1 /**************************************************************** 2 3 The author of this software is David M. Gay. 4 5 Copyright (C) 1998-2000 by Lucent Technologies 6 All Rights Reserved 7 8 Permission to use, copy, modify, and distribute this software and 9 its documentation for any purpose and without fee is hereby 10 granted, provided that the above copyright notice appear in all 11 copies and that both that the copyright notice and this 12 permission notice and warranty disclaimer appear in supporting 13 documentation, and that the name of Lucent or any of its entities 14 not be used in advertising or publicity pertaining to 15 distribution of the software without specific, written prior 16 permission. 17 18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY 21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, 24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF 25 THIS SOFTWARE. 26 27 ****************************************************************/ 28 29 /* $FreeBSD$ */ 30 31 /* This is a variation on dtoa.c that converts arbitary binary 32 floating-point formats to and from decimal notation. It uses 33 double-precision arithmetic internally, so there are still 34 various #ifdefs that adapt the calculations to the native 35 double-precision arithmetic (any of IEEE, VAX D_floating, 36 or IBM mainframe arithmetic). 37 38 Please send bug reports to David M. Gay (dmg at acm dot org, 39 with " at " changed at "@" and " dot " changed to "."). 40 */ 41 42 /* On a machine with IEEE extended-precision registers, it is 43 * necessary to specify double-precision (53-bit) rounding precision 44 * before invoking strtod or dtoa. If the machine uses (the equivalent 45 * of) Intel 80x87 arithmetic, the call 46 * _control87(PC_53, MCW_PC); 47 * does this with many compilers. Whether this or another call is 48 * appropriate depends on the compiler; for this to work, it may be 49 * necessary to #include "float.h" or another system-dependent header 50 * file. 51 */ 52 53 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 54 * 55 * This strtod returns a nearest machine number to the input decimal 56 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 57 * broken by the IEEE round-even rule. Otherwise ties are broken by 58 * biased rounding (add half and chop). 59 * 60 * Inspired loosely by William D. Clinger's paper "How to Read Floating 61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. 62 * 63 * Modifications: 64 * 65 * 1. We only require IEEE, IBM, or VAX double-precision 66 * arithmetic (not IEEE double-extended). 67 * 2. We get by with floating-point arithmetic in a case that 68 * Clinger missed -- when we're computing d * 10^n 69 * for a small integer d and the integer n is not too 70 * much larger than 22 (the maximum integer k for which 71 * we can represent 10^k exactly), we may be able to 72 * compute (d*10^k) * 10^(e-k) with just one roundoff. 73 * 3. Rather than a bit-at-a-time adjustment of the binary 74 * result in the hard case, we use floating-point 75 * arithmetic to determine the adjustment to within 76 * one bit; only in really hard cases do we need to 77 * compute a second residual. 78 * 4. Because of 3., we don't need a large table of powers of 10 79 * for ten-to-e (just some small tables, e.g. of 10^k 80 * for 0 <= k <= 22). 81 */ 82 83 /* 84 * #define IEEE_8087 for IEEE-arithmetic machines where the least 85 * significant byte has the lowest address. 86 * #define IEEE_MC68k for IEEE-arithmetic machines where the most 87 * significant byte has the lowest address. 88 * #define Long int on machines with 32-bit ints and 64-bit longs. 89 * #define Sudden_Underflow for IEEE-format machines without gradual 90 * underflow (i.e., that flush to zero on underflow). 91 * #define IBM for IBM mainframe-style floating-point arithmetic. 92 * #define VAX for VAX-style floating-point arithmetic (D_floating). 93 * #define No_leftright to omit left-right logic in fast floating-point 94 * computation of dtoa. 95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. 96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 97 * that use extended-precision instructions to compute rounded 98 * products and quotients) with IBM. 99 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic 100 * that rounds toward +Infinity. 101 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased 102 * rounding when the underlying floating-point arithmetic uses 103 * unbiased rounding. This prevent using ordinary floating-point 104 * arithmetic when the result could be computed with one rounding error. 105 * #define Inaccurate_Divide for IEEE-format with correctly rounded 106 * products but inaccurate quotients, e.g., for Intel i860. 107 * #define NO_LONG_LONG on machines that do not have a "long long" 108 * integer type (of >= 64 bits). On such machines, you can 109 * #define Just_16 to store 16 bits per 32-bit Long when doing 110 * high-precision integer arithmetic. Whether this speeds things 111 * up or slows things down depends on the machine and the number 112 * being converted. If long long is available and the name is 113 * something other than "long long", #define Llong to be the name, 114 * and if "unsigned Llong" does not work as an unsigned version of 115 * Llong, #define #ULLong to be the corresponding unsigned type. 116 * #define KR_headers for old-style C function headers. 117 * #define Bad_float_h if your system lacks a float.h or if it does not 118 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 119 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 121 * if memory is available and otherwise does something you deem 122 * appropriate. If MALLOC is undefined, malloc will be invoked 123 * directly -- and assumed always to succeed. Similarly, if you 124 * want something other than the system's free() to be called to 125 * recycle memory acquired from MALLOC, #define FREE to be the 126 * name of the alternate routine. (FREE or free is only called in 127 * pathological cases, e.g., in a gdtoa call after a gdtoa return in 128 * mode 3 with thousands of digits requested.) 129 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 130 * memory allocations from a private pool of memory when possible. 131 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 132 * unless #defined to be a different length. This default length 133 * suffices to get rid of MALLOC calls except for unusual cases, 134 * such as decimal-to-binary conversion of a very long string of 135 * digits. When converting IEEE double precision values, the 136 * longest string gdtoa can return is about 751 bytes long. For 137 * conversions by strtod of strings of 800 digits and all gdtoa 138 * conversions of IEEE doubles in single-threaded executions with 139 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with 140 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. 141 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK 142 * #defined automatically on IEEE systems. On such systems, 143 * when INFNAN_CHECK is #defined, strtod checks 144 * for Infinity and NaN (case insensitively). 145 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, 146 * strtodg also accepts (case insensitively) strings of the form 147 * NaN(x), where x is a string of hexadecimal digits (optionally 148 * preceded by 0x or 0X) and spaces; if there is only one string 149 * of hexadecimal digits, it is taken for the fraction bits of the 150 * resulting NaN; if there are two or more strings of hexadecimal 151 * digits, each string is assigned to the next available sequence 152 * of 32-bit words of fractions bits (starting with the most 153 * significant), right-aligned in each sequence. 154 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)" 155 * is consumed even when ... has the wrong form (in which case the 156 * "(...)" is consumed but ignored). 157 * #define MULTIPLE_THREADS if the system offers preemptively scheduled 158 * multiple threads. In this case, you must provide (or suitably 159 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 160 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 161 * in pow5mult, ensures lazy evaluation of only one copy of high 162 * powers of 5; omitting this lock would introduce a small 163 * probability of wasting memory, but would otherwise be harmless.) 164 * You must also invoke freedtoa(s) to free the value s returned by 165 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 166 * #define IMPRECISE_INEXACT if you do not care about the setting of 167 * the STRTOG_Inexact bits in the special case of doing IEEE double 168 * precision conversions (which could also be done by the strtod in 169 * dtoa.c). 170 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal 171 * floating-point constants. 172 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and 173 * strtodg.c). 174 * #define NO_STRING_H to use private versions of memcpy. 175 * On some K&R systems, it may also be necessary to 176 * #define DECLARE_SIZE_T in this case. 177 * #define USE_LOCALE to use the current locale's decimal_point value. 178 */ 179 180 #ifndef GDTOAIMP_H_INCLUDED 181 #define GDTOAIMP_H_INCLUDED 182 183 #define Long int 184 185 #include "gdtoa.h" 186 #include "gd_qnan.h" 187 #ifdef Honor_FLT_ROUNDS 188 #include <fenv.h> 189 #endif 190 191 #ifdef DEBUG 192 #include "stdio.h" 193 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 194 #endif 195 196 #include "limits.h" 197 #include "stdlib.h" 198 #include "string.h" 199 #include "libc_private.h" 200 201 #include "namespace.h" 202 #include <pthread.h> 203 #include "un-namespace.h" 204 205 #ifdef KR_headers 206 #define Char char 207 #else 208 #define Char void 209 #endif 210 211 #ifdef MALLOC 212 extern Char *MALLOC ANSI((size_t)); 213 #else 214 #define MALLOC malloc 215 #endif 216 217 #define INFNAN_CHECK 218 #define USE_LOCALE 219 #define NO_LOCALE_CACHE 220 #define Honor_FLT_ROUNDS 221 #define Trust_FLT_ROUNDS 222 223 #undef IEEE_Arith 224 #undef Avoid_Underflow 225 #ifdef IEEE_MC68k 226 #define IEEE_Arith 227 #endif 228 #ifdef IEEE_8087 229 #define IEEE_Arith 230 #endif 231 232 #include "errno.h" 233 #ifdef Bad_float_h 234 235 #ifdef IEEE_Arith 236 #define DBL_DIG 15 237 #define DBL_MAX_10_EXP 308 238 #define DBL_MAX_EXP 1024 239 #define FLT_RADIX 2 240 #define DBL_MAX 1.7976931348623157e+308 241 #endif 242 243 #ifdef IBM 244 #define DBL_DIG 16 245 #define DBL_MAX_10_EXP 75 246 #define DBL_MAX_EXP 63 247 #define FLT_RADIX 16 248 #define DBL_MAX 7.2370055773322621e+75 249 #endif 250 251 #ifdef VAX 252 #define DBL_DIG 16 253 #define DBL_MAX_10_EXP 38 254 #define DBL_MAX_EXP 127 255 #define FLT_RADIX 2 256 #define DBL_MAX 1.7014118346046923e+38 257 #define n_bigtens 2 258 #endif 259 260 #ifndef LONG_MAX 261 #define LONG_MAX 2147483647 262 #endif 263 264 #else /* ifndef Bad_float_h */ 265 #include "float.h" 266 #endif /* Bad_float_h */ 267 268 #ifdef IEEE_Arith 269 #define Scale_Bit 0x10 270 #define n_bigtens 5 271 #endif 272 273 #ifdef IBM 274 #define n_bigtens 3 275 #endif 276 277 #ifdef VAX 278 #define n_bigtens 2 279 #endif 280 281 #ifndef __MATH_H__ 282 #include "math.h" 283 #endif 284 285 #ifdef __cplusplus 286 extern "C" { 287 #endif 288 289 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 290 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. 291 #endif 292 293 typedef union { double d; ULong L[2]; } U; 294 295 #ifdef IEEE_8087 296 #define word0(x) (x)->L[1] 297 #define word1(x) (x)->L[0] 298 #else 299 #define word0(x) (x)->L[0] 300 #define word1(x) (x)->L[1] 301 #endif 302 #define dval(x) (x)->d 303 304 /* The following definition of Storeinc is appropriate for MIPS processors. 305 * An alternative that might be better on some machines is 306 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 307 */ 308 #if defined(IEEE_8087) + defined(VAX) 309 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ 310 ((unsigned short *)a)[0] = (unsigned short)c, a++) 311 #else 312 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ 313 ((unsigned short *)a)[1] = (unsigned short)c, a++) 314 #endif 315 316 /* #define P DBL_MANT_DIG */ 317 /* Ten_pmax = floor(P*log(2)/log(5)) */ 318 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 319 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 320 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 321 322 #ifdef IEEE_Arith 323 #define Exp_shift 20 324 #define Exp_shift1 20 325 #define Exp_msk1 0x100000 326 #define Exp_msk11 0x100000 327 #define Exp_mask 0x7ff00000 328 #define P 53 329 #define Bias 1023 330 #define Emin (-1022) 331 #define Exp_1 0x3ff00000 332 #define Exp_11 0x3ff00000 333 #define Ebits 11 334 #define Frac_mask 0xfffff 335 #define Frac_mask1 0xfffff 336 #define Ten_pmax 22 337 #define Bletch 0x10 338 #define Bndry_mask 0xfffff 339 #define Bndry_mask1 0xfffff 340 #define LSB 1 341 #define Sign_bit 0x80000000 342 #define Log2P 1 343 #define Tiny0 0 344 #define Tiny1 1 345 #define Quick_max 14 346 #define Int_max 14 347 348 #ifndef Flt_Rounds 349 #ifdef FLT_ROUNDS 350 #define Flt_Rounds FLT_ROUNDS 351 #else 352 #define Flt_Rounds 1 353 #endif 354 #endif /*Flt_Rounds*/ 355 356 #else /* ifndef IEEE_Arith */ 357 #undef Sudden_Underflow 358 #define Sudden_Underflow 359 #ifdef IBM 360 #undef Flt_Rounds 361 #define Flt_Rounds 0 362 #define Exp_shift 24 363 #define Exp_shift1 24 364 #define Exp_msk1 0x1000000 365 #define Exp_msk11 0x1000000 366 #define Exp_mask 0x7f000000 367 #define P 14 368 #define Bias 65 369 #define Exp_1 0x41000000 370 #define Exp_11 0x41000000 371 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 372 #define Frac_mask 0xffffff 373 #define Frac_mask1 0xffffff 374 #define Bletch 4 375 #define Ten_pmax 22 376 #define Bndry_mask 0xefffff 377 #define Bndry_mask1 0xffffff 378 #define LSB 1 379 #define Sign_bit 0x80000000 380 #define Log2P 4 381 #define Tiny0 0x100000 382 #define Tiny1 0 383 #define Quick_max 14 384 #define Int_max 15 385 #else /* VAX */ 386 #undef Flt_Rounds 387 #define Flt_Rounds 1 388 #define Exp_shift 23 389 #define Exp_shift1 7 390 #define Exp_msk1 0x80 391 #define Exp_msk11 0x800000 392 #define Exp_mask 0x7f80 393 #define P 56 394 #define Bias 129 395 #define Exp_1 0x40800000 396 #define Exp_11 0x4080 397 #define Ebits 8 398 #define Frac_mask 0x7fffff 399 #define Frac_mask1 0xffff007f 400 #define Ten_pmax 24 401 #define Bletch 2 402 #define Bndry_mask 0xffff007f 403 #define Bndry_mask1 0xffff007f 404 #define LSB 0x10000 405 #define Sign_bit 0x8000 406 #define Log2P 1 407 #define Tiny0 0x80 408 #define Tiny1 0 409 #define Quick_max 15 410 #define Int_max 15 411 #endif /* IBM, VAX */ 412 #endif /* IEEE_Arith */ 413 414 #ifndef IEEE_Arith 415 #define ROUND_BIASED 416 #else 417 #ifdef ROUND_BIASED_without_Round_Up 418 #undef ROUND_BIASED 419 #define ROUND_BIASED 420 #endif 421 #endif 422 423 #ifdef RND_PRODQUOT 424 #define rounded_product(a,b) a = rnd_prod(a, b) 425 #define rounded_quotient(a,b) a = rnd_quot(a, b) 426 #ifdef KR_headers 427 extern double rnd_prod(), rnd_quot(); 428 #else 429 extern double rnd_prod(double, double), rnd_quot(double, double); 430 #endif 431 #else 432 #define rounded_product(a,b) a *= b 433 #define rounded_quotient(a,b) a /= b 434 #endif 435 436 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 437 #define Big1 0xffffffff 438 439 #undef Pack_16 440 #ifndef Pack_32 441 #define Pack_32 442 #endif 443 444 #ifdef NO_LONG_LONG 445 #undef ULLong 446 #ifdef Just_16 447 #undef Pack_32 448 #define Pack_16 449 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 450 * This makes some inner loops simpler and sometimes saves work 451 * during multiplications, but it often seems to make things slightly 452 * slower. Hence the default is now to store 32 bits per Long. 453 */ 454 #endif 455 #else /* long long available */ 456 #ifndef Llong 457 #define Llong long long 458 #endif 459 #ifndef ULLong 460 #define ULLong unsigned Llong 461 #endif 462 #endif /* NO_LONG_LONG */ 463 464 #ifdef Pack_32 465 #define ULbits 32 466 #define kshift 5 467 #define kmask 31 468 #define ALL_ON 0xffffffff 469 #else 470 #define ULbits 16 471 #define kshift 4 472 #define kmask 15 473 #define ALL_ON 0xffff 474 #endif 475 476 #define MULTIPLE_THREADS 477 extern pthread_mutex_t __gdtoa_locks[2]; 478 #define ACQUIRE_DTOA_LOCK(n) do { \ 479 if (__isthreaded) \ 480 _pthread_mutex_lock(&__gdtoa_locks[n]); \ 481 } while(0) 482 #define FREE_DTOA_LOCK(n) do { \ 483 if (__isthreaded) \ 484 _pthread_mutex_unlock(&__gdtoa_locks[n]); \ 485 } while(0) 486 487 #define Kmax 9 488 489 struct 490 Bigint { 491 struct Bigint *next; 492 int k, maxwds, sign, wds; 493 ULong x[1]; 494 }; 495 496 typedef struct Bigint Bigint; 497 498 #ifdef NO_STRING_H 499 #ifdef DECLARE_SIZE_T 500 typedef unsigned int size_t; 501 #endif 502 extern void memcpy_D2A ANSI((void*, const void*, size_t)); 503 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 504 #else /* !NO_STRING_H */ 505 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 506 #endif /* NO_STRING_H */ 507 508 /* 509 * Paranoia: Protect exported symbols, including ones in files we don't 510 * compile right now. The standard strtof and strtod survive. 511 */ 512 #define dtoa __dtoa 513 #define gdtoa __gdtoa 514 #define freedtoa __freedtoa 515 #define strtodg __strtodg 516 #define g_ddfmt __g_ddfmt 517 #define g_dfmt __g_dfmt 518 #define g_ffmt __g_ffmt 519 #define g_Qfmt __g_Qfmt 520 #define g_xfmt __g_xfmt 521 #define g_xLfmt __g_xLfmt 522 #define strtoId __strtoId 523 #define strtoIdd __strtoIdd 524 #define strtoIf __strtoIf 525 #define strtoIQ __strtoIQ 526 #define strtoIx __strtoIx 527 #define strtoIxL __strtoIxL 528 #define strtord __strtord 529 #define strtordd __strtordd 530 #define strtorf __strtorf 531 #define strtorQ __strtorQ 532 #define strtorx __strtorx 533 #define strtorxL __strtorxL 534 #define strtodI __strtodI 535 #define strtopd __strtopd 536 #define strtopdd __strtopdd 537 #define strtopf __strtopf 538 #define strtopQ __strtopQ 539 #define strtopx __strtopx 540 #define strtopxL __strtopxL 541 542 /* Protect gdtoa-internal symbols */ 543 #define Balloc __Balloc_D2A 544 #define Bfree __Bfree_D2A 545 #define ULtoQ __ULtoQ_D2A 546 #define ULtof __ULtof_D2A 547 #define ULtod __ULtod_D2A 548 #define ULtodd __ULtodd_D2A 549 #define ULtox __ULtox_D2A 550 #define ULtoxL __ULtoxL_D2A 551 #define any_on __any_on_D2A 552 #define b2d __b2d_D2A 553 #define bigtens __bigtens_D2A 554 #define cmp __cmp_D2A 555 #define copybits __copybits_D2A 556 #define d2b __d2b_D2A 557 #define decrement __decrement_D2A 558 #define diff __diff_D2A 559 #define dtoa_result __dtoa_result_D2A 560 #define g__fmt __g__fmt_D2A 561 #define gethex __gethex_D2A 562 #define hexdig __hexdig_D2A 563 #define hexdig_init_D2A __hexdig_init_D2A 564 #define hexnan __hexnan_D2A 565 #define hi0bits __hi0bits_D2A 566 #define hi0bits_D2A __hi0bits_D2A 567 #define i2b __i2b_D2A 568 #define increment __increment_D2A 569 #define lo0bits __lo0bits_D2A 570 #define lshift __lshift_D2A 571 #define match __match_D2A 572 #define mult __mult_D2A 573 #define multadd __multadd_D2A 574 #define nrv_alloc __nrv_alloc_D2A 575 #define pow5mult __pow5mult_D2A 576 #define quorem __quorem_D2A 577 #define ratio __ratio_D2A 578 #define rshift __rshift_D2A 579 #define rv_alloc __rv_alloc_D2A 580 #define s2b __s2b_D2A 581 #define set_ones __set_ones_D2A 582 #define strcp __strcp_D2A 583 #define strcp_D2A __strcp_D2A 584 #define strtoIg __strtoIg_D2A 585 #define sum __sum_D2A 586 #define tens __tens_D2A 587 #define tinytens __tinytens_D2A 588 #define tinytens __tinytens_D2A 589 #define trailz __trailz_D2A 590 #define ulp __ulp_D2A 591 592 extern char *dtoa_result; 593 extern CONST double bigtens[], tens[], tinytens[]; 594 extern unsigned char hexdig[]; 595 596 extern Bigint *Balloc ANSI((int)); 597 extern void Bfree ANSI((Bigint*)); 598 extern void ULtof ANSI((ULong*, ULong*, Long, int)); 599 extern void ULtod ANSI((ULong*, ULong*, Long, int)); 600 extern void ULtodd ANSI((ULong*, ULong*, Long, int)); 601 extern void ULtoQ ANSI((ULong*, ULong*, Long, int)); 602 extern void ULtox ANSI((UShort*, ULong*, Long, int)); 603 extern void ULtoxL ANSI((ULong*, ULong*, Long, int)); 604 extern ULong any_on ANSI((Bigint*, int)); 605 extern double b2d ANSI((Bigint*, int*)); 606 extern int cmp ANSI((Bigint*, Bigint*)); 607 extern void copybits ANSI((ULong*, int, Bigint*)); 608 extern Bigint *d2b ANSI((double, int*, int*)); 609 extern void decrement ANSI((Bigint*)); 610 extern Bigint *diff ANSI((Bigint*, Bigint*)); 611 extern char *dtoa ANSI((double d, int mode, int ndigits, 612 int *decpt, int *sign, char **rve)); 613 extern void freedtoa ANSI((char*)); 614 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp, 615 int mode, int ndigits, int *decpt, char **rve)); 616 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t)); 617 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int)); 618 extern void hexdig_init_D2A(Void); 619 extern int hexnan ANSI((CONST char**, FPI*, ULong*)); 620 extern int hi0bits ANSI((ULong)); 621 extern Bigint *i2b ANSI((int)); 622 extern Bigint *increment ANSI((Bigint*)); 623 extern int lo0bits ANSI((ULong*)); 624 extern Bigint *lshift ANSI((Bigint*, int)); 625 extern int match ANSI((CONST char**, char*)); 626 extern Bigint *mult ANSI((Bigint*, Bigint*)); 627 extern Bigint *multadd ANSI((Bigint*, int, int)); 628 extern char *nrv_alloc ANSI((char*, char **, int)); 629 extern Bigint *pow5mult ANSI((Bigint*, int)); 630 extern int quorem ANSI((Bigint*, Bigint*)); 631 extern double ratio ANSI((Bigint*, Bigint*)); 632 extern void rshift ANSI((Bigint*, int)); 633 extern char *rv_alloc ANSI((int)); 634 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int)); 635 extern Bigint *set_ones ANSI((Bigint*, int)); 636 extern char *strcp ANSI((char*, const char*)); 637 extern int strtodg ANSI((CONST char*, char**, FPI*, Long*, ULong*)); 638 639 extern int strtoId ANSI((CONST char *, char **, double *, double *)); 640 extern int strtoIdd ANSI((CONST char *, char **, double *, double *)); 641 extern int strtoIf ANSI((CONST char *, char **, float *, float *)); 642 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*)); 643 extern int strtoIQ ANSI((CONST char *, char **, void *, void *)); 644 extern int strtoIx ANSI((CONST char *, char **, void *, void *)); 645 extern int strtoIxL ANSI((CONST char *, char **, void *, void *)); 646 extern double strtod ANSI((const char *s00, char **se)); 647 extern int strtopQ ANSI((CONST char *, char **, Void *)); 648 extern int strtopf ANSI((CONST char *, char **, float *)); 649 extern int strtopd ANSI((CONST char *, char **, double *)); 650 extern int strtopdd ANSI((CONST char *, char **, double *)); 651 extern int strtopx ANSI((CONST char *, char **, Void *)); 652 extern int strtopxL ANSI((CONST char *, char **, Void *)); 653 extern int strtord ANSI((CONST char *, char **, int, double *)); 654 extern int strtordd ANSI((CONST char *, char **, int, double *)); 655 extern int strtorf ANSI((CONST char *, char **, int, float *)); 656 extern int strtorQ ANSI((CONST char *, char **, int, void *)); 657 extern int strtorx ANSI((CONST char *, char **, int, void *)); 658 extern int strtorxL ANSI((CONST char *, char **, int, void *)); 659 extern Bigint *sum ANSI((Bigint*, Bigint*)); 660 extern int trailz ANSI((Bigint*)); 661 extern double ulp ANSI((U*)); 662 663 #ifdef __cplusplus 664 } 665 #endif 666 /* 667 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to 668 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, 669 * respectively), but now are determined by compiling and running 670 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. 671 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... 672 * and -DNAN_WORD1=... values if necessary. This should still work. 673 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) 674 */ 675 #ifdef IEEE_Arith 676 #ifndef NO_INFNAN_CHECK 677 #undef INFNAN_CHECK 678 #define INFNAN_CHECK 679 #endif 680 #ifdef IEEE_MC68k 681 #define _0 0 682 #define _1 1 683 #ifndef NAN_WORD0 684 #define NAN_WORD0 d_QNAN0 685 #endif 686 #ifndef NAN_WORD1 687 #define NAN_WORD1 d_QNAN1 688 #endif 689 #else 690 #define _0 1 691 #define _1 0 692 #ifndef NAN_WORD0 693 #define NAN_WORD0 d_QNAN1 694 #endif 695 #ifndef NAN_WORD1 696 #define NAN_WORD1 d_QNAN0 697 #endif 698 #endif 699 #else 700 #undef INFNAN_CHECK 701 #endif 702 703 #undef SI 704 #ifdef Sudden_Underflow 705 #define SI 1 706 #else 707 #define SI 0 708 #endif 709 710 #endif /* GDTOAIMP_H_INCLUDED */ 711