1 /**************************************************************** 2 3 The author of this software is David M. Gay. 4 5 Copyright (C) 1998-2000 by Lucent Technologies 6 All Rights Reserved 7 8 Permission to use, copy, modify, and distribute this software and 9 its documentation for any purpose and without fee is hereby 10 granted, provided that the above copyright notice appear in all 11 copies and that both that the copyright notice and this 12 permission notice and warranty disclaimer appear in supporting 13 documentation, and that the name of Lucent or any of its entities 14 not be used in advertising or publicity pertaining to 15 distribution of the software without specific, written prior 16 permission. 17 18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY 21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, 24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF 25 THIS SOFTWARE. 26 27 ****************************************************************/ 28 29 /* $FreeBSD$ */ 30 31 /* This is a variation on dtoa.c that converts arbitary binary 32 floating-point formats to and from decimal notation. It uses 33 double-precision arithmetic internally, so there are still 34 various #ifdefs that adapt the calculations to the native 35 double-precision arithmetic (any of IEEE, VAX D_floating, 36 or IBM mainframe arithmetic). 37 38 Please send bug reports to 39 David M. Gay 40 Bell Laboratories, Room 2C-463 41 600 Mountain Avenue 42 Murray Hill, NJ 07974-0636 43 U.S.A. 44 dmg@bell-labs.com 45 */ 46 47 /* On a machine with IEEE extended-precision registers, it is 48 * necessary to specify double-precision (53-bit) rounding precision 49 * before invoking strtod or dtoa. If the machine uses (the equivalent 50 * of) Intel 80x87 arithmetic, the call 51 * _control87(PC_53, MCW_PC); 52 * does this with many compilers. Whether this or another call is 53 * appropriate depends on the compiler; for this to work, it may be 54 * necessary to #include "float.h" or another system-dependent header 55 * file. 56 */ 57 58 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 59 * 60 * This strtod returns a nearest machine number to the input decimal 61 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 62 * broken by the IEEE round-even rule. Otherwise ties are broken by 63 * biased rounding (add half and chop). 64 * 65 * Inspired loosely by William D. Clinger's paper "How to Read Floating 66 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. 67 * 68 * Modifications: 69 * 70 * 1. We only require IEEE, IBM, or VAX double-precision 71 * arithmetic (not IEEE double-extended). 72 * 2. We get by with floating-point arithmetic in a case that 73 * Clinger missed -- when we're computing d * 10^n 74 * for a small integer d and the integer n is not too 75 * much larger than 22 (the maximum integer k for which 76 * we can represent 10^k exactly), we may be able to 77 * compute (d*10^k) * 10^(e-k) with just one roundoff. 78 * 3. Rather than a bit-at-a-time adjustment of the binary 79 * result in the hard case, we use floating-point 80 * arithmetic to determine the adjustment to within 81 * one bit; only in really hard cases do we need to 82 * compute a second residual. 83 * 4. Because of 3., we don't need a large table of powers of 10 84 * for ten-to-e (just some small tables, e.g. of 10^k 85 * for 0 <= k <= 22). 86 */ 87 88 /* 89 * #define IEEE_8087 for IEEE-arithmetic machines where the least 90 * significant byte has the lowest address. 91 * #define IEEE_MC68k for IEEE-arithmetic machines where the most 92 * significant byte has the lowest address. 93 * #define Long int on machines with 32-bit ints and 64-bit longs. 94 * #define Sudden_Underflow for IEEE-format machines without gradual 95 * underflow (i.e., that flush to zero on underflow). 96 * #define IBM for IBM mainframe-style floating-point arithmetic. 97 * #define VAX for VAX-style floating-point arithmetic (D_floating). 98 * #define No_leftright to omit left-right logic in fast floating-point 99 * computation of dtoa. 100 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. 101 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 102 * that use extended-precision instructions to compute rounded 103 * products and quotients) with IBM. 104 * #define ROUND_BIASED for IEEE-format with biased rounding. 105 * #define Inaccurate_Divide for IEEE-format with correctly rounded 106 * products but inaccurate quotients, e.g., for Intel i860. 107 * #define NO_LONG_LONG on machines that do not have a "long long" 108 * integer type (of >= 64 bits). On such machines, you can 109 * #define Just_16 to store 16 bits per 32-bit Long when doing 110 * high-precision integer arithmetic. Whether this speeds things 111 * up or slows things down depends on the machine and the number 112 * being converted. If long long is available and the name is 113 * something other than "long long", #define Llong to be the name, 114 * and if "unsigned Llong" does not work as an unsigned version of 115 * Llong, #define #ULLong to be the corresponding unsigned type. 116 * #define KR_headers for old-style C function headers. 117 * #define Bad_float_h if your system lacks a float.h or if it does not 118 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 119 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 121 * if memory is available and otherwise does something you deem 122 * appropriate. If MALLOC is undefined, malloc will be invoked 123 * directly -- and assumed always to succeed. 124 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 125 * memory allocations from a private pool of memory when possible. 126 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 127 * unless #defined to be a different length. This default length 128 * suffices to get rid of MALLOC calls except for unusual cases, 129 * such as decimal-to-binary conversion of a very long string of 130 * digits. When converting IEEE double precision values, the 131 * longest string gdtoa can return is about 751 bytes long. For 132 * conversions by strtod of strings of 800 digits and all gdtoa 133 * conversions of IEEE doubles in single-threaded executions with 134 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with 135 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. 136 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for 137 * Infinity and NaN (case insensitively). On some systems (e.g., 138 * some HP systems), it may be necessary to #define NAN_WORD0 139 * appropriately -- to the most significant word of a quiet NaN. 140 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) 141 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, 142 * strtodg also accepts (case insensitively) strings of the form 143 * NaN(x), where x is a string of hexadecimal digits and spaces; 144 * if there is only one string of hexadecimal digits, it is taken 145 * for the fraction bits of the resulting NaN; if there are two or 146 * more strings of hexadecimal digits, each string is assigned 147 * to the next available sequence of 32-bit words of fractions 148 * bits (starting with the most significant), right-aligned in 149 * each sequence. 150 * #define MULTIPLE_THREADS if the system offers preemptively scheduled 151 * multiple threads. In this case, you must provide (or suitably 152 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 153 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 154 * in pow5mult, ensures lazy evaluation of only one copy of high 155 * powers of 5; omitting this lock would introduce a small 156 * probability of wasting memory, but would otherwise be harmless.) 157 * You must also invoke freedtoa(s) to free the value s returned by 158 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 159 * #define IMPRECISE_INEXACT if you do not care about the setting of 160 * the STRTOG_Inexact bits in the special case of doing IEEE double 161 * precision conversions (which could also be done by the strtog in 162 * dtoa.c). 163 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal 164 * floating-point constants. 165 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and 166 * strtodg.c). 167 * #define NO_STRING_H to use private versions of memcpy. 168 * On some K&R systems, it may also be necessary to 169 * #define DECLARE_SIZE_T in this case. 170 * #define YES_ALIAS to permit aliasing certain double values with 171 * arrays of ULongs. This leads to slightly better code with 172 * some compilers and was always used prior to 19990916, but it 173 * is not strictly legal and can cause trouble with aggressively 174 * optimizing compilers (e.g., gcc 2.95.1 under -O2). 175 * #define USE_LOCALE to use the current locale's decimal_point value. 176 */ 177 178 #ifndef GDTOAIMP_H_INCLUDED 179 #define GDTOAIMP_H_INCLUDED 180 #include "gdtoa.h" 181 182 #ifdef DEBUG 183 #include "stdio.h" 184 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 185 #endif 186 187 #include "limits.h" 188 #include "stdlib.h" 189 #include "string.h" 190 #include "libc_private.h" 191 192 #include "namespace.h" 193 #include <pthread.h> 194 #include "un-namespace.h" 195 196 #ifdef KR_headers 197 #define Char char 198 #else 199 #define Char void 200 #endif 201 202 #ifdef MALLOC 203 extern Char *MALLOC ANSI((size_t)); 204 #else 205 #define MALLOC malloc 206 #endif 207 208 #define INFNAN_CHECK 209 #define USE_LOCALE 210 211 #undef IEEE_Arith 212 #undef Avoid_Underflow 213 #ifdef IEEE_MC68k 214 #define IEEE_Arith 215 #endif 216 #ifdef IEEE_8087 217 #define IEEE_Arith 218 #endif 219 220 #include "errno.h" 221 #ifdef Bad_float_h 222 223 #ifdef IEEE_Arith 224 #define DBL_DIG 15 225 #define DBL_MAX_10_EXP 308 226 #define DBL_MAX_EXP 1024 227 #define FLT_RADIX 2 228 #define DBL_MAX 1.7976931348623157e+308 229 #endif 230 231 #ifdef IBM 232 #define DBL_DIG 16 233 #define DBL_MAX_10_EXP 75 234 #define DBL_MAX_EXP 63 235 #define FLT_RADIX 16 236 #define DBL_MAX 7.2370055773322621e+75 237 #endif 238 239 #ifdef VAX 240 #define DBL_DIG 16 241 #define DBL_MAX_10_EXP 38 242 #define DBL_MAX_EXP 127 243 #define FLT_RADIX 2 244 #define DBL_MAX 1.7014118346046923e+38 245 #define n_bigtens 2 246 #endif 247 248 #ifndef LONG_MAX 249 #define LONG_MAX 2147483647 250 #endif 251 252 #else /* ifndef Bad_float_h */ 253 #include "float.h" 254 #endif /* Bad_float_h */ 255 256 #ifdef IEEE_Arith 257 #define Scale_Bit 0x10 258 #define n_bigtens 5 259 #endif 260 261 #ifdef IBM 262 #define n_bigtens 3 263 #endif 264 265 #ifdef VAX 266 #define n_bigtens 2 267 #endif 268 269 #ifndef __MATH_H__ 270 #include "math.h" 271 #endif 272 273 #ifdef __cplusplus 274 extern "C" { 275 #endif 276 277 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 278 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. 279 #endif 280 281 typedef union { double d; ULong L[2]; } U; 282 283 #ifdef YES_ALIAS 284 #define dval(x) x 285 #ifdef IEEE_8087 286 #define word0(x) ((ULong *)&x)[1] 287 #define word1(x) ((ULong *)&x)[0] 288 #else 289 #define word0(x) ((ULong *)&x)[0] 290 #define word1(x) ((ULong *)&x)[1] 291 #endif 292 #else /* !YES_ALIAS */ 293 #ifdef IEEE_8087 294 #define word0(x) ((U*)&x)->L[1] 295 #define word1(x) ((U*)&x)->L[0] 296 #else 297 #define word0(x) ((U*)&x)->L[0] 298 #define word1(x) ((U*)&x)->L[1] 299 #endif 300 #define dval(x) ((U*)&x)->d 301 #endif /* YES_ALIAS */ 302 303 /* The following definition of Storeinc is appropriate for MIPS processors. 304 * An alternative that might be better on some machines is 305 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 306 */ 307 #if defined(IEEE_8087) + defined(VAX) 308 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ 309 ((unsigned short *)a)[0] = (unsigned short)c, a++) 310 #else 311 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ 312 ((unsigned short *)a)[1] = (unsigned short)c, a++) 313 #endif 314 315 /* #define P DBL_MANT_DIG */ 316 /* Ten_pmax = floor(P*log(2)/log(5)) */ 317 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 318 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 319 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 320 321 #ifdef IEEE_Arith 322 #define Exp_shift 20 323 #define Exp_shift1 20 324 #define Exp_msk1 0x100000 325 #define Exp_msk11 0x100000 326 #define Exp_mask 0x7ff00000 327 #define P 53 328 #define Bias 1023 329 #define Emin (-1022) 330 #define Exp_1 0x3ff00000 331 #define Exp_11 0x3ff00000 332 #define Ebits 11 333 #define Frac_mask 0xfffff 334 #define Frac_mask1 0xfffff 335 #define Ten_pmax 22 336 #define Bletch 0x10 337 #define Bndry_mask 0xfffff 338 #define Bndry_mask1 0xfffff 339 #define LSB 1 340 #define Sign_bit 0x80000000 341 #define Log2P 1 342 #define Tiny0 0 343 #define Tiny1 1 344 #define Quick_max 14 345 #define Int_max 14 346 347 #ifndef Flt_Rounds 348 #ifdef FLT_ROUNDS 349 #define Flt_Rounds FLT_ROUNDS 350 #else 351 #define Flt_Rounds 1 352 #endif 353 #endif /*Flt_Rounds*/ 354 355 #else /* ifndef IEEE_Arith */ 356 #undef Sudden_Underflow 357 #define Sudden_Underflow 358 #ifdef IBM 359 #undef Flt_Rounds 360 #define Flt_Rounds 0 361 #define Exp_shift 24 362 #define Exp_shift1 24 363 #define Exp_msk1 0x1000000 364 #define Exp_msk11 0x1000000 365 #define Exp_mask 0x7f000000 366 #define P 14 367 #define Bias 65 368 #define Exp_1 0x41000000 369 #define Exp_11 0x41000000 370 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 371 #define Frac_mask 0xffffff 372 #define Frac_mask1 0xffffff 373 #define Bletch 4 374 #define Ten_pmax 22 375 #define Bndry_mask 0xefffff 376 #define Bndry_mask1 0xffffff 377 #define LSB 1 378 #define Sign_bit 0x80000000 379 #define Log2P 4 380 #define Tiny0 0x100000 381 #define Tiny1 0 382 #define Quick_max 14 383 #define Int_max 15 384 #else /* VAX */ 385 #undef Flt_Rounds 386 #define Flt_Rounds 1 387 #define Exp_shift 23 388 #define Exp_shift1 7 389 #define Exp_msk1 0x80 390 #define Exp_msk11 0x800000 391 #define Exp_mask 0x7f80 392 #define P 56 393 #define Bias 129 394 #define Exp_1 0x40800000 395 #define Exp_11 0x4080 396 #define Ebits 8 397 #define Frac_mask 0x7fffff 398 #define Frac_mask1 0xffff007f 399 #define Ten_pmax 24 400 #define Bletch 2 401 #define Bndry_mask 0xffff007f 402 #define Bndry_mask1 0xffff007f 403 #define LSB 0x10000 404 #define Sign_bit 0x8000 405 #define Log2P 1 406 #define Tiny0 0x80 407 #define Tiny1 0 408 #define Quick_max 15 409 #define Int_max 15 410 #endif /* IBM, VAX */ 411 #endif /* IEEE_Arith */ 412 413 #ifndef IEEE_Arith 414 #define ROUND_BIASED 415 #endif 416 417 #ifdef RND_PRODQUOT 418 #define rounded_product(a,b) a = rnd_prod(a, b) 419 #define rounded_quotient(a,b) a = rnd_quot(a, b) 420 #ifdef KR_headers 421 extern double rnd_prod(), rnd_quot(); 422 #else 423 extern double rnd_prod(double, double), rnd_quot(double, double); 424 #endif 425 #else 426 #define rounded_product(a,b) a *= b 427 #define rounded_quotient(a,b) a /= b 428 #endif 429 430 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 431 #define Big1 0xffffffff 432 433 #undef Pack_16 434 #ifndef Pack_32 435 #define Pack_32 436 #endif 437 438 #ifdef NO_LONG_LONG 439 #undef ULLong 440 #ifdef Just_16 441 #undef Pack_32 442 #define Pack_16 443 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 444 * This makes some inner loops simpler and sometimes saves work 445 * during multiplications, but it often seems to make things slightly 446 * slower. Hence the default is now to store 32 bits per Long. 447 */ 448 #endif 449 #else /* long long available */ 450 #ifndef Llong 451 #define Llong long long 452 #endif 453 #ifndef ULLong 454 #define ULLong unsigned Llong 455 #endif 456 #endif /* NO_LONG_LONG */ 457 458 #ifdef Pack_32 459 #define ULbits 32 460 #define kshift 5 461 #define kmask 31 462 #define ALL_ON 0xffffffff 463 #else 464 #define ULbits 16 465 #define kshift 4 466 #define kmask 15 467 #define ALL_ON 0xffff 468 #endif 469 470 #define MULTIPLE_THREADS 471 extern pthread_mutex_t __gdtoa_locks[2]; 472 #define ACQUIRE_DTOA_LOCK(n) do { \ 473 if (__isthreaded) \ 474 _pthread_mutex_lock(&__gdtoa_locks[n]); \ 475 } while(0) 476 #define FREE_DTOA_LOCK(n) do { \ 477 if (__isthreaded) \ 478 _pthread_mutex_unlock(&__gdtoa_locks[n]); \ 479 } while(0) 480 481 #define Kmax 15 482 483 struct 484 Bigint { 485 struct Bigint *next; 486 int k, maxwds, sign, wds; 487 ULong x[1]; 488 }; 489 490 typedef struct Bigint Bigint; 491 492 #ifdef NO_STRING_H 493 #ifdef DECLARE_SIZE_T 494 typedef unsigned int size_t; 495 #endif 496 extern void memcpy_D2A ANSI((void*, const void*, size_t)); 497 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 498 #else /* !NO_STRING_H */ 499 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 500 #endif /* NO_STRING_H */ 501 502 /* 503 * Paranoia: Protect exported symbols, including ones in files we don't 504 * compile right now. The standard strtof and strtod survive. 505 */ 506 #define dtoa __dtoa 507 #define gdtoa __gdtoa 508 #define freedtoa __freedtoa 509 #define strtodg __strtodg 510 #define g_ddfmt __g_ddfmt 511 #define g_dfmt __g_dfmt 512 #define g_ffmt __g_ffmt 513 #define g_Qfmt __g_Qfmt 514 #define g_xfmt __g_xfmt 515 #define g_xLfmt __g_xLfmt 516 #define strtoId __strtoId 517 #define strtoIdd __strtoIdd 518 #define strtoIf __strtoIf 519 #define strtoIQ __strtoIQ 520 #define strtoIx __strtoIx 521 #define strtoIxL __strtoIxL 522 #define strtord __strtord 523 #define strtordd __strtordd 524 #define strtorf __strtorf 525 #define strtorQ __strtorQ 526 #define strtorx __strtorx 527 #define strtorxL __strtorxL 528 #define strtodI __strtodI 529 #define strtopd __strtopd 530 #define strtopdd __strtopdd 531 #define strtopf __strtopf 532 #define strtopQ __strtopQ 533 #define strtopx __strtopx 534 #define strtopxL __strtopxL 535 536 /* Protect gdtoa-internal symbols */ 537 #define Balloc __Balloc_D2A 538 #define Bfree __Bfree_D2A 539 #define ULtoQ __ULtoQ_D2A 540 #define ULtof __ULtof_D2A 541 #define ULtod __ULtod_D2A 542 #define ULtodd __ULtodd_D2A 543 #define ULtox __ULtox_D2A 544 #define ULtoxL __ULtoxL_D2A 545 #define any_on __any_on_D2A 546 #define b2d __b2d_D2A 547 #define bigtens __bigtens_D2A 548 #define cmp __cmp_D2A 549 #define copybits __copybits_D2A 550 #define d2b __d2b_D2A 551 #define decrement __decrement_D2A 552 #define diff __diff_D2A 553 #define dtoa_result __dtoa_result_D2A 554 #define g__fmt __g__fmt_D2A 555 #define gethex __gethex_D2A 556 #define hexdig __hexdig_D2A 557 #define hexdig_init_D2A __hexdig_init_D2A 558 #define hexnan __hexnan_D2A 559 #define hi0bits __hi0bits_D2A 560 #define i2b __i2b_D2A 561 #define increment __increment_D2A 562 #define lo0bits __lo0bits_D2A 563 #define lshift __lshift_D2A 564 #define match __match_D2A 565 #define mult __mult_D2A 566 #define multadd __multadd_D2A 567 #define nrv_alloc __nrv_alloc_D2A 568 #define pow5mult __pow5mult_D2A 569 #define quorem __quorem_D2A 570 #define ratio __ratio_D2A 571 #define rshift __rshift_D2A 572 #define rv_alloc __rv_alloc_D2A 573 #define s2b __s2b_D2A 574 #define set_ones __set_ones_D2A 575 #define strcp __strcp_D2A 576 #define strcp_D2A __strcp_D2A 577 #define strtoIg __strtoIg_D2A 578 #define sum __sum_D2A 579 #define tens __tens_D2A 580 #define tinytens __tinytens_D2A 581 #define tinytens __tinytens_D2A 582 #define trailz __trailz_D2A 583 #define ulp __ulp_D2A 584 585 extern char *dtoa_result; 586 extern CONST double bigtens[], tens[], tinytens[]; 587 extern unsigned char hexdig[]; 588 589 extern Bigint *Balloc ANSI((int)); 590 extern void Bfree ANSI((Bigint*)); 591 extern void ULtof ANSI((ULong*, ULong*, Long, int)); 592 extern void ULtod ANSI((ULong*, ULong*, Long, int)); 593 extern void ULtodd ANSI((ULong*, ULong*, Long, int)); 594 extern void ULtoQ ANSI((ULong*, ULong*, Long, int)); 595 extern void ULtox ANSI((UShort*, ULong*, Long, int)); 596 extern void ULtoxL ANSI((ULong*, ULong*, Long, int)); 597 extern ULong any_on ANSI((Bigint*, int)); 598 extern double b2d ANSI((Bigint*, int*)); 599 extern int cmp ANSI((Bigint*, Bigint*)); 600 extern void copybits ANSI((ULong*, int, Bigint*)); 601 extern Bigint *d2b ANSI((double, int*, int*)); 602 extern int decrement ANSI((Bigint*)); 603 extern Bigint *diff ANSI((Bigint*, Bigint*)); 604 extern char *dtoa ANSI((double d, int mode, int ndigits, 605 int *decpt, int *sign, char **rve)); 606 extern void freedtoa ANSI((char*)); 607 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp, 608 int mode, int ndigits, int *decpt, char **rve)); 609 extern char *g__fmt ANSI((char*, char*, char*, int, ULong)); 610 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int)); 611 extern void hexdig_init_D2A(Void); 612 extern int hexnan ANSI((CONST char**, FPI*, ULong*)); 613 extern int hi0bits ANSI((ULong)); 614 extern Bigint *i2b ANSI((int)); 615 extern Bigint *increment ANSI((Bigint*)); 616 extern int lo0bits ANSI((ULong*)); 617 extern Bigint *lshift ANSI((Bigint*, int)); 618 extern int match ANSI((CONST char**, char*)); 619 extern Bigint *mult ANSI((Bigint*, Bigint*)); 620 extern Bigint *multadd ANSI((Bigint*, int, int)); 621 extern char *nrv_alloc ANSI((char*, char **, int)); 622 extern Bigint *pow5mult ANSI((Bigint*, int)); 623 extern int quorem ANSI((Bigint*, Bigint*)); 624 extern double ratio ANSI((Bigint*, Bigint*)); 625 extern void rshift ANSI((Bigint*, int)); 626 extern char *rv_alloc ANSI((int)); 627 extern Bigint *s2b ANSI((CONST char*, int, int, ULong)); 628 extern Bigint *set_ones ANSI((Bigint*, int)); 629 extern char *strcp ANSI((char*, const char*)); 630 extern int strtodg ANSI((CONST char*, char**, FPI*, Long*, ULong*)); 631 632 extern int strtoId ANSI((CONST char *, char **, double *, double *)); 633 extern int strtoIdd ANSI((CONST char *, char **, double *, double *)); 634 extern int strtoIf ANSI((CONST char *, char **, float *, float *)); 635 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*)); 636 extern int strtoIQ ANSI((CONST char *, char **, void *, void *)); 637 extern int strtoIx ANSI((CONST char *, char **, void *, void *)); 638 extern int strtoIxL ANSI((CONST char *, char **, void *, void *)); 639 extern double strtod ANSI((const char *s00, char **se)); 640 extern int strtopQ ANSI((CONST char *, char **, Void *)); 641 extern int strtopf ANSI((CONST char *, char **, float *)); 642 extern int strtopd ANSI((CONST char *, char **, double *)); 643 extern int strtopdd ANSI((CONST char *, char **, double *)); 644 extern int strtopx ANSI((CONST char *, char **, Void *)); 645 extern int strtopxL ANSI((CONST char *, char **, Void *)); 646 extern int strtord ANSI((CONST char *, char **, int, double *)); 647 extern int strtordd ANSI((CONST char *, char **, int, double *)); 648 extern int strtorf ANSI((CONST char *, char **, int, float *)); 649 extern int strtorQ ANSI((CONST char *, char **, int, void *)); 650 extern int strtorx ANSI((CONST char *, char **, int, void *)); 651 extern int strtorxL ANSI((CONST char *, char **, int, void *)); 652 extern Bigint *sum ANSI((Bigint*, Bigint*)); 653 extern int trailz ANSI((Bigint*)); 654 extern double ulp ANSI((double)); 655 656 #ifdef __cplusplus 657 } 658 #endif 659 660 661 #ifdef IEEE_Arith 662 #ifdef IEEE_MC68k 663 #define _0 0 664 #define _1 1 665 #else 666 #define _0 1 667 #define _1 0 668 #endif 669 #else 670 #undef INFNAN_CHECK 671 #endif 672 673 #ifdef INFNAN_CHECK 674 675 #ifndef NAN_WORD0 676 #define NAN_WORD0 0x7ff80000 677 #endif 678 679 #ifndef NAN_WORD1 680 #define NAN_WORD1 0 681 #endif 682 #endif /* INFNAN_CHECK */ 683 684 #undef SI 685 #ifdef Sudden_Underflow 686 #define SI 1 687 #else 688 #define SI 0 689 #endif 690 691 #endif /* GDTOAIMP_H_INCLUDED */ 692