1 /**************************************************************** 2 3 The author of this software is David M. Gay. 4 5 Copyright (C) 1998-2000 by Lucent Technologies 6 All Rights Reserved 7 8 Permission to use, copy, modify, and distribute this software and 9 its documentation for any purpose and without fee is hereby 10 granted, provided that the above copyright notice appear in all 11 copies and that both that the copyright notice and this 12 permission notice and warranty disclaimer appear in supporting 13 documentation, and that the name of Lucent or any of its entities 14 not be used in advertising or publicity pertaining to 15 distribution of the software without specific, written prior 16 permission. 17 18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY 21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, 24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF 25 THIS SOFTWARE. 26 27 ****************************************************************/ 28 29 /* This is a variation on dtoa.c that converts arbitary binary 30 floating-point formats to and from decimal notation. It uses 31 double-precision arithmetic internally, so there are still 32 various #ifdefs that adapt the calculations to the native 33 double-precision arithmetic (any of IEEE, VAX D_floating, 34 or IBM mainframe arithmetic). 35 36 Please send bug reports to David M. Gay (dmg at acm dot org, 37 with " at " changed at "@" and " dot " changed to "."). 38 */ 39 40 /* On a machine with IEEE extended-precision registers, it is 41 * necessary to specify double-precision (53-bit) rounding precision 42 * before invoking strtod or dtoa. If the machine uses (the equivalent 43 * of) Intel 80x87 arithmetic, the call 44 * _control87(PC_53, MCW_PC); 45 * does this with many compilers. Whether this or another call is 46 * appropriate depends on the compiler; for this to work, it may be 47 * necessary to #include "float.h" or another system-dependent header 48 * file. 49 */ 50 51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 52 * 53 * This strtod returns a nearest machine number to the input decimal 54 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 55 * broken by the IEEE round-even rule. Otherwise ties are broken by 56 * biased rounding (add half and chop). 57 * 58 * Inspired loosely by William D. Clinger's paper "How to Read Floating 59 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. 60 * 61 * Modifications: 62 * 63 * 1. We only require IEEE, IBM, or VAX double-precision 64 * arithmetic (not IEEE double-extended). 65 * 2. We get by with floating-point arithmetic in a case that 66 * Clinger missed -- when we're computing d * 10^n 67 * for a small integer d and the integer n is not too 68 * much larger than 22 (the maximum integer k for which 69 * we can represent 10^k exactly), we may be able to 70 * compute (d*10^k) * 10^(e-k) with just one roundoff. 71 * 3. Rather than a bit-at-a-time adjustment of the binary 72 * result in the hard case, we use floating-point 73 * arithmetic to determine the adjustment to within 74 * one bit; only in really hard cases do we need to 75 * compute a second residual. 76 * 4. Because of 3., we don't need a large table of powers of 10 77 * for ten-to-e (just some small tables, e.g. of 10^k 78 * for 0 <= k <= 22). 79 */ 80 81 /* 82 * #define IEEE_8087 for IEEE-arithmetic machines where the least 83 * significant byte has the lowest address. 84 * #define IEEE_MC68k for IEEE-arithmetic machines where the most 85 * significant byte has the lowest address. 86 * #define Long int on machines with 32-bit ints and 64-bit longs. 87 * #define Sudden_Underflow for IEEE-format machines without gradual 88 * underflow (i.e., that flush to zero on underflow). 89 * #define IBM for IBM mainframe-style floating-point arithmetic. 90 * #define VAX for VAX-style floating-point arithmetic (D_floating). 91 * #define No_leftright to omit left-right logic in fast floating-point 92 * computation of dtoa. 93 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. 94 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 95 * that use extended-precision instructions to compute rounded 96 * products and quotients) with IBM. 97 * #define ROUND_BIASED for IEEE-format with biased rounding. 98 * #define Inaccurate_Divide for IEEE-format with correctly rounded 99 * products but inaccurate quotients, e.g., for Intel i860. 100 * #define NO_LONG_LONG on machines that do not have a "long long" 101 * integer type (of >= 64 bits). On such machines, you can 102 * #define Just_16 to store 16 bits per 32-bit Long when doing 103 * high-precision integer arithmetic. Whether this speeds things 104 * up or slows things down depends on the machine and the number 105 * being converted. If long long is available and the name is 106 * something other than "long long", #define Llong to be the name, 107 * and if "unsigned Llong" does not work as an unsigned version of 108 * Llong, #define #ULLong to be the corresponding unsigned type. 109 * #define KR_headers for old-style C function headers. 110 * #define Bad_float_h if your system lacks a float.h or if it does not 111 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 112 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 113 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 114 * if memory is available and otherwise does something you deem 115 * appropriate. If MALLOC is undefined, malloc will be invoked 116 * directly -- and assumed always to succeed. 117 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 118 * memory allocations from a private pool of memory when possible. 119 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 120 * unless #defined to be a different length. This default length 121 * suffices to get rid of MALLOC calls except for unusual cases, 122 * such as decimal-to-binary conversion of a very long string of 123 * digits. When converting IEEE double precision values, the 124 * longest string gdtoa can return is about 751 bytes long. For 125 * conversions by strtod of strings of 800 digits and all gdtoa 126 * conversions of IEEE doubles in single-threaded executions with 127 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with 128 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. 129 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for 130 * Infinity and NaN (case insensitively). 131 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, 132 * strtodg also accepts (case insensitively) strings of the form 133 * NaN(x), where x is a string of hexadecimal digits and spaces; 134 * if there is only one string of hexadecimal digits, it is taken 135 * for the fraction bits of the resulting NaN; if there are two or 136 * more strings of hexadecimal digits, each string is assigned 137 * to the next available sequence of 32-bit words of fractions 138 * bits (starting with the most significant), right-aligned in 139 * each sequence. 140 * #define MULTIPLE_THREADS if the system offers preemptively scheduled 141 * multiple threads. In this case, you must provide (or suitably 142 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 143 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 144 * in pow5mult, ensures lazy evaluation of only one copy of high 145 * powers of 5; omitting this lock would introduce a small 146 * probability of wasting memory, but would otherwise be harmless.) 147 * You must also invoke freedtoa(s) to free the value s returned by 148 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 149 * #define IMPRECISE_INEXACT if you do not care about the setting of 150 * the STRTOG_Inexact bits in the special case of doing IEEE double 151 * precision conversions (which could also be done by the strtog in 152 * dtoa.c). 153 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal 154 * floating-point constants. 155 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and 156 * strtodg.c). 157 * #define NO_STRING_H to use private versions of memcpy. 158 * On some K&R systems, it may also be necessary to 159 * #define DECLARE_SIZE_T in this case. 160 * #define YES_ALIAS to permit aliasing certain double values with 161 * arrays of ULongs. This leads to slightly better code with 162 * some compilers and was always used prior to 19990916, but it 163 * is not strictly legal and can cause trouble with aggressively 164 * optimizing compilers (e.g., gcc 2.95.1 under -O2). 165 * #define USE_LOCALE to use the current locale's decimal_point value. 166 */ 167 168 #ifndef GDTOAIMP_H_INCLUDED 169 #define GDTOAIMP_H_INCLUDED 170 #include "gdtoa.h" 171 #include "gd_qnan.h" 172 173 #ifdef DEBUG 174 #include "stdio.h" 175 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 176 #endif 177 178 #include "stdlib.h" 179 #include "string.h" 180 181 #ifdef KR_headers 182 #define Char char 183 #else 184 #define Char void 185 #endif 186 187 #ifdef MALLOC 188 extern Char *MALLOC ANSI((size_t)); 189 #else 190 #define MALLOC malloc 191 #endif 192 193 #undef IEEE_Arith 194 #undef Avoid_Underflow 195 #ifdef IEEE_MC68k 196 #define IEEE_Arith 197 #endif 198 #ifdef IEEE_8087 199 #define IEEE_Arith 200 #endif 201 202 #include "errno.h" 203 #ifdef Bad_float_h 204 205 #ifdef IEEE_Arith 206 #define DBL_DIG 15 207 #define DBL_MAX_10_EXP 308 208 #define DBL_MAX_EXP 1024 209 #define FLT_RADIX 2 210 #define DBL_MAX 1.7976931348623157e+308 211 #endif 212 213 #ifdef IBM 214 #define DBL_DIG 16 215 #define DBL_MAX_10_EXP 75 216 #define DBL_MAX_EXP 63 217 #define FLT_RADIX 16 218 #define DBL_MAX 7.2370055773322621e+75 219 #endif 220 221 #ifdef VAX 222 #define DBL_DIG 16 223 #define DBL_MAX_10_EXP 38 224 #define DBL_MAX_EXP 127 225 #define FLT_RADIX 2 226 #define DBL_MAX 1.7014118346046923e+38 227 #define n_bigtens 2 228 #endif 229 230 #ifndef LONG_MAX 231 #define LONG_MAX 2147483647 232 #endif 233 234 #else /* ifndef Bad_float_h */ 235 #include "float.h" 236 #endif /* Bad_float_h */ 237 238 #ifdef IEEE_Arith 239 #define Scale_Bit 0x10 240 #define n_bigtens 5 241 #endif 242 243 #ifdef IBM 244 #define n_bigtens 3 245 #endif 246 247 #ifdef VAX 248 #define n_bigtens 2 249 #endif 250 251 #ifndef __MATH_H__ 252 #include "math.h" 253 #endif 254 255 #ifdef __cplusplus 256 extern "C" { 257 #endif 258 259 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 260 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. 261 #endif 262 263 typedef union { double d; ULong L[2]; } U; 264 265 #ifdef YES_ALIAS 266 #define dval(x) x 267 #ifdef IEEE_8087 268 #define word0(x) ((ULong *)&x)[1] 269 #define word1(x) ((ULong *)&x)[0] 270 #else 271 #define word0(x) ((ULong *)&x)[0] 272 #define word1(x) ((ULong *)&x)[1] 273 #endif 274 #else /* !YES_ALIAS */ 275 #ifdef IEEE_8087 276 #define word0(x) ((U*)&x)->L[1] 277 #define word1(x) ((U*)&x)->L[0] 278 #else 279 #define word0(x) ((U*)&x)->L[0] 280 #define word1(x) ((U*)&x)->L[1] 281 #endif 282 #define dval(x) ((U*)&x)->d 283 #endif /* YES_ALIAS */ 284 285 /* The following definition of Storeinc is appropriate for MIPS processors. 286 * An alternative that might be better on some machines is 287 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 288 */ 289 #if defined(IEEE_8087) + defined(VAX) 290 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ 291 ((unsigned short *)a)[0] = (unsigned short)c, a++) 292 #else 293 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ 294 ((unsigned short *)a)[1] = (unsigned short)c, a++) 295 #endif 296 297 /* #define P DBL_MANT_DIG */ 298 /* Ten_pmax = floor(P*log(2)/log(5)) */ 299 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 300 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 301 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 302 303 #ifdef IEEE_Arith 304 #define Exp_shift 20 305 #define Exp_shift1 20 306 #define Exp_msk1 0x100000 307 #define Exp_msk11 0x100000 308 #define Exp_mask 0x7ff00000 309 #define P 53 310 #define Bias 1023 311 #define Emin (-1022) 312 #define Exp_1 0x3ff00000 313 #define Exp_11 0x3ff00000 314 #define Ebits 11 315 #define Frac_mask 0xfffff 316 #define Frac_mask1 0xfffff 317 #define Ten_pmax 22 318 #define Bletch 0x10 319 #define Bndry_mask 0xfffff 320 #define Bndry_mask1 0xfffff 321 #define LSB 1 322 #define Sign_bit 0x80000000 323 #define Log2P 1 324 #define Tiny0 0 325 #define Tiny1 1 326 #define Quick_max 14 327 #define Int_max 14 328 329 #ifndef Flt_Rounds 330 #ifdef FLT_ROUNDS 331 #define Flt_Rounds FLT_ROUNDS 332 #else 333 #define Flt_Rounds 1 334 #endif 335 #endif /*Flt_Rounds*/ 336 337 #else /* ifndef IEEE_Arith */ 338 #undef Sudden_Underflow 339 #define Sudden_Underflow 340 #ifdef IBM 341 #undef Flt_Rounds 342 #define Flt_Rounds 0 343 #define Exp_shift 24 344 #define Exp_shift1 24 345 #define Exp_msk1 0x1000000 346 #define Exp_msk11 0x1000000 347 #define Exp_mask 0x7f000000 348 #define P 14 349 #define Bias 65 350 #define Exp_1 0x41000000 351 #define Exp_11 0x41000000 352 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 353 #define Frac_mask 0xffffff 354 #define Frac_mask1 0xffffff 355 #define Bletch 4 356 #define Ten_pmax 22 357 #define Bndry_mask 0xefffff 358 #define Bndry_mask1 0xffffff 359 #define LSB 1 360 #define Sign_bit 0x80000000 361 #define Log2P 4 362 #define Tiny0 0x100000 363 #define Tiny1 0 364 #define Quick_max 14 365 #define Int_max 15 366 #else /* VAX */ 367 #undef Flt_Rounds 368 #define Flt_Rounds 1 369 #define Exp_shift 23 370 #define Exp_shift1 7 371 #define Exp_msk1 0x80 372 #define Exp_msk11 0x800000 373 #define Exp_mask 0x7f80 374 #define P 56 375 #define Bias 129 376 #define Exp_1 0x40800000 377 #define Exp_11 0x4080 378 #define Ebits 8 379 #define Frac_mask 0x7fffff 380 #define Frac_mask1 0xffff007f 381 #define Ten_pmax 24 382 #define Bletch 2 383 #define Bndry_mask 0xffff007f 384 #define Bndry_mask1 0xffff007f 385 #define LSB 0x10000 386 #define Sign_bit 0x8000 387 #define Log2P 1 388 #define Tiny0 0x80 389 #define Tiny1 0 390 #define Quick_max 15 391 #define Int_max 15 392 #endif /* IBM, VAX */ 393 #endif /* IEEE_Arith */ 394 395 #ifndef IEEE_Arith 396 #define ROUND_BIASED 397 #endif 398 399 #ifdef RND_PRODQUOT 400 #define rounded_product(a,b) a = rnd_prod(a, b) 401 #define rounded_quotient(a,b) a = rnd_quot(a, b) 402 #ifdef KR_headers 403 extern double rnd_prod(), rnd_quot(); 404 #else 405 extern double rnd_prod(double, double), rnd_quot(double, double); 406 #endif 407 #else 408 #define rounded_product(a,b) a *= b 409 #define rounded_quotient(a,b) a /= b 410 #endif 411 412 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 413 #define Big1 0xffffffff 414 415 #undef Pack_16 416 #ifndef Pack_32 417 #define Pack_32 418 #endif 419 420 #ifdef NO_LONG_LONG 421 #undef ULLong 422 #ifdef Just_16 423 #undef Pack_32 424 #define Pack_16 425 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 426 * This makes some inner loops simpler and sometimes saves work 427 * during multiplications, but it often seems to make things slightly 428 * slower. Hence the default is now to store 32 bits per Long. 429 */ 430 #endif 431 #else /* long long available */ 432 #ifndef Llong 433 #define Llong long long 434 #endif 435 #ifndef ULLong 436 #define ULLong unsigned Llong 437 #endif 438 #endif /* NO_LONG_LONG */ 439 440 #ifdef Pack_32 441 #define ULbits 32 442 #define kshift 5 443 #define kmask 31 444 #define ALL_ON 0xffffffff 445 #else 446 #define ULbits 16 447 #define kshift 4 448 #define kmask 15 449 #define ALL_ON 0xffff 450 #endif 451 452 #ifndef MULTIPLE_THREADS 453 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/ 454 #define FREE_DTOA_LOCK(n) /*nothing*/ 455 #endif 456 457 #define Kmax 15 458 459 struct 460 Bigint { 461 struct Bigint *next; 462 int k, maxwds, sign, wds; 463 ULong x[1]; 464 }; 465 466 typedef struct Bigint Bigint; 467 468 #ifdef NO_STRING_H 469 #ifdef DECLARE_SIZE_T 470 typedef unsigned int size_t; 471 #endif 472 extern void memcpy_D2A ANSI((void*, const void*, size_t)); 473 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 474 #else /* !NO_STRING_H */ 475 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 476 #endif /* NO_STRING_H */ 477 478 #define Balloc Balloc_D2A 479 #define Bfree Bfree_D2A 480 #define ULtoQ ULtoQ_D2A 481 #define ULtof ULtof_D2A 482 #define ULtod ULtod_D2A 483 #define ULtodd ULtodd_D2A 484 #define ULtox ULtox_D2A 485 #define ULtoxL ULtoxL_D2A 486 #define any_on any_on_D2A 487 #define b2d b2d_D2A 488 #define bigtens bigtens_D2A 489 #define cmp cmp_D2A 490 #define copybits copybits_D2A 491 #define d2b d2b_D2A 492 #define decrement decrement_D2A 493 #define diff diff_D2A 494 #define dtoa_result dtoa_result_D2A 495 #define g__fmt g__fmt_D2A 496 #define gethex gethex_D2A 497 #define hexdig hexdig_D2A 498 #define hexnan hexnan_D2A 499 #define hi0bits(x) hi0bits_D2A((ULong)(x)) 500 #define i2b i2b_D2A 501 #define increment increment_D2A 502 #define lo0bits lo0bits_D2A 503 #define lshift lshift_D2A 504 #define match match_D2A 505 #define mult mult_D2A 506 #define multadd multadd_D2A 507 #define nrv_alloc nrv_alloc_D2A 508 #define pow5mult pow5mult_D2A 509 #define quorem quorem_D2A 510 #define ratio ratio_D2A 511 #define rshift rshift_D2A 512 #define rv_alloc rv_alloc_D2A 513 #define s2b s2b_D2A 514 #define set_ones set_ones_D2A 515 #define strcp strcp_D2A 516 #define strtoIg strtoIg_D2A 517 #define sum sum_D2A 518 #define tens tens_D2A 519 #define tinytens tinytens_D2A 520 #define tinytens tinytens_D2A 521 #define trailz trailz_D2A 522 #define ulp ulp_D2A 523 524 extern char *dtoa_result; 525 extern CONST double bigtens[], tens[], tinytens[]; 526 extern unsigned char hexdig[]; 527 528 extern Bigint *Balloc ANSI((int)); 529 extern void Bfree ANSI((Bigint*)); 530 extern void ULtof ANSI((ULong*, ULong*, Long, int)); 531 extern void ULtod ANSI((ULong*, ULong*, Long, int)); 532 extern void ULtodd ANSI((ULong*, ULong*, Long, int)); 533 extern void ULtoQ ANSI((ULong*, ULong*, Long, int)); 534 extern void ULtox ANSI((UShort*, ULong*, Long, int)); 535 extern void ULtoxL ANSI((ULong*, ULong*, Long, int)); 536 extern ULong any_on ANSI((Bigint*, int)); 537 extern double b2d ANSI((Bigint*, int*)); 538 extern int cmp ANSI((Bigint*, Bigint*)); 539 extern void copybits ANSI((ULong*, int, Bigint*)); 540 extern Bigint *d2b ANSI((double, int*, int*)); 541 extern int decrement ANSI((Bigint*)); 542 extern Bigint *diff ANSI((Bigint*, Bigint*)); 543 extern char *dtoa ANSI((double d, int mode, int ndigits, 544 int *decpt, int *sign, char **rve)); 545 extern char *g__fmt ANSI((char*, char*, char*, int, ULong)); 546 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int)); 547 extern void hexdig_init_D2A(Void); 548 extern int hexnan ANSI((CONST char**, FPI*, ULong*)); 549 extern int hi0bits_D2A ANSI((ULong)); 550 extern Bigint *i2b ANSI((int)); 551 extern Bigint *increment ANSI((Bigint*)); 552 extern int lo0bits ANSI((ULong*)); 553 extern Bigint *lshift ANSI((Bigint*, int)); 554 extern int match ANSI((CONST char**, char*)); 555 extern Bigint *mult ANSI((Bigint*, Bigint*)); 556 extern Bigint *multadd ANSI((Bigint*, int, int)); 557 extern char *nrv_alloc ANSI((char*, char **, int)); 558 extern Bigint *pow5mult ANSI((Bigint*, int)); 559 extern int quorem ANSI((Bigint*, Bigint*)); 560 extern double ratio ANSI((Bigint*, Bigint*)); 561 extern void rshift ANSI((Bigint*, int)); 562 extern char *rv_alloc ANSI((int)); 563 extern Bigint *s2b ANSI((CONST char*, int, int, ULong)); 564 extern Bigint *set_ones ANSI((Bigint*, int)); 565 extern char *strcp ANSI((char*, const char*)); 566 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*)); 567 extern double strtod ANSI((const char *s00, char **se)); 568 extern Bigint *sum ANSI((Bigint*, Bigint*)); 569 extern int trailz ANSI((Bigint*)); 570 extern double ulp ANSI((double)); 571 572 #ifdef __cplusplus 573 } 574 #endif 575 /* 576 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to 577 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, 578 * respectively), but now are determined by compiling and running 579 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. 580 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... 581 * and -DNAN_WORD1=... values if necessary. This should still work. 582 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) 583 */ 584 #ifdef IEEE_Arith 585 #ifdef IEEE_MC68k 586 #define _0 0 587 #define _1 1 588 #ifndef NAN_WORD0 589 #define NAN_WORD0 d_QNAN0 590 #endif 591 #ifndef NAN_WORD1 592 #define NAN_WORD1 d_QNAN1 593 #endif 594 #else 595 #define _0 1 596 #define _1 0 597 #ifndef NAN_WORD0 598 #define NAN_WORD0 d_QNAN1 599 #endif 600 #ifndef NAN_WORD1 601 #define NAN_WORD1 d_QNAN0 602 #endif 603 #endif 604 #else 605 #undef INFNAN_CHECK 606 #endif 607 608 #undef SI 609 #ifdef Sudden_Underflow 610 #define SI 1 611 #else 612 #define SI 0 613 #endif 614 615 #endif /* GDTOAIMP_H_INCLUDED */ 616