1 // Copyright 2007, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 // Google Mock - a framework for writing C++ mock classes. 31 // 32 // The ACTION* family of macros can be used in a namespace scope to 33 // define custom actions easily. The syntax: 34 // 35 // ACTION(name) { statements; } 36 // 37 // will define an action with the given name that executes the 38 // statements. The value returned by the statements will be used as 39 // the return value of the action. Inside the statements, you can 40 // refer to the K-th (0-based) argument of the mock function by 41 // 'argK', and refer to its type by 'argK_type'. For example: 42 // 43 // ACTION(IncrementArg1) { 44 // arg1_type temp = arg1; 45 // return ++(*temp); 46 // } 47 // 48 // allows you to write 49 // 50 // ...WillOnce(IncrementArg1()); 51 // 52 // You can also refer to the entire argument tuple and its type by 53 // 'args' and 'args_type', and refer to the mock function type and its 54 // return type by 'function_type' and 'return_type'. 55 // 56 // Note that you don't need to specify the types of the mock function 57 // arguments. However rest assured that your code is still type-safe: 58 // you'll get a compiler error if *arg1 doesn't support the ++ 59 // operator, or if the type of ++(*arg1) isn't compatible with the 60 // mock function's return type, for example. 61 // 62 // Sometimes you'll want to parameterize the action. For that you can use 63 // another macro: 64 // 65 // ACTION_P(name, param_name) { statements; } 66 // 67 // For example: 68 // 69 // ACTION_P(Add, n) { return arg0 + n; } 70 // 71 // will allow you to write: 72 // 73 // ...WillOnce(Add(5)); 74 // 75 // Note that you don't need to provide the type of the parameter 76 // either. If you need to reference the type of a parameter named 77 // 'foo', you can write 'foo_type'. For example, in the body of 78 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type 79 // of 'n'. 80 // 81 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support 82 // multi-parameter actions. 83 // 84 // For the purpose of typing, you can view 85 // 86 // ACTION_Pk(Foo, p1, ..., pk) { ... } 87 // 88 // as shorthand for 89 // 90 // template <typename p1_type, ..., typename pk_type> 91 // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } 92 // 93 // In particular, you can provide the template type arguments 94 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); 95 // although usually you can rely on the compiler to infer the types 96 // for you automatically. You can assign the result of expression 97 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., 98 // pk_type>. This can be useful when composing actions. 99 // 100 // You can also overload actions with different numbers of parameters: 101 // 102 // ACTION_P(Plus, a) { ... } 103 // ACTION_P2(Plus, a, b) { ... } 104 // 105 // While it's tempting to always use the ACTION* macros when defining 106 // a new action, you should also consider implementing ActionInterface 107 // or using MakePolymorphicAction() instead, especially if you need to 108 // use the action a lot. While these approaches require more work, 109 // they give you more control on the types of the mock function 110 // arguments and the action parameters, which in general leads to 111 // better compiler error messages that pay off in the long run. They 112 // also allow overloading actions based on parameter types (as opposed 113 // to just based on the number of parameters). 114 // 115 // CAVEAT: 116 // 117 // ACTION*() can only be used in a namespace scope as templates cannot be 118 // declared inside of a local class. 119 // Users can, however, define any local functors (e.g. a lambda) that 120 // can be used as actions. 121 // 122 // MORE INFORMATION: 123 // 124 // To learn more about using these macros, please search for 'ACTION' on 125 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md 126 127 // IWYU pragma: private, include "gmock/gmock.h" 128 // IWYU pragma: friend gmock/.* 129 130 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 131 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 132 133 #ifndef _WIN32_WCE 134 #include <errno.h> 135 #endif 136 137 #include <algorithm> 138 #include <functional> 139 #include <memory> 140 #include <string> 141 #include <tuple> 142 #include <type_traits> 143 #include <utility> 144 145 #include "gmock/internal/gmock-internal-utils.h" 146 #include "gmock/internal/gmock-port.h" 147 #include "gmock/internal/gmock-pp.h" 148 149 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100) 150 151 namespace testing { 152 153 // To implement an action Foo, define: 154 // 1. a class FooAction that implements the ActionInterface interface, and 155 // 2. a factory function that creates an Action object from a 156 // const FooAction*. 157 // 158 // The two-level delegation design follows that of Matcher, providing 159 // consistency for extension developers. It also eases ownership 160 // management as Action objects can now be copied like plain values. 161 162 namespace internal { 163 164 // BuiltInDefaultValueGetter<T, true>::Get() returns a 165 // default-constructed T value. BuiltInDefaultValueGetter<T, 166 // false>::Get() crashes with an error. 167 // 168 // This primary template is used when kDefaultConstructible is true. 169 template <typename T, bool kDefaultConstructible> 170 struct BuiltInDefaultValueGetter { 171 static T Get() { return T(); } 172 }; 173 template <typename T> 174 struct BuiltInDefaultValueGetter<T, false> { 175 static T Get() { 176 Assert(false, __FILE__, __LINE__, 177 "Default action undefined for the function return type."); 178 return internal::Invalid<T>(); 179 // The above statement will never be reached, but is required in 180 // order for this function to compile. 181 } 182 }; 183 184 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value 185 // for type T, which is NULL when T is a raw pointer type, 0 when T is 186 // a numeric type, false when T is bool, or "" when T is string or 187 // std::string. In addition, in C++11 and above, it turns a 188 // default-constructed T value if T is default constructible. For any 189 // other type T, the built-in default T value is undefined, and the 190 // function will abort the process. 191 template <typename T> 192 class BuiltInDefaultValue { 193 public: 194 // This function returns true if and only if type T has a built-in default 195 // value. 196 static bool Exists() { return ::std::is_default_constructible<T>::value; } 197 198 static T Get() { 199 return BuiltInDefaultValueGetter< 200 T, ::std::is_default_constructible<T>::value>::Get(); 201 } 202 }; 203 204 // This partial specialization says that we use the same built-in 205 // default value for T and const T. 206 template <typename T> 207 class BuiltInDefaultValue<const T> { 208 public: 209 static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } 210 static T Get() { return BuiltInDefaultValue<T>::Get(); } 211 }; 212 213 // This partial specialization defines the default values for pointer 214 // types. 215 template <typename T> 216 class BuiltInDefaultValue<T*> { 217 public: 218 static bool Exists() { return true; } 219 static T* Get() { return nullptr; } 220 }; 221 222 // The following specializations define the default values for 223 // specific types we care about. 224 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ 225 template <> \ 226 class BuiltInDefaultValue<type> { \ 227 public: \ 228 static bool Exists() { return true; } \ 229 static type Get() { return value; } \ 230 } 231 232 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT 233 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); 234 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); 235 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); 236 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); 237 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); 238 239 // There's no need for a default action for signed wchar_t, as that 240 // type is the same as wchar_t for gcc, and invalid for MSVC. 241 // 242 // There's also no need for a default action for unsigned wchar_t, as 243 // that type is the same as unsigned int for gcc, and invalid for 244 // MSVC. 245 #if GMOCK_WCHAR_T_IS_NATIVE_ 246 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT 247 #endif 248 249 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT 250 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT 251 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); 252 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); 253 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT 254 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT 255 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT 256 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT 257 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); 258 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); 259 260 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ 261 262 // Partial implementations of metaprogramming types from the standard library 263 // not available in C++11. 264 265 template <typename P> 266 struct negation 267 // NOLINTNEXTLINE 268 : std::integral_constant<bool, bool(!P::value)> {}; 269 270 // Base case: with zero predicates the answer is always true. 271 template <typename...> 272 struct conjunction : std::true_type {}; 273 274 // With a single predicate, the answer is that predicate. 275 template <typename P1> 276 struct conjunction<P1> : P1 {}; 277 278 // With multiple predicates the answer is the first predicate if that is false, 279 // and we recurse otherwise. 280 template <typename P1, typename... Ps> 281 struct conjunction<P1, Ps...> 282 : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; 283 284 template <typename...> 285 struct disjunction : std::false_type {}; 286 287 template <typename P1> 288 struct disjunction<P1> : P1 {}; 289 290 template <typename P1, typename... Ps> 291 struct disjunction<P1, Ps...> 292 // NOLINTNEXTLINE 293 : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; 294 295 template <typename...> 296 using void_t = void; 297 298 // Detects whether an expression of type `From` can be implicitly converted to 299 // `To` according to [conv]. In C++17, [conv]/3 defines this as follows: 300 // 301 // An expression e can be implicitly converted to a type T if and only if 302 // the declaration T t=e; is well-formed, for some invented temporary 303 // variable t ([dcl.init]). 304 // 305 // [conv]/2 implies we can use function argument passing to detect whether this 306 // initialization is valid. 307 // 308 // Note that this is distinct from is_convertible, which requires this be valid: 309 // 310 // To test() { 311 // return declval<From>(); 312 // } 313 // 314 // In particular, is_convertible doesn't give the correct answer when `To` and 315 // `From` are the same non-moveable type since `declval<From>` will be an rvalue 316 // reference, defeating the guaranteed copy elision that would otherwise make 317 // this function work. 318 // 319 // REQUIRES: `From` is not cv void. 320 template <typename From, typename To> 321 struct is_implicitly_convertible { 322 private: 323 // A function that accepts a parameter of type T. This can be called with type 324 // U successfully only if U is implicitly convertible to T. 325 template <typename T> 326 static void Accept(T); 327 328 // A function that creates a value of type T. 329 template <typename T> 330 static T Make(); 331 332 // An overload be selected when implicit conversion from T to To is possible. 333 template <typename T, typename = decltype(Accept<To>(Make<T>()))> 334 static std::true_type TestImplicitConversion(int); 335 336 // A fallback overload selected in all other cases. 337 template <typename T> 338 static std::false_type TestImplicitConversion(...); 339 340 public: 341 using type = decltype(TestImplicitConversion<From>(0)); 342 static constexpr bool value = type::value; 343 }; 344 345 // Like std::invoke_result_t from C++17, but works only for objects with call 346 // operators (not e.g. member function pointers, which we don't need specific 347 // support for in OnceAction because std::function deals with them). 348 template <typename F, typename... Args> 349 using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); 350 351 template <typename Void, typename R, typename F, typename... Args> 352 struct is_callable_r_impl : std::false_type {}; 353 354 // Specialize the struct for those template arguments where call_result_t is 355 // well-formed. When it's not, the generic template above is chosen, resulting 356 // in std::false_type. 357 template <typename R, typename F, typename... Args> 358 struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> 359 : std::conditional< 360 std::is_void<R>::value, // 361 std::true_type, // 362 is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; 363 364 // Like std::is_invocable_r from C++17, but works only for objects with call 365 // operators. See the note on call_result_t. 366 template <typename R, typename F, typename... Args> 367 using is_callable_r = is_callable_r_impl<void, R, F, Args...>; 368 369 // Like std::as_const from C++17. 370 template <typename T> 371 typename std::add_const<T>::type& as_const(T& t) { 372 return t; 373 } 374 375 } // namespace internal 376 377 // Specialized for function types below. 378 template <typename F> 379 class OnceAction; 380 381 // An action that can only be used once. 382 // 383 // This is accepted by WillOnce, which doesn't require the underlying action to 384 // be copy-constructible (only move-constructible), and promises to invoke it as 385 // an rvalue reference. This allows the action to work with move-only types like 386 // std::move_only_function in a type-safe manner. 387 // 388 // For example: 389 // 390 // // Assume we have some API that needs to accept a unique pointer to some 391 // // non-copyable object Foo. 392 // void AcceptUniquePointer(std::unique_ptr<Foo> foo); 393 // 394 // // We can define an action that provides a Foo to that API. Because It 395 // // has to give away its unique pointer, it must not be called more than 396 // // once, so its call operator is &&-qualified. 397 // struct ProvideFoo { 398 // std::unique_ptr<Foo> foo; 399 // 400 // void operator()() && { 401 // AcceptUniquePointer(std::move(Foo)); 402 // } 403 // }; 404 // 405 // // This action can be used with WillOnce. 406 // EXPECT_CALL(mock, Call) 407 // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); 408 // 409 // // But a call to WillRepeatedly will fail to compile. This is correct, 410 // // since the action cannot correctly be used repeatedly. 411 // EXPECT_CALL(mock, Call) 412 // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); 413 // 414 // A less-contrived example would be an action that returns an arbitrary type, 415 // whose &&-qualified call operator is capable of dealing with move-only types. 416 template <typename Result, typename... Args> 417 class OnceAction<Result(Args...)> final { 418 private: 419 // True iff we can use the given callable type (or lvalue reference) directly 420 // via StdFunctionAdaptor. 421 template <typename Callable> 422 using IsDirectlyCompatible = internal::conjunction< 423 // It must be possible to capture the callable in StdFunctionAdaptor. 424 std::is_constructible<typename std::decay<Callable>::type, Callable>, 425 // The callable must be compatible with our signature. 426 internal::is_callable_r<Result, typename std::decay<Callable>::type, 427 Args...>>; 428 429 // True iff we can use the given callable type via StdFunctionAdaptor once we 430 // ignore incoming arguments. 431 template <typename Callable> 432 using IsCompatibleAfterIgnoringArguments = internal::conjunction< 433 // It must be possible to capture the callable in a lambda. 434 std::is_constructible<typename std::decay<Callable>::type, Callable>, 435 // The callable must be invocable with zero arguments, returning something 436 // convertible to Result. 437 internal::is_callable_r<Result, typename std::decay<Callable>::type>>; 438 439 public: 440 // Construct from a callable that is directly compatible with our mocked 441 // signature: it accepts our function type's arguments and returns something 442 // convertible to our result type. 443 template <typename Callable, 444 typename std::enable_if< 445 internal::conjunction< 446 // Teach clang on macOS that we're not talking about a 447 // copy/move constructor here. Otherwise it gets confused 448 // when checking the is_constructible requirement of our 449 // traits above. 450 internal::negation<std::is_same< 451 OnceAction, typename std::decay<Callable>::type>>, 452 IsDirectlyCompatible<Callable>> // 453 ::value, 454 int>::type = 0> 455 OnceAction(Callable&& callable) // NOLINT 456 : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( 457 {}, std::forward<Callable>(callable))) {} 458 459 // As above, but for a callable that ignores the mocked function's arguments. 460 template <typename Callable, 461 typename std::enable_if< 462 internal::conjunction< 463 // Teach clang on macOS that we're not talking about a 464 // copy/move constructor here. Otherwise it gets confused 465 // when checking the is_constructible requirement of our 466 // traits above. 467 internal::negation<std::is_same< 468 OnceAction, typename std::decay<Callable>::type>>, 469 // Exclude callables for which the overload above works. 470 // We'd rather provide the arguments if possible. 471 internal::negation<IsDirectlyCompatible<Callable>>, 472 IsCompatibleAfterIgnoringArguments<Callable>>::value, 473 int>::type = 0> 474 OnceAction(Callable&& callable) // NOLINT 475 // Call the constructor above with a callable 476 // that ignores the input arguments. 477 : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ 478 std::forward<Callable>(callable)}) {} 479 480 // We are naturally copyable because we store only an std::function, but 481 // semantically we should not be copyable. 482 OnceAction(const OnceAction&) = delete; 483 OnceAction& operator=(const OnceAction&) = delete; 484 OnceAction(OnceAction&&) = default; 485 486 // Invoke the underlying action callable with which we were constructed, 487 // handing it the supplied arguments. 488 Result Call(Args... args) && { 489 return function_(std::forward<Args>(args)...); 490 } 491 492 private: 493 // An adaptor that wraps a callable that is compatible with our signature and 494 // being invoked as an rvalue reference so that it can be used as an 495 // StdFunctionAdaptor. This throws away type safety, but that's fine because 496 // this is only used by WillOnce, which we know calls at most once. 497 // 498 // Once we have something like std::move_only_function from C++23, we can do 499 // away with this. 500 template <typename Callable> 501 class StdFunctionAdaptor final { 502 public: 503 // A tag indicating that the (otherwise universal) constructor is accepting 504 // the callable itself, instead of e.g. stealing calls for the move 505 // constructor. 506 struct CallableTag final {}; 507 508 template <typename F> 509 explicit StdFunctionAdaptor(CallableTag, F&& callable) 510 : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} 511 512 // Rather than explicitly returning Result, we return whatever the wrapped 513 // callable returns. This allows for compatibility with existing uses like 514 // the following, when the mocked function returns void: 515 // 516 // EXPECT_CALL(mock_fn_, Call) 517 // .WillOnce([&] { 518 // [...] 519 // return 0; 520 // }); 521 // 522 // Such a callable can be turned into std::function<void()>. If we use an 523 // explicit return type of Result here then it *doesn't* work with 524 // std::function, because we'll get a "void function should not return a 525 // value" error. 526 // 527 // We need not worry about incompatible result types because the SFINAE on 528 // OnceAction already checks this for us. std::is_invocable_r_v itself makes 529 // the same allowance for void result types. 530 template <typename... ArgRefs> 531 internal::call_result_t<Callable, ArgRefs...> operator()( 532 ArgRefs&&... args) const { 533 return std::move(*callable_)(std::forward<ArgRefs>(args)...); 534 } 535 536 private: 537 // We must put the callable on the heap so that we are copyable, which 538 // std::function needs. 539 std::shared_ptr<Callable> callable_; 540 }; 541 542 // An adaptor that makes a callable that accepts zero arguments callable with 543 // our mocked arguments. 544 template <typename Callable> 545 struct IgnoreIncomingArguments { 546 internal::call_result_t<Callable> operator()(Args&&...) { 547 return std::move(callable)(); 548 } 549 550 Callable callable; 551 }; 552 553 std::function<Result(Args...)> function_; 554 }; 555 556 // When an unexpected function call is encountered, Google Mock will 557 // let it return a default value if the user has specified one for its 558 // return type, or if the return type has a built-in default value; 559 // otherwise Google Mock won't know what value to return and will have 560 // to abort the process. 561 // 562 // The DefaultValue<T> class allows a user to specify the 563 // default value for a type T that is both copyable and publicly 564 // destructible (i.e. anything that can be used as a function return 565 // type). The usage is: 566 // 567 // // Sets the default value for type T to be foo. 568 // DefaultValue<T>::Set(foo); 569 template <typename T> 570 class DefaultValue { 571 public: 572 // Sets the default value for type T; requires T to be 573 // copy-constructable and have a public destructor. 574 static void Set(T x) { 575 delete producer_; 576 producer_ = new FixedValueProducer(x); 577 } 578 579 // Provides a factory function to be called to generate the default value. 580 // This method can be used even if T is only move-constructible, but it is not 581 // limited to that case. 582 typedef T (*FactoryFunction)(); 583 static void SetFactory(FactoryFunction factory) { 584 delete producer_; 585 producer_ = new FactoryValueProducer(factory); 586 } 587 588 // Unsets the default value for type T. 589 static void Clear() { 590 delete producer_; 591 producer_ = nullptr; 592 } 593 594 // Returns true if and only if the user has set the default value for type T. 595 static bool IsSet() { return producer_ != nullptr; } 596 597 // Returns true if T has a default return value set by the user or there 598 // exists a built-in default value. 599 static bool Exists() { 600 return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); 601 } 602 603 // Returns the default value for type T if the user has set one; 604 // otherwise returns the built-in default value. Requires that Exists() 605 // is true, which ensures that the return value is well-defined. 606 static T Get() { 607 return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() 608 : producer_->Produce(); 609 } 610 611 private: 612 class ValueProducer { 613 public: 614 virtual ~ValueProducer() = default; 615 virtual T Produce() = 0; 616 }; 617 618 class FixedValueProducer : public ValueProducer { 619 public: 620 explicit FixedValueProducer(T value) : value_(value) {} 621 T Produce() override { return value_; } 622 623 private: 624 const T value_; 625 FixedValueProducer(const FixedValueProducer&) = delete; 626 FixedValueProducer& operator=(const FixedValueProducer&) = delete; 627 }; 628 629 class FactoryValueProducer : public ValueProducer { 630 public: 631 explicit FactoryValueProducer(FactoryFunction factory) 632 : factory_(factory) {} 633 T Produce() override { return factory_(); } 634 635 private: 636 const FactoryFunction factory_; 637 FactoryValueProducer(const FactoryValueProducer&) = delete; 638 FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; 639 }; 640 641 static ValueProducer* producer_; 642 }; 643 644 // This partial specialization allows a user to set default values for 645 // reference types. 646 template <typename T> 647 class DefaultValue<T&> { 648 public: 649 // Sets the default value for type T&. 650 static void Set(T& x) { // NOLINT 651 address_ = &x; 652 } 653 654 // Unsets the default value for type T&. 655 static void Clear() { address_ = nullptr; } 656 657 // Returns true if and only if the user has set the default value for type T&. 658 static bool IsSet() { return address_ != nullptr; } 659 660 // Returns true if T has a default return value set by the user or there 661 // exists a built-in default value. 662 static bool Exists() { 663 return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); 664 } 665 666 // Returns the default value for type T& if the user has set one; 667 // otherwise returns the built-in default value if there is one; 668 // otherwise aborts the process. 669 static T& Get() { 670 return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() 671 : *address_; 672 } 673 674 private: 675 static T* address_; 676 }; 677 678 // This specialization allows DefaultValue<void>::Get() to 679 // compile. 680 template <> 681 class DefaultValue<void> { 682 public: 683 static bool Exists() { return true; } 684 static void Get() {} 685 }; 686 687 // Points to the user-set default value for type T. 688 template <typename T> 689 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; 690 691 // Points to the user-set default value for type T&. 692 template <typename T> 693 T* DefaultValue<T&>::address_ = nullptr; 694 695 // Implement this interface to define an action for function type F. 696 template <typename F> 697 class ActionInterface { 698 public: 699 typedef typename internal::Function<F>::Result Result; 700 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 701 702 ActionInterface() = default; 703 virtual ~ActionInterface() = default; 704 705 // Performs the action. This method is not const, as in general an 706 // action can have side effects and be stateful. For example, a 707 // get-the-next-element-from-the-collection action will need to 708 // remember the current element. 709 virtual Result Perform(const ArgumentTuple& args) = 0; 710 711 private: 712 ActionInterface(const ActionInterface&) = delete; 713 ActionInterface& operator=(const ActionInterface&) = delete; 714 }; 715 716 template <typename F> 717 class Action; 718 719 // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) 720 // object that represents an action to be taken when a mock function of type 721 // R(Args...) is called. The implementation of Action<T> is just a 722 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You 723 // can view an object implementing ActionInterface<F> as a concrete action 724 // (including its current state), and an Action<F> object as a handle to it. 725 template <typename R, typename... Args> 726 class Action<R(Args...)> { 727 private: 728 using F = R(Args...); 729 730 // Adapter class to allow constructing Action from a legacy ActionInterface. 731 // New code should create Actions from functors instead. 732 struct ActionAdapter { 733 // Adapter must be copyable to satisfy std::function requirements. 734 ::std::shared_ptr<ActionInterface<F>> impl_; 735 736 template <typename... InArgs> 737 typename internal::Function<F>::Result operator()(InArgs&&... args) { 738 return impl_->Perform( 739 ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); 740 } 741 }; 742 743 template <typename G> 744 using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; 745 746 public: 747 typedef typename internal::Function<F>::Result Result; 748 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 749 750 // Constructs a null Action. Needed for storing Action objects in 751 // STL containers. 752 Action() = default; 753 754 // Construct an Action from a specified callable. 755 // This cannot take std::function directly, because then Action would not be 756 // directly constructible from lambda (it would require two conversions). 757 template < 758 typename G, 759 typename = typename std::enable_if<internal::disjunction< 760 IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, 761 G>>::value>::type> 762 Action(G&& fun) { // NOLINT 763 Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); 764 } 765 766 // Constructs an Action from its implementation. 767 explicit Action(ActionInterface<F>* impl) 768 : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} 769 770 // This constructor allows us to turn an Action<Func> object into an 771 // Action<F>, as long as F's arguments can be implicitly converted 772 // to Func's and Func's return type can be implicitly converted to F's. 773 template <typename Func> 774 Action(const Action<Func>& action) // NOLINT 775 : fun_(action.fun_) {} 776 777 // Returns true if and only if this is the DoDefault() action. 778 bool IsDoDefault() const { return fun_ == nullptr; } 779 780 // Performs the action. Note that this method is const even though 781 // the corresponding method in ActionInterface is not. The reason 782 // is that a const Action<F> means that it cannot be re-bound to 783 // another concrete action, not that the concrete action it binds to 784 // cannot change state. (Think of the difference between a const 785 // pointer and a pointer to const.) 786 Result Perform(ArgumentTuple args) const { 787 if (IsDoDefault()) { 788 internal::IllegalDoDefault(__FILE__, __LINE__); 789 } 790 return internal::Apply(fun_, ::std::move(args)); 791 } 792 793 // An action can be used as a OnceAction, since it's obviously safe to call it 794 // once. 795 operator OnceAction<F>() const { // NOLINT 796 // Return a OnceAction-compatible callable that calls Perform with the 797 // arguments it is provided. We could instead just return fun_, but then 798 // we'd need to handle the IsDoDefault() case separately. 799 struct OA { 800 Action<F> action; 801 802 R operator()(Args... args) && { 803 return action.Perform( 804 std::forward_as_tuple(std::forward<Args>(args)...)); 805 } 806 }; 807 808 return OA{*this}; 809 } 810 811 private: 812 template <typename G> 813 friend class Action; 814 815 template <typename G> 816 void Init(G&& g, ::std::true_type) { 817 fun_ = ::std::forward<G>(g); 818 } 819 820 template <typename G> 821 void Init(G&& g, ::std::false_type) { 822 fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; 823 } 824 825 template <typename FunctionImpl> 826 struct IgnoreArgs { 827 template <typename... InArgs> 828 Result operator()(const InArgs&...) const { 829 return function_impl(); 830 } 831 832 FunctionImpl function_impl; 833 }; 834 835 // fun_ is an empty function if and only if this is the DoDefault() action. 836 ::std::function<F> fun_; 837 }; 838 839 // The PolymorphicAction class template makes it easy to implement a 840 // polymorphic action (i.e. an action that can be used in mock 841 // functions of than one type, e.g. Return()). 842 // 843 // To define a polymorphic action, a user first provides a COPYABLE 844 // implementation class that has a Perform() method template: 845 // 846 // class FooAction { 847 // public: 848 // template <typename Result, typename ArgumentTuple> 849 // Result Perform(const ArgumentTuple& args) const { 850 // // Processes the arguments and returns a result, using 851 // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. 852 // } 853 // ... 854 // }; 855 // 856 // Then the user creates the polymorphic action using 857 // MakePolymorphicAction(object) where object has type FooAction. See 858 // the definition of Return(void) and SetArgumentPointee<N>(value) for 859 // complete examples. 860 template <typename Impl> 861 class PolymorphicAction { 862 public: 863 explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} 864 865 template <typename F> 866 operator Action<F>() const { 867 return Action<F>(new MonomorphicImpl<F>(impl_)); 868 } 869 870 private: 871 template <typename F> 872 class MonomorphicImpl : public ActionInterface<F> { 873 public: 874 typedef typename internal::Function<F>::Result Result; 875 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 876 877 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} 878 879 Result Perform(const ArgumentTuple& args) override { 880 return impl_.template Perform<Result>(args); 881 } 882 883 private: 884 Impl impl_; 885 }; 886 887 Impl impl_; 888 }; 889 890 // Creates an Action from its implementation and returns it. The 891 // created Action object owns the implementation. 892 template <typename F> 893 Action<F> MakeAction(ActionInterface<F>* impl) { 894 return Action<F>(impl); 895 } 896 897 // Creates a polymorphic action from its implementation. This is 898 // easier to use than the PolymorphicAction<Impl> constructor as it 899 // doesn't require you to explicitly write the template argument, e.g. 900 // 901 // MakePolymorphicAction(foo); 902 // vs 903 // PolymorphicAction<TypeOfFoo>(foo); 904 template <typename Impl> 905 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { 906 return PolymorphicAction<Impl>(impl); 907 } 908 909 namespace internal { 910 911 // Helper struct to specialize ReturnAction to execute a move instead of a copy 912 // on return. Useful for move-only types, but could be used on any type. 913 template <typename T> 914 struct ByMoveWrapper { 915 explicit ByMoveWrapper(T value) : payload(std::move(value)) {} 916 T payload; 917 }; 918 919 // The general implementation of Return(R). Specializations follow below. 920 template <typename R> 921 class ReturnAction final { 922 public: 923 explicit ReturnAction(R value) : value_(std::move(value)) {} 924 925 template <typename U, typename... Args, 926 typename = typename std::enable_if<conjunction< 927 // See the requirements documented on Return. 928 negation<std::is_same<void, U>>, // 929 negation<std::is_reference<U>>, // 930 std::is_convertible<R, U>, // 931 std::is_move_constructible<U>>::value>::type> 932 operator OnceAction<U(Args...)>() && { // NOLINT 933 return Impl<U>(std::move(value_)); 934 } 935 936 template <typename U, typename... Args, 937 typename = typename std::enable_if<conjunction< 938 // See the requirements documented on Return. 939 negation<std::is_same<void, U>>, // 940 negation<std::is_reference<U>>, // 941 std::is_convertible<const R&, U>, // 942 std::is_copy_constructible<U>>::value>::type> 943 operator Action<U(Args...)>() const { // NOLINT 944 return Impl<U>(value_); 945 } 946 947 private: 948 // Implements the Return(x) action for a mock function that returns type U. 949 template <typename U> 950 class Impl final { 951 public: 952 // The constructor used when the return value is allowed to move from the 953 // input value (i.e. we are converting to OnceAction). 954 explicit Impl(R&& input_value) 955 : state_(new State(std::move(input_value))) {} 956 957 // The constructor used when the return value is not allowed to move from 958 // the input value (i.e. we are converting to Action). 959 explicit Impl(const R& input_value) : state_(new State(input_value)) {} 960 961 U operator()() && { return std::move(state_->value); } 962 U operator()() const& { return state_->value; } 963 964 private: 965 // We put our state on the heap so that the compiler-generated copy/move 966 // constructors work correctly even when U is a reference-like type. This is 967 // necessary only because we eagerly create State::value (see the note on 968 // that symbol for details). If we instead had only the input value as a 969 // member then the default constructors would work fine. 970 // 971 // For example, when R is std::string and U is std::string_view, value is a 972 // reference to the string backed by input_value. The copy constructor would 973 // copy both, so that we wind up with a new input_value object (with the 974 // same contents) and a reference to the *old* input_value object rather 975 // than the new one. 976 struct State { 977 explicit State(const R& input_value_in) 978 : input_value(input_value_in), 979 // Make an implicit conversion to Result before initializing the U 980 // object we store, avoiding calling any explicit constructor of U 981 // from R. 982 // 983 // This simulates the language rules: a function with return type U 984 // that does `return R()` requires R to be implicitly convertible to 985 // U, and uses that path for the conversion, even U Result has an 986 // explicit constructor from R. 987 value(ImplicitCast_<U>(internal::as_const(input_value))) {} 988 989 // As above, but for the case where we're moving from the ReturnAction 990 // object because it's being used as a OnceAction. 991 explicit State(R&& input_value_in) 992 : input_value(std::move(input_value_in)), 993 // For the same reason as above we make an implicit conversion to U 994 // before initializing the value. 995 // 996 // Unlike above we provide the input value as an rvalue to the 997 // implicit conversion because this is a OnceAction: it's fine if it 998 // wants to consume the input value. 999 value(ImplicitCast_<U>(std::move(input_value))) {} 1000 1001 // A copy of the value originally provided by the user. We retain this in 1002 // addition to the value of the mock function's result type below in case 1003 // the latter is a reference-like type. See the std::string_view example 1004 // in the documentation on Return. 1005 R input_value; 1006 1007 // The value we actually return, as the type returned by the mock function 1008 // itself. 1009 // 1010 // We eagerly initialize this here, rather than lazily doing the implicit 1011 // conversion automatically each time Perform is called, for historical 1012 // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) 1013 // made the Action<U()> conversion operator eagerly convert the R value to 1014 // U, but without keeping the R alive. This broke the use case discussed 1015 // in the documentation for Return, making reference-like types such as 1016 // std::string_view not safe to use as U where the input type R is a 1017 // value-like type such as std::string. 1018 // 1019 // The example the commit gave was not very clear, nor was the issue 1020 // thread (https://github.com/google/googlemock/issues/86), but it seems 1021 // the worry was about reference-like input types R that flatten to a 1022 // value-like type U when being implicitly converted. An example of this 1023 // is std::vector<bool>::reference, which is often a proxy type with an 1024 // reference to the underlying vector: 1025 // 1026 // // Helper method: have the mock function return bools according 1027 // // to the supplied script. 1028 // void SetActions(MockFunction<bool(size_t)>& mock, 1029 // const std::vector<bool>& script) { 1030 // for (size_t i = 0; i < script.size(); ++i) { 1031 // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); 1032 // } 1033 // } 1034 // 1035 // TEST(Foo, Bar) { 1036 // // Set actions using a temporary vector, whose operator[] 1037 // // returns proxy objects that references that will be 1038 // // dangling once the call to SetActions finishes and the 1039 // // vector is destroyed. 1040 // MockFunction<bool(size_t)> mock; 1041 // SetActions(mock, {false, true}); 1042 // 1043 // EXPECT_FALSE(mock.AsStdFunction()(0)); 1044 // EXPECT_TRUE(mock.AsStdFunction()(1)); 1045 // } 1046 // 1047 // This eager conversion helps with a simple case like this, but doesn't 1048 // fully make these types work in general. For example the following still 1049 // uses a dangling reference: 1050 // 1051 // TEST(Foo, Baz) { 1052 // MockFunction<std::vector<std::string>()> mock; 1053 // 1054 // // Return the same vector twice, and then the empty vector 1055 // // thereafter. 1056 // auto action = Return(std::initializer_list<std::string>{ 1057 // "taco", "burrito", 1058 // }); 1059 // 1060 // EXPECT_CALL(mock, Call) 1061 // .WillOnce(action) 1062 // .WillOnce(action) 1063 // .WillRepeatedly(Return(std::vector<std::string>{})); 1064 // 1065 // EXPECT_THAT(mock.AsStdFunction()(), 1066 // ElementsAre("taco", "burrito")); 1067 // EXPECT_THAT(mock.AsStdFunction()(), 1068 // ElementsAre("taco", "burrito")); 1069 // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); 1070 // } 1071 // 1072 U value; 1073 }; 1074 1075 const std::shared_ptr<State> state_; 1076 }; 1077 1078 R value_; 1079 }; 1080 1081 // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. 1082 // 1083 // This version applies the type system-defeating hack of moving from T even in 1084 // the const call operator, checking at runtime that it isn't called more than 1085 // once, since the user has declared their intent to do so by using ByMove. 1086 template <typename T> 1087 class ReturnAction<ByMoveWrapper<T>> final { 1088 public: 1089 explicit ReturnAction(ByMoveWrapper<T> wrapper) 1090 : state_(new State(std::move(wrapper.payload))) {} 1091 1092 T operator()() const { 1093 GTEST_CHECK_(!state_->called) 1094 << "A ByMove() action must be performed at most once."; 1095 1096 state_->called = true; 1097 return std::move(state_->value); 1098 } 1099 1100 private: 1101 // We store our state on the heap so that we are copyable as required by 1102 // Action, despite the fact that we are stateful and T may not be copyable. 1103 struct State { 1104 explicit State(T&& value_in) : value(std::move(value_in)) {} 1105 1106 T value; 1107 bool called = false; 1108 }; 1109 1110 const std::shared_ptr<State> state_; 1111 }; 1112 1113 // Implements the ReturnNull() action. 1114 class ReturnNullAction { 1115 public: 1116 // Allows ReturnNull() to be used in any pointer-returning function. In C++11 1117 // this is enforced by returning nullptr, and in non-C++11 by asserting a 1118 // pointer type on compile time. 1119 template <typename Result, typename ArgumentTuple> 1120 static Result Perform(const ArgumentTuple&) { 1121 return nullptr; 1122 } 1123 }; 1124 1125 // Implements the Return() action. 1126 class ReturnVoidAction { 1127 public: 1128 // Allows Return() to be used in any void-returning function. 1129 template <typename Result, typename ArgumentTuple> 1130 static void Perform(const ArgumentTuple&) { 1131 static_assert(std::is_void<Result>::value, "Result should be void."); 1132 } 1133 }; 1134 1135 // Implements the polymorphic ReturnRef(x) action, which can be used 1136 // in any function that returns a reference to the type of x, 1137 // regardless of the argument types. 1138 template <typename T> 1139 class ReturnRefAction { 1140 public: 1141 // Constructs a ReturnRefAction object from the reference to be returned. 1142 explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT 1143 1144 // This template type conversion operator allows ReturnRef(x) to be 1145 // used in ANY function that returns a reference to x's type. 1146 template <typename F> 1147 operator Action<F>() const { 1148 typedef typename Function<F>::Result Result; 1149 // Asserts that the function return type is a reference. This 1150 // catches the user error of using ReturnRef(x) when Return(x) 1151 // should be used, and generates some helpful error message. 1152 static_assert(std::is_reference<Result>::value, 1153 "use Return instead of ReturnRef to return a value"); 1154 return Action<F>(new Impl<F>(ref_)); 1155 } 1156 1157 private: 1158 // Implements the ReturnRef(x) action for a particular function type F. 1159 template <typename F> 1160 class Impl : public ActionInterface<F> { 1161 public: 1162 typedef typename Function<F>::Result Result; 1163 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1164 1165 explicit Impl(T& ref) : ref_(ref) {} // NOLINT 1166 1167 Result Perform(const ArgumentTuple&) override { return ref_; } 1168 1169 private: 1170 T& ref_; 1171 }; 1172 1173 T& ref_; 1174 }; 1175 1176 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be 1177 // used in any function that returns a reference to the type of x, 1178 // regardless of the argument types. 1179 template <typename T> 1180 class ReturnRefOfCopyAction { 1181 public: 1182 // Constructs a ReturnRefOfCopyAction object from the reference to 1183 // be returned. 1184 explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT 1185 1186 // This template type conversion operator allows ReturnRefOfCopy(x) to be 1187 // used in ANY function that returns a reference to x's type. 1188 template <typename F> 1189 operator Action<F>() const { 1190 typedef typename Function<F>::Result Result; 1191 // Asserts that the function return type is a reference. This 1192 // catches the user error of using ReturnRefOfCopy(x) when Return(x) 1193 // should be used, and generates some helpful error message. 1194 static_assert(std::is_reference<Result>::value, 1195 "use Return instead of ReturnRefOfCopy to return a value"); 1196 return Action<F>(new Impl<F>(value_)); 1197 } 1198 1199 private: 1200 // Implements the ReturnRefOfCopy(x) action for a particular function type F. 1201 template <typename F> 1202 class Impl : public ActionInterface<F> { 1203 public: 1204 typedef typename Function<F>::Result Result; 1205 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1206 1207 explicit Impl(const T& value) : value_(value) {} // NOLINT 1208 1209 Result Perform(const ArgumentTuple&) override { return value_; } 1210 1211 private: 1212 T value_; 1213 }; 1214 1215 const T value_; 1216 }; 1217 1218 // Implements the polymorphic ReturnRoundRobin(v) action, which can be 1219 // used in any function that returns the element_type of v. 1220 template <typename T> 1221 class ReturnRoundRobinAction { 1222 public: 1223 explicit ReturnRoundRobinAction(std::vector<T> values) { 1224 GTEST_CHECK_(!values.empty()) 1225 << "ReturnRoundRobin requires at least one element."; 1226 state_->values = std::move(values); 1227 } 1228 1229 template <typename... Args> 1230 T operator()(Args&&...) const { 1231 return state_->Next(); 1232 } 1233 1234 private: 1235 struct State { 1236 T Next() { 1237 T ret_val = values[i++]; 1238 if (i == values.size()) i = 0; 1239 return ret_val; 1240 } 1241 1242 std::vector<T> values; 1243 size_t i = 0; 1244 }; 1245 std::shared_ptr<State> state_ = std::make_shared<State>(); 1246 }; 1247 1248 // Implements the polymorphic DoDefault() action. 1249 class DoDefaultAction { 1250 public: 1251 // This template type conversion operator allows DoDefault() to be 1252 // used in any function. 1253 template <typename F> 1254 operator Action<F>() const { 1255 return Action<F>(); 1256 } // NOLINT 1257 }; 1258 1259 // Implements the Assign action to set a given pointer referent to a 1260 // particular value. 1261 template <typename T1, typename T2> 1262 class AssignAction { 1263 public: 1264 AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} 1265 1266 template <typename Result, typename ArgumentTuple> 1267 void Perform(const ArgumentTuple& /* args */) const { 1268 *ptr_ = value_; 1269 } 1270 1271 private: 1272 T1* const ptr_; 1273 const T2 value_; 1274 }; 1275 1276 #ifndef GTEST_OS_WINDOWS_MOBILE 1277 1278 // Implements the SetErrnoAndReturn action to simulate return from 1279 // various system calls and libc functions. 1280 template <typename T> 1281 class SetErrnoAndReturnAction { 1282 public: 1283 SetErrnoAndReturnAction(int errno_value, T result) 1284 : errno_(errno_value), result_(result) {} 1285 template <typename Result, typename ArgumentTuple> 1286 Result Perform(const ArgumentTuple& /* args */) const { 1287 errno = errno_; 1288 return result_; 1289 } 1290 1291 private: 1292 const int errno_; 1293 const T result_; 1294 }; 1295 1296 #endif // !GTEST_OS_WINDOWS_MOBILE 1297 1298 // Implements the SetArgumentPointee<N>(x) action for any function 1299 // whose N-th argument (0-based) is a pointer to x's type. 1300 template <size_t N, typename A, typename = void> 1301 struct SetArgumentPointeeAction { 1302 A value; 1303 1304 template <typename... Args> 1305 void operator()(const Args&... args) const { 1306 *::std::get<N>(std::tie(args...)) = value; 1307 } 1308 }; 1309 1310 // Implements the Invoke(object_ptr, &Class::Method) action. 1311 template <class Class, typename MethodPtr> 1312 struct InvokeMethodAction { 1313 Class* const obj_ptr; 1314 const MethodPtr method_ptr; 1315 1316 template <typename... Args> 1317 auto operator()(Args&&... args) const 1318 -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { 1319 return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); 1320 } 1321 }; 1322 1323 // Implements the InvokeWithoutArgs(f) action. The template argument 1324 // FunctionImpl is the implementation type of f, which can be either a 1325 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an 1326 // Action<F> as long as f's type is compatible with F. 1327 template <typename FunctionImpl> 1328 struct InvokeWithoutArgsAction { 1329 FunctionImpl function_impl; 1330 1331 // Allows InvokeWithoutArgs(f) to be used as any action whose type is 1332 // compatible with f. 1333 template <typename... Args> 1334 auto operator()(const Args&...) -> decltype(function_impl()) { 1335 return function_impl(); 1336 } 1337 }; 1338 1339 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. 1340 template <class Class, typename MethodPtr> 1341 struct InvokeMethodWithoutArgsAction { 1342 Class* const obj_ptr; 1343 const MethodPtr method_ptr; 1344 1345 using ReturnType = 1346 decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); 1347 1348 template <typename... Args> 1349 ReturnType operator()(const Args&...) const { 1350 return (obj_ptr->*method_ptr)(); 1351 } 1352 }; 1353 1354 // Implements the IgnoreResult(action) action. 1355 template <typename A> 1356 class IgnoreResultAction { 1357 public: 1358 explicit IgnoreResultAction(const A& action) : action_(action) {} 1359 1360 template <typename F> 1361 operator Action<F>() const { 1362 // Assert statement belongs here because this is the best place to verify 1363 // conditions on F. It produces the clearest error messages 1364 // in most compilers. 1365 // Impl really belongs in this scope as a local class but can't 1366 // because MSVC produces duplicate symbols in different translation units 1367 // in this case. Until MS fixes that bug we put Impl into the class scope 1368 // and put the typedef both here (for use in assert statement) and 1369 // in the Impl class. But both definitions must be the same. 1370 typedef typename internal::Function<F>::Result Result; 1371 1372 // Asserts at compile time that F returns void. 1373 static_assert(std::is_void<Result>::value, "Result type should be void."); 1374 1375 return Action<F>(new Impl<F>(action_)); 1376 } 1377 1378 private: 1379 template <typename F> 1380 class Impl : public ActionInterface<F> { 1381 public: 1382 typedef typename internal::Function<F>::Result Result; 1383 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 1384 1385 explicit Impl(const A& action) : action_(action) {} 1386 1387 void Perform(const ArgumentTuple& args) override { 1388 // Performs the action and ignores its result. 1389 action_.Perform(args); 1390 } 1391 1392 private: 1393 // Type OriginalFunction is the same as F except that its return 1394 // type is IgnoredValue. 1395 typedef 1396 typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; 1397 1398 const Action<OriginalFunction> action_; 1399 }; 1400 1401 const A action_; 1402 }; 1403 1404 template <typename InnerAction, size_t... I> 1405 struct WithArgsAction { 1406 InnerAction inner_action; 1407 1408 // The signature of the function as seen by the inner action, given an out 1409 // action with the given result and argument types. 1410 template <typename R, typename... Args> 1411 using InnerSignature = 1412 R(typename std::tuple_element<I, std::tuple<Args...>>::type...); 1413 1414 // Rather than a call operator, we must define conversion operators to 1415 // particular action types. This is necessary for embedded actions like 1416 // DoDefault(), which rely on an action conversion operators rather than 1417 // providing a call operator because even with a particular set of arguments 1418 // they don't have a fixed return type. 1419 1420 template < 1421 typename R, typename... Args, 1422 typename std::enable_if< 1423 std::is_convertible<InnerAction, 1424 // Unfortunately we can't use the InnerSignature 1425 // alias here; MSVC complains about the I 1426 // parameter pack not being expanded (error C3520) 1427 // despite it being expanded in the type alias. 1428 // TupleElement is also an MSVC workaround. 1429 // See its definition for details. 1430 OnceAction<R(internal::TupleElement< 1431 I, std::tuple<Args...>>...)>>::value, 1432 int>::type = 0> 1433 operator OnceAction<R(Args...)>() && { // NOLINT 1434 struct OA { 1435 OnceAction<InnerSignature<R, Args...>> inner_action; 1436 1437 R operator()(Args&&... args) && { 1438 return std::move(inner_action) 1439 .Call(std::get<I>( 1440 std::forward_as_tuple(std::forward<Args>(args)...))...); 1441 } 1442 }; 1443 1444 return OA{std::move(inner_action)}; 1445 } 1446 1447 template < 1448 typename R, typename... Args, 1449 typename std::enable_if< 1450 std::is_convertible<const InnerAction&, 1451 // Unfortunately we can't use the InnerSignature 1452 // alias here; MSVC complains about the I 1453 // parameter pack not being expanded (error C3520) 1454 // despite it being expanded in the type alias. 1455 // TupleElement is also an MSVC workaround. 1456 // See its definition for details. 1457 Action<R(internal::TupleElement< 1458 I, std::tuple<Args...>>...)>>::value, 1459 int>::type = 0> 1460 operator Action<R(Args...)>() const { // NOLINT 1461 Action<InnerSignature<R, Args...>> converted(inner_action); 1462 1463 return [converted](Args&&... args) -> R { 1464 return converted.Perform(std::forward_as_tuple( 1465 std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); 1466 }; 1467 } 1468 }; 1469 1470 template <typename... Actions> 1471 class DoAllAction; 1472 1473 // Base case: only a single action. 1474 template <typename FinalAction> 1475 class DoAllAction<FinalAction> { 1476 public: 1477 struct UserConstructorTag {}; 1478 1479 template <typename T> 1480 explicit DoAllAction(UserConstructorTag, T&& action) 1481 : final_action_(std::forward<T>(action)) {} 1482 1483 // Rather than a call operator, we must define conversion operators to 1484 // particular action types. This is necessary for embedded actions like 1485 // DoDefault(), which rely on an action conversion operators rather than 1486 // providing a call operator because even with a particular set of arguments 1487 // they don't have a fixed return type. 1488 1489 template <typename R, typename... Args, 1490 typename std::enable_if< 1491 std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, 1492 int>::type = 0> 1493 operator OnceAction<R(Args...)>() && { // NOLINT 1494 return std::move(final_action_); 1495 } 1496 1497 template < 1498 typename R, typename... Args, 1499 typename std::enable_if< 1500 std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, 1501 int>::type = 0> 1502 operator Action<R(Args...)>() const { // NOLINT 1503 return final_action_; 1504 } 1505 1506 private: 1507 FinalAction final_action_; 1508 }; 1509 1510 // Recursive case: support N actions by calling the initial action and then 1511 // calling through to the base class containing N-1 actions. 1512 template <typename InitialAction, typename... OtherActions> 1513 class DoAllAction<InitialAction, OtherActions...> 1514 : private DoAllAction<OtherActions...> { 1515 private: 1516 using Base = DoAllAction<OtherActions...>; 1517 1518 // The type of reference that should be provided to an initial action for a 1519 // mocked function parameter of type T. 1520 // 1521 // There are two quirks here: 1522 // 1523 // * Unlike most forwarding functions, we pass scalars through by value. 1524 // This isn't strictly necessary because an lvalue reference would work 1525 // fine too and be consistent with other non-reference types, but it's 1526 // perhaps less surprising. 1527 // 1528 // For example if the mocked function has signature void(int), then it 1529 // might seem surprising for the user's initial action to need to be 1530 // convertible to Action<void(const int&)>. This is perhaps less 1531 // surprising for a non-scalar type where there may be a performance 1532 // impact, or it might even be impossible, to pass by value. 1533 // 1534 // * More surprisingly, `const T&` is often not a const reference type. 1535 // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to 1536 // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is 1537 // U&. In other words, we may hand over a non-const reference. 1538 // 1539 // So for example, given some non-scalar type Obj we have the following 1540 // mappings: 1541 // 1542 // T InitialActionArgType<T> 1543 // ------- ----------------------- 1544 // Obj const Obj& 1545 // Obj& Obj& 1546 // Obj&& Obj& 1547 // const Obj const Obj& 1548 // const Obj& const Obj& 1549 // const Obj&& const Obj& 1550 // 1551 // In other words, the initial actions get a mutable view of an non-scalar 1552 // argument if and only if the mock function itself accepts a non-const 1553 // reference type. They are never given an rvalue reference to an 1554 // non-scalar type. 1555 // 1556 // This situation makes sense if you imagine use with a matcher that is 1557 // designed to write through a reference. For example, if the caller wants 1558 // to fill in a reference argument and then return a canned value: 1559 // 1560 // EXPECT_CALL(mock, Call) 1561 // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); 1562 // 1563 template <typename T> 1564 using InitialActionArgType = 1565 typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; 1566 1567 public: 1568 struct UserConstructorTag {}; 1569 1570 template <typename T, typename... U> 1571 explicit DoAllAction(UserConstructorTag, T&& initial_action, 1572 U&&... other_actions) 1573 : Base({}, std::forward<U>(other_actions)...), 1574 initial_action_(std::forward<T>(initial_action)) {} 1575 1576 template <typename R, typename... Args, 1577 typename std::enable_if< 1578 conjunction< 1579 // Both the initial action and the rest must support 1580 // conversion to OnceAction. 1581 std::is_convertible< 1582 InitialAction, 1583 OnceAction<void(InitialActionArgType<Args>...)>>, 1584 std::is_convertible<Base, OnceAction<R(Args...)>>>::value, 1585 int>::type = 0> 1586 operator OnceAction<R(Args...)>() && { // NOLINT 1587 // Return an action that first calls the initial action with arguments 1588 // filtered through InitialActionArgType, then forwards arguments directly 1589 // to the base class to deal with the remaining actions. 1590 struct OA { 1591 OnceAction<void(InitialActionArgType<Args>...)> initial_action; 1592 OnceAction<R(Args...)> remaining_actions; 1593 1594 R operator()(Args... args) && { 1595 std::move(initial_action) 1596 .Call(static_cast<InitialActionArgType<Args>>(args)...); 1597 1598 return std::move(remaining_actions).Call(std::forward<Args>(args)...); 1599 } 1600 }; 1601 1602 return OA{ 1603 std::move(initial_action_), 1604 std::move(static_cast<Base&>(*this)), 1605 }; 1606 } 1607 1608 template < 1609 typename R, typename... Args, 1610 typename std::enable_if< 1611 conjunction< 1612 // Both the initial action and the rest must support conversion to 1613 // Action. 1614 std::is_convertible<const InitialAction&, 1615 Action<void(InitialActionArgType<Args>...)>>, 1616 std::is_convertible<const Base&, Action<R(Args...)>>>::value, 1617 int>::type = 0> 1618 operator Action<R(Args...)>() const { // NOLINT 1619 // Return an action that first calls the initial action with arguments 1620 // filtered through InitialActionArgType, then forwards arguments directly 1621 // to the base class to deal with the remaining actions. 1622 struct OA { 1623 Action<void(InitialActionArgType<Args>...)> initial_action; 1624 Action<R(Args...)> remaining_actions; 1625 1626 R operator()(Args... args) const { 1627 initial_action.Perform(std::forward_as_tuple( 1628 static_cast<InitialActionArgType<Args>>(args)...)); 1629 1630 return remaining_actions.Perform( 1631 std::forward_as_tuple(std::forward<Args>(args)...)); 1632 } 1633 }; 1634 1635 return OA{ 1636 initial_action_, 1637 static_cast<const Base&>(*this), 1638 }; 1639 } 1640 1641 private: 1642 InitialAction initial_action_; 1643 }; 1644 1645 template <typename T, typename... Params> 1646 struct ReturnNewAction { 1647 T* operator()() const { 1648 return internal::Apply( 1649 [](const Params&... unpacked_params) { 1650 return new T(unpacked_params...); 1651 }, 1652 params); 1653 } 1654 std::tuple<Params...> params; 1655 }; 1656 1657 template <size_t k> 1658 struct ReturnArgAction { 1659 template <typename... Args, 1660 typename = typename std::enable_if<(k < sizeof...(Args))>::type> 1661 auto operator()(Args&&... args) const -> decltype(std::get<k>( 1662 std::forward_as_tuple(std::forward<Args>(args)...))) { 1663 return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); 1664 } 1665 }; 1666 1667 template <size_t k, typename Ptr> 1668 struct SaveArgAction { 1669 Ptr pointer; 1670 1671 template <typename... Args> 1672 void operator()(const Args&... args) const { 1673 *pointer = std::get<k>(std::tie(args...)); 1674 } 1675 }; 1676 1677 template <size_t k, typename Ptr> 1678 struct SaveArgPointeeAction { 1679 Ptr pointer; 1680 1681 template <typename... Args> 1682 void operator()(const Args&... args) const { 1683 *pointer = *std::get<k>(std::tie(args...)); 1684 } 1685 }; 1686 1687 template <size_t k, typename T> 1688 struct SetArgRefereeAction { 1689 T value; 1690 1691 template <typename... Args> 1692 void operator()(Args&&... args) const { 1693 using argk_type = 1694 typename ::std::tuple_element<k, std::tuple<Args...>>::type; 1695 static_assert(std::is_lvalue_reference<argk_type>::value, 1696 "Argument must be a reference type."); 1697 std::get<k>(std::tie(args...)) = value; 1698 } 1699 }; 1700 1701 template <size_t k, typename I1, typename I2> 1702 struct SetArrayArgumentAction { 1703 I1 first; 1704 I2 last; 1705 1706 template <typename... Args> 1707 void operator()(const Args&... args) const { 1708 auto value = std::get<k>(std::tie(args...)); 1709 for (auto it = first; it != last; ++it, (void)++value) { 1710 *value = *it; 1711 } 1712 } 1713 }; 1714 1715 template <size_t k> 1716 struct DeleteArgAction { 1717 template <typename... Args> 1718 void operator()(const Args&... args) const { 1719 delete std::get<k>(std::tie(args...)); 1720 } 1721 }; 1722 1723 template <typename Ptr> 1724 struct ReturnPointeeAction { 1725 Ptr pointer; 1726 template <typename... Args> 1727 auto operator()(const Args&...) const -> decltype(*pointer) { 1728 return *pointer; 1729 } 1730 }; 1731 1732 #if GTEST_HAS_EXCEPTIONS 1733 template <typename T> 1734 struct ThrowAction { 1735 T exception; 1736 // We use a conversion operator to adapt to any return type. 1737 template <typename R, typename... Args> 1738 operator Action<R(Args...)>() const { // NOLINT 1739 T copy = exception; 1740 return [copy](Args...) -> R { throw copy; }; 1741 } 1742 }; 1743 #endif // GTEST_HAS_EXCEPTIONS 1744 1745 } // namespace internal 1746 1747 // An Unused object can be implicitly constructed from ANY value. 1748 // This is handy when defining actions that ignore some or all of the 1749 // mock function arguments. For example, given 1750 // 1751 // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); 1752 // MOCK_METHOD3(Bar, double(int index, double x, double y)); 1753 // 1754 // instead of 1755 // 1756 // double DistanceToOriginWithLabel(const string& label, double x, double y) { 1757 // return sqrt(x*x + y*y); 1758 // } 1759 // double DistanceToOriginWithIndex(int index, double x, double y) { 1760 // return sqrt(x*x + y*y); 1761 // } 1762 // ... 1763 // EXPECT_CALL(mock, Foo("abc", _, _)) 1764 // .WillOnce(Invoke(DistanceToOriginWithLabel)); 1765 // EXPECT_CALL(mock, Bar(5, _, _)) 1766 // .WillOnce(Invoke(DistanceToOriginWithIndex)); 1767 // 1768 // you could write 1769 // 1770 // // We can declare any uninteresting argument as Unused. 1771 // double DistanceToOrigin(Unused, double x, double y) { 1772 // return sqrt(x*x + y*y); 1773 // } 1774 // ... 1775 // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); 1776 // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); 1777 typedef internal::IgnoredValue Unused; 1778 1779 // Creates an action that does actions a1, a2, ..., sequentially in 1780 // each invocation. All but the last action will have a readonly view of the 1781 // arguments. 1782 template <typename... Action> 1783 internal::DoAllAction<typename std::decay<Action>::type...> DoAll( 1784 Action&&... action) { 1785 return internal::DoAllAction<typename std::decay<Action>::type...>( 1786 {}, std::forward<Action>(action)...); 1787 } 1788 1789 // WithArg<k>(an_action) creates an action that passes the k-th 1790 // (0-based) argument of the mock function to an_action and performs 1791 // it. It adapts an action accepting one argument to one that accepts 1792 // multiple arguments. For convenience, we also provide 1793 // WithArgs<k>(an_action) (defined below) as a synonym. 1794 template <size_t k, typename InnerAction> 1795 internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( 1796 InnerAction&& action) { 1797 return {std::forward<InnerAction>(action)}; 1798 } 1799 1800 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes 1801 // the selected arguments of the mock function to an_action and 1802 // performs it. It serves as an adaptor between actions with 1803 // different argument lists. 1804 template <size_t k, size_t... ks, typename InnerAction> 1805 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> 1806 WithArgs(InnerAction&& action) { 1807 return {std::forward<InnerAction>(action)}; 1808 } 1809 1810 // WithoutArgs(inner_action) can be used in a mock function with a 1811 // non-empty argument list to perform inner_action, which takes no 1812 // argument. In other words, it adapts an action accepting no 1813 // argument to one that accepts (and ignores) arguments. 1814 template <typename InnerAction> 1815 internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( 1816 InnerAction&& action) { 1817 return {std::forward<InnerAction>(action)}; 1818 } 1819 1820 // Creates an action that returns a value. 1821 // 1822 // The returned type can be used with a mock function returning a non-void, 1823 // non-reference type U as follows: 1824 // 1825 // * If R is convertible to U and U is move-constructible, then the action can 1826 // be used with WillOnce. 1827 // 1828 // * If const R& is convertible to U and U is copy-constructible, then the 1829 // action can be used with both WillOnce and WillRepeatedly. 1830 // 1831 // The mock expectation contains the R value from which the U return value is 1832 // constructed (a move/copy of the argument to Return). This means that the R 1833 // value will survive at least until the mock object's expectations are cleared 1834 // or the mock object is destroyed, meaning that U can safely be a 1835 // reference-like type such as std::string_view: 1836 // 1837 // // The mock function returns a view of a copy of the string fed to 1838 // // Return. The view is valid even after the action is performed. 1839 // MockFunction<std::string_view()> mock; 1840 // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); 1841 // const std::string_view result = mock.AsStdFunction()(); 1842 // EXPECT_EQ("taco", result); 1843 // 1844 template <typename R> 1845 internal::ReturnAction<R> Return(R value) { 1846 return internal::ReturnAction<R>(std::move(value)); 1847 } 1848 1849 // Creates an action that returns NULL. 1850 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { 1851 return MakePolymorphicAction(internal::ReturnNullAction()); 1852 } 1853 1854 // Creates an action that returns from a void function. 1855 inline PolymorphicAction<internal::ReturnVoidAction> Return() { 1856 return MakePolymorphicAction(internal::ReturnVoidAction()); 1857 } 1858 1859 // Creates an action that returns the reference to a variable. 1860 template <typename R> 1861 inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT 1862 return internal::ReturnRefAction<R>(x); 1863 } 1864 1865 // Prevent using ReturnRef on reference to temporary. 1866 template <typename R, R* = nullptr> 1867 internal::ReturnRefAction<R> ReturnRef(R&&) = delete; 1868 1869 // Creates an action that returns the reference to a copy of the 1870 // argument. The copy is created when the action is constructed and 1871 // lives as long as the action. 1872 template <typename R> 1873 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { 1874 return internal::ReturnRefOfCopyAction<R>(x); 1875 } 1876 1877 // DEPRECATED: use Return(x) directly with WillOnce. 1878 // 1879 // Modifies the parent action (a Return() action) to perform a move of the 1880 // argument instead of a copy. 1881 // Return(ByMove()) actions can only be executed once and will assert this 1882 // invariant. 1883 template <typename R> 1884 internal::ByMoveWrapper<R> ByMove(R x) { 1885 return internal::ByMoveWrapper<R>(std::move(x)); 1886 } 1887 1888 // Creates an action that returns an element of `vals`. Calling this action will 1889 // repeatedly return the next value from `vals` until it reaches the end and 1890 // will restart from the beginning. 1891 template <typename T> 1892 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { 1893 return internal::ReturnRoundRobinAction<T>(std::move(vals)); 1894 } 1895 1896 // Creates an action that returns an element of `vals`. Calling this action will 1897 // repeatedly return the next value from `vals` until it reaches the end and 1898 // will restart from the beginning. 1899 template <typename T> 1900 internal::ReturnRoundRobinAction<T> ReturnRoundRobin( 1901 std::initializer_list<T> vals) { 1902 return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); 1903 } 1904 1905 // Creates an action that does the default action for the give mock function. 1906 inline internal::DoDefaultAction DoDefault() { 1907 return internal::DoDefaultAction(); 1908 } 1909 1910 // Creates an action that sets the variable pointed by the N-th 1911 // (0-based) function argument to 'value'. 1912 template <size_t N, typename T> 1913 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { 1914 return {std::move(value)}; 1915 } 1916 1917 // The following version is DEPRECATED. 1918 template <size_t N, typename T> 1919 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { 1920 return {std::move(value)}; 1921 } 1922 1923 // Creates an action that sets a pointer referent to a given value. 1924 template <typename T1, typename T2> 1925 PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { 1926 return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); 1927 } 1928 1929 #ifndef GTEST_OS_WINDOWS_MOBILE 1930 1931 // Creates an action that sets errno and returns the appropriate error. 1932 template <typename T> 1933 PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( 1934 int errval, T result) { 1935 return MakePolymorphicAction( 1936 internal::SetErrnoAndReturnAction<T>(errval, result)); 1937 } 1938 1939 #endif // !GTEST_OS_WINDOWS_MOBILE 1940 1941 // Various overloads for Invoke(). 1942 1943 // Legacy function. 1944 // Actions can now be implicitly constructed from callables. No need to create 1945 // wrapper objects. 1946 // This function exists for backwards compatibility. 1947 template <typename FunctionImpl> 1948 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { 1949 return std::forward<FunctionImpl>(function_impl); 1950 } 1951 1952 // Creates an action that invokes the given method on the given object 1953 // with the mock function's arguments. 1954 template <class Class, typename MethodPtr> 1955 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, 1956 MethodPtr method_ptr) { 1957 return {obj_ptr, method_ptr}; 1958 } 1959 1960 // Creates an action that invokes 'function_impl' with no argument. 1961 template <typename FunctionImpl> 1962 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> 1963 InvokeWithoutArgs(FunctionImpl function_impl) { 1964 return {std::move(function_impl)}; 1965 } 1966 1967 // Creates an action that invokes the given method on the given object 1968 // with no argument. 1969 template <class Class, typename MethodPtr> 1970 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( 1971 Class* obj_ptr, MethodPtr method_ptr) { 1972 return {obj_ptr, method_ptr}; 1973 } 1974 1975 // Creates an action that performs an_action and throws away its 1976 // result. In other words, it changes the return type of an_action to 1977 // void. an_action MUST NOT return void, or the code won't compile. 1978 template <typename A> 1979 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { 1980 return internal::IgnoreResultAction<A>(an_action); 1981 } 1982 1983 // Creates a reference wrapper for the given L-value. If necessary, 1984 // you can explicitly specify the type of the reference. For example, 1985 // suppose 'derived' is an object of type Derived, ByRef(derived) 1986 // would wrap a Derived&. If you want to wrap a const Base& instead, 1987 // where Base is a base class of Derived, just write: 1988 // 1989 // ByRef<const Base>(derived) 1990 // 1991 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. 1992 // However, it may still be used for consistency with ByMove(). 1993 template <typename T> 1994 inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT 1995 return ::std::reference_wrapper<T>(l_value); 1996 } 1997 1998 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new 1999 // instance of type T, constructed on the heap with constructor arguments 2000 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. 2001 template <typename T, typename... Params> 2002 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( 2003 Params&&... params) { 2004 return {std::forward_as_tuple(std::forward<Params>(params)...)}; 2005 } 2006 2007 // Action ReturnArg<k>() returns the k-th argument of the mock function. 2008 template <size_t k> 2009 internal::ReturnArgAction<k> ReturnArg() { 2010 return {}; 2011 } 2012 2013 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the 2014 // mock function to *pointer. 2015 template <size_t k, typename Ptr> 2016 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { 2017 return {pointer}; 2018 } 2019 2020 // Action SaveArgPointee<k>(pointer) saves the value pointed to 2021 // by the k-th (0-based) argument of the mock function to *pointer. 2022 template <size_t k, typename Ptr> 2023 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { 2024 return {pointer}; 2025 } 2026 2027 // Action SetArgReferee<k>(value) assigns 'value' to the variable 2028 // referenced by the k-th (0-based) argument of the mock function. 2029 template <size_t k, typename T> 2030 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( 2031 T&& value) { 2032 return {std::forward<T>(value)}; 2033 } 2034 2035 // Action SetArrayArgument<k>(first, last) copies the elements in 2036 // source range [first, last) to the array pointed to by the k-th 2037 // (0-based) argument, which can be either a pointer or an 2038 // iterator. The action does not take ownership of the elements in the 2039 // source range. 2040 template <size_t k, typename I1, typename I2> 2041 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, 2042 I2 last) { 2043 return {first, last}; 2044 } 2045 2046 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock 2047 // function. 2048 template <size_t k> 2049 internal::DeleteArgAction<k> DeleteArg() { 2050 return {}; 2051 } 2052 2053 // This action returns the value pointed to by 'pointer'. 2054 template <typename Ptr> 2055 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { 2056 return {pointer}; 2057 } 2058 2059 // Action Throw(exception) can be used in a mock function of any type 2060 // to throw the given exception. Any copyable value can be thrown. 2061 #if GTEST_HAS_EXCEPTIONS 2062 template <typename T> 2063 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { 2064 return {std::forward<T>(exception)}; 2065 } 2066 #endif // GTEST_HAS_EXCEPTIONS 2067 2068 namespace internal { 2069 2070 // A macro from the ACTION* family (defined later in gmock-generated-actions.h) 2071 // defines an action that can be used in a mock function. Typically, 2072 // these actions only care about a subset of the arguments of the mock 2073 // function. For example, if such an action only uses the second 2074 // argument, it can be used in any mock function that takes >= 2 2075 // arguments where the type of the second argument is compatible. 2076 // 2077 // Therefore, the action implementation must be prepared to take more 2078 // arguments than it needs. The ExcessiveArg type is used to 2079 // represent those excessive arguments. In order to keep the compiler 2080 // error messages tractable, we define it in the testing namespace 2081 // instead of testing::internal. However, this is an INTERNAL TYPE 2082 // and subject to change without notice, so a user MUST NOT USE THIS 2083 // TYPE DIRECTLY. 2084 struct ExcessiveArg {}; 2085 2086 // Builds an implementation of an Action<> for some particular signature, using 2087 // a class defined by an ACTION* macro. 2088 template <typename F, typename Impl> 2089 struct ActionImpl; 2090 2091 template <typename Impl> 2092 struct ImplBase { 2093 struct Holder { 2094 // Allows each copy of the Action<> to get to the Impl. 2095 explicit operator const Impl&() const { return *ptr; } 2096 std::shared_ptr<Impl> ptr; 2097 }; 2098 using type = typename std::conditional<std::is_constructible<Impl>::value, 2099 Impl, Holder>::type; 2100 }; 2101 2102 template <typename R, typename... Args, typename Impl> 2103 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { 2104 using Base = typename ImplBase<Impl>::type; 2105 using function_type = R(Args...); 2106 using args_type = std::tuple<Args...>; 2107 2108 ActionImpl() = default; // Only defined if appropriate for Base. 2109 explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} 2110 2111 R operator()(Args&&... arg) const { 2112 static constexpr size_t kMaxArgs = 2113 sizeof...(Args) <= 10 ? sizeof...(Args) : 10; 2114 return Apply(MakeIndexSequence<kMaxArgs>{}, 2115 MakeIndexSequence<10 - kMaxArgs>{}, 2116 args_type{std::forward<Args>(arg)...}); 2117 } 2118 2119 template <std::size_t... arg_id, std::size_t... excess_id> 2120 R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, 2121 const args_type& args) const { 2122 // Impl need not be specific to the signature of action being implemented; 2123 // only the implementing function body needs to have all of the specific 2124 // types instantiated. Up to 10 of the args that are provided by the 2125 // args_type get passed, followed by a dummy of unspecified type for the 2126 // remainder up to 10 explicit args. 2127 static constexpr ExcessiveArg kExcessArg{}; 2128 return static_cast<const Impl&>(*this) 2129 .template gmock_PerformImpl< 2130 /*function_type=*/function_type, /*return_type=*/R, 2131 /*args_type=*/args_type, 2132 /*argN_type=*/ 2133 typename std::tuple_element<arg_id, args_type>::type...>( 2134 /*args=*/args, std::get<arg_id>(args)..., 2135 ((void)excess_id, kExcessArg)...); 2136 } 2137 }; 2138 2139 // Stores a default-constructed Impl as part of the Action<>'s 2140 // std::function<>. The Impl should be trivial to copy. 2141 template <typename F, typename Impl> 2142 ::testing::Action<F> MakeAction() { 2143 return ::testing::Action<F>(ActionImpl<F, Impl>()); 2144 } 2145 2146 // Stores just the one given instance of Impl. 2147 template <typename F, typename Impl> 2148 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { 2149 return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); 2150 } 2151 2152 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ 2153 , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ 2154 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ 2155 const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ 2156 GMOCK_INTERNAL_ARG_UNUSED, , 10) 2157 2158 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i 2159 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ 2160 const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) 2161 2162 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type 2163 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ 2164 GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) 2165 2166 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type 2167 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ 2168 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) 2169 2170 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type 2171 #define GMOCK_ACTION_TYPE_PARAMS_(params) \ 2172 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) 2173 2174 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ 2175 , param##_type gmock_p##i 2176 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ 2177 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) 2178 2179 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ 2180 , std::forward<param##_type>(gmock_p##i) 2181 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ 2182 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) 2183 2184 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ 2185 , param(::std::forward<param##_type>(gmock_p##i)) 2186 #define GMOCK_ACTION_INIT_PARAMS_(params) \ 2187 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) 2188 2189 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; 2190 #define GMOCK_ACTION_FIELD_PARAMS_(params) \ 2191 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) 2192 2193 #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ 2194 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2195 class full_name { \ 2196 public: \ 2197 explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 2198 : impl_(std::make_shared<gmock_Impl>( \ 2199 GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ 2200 full_name(const full_name&) = default; \ 2201 full_name(full_name&&) noexcept = default; \ 2202 template <typename F> \ 2203 operator ::testing::Action<F>() const { \ 2204 return ::testing::internal::MakeAction<F>(impl_); \ 2205 } \ 2206 \ 2207 private: \ 2208 class gmock_Impl { \ 2209 public: \ 2210 explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 2211 : GMOCK_ACTION_INIT_PARAMS_(params) {} \ 2212 template <typename function_type, typename return_type, \ 2213 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2214 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 2215 GMOCK_ACTION_FIELD_PARAMS_(params) \ 2216 }; \ 2217 std::shared_ptr<const gmock_Impl> impl_; \ 2218 }; \ 2219 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2220 inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 2221 GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ 2222 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2223 inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 2224 GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ 2225 return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ 2226 GMOCK_ACTION_GVALUE_PARAMS_(params)); \ 2227 } \ 2228 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2229 template <typename function_type, typename return_type, typename args_type, \ 2230 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2231 return_type \ 2232 full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ 2233 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 2234 2235 } // namespace internal 2236 2237 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. 2238 #define ACTION(name) \ 2239 class name##Action { \ 2240 public: \ 2241 explicit name##Action() noexcept {} \ 2242 name##Action(const name##Action&) noexcept {} \ 2243 template <typename F> \ 2244 operator ::testing::Action<F>() const { \ 2245 return ::testing::internal::MakeAction<F, gmock_Impl>(); \ 2246 } \ 2247 \ 2248 private: \ 2249 class gmock_Impl { \ 2250 public: \ 2251 template <typename function_type, typename return_type, \ 2252 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2253 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 2254 }; \ 2255 }; \ 2256 inline name##Action name() GTEST_MUST_USE_RESULT_; \ 2257 inline name##Action name() { return name##Action(); } \ 2258 template <typename function_type, typename return_type, typename args_type, \ 2259 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2260 return_type name##Action::gmock_Impl::gmock_PerformImpl( \ 2261 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 2262 2263 #define ACTION_P(name, ...) \ 2264 GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) 2265 2266 #define ACTION_P2(name, ...) \ 2267 GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) 2268 2269 #define ACTION_P3(name, ...) \ 2270 GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) 2271 2272 #define ACTION_P4(name, ...) \ 2273 GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) 2274 2275 #define ACTION_P5(name, ...) \ 2276 GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) 2277 2278 #define ACTION_P6(name, ...) \ 2279 GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) 2280 2281 #define ACTION_P7(name, ...) \ 2282 GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) 2283 2284 #define ACTION_P8(name, ...) \ 2285 GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) 2286 2287 #define ACTION_P9(name, ...) \ 2288 GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) 2289 2290 #define ACTION_P10(name, ...) \ 2291 GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) 2292 2293 } // namespace testing 2294 2295 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 2296 2297 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 2298