xref: /freebsd/contrib/googletest/googlemock/include/gmock/gmock-actions.h (revision bab3f1d04a3fc9c01343754daaa36f0d15a8a8ef)
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This file implements some commonly used actions.
34 
35 // GOOGLETEST_CM0002 DO NOT DELETE
36 
37 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
38 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
39 
40 #ifndef _WIN32_WCE
41 # include <errno.h>
42 #endif
43 
44 #include <algorithm>
45 #include <string>
46 
47 #include "gmock/internal/gmock-internal-utils.h"
48 #include "gmock/internal/gmock-port.h"
49 
50 #if GTEST_LANG_CXX11  // Defined by gtest-port.h via gmock-port.h.
51 #include <functional>
52 #include <type_traits>
53 #endif  // GTEST_LANG_CXX11
54 
55 namespace testing {
56 
57 // To implement an action Foo, define:
58 //   1. a class FooAction that implements the ActionInterface interface, and
59 //   2. a factory function that creates an Action object from a
60 //      const FooAction*.
61 //
62 // The two-level delegation design follows that of Matcher, providing
63 // consistency for extension developers.  It also eases ownership
64 // management as Action objects can now be copied like plain values.
65 
66 namespace internal {
67 
68 template <typename F1, typename F2>
69 class ActionAdaptor;
70 
71 // BuiltInDefaultValueGetter<T, true>::Get() returns a
72 // default-constructed T value.  BuiltInDefaultValueGetter<T,
73 // false>::Get() crashes with an error.
74 //
75 // This primary template is used when kDefaultConstructible is true.
76 template <typename T, bool kDefaultConstructible>
77 struct BuiltInDefaultValueGetter {
78   static T Get() { return T(); }
79 };
80 template <typename T>
81 struct BuiltInDefaultValueGetter<T, false> {
82   static T Get() {
83     Assert(false, __FILE__, __LINE__,
84            "Default action undefined for the function return type.");
85     return internal::Invalid<T>();
86     // The above statement will never be reached, but is required in
87     // order for this function to compile.
88   }
89 };
90 
91 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
92 // for type T, which is NULL when T is a raw pointer type, 0 when T is
93 // a numeric type, false when T is bool, or "" when T is string or
94 // std::string.  In addition, in C++11 and above, it turns a
95 // default-constructed T value if T is default constructible.  For any
96 // other type T, the built-in default T value is undefined, and the
97 // function will abort the process.
98 template <typename T>
99 class BuiltInDefaultValue {
100  public:
101 #if GTEST_LANG_CXX11
102   // This function returns true iff type T has a built-in default value.
103   static bool Exists() {
104     return ::std::is_default_constructible<T>::value;
105   }
106 
107   static T Get() {
108     return BuiltInDefaultValueGetter<
109         T, ::std::is_default_constructible<T>::value>::Get();
110   }
111 
112 #else  // GTEST_LANG_CXX11
113   // This function returns true iff type T has a built-in default value.
114   static bool Exists() {
115     return false;
116   }
117 
118   static T Get() {
119     return BuiltInDefaultValueGetter<T, false>::Get();
120   }
121 
122 #endif  // GTEST_LANG_CXX11
123 };
124 
125 // This partial specialization says that we use the same built-in
126 // default value for T and const T.
127 template <typename T>
128 class BuiltInDefaultValue<const T> {
129  public:
130   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
131   static T Get() { return BuiltInDefaultValue<T>::Get(); }
132 };
133 
134 // This partial specialization defines the default values for pointer
135 // types.
136 template <typename T>
137 class BuiltInDefaultValue<T*> {
138  public:
139   static bool Exists() { return true; }
140   static T* Get() { return NULL; }
141 };
142 
143 // The following specializations define the default values for
144 // specific types we care about.
145 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
146   template <> \
147   class BuiltInDefaultValue<type> { \
148    public: \
149     static bool Exists() { return true; } \
150     static type Get() { return value; } \
151   }
152 
153 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
154 #if GTEST_HAS_GLOBAL_STRING
155 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
156 #endif  // GTEST_HAS_GLOBAL_STRING
157 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
158 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
159 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
160 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
161 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
162 
163 // There's no need for a default action for signed wchar_t, as that
164 // type is the same as wchar_t for gcc, and invalid for MSVC.
165 //
166 // There's also no need for a default action for unsigned wchar_t, as
167 // that type is the same as unsigned int for gcc, and invalid for
168 // MSVC.
169 #if GMOCK_WCHAR_T_IS_NATIVE_
170 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
171 #endif
172 
173 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
174 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
177 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
178 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
179 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
180 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
181 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
182 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
183 
184 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
185 
186 }  // namespace internal
187 
188 // When an unexpected function call is encountered, Google Mock will
189 // let it return a default value if the user has specified one for its
190 // return type, or if the return type has a built-in default value;
191 // otherwise Google Mock won't know what value to return and will have
192 // to abort the process.
193 //
194 // The DefaultValue<T> class allows a user to specify the
195 // default value for a type T that is both copyable and publicly
196 // destructible (i.e. anything that can be used as a function return
197 // type).  The usage is:
198 //
199 //   // Sets the default value for type T to be foo.
200 //   DefaultValue<T>::Set(foo);
201 template <typename T>
202 class DefaultValue {
203  public:
204   // Sets the default value for type T; requires T to be
205   // copy-constructable and have a public destructor.
206   static void Set(T x) {
207     delete producer_;
208     producer_ = new FixedValueProducer(x);
209   }
210 
211   // Provides a factory function to be called to generate the default value.
212   // This method can be used even if T is only move-constructible, but it is not
213   // limited to that case.
214   typedef T (*FactoryFunction)();
215   static void SetFactory(FactoryFunction factory) {
216     delete producer_;
217     producer_ = new FactoryValueProducer(factory);
218   }
219 
220   // Unsets the default value for type T.
221   static void Clear() {
222     delete producer_;
223     producer_ = NULL;
224   }
225 
226   // Returns true iff the user has set the default value for type T.
227   static bool IsSet() { return producer_ != NULL; }
228 
229   // Returns true if T has a default return value set by the user or there
230   // exists a built-in default value.
231   static bool Exists() {
232     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
233   }
234 
235   // Returns the default value for type T if the user has set one;
236   // otherwise returns the built-in default value. Requires that Exists()
237   // is true, which ensures that the return value is well-defined.
238   static T Get() {
239     return producer_ == NULL ?
240         internal::BuiltInDefaultValue<T>::Get() : producer_->Produce();
241   }
242 
243  private:
244   class ValueProducer {
245    public:
246     virtual ~ValueProducer() {}
247     virtual T Produce() = 0;
248   };
249 
250   class FixedValueProducer : public ValueProducer {
251    public:
252     explicit FixedValueProducer(T value) : value_(value) {}
253     virtual T Produce() { return value_; }
254 
255    private:
256     const T value_;
257     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
258   };
259 
260   class FactoryValueProducer : public ValueProducer {
261    public:
262     explicit FactoryValueProducer(FactoryFunction factory)
263         : factory_(factory) {}
264     virtual T Produce() { return factory_(); }
265 
266    private:
267     const FactoryFunction factory_;
268     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
269   };
270 
271   static ValueProducer* producer_;
272 };
273 
274 // This partial specialization allows a user to set default values for
275 // reference types.
276 template <typename T>
277 class DefaultValue<T&> {
278  public:
279   // Sets the default value for type T&.
280   static void Set(T& x) {  // NOLINT
281     address_ = &x;
282   }
283 
284   // Unsets the default value for type T&.
285   static void Clear() {
286     address_ = NULL;
287   }
288 
289   // Returns true iff the user has set the default value for type T&.
290   static bool IsSet() { return address_ != NULL; }
291 
292   // Returns true if T has a default return value set by the user or there
293   // exists a built-in default value.
294   static bool Exists() {
295     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
296   }
297 
298   // Returns the default value for type T& if the user has set one;
299   // otherwise returns the built-in default value if there is one;
300   // otherwise aborts the process.
301   static T& Get() {
302     return address_ == NULL ?
303         internal::BuiltInDefaultValue<T&>::Get() : *address_;
304   }
305 
306  private:
307   static T* address_;
308 };
309 
310 // This specialization allows DefaultValue<void>::Get() to
311 // compile.
312 template <>
313 class DefaultValue<void> {
314  public:
315   static bool Exists() { return true; }
316   static void Get() {}
317 };
318 
319 // Points to the user-set default value for type T.
320 template <typename T>
321 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL;
322 
323 // Points to the user-set default value for type T&.
324 template <typename T>
325 T* DefaultValue<T&>::address_ = NULL;
326 
327 // Implement this interface to define an action for function type F.
328 template <typename F>
329 class ActionInterface {
330  public:
331   typedef typename internal::Function<F>::Result Result;
332   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
333 
334   ActionInterface() {}
335   virtual ~ActionInterface() {}
336 
337   // Performs the action.  This method is not const, as in general an
338   // action can have side effects and be stateful.  For example, a
339   // get-the-next-element-from-the-collection action will need to
340   // remember the current element.
341   virtual Result Perform(const ArgumentTuple& args) = 0;
342 
343  private:
344   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
345 };
346 
347 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
348 // object that represents an action to be taken when a mock function
349 // of type F is called.  The implementation of Action<T> is just a
350 // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
351 // Don't inherit from Action!
352 //
353 // You can view an object implementing ActionInterface<F> as a
354 // concrete action (including its current state), and an Action<F>
355 // object as a handle to it.
356 template <typename F>
357 class Action {
358  public:
359   typedef typename internal::Function<F>::Result Result;
360   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
361 
362   // Constructs a null Action.  Needed for storing Action objects in
363   // STL containers.
364   Action() {}
365 
366 #if GTEST_LANG_CXX11
367   // Construct an Action from a specified callable.
368   // This cannot take std::function directly, because then Action would not be
369   // directly constructible from lambda (it would require two conversions).
370   template <typename G,
371             typename = typename ::std::enable_if<
372                 ::std::is_constructible<::std::function<F>, G>::value>::type>
373   Action(G&& fun) : fun_(::std::forward<G>(fun)) {}  // NOLINT
374 #endif
375 
376   // Constructs an Action from its implementation.
377   explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
378 
379   // This constructor allows us to turn an Action<Func> object into an
380   // Action<F>, as long as F's arguments can be implicitly converted
381   // to Func's and Func's return type can be implicitly converted to
382   // F's.
383   template <typename Func>
384   explicit Action(const Action<Func>& action);
385 
386   // Returns true iff this is the DoDefault() action.
387   bool IsDoDefault() const {
388 #if GTEST_LANG_CXX11
389     return impl_ == nullptr && fun_ == nullptr;
390 #else
391     return impl_ == NULL;
392 #endif
393   }
394 
395   // Performs the action.  Note that this method is const even though
396   // the corresponding method in ActionInterface is not.  The reason
397   // is that a const Action<F> means that it cannot be re-bound to
398   // another concrete action, not that the concrete action it binds to
399   // cannot change state.  (Think of the difference between a const
400   // pointer and a pointer to const.)
401   Result Perform(ArgumentTuple args) const {
402     if (IsDoDefault()) {
403       internal::IllegalDoDefault(__FILE__, __LINE__);
404     }
405 #if GTEST_LANG_CXX11
406     if (fun_ != nullptr) {
407       return internal::Apply(fun_, ::std::move(args));
408     }
409 #endif
410     return impl_->Perform(args);
411   }
412 
413  private:
414   template <typename F1, typename F2>
415   friend class internal::ActionAdaptor;
416 
417   template <typename G>
418   friend class Action;
419 
420   // In C++11, Action can be implemented either as a generic functor (through
421   // std::function), or legacy ActionInterface. In C++98, only ActionInterface
422   // is available. The invariants are as follows:
423   // * in C++98, impl_ is null iff this is the default action
424   // * in C++11, at most one of fun_ & impl_ may be nonnull; both are null iff
425   //   this is the default action
426 #if GTEST_LANG_CXX11
427   ::std::function<F> fun_;
428 #endif
429   internal::linked_ptr<ActionInterface<F> > impl_;
430 };
431 
432 // The PolymorphicAction class template makes it easy to implement a
433 // polymorphic action (i.e. an action that can be used in mock
434 // functions of than one type, e.g. Return()).
435 //
436 // To define a polymorphic action, a user first provides a COPYABLE
437 // implementation class that has a Perform() method template:
438 //
439 //   class FooAction {
440 //    public:
441 //     template <typename Result, typename ArgumentTuple>
442 //     Result Perform(const ArgumentTuple& args) const {
443 //       // Processes the arguments and returns a result, using
444 //       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
445 //     }
446 //     ...
447 //   };
448 //
449 // Then the user creates the polymorphic action using
450 // MakePolymorphicAction(object) where object has type FooAction.  See
451 // the definition of Return(void) and SetArgumentPointee<N>(value) for
452 // complete examples.
453 template <typename Impl>
454 class PolymorphicAction {
455  public:
456   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
457 
458   template <typename F>
459   operator Action<F>() const {
460     return Action<F>(new MonomorphicImpl<F>(impl_));
461   }
462 
463  private:
464   template <typename F>
465   class MonomorphicImpl : public ActionInterface<F> {
466    public:
467     typedef typename internal::Function<F>::Result Result;
468     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
469 
470     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
471 
472     virtual Result Perform(const ArgumentTuple& args) {
473       return impl_.template Perform<Result>(args);
474     }
475 
476    private:
477     Impl impl_;
478 
479     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
480   };
481 
482   Impl impl_;
483 
484   GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
485 };
486 
487 // Creates an Action from its implementation and returns it.  The
488 // created Action object owns the implementation.
489 template <typename F>
490 Action<F> MakeAction(ActionInterface<F>* impl) {
491   return Action<F>(impl);
492 }
493 
494 // Creates a polymorphic action from its implementation.  This is
495 // easier to use than the PolymorphicAction<Impl> constructor as it
496 // doesn't require you to explicitly write the template argument, e.g.
497 //
498 //   MakePolymorphicAction(foo);
499 // vs
500 //   PolymorphicAction<TypeOfFoo>(foo);
501 template <typename Impl>
502 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
503   return PolymorphicAction<Impl>(impl);
504 }
505 
506 namespace internal {
507 
508 // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
509 // and F1 are compatible.
510 template <typename F1, typename F2>
511 class ActionAdaptor : public ActionInterface<F1> {
512  public:
513   typedef typename internal::Function<F1>::Result Result;
514   typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
515 
516   explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
517 
518   virtual Result Perform(const ArgumentTuple& args) {
519     return impl_->Perform(args);
520   }
521 
522  private:
523   const internal::linked_ptr<ActionInterface<F2> > impl_;
524 
525   GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
526 };
527 
528 // Helper struct to specialize ReturnAction to execute a move instead of a copy
529 // on return. Useful for move-only types, but could be used on any type.
530 template <typename T>
531 struct ByMoveWrapper {
532   explicit ByMoveWrapper(T value) : payload(internal::move(value)) {}
533   T payload;
534 };
535 
536 // Implements the polymorphic Return(x) action, which can be used in
537 // any function that returns the type of x, regardless of the argument
538 // types.
539 //
540 // Note: The value passed into Return must be converted into
541 // Function<F>::Result when this action is cast to Action<F> rather than
542 // when that action is performed. This is important in scenarios like
543 //
544 // MOCK_METHOD1(Method, T(U));
545 // ...
546 // {
547 //   Foo foo;
548 //   X x(&foo);
549 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
550 // }
551 //
552 // In the example above the variable x holds reference to foo which leaves
553 // scope and gets destroyed.  If copying X just copies a reference to foo,
554 // that copy will be left with a hanging reference.  If conversion to T
555 // makes a copy of foo, the above code is safe. To support that scenario, we
556 // need to make sure that the type conversion happens inside the EXPECT_CALL
557 // statement, and conversion of the result of Return to Action<T(U)> is a
558 // good place for that.
559 //
560 // The real life example of the above scenario happens when an invocation
561 // of gtl::Container() is passed into Return.
562 //
563 template <typename R>
564 class ReturnAction {
565  public:
566   // Constructs a ReturnAction object from the value to be returned.
567   // 'value' is passed by value instead of by const reference in order
568   // to allow Return("string literal") to compile.
569   explicit ReturnAction(R value) : value_(new R(internal::move(value))) {}
570 
571   // This template type conversion operator allows Return(x) to be
572   // used in ANY function that returns x's type.
573   template <typename F>
574   operator Action<F>() const {
575     // Assert statement belongs here because this is the best place to verify
576     // conditions on F. It produces the clearest error messages
577     // in most compilers.
578     // Impl really belongs in this scope as a local class but can't
579     // because MSVC produces duplicate symbols in different translation units
580     // in this case. Until MS fixes that bug we put Impl into the class scope
581     // and put the typedef both here (for use in assert statement) and
582     // in the Impl class. But both definitions must be the same.
583     typedef typename Function<F>::Result Result;
584     GTEST_COMPILE_ASSERT_(
585         !is_reference<Result>::value,
586         use_ReturnRef_instead_of_Return_to_return_a_reference);
587     return Action<F>(new Impl<R, F>(value_));
588   }
589 
590  private:
591   // Implements the Return(x) action for a particular function type F.
592   template <typename R_, typename F>
593   class Impl : public ActionInterface<F> {
594    public:
595     typedef typename Function<F>::Result Result;
596     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
597 
598     // The implicit cast is necessary when Result has more than one
599     // single-argument constructor (e.g. Result is std::vector<int>) and R
600     // has a type conversion operator template.  In that case, value_(value)
601     // won't compile as the compiler doesn't known which constructor of
602     // Result to call.  ImplicitCast_ forces the compiler to convert R to
603     // Result without considering explicit constructors, thus resolving the
604     // ambiguity. value_ is then initialized using its copy constructor.
605     explicit Impl(const linked_ptr<R>& value)
606         : value_before_cast_(*value),
607           value_(ImplicitCast_<Result>(value_before_cast_)) {}
608 
609     virtual Result Perform(const ArgumentTuple&) { return value_; }
610 
611    private:
612     GTEST_COMPILE_ASSERT_(!is_reference<Result>::value,
613                           Result_cannot_be_a_reference_type);
614     // We save the value before casting just in case it is being cast to a
615     // wrapper type.
616     R value_before_cast_;
617     Result value_;
618 
619     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
620   };
621 
622   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
623   // move its contents instead.
624   template <typename R_, typename F>
625   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
626    public:
627     typedef typename Function<F>::Result Result;
628     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
629 
630     explicit Impl(const linked_ptr<R>& wrapper)
631         : performed_(false), wrapper_(wrapper) {}
632 
633     virtual Result Perform(const ArgumentTuple&) {
634       GTEST_CHECK_(!performed_)
635           << "A ByMove() action should only be performed once.";
636       performed_ = true;
637       return internal::move(wrapper_->payload);
638     }
639 
640    private:
641     bool performed_;
642     const linked_ptr<R> wrapper_;
643 
644     GTEST_DISALLOW_ASSIGN_(Impl);
645   };
646 
647   const linked_ptr<R> value_;
648 
649   GTEST_DISALLOW_ASSIGN_(ReturnAction);
650 };
651 
652 // Implements the ReturnNull() action.
653 class ReturnNullAction {
654  public:
655   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
656   // this is enforced by returning nullptr, and in non-C++11 by asserting a
657   // pointer type on compile time.
658   template <typename Result, typename ArgumentTuple>
659   static Result Perform(const ArgumentTuple&) {
660 #if GTEST_LANG_CXX11
661     return nullptr;
662 #else
663     GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
664                           ReturnNull_can_be_used_to_return_a_pointer_only);
665     return NULL;
666 #endif  // GTEST_LANG_CXX11
667   }
668 };
669 
670 // Implements the Return() action.
671 class ReturnVoidAction {
672  public:
673   // Allows Return() to be used in any void-returning function.
674   template <typename Result, typename ArgumentTuple>
675   static void Perform(const ArgumentTuple&) {
676     CompileAssertTypesEqual<void, Result>();
677   }
678 };
679 
680 // Implements the polymorphic ReturnRef(x) action, which can be used
681 // in any function that returns a reference to the type of x,
682 // regardless of the argument types.
683 template <typename T>
684 class ReturnRefAction {
685  public:
686   // Constructs a ReturnRefAction object from the reference to be returned.
687   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
688 
689   // This template type conversion operator allows ReturnRef(x) to be
690   // used in ANY function that returns a reference to x's type.
691   template <typename F>
692   operator Action<F>() const {
693     typedef typename Function<F>::Result Result;
694     // Asserts that the function return type is a reference.  This
695     // catches the user error of using ReturnRef(x) when Return(x)
696     // should be used, and generates some helpful error message.
697     GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
698                           use_Return_instead_of_ReturnRef_to_return_a_value);
699     return Action<F>(new Impl<F>(ref_));
700   }
701 
702  private:
703   // Implements the ReturnRef(x) action for a particular function type F.
704   template <typename F>
705   class Impl : public ActionInterface<F> {
706    public:
707     typedef typename Function<F>::Result Result;
708     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
709 
710     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
711 
712     virtual Result Perform(const ArgumentTuple&) {
713       return ref_;
714     }
715 
716    private:
717     T& ref_;
718 
719     GTEST_DISALLOW_ASSIGN_(Impl);
720   };
721 
722   T& ref_;
723 
724   GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
725 };
726 
727 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
728 // used in any function that returns a reference to the type of x,
729 // regardless of the argument types.
730 template <typename T>
731 class ReturnRefOfCopyAction {
732  public:
733   // Constructs a ReturnRefOfCopyAction object from the reference to
734   // be returned.
735   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
736 
737   // This template type conversion operator allows ReturnRefOfCopy(x) to be
738   // used in ANY function that returns a reference to x's type.
739   template <typename F>
740   operator Action<F>() const {
741     typedef typename Function<F>::Result Result;
742     // Asserts that the function return type is a reference.  This
743     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
744     // should be used, and generates some helpful error message.
745     GTEST_COMPILE_ASSERT_(
746         internal::is_reference<Result>::value,
747         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
748     return Action<F>(new Impl<F>(value_));
749   }
750 
751  private:
752   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
753   template <typename F>
754   class Impl : public ActionInterface<F> {
755    public:
756     typedef typename Function<F>::Result Result;
757     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
758 
759     explicit Impl(const T& value) : value_(value) {}  // NOLINT
760 
761     virtual Result Perform(const ArgumentTuple&) {
762       return value_;
763     }
764 
765    private:
766     T value_;
767 
768     GTEST_DISALLOW_ASSIGN_(Impl);
769   };
770 
771   const T value_;
772 
773   GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
774 };
775 
776 // Implements the polymorphic DoDefault() action.
777 class DoDefaultAction {
778  public:
779   // This template type conversion operator allows DoDefault() to be
780   // used in any function.
781   template <typename F>
782   operator Action<F>() const { return Action<F>(); }  // NOLINT
783 };
784 
785 // Implements the Assign action to set a given pointer referent to a
786 // particular value.
787 template <typename T1, typename T2>
788 class AssignAction {
789  public:
790   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
791 
792   template <typename Result, typename ArgumentTuple>
793   void Perform(const ArgumentTuple& /* args */) const {
794     *ptr_ = value_;
795   }
796 
797  private:
798   T1* const ptr_;
799   const T2 value_;
800 
801   GTEST_DISALLOW_ASSIGN_(AssignAction);
802 };
803 
804 #if !GTEST_OS_WINDOWS_MOBILE
805 
806 // Implements the SetErrnoAndReturn action to simulate return from
807 // various system calls and libc functions.
808 template <typename T>
809 class SetErrnoAndReturnAction {
810  public:
811   SetErrnoAndReturnAction(int errno_value, T result)
812       : errno_(errno_value),
813         result_(result) {}
814   template <typename Result, typename ArgumentTuple>
815   Result Perform(const ArgumentTuple& /* args */) const {
816     errno = errno_;
817     return result_;
818   }
819 
820  private:
821   const int errno_;
822   const T result_;
823 
824   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
825 };
826 
827 #endif  // !GTEST_OS_WINDOWS_MOBILE
828 
829 // Implements the SetArgumentPointee<N>(x) action for any function
830 // whose N-th argument (0-based) is a pointer to x's type.  The
831 // template parameter kIsProto is true iff type A is ProtocolMessage,
832 // proto2::Message, or a sub-class of those.
833 template <size_t N, typename A, bool kIsProto>
834 class SetArgumentPointeeAction {
835  public:
836   // Constructs an action that sets the variable pointed to by the
837   // N-th function argument to 'value'.
838   explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
839 
840   template <typename Result, typename ArgumentTuple>
841   void Perform(const ArgumentTuple& args) const {
842     CompileAssertTypesEqual<void, Result>();
843     *::testing::get<N>(args) = value_;
844   }
845 
846  private:
847   const A value_;
848 
849   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
850 };
851 
852 template <size_t N, typename Proto>
853 class SetArgumentPointeeAction<N, Proto, true> {
854  public:
855   // Constructs an action that sets the variable pointed to by the
856   // N-th function argument to 'proto'.  Both ProtocolMessage and
857   // proto2::Message have the CopyFrom() method, so the same
858   // implementation works for both.
859   explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
860     proto_->CopyFrom(proto);
861   }
862 
863   template <typename Result, typename ArgumentTuple>
864   void Perform(const ArgumentTuple& args) const {
865     CompileAssertTypesEqual<void, Result>();
866     ::testing::get<N>(args)->CopyFrom(*proto_);
867   }
868 
869  private:
870   const internal::linked_ptr<Proto> proto_;
871 
872   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
873 };
874 
875 // Implements the InvokeWithoutArgs(f) action.  The template argument
876 // FunctionImpl is the implementation type of f, which can be either a
877 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
878 // Action<F> as long as f's type is compatible with F (i.e. f can be
879 // assigned to a tr1::function<F>).
880 template <typename FunctionImpl>
881 class InvokeWithoutArgsAction {
882  public:
883   // The c'tor makes a copy of function_impl (either a function
884   // pointer or a functor).
885   explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
886       : function_impl_(function_impl) {}
887 
888   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
889   // compatible with f.
890   template <typename Result, typename ArgumentTuple>
891   Result Perform(const ArgumentTuple&) { return function_impl_(); }
892 
893  private:
894   FunctionImpl function_impl_;
895 
896   GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
897 };
898 
899 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
900 template <class Class, typename MethodPtr>
901 class InvokeMethodWithoutArgsAction {
902  public:
903   InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
904       : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
905 
906   template <typename Result, typename ArgumentTuple>
907   Result Perform(const ArgumentTuple&) const {
908     return (obj_ptr_->*method_ptr_)();
909   }
910 
911  private:
912   Class* const obj_ptr_;
913   const MethodPtr method_ptr_;
914 
915   GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
916 };
917 
918 // Implements the InvokeWithoutArgs(callback) action.
919 template <typename CallbackType>
920 class InvokeCallbackWithoutArgsAction {
921  public:
922   // The c'tor takes ownership of the callback.
923   explicit InvokeCallbackWithoutArgsAction(CallbackType* callback)
924       : callback_(callback) {
925     callback->CheckIsRepeatable();  // Makes sure the callback is permanent.
926   }
927 
928   // This type conversion operator template allows Invoke(callback) to
929   // be used wherever the callback's return type can be implicitly
930   // converted to that of the mock function.
931   template <typename Result, typename ArgumentTuple>
932   Result Perform(const ArgumentTuple&) const { return callback_->Run(); }
933 
934  private:
935   const internal::linked_ptr<CallbackType> callback_;
936 
937   GTEST_DISALLOW_ASSIGN_(InvokeCallbackWithoutArgsAction);
938 };
939 
940 // Implements the IgnoreResult(action) action.
941 template <typename A>
942 class IgnoreResultAction {
943  public:
944   explicit IgnoreResultAction(const A& action) : action_(action) {}
945 
946   template <typename F>
947   operator Action<F>() const {
948     // Assert statement belongs here because this is the best place to verify
949     // conditions on F. It produces the clearest error messages
950     // in most compilers.
951     // Impl really belongs in this scope as a local class but can't
952     // because MSVC produces duplicate symbols in different translation units
953     // in this case. Until MS fixes that bug we put Impl into the class scope
954     // and put the typedef both here (for use in assert statement) and
955     // in the Impl class. But both definitions must be the same.
956     typedef typename internal::Function<F>::Result Result;
957 
958     // Asserts at compile time that F returns void.
959     CompileAssertTypesEqual<void, Result>();
960 
961     return Action<F>(new Impl<F>(action_));
962   }
963 
964  private:
965   template <typename F>
966   class Impl : public ActionInterface<F> {
967    public:
968     typedef typename internal::Function<F>::Result Result;
969     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
970 
971     explicit Impl(const A& action) : action_(action) {}
972 
973     virtual void Perform(const ArgumentTuple& args) {
974       // Performs the action and ignores its result.
975       action_.Perform(args);
976     }
977 
978    private:
979     // Type OriginalFunction is the same as F except that its return
980     // type is IgnoredValue.
981     typedef typename internal::Function<F>::MakeResultIgnoredValue
982         OriginalFunction;
983 
984     const Action<OriginalFunction> action_;
985 
986     GTEST_DISALLOW_ASSIGN_(Impl);
987   };
988 
989   const A action_;
990 
991   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
992 };
993 
994 // A ReferenceWrapper<T> object represents a reference to type T,
995 // which can be either const or not.  It can be explicitly converted
996 // from, and implicitly converted to, a T&.  Unlike a reference,
997 // ReferenceWrapper<T> can be copied and can survive template type
998 // inference.  This is used to support by-reference arguments in the
999 // InvokeArgument<N>(...) action.  The idea was from "reference
1000 // wrappers" in tr1, which we don't have in our source tree yet.
1001 template <typename T>
1002 class ReferenceWrapper {
1003  public:
1004   // Constructs a ReferenceWrapper<T> object from a T&.
1005   explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
1006 
1007   // Allows a ReferenceWrapper<T> object to be implicitly converted to
1008   // a T&.
1009   operator T&() const { return *pointer_; }
1010  private:
1011   T* pointer_;
1012 };
1013 
1014 // Allows the expression ByRef(x) to be printed as a reference to x.
1015 template <typename T>
1016 void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
1017   T& value = ref;
1018   UniversalPrinter<T&>::Print(value, os);
1019 }
1020 
1021 // Does two actions sequentially.  Used for implementing the DoAll(a1,
1022 // a2, ...) action.
1023 template <typename Action1, typename Action2>
1024 class DoBothAction {
1025  public:
1026   DoBothAction(Action1 action1, Action2 action2)
1027       : action1_(action1), action2_(action2) {}
1028 
1029   // This template type conversion operator allows DoAll(a1, ..., a_n)
1030   // to be used in ANY function of compatible type.
1031   template <typename F>
1032   operator Action<F>() const {
1033     return Action<F>(new Impl<F>(action1_, action2_));
1034   }
1035 
1036  private:
1037   // Implements the DoAll(...) action for a particular function type F.
1038   template <typename F>
1039   class Impl : public ActionInterface<F> {
1040    public:
1041     typedef typename Function<F>::Result Result;
1042     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1043     typedef typename Function<F>::MakeResultVoid VoidResult;
1044 
1045     Impl(const Action<VoidResult>& action1, const Action<F>& action2)
1046         : action1_(action1), action2_(action2) {}
1047 
1048     virtual Result Perform(const ArgumentTuple& args) {
1049       action1_.Perform(args);
1050       return action2_.Perform(args);
1051     }
1052 
1053    private:
1054     const Action<VoidResult> action1_;
1055     const Action<F> action2_;
1056 
1057     GTEST_DISALLOW_ASSIGN_(Impl);
1058   };
1059 
1060   Action1 action1_;
1061   Action2 action2_;
1062 
1063   GTEST_DISALLOW_ASSIGN_(DoBothAction);
1064 };
1065 
1066 }  // namespace internal
1067 
1068 // An Unused object can be implicitly constructed from ANY value.
1069 // This is handy when defining actions that ignore some or all of the
1070 // mock function arguments.  For example, given
1071 //
1072 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1073 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
1074 //
1075 // instead of
1076 //
1077 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
1078 //     return sqrt(x*x + y*y);
1079 //   }
1080 //   double DistanceToOriginWithIndex(int index, double x, double y) {
1081 //     return sqrt(x*x + y*y);
1082 //   }
1083 //   ...
1084 //   EXPECT_CALL(mock, Foo("abc", _, _))
1085 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
1086 //   EXPECT_CALL(mock, Bar(5, _, _))
1087 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
1088 //
1089 // you could write
1090 //
1091 //   // We can declare any uninteresting argument as Unused.
1092 //   double DistanceToOrigin(Unused, double x, double y) {
1093 //     return sqrt(x*x + y*y);
1094 //   }
1095 //   ...
1096 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1097 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1098 typedef internal::IgnoredValue Unused;
1099 
1100 // This constructor allows us to turn an Action<From> object into an
1101 // Action<To>, as long as To's arguments can be implicitly converted
1102 // to From's and From's return type cann be implicitly converted to
1103 // To's.
1104 template <typename To>
1105 template <typename From>
1106 Action<To>::Action(const Action<From>& from)
1107     :
1108 #if GTEST_LANG_CXX11
1109       fun_(from.fun_),
1110 #endif
1111       impl_(from.impl_ == NULL ? NULL
1112                                : new internal::ActionAdaptor<To, From>(from)) {
1113 }
1114 
1115 // Creates an action that returns 'value'.  'value' is passed by value
1116 // instead of const reference - otherwise Return("string literal")
1117 // will trigger a compiler error about using array as initializer.
1118 template <typename R>
1119 internal::ReturnAction<R> Return(R value) {
1120   return internal::ReturnAction<R>(internal::move(value));
1121 }
1122 
1123 // Creates an action that returns NULL.
1124 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1125   return MakePolymorphicAction(internal::ReturnNullAction());
1126 }
1127 
1128 // Creates an action that returns from a void function.
1129 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1130   return MakePolymorphicAction(internal::ReturnVoidAction());
1131 }
1132 
1133 // Creates an action that returns the reference to a variable.
1134 template <typename R>
1135 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
1136   return internal::ReturnRefAction<R>(x);
1137 }
1138 
1139 // Creates an action that returns the reference to a copy of the
1140 // argument.  The copy is created when the action is constructed and
1141 // lives as long as the action.
1142 template <typename R>
1143 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1144   return internal::ReturnRefOfCopyAction<R>(x);
1145 }
1146 
1147 // Modifies the parent action (a Return() action) to perform a move of the
1148 // argument instead of a copy.
1149 // Return(ByMove()) actions can only be executed once and will assert this
1150 // invariant.
1151 template <typename R>
1152 internal::ByMoveWrapper<R> ByMove(R x) {
1153   return internal::ByMoveWrapper<R>(internal::move(x));
1154 }
1155 
1156 // Creates an action that does the default action for the give mock function.
1157 inline internal::DoDefaultAction DoDefault() {
1158   return internal::DoDefaultAction();
1159 }
1160 
1161 // Creates an action that sets the variable pointed by the N-th
1162 // (0-based) function argument to 'value'.
1163 template <size_t N, typename T>
1164 PolymorphicAction<
1165   internal::SetArgumentPointeeAction<
1166     N, T, internal::IsAProtocolMessage<T>::value> >
1167 SetArgPointee(const T& x) {
1168   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1169       N, T, internal::IsAProtocolMessage<T>::value>(x));
1170 }
1171 
1172 #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
1173 // This overload allows SetArgPointee() to accept a string literal.
1174 // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
1175 // this overload from the templated version and emit a compile error.
1176 template <size_t N>
1177 PolymorphicAction<
1178   internal::SetArgumentPointeeAction<N, const char*, false> >
1179 SetArgPointee(const char* p) {
1180   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1181       N, const char*, false>(p));
1182 }
1183 
1184 template <size_t N>
1185 PolymorphicAction<
1186   internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
1187 SetArgPointee(const wchar_t* p) {
1188   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1189       N, const wchar_t*, false>(p));
1190 }
1191 #endif
1192 
1193 // The following version is DEPRECATED.
1194 template <size_t N, typename T>
1195 PolymorphicAction<
1196   internal::SetArgumentPointeeAction<
1197     N, T, internal::IsAProtocolMessage<T>::value> >
1198 SetArgumentPointee(const T& x) {
1199   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1200       N, T, internal::IsAProtocolMessage<T>::value>(x));
1201 }
1202 
1203 // Creates an action that sets a pointer referent to a given value.
1204 template <typename T1, typename T2>
1205 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1206   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1207 }
1208 
1209 #if !GTEST_OS_WINDOWS_MOBILE
1210 
1211 // Creates an action that sets errno and returns the appropriate error.
1212 template <typename T>
1213 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1214 SetErrnoAndReturn(int errval, T result) {
1215   return MakePolymorphicAction(
1216       internal::SetErrnoAndReturnAction<T>(errval, result));
1217 }
1218 
1219 #endif  // !GTEST_OS_WINDOWS_MOBILE
1220 
1221 // Various overloads for InvokeWithoutArgs().
1222 
1223 // Creates an action that invokes 'function_impl' with no argument.
1224 template <typename FunctionImpl>
1225 PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
1226 InvokeWithoutArgs(FunctionImpl function_impl) {
1227   return MakePolymorphicAction(
1228       internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
1229 }
1230 
1231 // Creates an action that invokes the given method on the given object
1232 // with no argument.
1233 template <class Class, typename MethodPtr>
1234 PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
1235 InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1236   return MakePolymorphicAction(
1237       internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
1238           obj_ptr, method_ptr));
1239 }
1240 
1241 // Creates an action that performs an_action and throws away its
1242 // result.  In other words, it changes the return type of an_action to
1243 // void.  an_action MUST NOT return void, or the code won't compile.
1244 template <typename A>
1245 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1246   return internal::IgnoreResultAction<A>(an_action);
1247 }
1248 
1249 // Creates a reference wrapper for the given L-value.  If necessary,
1250 // you can explicitly specify the type of the reference.  For example,
1251 // suppose 'derived' is an object of type Derived, ByRef(derived)
1252 // would wrap a Derived&.  If you want to wrap a const Base& instead,
1253 // where Base is a base class of Derived, just write:
1254 //
1255 //   ByRef<const Base>(derived)
1256 template <typename T>
1257 inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
1258   return internal::ReferenceWrapper<T>(l_value);
1259 }
1260 
1261 }  // namespace testing
1262 
1263 #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
1264