xref: /freebsd/contrib/googletest/docs/reference/matchers.md (revision 28f6c2f292806bf31230a959bc4b19d7081669a7)
1*28f6c2f2SEnji Cooper# Matchers Reference
2*28f6c2f2SEnji Cooper
3*28f6c2f2SEnji CooperA **matcher** matches a *single* argument. You can use it inside `ON_CALL()` or
4*28f6c2f2SEnji Cooper`EXPECT_CALL()`, or use it to validate a value directly using two macros:
5*28f6c2f2SEnji Cooper
6*28f6c2f2SEnji Cooper| Macro                                | Description                           |
7*28f6c2f2SEnji Cooper| :----------------------------------- | :------------------------------------ |
8*28f6c2f2SEnji Cooper| `EXPECT_THAT(actual_value, matcher)` | Asserts that `actual_value` matches `matcher`. |
9*28f6c2f2SEnji Cooper| `ASSERT_THAT(actual_value, matcher)` | The same as `EXPECT_THAT(actual_value, matcher)`, except that it generates a **fatal** failure. |
10*28f6c2f2SEnji Cooper
11*28f6c2f2SEnji Cooper{: .callout .warning}
12*28f6c2f2SEnji Cooper**WARNING:** Equality matching via `EXPECT_THAT(actual_value, expected_value)`
13*28f6c2f2SEnji Cooperis supported, however note that implicit conversions can cause surprising
14*28f6c2f2SEnji Cooperresults. For example, `EXPECT_THAT(some_bool, "some string")` will compile and
15*28f6c2f2SEnji Coopermay pass unintentionally.
16*28f6c2f2SEnji Cooper
17*28f6c2f2SEnji Cooper**BEST PRACTICE:** Prefer to make the comparison explicit via
18*28f6c2f2SEnji Cooper`EXPECT_THAT(actual_value, Eq(expected_value))` or `EXPECT_EQ(actual_value,
19*28f6c2f2SEnji Cooperexpected_value)`.
20*28f6c2f2SEnji Cooper
21*28f6c2f2SEnji CooperBuilt-in matchers (where `argument` is the function argument, e.g.
22*28f6c2f2SEnji Cooper`actual_value` in the example above, or when used in the context of
23*28f6c2f2SEnji Cooper`EXPECT_CALL(mock_object, method(matchers))`, the arguments of `method`) are
24*28f6c2f2SEnji Cooperdivided into several categories. All matchers are defined in the `::testing`
25*28f6c2f2SEnji Coopernamespace unless otherwise noted.
26*28f6c2f2SEnji Cooper
27*28f6c2f2SEnji Cooper## Wildcard
28*28f6c2f2SEnji Cooper
29*28f6c2f2SEnji CooperMatcher                     | Description
30*28f6c2f2SEnji Cooper:-------------------------- | :-----------------------------------------------
31*28f6c2f2SEnji Cooper`_`                         | `argument` can be any value of the correct type.
32*28f6c2f2SEnji Cooper`A<type>()` or `An<type>()` | `argument` can be any value of type `type`.
33*28f6c2f2SEnji Cooper
34*28f6c2f2SEnji Cooper## Generic Comparison
35*28f6c2f2SEnji Cooper
36*28f6c2f2SEnji Cooper| Matcher                | Description                                         |
37*28f6c2f2SEnji Cooper| :--------------------- | :-------------------------------------------------- |
38*28f6c2f2SEnji Cooper| `Eq(value)` or `value` | `argument == value`                                 |
39*28f6c2f2SEnji Cooper| `Ge(value)`            | `argument >= value`                                 |
40*28f6c2f2SEnji Cooper| `Gt(value)`            | `argument > value`                                  |
41*28f6c2f2SEnji Cooper| `Le(value)`            | `argument <= value`                                 |
42*28f6c2f2SEnji Cooper| `Lt(value)`            | `argument < value`                                  |
43*28f6c2f2SEnji Cooper| `Ne(value)`            | `argument != value`                                 |
44*28f6c2f2SEnji Cooper| `IsFalse()`            | `argument` evaluates to `false` in a Boolean context. |
45*28f6c2f2SEnji Cooper| `IsTrue()`             | `argument` evaluates to `true` in a Boolean context. |
46*28f6c2f2SEnji Cooper| `IsNull()`             | `argument` is a `NULL` pointer (raw or smart).      |
47*28f6c2f2SEnji Cooper| `NotNull()`            | `argument` is a non-null pointer (raw or smart).    |
48*28f6c2f2SEnji Cooper| `Optional(m)`          | `argument` is `optional<>` that contains a value matching `m`. (For testing whether an `optional<>` is set, check for equality with `nullopt`. You may need to use `Eq(nullopt)` if the inner type doesn't have `==`.)|
49*28f6c2f2SEnji Cooper| `VariantWith<T>(m)`    | `argument` is `variant<>` that holds the alternative of type T with a value matching `m`. |
50*28f6c2f2SEnji Cooper| `Ref(variable)`        | `argument` is a reference to `variable`.            |
51*28f6c2f2SEnji Cooper| `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded. |
52*28f6c2f2SEnji Cooper
53*28f6c2f2SEnji CooperExcept `Ref()`, these matchers make a *copy* of `value` in case it's modified or
54*28f6c2f2SEnji Cooperdestructed later. If the compiler complains that `value` doesn't have a public
55*28f6c2f2SEnji Coopercopy constructor, try wrap it in `std::ref()`, e.g.
56*28f6c2f2SEnji Cooper`Eq(std::ref(non_copyable_value))`. If you do that, make sure
57*28f6c2f2SEnji Cooper`non_copyable_value` is not changed afterwards, or the meaning of your matcher
58*28f6c2f2SEnji Cooperwill be changed.
59*28f6c2f2SEnji Cooper
60*28f6c2f2SEnji Cooper`IsTrue` and `IsFalse` are useful when you need to use a matcher, or for types
61*28f6c2f2SEnji Cooperthat can be explicitly converted to Boolean, but are not implicitly converted to
62*28f6c2f2SEnji CooperBoolean. In other cases, you can use the basic
63*28f6c2f2SEnji Cooper[`EXPECT_TRUE` and `EXPECT_FALSE`](assertions.md#boolean) assertions.
64*28f6c2f2SEnji Cooper
65*28f6c2f2SEnji Cooper## Floating-Point Matchers {#FpMatchers}
66*28f6c2f2SEnji Cooper
67*28f6c2f2SEnji Cooper| Matcher                          | Description                        |
68*28f6c2f2SEnji Cooper| :------------------------------- | :--------------------------------- |
69*28f6c2f2SEnji Cooper| `DoubleEq(a_double)`             | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal. |
70*28f6c2f2SEnji Cooper| `FloatEq(a_float)`               | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. |
71*28f6c2f2SEnji Cooper| `NanSensitiveDoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. |
72*28f6c2f2SEnji Cooper| `NanSensitiveFloatEq(a_float)`   | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. |
73*28f6c2f2SEnji Cooper| `IsNan()`   | `argument` is any floating-point type with a NaN value. |
74*28f6c2f2SEnji Cooper
75*28f6c2f2SEnji CooperThe above matchers use ULP-based comparison (the same as used in googletest).
76*28f6c2f2SEnji CooperThey automatically pick a reasonable error bound based on the absolute value of
77*28f6c2f2SEnji Cooperthe expected value. `DoubleEq()` and `FloatEq()` conform to the IEEE standard,
78*28f6c2f2SEnji Cooperwhich requires comparing two NaNs for equality to return false. The
79*28f6c2f2SEnji Cooper`NanSensitive*` version instead treats two NaNs as equal, which is often what a
80*28f6c2f2SEnji Cooperuser wants.
81*28f6c2f2SEnji Cooper
82*28f6c2f2SEnji Cooper| Matcher                                           | Description              |
83*28f6c2f2SEnji Cooper| :------------------------------------------------ | :----------------------- |
84*28f6c2f2SEnji Cooper| `DoubleNear(a_double, max_abs_error)`             | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
85*28f6c2f2SEnji Cooper| `FloatNear(a_float, max_abs_error)`               | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
86*28f6c2f2SEnji Cooper| `NanSensitiveDoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
87*28f6c2f2SEnji Cooper| `NanSensitiveFloatNear(a_float, max_abs_error)`   | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
88*28f6c2f2SEnji Cooper
89*28f6c2f2SEnji Cooper## String Matchers
90*28f6c2f2SEnji Cooper
91*28f6c2f2SEnji CooperThe `argument` can be either a C string or a C++ string object:
92*28f6c2f2SEnji Cooper
93*28f6c2f2SEnji Cooper| Matcher                 | Description                                        |
94*28f6c2f2SEnji Cooper| :---------------------- | :------------------------------------------------- |
95*28f6c2f2SEnji Cooper| `ContainsRegex(string)`  | `argument` matches the given regular expression.  |
96*28f6c2f2SEnji Cooper| `EndsWith(suffix)`       | `argument` ends with string `suffix`.             |
97*28f6c2f2SEnji Cooper| `HasSubstr(string)`      | `argument` contains `string` as a sub-string.     |
98*28f6c2f2SEnji Cooper| `IsEmpty()`              | `argument` is an empty string.                    |
99*28f6c2f2SEnji Cooper| `MatchesRegex(string)`   | `argument` matches the given regular expression with the match starting at the first character and ending at the last character. |
100*28f6c2f2SEnji Cooper| `StartsWith(prefix)`     | `argument` starts with string `prefix`.           |
101*28f6c2f2SEnji Cooper| `StrCaseEq(string)`      | `argument` is equal to `string`, ignoring case.   |
102*28f6c2f2SEnji Cooper| `StrCaseNe(string)`      | `argument` is not equal to `string`, ignoring case. |
103*28f6c2f2SEnji Cooper| `StrEq(string)`          | `argument` is equal to `string`.                  |
104*28f6c2f2SEnji Cooper| `StrNe(string)`          | `argument` is not equal to `string`.              |
105*28f6c2f2SEnji Cooper| `WhenBase64Unescaped(m)` | `argument` is a base-64 escaped string whose unescaped string matches `m`.  The web-safe format from [RFC 4648](https://www.rfc-editor.org/rfc/rfc4648#section-5) is supported. |
106*28f6c2f2SEnji Cooper
107*28f6c2f2SEnji Cooper`ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They
108*28f6c2f2SEnji Cooperuse the regular expression syntax defined
109*28f6c2f2SEnji Cooper[here](../advanced.md#regular-expression-syntax). All of these matchers, except
110*28f6c2f2SEnji Cooper`ContainsRegex()` and `MatchesRegex()` work for wide strings as well.
111*28f6c2f2SEnji Cooper
112*28f6c2f2SEnji Cooper## Container Matchers
113*28f6c2f2SEnji Cooper
114*28f6c2f2SEnji CooperMost STL-style containers support `==`, so you can use `Eq(expected_container)`
115*28f6c2f2SEnji Cooperor simply `expected_container` to match a container exactly. If you want to
116*28f6c2f2SEnji Cooperwrite the elements in-line, match them more flexibly, or get more informative
117*28f6c2f2SEnji Coopermessages, you can use:
118*28f6c2f2SEnji Cooper
119*28f6c2f2SEnji Cooper| Matcher                                   | Description                      |
120*28f6c2f2SEnji Cooper| :---------------------------------------- | :------------------------------- |
121*28f6c2f2SEnji Cooper| `BeginEndDistanceIs(m)` | `argument` is a container whose `begin()` and `end()` iterators are separated by a number of increments matching `m`. E.g. `BeginEndDistanceIs(2)` or `BeginEndDistanceIs(Lt(2))`. For containers that define a `size()` method, `SizeIs(m)` may be more efficient. |
122*28f6c2f2SEnji Cooper| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
123*28f6c2f2SEnji Cooper| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
124*28f6c2f2SEnji Cooper| `Contains(e).Times(n)` | `argument` contains elements that match `e`, which can be either a value or a matcher, and the number of matches is `n`, which can be either a value or a matcher. Unlike the plain `Contains` and `Each` this allows to check for arbitrary occurrences including testing for absence with `Contains(e).Times(0)`. |
125*28f6c2f2SEnji Cooper| `Each(e)` | `argument` is a container where *every* element matches `e`, which can be either a value or a matcher. |
126*28f6c2f2SEnji Cooper| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the *i*-th element matches `ei`, which can be a value or a matcher. |
127*28f6c2f2SEnji Cooper| `ElementsAreArray({e0, e1, ..., en})`, `ElementsAreArray(a_container)`, `ElementsAreArray(begin, end)`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
128*28f6c2f2SEnji Cooper| `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
129*28f6c2f2SEnji Cooper| `IsSubsetOf({e0, e1, ..., en})`, `IsSubsetOf(a_container)`, `IsSubsetOf(begin, end)`, `IsSubsetOf(array)`, or `IsSubsetOf(array, count)` | `argument` matches `UnorderedElementsAre(x0, x1, ..., xk)` for some subset `{x0, x1, ..., xk}` of the expected matchers. |
130*28f6c2f2SEnji Cooper| `IsSupersetOf({e0, e1, ..., en})`, `IsSupersetOf(a_container)`, `IsSupersetOf(begin, end)`, `IsSupersetOf(array)`, or `IsSupersetOf(array, count)` | Some subset of `argument` matches `UnorderedElementsAre(`expected matchers`)`. |
131*28f6c2f2SEnji Cooper| `Pointwise(m, container)`, `Pointwise(m, {e0, e1, ..., en})` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
132*28f6c2f2SEnji Cooper| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
133*28f6c2f2SEnji Cooper| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under *some* permutation of the elements, each element matches an `ei` (for a different `i`), which can be a value or a matcher. |
134*28f6c2f2SEnji Cooper| `UnorderedElementsAreArray({e0, e1, ..., en})`, `UnorderedElementsAreArray(a_container)`, `UnorderedElementsAreArray(begin, end)`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
135*28f6c2f2SEnji Cooper| `UnorderedPointwise(m, container)`, `UnorderedPointwise(m, {e0, e1, ..., en})` | Like `Pointwise(m, container)`, but ignores the order of elements. |
136*28f6c2f2SEnji Cooper| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements 1, 2, and 3, ignoring order. |
137*28f6c2f2SEnji Cooper| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater(), ElementsAre(3, 2, 1))`. |
138*28f6c2f2SEnji Cooper
139*28f6c2f2SEnji Cooper**Notes:**
140*28f6c2f2SEnji Cooper
141*28f6c2f2SEnji Cooper*   These matchers can also match:
142*28f6c2f2SEnji Cooper    1.  a native array passed by reference (e.g. in `Foo(const int (&a)[5])`),
143*28f6c2f2SEnji Cooper        and
144*28f6c2f2SEnji Cooper    2.  an array passed as a pointer and a count (e.g. in `Bar(const T* buffer,
145*28f6c2f2SEnji Cooper        int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)).
146*28f6c2f2SEnji Cooper*   The array being matched may be multi-dimensional (i.e. its elements can be
147*28f6c2f2SEnji Cooper    arrays).
148*28f6c2f2SEnji Cooper*   `m` in `Pointwise(m, ...)` and `UnorderedPointwise(m, ...)` should be a
149*28f6c2f2SEnji Cooper    matcher for `::std::tuple<T, U>` where `T` and `U` are the element type of
150*28f6c2f2SEnji Cooper    the actual container and the expected container, respectively. For example,
151*28f6c2f2SEnji Cooper    to compare two `Foo` containers where `Foo` doesn't support `operator==`,
152*28f6c2f2SEnji Cooper    one might write:
153*28f6c2f2SEnji Cooper
154*28f6c2f2SEnji Cooper    ```cpp
155*28f6c2f2SEnji Cooper    MATCHER(FooEq, "") {
156*28f6c2f2SEnji Cooper      return std::get<0>(arg).Equals(std::get<1>(arg));
157*28f6c2f2SEnji Cooper    }
158*28f6c2f2SEnji Cooper    ...
159*28f6c2f2SEnji Cooper    EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
160*28f6c2f2SEnji Cooper    ```
161*28f6c2f2SEnji Cooper
162*28f6c2f2SEnji Cooper## Member Matchers
163*28f6c2f2SEnji Cooper
164*28f6c2f2SEnji Cooper| Matcher                         | Description                                |
165*28f6c2f2SEnji Cooper| :------------------------------ | :----------------------------------------- |
166*28f6c2f2SEnji Cooper| `Field(&class::field, m)`       | `argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. |
167*28f6c2f2SEnji Cooper| `Field(field_name, &class::field, m)` | The same as the two-parameter version, but provides a better error message. |
168*28f6c2f2SEnji Cooper| `Key(e)`                        | `argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`. |
169*28f6c2f2SEnji Cooper| `Pair(m1, m2)`                  | `argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
170*28f6c2f2SEnji Cooper| `FieldsAre(m...)`                   | `argument` is a compatible object where each field matches piecewise with the matchers `m...`. A compatible object is any that supports the `std::tuple_size<Obj>`+`get<I>(obj)` protocol. In C++17 and up this also supports types compatible with structured bindings, like aggregates. |
171*28f6c2f2SEnji Cooper| `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. The method `property()` must take no argument and be declared as `const`. |
172*28f6c2f2SEnji Cooper| `Property(property_name, &class::property, m)` | The same as the two-parameter version, but provides a better error message.
173*28f6c2f2SEnji Cooper
174*28f6c2f2SEnji Cooper**Notes:**
175*28f6c2f2SEnji Cooper
176*28f6c2f2SEnji Cooper*   You can use `FieldsAre()` to match any type that supports structured
177*28f6c2f2SEnji Cooper    bindings, such as `std::tuple`, `std::pair`, `std::array`, and aggregate
178*28f6c2f2SEnji Cooper    types. For example:
179*28f6c2f2SEnji Cooper
180*28f6c2f2SEnji Cooper    ```cpp
181*28f6c2f2SEnji Cooper    std::tuple<int, std::string> my_tuple{7, "hello world"};
182*28f6c2f2SEnji Cooper    EXPECT_THAT(my_tuple, FieldsAre(Ge(0), HasSubstr("hello")));
183*28f6c2f2SEnji Cooper
184*28f6c2f2SEnji Cooper    struct MyStruct {
185*28f6c2f2SEnji Cooper      int value = 42;
186*28f6c2f2SEnji Cooper      std::string greeting = "aloha";
187*28f6c2f2SEnji Cooper    };
188*28f6c2f2SEnji Cooper    MyStruct s;
189*28f6c2f2SEnji Cooper    EXPECT_THAT(s, FieldsAre(42, "aloha"));
190*28f6c2f2SEnji Cooper    ```
191*28f6c2f2SEnji Cooper
192*28f6c2f2SEnji Cooper*   Don't use `Property()` against member functions that you do not own, because
193*28f6c2f2SEnji Cooper    taking addresses of functions is fragile and generally not part of the
194*28f6c2f2SEnji Cooper    contract of the function.
195*28f6c2f2SEnji Cooper
196*28f6c2f2SEnji Cooper## Matching the Result of a Function, Functor, or Callback
197*28f6c2f2SEnji Cooper
198*28f6c2f2SEnji Cooper| Matcher          | Description                                       |
199*28f6c2f2SEnji Cooper| :--------------- | :------------------------------------------------ |
200*28f6c2f2SEnji Cooper| `ResultOf(f, m)` | `f(argument)` matches matcher `m`, where `f` is a function or functor. |
201*28f6c2f2SEnji Cooper| `ResultOf(result_description, f, m)` | The same as the two-parameter version, but provides a better error message.
202*28f6c2f2SEnji Cooper
203*28f6c2f2SEnji Cooper## Pointer Matchers
204*28f6c2f2SEnji Cooper
205*28f6c2f2SEnji Cooper| Matcher                   | Description                                     |
206*28f6c2f2SEnji Cooper| :------------------------ | :---------------------------------------------- |
207*28f6c2f2SEnji Cooper| `Address(m)`              | the result of `std::addressof(argument)` matches `m`. |
208*28f6c2f2SEnji Cooper| `Pointee(m)`              | `argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`. |
209*28f6c2f2SEnji Cooper| `Pointer(m)`              | `argument` (either a smart pointer or a raw pointer) contains a pointer that matches `m`. `m` will match against the raw pointer regardless of the type of `argument`. |
210*28f6c2f2SEnji Cooper| `WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
211*28f6c2f2SEnji Cooper
212*28f6c2f2SEnji Cooper## Multi-argument Matchers {#MultiArgMatchers}
213*28f6c2f2SEnji Cooper
214*28f6c2f2SEnji CooperTechnically, all matchers match a *single* value. A "multi-argument" matcher is
215*28f6c2f2SEnji Cooperjust one that matches a *tuple*. The following matchers can be used to match a
216*28f6c2f2SEnji Coopertuple `(x, y)`:
217*28f6c2f2SEnji Cooper
218*28f6c2f2SEnji CooperMatcher | Description
219*28f6c2f2SEnji Cooper:------ | :----------
220*28f6c2f2SEnji Cooper`Eq()`  | `x == y`
221*28f6c2f2SEnji Cooper`Ge()`  | `x >= y`
222*28f6c2f2SEnji Cooper`Gt()`  | `x > y`
223*28f6c2f2SEnji Cooper`Le()`  | `x <= y`
224*28f6c2f2SEnji Cooper`Lt()`  | `x < y`
225*28f6c2f2SEnji Cooper`Ne()`  | `x != y`
226*28f6c2f2SEnji Cooper
227*28f6c2f2SEnji CooperYou can use the following selectors to pick a subset of the arguments (or
228*28f6c2f2SEnji Cooperreorder them) to participate in the matching:
229*28f6c2f2SEnji Cooper
230*28f6c2f2SEnji Cooper| Matcher                    | Description                                     |
231*28f6c2f2SEnji Cooper| :------------------------- | :---------------------------------------------- |
232*28f6c2f2SEnji Cooper| `AllArgs(m)`               | Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`. |
233*28f6c2f2SEnji Cooper| `Args<N1, N2, ..., Nk>(m)` | The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`. |
234*28f6c2f2SEnji Cooper
235*28f6c2f2SEnji Cooper## Composite Matchers
236*28f6c2f2SEnji Cooper
237*28f6c2f2SEnji CooperYou can make a matcher from one or more other matchers:
238*28f6c2f2SEnji Cooper
239*28f6c2f2SEnji Cooper| Matcher                          | Description                             |
240*28f6c2f2SEnji Cooper| :------------------------------- | :-------------------------------------- |
241*28f6c2f2SEnji Cooper| `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to `mn`. |
242*28f6c2f2SEnji Cooper| `AllOfArray({m0, m1, ..., mn})`, `AllOfArray(a_container)`, `AllOfArray(begin, end)`, `AllOfArray(array)`, or `AllOfArray(array, count)` | The same as `AllOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
243*28f6c2f2SEnji Cooper| `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers `m1` to `mn`. |
244*28f6c2f2SEnji Cooper| `AnyOfArray({m0, m1, ..., mn})`, `AnyOfArray(a_container)`, `AnyOfArray(begin, end)`, `AnyOfArray(array)`, or `AnyOfArray(array, count)` | The same as `AnyOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
245*28f6c2f2SEnji Cooper| `Not(m)` | `argument` doesn't match matcher `m`. |
246*28f6c2f2SEnji Cooper| `Conditional(cond, m1, m2)` | Matches matcher `m1` if `cond` evaluates to true, else matches `m2`.|
247*28f6c2f2SEnji Cooper
248*28f6c2f2SEnji Cooper## Adapters for Matchers
249*28f6c2f2SEnji Cooper
250*28f6c2f2SEnji Cooper| Matcher                 | Description                           |
251*28f6c2f2SEnji Cooper| :---------------------- | :------------------------------------ |
252*28f6c2f2SEnji Cooper| `MatcherCast<T>(m)`     | casts matcher `m` to type `Matcher<T>`. |
253*28f6c2f2SEnji Cooper| `SafeMatcherCast<T>(m)` | [safely casts](../gmock_cook_book.md#SafeMatcherCast) matcher `m` to type `Matcher<T>`. |
254*28f6c2f2SEnji Cooper| `Truly(predicate)`      | `predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor. |
255*28f6c2f2SEnji Cooper
256*28f6c2f2SEnji Cooper`AddressSatisfies(callback)` and `Truly(callback)` take ownership of `callback`,
257*28f6c2f2SEnji Cooperwhich must be a permanent callback.
258*28f6c2f2SEnji Cooper
259*28f6c2f2SEnji Cooper## Using Matchers as Predicates {#MatchersAsPredicatesCheat}
260*28f6c2f2SEnji Cooper
261*28f6c2f2SEnji Cooper| Matcher                       | Description                                 |
262*28f6c2f2SEnji Cooper| :---------------------------- | :------------------------------------------ |
263*28f6c2f2SEnji Cooper| `Matches(m)(value)` | evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor. |
264*28f6c2f2SEnji Cooper| `ExplainMatchResult(m, value, result_listener)` | evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. |
265*28f6c2f2SEnji Cooper| `Value(value, m)` | evaluates to `true` if `value` matches `m`. |
266*28f6c2f2SEnji Cooper
267*28f6c2f2SEnji Cooper## Defining Matchers
268*28f6c2f2SEnji Cooper
269*28f6c2f2SEnji Cooper| Macro                                | Description                           |
270*28f6c2f2SEnji Cooper| :----------------------------------- | :------------------------------------ |
271*28f6c2f2SEnji Cooper| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
272*28f6c2f2SEnji Cooper| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a matcher `IsDivisibleBy(n)` to match a number divisible by `n`. |
273*28f6c2f2SEnji Cooper| `MATCHER_P2(IsBetween, a, b, absl::StrCat(negation ? "isn't" : "is", " between ", PrintToString(a), " and ", PrintToString(b))) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
274*28f6c2f2SEnji Cooper
275*28f6c2f2SEnji Cooper**Notes:**
276*28f6c2f2SEnji Cooper
277*28f6c2f2SEnji Cooper1.  The `MATCHER*` macros cannot be used inside a function or class.
278*28f6c2f2SEnji Cooper2.  The matcher body must be *purely functional* (i.e. it cannot have any side
279*28f6c2f2SEnji Cooper    effect, and the result must not depend on anything other than the value
280*28f6c2f2SEnji Cooper    being matched and the matcher parameters).
281*28f6c2f2SEnji Cooper3.  You can use `PrintToString(x)` to convert a value `x` of any type to a
282*28f6c2f2SEnji Cooper    string.
283*28f6c2f2SEnji Cooper4.  You can use `ExplainMatchResult()` in a custom matcher to wrap another
284*28f6c2f2SEnji Cooper    matcher, for example:
285*28f6c2f2SEnji Cooper
286*28f6c2f2SEnji Cooper    ```cpp
287*28f6c2f2SEnji Cooper    MATCHER_P(NestedPropertyMatches, matcher, "") {
288*28f6c2f2SEnji Cooper      return ExplainMatchResult(matcher, arg.nested().property(), result_listener);
289*28f6c2f2SEnji Cooper    }
290*28f6c2f2SEnji Cooper    ```
291*28f6c2f2SEnji Cooper
292*28f6c2f2SEnji Cooper5.  You can use `DescribeMatcher<>` to describe another matcher. For example:
293*28f6c2f2SEnji Cooper
294*28f6c2f2SEnji Cooper    ```cpp
295*28f6c2f2SEnji Cooper    MATCHER_P(XAndYThat, matcher,
296*28f6c2f2SEnji Cooper              "X that " + DescribeMatcher<int>(matcher, negation) +
297*28f6c2f2SEnji Cooper                  (negation ? " or" : " and") + " Y that " +
298*28f6c2f2SEnji Cooper                  DescribeMatcher<double>(matcher, negation)) {
299*28f6c2f2SEnji Cooper      return ExplainMatchResult(matcher, arg.x(), result_listener) &&
300*28f6c2f2SEnji Cooper             ExplainMatchResult(matcher, arg.y(), result_listener);
301*28f6c2f2SEnji Cooper    }
302*28f6c2f2SEnji Cooper    ```
303