const int&()> ret = ReturnRefOfCopy(n);
941 
942   EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
943   EXPECT_EQ(42, ret.Perform(std::make_tuple()));
944 
945   n = 43;
946   EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
947   EXPECT_EQ(42, ret.Perform(std::make_tuple()));
948 }
949 
950 // Tests that ReturnRefOfCopy(v) is covariant.
951 TEST(ReturnRefOfCopyTest, IsCovariant) {
952   Base base;
953   Derived derived;
954   Action<Base&()> a = ReturnRefOfCopy(base);
955   EXPECT_NE(&base, &a.Perform(std::make_tuple()));
956 
957   a = ReturnRefOfCopy(derived);
958   EXPECT_NE(&derived, &a.Perform(std::make_tuple()));
959 }
960 
961 // Tests that ReturnRoundRobin(v) works with initializer lists
962 TEST(ReturnRoundRobinTest, WorksForInitList) {
963   Action<int()> ret = ReturnRoundRobin({1, 2, 3});
964 
965   EXPECT_EQ(1, ret.Perform(std::make_tuple()));
966   EXPECT_EQ(2, ret.Perform(std::make_tuple()));
967   EXPECT_EQ(3, ret.Perform(std::make_tuple()));
968   EXPECT_EQ(1, ret.Perform(std::make_tuple()));
969   EXPECT_EQ(2, ret.Perform(std::make_tuple()));
970   EXPECT_EQ(3, ret.Perform(std::make_tuple()));
971 }
972 
973 // Tests that ReturnRoundRobin(v) works with vectors
974 TEST(ReturnRoundRobinTest, WorksForVector) {
975   std::vector<double> v = {4.4, 5.5, 6.6};
976   Action<double()> ret = ReturnRoundRobin(v);
977 
978   EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
979   EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
980   EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
981   EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
982   EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
983   EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
984 }
985 
986 // Tests that DoDefault() does the default action for the mock method.
987 
988 class MockClass {
989  public:
990   MockClass() = default;
991 
992   MOCK_METHOD1(IntFunc, int(bool flag));  // NOLINT
993   MOCK_METHOD0(Foo, MyNonDefaultConstructible());
994   MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
995   MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
996   MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
997   MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>));
998   MOCK_METHOD2(TakeUnique,
999                int(const std::unique_ptr<int>&, std::unique_ptr<int>));
1000 
1001  private:
1002   MockClass(const MockClass&) = delete;
1003   MockClass& operator=(const MockClass&) = delete;
1004 };
1005 
1006 // Tests that DoDefault() returns the built-in default value for the
1007 // return type by default.
1008 TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
1009   MockClass mock;
1010   EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1011   EXPECT_EQ(0, mock.IntFunc(true));
1012 }
1013 
1014 // Tests that DoDefault() throws (when exceptions are enabled) or aborts
1015 // the process when there is no built-in default value for the return type.
1016 TEST(DoDefaultDeathTest, DiesForUnknowType) {
1017   MockClass mock;
1018   EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault());
1019 #if GTEST_HAS_EXCEPTIONS
1020   EXPECT_ANY_THROW(mock.Foo());
1021 #else
1022   EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, "");
1023 #endif
1024 }
1025 
1026 // Tests that using DoDefault() inside a composite action leads to a
1027 // run-time error.
1028 
1029 void VoidFunc(bool /* flag */) {}
1030 
1031 TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
1032   MockClass mock;
1033   EXPECT_CALL(mock, IntFunc(_))
1034       .WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault()));
1035 
1036   // Ideally we should verify the error message as well.  Sadly,
1037   // EXPECT_DEATH() can only capture stderr, while Google Mock's
1038   // errors are printed on stdout.  Therefore we have to settle for
1039   // not verifying the message.
1040   EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, "");
1041 }
1042 
1043 // Tests that DoDefault() returns the default value set by
1044 // DefaultValue<T>::Set() when it's not overridden by an ON_CALL().
1045 TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
1046   DefaultValue<int>::Set(1);
1047   MockClass mock;
1048   EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1049   EXPECT_EQ(1, mock.IntFunc(false));
1050   DefaultValue<int>::Clear();
1051 }
1052 
1053 // Tests that DoDefault() does the action specified by ON_CALL().
1054 TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
1055   MockClass mock;
1056   ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2));
1057   EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1058   EXPECT_EQ(2, mock.IntFunc(false));
1059 }
1060 
1061 // Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
1062 TEST(DoDefaultTest, CannotBeUsedInOnCall) {
1063   MockClass mock;
1064   EXPECT_NONFATAL_FAILURE(
1065       {  // NOLINT
1066         ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault());
1067       },
1068       "DoDefault() cannot be used in ON_CALL()");
1069 }
1070 
1071 // Tests that SetArgPointee<N>(v) sets the variable pointed to by
1072 // the N-th (0-based) argument to v.
1073 TEST(SetArgPointeeTest, SetsTheNthPointee) {
1074   typedef void MyFunction(bool, int*, char*);
1075   Action<MyFunction> a = SetArgPointee<1>(2);
1076 
1077   int n = 0;
1078   char ch = '\0';
1079   a.Perform(std::make_tuple(true, &n, &ch));
1080   EXPECT_EQ(2, n);
1081   EXPECT_EQ('\0', ch);
1082 
1083   a = SetArgPointee<2>('a');
1084   n = 0;
1085   ch = '\0';
1086   a.Perform(std::make_tuple(true, &n, &ch));
1087   EXPECT_EQ(0, n);
1088   EXPECT_EQ('a', ch);
1089 }
1090 
1091 // Tests that SetArgPointee<N>() accepts a string literal.
1092 TEST(SetArgPointeeTest, AcceptsStringLiteral) {
1093   typedef void MyFunction(std::string*, const char**);
1094   Action<MyFunction> a = SetArgPointee<0>("hi");
1095   std::string str;
1096   const char* ptr = nullptr;
1097   a.Perform(std::make_tuple(&str, &ptr));
1098   EXPECT_EQ("hi", str);
1099   EXPECT_TRUE(ptr == nullptr);
1100 
1101   a = SetArgPointee<1>("world");
1102   str = "";
1103   a.Perform(std::make_tuple(&str, &ptr));
1104   EXPECT_EQ("", str);
1105   EXPECT_STREQ("world", ptr);
1106 }
1107 
1108 TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
1109   typedef void MyFunction(const wchar_t**);
1110   Action<MyFunction> a = SetArgPointee<0>(L"world");
1111   const wchar_t* ptr = nullptr;
1112   a.Perform(std::make_tuple(&ptr));
1113   EXPECT_STREQ(L"world", ptr);
1114 
1115 #if GTEST_HAS_STD_WSTRING
1116 
1117   typedef void MyStringFunction(std::wstring*);
1118   Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
1119   std::wstring str = L"";
1120   a2.Perform(std::make_tuple(&str));
1121   EXPECT_EQ(L"world", str);
1122 
1123 #endif
1124 }
1125 
1126 // Tests that SetArgPointee<N>() accepts a char pointer.
1127 TEST(SetArgPointeeTest, AcceptsCharPointer) {
1128   typedef void MyFunction(bool, std::string*, const char**);
1129   const char* const hi = "hi";
1130   Action<MyFunction> a = SetArgPointee<1>(hi);
1131   std::string str;
1132   const char* ptr = nullptr;
1133   a.Perform(std::make_tuple(true, &str, &ptr));
1134   EXPECT_EQ("hi", str);
1135   EXPECT_TRUE(ptr == nullptr);
1136 
1137   char world_array[] = "world";
1138   char* const world = world_array;
1139   a = SetArgPointee<2>(world);
1140   str = "";
1141   a.Perform(std::make_tuple(true, &str, &ptr));
1142   EXPECT_EQ("", str);
1143   EXPECT_EQ(world, ptr);
1144 }
1145 
1146 TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
1147   typedef void MyFunction(bool, const wchar_t**);
1148   const wchar_t* const hi = L"hi";
1149   Action<MyFunction> a = SetArgPointee<1>(hi);
1150   const wchar_t* ptr = nullptr;
1151   a.Perform(std::make_tuple(true, &ptr));
1152   EXPECT_EQ(hi, ptr);
1153 
1154 #if GTEST_HAS_STD_WSTRING
1155 
1156   typedef void MyStringFunction(bool, std::wstring*);
1157   wchar_t world_array[] = L"world";
1158   wchar_t* const world = world_array;
1159   Action<MyStringFunction> a2 = SetArgPointee<1>(world);
1160   std::wstring str;
1161   a2.Perform(std::make_tuple(true, &str));
1162   EXPECT_EQ(world_array, str);
1163 #endif
1164 }
1165 
1166 // Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
1167 // the N-th (0-based) argument to v.
1168 TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
1169   typedef void MyFunction(bool, int*, char*);
1170   Action<MyFunction> a = SetArgumentPointee<1>(2);
1171 
1172   int n = 0;
1173   char ch = '\0';
1174   a.Perform(std::make_tuple(true, &n, &ch));
1175   EXPECT_EQ(2, n);
1176   EXPECT_EQ('\0', ch);
1177 
1178   a = SetArgumentPointee<2>('a');
1179   n = 0;
1180   ch = '\0';
1181   a.Perform(std::make_tuple(true, &n, &ch));
1182   EXPECT_EQ(0, n);
1183   EXPECT_EQ('a', ch);
1184 }
1185 
1186 // Sample functions and functors for testing Invoke() and etc.
1187 int Nullary() { return 1; }
1188 
1189 class NullaryFunctor {
1190  public:
1191   int operator()() { return 2; }
1192 };
1193 
1194 bool g_done = false;
1195 void VoidNullary() { g_done = true; }
1196 
1197 class VoidNullaryFunctor {
1198  public:
1199   void operator()() { g_done = true; }
1200 };
1201 
1202 short Short(short n) { return n; }  // NOLINT
1203 char Char(char ch) { return ch; }
1204 
1205 const char* CharPtr(const char* s) { return s; }
1206 
1207 bool Unary(int x) { return x < 0; }
1208 
1209 const char* Binary(const char* input, short n) { return input + n; }  // NOLINT
1210 
1211 void VoidBinary(int, char) { g_done = true; }
1212 
1213 int Ternary(int x, char y, short z) { return x + y + z; }  // NOLINT
1214 
1215 int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
1216 
1217 class Foo {
1218  public:
1219   Foo() : value_(123) {}
1220 
1221   int Nullary() const { return value_; }
1222 
1223  private:
1224   int value_;
1225 };
1226 
1227 // Tests InvokeWithoutArgs(function).
1228 TEST(InvokeWithoutArgsTest, Function) {
1229   // As an action that takes one argument.
1230   Action<int(int)> a = InvokeWithoutArgs(Nullary);  // NOLINT
1231   EXPECT_EQ(1, a.Perform(std::make_tuple(2)));
1232 
1233   // As an action that takes two arguments.
1234   Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary);  // NOLINT
1235   EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5)));
1236 
1237   // As an action that returns void.
1238   Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary);  // NOLINT
1239   g_done = false;
1240   a3.Perform(std::make_tuple(1));
1241   EXPECT_TRUE(g_done);
1242 }
1243 
1244 // Tests InvokeWithoutArgs(functor).
1245 TEST(InvokeWithoutArgsTest, Functor) {
1246   // As an action that takes no argument.
1247   Action<int()> a = InvokeWithoutArgs(NullaryFunctor());  // NOLINT
1248   EXPECT_EQ(2, a.Perform(std::make_tuple()));
1249 
1250   // As an action that takes three arguments.
1251   Action<int(int, double, char)> a2 =  // NOLINT
1252       InvokeWithoutArgs(NullaryFunctor());
1253   EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a')));
1254 
1255   // As an action that returns void.
1256   Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
1257   g_done = false;
1258   a3.Perform(std::make_tuple());
1259   EXPECT_TRUE(g_done);
1260 }
1261 
1262 // Tests InvokeWithoutArgs(obj_ptr, method).
1263 TEST(InvokeWithoutArgsTest, Method) {
1264   Foo foo;
1265   Action<int(bool, char)> a =  // NOLINT
1266       InvokeWithoutArgs(&foo, &Foo::Nullary);
1267   EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a')));
1268 }
1269 
1270 // Tests using IgnoreResult() on a polymorphic action.
1271 TEST(IgnoreResultTest, PolymorphicAction) {
1272   Action<void(int)> a = IgnoreResult(Return(5));  // NOLINT
1273   a.Perform(std::make_tuple(1));
1274 }
1275 
1276 // Tests using IgnoreResult() on a monomorphic action.
1277 
1278 int ReturnOne() {
1279   g_done = true;
1280   return 1;
1281 }
1282 
1283 TEST(IgnoreResultTest, MonomorphicAction) {
1284   g_done = false;
1285   Action<void()> a = IgnoreResult(Invoke(ReturnOne));
1286   a.Perform(std::make_tuple());
1287   EXPECT_TRUE(g_done);
1288 }
1289 
1290 // Tests using IgnoreResult() on an action that returns a class type.
1291 
1292 MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
1293   g_done = true;
1294   return MyNonDefaultConstructible(42);
1295 }
1296 
1297 TEST(IgnoreResultTest, ActionReturningClass) {
1298   g_done = false;
1299   Action<void(int)> a =
1300       IgnoreResult(Invoke(ReturnMyNonDefaultConstructible));  // NOLINT
1301   a.Perform(std::make_tuple(2));
1302   EXPECT_TRUE(g_done);
1303 }
1304 
1305 TEST(AssignTest, Int) {
1306   int x = 0;
1307   Action<void(int)> a = Assign(&x, 5);
1308   a.Perform(std::make_tuple(0));
1309   EXPECT_EQ(5, x);
1310 }
1311 
1312 TEST(AssignTest, String) {
1313   ::std::string x;
1314   Action<void(void)> a = Assign(&x, "Hello, world");
1315   a.Perform(std::make_tuple());
1316   EXPECT_EQ("Hello, world", x);
1317 }
1318 
1319 TEST(AssignTest, CompatibleTypes) {
1320   double x = 0;
1321   Action<void(int)> a = Assign(&x, 5);
1322   a.Perform(std::make_tuple(0));
1323   EXPECT_DOUBLE_EQ(5, x);
1324 }
1325 
1326 // DoAll should support &&-qualified actions when used with WillOnce.
1327 TEST(DoAll, SupportsRefQualifiedActions) {
1328   struct InitialAction {
1329     void operator()(const int arg) && { EXPECT_EQ(17, arg); }
1330   };
1331 
1332   struct FinalAction {
1333     int operator()() && { return 19; }
1334   };
1335 
1336   MockFunction<int(int)> mock;
1337   EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{}));
1338   EXPECT_EQ(19, mock.AsStdFunction()(17));
1339 }
1340 
1341 // DoAll should never provide rvalue references to the initial actions. If the
1342 // mock action itself accepts an rvalue reference or a non-scalar object by
1343 // value then the final action should receive an rvalue reference, but initial
1344 // actions should receive only lvalue references.
1345 TEST(DoAll, ProvidesLvalueReferencesToInitialActions) {
1346   struct Obj {};
1347 
1348   // Mock action accepts by value: the initial action should be fed a const
1349   // lvalue reference, and the final action an rvalue reference.
1350   {
1351     struct InitialAction {
1352       void operator()(Obj&) const { FAIL() << "Unexpected call"; }
1353       void operator()(const Obj&) const {}
1354       void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1355       void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
1356     };
1357 
1358     MockFunction<void(Obj)> mock;
1359     EXPECT_CALL(mock, Call)
1360         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
1361         .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1362 
1363     mock.AsStdFunction()(Obj{});
1364     mock.AsStdFunction()(Obj{});
1365   }
1366 
1367   // Mock action accepts by const lvalue reference: both actions should receive
1368   // a const lvalue reference.
1369   {
1370     struct InitialAction {
1371       void operator()(Obj&) const { FAIL() << "Unexpected call"; }
1372       void operator()(const Obj&) const {}
1373       void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1374       void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
1375     };
1376 
1377     MockFunction<void(const Obj&)> mock;
1378     EXPECT_CALL(mock, Call)
1379         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}))
1380         .WillRepeatedly(
1381             DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}));
1382 
1383     mock.AsStdFunction()(Obj{});
1384     mock.AsStdFunction()(Obj{});
1385   }
1386 
1387   // Mock action accepts by non-const lvalue reference: both actions should get
1388   // a non-const lvalue reference if they want them.
1389   {
1390     struct InitialAction {
1391       void operator()(Obj&) const {}
1392       void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1393     };
1394 
1395     MockFunction<void(Obj&)> mock;
1396     EXPECT_CALL(mock, Call)
1397         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}))
1398         .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
1399 
1400     Obj obj;
1401     mock.AsStdFunction()(obj);
1402     mock.AsStdFunction()(obj);
1403   }
1404 
1405   // Mock action accepts by rvalue reference: the initial actions should receive
1406   // a non-const lvalue reference if it wants it, and the final action an rvalue
1407   // reference.
1408   {
1409     struct InitialAction {
1410       void operator()(Obj&) const {}
1411       void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1412     };
1413 
1414     MockFunction<void(Obj&&)> mock;
1415     EXPECT_CALL(mock, Call)
1416         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
1417         .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1418 
1419     mock.AsStdFunction()(Obj{});
1420     mock.AsStdFunction()(Obj{});
1421   }
1422 
1423   // &&-qualified initial actions should also be allowed with WillOnce.
1424   {
1425     struct InitialAction {
1426       void operator()(Obj&) && {}
1427     };
1428 
1429     MockFunction<void(Obj&)> mock;
1430     EXPECT_CALL(mock, Call)
1431         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
1432 
1433     Obj obj;
1434     mock.AsStdFunction()(obj);
1435   }
1436 
1437   {
1438     struct InitialAction {
1439       void operator()(Obj&) && {}
1440     };
1441 
1442     MockFunction<void(Obj&&)> mock;
1443     EXPECT_CALL(mock, Call)
1444         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1445 
1446     mock.AsStdFunction()(Obj{});
1447   }
1448 }
1449 
1450 // DoAll should support being used with type-erased Action objects, both through
1451 // WillOnce and WillRepeatedly.
1452 TEST(DoAll, SupportsTypeErasedActions) {
1453   // With only type-erased actions.
1454   const Action<void()> initial_action = [] {};
1455   const Action<int()> final_action = [] { return 17; };
1456 
1457   MockFunction<int()> mock;
1458   EXPECT_CALL(mock, Call)
1459       .WillOnce(DoAll(initial_action, initial_action, final_action))
1460       .WillRepeatedly(DoAll(initial_action, initial_action, final_action));
1461 
1462   EXPECT_EQ(17, mock.AsStdFunction()());
1463 
1464   // With &&-qualified and move-only final action.
1465   {
1466     struct FinalAction {
1467       FinalAction() = default;
1468       FinalAction(FinalAction&&) = default;
1469 
1470       int operator()() && { return 17; }
1471     };
1472 
1473     EXPECT_CALL(mock, Call)
1474         .WillOnce(DoAll(initial_action, initial_action, FinalAction{}));
1475 
1476     EXPECT_EQ(17, mock.AsStdFunction()());
1477   }
1478 }
1479 
1480 // Tests using WithArgs and with an action that takes 1 argument.
1481 TEST(WithArgsTest, OneArg) {
1482   Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary));  // NOLINT
1483   EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1)));
1484   EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1)));
1485 }
1486 
1487 // Tests using WithArgs with an action that takes 2 arguments.
1488 TEST(WithArgsTest, TwoArgs) {
1489   Action<const char*(const char* s, double x, short n)> a =  // NOLINT
1490       WithArgs<0, 2>(Invoke(Binary));
1491   const char s[] = "Hello";
1492   EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2))));
1493 }
1494 
1495 struct ConcatAll {
1496   std::string operator()() const { return {}; }
1497   template <typename... I>
1498   std::string operator()(const char* a, I... i) const {
1499     return a + ConcatAll()(i...);
1500   }
1501 };
1502 
1503 // Tests using WithArgs with an action that takes 10 arguments.
1504 TEST(WithArgsTest, TenArgs) {
1505   Action<std::string(const char*, const char*, const char*, const char*)> a =
1506       WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{}));
1507   EXPECT_EQ("0123210123",
1508             a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
1509                                       CharPtr("3"))));
1510 }
1511 
1512 // Tests using WithArgs with an action that is not Invoke().
1513 class SubtractAction : public ActionInterface<int(int, int)> {
1514  public:
1515   int Perform(const std::tuple<int, int>& args) override {
1516     return std::get<0>(args) - std::get<1>(args);
1517   }
1518 };
1519 
1520 TEST(WithArgsTest, NonInvokeAction) {
1521   Action<int(const std::string&, int, int)> a =
1522       WithArgs<2, 1>(MakeAction(new SubtractAction));
1523   std::tuple<std::string, int, int> dummy =
1524       std::make_tuple(std::string("hi"), 2, 10);
1525   EXPECT_EQ(8, a.Perform(dummy));
1526 }
1527 
1528 // Tests using WithArgs to pass all original arguments in the original order.
1529 TEST(WithArgsTest, Identity) {
1530   Action<int(int x, char y, short z)> a =  // NOLINT
1531       WithArgs<0, 1, 2>(Invoke(Ternary));
1532   EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3))));
1533 }
1534 
1535 // Tests using WithArgs with repeated arguments.
1536 TEST(WithArgsTest, RepeatedArguments) {
1537   Action<int(bool, int m, int n)> a =  // NOLINT
1538       WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
1539   EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10)));
1540 }
1541 
1542 // Tests using WithArgs with reversed argument order.
1543 TEST(WithArgsTest, ReversedArgumentOrder) {
1544   Action<const char*(short n, const char* input)> a =  // NOLINT
1545       WithArgs<1, 0>(Invoke(Binary));
1546   const char s[] = "Hello";
1547   EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s))));
1548 }
1549 
1550 // Tests using WithArgs with compatible, but not identical, argument types.
1551 TEST(WithArgsTest, ArgsOfCompatibleTypes) {
1552   Action<long(short x, char y, double z, char c)> a =  // NOLINT
1553       WithArgs<0, 1, 3>(Invoke(Ternary));
1554   EXPECT_EQ(123,
1555             a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3))));
1556 }
1557 
1558 // Tests using WithArgs with an action that returns void.
1559 TEST(WithArgsTest, VoidAction) {
1560   Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
1561   g_done = false;
1562   a.Perform(std::make_tuple(1.5, 'a', 3));
1563   EXPECT_TRUE(g_done);
1564 }
1565 
1566 TEST(WithArgsTest, ReturnReference) {
1567   Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; });
1568   int i = 0;
1569   const int& res = aa.Perform(std::forward_as_tuple(i, nullptr));
1570   EXPECT_EQ(&i, &res);
1571 }
1572 
1573 TEST(WithArgsTest, InnerActionWithConversion) {
1574   Action<Derived*()> inner = [] { return nullptr; };
1575 
1576   MockFunction<Base*(double)> mock;
1577   EXPECT_CALL(mock, Call)
1578       .WillOnce(WithoutArgs(inner))
1579       .WillRepeatedly(WithoutArgs(inner));
1580 
1581   EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
1582   EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
1583 }
1584 
1585 // It should be possible to use an &&-qualified inner action as long as the
1586 // whole shebang is used as an rvalue with WillOnce.
1587 TEST(WithArgsTest, RefQualifiedInnerAction) {
1588   struct SomeAction {
1589     int operator()(const int arg) && {
1590       EXPECT_EQ(17, arg);
1591       return 19;
1592     }
1593   };
1594 
1595   MockFunction<int(int, int)> mock;
1596   EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{}));
1597   EXPECT_EQ(19, mock.AsStdFunction()(0, 17));
1598 }
1599 
1600 #ifndef GTEST_OS_WINDOWS_MOBILE
1601 
1602 class SetErrnoAndReturnTest : public testing::Test {
1603  protected:
1604   void SetUp() override { errno = 0; }
1605   void TearDown() override { errno = 0; }
1606 };
1607 
1608 TEST_F(SetErrnoAndReturnTest, Int) {
1609   Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
1610   EXPECT_EQ(-5, a.Perform(std::make_tuple()));
1611   EXPECT_EQ(ENOTTY, errno);
1612 }
1613 
1614 TEST_F(SetErrnoAndReturnTest, Ptr) {
1615   int x;
1616   Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
1617   EXPECT_EQ(&x, a.Perform(std::make_tuple()));
1618   EXPECT_EQ(ENOTTY, errno);
1619 }
1620 
1621 TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
1622   Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
1623   EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple()));
1624   EXPECT_EQ(EINVAL, errno);
1625 }
1626 
1627 #endif  // !GTEST_OS_WINDOWS_MOBILE
1628 
1629 // Tests ByRef().
1630 
1631 // Tests that the result of ByRef() is copyable.
1632 TEST(ByRefTest, IsCopyable) {
1633   const std::string s1 = "Hi";
1634   const std::string s2 = "Hello";
1635 
1636   auto ref_wrapper = ByRef(s1);
1637   const std::string& r1 = ref_wrapper;
1638   EXPECT_EQ(&s1, &r1);
1639 
1640   // Assigns a new value to ref_wrapper.
1641   ref_wrapper = ByRef(s2);
1642   const std::string& r2 = ref_wrapper;
1643   EXPECT_EQ(&s2, &r2);
1644 
1645   auto ref_wrapper1 = ByRef(s1);
1646   // Copies ref_wrapper1 to ref_wrapper.
1647   ref_wrapper = ref_wrapper1;
1648   const std::string& r3 = ref_wrapper;
1649   EXPECT_EQ(&s1, &r3);
1650 }
1651 
1652 // Tests using ByRef() on a const value.
1653 TEST(ByRefTest, ConstValue) {
1654   const int n = 0;
1655   // int& ref = ByRef(n);  // This shouldn't compile - we have a
1656   // negative compilation test to catch it.
1657   const int& const_ref = ByRef(n);
1658   EXPECT_EQ(&n, &const_ref);
1659 }
1660 
1661 // Tests using ByRef() on a non-const value.
1662 TEST(ByRefTest, NonConstValue) {
1663   int n = 0;
1664 
1665   // ByRef(n) can be used as either an int&,
1666   int& ref = ByRef(n);
1667   EXPECT_EQ(&n, &ref);
1668 
1669   // or a const int&.
1670   const int& const_ref = ByRef(n);
1671   EXPECT_EQ(&n, &const_ref);
1672 }
1673 
1674 // Tests explicitly specifying the type when using ByRef().
1675 TEST(ByRefTest, ExplicitType) {
1676   int n = 0;
1677   const int& r1 = ByRef<const int>(n);
1678   EXPECT_EQ(&n, &r1);
1679 
1680   // ByRef<char>(n);  // This shouldn't compile - we have a negative
1681   // compilation test to catch it.
1682 
1683   Derived d;
1684   Derived& r2 = ByRef<Derived>(d);
1685   EXPECT_EQ(&d, &r2);
1686 
1687   const Derived& r3 = ByRef<const Derived>(d);
1688   EXPECT_EQ(&d, &r3);
1689 
1690   Base& r4 = ByRef<Base>(d);
1691   EXPECT_EQ(&d, &r4);
1692 
1693   const Base& r5 = ByRef<const Base>(d);
1694   EXPECT_EQ(&d, &r5);
1695 
1696   // The following shouldn't compile - we have a negative compilation
1697   // test for it.
1698   //
1699   // Base b;
1700   // ByRef<Derived>(b);
1701 }
1702 
1703 // Tests that Google Mock prints expression ByRef(x) as a reference to x.
1704 TEST(ByRefTest, PrintsCorrectly) {
1705   int n = 42;
1706   ::std::stringstream expected, actual;
1707   testing::internal::UniversalPrinter<const int&>::Print(n, &expected);
1708   testing::internal::UniversalPrint(ByRef(n), &actual);
1709   EXPECT_EQ(expected.str(), actual.str());
1710 }
1711 
1712 struct UnaryConstructorClass {
1713   explicit UnaryConstructorClass(int v) : value(v) {}
1714   int value;
1715 };
1716 
1717 // Tests using ReturnNew() with a unary constructor.
1718 TEST(ReturnNewTest, Unary) {
1719   Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
1720   UnaryConstructorClass* c = a.Perform(std::make_tuple());
1721   EXPECT_EQ(4000, c->value);
1722   delete c;
1723 }
1724 
1725 TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
1726   Action<UnaryConstructorClass*(bool, int)> a =
1727       ReturnNew<UnaryConstructorClass>(4000);
1728   UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5));
1729   EXPECT_EQ(4000, c->value);
1730   delete c;
1731 }
1732 
1733 TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
1734   Action<const UnaryConstructorClass*()> a =
1735       ReturnNew<UnaryConstructorClass>(4000);
1736   const UnaryConstructorClass* c = a.Perform(std::make_tuple());
1737   EXPECT_EQ(4000, c->value);
1738   delete c;
1739 }
1740 
1741 class TenArgConstructorClass {
1742  public:
1743   TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
1744                          int a8, int a9, int a10)
1745       : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
1746   int value_;
1747 };
1748 
1749 // Tests using ReturnNew() with a 10-argument constructor.
1750 TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
1751   Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>(
1752       1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90,
1753       0);
1754   TenArgConstructorClass* c = a.Perform(std::make_tuple());
1755   EXPECT_EQ(1234567890, c->value_);
1756   delete c;
1757 }
1758 
1759 std::unique_ptr<int> UniquePtrSource() { return std::make_unique<int>(19); }
1760 
1761 std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
1762   std::vector<std::unique_ptr<int>> out;
1763   out.emplace_back(new int(7));
1764   return out;
1765 }
1766 
1767 TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
1768   MockClass mock;
1769   std::unique_ptr<int> i(new int(19));
1770   EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
1771   EXPECT_CALL(mock, MakeVectorUnique())
1772       .WillOnce(Return(ByMove(VectorUniquePtrSource())));
1773   Derived* d = new Derived;
1774   EXPECT_CALL(mock, MakeUniqueBase())
1775       .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
1776 
1777   std::unique_ptr<int> result1 = mock.MakeUnique();
1778   EXPECT_EQ(19, *result1);
1779 
1780   std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1781   EXPECT_EQ(1u, vresult.size());
1782   EXPECT_NE(nullptr, vresult[0]);
1783   EXPECT_EQ(7, *vresult[0]);
1784 
1785   std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
1786   EXPECT_EQ(d, result2.get());
1787 }
1788 
1789 TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
1790   testing::MockFunction<void()> mock_function;
1791   MockClass mock;
1792   std::unique_ptr<int> i(new int(19));
1793   EXPECT_CALL(mock_function, Call());
1794   EXPECT_CALL(mock, MakeUnique())
1795       .WillOnce(DoAll(InvokeWithoutArgs(&mock_function,
1796                                         &testing::MockFunction<void()>::Call),
1797                       Return(ByMove(std::move(i)))));
1798 
1799   std::unique_ptr<int> result1 = mock.MakeUnique();
1800   EXPECT_EQ(19, *result1);
1801 }
1802 
1803 TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
1804   MockClass mock;
1805 
1806   // Check default value
1807   DefaultValue<std::unique_ptr<int>>::SetFactory(
1808       [] { return std::make_unique<int>(42); });
1809   EXPECT_EQ(42, *mock.MakeUnique());
1810 
1811   EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
1812   EXPECT_CALL(mock, MakeVectorUnique())
1813       .WillRepeatedly(Invoke(VectorUniquePtrSource));
1814   std::unique_ptr<int> result1 = mock.MakeUnique();
1815   EXPECT_EQ(19, *result1);
1816   std::unique_ptr<int> result2 = mock.MakeUnique();
1817   EXPECT_EQ(19, *result2);
1818   EXPECT_NE(result1, result2);
1819 
1820   std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1821   EXPECT_EQ(1u, vresult.size());
1822   EXPECT_NE(nullptr, vresult[0]);
1823   EXPECT_EQ(7, *vresult[0]);
1824 }
1825 
1826 TEST(MockMethodTest, CanTakeMoveOnlyValue) {
1827   MockClass mock;
1828   auto make = [](int i) { return std::make_unique<int>(i); };
1829 
1830   EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) {
1831     return *i;
1832   });
1833   // DoAll() does not compile, since it would move from its arguments twice.
1834   // EXPECT_CALL(mock, TakeUnique(_, _))
1835   //     .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}),
1836   //     Return(1)));
1837   EXPECT_CALL(mock, TakeUnique(testing::Pointee(7)))
1838       .WillOnce(Return(-7))
1839       .RetiresOnSaturation();
1840   EXPECT_CALL(mock, TakeUnique(testing::IsNull()))
1841       .WillOnce(Return(-1))
1842       .RetiresOnSaturation();
1843 
1844   EXPECT_EQ(5, mock.TakeUnique(make(5)));
1845   EXPECT_EQ(-7, mock.TakeUnique(make(7)));
1846   EXPECT_EQ(7, mock.TakeUnique(make(7)));
1847   EXPECT_EQ(7, mock.TakeUnique(make(7)));
1848   EXPECT_EQ(-1, mock.TakeUnique({}));
1849 
1850   // Some arguments are moved, some passed by reference.
1851   auto lvalue = make(6);
1852   EXPECT_CALL(mock, TakeUnique(_, _))
1853       .WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) {
1854         return *i * *j;
1855       });
1856   EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7)));
1857 
1858   // The unique_ptr can be saved by the action.
1859   std::unique_ptr<int> saved;
1860   EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) {
1861     saved = std::move(i);
1862     return 0;
1863   });
1864   EXPECT_EQ(0, mock.TakeUnique(make(42)));
1865   EXPECT_EQ(42, *saved);
1866 }
1867 
1868 // It should be possible to use callables with an &&-qualified call operator
1869 // with WillOnce, since they will be called only once. This allows actions to
1870 // contain and manipulate move-only types.
1871 TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) {
1872   struct Return17 {
1873     int operator()() && { return 17; }
1874   };
1875 
1876   // Action is directly compatible with mocked function type.
1877   {
1878     MockFunction<int()> mock;
1879     EXPECT_CALL(mock, Call).WillOnce(Return17());
1880 
1881     EXPECT_EQ(17, mock.AsStdFunction()());
1882   }
1883 
1884   // Action doesn't want mocked function arguments.
1885   {
1886     MockFunction<int(int)> mock;
1887     EXPECT_CALL(mock, Call).WillOnce(Return17());
1888 
1889     EXPECT_EQ(17, mock.AsStdFunction()(0));
1890   }
1891 }
1892 
1893 // Edge case: if an action has both a const-qualified and an &&-qualified call
1894 // operator, there should be no "ambiguous call" errors. The &&-qualified
1895 // operator should be used by WillOnce (since it doesn't need to retain the
1896 // action beyond one call), and the const-qualified one by WillRepeatedly.
1897 TEST(MockMethodTest, ActionHasMultipleCallOperators) {
1898   struct ReturnInt {
1899     int operator()() && { return 17; }
1900     int operator()() const& { return 19; }
1901   };
1902 
1903   // Directly compatible with mocked function type.
1904   {
1905     MockFunction<int()> mock;
1906     EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1907 
1908     EXPECT_EQ(17, mock.AsStdFunction()());
1909     EXPECT_EQ(19, mock.AsStdFunction()());
1910     EXPECT_EQ(19, mock.AsStdFunction()());
1911   }
1912 
1913   // Ignores function arguments.
1914   {
1915     MockFunction<int(int)> mock;
1916     EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1917 
1918     EXPECT_EQ(17, mock.AsStdFunction()(0));
1919     EXPECT_EQ(19, mock.AsStdFunction()(0));
1920     EXPECT_EQ(19, mock.AsStdFunction()(0));
1921   }
1922 }
1923 
1924 // WillOnce should have no problem coping with a move-only action, whether it is
1925 // &&-qualified or not.
1926 TEST(MockMethodTest, MoveOnlyAction) {
1927   // &&-qualified
1928   {
1929     struct Return17 {
1930       Return17() = default;
1931       Return17(Return17&&) = default;
1932 
1933       Return17(const Return17&) = delete;
1934       Return17 operator=(const Return17&) = delete;
1935 
1936       int operator()() && { return 17; }
1937     };
1938 
1939     MockFunction<int()> mock;
1940     EXPECT_CALL(mock, Call).WillOnce(Return17());
1941     EXPECT_EQ(17, mock.AsStdFunction()());
1942   }
1943 
1944   // Not &&-qualified
1945   {
1946     struct Return17 {
1947       Return17() = default;
1948       Return17(Return17&&) = default;
1949 
1950       Return17(const Return17&) = delete;
1951       Return17 operator=(const Return17&) = delete;
1952 
1953       int operator()() const { return 17; }
1954     };
1955 
1956     MockFunction<int()> mock;
1957     EXPECT_CALL(mock, Call).WillOnce(Return17());
1958     EXPECT_EQ(17, mock.AsStdFunction()());
1959   }
1960 }
1961 
1962 // It should be possible to use an action that returns a value with a mock
1963 // function that doesn't, both through WillOnce and WillRepeatedly.
1964 TEST(MockMethodTest, ActionReturnsIgnoredValue) {
1965   struct ReturnInt {
1966     int operator()() const { return 0; }
1967   };
1968 
1969   MockFunction<void()> mock;
1970   EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1971 
1972   mock.AsStdFunction()();
1973   mock.AsStdFunction()();
1974 }
1975 
1976 // Despite the fanciness around move-only actions and so on, it should still be
1977 // possible to hand an lvalue reference to a copyable action to WillOnce.
1978 TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) {
1979   MockFunction<int()> mock;
1980 
1981   const auto action = [] { return 17; };
1982   EXPECT_CALL(mock, Call).WillOnce(action);
1983 
1984   EXPECT_EQ(17, mock.AsStdFunction()());
1985 }
1986 
1987 // A callable that doesn't use SFINAE to restrict its call operator's overload
1988 // set, but is still picky about which arguments it will accept.
1989 struct StaticAssertSingleArgument {
1990   template <typename... Args>
1991   static constexpr bool CheckArgs() {
1992     static_assert(sizeof...(Args) == 1, "");
1993     return true;
1994   }
1995 
1996   template <typename... Args, bool = CheckArgs<Args...>()>
1997   int operator()(Args...) const {
1998     return 17;
1999   }
2000 };
2001 
2002 // WillOnce and WillRepeatedly should both work fine with naïve implementations
2003 // of actions that don't use SFINAE to limit the overload set for their call
2004 // operator. If they are compatible with the actual mocked signature, we
2005 // shouldn't probe them with no arguments and trip a static_assert.
2006 TEST(MockMethodTest, ActionSwallowsAllArguments) {
2007   MockFunction<int(int)> mock;
2008   EXPECT_CALL(mock, Call)
2009       .WillOnce(StaticAssertSingleArgument{})
2010       .WillRepeatedly(StaticAssertSingleArgument{});
2011 
2012   EXPECT_EQ(17, mock.AsStdFunction()(0));
2013   EXPECT_EQ(17, mock.AsStdFunction()(0));
2014 }
2015 
2016 struct ActionWithTemplatedConversionOperators {
2017   template <typename... Args>
2018   operator OnceAction<int(Args...)>() && {  // NOLINT
2019     return [] { return 17; };
2020   }
2021 
2022   template <typename... Args>
2023   operator Action<int(Args...)>() const {  // NOLINT
2024     return [] { return 19; };
2025   }
2026 };
2027 
2028 // It should be fine to hand both WillOnce and WillRepeatedly a function that
2029 // defines templated conversion operators to OnceAction and Action. WillOnce
2030 // should prefer the OnceAction version.
2031 TEST(MockMethodTest, ActionHasTemplatedConversionOperators) {
2032   MockFunction<int()> mock;
2033   EXPECT_CALL(mock, Call)
2034       .WillOnce(ActionWithTemplatedConversionOperators{})
2035       .WillRepeatedly(ActionWithTemplatedConversionOperators{});
2036 
2037   EXPECT_EQ(17, mock.AsStdFunction()());
2038   EXPECT_EQ(19, mock.AsStdFunction()());
2039 }
2040 
2041 // Tests for std::function based action.
2042 
2043 int Add(int val, int& ref, int* ptr) {  // NOLINT
2044   int result = val + ref + *ptr;
2045   ref = 42;
2046   *ptr = 43;
2047   return result;
2048 }
2049 
2050 int Deref(std::unique_ptr<int> ptr) { return *ptr; }
2051 
2052 struct Double {
2053   template <typename T>
2054   T operator()(T t) {
2055     return 2 * t;
2056   }
2057 };
2058 
2059 std::unique_ptr<int> UniqueInt(int i) { return std::make_unique<int>(i); }
2060 
2061 TEST(FunctorActionTest, ActionFromFunction) {
2062   Action<int(int, int&, int*)> a = &Add;
2063   int x = 1, y = 2, z = 3;
2064   EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z)));
2065   EXPECT_EQ(42, y);
2066   EXPECT_EQ(43, z);
2067 
2068   Action<int(std::unique_ptr<int>)> a1 = &Deref;
2069   EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7))));
2070 }
2071 
2072 TEST(FunctorActionTest, ActionFromLambda) {
2073   Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; };
2074   EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
2075   EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5)));
2076 
2077   std::unique_ptr<int> saved;
2078   Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) {
2079     saved = std::move(p);
2080   };
2081   a2.Perform(std::make_tuple(UniqueInt(5)));
2082   EXPECT_EQ(5, *saved);
2083 }
2084 
2085 TEST(FunctorActionTest, PolymorphicFunctor) {
2086   Action<int(int)> ai = Double();
2087   EXPECT_EQ(2, ai.Perform(std::make_tuple(1)));
2088   Action<double(double)> ad = Double();  // Double? Double double!
2089   EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5)));
2090 }
2091 
2092 TEST(FunctorActionTest, TypeConversion) {
2093   // Numeric promotions are allowed.
2094   const Action<bool(int)> a1 = [](int i) { return i > 1; };
2095   const Action<int(bool)> a2 = Action<int(bool)>(a1);
2096   EXPECT_EQ(1, a1.Perform(std::make_tuple(42)));
2097   EXPECT_EQ(0, a2.Perform(std::make_tuple(42)));
2098 
2099   // Implicit constructors are allowed.
2100   const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); };
2101   const Action<int(const char*)> s2 = Action<int(const char*)>(s1);
2102   EXPECT_EQ(0, s2.Perform(std::make_tuple("")));
2103   EXPECT_EQ(1, s2.Perform(std::make_tuple("hello")));
2104 
2105   // Also between the lambda and the action itself.
2106   const Action<bool(std::string)> x1 = [](Unused) { return 42; };
2107   const Action<bool(std::string)> x2 = [] { return 42; };
2108   EXPECT_TRUE(x1.Perform(std::make_tuple("hello")));
2109   EXPECT_TRUE(x2.Perform(std::make_tuple("hello")));
2110 
2111   // Ensure decay occurs where required.
2112   std::function<int()> f = [] { return 7; };
2113   Action<int(int)> d = f;
2114   f = nullptr;
2115   EXPECT_EQ(7, d.Perform(std::make_tuple(1)));
2116 
2117   // Ensure creation of an empty action succeeds.
2118   Action<void(int)>(nullptr);
2119 }
2120 
2121 TEST(FunctorActionTest, UnusedArguments) {
2122   // Verify that users can ignore uninteresting arguments.
2123   Action<int(int, double y, double z)> a = [](int i, Unused, Unused) {
2124     return 2 * i;
2125   };
2126   std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44);
2127   EXPECT_EQ(6, a.Perform(dummy));
2128 }
2129 
2130 // Test that basic built-in actions work with move-only arguments.
2131 TEST(MoveOnlyArgumentsTest, ReturningActions) {
2132   Action<int(std::unique_ptr<int>)> a = Return(1);
2133   EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr)));
2134 
2135   a = testing::WithoutArgs([]() { return 7; });
2136   EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr)));
2137 
2138   Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3);
2139   int x = 0;
2140   a2.Perform(std::make_tuple(nullptr, &x));
2141   EXPECT_EQ(x, 3);
2142 }
2143 
2144 ACTION(ReturnArity) { return std::tuple_size<args_type>::value; }
2145 
2146 TEST(ActionMacro, LargeArity) {
2147   EXPECT_EQ(
2148       1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0)));
2149   EXPECT_EQ(
2150       10,
2151       testing::Action<int(int, int, int, int, int, int, int, int, int, int)>(
2152           ReturnArity())
2153           .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)));
2154   EXPECT_EQ(
2155       20,
2156       testing::Action<int(int, int, int, int, int, int, int, int, int, int, int,
2157                           int, int, int, int, int, int, int, int, int)>(
2158           ReturnArity())
2159           .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
2160                                    14, 15, 16, 17, 18, 19)));
2161 }
2162 
2163 }  // namespace
2164 }  // namespace testing
2165 
2166 #if defined(_MSC_VER) && (_MSC_VER == 1900)
2167 GTEST_DISABLE_MSC_WARNINGS_POP_()  // 4800
2168 #endif
2169 GTEST_DISABLE_MSC_WARNINGS_POP_()  // 4100 4503
2170