1*28f6c2f2SEnji Cooper# Matchers Reference 2*28f6c2f2SEnji Cooper 3*28f6c2f2SEnji CooperA **matcher** matches a *single* argument. You can use it inside `ON_CALL()` or 4*28f6c2f2SEnji Cooper`EXPECT_CALL()`, or use it to validate a value directly using two macros: 5*28f6c2f2SEnji Cooper 6*28f6c2f2SEnji Cooper| Macro | Description | 7*28f6c2f2SEnji Cooper| :----------------------------------- | :------------------------------------ | 8*28f6c2f2SEnji Cooper| `EXPECT_THAT(actual_value, matcher)` | Asserts that `actual_value` matches `matcher`. | 9*28f6c2f2SEnji Cooper| `ASSERT_THAT(actual_value, matcher)` | The same as `EXPECT_THAT(actual_value, matcher)`, except that it generates a **fatal** failure. | 10*28f6c2f2SEnji Cooper 11*28f6c2f2SEnji Cooper{: .callout .warning} 12*28f6c2f2SEnji Cooper**WARNING:** Equality matching via `EXPECT_THAT(actual_value, expected_value)` 13*28f6c2f2SEnji Cooperis supported, however note that implicit conversions can cause surprising 14*28f6c2f2SEnji Cooperresults. For example, `EXPECT_THAT(some_bool, "some string")` will compile and 15*28f6c2f2SEnji Coopermay pass unintentionally. 16*28f6c2f2SEnji Cooper 17*28f6c2f2SEnji Cooper**BEST PRACTICE:** Prefer to make the comparison explicit via 18*28f6c2f2SEnji Cooper`EXPECT_THAT(actual_value, Eq(expected_value))` or `EXPECT_EQ(actual_value, 19*28f6c2f2SEnji Cooperexpected_value)`. 20*28f6c2f2SEnji Cooper 21*28f6c2f2SEnji CooperBuilt-in matchers (where `argument` is the function argument, e.g. 22*28f6c2f2SEnji Cooper`actual_value` in the example above, or when used in the context of 23*28f6c2f2SEnji Cooper`EXPECT_CALL(mock_object, method(matchers))`, the arguments of `method`) are 24*28f6c2f2SEnji Cooperdivided into several categories. All matchers are defined in the `::testing` 25*28f6c2f2SEnji Coopernamespace unless otherwise noted. 26*28f6c2f2SEnji Cooper 27*28f6c2f2SEnji Cooper## Wildcard 28*28f6c2f2SEnji Cooper 29*28f6c2f2SEnji CooperMatcher | Description 30*28f6c2f2SEnji Cooper:-------------------------- | :----------------------------------------------- 31*28f6c2f2SEnji Cooper`_` | `argument` can be any value of the correct type. 32*28f6c2f2SEnji Cooper`A<type>()` or `An<type>()` | `argument` can be any value of type `type`. 33*28f6c2f2SEnji Cooper 34*28f6c2f2SEnji Cooper## Generic Comparison 35*28f6c2f2SEnji Cooper 36*28f6c2f2SEnji Cooper| Matcher | Description | 37*28f6c2f2SEnji Cooper| :--------------------- | :-------------------------------------------------- | 38*28f6c2f2SEnji Cooper| `Eq(value)` or `value` | `argument == value` | 39*28f6c2f2SEnji Cooper| `Ge(value)` | `argument >= value` | 40*28f6c2f2SEnji Cooper| `Gt(value)` | `argument > value` | 41*28f6c2f2SEnji Cooper| `Le(value)` | `argument <= value` | 42*28f6c2f2SEnji Cooper| `Lt(value)` | `argument < value` | 43*28f6c2f2SEnji Cooper| `Ne(value)` | `argument != value` | 44*28f6c2f2SEnji Cooper| `IsFalse()` | `argument` evaluates to `false` in a Boolean context. | 45*28f6c2f2SEnji Cooper| `IsTrue()` | `argument` evaluates to `true` in a Boolean context. | 46*28f6c2f2SEnji Cooper| `IsNull()` | `argument` is a `NULL` pointer (raw or smart). | 47*28f6c2f2SEnji Cooper| `NotNull()` | `argument` is a non-null pointer (raw or smart). | 48*28f6c2f2SEnji Cooper| `Optional(m)` | `argument` is `optional<>` that contains a value matching `m`. (For testing whether an `optional<>` is set, check for equality with `nullopt`. You may need to use `Eq(nullopt)` if the inner type doesn't have `==`.)| 49*28f6c2f2SEnji Cooper| `VariantWith<T>(m)` | `argument` is `variant<>` that holds the alternative of type T with a value matching `m`. | 50*28f6c2f2SEnji Cooper| `Ref(variable)` | `argument` is a reference to `variable`. | 51*28f6c2f2SEnji Cooper| `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded. | 52*28f6c2f2SEnji Cooper 53*28f6c2f2SEnji CooperExcept `Ref()`, these matchers make a *copy* of `value` in case it's modified or 54*28f6c2f2SEnji Cooperdestructed later. If the compiler complains that `value` doesn't have a public 55*28f6c2f2SEnji Coopercopy constructor, try wrap it in `std::ref()`, e.g. 56*28f6c2f2SEnji Cooper`Eq(std::ref(non_copyable_value))`. If you do that, make sure 57*28f6c2f2SEnji Cooper`non_copyable_value` is not changed afterwards, or the meaning of your matcher 58*28f6c2f2SEnji Cooperwill be changed. 59*28f6c2f2SEnji Cooper 60*28f6c2f2SEnji Cooper`IsTrue` and `IsFalse` are useful when you need to use a matcher, or for types 61*28f6c2f2SEnji Cooperthat can be explicitly converted to Boolean, but are not implicitly converted to 62*28f6c2f2SEnji CooperBoolean. In other cases, you can use the basic 63*28f6c2f2SEnji Cooper[`EXPECT_TRUE` and `EXPECT_FALSE`](assertions.md#boolean) assertions. 64*28f6c2f2SEnji Cooper 65*28f6c2f2SEnji Cooper## Floating-Point Matchers {#FpMatchers} 66*28f6c2f2SEnji Cooper 67*28f6c2f2SEnji Cooper| Matcher | Description | 68*28f6c2f2SEnji Cooper| :------------------------------- | :--------------------------------- | 69*28f6c2f2SEnji Cooper| `DoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal. | 70*28f6c2f2SEnji Cooper| `FloatEq(a_float)` | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. | 71*28f6c2f2SEnji Cooper| `NanSensitiveDoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. | 72*28f6c2f2SEnji Cooper| `NanSensitiveFloatEq(a_float)` | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. | 73*28f6c2f2SEnji Cooper| `IsNan()` | `argument` is any floating-point type with a NaN value. | 74*28f6c2f2SEnji Cooper 75*28f6c2f2SEnji CooperThe above matchers use ULP-based comparison (the same as used in googletest). 76*28f6c2f2SEnji CooperThey automatically pick a reasonable error bound based on the absolute value of 77*28f6c2f2SEnji Cooperthe expected value. `DoubleEq()` and `FloatEq()` conform to the IEEE standard, 78*28f6c2f2SEnji Cooperwhich requires comparing two NaNs for equality to return false. The 79*28f6c2f2SEnji Cooper`NanSensitive*` version instead treats two NaNs as equal, which is often what a 80*28f6c2f2SEnji Cooperuser wants. 81*28f6c2f2SEnji Cooper 82*28f6c2f2SEnji Cooper| Matcher | Description | 83*28f6c2f2SEnji Cooper| :------------------------------------------------ | :----------------------- | 84*28f6c2f2SEnji Cooper| `DoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal. | 85*28f6c2f2SEnji Cooper| `FloatNear(a_float, max_abs_error)` | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. | 86*28f6c2f2SEnji Cooper| `NanSensitiveDoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. | 87*28f6c2f2SEnji Cooper| `NanSensitiveFloatNear(a_float, max_abs_error)` | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. | 88*28f6c2f2SEnji Cooper 89*28f6c2f2SEnji Cooper## String Matchers 90*28f6c2f2SEnji Cooper 91*28f6c2f2SEnji CooperThe `argument` can be either a C string or a C++ string object: 92*28f6c2f2SEnji Cooper 93*28f6c2f2SEnji Cooper| Matcher | Description | 94*28f6c2f2SEnji Cooper| :---------------------- | :------------------------------------------------- | 95*28f6c2f2SEnji Cooper| `ContainsRegex(string)` | `argument` matches the given regular expression. | 96*28f6c2f2SEnji Cooper| `EndsWith(suffix)` | `argument` ends with string `suffix`. | 97*28f6c2f2SEnji Cooper| `HasSubstr(string)` | `argument` contains `string` as a sub-string. | 98*28f6c2f2SEnji Cooper| `IsEmpty()` | `argument` is an empty string. | 99*28f6c2f2SEnji Cooper| `MatchesRegex(string)` | `argument` matches the given regular expression with the match starting at the first character and ending at the last character. | 100*28f6c2f2SEnji Cooper| `StartsWith(prefix)` | `argument` starts with string `prefix`. | 101*28f6c2f2SEnji Cooper| `StrCaseEq(string)` | `argument` is equal to `string`, ignoring case. | 102*28f6c2f2SEnji Cooper| `StrCaseNe(string)` | `argument` is not equal to `string`, ignoring case. | 103*28f6c2f2SEnji Cooper| `StrEq(string)` | `argument` is equal to `string`. | 104*28f6c2f2SEnji Cooper| `StrNe(string)` | `argument` is not equal to `string`. | 105*28f6c2f2SEnji Cooper| `WhenBase64Unescaped(m)` | `argument` is a base-64 escaped string whose unescaped string matches `m`. The web-safe format from [RFC 4648](https://www.rfc-editor.org/rfc/rfc4648#section-5) is supported. | 106*28f6c2f2SEnji Cooper 107*28f6c2f2SEnji Cooper`ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They 108*28f6c2f2SEnji Cooperuse the regular expression syntax defined 109*28f6c2f2SEnji Cooper[here](../advanced.md#regular-expression-syntax). All of these matchers, except 110*28f6c2f2SEnji Cooper`ContainsRegex()` and `MatchesRegex()` work for wide strings as well. 111*28f6c2f2SEnji Cooper 112*28f6c2f2SEnji Cooper## Container Matchers 113*28f6c2f2SEnji Cooper 114*28f6c2f2SEnji CooperMost STL-style containers support `==`, so you can use `Eq(expected_container)` 115*28f6c2f2SEnji Cooperor simply `expected_container` to match a container exactly. If you want to 116*28f6c2f2SEnji Cooperwrite the elements in-line, match them more flexibly, or get more informative 117*28f6c2f2SEnji Coopermessages, you can use: 118*28f6c2f2SEnji Cooper 119*28f6c2f2SEnji Cooper| Matcher | Description | 120*28f6c2f2SEnji Cooper| :---------------------------------------- | :------------------------------- | 121*28f6c2f2SEnji Cooper| `BeginEndDistanceIs(m)` | `argument` is a container whose `begin()` and `end()` iterators are separated by a number of increments matching `m`. E.g. `BeginEndDistanceIs(2)` or `BeginEndDistanceIs(Lt(2))`. For containers that define a `size()` method, `SizeIs(m)` may be more efficient. | 122*28f6c2f2SEnji Cooper| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. | 123*28f6c2f2SEnji Cooper| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. | 124*28f6c2f2SEnji Cooper| `Contains(e).Times(n)` | `argument` contains elements that match `e`, which can be either a value or a matcher, and the number of matches is `n`, which can be either a value or a matcher. Unlike the plain `Contains` and `Each` this allows to check for arbitrary occurrences including testing for absence with `Contains(e).Times(0)`. | 125*28f6c2f2SEnji Cooper| `Each(e)` | `argument` is a container where *every* element matches `e`, which can be either a value or a matcher. | 126*28f6c2f2SEnji Cooper| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the *i*-th element matches `ei`, which can be a value or a matcher. | 127*28f6c2f2SEnji Cooper| `ElementsAreArray({e0, e1, ..., en})`, `ElementsAreArray(a_container)`, `ElementsAreArray(begin, end)`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. | 128*28f6c2f2SEnji Cooper| `IsEmpty()` | `argument` is an empty container (`container.empty()`). | 129*28f6c2f2SEnji Cooper| `IsSubsetOf({e0, e1, ..., en})`, `IsSubsetOf(a_container)`, `IsSubsetOf(begin, end)`, `IsSubsetOf(array)`, or `IsSubsetOf(array, count)` | `argument` matches `UnorderedElementsAre(x0, x1, ..., xk)` for some subset `{x0, x1, ..., xk}` of the expected matchers. | 130*28f6c2f2SEnji Cooper| `IsSupersetOf({e0, e1, ..., en})`, `IsSupersetOf(a_container)`, `IsSupersetOf(begin, end)`, `IsSupersetOf(array)`, or `IsSupersetOf(array, count)` | Some subset of `argument` matches `UnorderedElementsAre(`expected matchers`)`. | 131*28f6c2f2SEnji Cooper| `Pointwise(m, container)`, `Pointwise(m, {e0, e1, ..., en})` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. | 132*28f6c2f2SEnji Cooper| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. | 133*28f6c2f2SEnji Cooper| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under *some* permutation of the elements, each element matches an `ei` (for a different `i`), which can be a value or a matcher. | 134*28f6c2f2SEnji Cooper| `UnorderedElementsAreArray({e0, e1, ..., en})`, `UnorderedElementsAreArray(a_container)`, `UnorderedElementsAreArray(begin, end)`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. | 135*28f6c2f2SEnji Cooper| `UnorderedPointwise(m, container)`, `UnorderedPointwise(m, {e0, e1, ..., en})` | Like `Pointwise(m, container)`, but ignores the order of elements. | 136*28f6c2f2SEnji Cooper| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements 1, 2, and 3, ignoring order. | 137*28f6c2f2SEnji Cooper| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater(), ElementsAre(3, 2, 1))`. | 138*28f6c2f2SEnji Cooper 139*28f6c2f2SEnji Cooper**Notes:** 140*28f6c2f2SEnji Cooper 141*28f6c2f2SEnji Cooper* These matchers can also match: 142*28f6c2f2SEnji Cooper 1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`), 143*28f6c2f2SEnji Cooper and 144*28f6c2f2SEnji Cooper 2. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, 145*28f6c2f2SEnji Cooper int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)). 146*28f6c2f2SEnji Cooper* The array being matched may be multi-dimensional (i.e. its elements can be 147*28f6c2f2SEnji Cooper arrays). 148*28f6c2f2SEnji Cooper* `m` in `Pointwise(m, ...)` and `UnorderedPointwise(m, ...)` should be a 149*28f6c2f2SEnji Cooper matcher for `::std::tuple<T, U>` where `T` and `U` are the element type of 150*28f6c2f2SEnji Cooper the actual container and the expected container, respectively. For example, 151*28f6c2f2SEnji Cooper to compare two `Foo` containers where `Foo` doesn't support `operator==`, 152*28f6c2f2SEnji Cooper one might write: 153*28f6c2f2SEnji Cooper 154*28f6c2f2SEnji Cooper ```cpp 155*28f6c2f2SEnji Cooper MATCHER(FooEq, "") { 156*28f6c2f2SEnji Cooper return std::get<0>(arg).Equals(std::get<1>(arg)); 157*28f6c2f2SEnji Cooper } 158*28f6c2f2SEnji Cooper ... 159*28f6c2f2SEnji Cooper EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos)); 160*28f6c2f2SEnji Cooper ``` 161*28f6c2f2SEnji Cooper 162*28f6c2f2SEnji Cooper## Member Matchers 163*28f6c2f2SEnji Cooper 164*28f6c2f2SEnji Cooper| Matcher | Description | 165*28f6c2f2SEnji Cooper| :------------------------------ | :----------------------------------------- | 166*28f6c2f2SEnji Cooper| `Field(&class::field, m)` | `argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. | 167*28f6c2f2SEnji Cooper| `Field(field_name, &class::field, m)` | The same as the two-parameter version, but provides a better error message. | 168*28f6c2f2SEnji Cooper| `Key(e)` | `argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`. | 169*28f6c2f2SEnji Cooper| `Pair(m1, m2)` | `argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. | 170*28f6c2f2SEnji Cooper| `FieldsAre(m...)` | `argument` is a compatible object where each field matches piecewise with the matchers `m...`. A compatible object is any that supports the `std::tuple_size<Obj>`+`get<I>(obj)` protocol. In C++17 and up this also supports types compatible with structured bindings, like aggregates. | 171*28f6c2f2SEnji Cooper| `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. The method `property()` must take no argument and be declared as `const`. | 172*28f6c2f2SEnji Cooper| `Property(property_name, &class::property, m)` | The same as the two-parameter version, but provides a better error message. 173*28f6c2f2SEnji Cooper 174*28f6c2f2SEnji Cooper**Notes:** 175*28f6c2f2SEnji Cooper 176*28f6c2f2SEnji Cooper* You can use `FieldsAre()` to match any type that supports structured 177*28f6c2f2SEnji Cooper bindings, such as `std::tuple`, `std::pair`, `std::array`, and aggregate 178*28f6c2f2SEnji Cooper types. For example: 179*28f6c2f2SEnji Cooper 180*28f6c2f2SEnji Cooper ```cpp 181*28f6c2f2SEnji Cooper std::tuple<int, std::string> my_tuple{7, "hello world"}; 182*28f6c2f2SEnji Cooper EXPECT_THAT(my_tuple, FieldsAre(Ge(0), HasSubstr("hello"))); 183*28f6c2f2SEnji Cooper 184*28f6c2f2SEnji Cooper struct MyStruct { 185*28f6c2f2SEnji Cooper int value = 42; 186*28f6c2f2SEnji Cooper std::string greeting = "aloha"; 187*28f6c2f2SEnji Cooper }; 188*28f6c2f2SEnji Cooper MyStruct s; 189*28f6c2f2SEnji Cooper EXPECT_THAT(s, FieldsAre(42, "aloha")); 190*28f6c2f2SEnji Cooper ``` 191*28f6c2f2SEnji Cooper 192*28f6c2f2SEnji Cooper* Don't use `Property()` against member functions that you do not own, because 193*28f6c2f2SEnji Cooper taking addresses of functions is fragile and generally not part of the 194*28f6c2f2SEnji Cooper contract of the function. 195*28f6c2f2SEnji Cooper 196*28f6c2f2SEnji Cooper## Matching the Result of a Function, Functor, or Callback 197*28f6c2f2SEnji Cooper 198*28f6c2f2SEnji Cooper| Matcher | Description | 199*28f6c2f2SEnji Cooper| :--------------- | :------------------------------------------------ | 200*28f6c2f2SEnji Cooper| `ResultOf(f, m)` | `f(argument)` matches matcher `m`, where `f` is a function or functor. | 201*28f6c2f2SEnji Cooper| `ResultOf(result_description, f, m)` | The same as the two-parameter version, but provides a better error message. 202*28f6c2f2SEnji Cooper 203*28f6c2f2SEnji Cooper## Pointer Matchers 204*28f6c2f2SEnji Cooper 205*28f6c2f2SEnji Cooper| Matcher | Description | 206*28f6c2f2SEnji Cooper| :------------------------ | :---------------------------------------------- | 207*28f6c2f2SEnji Cooper| `Address(m)` | the result of `std::addressof(argument)` matches `m`. | 208*28f6c2f2SEnji Cooper| `Pointee(m)` | `argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`. | 209*28f6c2f2SEnji Cooper| `Pointer(m)` | `argument` (either a smart pointer or a raw pointer) contains a pointer that matches `m`. `m` will match against the raw pointer regardless of the type of `argument`. | 210*28f6c2f2SEnji Cooper| `WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. | 211*28f6c2f2SEnji Cooper 212*28f6c2f2SEnji Cooper## Multi-argument Matchers {#MultiArgMatchers} 213*28f6c2f2SEnji Cooper 214*28f6c2f2SEnji CooperTechnically, all matchers match a *single* value. A "multi-argument" matcher is 215*28f6c2f2SEnji Cooperjust one that matches a *tuple*. The following matchers can be used to match a 216*28f6c2f2SEnji Coopertuple `(x, y)`: 217*28f6c2f2SEnji Cooper 218*28f6c2f2SEnji CooperMatcher | Description 219*28f6c2f2SEnji Cooper:------ | :---------- 220*28f6c2f2SEnji Cooper`Eq()` | `x == y` 221*28f6c2f2SEnji Cooper`Ge()` | `x >= y` 222*28f6c2f2SEnji Cooper`Gt()` | `x > y` 223*28f6c2f2SEnji Cooper`Le()` | `x <= y` 224*28f6c2f2SEnji Cooper`Lt()` | `x < y` 225*28f6c2f2SEnji Cooper`Ne()` | `x != y` 226*28f6c2f2SEnji Cooper 227*28f6c2f2SEnji CooperYou can use the following selectors to pick a subset of the arguments (or 228*28f6c2f2SEnji Cooperreorder them) to participate in the matching: 229*28f6c2f2SEnji Cooper 230*28f6c2f2SEnji Cooper| Matcher | Description | 231*28f6c2f2SEnji Cooper| :------------------------- | :---------------------------------------------- | 232*28f6c2f2SEnji Cooper| `AllArgs(m)` | Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`. | 233*28f6c2f2SEnji Cooper| `Args<N1, N2, ..., Nk>(m)` | The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`. | 234*28f6c2f2SEnji Cooper 235*28f6c2f2SEnji Cooper## Composite Matchers 236*28f6c2f2SEnji Cooper 237*28f6c2f2SEnji CooperYou can make a matcher from one or more other matchers: 238*28f6c2f2SEnji Cooper 239*28f6c2f2SEnji Cooper| Matcher | Description | 240*28f6c2f2SEnji Cooper| :------------------------------- | :-------------------------------------- | 241*28f6c2f2SEnji Cooper| `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to `mn`. | 242*28f6c2f2SEnji Cooper| `AllOfArray({m0, m1, ..., mn})`, `AllOfArray(a_container)`, `AllOfArray(begin, end)`, `AllOfArray(array)`, or `AllOfArray(array, count)` | The same as `AllOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. | 243*28f6c2f2SEnji Cooper| `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers `m1` to `mn`. | 244*28f6c2f2SEnji Cooper| `AnyOfArray({m0, m1, ..., mn})`, `AnyOfArray(a_container)`, `AnyOfArray(begin, end)`, `AnyOfArray(array)`, or `AnyOfArray(array, count)` | The same as `AnyOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. | 245*28f6c2f2SEnji Cooper| `Not(m)` | `argument` doesn't match matcher `m`. | 246*28f6c2f2SEnji Cooper| `Conditional(cond, m1, m2)` | Matches matcher `m1` if `cond` evaluates to true, else matches `m2`.| 247*28f6c2f2SEnji Cooper 248*28f6c2f2SEnji Cooper## Adapters for Matchers 249*28f6c2f2SEnji Cooper 250*28f6c2f2SEnji Cooper| Matcher | Description | 251*28f6c2f2SEnji Cooper| :---------------------- | :------------------------------------ | 252*28f6c2f2SEnji Cooper| `MatcherCast<T>(m)` | casts matcher `m` to type `Matcher<T>`. | 253*28f6c2f2SEnji Cooper| `SafeMatcherCast<T>(m)` | [safely casts](../gmock_cook_book.md#SafeMatcherCast) matcher `m` to type `Matcher<T>`. | 254*28f6c2f2SEnji Cooper| `Truly(predicate)` | `predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor. | 255*28f6c2f2SEnji Cooper 256*28f6c2f2SEnji Cooper`AddressSatisfies(callback)` and `Truly(callback)` take ownership of `callback`, 257*28f6c2f2SEnji Cooperwhich must be a permanent callback. 258*28f6c2f2SEnji Cooper 259*28f6c2f2SEnji Cooper## Using Matchers as Predicates {#MatchersAsPredicatesCheat} 260*28f6c2f2SEnji Cooper 261*28f6c2f2SEnji Cooper| Matcher | Description | 262*28f6c2f2SEnji Cooper| :---------------------------- | :------------------------------------------ | 263*28f6c2f2SEnji Cooper| `Matches(m)(value)` | evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor. | 264*28f6c2f2SEnji Cooper| `ExplainMatchResult(m, value, result_listener)` | evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. | 265*28f6c2f2SEnji Cooper| `Value(value, m)` | evaluates to `true` if `value` matches `m`. | 266*28f6c2f2SEnji Cooper 267*28f6c2f2SEnji Cooper## Defining Matchers 268*28f6c2f2SEnji Cooper 269*28f6c2f2SEnji Cooper| Macro | Description | 270*28f6c2f2SEnji Cooper| :----------------------------------- | :------------------------------------ | 271*28f6c2f2SEnji Cooper| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. | 272*28f6c2f2SEnji Cooper| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a matcher `IsDivisibleBy(n)` to match a number divisible by `n`. | 273*28f6c2f2SEnji Cooper| `MATCHER_P2(IsBetween, a, b, absl::StrCat(negation ? "isn't" : "is", " between ", PrintToString(a), " and ", PrintToString(b))) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. | 274*28f6c2f2SEnji Cooper 275*28f6c2f2SEnji Cooper**Notes:** 276*28f6c2f2SEnji Cooper 277*28f6c2f2SEnji Cooper1. The `MATCHER*` macros cannot be used inside a function or class. 278*28f6c2f2SEnji Cooper2. The matcher body must be *purely functional* (i.e. it cannot have any side 279*28f6c2f2SEnji Cooper effect, and the result must not depend on anything other than the value 280*28f6c2f2SEnji Cooper being matched and the matcher parameters). 281*28f6c2f2SEnji Cooper3. You can use `PrintToString(x)` to convert a value `x` of any type to a 282*28f6c2f2SEnji Cooper string. 283*28f6c2f2SEnji Cooper4. You can use `ExplainMatchResult()` in a custom matcher to wrap another 284*28f6c2f2SEnji Cooper matcher, for example: 285*28f6c2f2SEnji Cooper 286*28f6c2f2SEnji Cooper ```cpp 287*28f6c2f2SEnji Cooper MATCHER_P(NestedPropertyMatches, matcher, "") { 288*28f6c2f2SEnji Cooper return ExplainMatchResult(matcher, arg.nested().property(), result_listener); 289*28f6c2f2SEnji Cooper } 290*28f6c2f2SEnji Cooper ``` 291*28f6c2f2SEnji Cooper 292*28f6c2f2SEnji Cooper5. You can use `DescribeMatcher<>` to describe another matcher. For example: 293*28f6c2f2SEnji Cooper 294*28f6c2f2SEnji Cooper ```cpp 295*28f6c2f2SEnji Cooper MATCHER_P(XAndYThat, matcher, 296*28f6c2f2SEnji Cooper "X that " + DescribeMatcher<int>(matcher, negation) + 297*28f6c2f2SEnji Cooper (negation ? " or" : " and") + " Y that " + 298*28f6c2f2SEnji Cooper DescribeMatcher<double>(matcher, negation)) { 299*28f6c2f2SEnji Cooper return ExplainMatchResult(matcher, arg.x(), result_listener) && 300*28f6c2f2SEnji Cooper ExplainMatchResult(matcher, arg.y(), result_listener); 301*28f6c2f2SEnji Cooper } 302*28f6c2f2SEnji Cooper ``` 303